
Tell us about your PDF experience.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Network Driver Design Guide
Article • 09/27/2024

This Network Driver Design Guide describes how to design and create network device
drivers for Windows operating systems beginning with Windows Vista.

This guide includes the following sections:

Introduction to Network Drivers

NDIS version guide

NDIS Core Functionality

Scalable Networking

Virtualized Networking

Wireless Networking

Network Module Registrar

Winsock Kernel

IP Helper

Windows Filtering Platform Callout Drivers

System Area Networks

Remote NDIS (RNDIS)

Kernel Mode SDK Topics for Network Drivers

Previous Versions of Network Drivers

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://aka.ms/learn-pdf-feedback

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Introduction to Network Drivers Topics
Article • 09/27/2024

This section discusses introductory concepts for kernel-mode network drivers and
includes the following topics:

Roadmap for Developing NDIS Drivers
Using the Network Driver Design Guide
Network Architecture for Kernel-Mode Drivers
Network Driver Programming Considerations
Driver Stack Management
NET_BUFFER Architecture
Introduction to NDIS PDPI

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Roadmap for Developing NDIS Drivers
Article • 03/14/2023

To create a Network Driver Interface Specification (NDIS) driver package, follow these
steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about NDIS.

For general information about NDIS and NDIS drivers, see the following topics:

Windows Network Architecture and the OSI Model

Network Driver Programming Considerations

Driver Stack Management

NET_BUFFER Architecture

Step 3: Determine additional Windows driver design decisions.

For more information about how to make additional Windows design decisions,
see Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers,
and Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For more
information about Windows driver build, debug, and test processes, driver signing,
and Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For more information about building, testing, verifying, and debugging
tools, see Driver Development Tools.

Step 5: Select the type of NDIS driver you will implement.

For more information about types of NDIS drivers, see Using the Network Driver
Design Guide.

Follow the roadmaps for the type of driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/

Roadmap for Developing NDIS Miniport Drivers

Roadmap for Developing NDIS Protocol Drivers

Roadmap for Developing NDIS Filter Drivers

Roadmap for Developing NDIS Intermediate Drivers

Roadmap to Develop Mobile Broadband Miniport Drivers

Roadmap for Developing Windows Filtering Platform Callout Drivers

Step 6: Review the Network driver samples in the Windows driver samples
repository on GitHub.

Step 7: Develop (or port), build, test, and debug your NDIS driver.

See the porting guides if you are porting an existing driver:

Porting NDIS 6.x Drivers to NDIS 6.40

Porting NDIS 6.x Drivers to NDIS 6.30

Porting NDIS 6.x Drivers to NDIS 6.20

Porting NDIS 5.x Drivers to NDIS 6.0

For more information about iterative building, testing, and debugging, see
Overview of Build, Debug, and Test Process. This process will help ensure that
you build a driver that works.

Step 8: Create a driver package for your driver.

For more information about how to install drivers, see Providing a Driver Package.
For more information about how to install an NDIS driver, see Components and
Files Used for Network Component Installation and Notify Objects for Network
Components.

Step 9: Sign and distribute your driver.

The final step is to sign and distribute the driver. If your driver meets the quality
standards that are defined for the Windows Hardware Lab Kit (HLK), you can
distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

Navigating the Network Driver Design
Guide
Article • 12/15/2021

Microsoft Windows-based operating systems support several types of kernel-mode
network drivers. The Network section of the Windows Driver Kit (WDK) documentation
describes how to write these network drivers. This topic briefly describes the supported
types of network drivers and explains which sections of the Network section you should
read before writing each type of network driver.

This network driver design guide documents the following Network Driver Interface
Specification (NDIS) interfaces:

NDIS 6.40, which is supported on Windows 8.1, Windows Server 2012 R2, and later
versions of Windows. NDIS 6.30 includes support for Network Direct Kernel
Provider Interface (NDKPI) 1.12.

For more information about NDIS 6.30, see Introduction to NDIS 6.40.

NDIS 6.30, which is supported on Windows 8, Windows Server 2012, and later
versions of Windows. NDIS 6.30 includes support for single root/I/O virtualization
(SR-IOV), Hyper-V extensible switch, Network Direct Kernel Provider Interface
(NDKPI) 1.1, and other services.

For more information about NDIS 6.30, see Introduction to NDIS 6.30.

NDIS 6.20, which is supported on Windows 7, Windows Server 2008 R2, and later
versions of Windows. NDIS 6.20 includes support for Virtual Machine Queue
(VMQ), receive side throttle, and other services.

For more information about NDIS 6.20, see Introduction to NDIS 6.20.

NDIS 6.1, which is supported on Windows Vista with Service Pack 1 (SP1), Windows
Server 2008, and later versions of Windows. NDIS 6.1 includes support for header-
data split, direct OID requests, and other services.

For more information about NDIS 6.1, see Introduction to NDIS 6.1.

NDIS 6.0, which is supported on Windows Vista and later versions of Windows.
NDIS 6.0 includes support for filter drivers and many additional services that were
not provided by earlier NDIS versions. NDIS 6.0 includes major updates to driver
initialization and network data management including required support for driver
reconfiguration at runtime and the NET_BUFFER architecture for handling network

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

packet data. For more information about supporting runtime reconfiguration, see
Driver Stack Management. For more information about how to handle network
packet data in NDIS 6.0 see NET_BUFFER Architecture.

For more information about NDIS 6.0, see Introduction to NDIS 6.0.

Windows Vista and later operating system versions support the following types of
kernel-mode NDIS-based network drivers:

Miniport Drivers
A miniport driver manages miniport adapters and provides an interface to the adapters
for higher-level drivers. A miniport adapter is a conceptual entity that can represent
either a physical device or a virtual device. For example, a miniport adapter can
represent a network interface card (NIC) or a virtual device that is associated with an
intermediate driver.

There are many variations of miniport drivers, such as a connection-oriented miniport call
manager (MCM), a Windows Driver Model (WDM) miniport driver, and the upper edge of
an intermediate driver.

Protocol Drivers
A protocol driver provides high-level services in a driver stack. A protocol driver binds to
underlying miniport adapters. An upper-level protocol driver implements an interface,
possibly an application-specific interface, at its upper edge to provide services to users
of the network. At its lower edge, a protocol driver provides a protocol interface to pass
network data to and receive incoming data from the next-lower driver.

There are many variations of protocol drivers, such as a connection-oriented call
manager (MCM), a connection-oriented client, and the lower edge of an intermediate
driver.

Filter Drivers
A filter driver filters information on the interface between protocol drivers and miniport
drivers. Filter modules are attached in the binding between the protocol driver and the
miniport adapter and are generally transparent to the other drivers. Filter drivers can
implement modifying or monitoring filters. For example, a filter driver can enhance the
services that the underlying miniport adapter provides or simply collect statistics.

Intermediate Drivers
An intermediate driver interfaces between upper-level protocol drivers and miniport
drivers. Intermediate drivers provide a miniport driver interface at their upper-edge to
bind to overlying protocol drivers. Intermediate drivers provide a protocol driver
interface at their lower edge to bind to underlying miniport adapters. Intermediate

drivers are typically used to implement n to m multiplexer services. For example, an
intermediate driver can implement load balance and failover solutions.

Intermediate drivers can also manage hardware when they are configured as a miniport-
intermediate driver.

For more information about the Windows network architecture and programming
considerations, see Network Architecture for Kernel-Mode Drivers and Network Driver
Programming Considerations.

For more information about network INF files, which are used to install network
components, see Installing Network Components. If your network driver requires a
notify object--for example, to control bindings--also see Notify Objects for Network
Components.

The following additional driver models are available to use particular hardware
technologies and architectures.

Technology Description

Technology Description

Scalable Networking Networking technologies that support the
offload of tasks to a network adapter, such as
the following:

Header-Data Split, a service that splits
the header and the data in received
Ethernet frames into separate buffers.
Receive Side Scaling, a network driver
technology that improves network
performance on multiprocessor systems.
TCP Chimney Offload, an offload of the
data-transfer part of the TCP protocol
processing to a network adapter that has
the appropriate capabilities.
TCP/IP Offload, an offload of tasks or
connections to a network adapter that
has the appropriate capabilities.
Network Direct Kernel Provider Interface
(NDKPI), which enables kernel-mode
Windows components, such as SMB
server and client, to use remote direct
memory access (RDMA) functionality that
is provided by independent hardware
vendors (IHVs).
Network Virtualization using Generic
Routing Encapsulation (NVGRE) Task
Offload, which makes it possible to use
Generic Routing Encapsulation (GRE)-
encapsulated packets with:

Large Send Offload (LSO)
Virtual Machine Queue (VMQ)
Transmit (Tx) checksum offload
Receive (Rx) checksum offload

Virtualized Networking Networking technologies that support Hyper-V
virtualization environments, such as the
following:

Single Root I/O Virtualization (SR-IOV)
Virtual Machine Queue (VMQ)
Hyper-V Extensible Switch

Wireless Networking Networking capabilities that include Native
802.11 Wireless LAN.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-tcp-chimney-offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Technology Description

Network Module Registrar A system facility that allows a driver to attach
network modules to one another.

Winsock Kernel A kernel-mode Network Programming Interface
(NPI).

IP Helper A set of utility functions that enable drivers to
retrieve and modify information about the
network configuration of the local computer.

Windows Filtering Platform Callout Drivers A kernel-mode interface that enables deep
inspection, packet modification, stream
modification, and logging of network data.

System Area Networks A type of network connection that uses
Windows Sockets Direct to support a high-
performance, connection-oriented network.

Remote NDIS (RNDIS) A class specification that defines a system-
provided, bus-independent message set over a
USB bus.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/previous-versions/ff570659(v=vs.85)

Learning About Miniport Drivers
Article • 12/15/2021

There are several types of miniport drivers. The following list describes which sections of
the WDK documentation you should read, depending on the type of miniport driver that
you are writing:

Connectionless miniport drivers
If you are writing a miniport driver that controls a network interface card (NIC) for
connectionless network media (such as Ethernet), read:

Introduction to NDIS Miniport Drivers

NDIS Miniport Drivers

Connection-oriented miniport drivers
If you are writing a miniport driver for connection-oriented network media (such as
ISDN), read:

All of the sections that are listed earlier in this topic under "Connectionless
miniport drivers"

Connection-Oriented NDIS

WAN miniport drivers
If you are writing a miniport driver that controls a wide area network (WAN) NIC, read:

All of the sections that are listed earlier in this topic under "Connectionless
miniport drivers"

WAN Miniport Drivers

Miniports with a WDM lower interface
If you are writing a miniport driver that interfaces to other kernel drivers and has a
Microsoft Windows Driver Model (WDM) lower interface, read:

All of the sections that are listed earlier in this topic under "Connectionless
miniport drivers"

Miniport Drivers with a WDM Lower Interface

IrDA miniport drivers
If you are writing a miniport driver that controls an IrDA adapter, read:

All of the sections that are listed earlier in this topic under "Connectionless
miniport drivers"

Miniport drivers that support scalable networking
To learn about miniport drivers that support scalable networking, read:

Scalable Networking

Miniport drivers that support offloading TCP/IP to hardware
To learn about miniport drivers that offload TCP/IP to hardware, read:

TCP/IP Offload

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Learning About Protocol Drivers
Article • 12/15/2021

You can write a protocol driver that has either a connectionless or a connection-oriented
lower edge. In addition, your protocol driver can provide Winsock support. The
following list describes which sections of the WDK documentation you should read,
depending on the type of protocol driver that you are writing:

Protocol drivers that have a connectionless lower edge
If you are writing a protocol driver whose lower edge provides an interface to
connectionless miniport drivers, read:

NDIS Protocol Drivers

Protocol drivers that are connection-oriented clients or that are connection-oriented
providers of call manager services
If you are writing a connection-oriented client, which provides an interface to
connection-oriented miniport drivers, or if you are writing a connection-oriented call
manager, read:

NDIS Protocol Drivers

Connection-Oriented NDIS

Protocol drivers that have Winsock support
If you are writing a protocol that provides Winsock support, read:

NDIS Protocol Drivers

Transport Helper DLLs for Windows Sockets

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565691(v=vs.85)

Learning About Filter Drivers
Article • 12/15/2021

You can write a filter driver that has a connectionless interface. The following list
describes which sections of the WDK documentation you should read, depending on the
type of filter driver that you are writing:

Filter drivers
If you are writing a filter driver whose lower edge provides an interface to
connectionless miniport drivers, read:

NDIS Filter Drivers

Learning About Intermediate Drivers
Article • 12/15/2021

You can write an intermediate driver that has either a connectionless or a connection-
oriented lower edge. The following list describes which sections of the WDK
documentation you should read, depending on the type of intermediate driver that you
are writing:

Intermediate drivers that have a connectionless lower edge
If you are writing an intermediate driver whose lower edge provides an interface to
connectionless miniport drivers, read:

NDIS Intermediate Drivers

Intermediate drivers that have a connection-oriented lower edge
If you are writing an intermediate driver whose lower edge provides an interface to
connection-oriented miniport drivers, read:

NDIS Intermediate Drivers

Connection-Oriented NDIS

Windows network architecture and the
OSI model
Article • 12/16/2023

This article explores the Windows network architecture and how Windows network
drivers implement the bottom four layers of the OSI model.

For general information on all seven layers of the model, see the OSI model .

The Microsoft Windows operating systems use a network architecture that is based on
the seven-layer networking model developed by the International Organization for
Standardization (ISO) in 1978.

The ISO Open Systems Interconnection (OSI) Reference model describes networking as
"a series of protocol layers with a specific set of functions allocated to each layer. Each
layer offers specific services to higher layers while shielding these layers from the details
of how the services are implemented. A well-defined interface between each pair of
adjacent layers defines the services offered by the lower layer to the higher one and
how those services are accessed."

The following diagram illustrates the OSI model.

Windows network drivers implement the bottom four layers of the OSI model.

https://en.wikipedia.org/wiki/OSI_model

The physical layer is the lowest layer of the OSI model. This layer manages the reception
and transmission of the unstructured raw bit stream over a physical medium. It
describes the electrical/optical, mechanical, and functional interfaces to the physical
medium. The physical layer carries the signals for all of the higher layers.

In Windows, the network interface card (NIC) implements the physical layer, its
transceiver, and the medium to which the NIC is attached.

The data link layer sends frames between physical addresses and is responsible for error
detection and recovery occurring in the physical layer.

The data link layer is further divided by the Institute of Electrical and Electronics
Engineers (IEEE) into two sublayers: media access control (MAC) and logical link control
(LLC).

The MAC sublayer manages access to the physical layer, checks frame errors, and
manages address recognition of received frames.

In the Windows network architecture, the MAC sublayer is implemented in the NIC. The
NIC is controlled by a software device driver called the miniport driver. Windows
supports several variations of miniport drivers including WDM miniport drivers, miniport
call managers (MCMs), and miniport intermediate drivers.

The LLC sublayer provides error-free transfer of data frames from one node to another.
The LLC sublayer establishes and terminates logical links, controls frame flow, sequences
frames, acknowledges frames, and retransmits unacknowledged frames. The LLC
sublayer uses frame acknowledgment and retransmission to provide virtually error free
transmission over the link to the layers above.

In Windows, a software driver known as a protocol driver implements the LLC sublayer.

Physical layer

Data link layer

MAC

LLC

Network layer

The network layer controls the operation of the subnet. This layer determines the
physical path that the data should take, based on the following:

Network conditions

Priority of service

Other factors, such as routing, traffic control, frame fragmentation and reassembly,
logical-to-physical address mapping, and usage accounting

A protocol driver implements the network layer.

The transport layer ensures that messages are delivered error free, in sequence, and with
no loss or duplication. This layer relieves the higher-layer protocols from being
concerned about data transfer with their peers.

A minimal transport layer is required in protocol stacks that include a reliable network or
LLC sublayer that provides virtual circuit capability. For example, because the NetBEUI
transport driver for Windows is an OSI-compliant LLC sublayer, its transport layer
functions are minimal. If the protocol stack doesn't include an LLC sublayer, and if the
network layer is unreliable or supports datagrams (as with TCP/IP's IP layer or NWLink's
IPX layer), the transport layer should include frame sequencing and acknowledgment, as
well as retransmission of unacknowledged frames.

In the Windows network architecture, a protocol driver, sometimes referred to a
transport driver, implements the transport layer.

Transport layer

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows driver
documentation feedback
Windows driver documentation is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/contribute/
https://github.com/MicrosoftDocs/windows-driver-docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows-hardware%2Fdrivers%2Fnetwork%2Fwindows-network-architecture-and-the-osi-model&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwindows-driver-docs%2Fblob%2Fstaging%2Fwindows-driver-docs-pr%2Fnetwork%2Fwindows-network-architecture-and-the-osi-model.md&documentVersionIndependentId=3c2f4837-487c-db8a-fc23-4d0a199c13fd&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40aviviano&metadata=*+ID%3A+687e5228-2030-7423-2e6c-c4f1b5491761+%0A*+Product%3A+**windows-hardware**%0A*+Technology%3A+**network**&title=Customer+feedback+-+
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Overview of NDIS driver types
Article • 09/27/2024

The Network Driver Interface Specification (NDIS) library abstracts the network hardware
from network drivers. NDIS also specifies a standard interface between layered network
drivers, thereby abstracting lower-level drivers that manage hardware from upper-level
drivers, such as network transports. NDIS also maintains state information and
parameters for network drivers, including pointers to functions, handles, and parameter
blocks for linkage, and other system values.

NDIS supports the following primary types of network drivers:

Miniport drivers

Protocol drivers

Filter drivers

Intermediate drivers

Note: These topics detail each type of NDIS driver individually. For more information
about the NDIS driver stack and a diagram showing the relationship between all four
NDIS driver types, see NDIS Driver Stack.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Miniport drivers
Article • 09/27/2024

An NDIS miniport driver has two basic functions:

Managing a network interface card (NIC), including sending and receiving data
through the NIC.

Interfacing with higher-level drivers, such as filter drivers, intermediate drivers, and
protocol drivers.

A miniport driver communicates with its NICs and with higher-level drivers through the
NDIS library. The NDIS library exports a full set of functions (NdisMXxx and other
NdisXxx functions) that encapsulate all of the operating system functions that a
miniport driver must call. The miniport driver, in turn, must export a set of entry points
(MiniportXxx functions) that NDIS calls for its own purposes, or on behalf of higher-level
drivers, to access the miniport driver.

The following send and receive operations illustrate the interaction of miniport drivers
with NDIS and with higher-level drivers:

When a transport driver has a packet to transmit, it calls an NdisXxx function
exported by the NDIS library. NDIS then passes the packet to the miniport driver
by calling the appropriate MiniportXxx function exported by the miniport driver.
The miniport driver then forwards the packet to the NIC for transmission by calling
the appropriate NdisXxx functions.

When a NIC receives a packet addressed to itself, it can post a hardware interrupt
that is handled by NDIS or the NIC's miniport driver. NDIS notifies the NIC's
miniport driver by calling the appropriate MiniportXxx function. The miniport driver
sets up the transfer of data from the NIC and then indicates the presence of the
received packet to bound higher-level drivers by calling the appropriate NdisXxx
function.

７ Note

For more information about the NDIS driver stack and a diagram showing the
relationship between all four NDIS driver types, see NDIS Driver Stack.

NDIS supports miniport drivers for both connectionless environments and connection-
oriented environments.

Connectionless miniport drivers control NICs for connectionless network media, such as
Ethernet. Connectionless miniport drivers are further divided into deserialized and
serialized drivers:

Note All NDIS 6.0 and later drivers are deserialized.

Deserialized drivers serialize the operation of their own MiniportXxx functions and
that internally queue all incoming send packets. This results in significantly better
full-duplex performance, provided that the driver's critical sections (code that only
a single thread at a time can run) are kept small.

Serialized drivers rely on NDIS to serialize calls to their MiniportXxx functions and
to manage their send queues.

Connection-oriented miniport drivers control NICs for connection-oriented network
media, such as ISDN. Connection-oriented miniport drivers are always deserialized --
they always serialize the operation of their own MiniportXxx functions and queue
internally all incoming send packets.

An NDIS miniport driver can have a non-NDIS lower edge (see the following figure).

Through its non-NDIS lower edge, a miniport driver uses the class interface for a bus,
such as the Universal Serial Bus (USB) to control a device on the bus. The miniport driver
communicates with the device by sending I/O request packets (IRPs) either to the bus or
directly to remote devices that are attached to the bus. At its upper edge, the miniport
driver exposes a standard NDIS miniport driver interface, which enables the miniport
driver to communicate with overlying NDIS drivers.

Connectionless and Connection-Oriented
Miniport Drivers

Related topics

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

NDIS Miniport Drivers

NDIS Miniport Driver Reference

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Protocol drivers
Article • 12/15/2021

A network protocol, which is the highest driver in the NDIS hierarchy of drivers, is often
used as the lowest-level driver in a transport driver that implements a transport protocol
stack, such as a TCP/IP stack. A transport protocol driver allocates packets, copies data
from the sending application into the packet, and sends the packets to the lower-level
driver by calling NDIS functions. A protocol driver also provides a protocol interface to
receive incoming packets from the next lower-level driver. A transport protocol driver
transfers received data to the appropriate client application.

At its lower edge, a protocol driver interfaces with intermediate network drivers and
miniport drivers. The protocol driver calls NdisXxx functions to send packets, read and
set information that is maintained by lower-level drivers, and use operating system
services. The protocol driver also exports a set of entry points (ProtocolXxx functions)
that NDIS calls for its own purposes or on behalf of lower-level drivers to indicate up
receive packets, indicate the status of lower-level drivers, and to otherwise communicate
with the protocol driver.

At its upper edge, a transport protocol driver has a private interface to a higher-level
driver in the protocol stack.

NDIS Protocol Drivers

NDIS Protocol Driver Reference

７ Note

For more information about the NDIS driver stack and a diagram showing the
relationship between all four NDIS driver types, see NDIS Driver Stack.

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Filter drivers
Article • 09/27/2024

NDIS 6.0 introduced NDIS filter drivers. Filter drivers can monitor and modify the
interaction between protocol drivers and miniport drivers. Filter drivers are easier to
implement and have less processing overhead than NDIS intermediate drivers.

A filter module is an instance of a filter driver. As the following figure illustrates, filter
modules are typically layered between miniport adapters and protocol bindings.

A filter driver communicates with NDIS and other NDIS drivers through the NDIS library.
The NDIS library exports a full set of functions (NdisFXxx and other NdisXxx functions)
that encapsulate all of the operating system functions that a filter driver must call. The
filter driver, in turn, must export a set of entry points (FilterXxx functions) that NDIS calls
for its own purposes, or on behalf of other drivers, to access the filter driver.

７ Note

For more information about the NDIS driver stack and a diagram showing the
relationship between all four NDIS driver types, see NDIS Driver Stack.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

NDIS Filter Drivers

NDIS Filter Driver Reference

Related topics

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Intermediate drivers
Article • 12/15/2021

As the following figure illustrates, intermediate drivers are typically layered between
miniport drivers and transport protocol drivers.

Because of its intermediate position in the driver hierarchy, an intermediate driver must
communicate with both overlying protocol drivers and underlying miniport drivers in
order to expose:

Protocol entry points.

At its lower edge, NDIS calls the ProtocolXxx functions to communicate requests
from underlying miniport drivers. The intermediate driver looks like a protocol
driver to an underlying miniport driver.

７ Note

For more information about the NDIS driver stack and a diagram showing the
relationship between all four NDIS driver types, see NDIS Driver Stack.

Miniport driver entry points.

At its upper edge, NDIS calls the MiniportXxx functions to communicate the
requests of one or more overlying protocol drivers. The intermediate driver looks
like a miniport driver to an overlying protocol driver.

An intermediate driver exports a subset of the MiniportXxx functions at its upper edge. It
also exports one or more virtual adapters, to which overlying protocol drivers can bind.
To a protocol driver, a virtual adapter that was exported by an intermediate driver
appears to be a physical NIC. When a protocol driver sends packets or requests to a
virtual adapter, the intermediate driver propagates these packets and requests to the
underlying miniport driver. When the underlying miniport driver indicates received
packets, responds to a protocol driver's requests for information, or indicates status, the
intermediate driver propagates such packets, responses, and status up to the protocol
drivers that are bound to the virtual adapter.

You can use intermediate drivers to:

Translate between different network media.

Balance packet transmission across more than one NIC. A load balancing driver
exposes one virtual adapter to overlying transport protocols and distributes send
packets across more than one NIC.

NDIS Intermediate Drivers

NDIS Intermediate Driver Reference

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Connectionless Environment for
Network Drivers
Article • 12/15/2021

The connectionless environment is the standard network driver environment for
connectionless media, such as Ethernet. For a description of the drivers in this
environment, see NDIS Drivers and NDIS Miniport Drivers.

The following figure shows the NDIS environment for connectionless network drivers.

Connection-Oriented Environment for Network Drivers

NDIS Drivers

NDIS Miniport Drivers

Related topics

Connection-Oriented Environment for
Network Drivers
Article • 12/15/2021

Connection-oriented drivers are supported by the Connection-Oriented NDIS (CoNDIS)
interface.

For detailed information about the CoNDIS architecture, see Connection-Oriented
Environment

Network Driver Programming
Considerations
Article • 12/15/2021

Microsoft Windows network drivers share similar design goals. Network drivers should
be written to be portable and scalable, to provide simple configuration of hardware and
software, to use object-based interfaces, and to support asynchronous I/O. This section
describes how to apply these general design goals to the network drivers that you write
for Microsoft Windows Vista and later operating systems.

This section includes the following topics:

Performance in Network Drivers
Performance in Network Adapters
Portability in Network Drivers
Multiprocessor Support in Network Drivers
IRQLs in Network Drivers
Synchronization and Notification in Network Drivers
Packet Structures in Network Drivers
Using Shared Memory in Network Drivers
Asynchronous I/O and Completion Functions in Network Drivers
Security Issues for Network Drivers

Performance in Network Drivers
Article • 12/15/2021

Minimizing send and receive path length
Partitioning data and code to minimize sharing across processors
Avoiding false sharing
Using locking mechanisms properly
Using 64-bit DMA
Ensuring proper buffer alignment
Using Scatter-Gather DMA
Supporting Receive Side Throttle

Although the send and receive paths differ from driver to driver, there are some general
rules for performance optimizations:

Optimize for the common paths. The Kernprof.exe tool is provided with the
developer and IDW builds of Windows that extracts the needed information. The
developer should look at the routines that consume the most CPU cycles and
attempt to reduce the frequency of these routines being called or the time spent in
these routines.

Reduce time spent in DPC so that the network adapter driver does not use
excessive system resources, which would cause overall system performance to
suffer.

Make sure that debugging code is not compiled into the final released version of
the driver; this avoids executing excess code.

Partitioning is needed to minimize shared data and code across processors. Partitioning
helps reduce system bus utilization and improves the effectiveness of processor cache.
To minimize sharing, driver writers should consider the following:

Implement the driver as a deserialized miniport as described in Deserialized NDIS
Miniport Drivers.

Minimizing send and receive path length

Partitioning data and code to minimize sharing
across processors

Use per-processor data structures to reduce global and shared data access. This
allows you to keep statistic counters without synchronization, which reduces the
code path length and increases performance. For vital statistics, have per-
processor counters that are added together at query time. If you must have a
global counter, use interlocked operations instead of spin locks to manipulate the
counter. See Using Locking Mechanisms Properly below for information about how
to avoid using spin locks.

To facilitate this, KeGetCurrentProcessorNumberEx can be used to determine the
current processor. To determine the number of processors when allocating per-
processor data structures, KeQueryGroupAffinity can be used.

The total number of bits set in the affinity mask indicates the number of active
processors in the system. Drivers should not assume that all the set bits in the
mask will be contiguous because the processors might not be consecutively
numbered in the future releases of the operating system. The number of
processors in an SMP machine is a zero-based value.

If your driver maintains per-processor data, you can use the KeQueryGroupAffinity
function to reduce cache-line contention.

False sharing occurs when processors request shared variables that are independent
from each other. However, because the variables are on the same cache line, they are
shared among the processors. In such situations, the cache line will travel back and forth
between processors for every access to any of the variables in it, causing an increase in
cache flushes and reloads. This increases the system bus utilization and reduces overall
system performance.

To avoid false sharing, align important data structures (such as spin locks, buffer queue
headers, singly linked lists) to cache-line boundaries by using
NdisGetSharedDataAlignment.

Spin locks can reduce performance if not used properly. Drivers should minimize their
use of spin locks by using interlocked operations wherever possible. However, in some
cases, a spin lock might be the best choice for some purposes. For example, if a driver
acquires a spin lock while handling the reference count for the number of packets that
have not been indicated back to the driver, it is not necessary to use an interlocked

Avoiding false sharing

Using locking mechanisms properly

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-kegetcurrentprocessornumberex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-kequerygroupaffinity
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-kequerygroupaffinity
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetshareddataalignment

operation. For more information, see Synchronization and Notification in Network
Drivers.

Here are some tips for using locking mechanisms effectively:

Use NDIS singly-linked list functions such as the following for managing resource
pools:

NdisInitializeSListHead

NdisInterlockedPushEntrySList

NdisInterlockedPopEntrySList

NdisQueryDepthSList

If you need to use spin locks, use them to only protect data, not code. Don't use
one lock to protect all data used in common paths. For example, separate the data
used in the send and receive paths into two data structures so that when the send
path needs to lock its data, the receive path is not affected.

If you are using spin locks and the path is already at DPC level, use the
NdisDprAcquireSpinLock and NdisDprReleaseSpinLock functions to avoid extra
code when acquiring and releasing the locks.

To minimize the number of spin lock acquires and releases, use these NDIS
RWLock functions:

NdisAllocateRWLock

NdisAcquireRWLockRead

NdisAcquireRWLockWrite

NdisReleaseRWLock

64-Bit DMA If the network adapter supports 64-bit DMA, steps must be taken to avoid
extra copies for addresses above the 4 GB range. When the driver calls
NdisMRegisterScatterGatherDma, the NDIS_SG_DMA_64_BIT_ADDRESS flag must be
set in the Flags parameter.

Using 64-bit DMA

Ensuring proper buffer alignment

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinitializeslisthead
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinterlockedpushentryslist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinterlockedpopentryslist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisquerydepthslist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisdpracquirespinlock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisdprreleasespinlock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocaterwlock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisacquirerwlockread
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisacquirerwlockwrite
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreleaserwlock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterscattergatherdma

Buffer alignment on a cache-line boundary improves performance when copying data
from one buffer to another. Most network adapter receive buffers are properly aligned
when they are first allocated, but the user data that must eventually be copied into the
application buffer is misaligned due to the header space consumed. In the case of TCP
data (the most common scenario), the shift due to the TCP, IP and Ethernet headers
results in a shift of 0x36 bytes. To resolve this problem, we recommend that drivers
allocate a slightly larger buffer and insert packet data at an offset of 0xA bytes. This will
ensure that, after the buffers are shifted by 0x36 bytes for the header, the user data is
properly aligned. For more information about cache-line boundaries, see the Remarks
section for NdisMAllocateSharedMemory.

NDIS Scatter/Gather DMA provides the hardware with support to transfer data to and
from noncontiguous ranges of physical memory. Scatter-Gather DMA uses a
SCATTER_GATHER_LIST structure, which includes an array of
SCATTER_GATHER_ELEMENT structures and the number of elements in the array. This
structure is retrieved from the packet descriptor passed to the driver's send function.
Each element of the array provides the length and starting physical address of a
physically contiguous Scatter-Gather region. The driver uses the length and address
information for transferring the data.

Using the Scatter-Gather routines for DMA operations can improve utilization of system
resources by not locking these resources down statically, as would occur if map registers
were used. For more information, see NDIS Scatter/Gather DMA.

If the network adapter supports TCP Segmentation Offload (Large Send Offload), then
the driver will need to pass in the maximum buffer size it can get from TCP/IP into the
MaximumPhysicalMapping parameter within NdisMRegisterScatterGatherDma function.
This will guarantee that the driver has enough map registers to build the Scatter-Gather
list and eliminate any possible buffer allocations and copying. For more information, see
these topics:

Determining Task Offload Capabilities
Offloading the Segmentation of Large TCP Packets

To minimize disruptions during media playback in multimedia applications, NDIS 6.20
and later drivers must support Receive Side Throttle (RST) in processing receive
interrupts. For more information, see:

Using Scatter-Gather DMA

Supporting Receive Side Throttle

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_scatter_gather_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterscattergatherdma

Receive Side Throttle in NDIS 6.20 "Send and Receive Code Paths" in Summary of
Changes Required to Port a Miniport Driver to NDIS 6.20

Performance in Network Adapters
Article • 09/27/2024

There are always tradeoffs in deciding which hardware functions to implement on a
network adapter. It's becoming increasingly important to consider adding task offload
features that allow for interrupt moderation, dynamic tuning on the hardware,
improving the use of the PCI bus, and supporting Jumbo Frames. These offload features
are important for the high-end network adapter that is used in configurations requiring
top performance.

Supporting TCP and IP checksum offload
Supporting large send offload (LSO)
Supporting IP security (IPSec) offload
Improving interrupt moderation
Using the PCI bus efficiently
Supporting jumbo frames

For most common network traffic, offloading checksum calculation to the network
adapter hardware offers a significant performance advantage by reducing the number
of CPU cycles required per byte. Checksum calculation is the most expensive function in
the networking stack for two reasons:

It contributes to long path length.
It causes cache churning effects (typically on the sender).

Offloading checksum calculation to the sender improves the overall system performance
by reducing the load on the host CPU and increasing cache effectiveness.

In the Windows Performance Lab, we have measured TCP throughput improvements of
19% when checksum was offloaded during network-intensive workloads. Analysis of this
improvement shows that 11% of the total improvement is due to the path length
reduction, and 8% is due to increasing the caches effectiveness.

Offloading checksum on the receiver has the same advantages as offloading checksum
on the sender. Increased benefit can be seen on systems that act as both client and
server, such as a sockets proxy server. On systems where the CPU isn't necessarily busy,
such as a client system, the benefit of offloading checksum may be seen in better
network response times, rather than in noticeably improved throughput.

Supporting TCP and IP checksum offload

Windows offers the ability for the network adapter/driver to advertise a larger Maximum
Segment Size (MSS) than the MTU to TCP up to 64K. This allows TCP to allocate a buffer
of up to 64K to the driver, which divides the large buffer into packets that fit within the
network MTU.

The TCP segmenting work is done by the network adapter/driver hardware instead of
the host CPU . This results in a significant performance improvement if the network
adapter CPU is able to handle the additional work.

For many of the network adapters tested, there was little improvement seen for pure
networking activities when the host CPU was more powerful than the network adapter
hardware. However, for typical business workloads, an overall system performance
improvement of up to 9% of the throughput has been measured, because the host CPU
uses most of its cycles to execute transactions. In these cases, offloading TCP
segmentation to the hardware frees the host CPU from the load of segmentation,
allowing it extra cycles to perform more transactions.

Windows offers the ability to offload the encryption work of IPSec to the network
adapter hardware. Encryption, especially 3 DES (also known as triple DES), has a very
high cycles/byte ratio. Therefore, it's no surprise that offloading IPSec to the network
adapter hardware measured a 30% performance boost in secure Internet and VPN tests.

A simple network adapter generates a hardware interrupt on the host upon the arrival of
a packet or to signal completion of a packet send request. Interrupt latency and
resulting cache churning effects add overhead to the overall networking performance. In
many scenarios (for example, heavy system usage or heavy network traffic), it's best to
reduce the cost of the hardware interrupt by processing several packets for each
interrupt.

With heavy network workloads, up to 9% performance improvement in throughput has
been measured over network-intensive workloads. However, tuning Interrupt
Moderation parameters only for throughput improvements may result in a performance
hit on the response time. To maintain optimum settings and accommodate for different
workloads, it's best to allow for dynamically adjusted parameters as described in the
Auto-tuning later in this article.

Supporting large send offload (LSO)

Supporting IP security (IPSec) offload

Improving interrupt moderation

One of the most important factors in the network adapter hardware performance is how
efficiently it uses the PCI bus. Further, the network adapter's DMA performance affects
the performance of all PCI cards that are on the same PCI bus. The following guidelines
must be considered when optimizing PCI usage:

Streamline DMA transfers by aggregating target pages where appropriate.

Reduce PCI protocol overhead by performing DMA in large chunks (at least 256
bytes). If possible, time the flow of data so that entire packets are transferred in a
single PCI transaction. However, consider how the transfer should take place. For
example, don't wait for all of the data to arrive before initiating transfers, because
waiting will increase latency and consume additional buffer space.

It's better to pad the DMA packet transfer with additional bytes, rather than
requiring a short extra transfer to "clean up" by transferring the last few bytes of
the packet.

Use the Memory Read, Memory Read Line, and Memory Read Multiple transactions
as recommended by the PCI specification.

The network adapter bus interface hardware should detect limitations in the host
memory controller and adjust behavior accordingly. In example, the network
adapter bus interface hardware should detect memory-controller pre-fetch
limitations on a DMA Memory Reads and wait for a short period before attempting
the transaction again. The hardware should detect excessive retries on the part of
the network adapter and increase the time before the first retry on future
transactions when cut off by the host. There's no point in continuing to submit
transactions to the memory controller when you're certain that it's still busy
fetching the next sequential set of data.

Minimize the insertion of wait states, especially during data transfers. It's better to
relinquish the bus and let another PCI adapter using the bus get some work done
if more than one or two wait states are going to be inserted.

Use Memory Mapped I/O instead of Programmed I/O. This is also true for drivers.

Supporting larger Maximum Transmission Units (MTUs) and thus larger frame sizes,
specifically Jumbo Frames, reduces the network stack overhead incurred per byte. A 20%
TCP throughput increase has been measured when the MTU was changed from 1514 to

Using the PCI bus efficiently

Supporting jumbo frames

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

9000. Also, a significant reduction of CPU utilization is obtained due to the fewer
number of calls from the network stack to the network driver.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Portability in Network Drivers
Article • 12/15/2021

NDIS drivers should be written so that they are easily portable across all platforms that
support Microsoft Windows operating systems. In general, porting from one hardware
platform to another should only require recompilation with a system-compatible
compiler.

Follow these guidelines when you write NDIS drivers:

Avoid calling operating system-specific functions. Instead, use the NDIS equivalent
functions. NDIS exports a rich set of support functions for writing drivers, and if
you call these support functions, you can port the code between Microsoft
operating systems that support NDIS.

Write drivers in C (specifically, the ANSI C Standard). Avoid using any language
features that other system-compatible compilers do not support. Do not use any
features that the ANSI C standard designates as "implementation defined."

Avoid dependencies on data types whose size and layout vary across platforms.
For example, do not write driver code that calls any C Run-Time Library functions
instead of NDIS-provided functions.

Do not use floating-point operations in kernel mode. If you attempt such
operations, a fatal error will occur.

Use #ifdef and #endif statements to encapsulate code that is used to support
platform-specific features.

Multiprocessor Support in Network
Drivers
Article • 12/15/2021

To write a portable driver for all Microsoft Windows versions, you need to write code to
safely run on computers with multiple concurrently running processors. A network driver
must be multiprocessor-safe and must use the provided NDIS library functions.

In a uniprocessor environment, a single processor runs only one computer instruction at
a time, even though it is possible for a network interface card (NIC) or other device to
interrupt the current execution stream when packets arrive or as timer interrupts occur.
Typically, when manipulating data structures such as packet queues, a driver disables
interrupts on the NIC, performs the manipulation, and then reenables interrupts. Many
threads in a uniprocessor environment appear to run simultaneously but actually run in
interleaved time slices.

In a multiprocessor environment, processors simultaneously run several computer
instructions. A driver must synchronize so that when one driver function manipulates
common data structures, the same or another driver function on another processor does
not attempt to modify shared data at the same time. All driver code is reentrant in a
symmetric multiprocessor (SMP) computer. To eliminate this resource protection
problem, Windows device drivers use spin locks. For more information, see
Synchronization and Notification in Network Drivers.

IRQLs in Network Drivers
Article • 12/15/2021

Every driver function called by NDIS runs at a system-determined IRQL (one of
PASSIVE_LEVEL < DISPATCH_LEVEL < DIRQL). For example, a miniport driver's
initialization function, halt function, reset function, and shutdown function commonly
run at PASSIVE_LEVEL, although the reset and shutdown functions can be invoked at a
higher IRQL if the system requires it. Interrupt code runs at DIRQL, so an NDIS
intermediate or protocol driver never runs at DIRQL. All other NDIS driver functions run
at or below IRQL = DISPATCH_LEVEL.

The IRQL at which a driver function runs affects which NDIS functions it can call. Certain
functions can be called only at IRQL = PASSIVE_LEVEL. Others can be called at
DISPATCH_LEVEL or lower. You should check every NDIS function for IRQL restrictions.

Any driver function that shares resources with the driver's interrupt service routine (ISR)
must be able to raise its IRQL to DIRQL to prevent race conditions. NDIS provides such a
mechanism.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown

Synchronization and Notification in
Network Drivers
Article • 12/15/2021

Whenever two threads of execution share resources that can be accessed at the same
time, either in a uniprocessor computer or on a symmetric multiprocessor (SMP)
computer, they need to be synchronized. For example, on a uniprocessor computer, if
one driver function is accessing a shared resource and is interrupted by another function
that runs at a higher IRQL, such as an ISR, the shared resource must be protected to
prevent race conditions that leave the resource in an indeterminate state. On an SMP
computer, two threads could be running simultaneously on different processors and
attempting to modify the same data. Such accesses must be synchronized.

NDIS provides spin locks that you can use to synchronize access to shared resources
between threads that run at the same IRQL. When two threads that share a resource run
at different IRQLs, NDIS provides a mechanism for temporarily raising the IRQL of the
lower IRQL code so that access to the shared resource can be serialized.

When a thread depends on the occurrence of an event outside the thread, the thread
relies on notification. For example, a driver might need to be notified when some time
period has passed so that it can check its device. Or a network interface card (NIC) driver
might have to perform a periodic operation such as polling. Timers provide such a
mechanism.

Events provide a mechanism that two threads of execution can use to synchronize
operations. For example, a miniport driver can test the interrupt on a NIC by writing to
the device. The driver must wait for an interrupt to notify the driver that the operation
was successful. You can use events to synchronize an operation between the thread
waiting for the interrupt to complete and the thread that handles the interrupt.

The following subsections in this topic describe these NDIS mechanisms.

Spin Locks
Avoiding Spin Lock Problems
Timers
Events

A spin lock provides a synchronization mechanism for protecting resources shared by
kernel-mode threads running at IRQL > PASSIVE_LEVEL in either a uniprocessor or a

Spin Locks

multiprocessor computer. A spin lock handles synchronization among various threads of
execution that are running concurrently on an SMP computer. A thread acquires a spin
lock before accessing protected resources. The spin lock keeps any thread but the one
holding the spin lock from using the resource. On a SMP computer, a thread that is
waiting on the spin lock loops attempting to acquire the spin lock until it is released by
the thread that holds the lock.

Another characteristic of spin locks is the associated IRQL. Attempted acquisition of a
spin lock temporarily raises the IRQL of the requesting thread to the IRQL associated
with the spin lock. This prevents all lower IRQL threads on the same processor from
preempting the executing thread. Threads, on the same processor, running at a higher
IRQL can preempt the executing thread, but these threads cannot acquire the spin lock
because it has a lower IRQL. Therefore, after a thread has acquired a spin lock, no other
threads can acquire the spin lock until it has been released. A well-written network
driver minimizes the amount of time a spin lock is held.

A typical use for a spin lock is to protect a queue. For example, the miniport driver send
function, MiniportSendNetBufferLists, might queue packets passed to it by a protocol
driver. Because other driver functions also use this queue, MiniportSendNetBufferLists
must protect the queue with a spin lock so that only one thread at a time can
manipulate the links or contents. MiniportSendNetBufferLists acquires the spin lock, adds
the packet to the queue and then releases the spin lock. Using a spin lock ensures that
the thread holding the lock is the only thread modifying the queue links while the
packet is safely added to the queue. When the miniport driver takes the packets off the
queue, such an access is protected by the same spin lock. When running instructions
that modify the head of the queue or any of the link fields making up the queue, the
driver must protect the queue with a spin lock.

A driver must take care not to overprotect a queue. For example, the driver can perform
some operations (for example, filling in a field containing the length) in the network
driver-reserved field of a packet before it queues the packet. The driver can do this
outside the code region protected by the spin lock, but must do it before queuing the
packet. After the packet is on the queue and the running thread releases the spin lock,
the driver must assume that other threads can dequeue the packet immediately.

To avoid a possible deadlock, an NDIS driver should release all NDIS spin locks before
calling an NDIS function other than an NdisXxxSpinlock function. If an NDIS driver does
not comply with this requirement, a deadlock could occur as follows:

Avoiding Spin Lock Problems

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists

1. Thread 1, which holds NDIS spin lock A, calls an NdisXxx function that attempts to
acquire NDIS spin lock B by calling the NdisAcquireSpinLock function.

2. Thread 2, which holds NDIS spin lock B, calls an NdisXxx function that attempts to
acquire NDIS spin lock A by calling the NdisAcquireSpinLock function.

3. Thread 1 and thread 2, which are each waiting for the other to release its spin lock,
become deadlocked.

Microsoft Windows operating systems do not restrict a network driver from
simultaneously holding more than one spin lock. However, if one section of the driver
attempts to acquire spin lock A while holding spin lock B, and another section attempts
to acquire spin lock B while holding spin lock A, deadlock results. If it acquires more
than one spin lock, a driver should avoid deadlock by enforcing an order of acquisition.
That is, if a driver enforces acquiring spin lock A before spin lock B, the situation
described above will not occur.

Acquiring a spin lock raises the IRQL to DISPATCH_LEVEL and stores the old IRQL in the
spin lock. Releasing the spin lock sets the IRQL to the value stored in the spin lock.
Because NDIS sometimes enters drivers at PASSIVE_LEVEL, problems can arise with the
following code sequence:

syntax

A driver should not access spin locks in this sequence for the following reasons:

Between releasing spin lock A and releasing spin lock B, the code is running at
PASSIVE_LEVEL instead of DISPATCH_LEVEL and is subject to inappropriate
interruption.

After releasing spin lock B, the code is running at DISPATCH_LEVEL which could
cause the caller to fault at much later time with an IRQL_NOT_LESS_OR_EQUAL
stop error.

Using spin locks impacts performance and, in general, a driver should not use many spin
locks. Occasionally, functions that are usually distinct (for example, send and receive
functions) have minor overlaps for which two spin locks can be used. Use of more than
one spin lock might be a worthwhile tradeoff in order to allow the two functions to
operate independently on separate processors.

NdisAcquireSpinLock(A);
NdisAcquireSpinLock(B);
NdisReleaseSpinLock(A);
NdisReleaseSpinLock(B);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisacquirespinlock

Timers are used for polling or timing out operations. A driver creates a timer and
associates a function with the timer. The associated function is called when the period
specified in the timer expires. Timers can be one-shot or periodic. Once a periodic timer
is set, it will continue to fire at the expiration of every period until explicitly cleared. A
one-shot timer must be reset each time it fires.

Timers are created and initialized by calling NdisAllocateTimerObject and set by calling
NdisSetTimerObject. If a nonperiodic timer is used, it must reset by calling
NdisSetTimerObject. A timer is cleared by calling NdisCancelTimerObject.

Events are used to synchronize operations between two threads of execution. An event
is allocated by a driver and initialized by calling NdisInitializeEvent. A thread running at
IRQL = PASSIVE_LEVEL calls NdisWaitEvent to put itself into a wait state. When a driver
thread waits on an event, it specifies a maximum time to wait as well as the event to be
waited on. The thread's wait is satisfied when NdisSetEvent is called causing the event
to be signaled, or when the specified maximum wait-time interval expires, whichever
occurs first.

Typically, the event is set by a cooperating thread that calls NdisSetEvent. Events are
unsignaled when they are created and must be set in order to signal waiting threads.
Events remain signaled until NdisResetEvent is called.

Multiprocessor Support in Network Drivers

Timers

Events

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatetimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissettimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceltimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinitializeevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiswaitevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisresetevent

Packet Structures in Network Drivers
Article • 12/15/2021

In NDIS 6.0 and later versions, a higher layer driver allocates NET_BUFFER and
NET_BUFFER LIST structures to hold network packet information, and sends the
structures to the next lower NDIS driver so that the data can be sent on the network.
Lower-level drivers allocate NET_BUFFER and NET_BUFFER_LIST structures to hold
received data and pass the structures up to interested higher-layer drivers. Sometimes, a
higher layer driver allocates structures and passes them to a lower layer driver with a
request for the lower layer driver to copy received data into the buffers provided. NDIS
provides functions for allocating and manipulating the substructures that make up the
NET_BUFFER and NET_BUFFER_LIST structures.

For more information about the structure of network data buffers in NDIS drivers, see
NET_BUFFER Architecture.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Using Shared Memory in Network
Drivers
Article • 12/15/2021

Miniport drivers for bus-master direct memory access (DMA) devices allocate shared
memory for use by the network interface card (NIC) and the miniport driver.

NdisMAllocateSharedMemory can be called by a bus-master miniport driver to allocate
memory for permanent sharing between the network adapter and the miniport driver.
This function returns a virtual address and a physical address for the shared memory.
The addresses are valid until a call to NdisMFreeSharedMemory frees the memory.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreesharedmemory

Asynchronous I/O and Completion
Functions in Network Drivers
Article • 12/15/2021

Latency is inherent in some network operations. Because of this latency, many of the
upper-edge functions provided by a miniport driver and the lower-edge functions of a
protocol driver are designed to support asynchronous operation. Rather than wasting
CPU cycles waiting in a loop for some time-consuming task to finish or a hardware
event to signal, network drivers rely on the ability to handle most operations
asynchronously.

Asynchronous network I/O is supported by using a completion function. The following
example illustrates using a completion function for a network send operation, but this
same mechanism exists for many other operations that are performed by a protocol or
miniport driver.

When a protocol driver calls NDIS to send a packet, resulting in a call to the miniport
driver's MiniportSendNetBufferLists function, the miniport driver can try to complete this
request immediately and return an appropriate status value as a result. For synchronous
operation, the possible responses are NDIS_STATUS_SUCCESS for successful completion
of the send, NDIS_STATUS_RESOURCES, and NDIS_STATUS_FAILURE indicating a failure
of some kind.

But a send operation can take some time to complete while the miniport driver (or
NDIS) queues the packet and waits for the NIC to indicate the result of the send
operation. The miniport driver MiniportSendNetBufferLists function can handle this
operation asynchronously by returning a status value of NDIS_STATUS_PENDING. When
the miniport driver completes the send operation, it calls the completion function,
NdisMSendNetBufferListsComplete, passing a pointer to the packet descriptor that was
sent. This information is passed to the protocol driver, signaling completion.

Most driver operations that can require an extended time to complete support
asynchronous operation with a similar completion function. Such functions have names
of the form NdisMXxxComplete.

Completion functions are also provided to:

Set and querying configuration.

Reset hardware.

Indicate status.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

Indicate received data.

Transfer received data.

Security Issues for Network Drivers
Article • 12/15/2021

For a general discussion on writing secure drivers, see Creating Reliable Kernel-Mode
Drivers.

Beyond following safe coding practices and the general device driver guidance, network
drivers should do the following to enhance security:

All network drivers should validate values that they read from the registry.
Specifically, the caller of NdisReadConfiguration or NdisReadNetworkAddress
must not make any assumptions about values read from the registry and must
validate each registry value that it reads. If the caller of NdisReadConfiguration
determines that a value is out of bounds, it should use a default value instead. If
the caller of NdisReadNetworkAddress determines that a value is out of bounds, it
should use the permanent medium access control (MAC) address or a default
address instead.

A miniport driver, in its MiniportOidRequest or MiniportCoOidRequest functions,
should validate any object identifier (OID) value that the driver is requested to set.
If the driver determines that the value to be set is out of bounds, it should fail the
set request. For more information about object identifiers, see Obtaining and
Setting Miniport Driver Information and NDIS Support for WMI.

If an intermediate driver's MiniportOidRequest function does not pass a set
operation to an underlying miniport driver, the function should validate the OID
value. For more information, see Intermediate Driver Query and Set Operations.

Most Query OIDs can be issued by any usermode application on the system. Follow
these specific guidelines for Query OIDs.

1. Always validate the size of the buffer is large enough for the output. Any query
OID handler without an output buffer size check has a security bug.

c++

OID-specific issues

Query OID security guidelines

if (oid->DATA.QUERY_INFORMATION.InformationBufferLength <
sizeof(ULONG)) {

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadnetworkaddress
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

2. Always write a correct and minimal value to BytesWritten. It is a red flag to assign
oid->BytesWritten = oid->InformationBufferLength like the following example
does.

c++

The OS will copy BytesWritten bytes back to a usermode application. If
BytesWritten is larger than the number of bytes the driver actually wrote, then the
OS might end up copying back uninitialized kernel memory to usermode, which
would be an information disclosure vulnerability. Instead, use code similar to this:

c++

3. Never read values back from the buffer. In some cases, the output buffer of an OID
is directly mapped into a hostile usermode process. The hostile process can
change your output buffer after you’ve written to it. For example, the code below
can be attacked, because an attacker can change NumElements after it is written:

c++

To avoid reading back from the buffer, keep a local copy. For example, to fix the
above example, introduce a new stack variable:

c++

 oid->DATA.QUERY_INFORMATION.BytesNeeded = sizeof(ULONG);
 return NDIS_STATUS_INVALID_LENGTH;
}

// ALWAYS WRONG
oid->DATA.QUERY_INFORMATION.BytesWritten =
DATA.QUERY_INFORMATION.InformationBufferLength;

oid->DATA.QUERY_INFORMATION.BytesWritten = sizeof(ULONG);

output->NumElements = 4;
for (i = 0 ; i < output->NumElements ; i++) {
 output->Element[i] = . . .;
}

ULONG num = 4;
output->NumElements = num;
for (i = 0 ; i < num; i++) {
 output->Element[i] = . . .;
}

With this approach, the for loop reads back from the driver’s stack variable num
and not from its output buffer. The driver should also mark the output buffer with
the volatile keyword, to prevent the compiler from silently undoing this fix.

Most Set OIDs can be issued by a usermode application running in the Administrators or
System security groups. Although these are generally trusted applications, the miniport
driver still must not permit memory corruption or injection of kernel code. Follow these
specific rules for Set OIDs:

1. Always validate the input is large enough. Any OID set handler without an input
buffer size check has a security vulnerability.

c++

2. Whenever validating an OID with an embedded offset, you must validate that the
embedded buffer is within the OID payload. This requires several checks. For
example, OID_PM_ADD_WOL_PATTERN may deliver an embedded pattern, that
needs to be checked. Correct validation requires checking:

a. InformationBufferSize >= sizeof(NDIS_PM_PACKET_PATTERN)

c++

b. Pattern->PatternOffset + Pattern->PatternSize does not overflow

c++

Set OID security guidelines

if (oid->DATA.SET_INFORMATION.InformationBufferLength < sizeof(ULONG))
{
 return NDIS_STATUS_INVALID_LENGTH;
}

PmPattern = (PNDIS_PM_PACKET_PATTERN) InformationBuffer;
if (InformationBufferLength < sizeof(NDIS_PM_PACKET_PATTERN))
{
 Status = NDIS_STATUS_BUFFER_TOO_SHORT;
 *BytesNeeded = sizeof(NDIS_PM_PACKET_PATTERN);
 break;
}

ULONG TotalSize = 0;
if (!NT_SUCCESS(RtlUlongAdd(Pattern->PatternOffset, Pattern-
>PatternSize, &TotalSize) ||

These two checks can be combined using code like the following example:

c++

c. InformationBuffer + Pattern->PatternOffset + Pattern->PatternLength does not
overflow

c++

d. Pattern->PatternOffset + Pattern->PatternLength <= InformationBufferSize

c++

 TotalSize > InformationBufferLength)
{
 return NDIS_STATUS_INVALID_LENGTH;
}

ULONG TotalSize = 0;
if (InformationBufferLength < sizeof(NDIS_PM_PACKET_PATTERN) ||
 !NT_SUCCESS(RtlUlongAdd(Pattern->PatternSize, Pattern-
>PatternOffset, &TotalSize) ||
 TotalSize > InformationBufferLength)
{
 return NDIS_STATUS_INVALID_LENGTH;
}

ULONG TotalSize = 0;
if (!NT_SUCCESS(RtlUlongAdd(Pattern->PatternOffset, Pattern-
>PatternLength, &TotalSize) ||
 (!NT_SUCCESS(RtlUlongAdd(TotalSize, InformationBuffer,
&TotalSize) ||
 TotalSize > InformationBufferLength)
{
 return NDIS_STATUS_INVALID_LENGTH;
}

ULONG TotalSize = 0;
if(!NT_SUCCESS(RtlUlongAdd(Pattern->PatternOffset, Pattern-
>PatternLength, &TotalSize) ||
 TotalSize > InformationBufferLength))
{
 return NDIS_STATUS_INVALID_LENGTH;
}

Method OID security guidelines

Method OIDs can be issued by a usermode application running in the Administrators or
System security groups. They are a combination of a Set and a Query, so both preceding
lists of guidance also apply to Method OIDs.

Many NDIS miniport drivers expose a control device by using
NdisRegisterDeviceEx. Those that do this must audit their IOCTL handlers, with all
the same security rules as a WDM driver. For more information, see Security Issues
for I/O Control Codes.

Well-designed NDIS miniport drivers should not rely on being called in a particular
process context, nor interact very closely with usermode (with IOCTLs & OIDs
being the exception). It would be a red flag to see a miniport that opened
usermode handles, performed usermode waits, or allocated memory against
usermode quota. That code should be investigated.

Most NDIS miniport drivers should not be involved in parsing packet payloads. In
some cases, though, it may be necessary. If so, this code should be audited very
carefully, as the driver is parsing data from an untrusted source.

As is standard when allocating kernel-mode memory, NDIS drivers should use
appropriate NX Pool Opt-In Mechanisms. In WDK 8 and newer, the NdisAllocate*
family of functions are properly opted in.

Other network driver security issues

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/security-issues-for-i-o-control-codes
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/nx-pool-opt-in-mechanisms

Driver Stack Management
Article • 12/15/2021

NDIS 6.0 introduced the ability to pause and restart a driver stack. To support the stack
management features that NDIS 6.0 provides, you must rewrite legacy drivers.

NDIS 6.0 also introduced NDIS filter drivers. Filter drivers can monitor and modify the
interaction between protocol drivers and miniport drivers. Filter drivers are easier to
implement and have less processing overhead than NDIS 5.x intermediate drivers. For
these reasons, you should use filter drivers instead of filter intermediate drivers.

A driver stack contains the following logical elements:

Miniport Adapter
A miniport adapter is an adapter instance of an NDIS miniport driver or intermediate
driver. The virtual miniport of an intermediate driver is a miniport adapter. NDIS
configures the other elements of a driver stack over a miniport adapter after a device
becomes available.

Protocol Binding
A protocol binding is a binding instance of a protocol driver. A protocol binding binds an
NDIS protocol driver to a miniport adapter. Multiple protocol drivers can bind to a
miniport adapter.

Filter Module
A filter module is an instance of a filter driver. NDIS can pause a driver stack to insert,
remove, or reconfigure a filter module. Filter modules can monitor and modify the
behavior of a miniport adapter.

The following topics provide more information about the driver stack, driver states, and
driver stack operations:

NDIS Driver Stack
Adapter States of a Miniport Driver
Binding States of a Protocol Driver
Module States of a Filter Driver
NDIS Stack Operations

NDIS Filter Drivers

Related topics

NDIS Intermediate Drivers

NDIS Driver Stack
Article • 03/14/2023

The following figure shows a basic configuration of the logical elements in an NDIS 6.0
driver stack. The figure illustrates a driver stack with an unspecified number of filter
modules. The arrows represent information flow between the elements of the stack.

As the preceding figure shows, you can stack any number of filter modules over a
miniport adapter. These modules can be instances of different filter drivers and/or
multiple instances of the same filter driver. If a miniport driver manages more than one
miniport adapter, a separate driver stack can exist over each miniport adapter.

Protocol drivers bind to miniport adapters. Therefore, underlying filter modules in a
driver stack are transparent to protocol drivers. To obtain information about underlying
filter modules, protocol drivers can enumerate the filter modules in a driver stack.

If more than one protocol driver binds to an miniport adapter, the filter modules are the
same for both protocol drivers. Based upon the binding, NDIS routes requests to the
correct protocol driver.

Basic Stack Configuration

The following figure shows an NDIS 6.0 driver stack with an intermediate driver.

If you include an NDIS intermediate driver in the driver stack, the stack is essentially two
stacks: one above the other.

The intermediate driver's virtual miniport provides the miniport adapter for the upper
stack, whereas the intermediate driver's protocol edge provides the protocol binding for
the lower stack.

A virtual miniport has the same states as any other miniport adapter. For more
information about miniport adapter states, see Adapter States of a Miniport Driver.

The protocol edge of the intermediate driver should implement the same binding states
as a protocol driver. For more information about binding states, see Binding States of a
Protocol Driver.

Adapter States of a Miniport Driver

Binding States of a Protocol Driver

Driver Stack Management

NDIS Filter Drivers

NDIS 6.0 Stack with Intermediate Driver

Related topics

NDIS Intermediate Drivers

NDIS Miniport Drivers

NDIS Protocol Drivers

Adapter States of a Miniport Driver
Article • 12/15/2021

For each miniport adapter that it manages, an NDIS miniport driver must support the
following set of operational states:

Halted

Shutdown

Initializing

Paused

Restarting

Running

Pausing

The following figure shows the interrelationships between these states.

Note The reset operation does not affect miniport adapter operational states. Also, the
state of the adapter might change while a reset operation is in progress. For example,
NDIS might call a driver's pause handler when there is a reset operation in progress. In
this case, the driver can complete either the reset or the pause operation in any order

while following the normal requirements for each operation. For a reset operation, the
driver can fail transmit request packets or it can keep them queued and complete them
later. However, you should note that an overlying driver cannot complete a pause
operation while its transmit packets are pending.

The following defines the adapter states:

Halted
Halted is the initial state of all miniport adapters. When a miniport adapter is in the
Halted state, and NDIS calls the driver's MiniportInitializeEx function to initialize the
miniport adapter, the miniport adapter enters the Initializing state. If MiniportInitializeEx
fails, the miniport adapter returns to the Halted state. When the miniport adapter is in
the Paused state and NDIS calls the MiniportHaltEx function, the miniport adapter
returns to the Halted state.

Shutdown
A miniport adapter in the Shutdown state cannot be used until the system is shut down
and restarted. When the miniport adapter is in the Paused, Restarting, Running, or
Pausing state and NDIS calls the miniport driver's MiniportShutdownEx function, the
miniport adapter enters the Shutdown state.

Initializing
In the Initializing state, a miniport driver completes any operations that are required to
initialize a miniport adapter. When a miniport adapter is in the Halted state and the
NDIS calls the miniport driver's MiniportInitializeEx function, the miniport adapter enters
the Initializing state. If MiniportInitializeEx succeeds, the miniport adapter enters the
Paused state. If MiniportInitializeEx fails, the miniport adapter returns to the Halted state.

Paused
When a miniport adapter is in the Paused state, a miniport driver does not indicate
received network data or accept send requests. When a miniport adapter is in the
Pausing state and the pause operation is complete, the miniport adapter enters the
Paused state. When a miniport adapter is in the Initializing state and MiniportInitializeEx
is successful, the miniport adapter enters the Paused state. When NDIS calls the
miniport driver's MiniportRestart function, the miniport adapter transitions from the
Paused state to the Restarting state. When NDIS calls the miniport driver's
MiniportHaltEx function, the miniport adapter transitions from the Paused state to the
Halted state.

Restarting
In the Restarting state, a miniport driver completes any operations that are required to
restart send and receive operations for a miniport adapter. When a miniport adapter is
in the Paused state and NDIS calls the driver's MiniportRestart function, the miniport

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

adapter enters the Restarting state. If the restart fails, the miniport adapter returns to
the Paused state. If the restart is successful, the miniport adapter enters the Running
state.

Running
In the Running state, a miniport driver performs normal send and receive processing for
a miniport adapter. When the miniport adapter is in the Restarting state and the driver is
ready to perform send and receive operations, the miniport adapter enters the Running
state.

Pausing
In the Pausing state, a miniport driver completes any operations that are required to
stop send and receive operations for a miniport adapter. The driver must wait for NDIS
to return all outstanding receive indications. When a miniport adapter is in the Running
state and NDIS calls the driver's MiniportPause function, the miniport adapter enters the
Pausing state. A miniport driver cannot fail a pause operation. When the pause
operation is complete, the miniport adapter enters the Paused state.

Driver Stack Management

NDIS Miniport Drivers

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause

Binding States of a Protocol Driver
Article • 12/15/2021

An NDIS protocol driver must support the following operational states for each binding
that the driver manages:

Unbound

Opening

Running

Closing

Pausing

Paused

Restarting

The following figures shows the relationship between these states.

The following defines the protocol driver binding states:

Unbound
The Unbound state is the initial state of a binding. In this state, the protocol driver waits
for NDIS to call the ProtocolBindAdapterEx function. After NDIS calls
ProtocolBindAdapterEx, the binding enters the Opening state. After an unbind operation
is complete, a binding returns to the Unbound state from the Closing state.

Opening
In the Opening state, a protocol driver allocates resources for the binding and attempts
to open the miniport adapter. After NDIS calls the driver's ProtocolBindAdapterEx
function, the binding enters the Opening state. If the protocol driver fails to bind to the
miniport adapter, the binding returns to the Unbound state. If the driver successfully
binds to the miniport adapter, the binding enters the Paused state.

Running
In the Running state, a protocol driver performs normal send and receive processing for
a binding. When the binding is in the Restarting state and the driver is ready to perform
send and receive operations, the binding enters the Running state.

Closing
In the Closing state, the protocol driver closes the binding to the miniport adapter and
then releases the resources for the binding. After NDIS calls the protocol driver's
ProtocolUnbindAdapterEx function, the binding enters the Closing state. After the
protocol driver completes the unbind operations, the binding enters the Unbound state.

Pausing
In the Pausing state, a protocol driver completes any operations that are required to
stop send and receive operations for a binding. When a binding is in the Running state
and NDIS sends the protocol driver a PnP pause notification, the binding enters the
Pausing state. The protocol driver must wait for all its outstanding send request to
complete. A protocol driver cannot fail a pause operation. After the pause operation is
complete, the binding enters the Paused state.

Paused
In the Paused state, the protocol driver does not perform send or receive operations for
a binding. When a binding is in the Pausing state and a pause operation is complete, the
binding enters the Paused state. When a binding is in the Opening state and a open
operation completes successfully, the binding enters the Paused state. If NDIS sends the
protocol driver a PnP restart notification for the binding, the binding enters the
Restarting state. If NDIS calls the driver's ProtocolUnbindAdapterEx function, the binding
enters the Closing state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

Restarting
In the Restarting state, a protocol driver completes any operations that are required to
restart send and receive operations for a binding. When a binding is in the Paused state
and NDIS sends the protocol driver a PnP restart notification, the binding enters the
Restarting state. If the restart fails, the binding returns to the Paused state. If the restart
is successful, the binding enters the Running state.

Driver Stack Management

NDIS Protocol Drivers

Related topics

Module States of a Filter Driver
Article • 12/15/2021

An NDIS filter driver must support the following operational states for each filter module
(instance of a filter driver) that the driver manages:

Detached

Attaching

Paused

Restarting

Running

Pausing

The following figure shows the relationships between these states.

The following defines the filter module states:

Detached
The Detached state is the initial state of a filter module. When a filter module is in this

state, NDIS can call the filter driver's FilterAttach function to attach the filter module to
the driver stack. When NDIS calls a filter driver's FilterAttach function, the filter module
enters the Attaching state. If the attach operation fails, the filter module returns to the
Detached state. When the module is in the Paused state and NDIS calls the FilterDetach
function, the module returns to the Detached state.

Attaching
When a filter module is in the Attaching state, a filter driver prepares to attach the
module to the driver stack. After the filter module preparation is complete, the filter
module enters the Paused state. If a failure occurs (for example, because the required
resources are not available), the filter module returns to the Detached state.

Paused
When a filter module is in the Paused state, the filter module does not perform send or
receive operations. When a filter module is in the Attaching state and FilterAttach is
successful, the filter module enters the Paused state. When a filter module is in the
Pausing state and the pause operation completes, the filter module enters the Paused
state. When a filter module is in the Paused state and NDIS calls the filter driver's
FilterRestart function, the filter module enters the Restarting state. When a filter module
is in the Paused state and NDIS calls the driver's FilterDetach handler, the filter module
enters the Detached state.

Restarting
In the Restarting state, a filter driver completes any operations that are required to
restart send and receive operations for a filter module. When a filter module is in the
Paused state and NDIS calls the driver's FilterRestart function, a filter module enters the
Restarting state. If the restart fails, the filter module returns to the Paused state. If the
restart is successful, the filter module enters the Running state.

Running
In the Running state, a filter driver performs normal send and receive processing for a
filter module. When the filter module is in the Restarting state and the driver is ready to
perform send and receive operations, the filter module enters the Running state.

Pausing
In the Pausing state, a filter driver completes any operations that are required to stop
send and receive operations for a filter module. The filter driver must wait for all its
outstanding send requests to complete and for NDIS to return all its outstanding receive
indications. When a filter module is in the Running state and NDIS calls the driver's
FilterPause function, the filter module enters the Pausing state. A filter driver cannot fail
a pause operation. After the pause operation is complete, the filter module enters the
Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause

Driver Stack Management

NDIS Filter Drivers

Related topics

Starting a Driver Stack
Article • 12/15/2021

After the system detects a networking device, the system starts an NDIS driver stack for
the device. The device can be a virtual device or a physical device. In either case, a driver
stack start operation proceeds as follows:

1. The system loads and initializes the drivers if they are not already loaded.

It does not load the drivers in any particular order.

2. The system calls each driver's DriverEntry function.

After DriverEntry returns:

The miniport adapter for the device is in the Halted state.
The filter modules are in the Detached state.
The protocol binding is in the Unbound state.

3. The system requests NDIS to start the miniport adapter.

To initialize the miniport adapter, NDIS calls the miniport driver's
MiniportInitializeEx function. If MiniportInitializeEx is successful, the miniport
adapter enters the Paused state.

4. NDIS attaches the filter modules, beginning with the module that is closest to the
miniport driver and progressing to the top of the driver stack.

To request the driver to attach a filter module to the driver stack, NDIS calls a filter
driver's FilterAttach function. If each attach operation is successful, the filter
module enters the Paused state.

5. After all the underlying drivers are in the Paused state, NDIS calls the protocol
driver's ProtocolBindAdapterEx function.

Then the protocol driver binding enters the Opening state. The protocol driver calls
the NdisOpenAdapterEx function to open the binding with the miniport adapter.

6. NDIS allocates the necessary resources for the binding and calls the protocol
driver's ProtocolOpenAdapterCompleteEx function.

The binding enters the Paused state.

7. To complete the bind operation, the protocol driver calls the
NdisCompleteBindAdapterEx function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_open_adapter_complete_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscompletebindadapterex

8. NDIS restarts the driver stack. For more information about restarting the driver
stack, see Restarting a Driver Stack.

Stopping a Driver Stack
Article • 12/15/2021

If a device is removed, NDIS stops a driver stack. A driver stack stop operation proceeds
as follows:

1. NDIS pauses the driver stack. For more information about pausing the driver stack,
see Pausing a Driver Stack.

2. NDIS calls the protocol driver's ProtocolUnbindAdapterEx function.

The binding enters the Closing state. After outstanding OID and send requests are
complete and all receive data is returned, the binding enters the Unbound state.

3. NDIS detaches all the filter modules, beginning from the top of the stack and
progressing down to the miniport driver.

After NDIS calls a filter driver's FilterDetach function and the filter driver releases all
the resources for a filter module, the filter module is in the Detached state.

4. NDIS halts the miniport adapter.

After NDIS calls the miniport driver's MiniportHaltEx function, the miniport driver
releases all the resources for the miniport adapter and the miniport adapter is in
the Halted state.

5. If all of a filter driver's modules are detached, the system can unload the filter
driver.

6. If all the miniport adapters that a miniport driver manages are halted, the system
can unload the miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Pausing a Driver Stack
Article • 12/15/2021

NDIS pauses a driver stack to complete operations such as inserting a filter module or
adding a binding. In general, a driver stack pause operation proceeds as follows:

1. NDIS sends a PnP pause event to the protocol driver.

The binding enters the Pausing state. After all outstanding send requests are
complete, the protocol driver completes the PnP event. The binding is in the
Paused state.

2. NDIS pauses all the filter modules, beginning at the top of the stack and
progressing down to the miniport driver.

After NDIS calls the filter driver's FilterPause function, the filter module enters the
Pausing state. After NDIS returns all outstanding receive indications, and all
outstanding send operations are complete, the filter module enters the Paused
state.

3. NDIS pauses the miniport adapter.

After NDIS calls the miniport driver's MiniportPause function, the miniport adapter
enters the Pausing state. After NDIS returns all outstanding receive indications, the
miniport adapter enters the Paused state.

Note NDIS drivers cannot fail a pause request. You should log any errors that occur.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause

Restarting a Driver Stack
Article • 12/15/2021

NDIS restarts a driver stack after operations such as inserting a filter module or adding a
binding. A driver stack restart operation proceeds as follows:

1. NDIS restarts the miniport adapter.

After NDIS calls the miniport driver's MiniportRestart function, the miniport
adapter enters the Restarting state. The miniport driver prepares to resume send
and receive operations. If the preparation fails, the miniport adapter returns to the
Paused state. After the driver is ready to resume send and receive operations, the
miniport adapter enters the Running state.

2. NDIS restarts the filter modules, beginning at the bottom of the driver stack and
progressing up to the protocol driver.

After NDIS calls a filter driver's FilterRestart function, the filter module enters the
Restarting state. The filter driver prepares to resume send and receive operations. If
the preparation fails, the module returns to the Paused state. After the driver is
ready to resume send and receive operations, the filter module enters the Running
state.

3. NDIS sends a PnP restart event to the protocol driver.

The binding enters the Restarting state. The protocol driver prepares to resume
send and receive operations. If the preparation fails, the binding returns to the
Paused state. After the protocol driver is ready to resume send and receive
operations, the binding enters the Running state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart

Modifying a Running Driver Stack
Article • 12/15/2021

NDIS modifies a driver stack for operations such as inserting, removing, or reconfiguring
a filter module. NDIS can activate or deactivate the bypass mode in a filter module. For
more information about bypass mode in filter drivers, see Data Bypass Mode.

Note If filter driver entry points change (that is, because of bypass mode), NDIS pauses
and restarts the driver stack. Pause and restart could cause some network packets to be
dropped on the transmit path, or receive path. Network protocols that provide a reliable
transport mechanism might retry the network I/O operation in the case of a lost packet,
but other protocols that do not guarantee reliability do not retry the operation.

NDIS modifies a running driver stack as follows:

1. NDIS pauses the driver stack.

For more information, see Pausing a Driver Stack.

2. NDIS modifies the stack.

For example, to add a filter module, NDIS determines where to insert the new filter
module into the stack and creates, inserts, and attaches the filter module.

3. When a filter module is inserted or deleted, the characteristics of the driver stack
might change. In this case, NDIS sends a Plug and Play event notification to all of
the protocol bindings and filter modules in the driver stack to notify the drivers of
this change.

4. NDIS restarts the driver stack.

For more information, see Restarting a Driver Stack.

NET_BUFFER Architecture
Article • 12/15/2021

This section provides high level information about NET_BUFFER structures and related
data structures and functions. NET_BUFFER structures provide an efficient means to
package and manage network data.

The following topics are included in this section:

Network Data Structures

Retreat and Advance Operations

Obtaining Pool Handles

Dispatch IRQL Tracking

Send and Receive Operations

Ethernet Send and Receive Operations

Derived NET_BUFFER_LIST Structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Network Data Structures
Article • 12/15/2021

Network data consists of packets of data that are sent or received over the network.
NDIS provides data structures to describe and organize such data. The primary network
data structures for NDIS 6.0 and later are:

NET_BUFFER
NET_BUFFER LIST
NET_BUFFER_LIST_CONTEXT

The following figure illustrates the relationships between these structures.

In NDIS 6.0 and later, the NET_BUFFER is the basic building block for packaging network
data. Each NET_BUFFER structure has an MDL chain. The MDLs map the addresses of
data buffers to the data space that the NET_BUFFER structures specify. This data

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

mapping is identical to the MDL chains that NDIS 5.x and earlier drivers use in the
NDIS_PACKET structure. NDIS provides functions to manipulate the MDL chain.

Multiple NET_BUFFER structures can be attached to a NET_BUFFER_LIST structure. The
NET_BUFFER structures are organized as a NULL-terminated singly linked list. Only the
driver that originates a NET_BUFFER_LIST structure, or NDIS, should modify the linked
list directly to insert and delete NET_BUFFER structures.

NET_BUFFER LIST structures contain information that describes all the NET_BUFFER
structures that are attached to a list. If a driver requires additional space for context
information, the driver can store such information in the NET_BUFFER_LIST_CONTEXT
structures. NDIS provides functions to allocate, free and access the data in the
NET_BUFFER_LIST_CONTEXT structures.

Multiple NET_BUFFER_LIST structures can be attached to form a list of NET_BUFFER_LIST
structures. The NET_BUFFER_LIST structures are organized as a NULL-terminated singly
linked list. Drivers can modify the linked list directly to insert and delete
NET_BUFFER_LIST structures.

NET_BUFFER

NET_BUFFER Structure

NET_BUFFER LIST

NET_BUFFER_LIST Structure

NET_BUFFER_LIST_CONTEXT

NET_BUFFER_LIST_CONTEXT Structure

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context

NET_BUFFER Structure
Article • 12/15/2021

NDIS 6.0 and later NET_BUFFER structures are analogous to the NDIS_PACKET
structures used by NDIS 5.x and earlier drivers. Each NET_BUFFER structure packages a
packet of network data.

The following figure shows the fields in a NET_BUFFER structure.

The NET_BUFFER structure includes a NET_BUFFER_HEADER structure in the
NetBufferHeader member. The NET_BUFFER_HEADER structure includes a
NET_BUFFER_DATA structure in the NetBufferData member. You should use NDIS
macros to access NET_BUFFER structure members. For a complete list of these macros,
see the NET_BUFFER structure reference page.

Some of the NET_BUFFER structure members are only used by NDIS. The members that
drivers typically use are:

ProtocolReserved
Reserved for use by protocol drivers.

MiniportReserved
Reserved for use by miniport drivers.

NdisPoolHandle
Specifies a pool handle that identifies the NET_BUFFER pool from which the NET_BUFFER
structure was allocated.

Next
Specifies a pointer to the next NET_BUFFER structure in a linked list of NET_BUFFER
structures. If this is the last NET_BUFFER structure in the list, this member is NULL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

DataLength
Specifies the length in bytes of the network data in the MDL chain.

DataOffset
Specifies the offset, in bytes, from the start of memory in the MDL chain to the start of
the network data in the MDL chain.

CurrentMdl
Specifies a pointer to the first MDL that the current driver is using. This pointer provides
an optimization that improves performance by skipping over any MDLs that the current
driver is not using.

CurrentMdlOffset
Specifies the offset, in bytes, to the beginning of the used data space in the MDL that is
specified by the CurrentMdl member of the NET_BUFFER structure.

The following figure shows the relationship between the CurrentMdl, CurrentMdlOffset,
DataOffset, and DataLength members and the data space.

NDIS provides functions to manage the data space in the MDL chain. How drivers use
the data space changes dynamically with the current driver. Sometimes there is data
space that is currently unused by the current driver. Although the unused data space is

currently unused, it can contain valid data. For example, on the receive path, the unused
data space can contain header information that was used by a lower level driver.

Drivers perform retreat and advance operations to increase and decrease the used data
space. For more information about retreat and advance operations, see Retreat and
Advance Operations.

The following terms and definitions describe elements of the NET_BUFFER data space:

Used data space
Used data space contains data that the current driver is using at the current time. Drivers
increase used data space with retreat operations and reduce used data space with
advance operations.

Unused data space
The current driver is not using this data space at the current time.

Total data size
The total data size is the sum of the size of the used data space and unused data space.
To calculate the total size, add the DataOffset to the DataLength .

Retreat
Retreat operations increase the size of the used data space.

Advance
Advance operations decrease the size of the used data space.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

NET_BUFFER_LIST Structure
Article • 12/15/2021

A NET_BUFFER_LIST structure packages a linked list of NET_BUFFER structures.

The following figure shows the fields in a NET_BUFFER_LIST structure.

The NET_BUFFER_LIST structure includes a NET_BUFFER_LIST_HEADER structure in the
NetBufferListHeader member. The NET_BUFFER_LIST_HEADER structure includes a
NET_BUFFER_LIST_DATA structure in the NetBufferListData member. You should use
NDIS macros to access NET_BUFFER_LIST structure members. For more information
about these macros, see the NET_BUFFER_LIST structure reference page.

Some of the members are only used by NDIS. The members that drivers are most likely
to use are defined in the following list:

ParentNetBufferList
If a NET_BUFFER_LIST structure is a child that was derived from a parent(cloned,
fragmented, or reassembled), ParentNetBufferList specifies a pointer to the parent
NET_BUFFER_LIST structure. Otherwise, this parameter is NULL.

NdisPoolHandle
Specifies a pool handle that identifies the NET_BUFFER_LIST pool from which the
NET_BUFFER_LIST structure was allocated.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

ProtocolReserved
Reserved for use by protocol drivers.

MiniportReserved
Reserved for use by miniport drivers.

SourceHandle
A handle that NDIS provided to the driver in a binding or attaching operation by using
one of the following driver-supplied routines:

Miniport Driver
MiniportInitializeEx

Protocol Driver
ProtocolBindAdapterEx

Filter Driver
FilterAttach

NDIS uses SourceHandle to return the NET_BUFFER_LIST structure to the driver that sent
the NET_BUFFER_LIST structure. NDIS drivers should not read this handle.

ChildRefCount
If a NET_BUFFER_LIST structure is a parent (has children derived by clone, fragment, or
reassemble operations), ChildRefCount specifies the number of existing children.
Otherwise, this parameter is zero.

Flags
Reserved for future specification of attributes for the NET_BUFFER_LIST structure. There
are currently no flags available to drivers.

Status
Specifies the final completion status of a network data operation for this
NET_BUFFER_LIST structure. Miniport drivers write this value before completing a send
operation.

NetBufferListInfo
Specifies NET_BUFFER_LIST structure information that is common to all NET_BUFFER
structures in the list. This information is often referred to as "out-of-band (OOB) data."

Next
Specifies a pointer to the next NET_BUFFER_LIST structure in a linked list of
NET_BUFFER_LIST structures. If a NET_BUFFER_LIST structure is the last structure in the
list, this member is NULL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

FirstNetBuffer
Specifies a pointer to the first NET_BUFFER structure in a linked list of NET_BUFFER
structures that is associated with this NET_BUFFER_LIST structure.

Note Context is a pointer to a NET_BUFFER_LIST_CONTEXT structure. NDIS provides
macros and functions to manipulate the data at Context . For more information about
the NET_BUFFER_LIST_CONTEXT structure, see NET_BUFFER_LIST_CONTEXT Structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context

NET_BUFFER_LIST_CONTEXT Structure
Article • 06/15/2022

NDIS drivers use NET_BUFFER_LIST_CONTEXT structures to store additional data that is
associated with a NET_BUFFER_LIST structure. The Context member of the
NET_BUFFER_LIST structure is a pointer to a NET_BUFFER_LIST_CONTEXT structure. The
information stored in the NET_BUFFER_LIST_CONTEXT structures is opaque to NDIS and
other drivers in the stack.

The following figure shows the fields in a NET_BUFFER_LIST_CONTEXT structure.

The NET_BUFFER_LIST_CONTEXT structure includes ContextData member that contains
the context data. This data can be any context information that a driver requires for the
NET_BUFFER_LIST structure.

Drivers should use the following NDIS macros and functions to access and manipulate
members in a NET_BUFFER_LIST_CONTEXT structure:

NdisAllocateNetBufferListContext

NdisFreeNetBufferListContext

NET_BUFFER_LIST_CONTEXT_DATA_START

NET_BUFFER_LIST_CONTEXT_DATA_SIZE

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistcontext
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlistcontext
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_context_data_start
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_context_data_size

Retreat and Advance Operations
Article • 12/15/2021

NDIS provides retreat and advance functions to manipulate NET_BUFFER structures.
Retreat operations make more used data space available to the current driver. Advance
operations release used data space.

Retreat operations are required during send operations or when a driver returns
received data to an underlying driver. For example, during a send operation, a driver can
call the NdisRetreatNetBufferDataStart function to make room for header data.

Advance operations are required when a send operation is complete or when a driver
receives data from an underlying driver. For example, during a receive operation, a
driver can call the NdisAdvanceNetBufferDataStart function to skip over the header
data that was used by a lower level driver. In this case, the header data remains in the
buffer in the unused data space.

The following figure shows the relationship between the network data and these
operations.

The following topics provide more information about advance and retreat operations:

Retreat Operations

Advance Operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisretreatnetbufferdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisadvancenetbufferdatastart

Retreat Operations
Article • 12/15/2021

Retreat operations can increase the size of the used data space in a NET_BUFFER
structure or in all of the NET_BUFFER structures in a NET_BUFFER_LIST structure.

NDIS provides the following retreat functions:

NdisRetreatNetBufferDataStart

NdisRetreatNetBufferListDataStart

Retreat operations can sometimes allocate MDLs that are associated with a NET_BUFFER
structure. To provide the mechanism for allocating MDLs, a driver can provide an
optional entry point for a NetAllocateMdl function. If the entry point is NULL, NDIS uses
a default method to allocate MDLs. MDLs must be freed within a NetFreeMdl function
that provides the reciprocal of the mechanism that was used to allocate the MDL.

To obtain the new DataLength, NDIS adds the driver-specified DataOffsetDelta to the
current DataLength . If the size of the unused data space is greater than the
DataOffsetDelta, a retreat operation reduces the DataOffset . In this case, the new
DataOffset is the current DataOffset minus the DataOffsetDelta .

If the DataOffsetDelta is greater than DataOffset, a retreat operation allocates new data
space. In this case, NDIS adjusts the DataOffset accordingly.

For send operations, NDIS allocates memory if there isn't enough unused data space to
satisfy a retreat request. If no memory allocation is required, NDIS simply adjusts the
DataOffset and DataLength . For better performance, drivers should allocate enough
total data size before sending to accommodate the retreat operations of all the
underlying drivers.

For the receive return case, NDIS simply adjusts the DataOffset and DataLength
accordingly. The retreat operation reverses the advance operation that took place
during receive processing. After the retreat operation, the used data space contains the
header data that underlying drivers used during receive processing.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisretreatnetbufferdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisretreatnetbufferlistdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nc-nblapi-net_buffer_allocate_mdl
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nc-nblapi-net_buffer_free_mdl

Advance Operations
Article • 12/15/2021

Advance operations decrease the size of the used data space in a NET_BUFFER structure
or in all of the NET_BUFFER structures in a NET_BUFFER_LIST structure.

Drivers use the following advance functions:

NdisAdvanceNetBufferDataStart

NdisAdvanceNetBufferListDataStart

Advance operations can sometimes free MDLs that are associated with a NET_BUFFER
structure. To provide the mechanism for freeing MDLs, a driver can provide an optional
entry point for a NetFreeMdl functions. If the entry point is NULL, NDIS uses a default
method to allocate MDLs. MDLs must only be freed within a NetFreeMdl using that
reciprocal of the mechanism that was used to allocate the MDL in the NetAllocateMdl
function.

To obtain the new DataLength, NDIS subtracts the driver-specified DataOffsetDelta from
the current DataLength . If a previous retreat operation allocated new data space, the
advance operation can free such previously allocated memory. If an advance operation
does not free memory, NDIS simply adds the DataOffsetDelta to the current DataOffset
to obtain the new DataOffset . If the advance operation freed memory, NDIS adjusts the
DataOffset accordingly.

For the send complete case, advance operations can free memory that was allocated in
previous retreat operations. For better performance, drivers should allocate enough
total data size before sending to accommodate the retreat operations of all the
underlying drivers.

For the receive indication case, advance operations simply adjust the DataOffset and
DataLength accordingly. After the advance operation, the headers of lower layers
remain in the unused data space.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisadvancenetbufferdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisadvancenetbufferlistdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nc-nblapi-net_buffer_free_mdl
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nc-nblapi-net_buffer_allocate_mdl

Obtaining Pool Handles
Article • 12/15/2021

The following NDIS pool allocation functions require a handle to allocate resources:

NdisAllocateNetBufferPool

NdisAllocateNetBufferListPool

NDIS 6.0 drivers obtain a handle as follows:

Protocol drivers
Protocol drivers call the NdisRegisterProtocolDriver function to obtain a handle.

Miniport drivers
NDIS calls the MiniportInitializeEx function to pass the handle to the miniport driver.

Intermediate drivers
Intermediate drivers call the NdisRegisterProtocolDriver function to obtain a handle for
pools used in send operations and NDIS calls MiniportInitializeEx to pass the handle to
the intermediate driver for pools used in receive operations.

Filter drivers
NDIS calls the FilterAttach function to pass the handle to the filter driver.

Other drivers
If a driver cannot obtain a handle through one of the preceding methods, the driver can
call the NdisAllocateGenericObject function to get a handle.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocategenericobject

Dispatch IRQL Tracking
Article • 12/15/2021

To improve system performance, some NDIS functions (for example, the
MiniportSendNetBufferLists function) include a dispatch level flag that indicates the
current IRQL. The proper use of the dispatch level flag can help to avoid unnecessary
attempts to set the IRQL.

There are other flags that control other attributes, but the names for the dispatch level
flags are:

NDIS_SEND_FLAGS_DISPATCH_LEVEL

NDIS_SEND_COMPLETE_FLAGS_DISPATCH_LEVEL

NDIS_RECEIVE_FLAGS_DISPATCH_LEVEL

NDIS_RETURN_FLAGS_DISPATCH_LEVEL

NDIS_RWL_AT_DISPATCH_LEVEL

The caller must determine the dispatch level flag setting from the known current IRQL,
not by testing the IRQL. For example, you know the IRQL because it is a fixed
characteristic of the driver design, or the driver saved the current IRQL.

If the known current IRQL is DISPATCH_LEVEL, the caller should set this flag. If the
current IRQL is unknown, or the caller is not running at DISPATCH_LEVEL, the caller
should clear this flag. If the caller is NDIS, the called function should test this flag to
avoid changing the IRQL.

Drivers should not test for the IRQL to determine the value for the dispatch level flag.
Testing would defeat the purpose of the flag. If necessary, the called function can simply
do the testing itself. How a driver determines that it should or should not set the flag is
left to the design of the particular driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists

Send and Receive Operations
Article • 12/15/2021

In a single function call, NDIS 6.0 drivers can send multiple NET_BUFFER_LIST structures
with multiple NET_BUFFER structures on each NET_BUFFER_LIST structure. Also, NDIS
drivers can indicate completed send operations for multiple NET_BUFFER_LIST structures
with multiple NET_BUFFER structures on a NET_BUFFER_LIST structure.

In the receive path, miniport drivers can use a list of NET_BUFFER_LIST structures to
indicate receives. Each NET_BUFFER_LIST indicated by a miniport driver contains one
NET_BUFFER structure. However, Native 802.11 drivers can have more than one
NET_BUFFER structure. Because a different protocol binding can process each
NET_BUFFER_LIST structure, NDIS can return each NET_BUFFER_LIST structure to the
miniport driver independently.

To support NDIS 5.x and earlier drivers, NDIS provides a translation layer between the
NDIS_PACKET-based and NET_BUFFER-based interfaces. NDIS performs the necessary
conversion between NET_BUFFER structures and NDIS_PACKET structures. To avoid
performance degradation due to translation, NDIS drivers must be updated to use
NET_BUFFER structures and should support multiple NET_BUFFER_LIST structures in all
data paths.

This section includes the following topics:

Sending Network Data

Canceling a Send Operation

Receiving Network Data

Looping Back NDIS Packets

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Sending Network Data
Article • 12/15/2021

The following figure illustrates a basic send operation, which involves a protocol driver,
NDIS, and a miniport driver.

Protocol drivers call the NdisSendNetBufferLists function to send NET_BUFFER_LIST
structures on a binding. NDIS calls the miniport driver's MiniportSendNetBufferLists
function to forward the NET_BUFFER_LIST structures to an underlying miniport driver.

All NET_BUFFER-based send operations are asynchronous. The miniport driver calls the
NdisMSendNetBufferListsComplete function with an appropriate status code when it is
done. The sending of each NET_BUFFER_LIST structure can be completed individually.
NDIS calls the protocol driver's ProtocolSendNetBufferListsComplete function each
time the miniport driver calls NdisMSendNetBufferListsComplete.

Protocol drivers can reclaim the ownership of the NET_BUFFER_LIST structures and all
associated structures and data as soon as the NDIS calls the protocol driver's
ProtocolSendNetBufferListsComplete function.

The miniport driver or NDIS can return the NET_BUFFER_LIST structures in any order.
Protocol drivers are guaranteed that the list of NET_BUFFER structures attached to each
NET_BUFFER_LIST structure has not been modified.

Any NDIS driver can separate the NET_BUFFER structures in a NET_BUFFER_LIST
structure. Any NDIS driver can also separate the MDLs in a NET_BUFFER structure.
However, the driver must always return the NET_BUFFER_LIST structures with the
NET_BUFFER structures and MDLs in the original form. For example, an intermediate
driver might separate a NET_BUFFER_LIST into two new NET_BUFFER_LIST structures and
pass on part of the original data to the next driver. However, when the intermediate
driver completes the processing of the original NET_BUFFER_LIST it must return the
complete NET_BUFFER_LIST with the original NET_BUFFER structures and MDLs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Protocol drivers set the SourceHandle member in the NET_BUFFER_LIST structure to the
NdisBindingHandle that NDIS provided in a call to the NdisOpenAdapterEx function.
NDIS uses the SourceHandle member to return the NET_BUFFER_LIST structures to the
protocol driver that sent the NET_BUFFER_LIST structures.

Intermediate drivers also set the SourceHandle member in the NET_BUFFER_LIST
structure to the NdisBindingHandle value that NDIS provided in a call to
NdisOpenAdapterEx. If an intermediate driver forwards a send request, the driver must
save the SourceHandle value that the overlying driver provided before it writes to the
SourceHandle member. When NDIS returns a forwarded NET_BUFFER_LIST structure to
the intermediate driver, the intermediate driver must restore the SourceHandle that it
saved.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

Canceling a Send Operation
Article • 12/15/2021

The following figure illustrates canceling a send operation.

A driver calls the NDIS_SET_NET_BUFFER_LIST_CANCEL_ID macro for each
NET_BUFFER_LIST structure that it passes to lower-level drivers for transmission. The
NDIS_SET_NET_BUFFER_LIST_CANCEL_ID function marks the specified packet with a
cancellation identifier.

Before assigning cancellation IDs to packets, a driver should call
NdisGeneratePartialCancelId to obtain the high-order byte of each cancellation ID that
it assigns. This ensures that the driver does not duplicate cancellation IDs assigned by
other drivers in the system. Drivers typically call NdisGeneratePartialCancelId once from
the DriverEntry routine; however, drivers can obtain more than one partial cancellation
identifier by calling NdisGeneratePartialCancelId more than once.

To cancel the pending transmission of data in a marked NET_BUFFER_LIST structure, a
driver passes the cancellation ID to the NdisCancelSendNetBufferLists function. Drivers
can obtain a NET_BUFFER_LIST structure's cancellation ID by calling the
NDIS_GET_NET_BUFFER_LIST_CANCEL_ID macro.

If a driver marks all NET_BUFFER_LIST structures with the same cancellation identifier, it
can cancel all pending transmissions with a single call to NdisCancelSendNetBufferLists.
If a driver marks all NET_BUFFER_LIST structures within a subgroup of NET_BUFFER_LIST
structures with a unique identifier, it can cancel all pending transmissions within that
subgroup with a single call to NdisCancelSendNetBufferLists.

NDIS calls the MiniportCancelSend function of the appropriate lower-level driver on the
binding. After aborting the pending transmission, the underlying miniport driver calls
the NdisMSendNetBufferListsComplete function, to return the NET_BUFFER_LIST

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_set_net_buffer_list_cancel_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgeneratepartialcancelid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscancelsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_get_net_buffer_list_cancel_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

structures and a completion status of NDIS_STATUS_SEND_ABORTED. NDIS, in turn, calls
the appropriate driver's ProtocolSendNetBufferListsComplete function.

In its ProtocolSendNetBufferListsComplete function, a protocol driver can call
NDIS_SET_NET_BUFFER_LIST_CANCEL_ID with CancelId set to NULL. This prevents the
NET_BUFFER_LIST from inadvertently being used again with a stale cancellation ID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete

Receiving Network Data
Article • 12/15/2021

The following figure illustrates a basic receive operation, which involves a miniport
driver, NDIS, and a protocol driver.

Miniport drivers call the NdisMIndicateReceiveNetBufferLists function to indicate
NET_BUFFER structures to higher level drivers. Every NET_BUFFER structure should
usually be attached to a separate NET_BUFFER_LIST structure. This allows protocol
drivers to create a subset of the original list of NET_BUFFER_LIST structures and forward
them to different clients. Some drivers, for example native IEEE 802.11 miniport drivers,
might attach more than one NET_BUFFER structure to a NET_BUFFER_LIST structure.

After linking all the NET_BUFFER_LIST structures, a miniport driver passes a pointer to
the first NET_BUFFER_LIST structure in the list to the
NdisMIndicateReceiveNetBufferLists function. NDIS examines the NET_BUFFER_LIST
structures and it calls the ProtocolReceiveNetBufferLists function of each protocol
driver that is associated with the NET_BUFFER_LIST structures. NDIS passes a subset of
the list that includes only the NET_BUFFER_LIST structures that are associated with the
correct binding to each protocol driver. NDIS matches the NetBufferListFrameType
value that is specified in the NET_BUFFER_LIST structure to the frame type that each
protocol driver registers.

If the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter that is
passed to a protocol driver's ProtocolReceiveNetBufferLists function is set, NDIS regains
the ownership of the NET_BUFFER_LIST structures immediately after the
ProtocolReceiveNetBufferLists call returns.

Note If the NDIS_RECEIVE_FLAGS_RESOURCES flag is set, the protocol driver must
retain the original set of NET_BUFFER_LIST structures in the linked list. For example,
when this flag is set the driver might process the structures and indicate them up the
stack one at a time but before the function returns it must restore the original linked list.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

If the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter that is
passed to a protocol driver's ProtocolReceiveNetBufferLists function is not set, the
protocol driver can retain ownership of the NET_BUFFER_LIST structures. In this case, the
protocol driver must return the NET_BUFFER_LIST structures by calling the
NdisReturnNetBufferLists function.

If a miniport driver is running low on receive resources, it can set the
NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter in the call to
NdisMIndicateReceiveNetBufferLists. In that case, the driver can reclaim the ownership
of all the indicated NET_BUFFER_LIST structures and embedded NET_BUFFER structures
as soon as NdisMIndicateReceiveNetBufferLists returns. Indicating NET_BUFFER
structures with the NDIS_RECEIVE_FLAGS_RESOURCES flag set forces the protocol
drivers to copy the data and therefore should be avoided. A miniport driver should
detect when it is about to run out of receive resources and take any steps that are
necessary to avoid this situation.

NDIS calls a miniport driver's MiniportReturnNetBufferLists function after the protocol
driver calls NdisReturnNetBufferLists.

Note If a miniport driver indicates a NET_BUFFER_LIST structure with the
NDIS_RECEIVE_FLAGS_RESOURCES flag set, that does not mean that NDIS will indicate
the NET_BUFFER_LIST structure to the protocol driver with the same status. For example,
NDIS could copy a NET_BUFFER_LIST structure with the
NDIS_RECEIVE_FLAGS_RESOURCES flag set and indicate the copy to the protocol driver
with the flag cleared.

NDIS can return NET_BUFFER_LIST structures to the miniport driver in any arbitrary
order and in any combination. That is, the linked list of NET_BUFFER_LIST structures
returned back to a miniport driver by a call to its MiniportReturnNetBufferLists function,
can have NET_BUFFER_LIST structures from different previous calls to
NdisMIndicateReceiveNetBufferLists.

Miniport drivers should set the SourceHandle member in the NET_BUFFER_LIST
structures to the MiniportAdapterHandle that NDIS provided to the miniport driver in
the MiniportInitializeEx function. Filter drivers must set the SourceHandle member of
each NET_BUFFER_LIST structure that the filter driver originated to the filter's
NdisFilterHandle that NDIS provided to the filter driver in the FilterAttach function. Filter
drivers must not modify the SourceHandle member in any NET_BUFFER_LIST structures
that were not originated by the filter driver.

Intermediate drivers also set the SourceHandle member in the NET_BUFFER_LIST
structure to the MiniportAdapterHandle value that NDIS provided to the intermediate
driver in the MiniportInitializeEx function. If an intermediate driver forwards a receive

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

indication, the driver must save the SourceHandle value that the underlying driver
provided before it writes to the SourceHandle member. When NDIS returns a forwarded
NET_BUFFER_LIST structure to the intermediate driver, the intermediate driver must
restore the SourceHandle that it saved.

Looping Back NDIS Packets
Article • 03/14/2023

If the NDIS_NBL_FLAGS_IS_LOOPBACK_PACKET flag in the NblFlags member of the
NET_BUFFER_LIST structure is set, the packet is a loopback packet. Protocol drivers and
filter drivers can check this flag to determine if a packet is a loopback packet.

NDIS loops packets back if all of the following three conditions are satisfied:

1. The underlying miniport adapter media type is NdisMedium802_3 or
NdisMedium802_5.

2. Any one of the following three conditions is satisfied:

a. A protocol binding set the NDIS_PACKET_TYPE_PROMISCUOUS setting with the
OID_GEN_CURRENT_PACKET_FILTER OID to specify its packet filter (and, for
Windows 8 and later, did not set NDIS_PACKET_TYPE_NO_LOCAL in the same
OID) and either of the following is true:

There is more than one binding to the miniport adapter.
There is a filter module attached to the miniport adapter and the filter
module registered a receive handler.

b. A protocol binding set the NDIS_PACKET_TYPE_ALL_LOCAL setting with the
OID_GEN_CURRENT_PACKET_FILTER OID to specify its packet filter and either of
the following is true.

There is more than one binding to the miniport adapter.
There is a filter module attached to the miniport adapter and the filter
module registered a receive handler.

c. The caller sets the NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK flag in the
SendFlags parameter of the NdisSendNetBufferLists function.

3. The packet is acceptable as determined by the packet filter set with the
OID_GEN_CURRENT_PACKET_FILTER OID for the miniport adapter. The following
are some examples:

If the packet is a direct packet, the destination address in the packet must
match the MAC address of the miniport adapter.
If the packet is a multicast packet, the packet filter must have
NDIS_PACKET_TYPE_ALL_MULTICAST set or the destination address matches

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists

one of the multicast address in the miniport adapter's multicast address list
and the packet filter has NDIS_PACKET_TYPE_MULTICAST set.
If the packet is a broadcast packet, the miniport adapter's packet filter must
have NDIS_PACKET_TYPE_BROADCAST set.
The miniport adapter's packet filter has NDIS_PACKET_TYPE_PROMISCUOUS
or NDIS_PACKET_TYPE_ALL_LOCAL set.

A protocol binding receives loopback packets if either of the following is true:

1. The protocol binding is the original sender of the packet and
NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK is set.

2. The protocol binding does not set NDIS_PACKET_TYPE_NO_LOCAL in the packet
filter.

A protocol binding will not receive loopback packets if either of the following is true:

1. The protocol binding sets NDIS_PACKET_TYPE_NO_LOCAL in the packet filter and it
is not the original sender for the packet.

2. The protocol binding is the original sender but
NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK is not set in the SendFlags parameter
in a call to the NdisSendNetBufferLists function.

The following figure shows the loopback algorithm logic flow.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists

Ethernet Send and Receive Operations
Article • 12/15/2021

This section defines send and receive requirements for Ethernet drivers. For general
information about send and receive operations, see Send and Receive Operations.

This section includes the following topics:

Sending Ethernet Frames

Indicating Received Ethernet Frames

Sending Ethernet Frames
Article • 12/15/2021

The Windows TCP/IP transport supports a set of requirements for sending Ethernet
frames. Any driver (for example, a MUX intermediate driver or filter driver) that
originates send requests or modifies the send requests of overlying drivers must
support the requirements that the TCP/IP transport implements.

Note If any driver in a driver stack does not follow these requirements, underlying
miniport drivers, MUX intermediate drivers, and filter drivers might behave
unpredictably.

For Ethernet send requests, drivers must support these requirements:

If a driver originates a send request, the driver should allocate a NET_BUFFER_LIST
structure for the Ethernet frames. The NetBufferListInfo member in each
NET_BUFFER_LIST structure must include the out-of-band (OOB) data that is
required for the particular use. The OOB data applies to all of the NET_BUFFER
structures that are associated with a NET_BUFFER_LIST structure.

If a driver originates a send request, the driver should allocate one or more
NET_BUFFER structures for the Ethernet frames and link these structures to the
NET_BUFFER_LIST structure. Each NET_BUFFER structure that is linked to a
NET_BUFFER_LIST structure describes a single Ethernet frame. The driver may chain
multiple NET_BUFFER_LIST structures in a send request.

All NET_BUFFER structures that are associated with a NET_BUFFER_LIST structure
must have the same Ethernet frame type and IP protocol version (IPv4 or IPv6).

All NET_BUFFER structures that are associated with a NET_BUFFER_LIST structure
must have the same source and destination MAC addresses.

If a driver is sending TCP or UDP frames, all of the NET_BUFFER structures that are
associated with a NET_BUFFER_LIST structure must be associated with same TCP or
UDP connection. Note Subject to the following requirements, transmitted Ethernet
frames can be split. That is, multiple memory descriptor lists (MDLs) can be
associated with a NET_BUFFER structure in a send request.

Do not split the MAC header of the transmit Ethernet frame across multiple MDLs.
Treat the Virtual LAN (VLAN) (or Priority) flag, if present, as part of the MAC
header. Therefore, this flag must be in the same MDL as the rest of the MAC
header.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

If a driver changes the links in the MDL chain in a NET_BUFFER structure or the
NET_BUFFER chain in a NET_BUFFER_LIST structure, the driver must restore the
links to the original configuration before it returns ownership of the
NET_BUFFER_LIST to an overlying driver. However, drivers are not required to
restore the links between NET_BUFFER_LIST structures.

Indicating Received Ethernet Frames
Article • 12/15/2021

The Windows TCP/IP protocol driver imposes a set of requirements for receiving
Ethernet frames. Any driver that originates receive indications of Ethernet frames or
modifies receive indications of underlying drivers must support the general
requirements that TCP/IP imposes. These drivers include Ethernet miniport drivers, MUX
intermediate drivers, and filter drivers.

Note If a driver does not follow these requirements, overlying drivers (such as the
TCP/IP transport, MUX intermediate drivers, and filter drivers) might behave
unpredictably.

Drivers that originate Ethernet receive indications must support the following
requirements:

The driver must allocate a NET_BUFFER_LIST structure for the received Ethernet
frame. Each NET_BUFFER_LIST structure must include the out-of-band (OOB) data
that is defined in the NetBufferListInfo member of the NET_BUFFER_LIST required
for the particular use.

The driver must allocate a NET_BUFFER structure for the frame and link it to a
NET_BUFFER_LIST structure. The Ethernet miniport must assign exactly one
NET_BUFFER structure to a NET_BUFFER_LIST structure when indicating received
data. This restriction applies only to the Ethernet receive path. It is not applicable
to the other media types, such as the native 802.11 wireless LAN interface. or NDIS
in general.

Starting with NDIS 6.1, under certain scenarios, a NET_BUFFER structure can be
associated with multiple memory descriptor lists (MDLs) for the received Ethernet
frame. Even though a NET_BUFFER_LIST structure must contain a single
NET_BUFFER structure, using multiple MDLs allows the driver to split the received
packet data into separate buffers.

For example, Ethernet drivers that support the header-data split interface split a
received Ethernet frame by using a linked list of multiple MDLs that are associated
with a single NET_BUFFER structure. For more information, see Header-Data Split.

For simplicity and performance reasons, we highly recommend that drivers that
don't support header-data split use only one MDL for each NET_BUFFER structure.

Note In NDIS 6.0 for Windows Vista, each NET_BUFFER structure must contain
only one MDL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Drivers must not split received Ethernet frames in the middle of the IP header, IPv4
options, IPsec headers, IPv6 extension headers, or upper-layer protocol headers,
unless the first MDL contains at least as many bytes as NDIS specified for the
lookahead size.

NDIS protocol and filter drivers must support split Ethernet frames in receive indications
if such split frames comply with the restrictions that are defined in the preceding list
item. The restrictions ensure that the protocol and filter drivers are compatible with
future Windows versions.

Derived NET_BUFFER_LIST Structures
Article • 12/15/2021

NDIS provides functions that drivers can use to manage NET_BUFFER_LIST structures
that are derived from other NET_BUFFER_LIST structures. These functions are typically
used by intermediate drivers.

The following NDIS functions can create derived NET_BUFFER_LIST structures from an
existing NET_BUFFER_LIST structure:

NdisAllocateCloneNetBufferList

NdisAllocateFragmentNetBufferList

NdisAllocateReassembledNetBufferList

These functions improve system performance because NDIS creates the derived
structures without copying the network data. There are three types of NET_BUFFER_LIST
structures that can be derived from an existing NET_BUFFER_LIST structure:

Clone
A cloned NET_BUFFER_LIST structure is a duplicate that references the original data.
Drivers can use this type of structure to efficiently transfer the same data to multiple
paths.

Fragment
A fragment NET_BUFFER_LIST structure includes a set of NET_BUFFER structures that
reference the original data; however, the data is divided into units that do not exceed a
maximum size. Drivers can use this type of structure to efficiently break up large buffers
into smaller buffers.

Reassembled
A reassembled NET_BUFFER_LIST structure contains a NET_BUFFER structure that
references the original data from multiple source NET_BUFFER structures. Drivers can
use this type of structure to efficiently combine many smaller buffers into a single large
buffer.

This following topics provide more information about derived NET_BUFFER_LIST
structures:

Relationships Between NET_BUFFER_LIST Generations
Cloned NET_BUFFER_LIST Structures
Fragmented NET_BUFFER_LIST Structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocateclonenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatefragmentnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatereassemblednetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Reassembled NET_BUFFER_LIST Structures

Relationships Between
NET_BUFFER_LIST Generations
Article • 12/15/2021

Driver writers should understand and maintain the relationship between the parent
(original) NET_BUFFER_LIST structures and the child (derived) structures that result from
clone, fragment, and reassemble operations.

The caller of a clone/fragment/reassemble function maintains the parent/child
relationship, including the parent pointer in the child NET_BUFFER_LIST structure and a
child count. The child count ensures that the caller frees the parent after all the children
have been freed. The following rules apply:

After a driver creates child structures from a NET_BUFFER_LIST structure, it should
retain the ownership of the parent structure and should pass the child structures to
other drivers. The driver should never pass the parent NET_BUFFER_LIST structure
to another driver.

A driver should only update the child count in the parent NET_BUFFER_LIST
structure. Because the parent structure is never passed to another driver, there is
no risk that the value of the child count could be overwritten. The driver should set
the parent pointer in the child structures to point to the parent structure.

When a driver receives a NET_BUFFER_LIST from another driver, the driver must not
overwrite the parent pointer. If the received NET_BUFFER_LIST structure is a child,
its parent pointer should be set already. The driver can use the NET_BUFFER_LIST
received from another driver as a parent structure.

NDIS does not enforce the preceding rules. The current owner of a
NET_BUFFER_LIST structure must manage the child count and parent pointer. For
example, if the current owner will both clone and fragment a NET_BUFFER_LIST
structure, it must manage the parent pointer and child counter.

NDIS sets the child count to zero and the parent pointer to NULL when it allocates
a NET_BUFFER_LIST structure. NDIS does not change these fields each time a driver
passes a NET_BUFFER_LIST structure to another driver.

Derived NET_BUFFER_LIST Structures

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Cloned NET_BUFFER_LIST Structures
Article • 12/15/2021

An NDIS driver creates a cloned NET_BUFFER_LIST structure from an existing
NET_BUFFER_LIST structure. The cloned structure references the original structures data.
Drivers can use this type of structure to efficiently transfer the same data to multiple
paths.

The following figure shows the relationship between a parent NET_BUFFER_LIST
structure and a cloned child structure.

The preceding figure contains a parent NET_BUFFER_LIST structure and a child structure
that was derived from that parent. The parent structure has one
NET_BUFFER_LIST_CONTEXT structure and one NET_BUFFER structure with MDLs
attached. The parent structure's parent pointer is NULL indicating that it is not a derived
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

The child NET_BUFFER_LIST structure has one NET_BUFFER structure with MDLs
attached. The child NET_BUFFER_LIST has a pointer to the parent structure. The NULL
where a NET_BUFFER_LIST_CONTEXT structure pointer would be indicates that the child
has no NET_BUFFER_LIST_CONTEXT structure.

Drivers call the NdisAllocateCloneNetBufferList function to create a clone
NET_BUFFER_LIST structure. NDIS allocates new NET_BUFFER structures and MDLs with
the cloned NET_BUFFER_LIST structure. NDIS does not allocate a
NET_BUFFER_LIST_CONTEXT structure for the cloned structure. The new NET_BUFFER
structures and MDLs describe the same data as in the parent structure. The data is not
copied.

Drivers call the NdisFreeCloneNetBufferList function to free a NET_BUFFER_LIST
structure and all associated NET_BUFFER structures and MDL chains that were previously
allocated by calling NdisAllocateCloneNetBufferList.

Derived NET_BUFFER_LIST Structures

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocateclonenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreeclonenetbufferlist

Fragmented NET_BUFFER_LIST
Structures
Article • 12/15/2021

An NDIS driver can create a fragmented NET_BUFFER_LIST structure from an existing
NET_BUFFER_LIST structure. The fragmented structure references a set of NET_BUFFER
structures that reference the original data; however, the data is divided into units that
do not exceed a maximum size. Drivers can use this type of structure to efficiently break
up large buffers into smaller buffers.

The following figure shows the relationship between a parent NET_BUFFER_LIST
structure and a fragmented child.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

The preceding figure contains a parent NET_BUFFER_LIST structure and a child structure
that was derived from that parent. The parent structure has one
NET_BUFFER_LIST_CONTEXT structure and one NET_BUFFER structure with MDLs
attached. The parent structure's parent pointer is NULL indicating that it is not a derived
structure.

The child NET_BUFFER_LIST structure has three NET_BUFFER structures with MDLs
attached. The child NET_BUFFER_LIST structure has a pointer to the parent structure. The

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

NULL where a NET_BUFFER_LIST_CONTEXT structure pointer would be indicates that the
child has no NET_BUFFER_LIST_CONTEXT structure.

NDIS drivers call the NdisAllocateFragmentNetBufferList function to create a new
fragmented NET_BUFFER_LIST structure that is based on the data in an existing
NET_BUFFER_LIST structure. NDIS allocates new NET_BUFFER structures and MDLs for
the fragmented NET_BUFFER_LIST structure. NDIS does not allocate a
NET_BUFFER_LIST_CONTEXT structure for the fragmented structure. The fragment
NET_BUFFER structures and MDLs describe the same data as does the parent structure.
The data is not copied.

NdisAllocateFragmentNetBufferList creates the fragments, starting from the beginning
of the used data space in each parent NET_BUFFER structure and offset by the value
specified in the StartOffset parameter.

NdisAllocateFragmentNetBufferList divides the used data space in each source
NET_BUFFER structure into fragments. The length of the used data space of each
fragment is less than or equal to the value specified in the MaximumLength parameter.
The used data space of the last fragment can be less than MaximumLength . The data
offset of the new NET_BUFFER structures is retreated by the number of bytes specified in
the DataOffsetDelta parameter.

If there are multiple NET_BUFFER structures in the parent NET_BUFFER_LIST structure
(not shown in the illustration) the fragmenting process for each NET_BUFFER structure is
the same as for a single structure. For example, if the last piece of data in any parent
NET_BUFFER structure is smaller than the maximum size, NDIS does not combine such
data with the data at the start of the next NET_BUFFER structure.

NDIS drivers call the NdisFreeFragmentNetBufferList function to free a
NET_BUFFER_LIST structure and all associated NET_BUFFER structures and MDL chains
that were previously allocated by calling NdisAllocateFragmentNetBufferList.

Derived NET_BUFFER_LIST Structures

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatefragmentnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatefragmentnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreefragmentnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatefragmentnetbufferlist

Reassembled NET_BUFFER_LIST
Structures
Article • 12/15/2021

An NDIS driver can create a reassembled NET_BUFFER_LIST structure from an existing
NET_BUFFER_LIST structure. The reassembled structure references the original data from
multiple source NET_BUFFER structures. Drivers can use this type of structure to
efficiently combine many smaller buffers into a single large buffer.

The following figure shows the relationship between a parent NET_BUFFER_LIST
structure and a reassembled child structure:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

The preceding figure contains a parent NET_BUFFER_LIST structure and a child structure
that was derived from that parent. The parent structure has one
NET_BUFFER_LIST_CONTEXT structure and three NET_BUFFER structures with MDLs
attached. The parent structure's parent pointer is NULL indicating that it is not a derived
structure.

The child NET_BUFFER_LIST structure has one NET_BUFFER structure with MDLs
attached. The child NET_BUFFER_LIST structure has a pointer to the parent structure. The
NULL where a NET_BUFFER_LIST_CONTEXT structure pointer would be indicates that the
child has no NET_BUFFER_LIST_CONTEXT structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

NDIS drivers call the NdisAllocateReassembledNetBufferList function to reassemble a
fragmented NET_BUFFER_LIST structure. NDIS allocates a new NET_BUFFER structure
and MDLs with the reassembled NET_BUFFER_LIST structure. NDIS does not allocate a
NET_BUFFER_LIST_CONTEXT structure for the reassembled structure. The reassembled
NET_BUFFER structure and MDLs describe the same data as does the parent structure.
The data is not copied.

To create the reassembled NET_BUFFER_LIST structure,
NdisAllocateReassembledNetBufferList skips over the number of bytes specified in the
StartOffset parameter in each of the parent NET_BUFFER structures.
NdisAllocateReassembledNetBufferList concatenates the remaining data in each parent
NET_BUFFER structure into the MDL chain of one reassembled NET_BUFFER structure.
NdisAllocateReassembledNetBufferList retreats (increases the used data space in) the
reassembled NET_BUFFER structure by the amount specified in DataOffsetDelta .

NDIS drivers call the NdisFreeReassembledNetBufferList function to free a reassembled
NET_BUFFER_LIST structure and the associated NET_BUFFER structure and MDL chain.

Derived NET_BUFFER_LIST Structures

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatereassemblednetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreereassemblednetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Introduction to the NDIS PacketDirect
Provider Interface
Article • 03/14/2023

The PacketDirect Provider Interface (PDPI) extends NDIS with an accelerated I/O model,
for both physical and virtual environments, that can increase the number of packets
processed per second by an order of magnitude and significantly decrease jitter when
compared to the traditional NDIS I/O path.

The traditional I/O model in Windows was implemented to be a multipurpose, general
I/O platform that was intended to work with multiple media types with many different
characteristics and where networking was only one aspect of the overall system. Today,
as network virtualization has become a prevalent technology in datacenters, the
traditional NDIS I/O model in the Windows Server OS is not only not sufficient to keep
up with the network intensive workloads that we expect to become more and more
common but also an inappropriate model to dedicate resources to network I/O
processing. In datacenter environments, it is not uncommon to implement a single
purpose machine dedicated to networking doing functions that were usually reserved
for hardware appliances. Examples of these network appliances include software load
balancers, DDoS appliances and forwarding gateways. To make matters worse, there are
mechanisms on other OS’ to accelerate I/O that make these alternative OS’ the preferred
platform to build network intensive applications such as virtual appliances.

PacketDirect (PD) extends the current NDIS model with an accelerated network I/O path
that is optimized for packet per second (pps) counts an order of a magnitude higher
than what has been seen with the traditional NDIS I/O model. This is accomplished
through:

Reduced latency
Reduced cycles/packet
Linear speed up with use of additional system resources

PacketDirect exists side-by-side with the traditional model. The new PD path can be
used when an application prefers it and there are sufficient hardware resources to
accommodate it. PD is not meant to replace the traditional I/O model and assumes that
a client writing to the PD interface will have strict partitioning requirements for the
underlying resources based on the system topology. PD is meant to be the new high
speed data path that will help a Windows system replace high pps workloads that have

Background

been traditionally done in hardware, saving data center owners millions in infrastructure
costs.

PD works by allowing a PD client to explicitly manage networking traffic from a network
adapter (NIC). PD gives the PD client control of the high performance send and receive
functionality of the NIC through the PacketDirect client interface (PDCI). Internally, the
PDCI send/receive functions are mapped directly to the PDPI. PD send/receive functions
operate on PD queues created by the PD client on PD-capable NICs. PD provides the PD
clients with the ability to set custom filters for very specific types of traffic or very
generic traffic, based on the needs of the PD client. This allows the PD client to direct
certain incoming packets to its PD queues. Packet processing in the PD model always
takes place in an execution context that’s owned (or controlled/coordinated) by the PD
client. The PD-capable NIC driver is completely passive, meaning it does not actively
forward incoming packets or completion indications for sent packets to the PD client in
a driver-owned execution context such as a DPC or worker-thread.

If a PD client does not understand how to process a packet or receives a control packet
in one of its queues, such as an ARP, LLDP, or other protocol packets, the PD client can
reroute the packet back to the current I/O path for processing. This allows PD to
continue to process the packets that it has context for and not waste cycles on control
traffic.

Important There can be one PD provider and one PD client per net adapter. Therefore,
there can be multiple PD clients and PD providers on a single system.

The PD client has control over the resources that are allocated to PD in the system. In
cases of high network traffic, the PD client is responsible for minimizing its workload so
that the OS can be responsive to other workloads.

The PacketDirect platform implemented by Windows maps the client interface to the
provider interface. The platform controls buffer management and ability to re-inject
packets received via PD to the current NDIS receive path. It also handles the interaction
with PD clients for satisfying the NDIS control path requirements such as NIC disabling,
going into low-power, system shutdown, and surprise removal in a fashion that does
NOT hamper the PD data path performance.

PacketDirect Provider Interface (PDPI)

The PDPI allows NIC drivers to expose their high-performance send and receive
functionality to the Windows OS. The functions implemented are a subset of the

PacketDirect Concepts

complete MiniPort functionality and are generic to all NICs that implement PD. For
reference documentation for PDPI, see PacketDirect Provider Interface (PDPI) Reference.

PacketDirect Client Interface (PDCI)

The PDCI allows first-party Windows services/applications (e.g., Load-balancer, NAT,
VM-switch, etc.) to speed up their data path by leveraging the PacketDirect I/O model
through use of the PD clients. This interface is a layer 2 interface just like the current
NDIS send/receive interface. The main functionality PDCI provides (in addition to PDPI
access) is PD packet buffer allocation/management, a back-channel for injecting packets
back to regular NDIS receive path, handling of NDIS power/PnP events.

PacketDirect Provider Interface (PDPI) Reference

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Overview of NDIS versions
Article • 09/27/2024

If you're writing an NDIS driver for more than one version of Microsoft Windows, be sure
the features that you're using are supported on each Windows version. New features have
been added to NDIS with each release. Other features became obsolete and were removed
from later NDIS versions.

This set of design guide documentation is targeted at Windows Vista and later operating
systems and NDIS 6.0 and later drivers. Documentation for earlier Windows and NDIS
versions is contained in prior releases of the documentation. For the Windows XP and NDIS
5.1 documentation, see Windows 2000 and Windows XP Networking Design Guide.

The following table describes Windows operating system, Microsoft Windows Driver Kit
(WDK), and Driver Development Kit (DDK) version support for NDIS versions. This table also
describes support for major NDIS features across NDIS versions.

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

Windows 11,
version 24H2

See Download
kits for
Windows
hardware
development .

6.89. For more information
about NDIS 6.89 features, see
Introduction to NDIS 6.89.

X X X

Windows
Server 2022
23H2

See Download
kits for
Windows
hardware
development .

6.88. For more information
about NDIS 6.88 features, see
Introduction to NDIS 6.88.

X X X

Windows 11,
version 22H2

See Download
kits for
Windows
hardware
development .

6.87. For more information
about NDIS 6.87 features, see
Introduction to NDIS 6.87.

X X X

７ Note

 A driver can query the NDIS version by calling the NdisReadConfiguration function
with the Keyword parameter set to NdisVersion.

ﾉ Expand table

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565849(v=vs.85)
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

Windows 11,
version 21H2

See Download
kits for
Windows
hardware
development .

6.86. For more information
about NDIS 6.86 features, see
Introduction to NDIS 6.86.

X X X

Windows
Server 2022

See Download
kits for
Windows
hardware
development .

6.85. For more information
about NDIS 6.85 features, see
Introduction to NDIS 6.85.

X X X

Windows 10,
version 2004

See Download
kits for
Windows
hardware
development .

6.84. For more information
about NDIS 6.84 features, see
Introduction to NDIS 6.84.

X X X

Windows 10,
version 1903

See Download
kits for
Windows
hardware
development .

6.83. For more information
about NDIS 6.83 features, see
Introduction to NDIS 6.83.

X X X

Windows 10,
version 1809

See Download
kits for
Windows
hardware
development .

6.82. For more information
about NDIS 6.82 features, see
Introduction to NDIS 6.82.

X X X

Windows 10,
version 1803

See Download
kits for
Windows
hardware
development .

6.81. For more information
about NDIS 6.81 features, see
Introduction to NDIS 6.81.

X X X

Windows 10,
version 1803

See Download
kits for
Windows
hardware
development .

6.81. For more information
about NDIS 6.81 features, see
Introduction to NDIS 6.81.

X X X

Windows 10,
version 1709

See Download
kits for
Windows
hardware
development .

6.80. For more information
about NDIS 6.80 features, see
Introduction to NDIS 6.80.

X X X

https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

Windows 10,
version 1703

See Download
kits for
Windows
hardware
development .

6.70. NDIS 6.70 coincided with
a preview release of the
Network Adapter WDF Class
Extension, also known as
NetAdapterCx.

For more information about
NDIS 6.70 features, see
Introduction to NDIS 6.70

X X X

Windows 10,
version 1607
and Windows
Server 2016

See Download
kits for
Windows
hardware
development .

6.60. For more information
about NDIS 6.60 features, see
Introduction to NDIS 6.60.

X X X

Windows 10,
version 1511

See Download
kits for
Windows
hardware
development .

6.51 X X X

Windows 10,
version 1507

See Download
kits for
Windows
hardware
development .

6.50. For more information
about NDIS 6.50 features, see
Introduction to NDIS 6.50.

X X X

Windows 8.1
and Windows
Server 2012 R2

See Download
kits for
Windows
hardware
development .

6.40. For information about
NDIS 6.40 features, see
Introduction to NDIS 6.40.

X X X

Windows 8
and Windows
Server 2012

See Download
kits for
Windows
hardware
development .

6.30. For information about
NDIS 6.30 features, see
Introduction to NDIS 6.30.

X X X

Windows 7
and Windows
Server 2008 R2

See Download
kits for
Windows
hardware
development .

6.20. For information about
NDIS 6.20 features, see
Introduction to NDIS 6.20. For
information about backward
compatibility and obsolete
features that aren't supported
in NDIS 6.20 drivers, see NDIS
6.20 Backward Compatibility.

X X X

https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

Windows Vista
with Service
Pack 1 (SP1)
and Windows
Server 2008

See Download
kits for
Windows
hardware
development .

6.1. For information about
NDIS 6.1 features, see
Introduction to NDIS 6.1.

X X X

Windows Vista See Download
kits for
Windows
hardware
development

6.0. Major improvements in
the following provide
significant performance gains
for both clients and servers:

Network data packaging
Send and receive paths
Run-time
reconfiguration
capabilities
Scatter/gather DMA
Filter drivers
Multiprocessor scaling
of received data
handling
Offloading TCP tasks to
NICs

The following improvements
simplify driver development:

Streamlined driver
initialization
Versioning support for
NDIS interfaces
Simplified reset
handling
A standard interface for
obtaining management
information
A filter driver model to
replace filter
intermediate drivers

For more information about
NDIS 6.0 features, see
Introduction to NDIS 6.0.

For information about
backward compatibility and
obsolete features that aren't
supported in NDIS 6.0 drivers,

X X X

https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

see NDIS 6.0 Backward
Compatibility.

Windows XP See Download
kits for
Windows
hardware
development

5.1. Added support for: New
miniport driver attribute flags,
64-bit statistical counters,
Remote NDIS, Scatter/gather
support for both serialized
and deserialized miniport
drivers, Packet stacking for
intermediate drivers, VLAN
tagging, Offloading the
Processing of UDP-
Encapsulated ESP Packets
(Windows Server 2003 only),
Wi-Fi Protected Access (WPA)
in Windows XP SP1.
Dropped support for: Full Mac
drivers, NDIS 3.0 protocols,
NdisQueryMapRegisterCount,
EISA bus

X X X

Windows 2000 Windows 2000
DDK

5.0 X X X

Windows NT
4.0 SP3

Windows NT
DDK with
updated NDIS
header and
library

4.1 X X X

Windows NT
4.0

Windows NT
4.0 DDK

4.0

Windows NT
3.5

Windows NT
3.5 DDK

3.0

Windows Me Windows NT
4.0 DDK or
Windows 98
DDK for Vxds

5.0 X X X

Windows 98
SE

Windows NT
4.0 DDK or
Windows 98
DDK

5.0. Added support for new
INF file format compatible
with Windows 95/98/Me, Plug
and Play and Power
Management, WMI, LBFO, and
scatter/gather DMA support

X X X

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-6-0-backward-compatibility
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-6-0-backward-compatibility
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721
https://go.microsoft.com/fwlink/p/?linkid=239721

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Operating
system

Development
Kit

Supported NDIS version CoNDIS Deserialized
driver

Intermediate
driver

for deserialized miniport
drivers.

Windows 98 Windows NT
4.0 DDK or
Windows 98
DDK

4.1. Protocol driver is a vxd-
type driver.

X X X

Windows 95
OSR2

Windows NT
4.0 DDK or
Windows 95
DDK

4.0. Protocol driver is a vxd-
type driver. Added these
features:
MiniportSendPackets,
ProtocolReceivePacket,
MiniportAllocateComplete.

Windows 95 Windows NT
4.0 DDK or
Windows 95
DDK

3.1. Added support for
miniport drivers and Plug and
Play.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff550524(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff563251(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549352(v=vs.85)

Introduction to NDIS 6.89
Article • 05/22/2024

This topic introduces Network Driver Interface Specification (NDIS) 6.89 and describes its
major design additions. NDIS 6.89 is included in Windows 11, version 24H2 and
Windows Server 2022 and later.

NDIS 6.89 is a minor version update to NDIS 6.88. For more information about porting
NDIS 6.x drivers to NDIS 6.89, see Porting NDIS 6.x drivers to NDIS 6.89.

NDIS 6.89 adds support for UDP Receive Segment Coalescing Offload (URO). This
hardware offload enables NICs to coalesce UDP receive segments. NICs can combine
UDP datagrams from the same flow that match a set of rules into a logically contiguous
buffer. These combined datagrams are then indicated to the Windows networking stack
as a single large packet. Coalescing UDP datagrams reduces the CPU cost to process
packets in high-bandwidth flows, resulting in higher throughput and fewer cycles per
byte.

An NDIS 6.89 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.89 driver must be compliant with the following requirements:

An NDIS 6.89 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.89. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 89. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.89 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.89 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.89 miniport drivers for Windows 11, version 24H2 and Windows Server
2022 and later must use the NDIS 6.89 versions of data structures.

The WDK for Windows Server 2022 supports header versioning. Header versioning
makes sure that NDIS 6.89 drivers use the appropriate NDIS 6.89 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS689_MINIPORT=1 .
For a filter or protocol driver, add NDIS689=1 .

For information on building a driver with the Windows Server 2022 release of the WDK,
see Building a Driver.

Compiling an NDIS 6.89 driver

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.88
Article • 05/22/2024

This topic introduces Network Driver Interface Specification (NDIS) 6.88 and describes its
major design additions. NDIS 6.88 is included in Windows Server 2022 23H2 and later.

NDIS 6.88 is a minor version update to NDIS 6.87. For more information about porting
NDIS 6.x drivers to NDIS 6.88, see Porting NDIS 6.x drivers to NDIS 6.88.

NDIS 6.88 is an incremental update to NDIS 6.87 and does not contain any major new
features.

An NDIS 6.88 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.88 driver must be compliant with the following requirements:

An NDIS 6.88 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.88. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 88. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.88 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.88 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.88 miniport drivers for Windows Server 2022 23H2 and later must use the
NDIS 6.88 versions of data structures.

The WDK for Windows Server 2022 supports header versioning. Header versioning
makes sure that NDIS 6.88 drivers use the appropriate NDIS 6.88 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS688_MINIPORT=1 .
For a filter or protocol driver, add NDIS688=1 .

For information on building a driver with the Windows Server 2022 release of the WDK,
see Building a Driver.

Compiling an NDIS 6.88 driver

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.87
Article • 05/22/2024

This topic introduces Network Driver Interface Specification (NDIS) 6.87 and describes its
major design additions. NDIS 6.87 is included in Windows 11, version 22H2 and
Windows Server 2022 and later.

NDIS 6.87 is a minor version update to NDIS 6.86. For more information about porting
NDIS 6.x drivers to NDIS 6.87, see Porting NDIS 6.x drivers to NDIS 6.87.

NDIS 6.87 is an incremental update to NDIS 6.86 and does not contain any major new
features.

An NDIS 6.87 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.87 driver must be compliant with the following requirements:

An NDIS 6.87 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.87. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 87. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.87 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.87 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.87 miniport drivers for Windows 11, version 22H2 and Windows Server
2022 and later must use the NDIS 6.87 versions of data structures.

The WDK for Windows Server 2022 supports header versioning. Header versioning
makes sure that NDIS 6.87 drivers use the appropriate NDIS 6.87 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS687_MINIPORT=1 .
For a filter or protocol driver, add NDIS687=1 .

For information on building a driver with the Windows Server 2022 release of the WDK,
see Building a Driver.

Compiling an NDIS 6.87 driver

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.86
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.86 and describes its
major design additions. NDIS 6.86 is included in Windows 11, version 21H2 and
Windows Server 2022 and later.

NDIS 6.86 is a minor version update to NDIS 6.85. For more information about porting
NDIS 6.x drivers to NDIS 6.86, see Porting NDIS 6.x drivers to NDIS 6.86.

NDIS 6.86 is an incremental update to NDIS 6.85 and does not contain any major new
features.

An NDIS 6.86 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.86 driver must be compliant with the following requirements:

An NDIS 6.86 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.86. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 86. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.86 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.86 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.86 miniport drivers for Windows 11, version 21H2 and Windows Server
2022 and later must use the NDIS 6.86 versions of data structures.

The WDK for Windows Server 2022 supports header versioning. Header versioning
makes sure that NDIS 6.86 drivers use the appropriate NDIS 6.86 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS686_MINIPORT=1 .
For a filter or protocol driver, add NDIS686=1 .

For information on building a driver with the Windows Server 2022 release of the WDK,
see Building a Driver.

Compiling an NDIS 6.86 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.85
Article • 06/15/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.85 and describes its
major design additions. NDIS 6.85 is included in Windows 10, version 21H2 and
Windows Server 2022 and later.

NDIS 6.85 is a minor version update to NDIS 6.84. For more information about porting
NDIS 6.x drivers to NDIS 6.85, see Porting NDIS 6.x drivers to NDIS 6.85.

NDIS 6.85 introduces NDIS Poll Mode, an OS controlled polling execution model that
drives the network interface datapath. Previously, NDIS drivers typically relied on
Deferred Procedure Calls (DPCs) to implement their execution model. NDIS Poll Mode
moves the complexity of scheduling decisions away from NIC drivers and into NDIS. For
more information, see NDIS Poll Mode.

NDIS 6.85 introduces Supporting NVGRE in UDP Segmentation Offload (USO). NDIS
miniport, protocol, and filter drivers, as well as NICs that perform USO, should support
NVGRE and VXLAN encapsulations.

An NDIS 6.85 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.85 driver must be compliant with the following requirements:

An NDIS 6.85 driver must report the correct NDIS version when it registers with
NDIS.

Feature updates

NDIS Poll mode

Network Virtualization using Generic Routing
Encapsulation (NVGRE) with UDP segmentation offload
(USO)

Implementing an NDIS 6.85 driver

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.85. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 85. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.85 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.85 miniport drivers for Windows 10, version 21H2 and Windows Server
2022 and later must use the NDIS 6.85 versions of data structures.

The WDK for Windows 10, version 21H2 supports header versioning. Header versioning
makes sure that NDIS 6.85 drivers use the appropriate NDIS 6.85 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS685_MINIPORT=1 .
For a filter or protocol driver, add NDIS685=1 .

For information on building a driver with the Windows 10, version 21H2 release of the
WDK, see Building a Driver.

Compiling an NDIS 6.85 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.84
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.84 and describes its
major design additions. NDIS 6.84 is included in Windows 10, version 2004 and
Windows Server 2022 and later.

NDIS 6.84 is a minor version update to NDIS 6.83. For more information about porting
NDIS 6.x drivers to NDIS 6.84, see Porting NDIS 6.x drivers to NDIS 6.84.

NDIS 6.84 is an incremental update to NDIS 6.83 and does not contain any major new
features.

An NDIS 6.84 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.84 driver must be compliant with the following requirements:

An NDIS 6.84 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.84. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 84. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.84 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.84 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.84 miniport drivers for Windows 10, version 2004 and Windows Server
2022 and later must use the NDIS 6.84 versions of data structures.

The WDK for Windows 10, version 2004 supports header versioning. Header versioning
makes sure that NDIS 6.84 drivers use the appropriate NDIS 6.84 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS684_MINIPORT=1 .
For a filter or protocol driver, add NDIS684=1 .

For information on building a driver with the Windows 10, version 2004 release of the
WDK, see Building a Driver.

Compiling an NDIS 6.84 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.83
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.83 and describes its
major design additions. NDIS 6.83 is included in Windows 10, version 1903 and
Windows Server 2022 and later.

NDIS 6.83 is a minor version update to NDIS 6.82. For more information about porting
NDIS 6.x drivers to NDIS 6.83, see Porting NDIS 6.x drivers to NDIS 6.83.

NDIS 6.83 is an incremental update to NDIS 6.82 and does not contain any major new
features.

An NDIS 6.83 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.83 driver must be compliant with the following requirements:

An NDIS 6.83 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.83. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 83. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.83 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.83 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.83 miniport drivers for Windows 10, version 1903 and Windows Server
2022 and later must use the NDIS 6.83 versions of data structures.

The WDK for Windows 10, version 1903 supports header versioning. Header versioning
makes sure that NDIS 6.83 drivers use the appropriate NDIS 6.83 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS683_MINIPORT=1 .
For a filter or protocol driver, add NDIS683=1 .

For information on building a driver with the Windows 10, version 1903 release of the
WDK, see Building a Driver.

Compiling an NDIS 6.83 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.82
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.82 and describes its
major design additions. NDIS 6.82 is included in Windows 10, version 1809 and
Windows Server 2019 and later.

NDIS 6.82 is a minor version update to NDIS 6.81. For more information about porting
NDIS 6.x drivers to NDIS 6.82, see Porting NDIS 6.x drivers to NDIS 6.82.

NDIS 6.82 is an incremental update to NDIS 6.81 and does not contain any major new
features.

An NDIS 6.82 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.82 driver must be compliant with the following requirements:

An NDIS 6.82 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.82. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 82. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.82 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.82 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.82 miniport drivers for Windows 10, version 1809 and Windows Server
2019 and later must use the NDIS 6.82 versions of data structures.

The WDK for Windows 10, version 1809 supports header versioning. Header versioning
makes sure that NDIS 6.82 drivers use the appropriate NDIS 6.82 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS682_MINIPORT=1 .
For a filter or protocol driver, add NDIS682=1 .

For information on building a driver with the Windows 10, version 1809 release of the
WDK, see Building a Driver.

Compiling an NDIS 6.82 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.81
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.81 and describes its
major design additions. NDIS 6.81 is included in Windows 10, version 1803 and
Windows Server 2016 and later.

NDIS 6.81 is a minor version update to NDIS 6.80. For more information about porting
NDIS 6.x drivers to NDIS 6.81, see Porting NDIS 6.x drivers to NDIS 6.81.

NDIS 6.81 is an incremental update to NDIS 6.80 and does not contain any major new
features.

An NDIS 6.81 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.81 driver must be compliant with the following requirements:

An NDIS 6.81 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.81. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 81. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.81 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Feature updates

Implementing an NDIS 6.81 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.81 miniport drivers for Windows 10, version 1803 and Windows Server
2016 and later must use the NDIS 6.81 versions of data structures.

The WDK for Windows 10, version 1803 supports header versioning. Header versioning
makes sure that NDIS 6.81 drivers use the appropriate NDIS 6.81 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS681_MINIPORT=1 .
For a filter or protocol driver, add NDIS681=1 .

For information on building a driver with the Windows 10, version 1803 release of the
WDK, see Building a Driver.

Compiling an NDIS 6.81 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver

Introduction to NDIS 6.80
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.80 and describes its
major design additions. NDIS 6.80 is included in Windows 10, version 1709.

NDIS 6.80 is a minor version update to NDIS 6.70 for miniport, protocol, filter, and
intermediate drivers. For more information about porting NDIS 6.x drivers to NDIS 6.80,
see Porting NDIS 6.x drivers to NDIS 6.80.

For NIC drivers, the NetAdapter class extension (NetAdapterCx) has been updated from
version 1.0 to version 1.1 in Windows 10, version 1709.

NDIS 6.80 introduces a new feature for OIDs, Synchronous OID requests. Synchronous
OID calls are low-latency, non-blocking, scalable, and reliable compared to regular OID
requests. For more info, see Synchronous OID Request Interface in NDIS 6.80.

In NDIS 6.80, Receive Side Scaling (RSS) has been upgraded to RSS version 2 (RSSv2).
RSSv2 improves on RSSv2 by offering per-VPort spreading. For more info, see Receive
Side Scaling Version 2 (RSSv2) in NDIS 6.80.

RSSv2 is preview only in Windows 10, version 1709.

NDIS forms the core foundation for the network driver platform on Windows. For a list
of other network driver features that were updated at the same time as NDIS 6.80, see
the Windows 10, version 1709 section for Networking on What's new in driver
development.

Feature updates

Synchronous OID requests

RSSv2

Other new networking features

Implementing an NDIS 6.80 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/what-s-new-in-driver-development

An NDIS 6.80 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.80 driver must be compliant with the following requirements:

An NDIS 6.80 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.80. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 80. This requirement applies to miniport, protocol and filter
drivers.

You must also update the version information for the compiler (see Compiling
an NDIS 6.80 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_3.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_3 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_3.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

For more information about compiling a NIC driver with the NetAdapterCx, see Porting
NDIS miniport drivers to NetAdapterCx (Compilation settings).

Compiling an NDIS 6.80 driver

NIC drivers

Miniport, protocol, and filter drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/porting-ndis-miniport-drivers-to-netadaptercx#compilation-settings

The WDK for Windows 10, version 1709 supports header versioning. Header versioning
makes sure that NDIS 6.80 drivers use the appropriate NDIS 6.80 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS680_MINIPORT=1 .
For a filter or protocol driver, add NDIS680=1 .

For information on building a driver with the Windows 10, version 1709 release of the
WDK, see Building a Driver.

The following APIs and data structures are new in NDIS 6.80.

MINIPORT_SYNCHRONOUS_OID_REQUEST
FILTER_SYNCHRONOUS_OID_REQUEST
FILTER_SYNCHRONOUS_OID_REQUEST_COMPLETE
NdisFSynchronousOidRequest
NdisSynchronousOidRequest
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
NDIS_RECEIVE_SCALE_PARAMETERS_V2
NDIS_RSS_SET_INDIRECTION_ENTRIES
NDIS_RSS_SET_INDIRECTION_ENTRY

The following APIs and data structures were updated in NDIS 6.80.

NDIS_MINIPORT_DRIVER_CHARACTERISTICS
NDIS_FILTER_DRIVER_CHARACTERISTICS
NDIS_RECEIVE_SCALE_CAPABILITIES

API and data structure changes

New APIs and data structures

Updated APIs and data structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-miniport_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsynchronousoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissynchronousoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entries
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

Synchronous OID request interface in
NDIS 6.80
Article • 03/14/2023

Windows network drivers use OID requests to send control messages down the NDIS
binding stack. Protocol drivers, such as TCPIP or vSwitch, rely on dozens of OIDs to
configure each feature of the underlying NIC driver. Before Windows 10, version 1709,
OID requests were sent in two ways: Regular and Direct.

This topic introduces a third style of OID call: Synchronous. A Synchronous call is meant
to be low-latency, non-blocking, scalable, and reliable. The Synchronous OID request
interface is available starting in NDIS 6.80, which is included in Windows 10, version
1709 and later.

With Synchronous OID requests, the payload of the call (the OID itself) is exactly the
same as with Regular and Direct OID requests. The only difference is in the call itself.
Therefore, the what is the same across all three types of OIDs; only the how is different.

The following table describes the differences between Regular OIDs, Direct OIDs, and
Synchronous OIDs.

Attribute Regular OID Direct OID Synchronous OID

Payload NDIS_OID_REQUEST NDIS_OID_REQUEST NDIS_OID_REQUEST

OID types Stats, Query, Set,
Method

Stats, Query, Set,
Method

Stats, Query, Set, Method

Can be issued
by

Protocols, filters Protocols, filters Protocols, filters

Can be
completed by

Miniports, filters Miniports, filters Miniports, filters

Filters can
modify

Yes Yes Yes

NDIS allocates
memory

For each filter (OID
clone)

For each filter (OID
clone)

Only if unusually large number of
filters (call context)

Can pend Yes Yes No

Comparison to Regular and Direct OID requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Attribute Regular OID Direct OID Synchronous OID

Can block Yes No No

IRQL == PASSIVE <= DISPATCH <= DISPATCH

Serialized by
NDIS

Yes No No

Filters are
invoked

Recursively Recursively Iteratively

Filters clone the
OID

Yes Yes No

Like the other two types of OID calls, filter drivers have full control over the OID request
in a Synchronous call. Filter drivers can observe, intercept, modify, and issue
Synchronous OIDs. However, for efficiency, the mechanics of a Synchronous OID are
somewhat different.

Conceptually, all OID requests are issued from a higher driver and are completed by a
lower driver. Along the way, the OID request may pass through any number of filter
drivers.

In the most common case, a protocol driver issues an OID request and all filters simply
pass the OID request down, unmodified. The following figure illustrates this common
scenario.

Filtering

Passthrough, interception, and origination

However, any filter module is allowed to intercept the OID request and complete it. In
that case, the request does not pass through to lower drivers, as shown in the following
diagram.

In some cases, a filter module may decide to originate its own OID request. This request
starts at the filter module's level and only traverses lower drivers, as the following
diagram shows.

All OID requests have this basic flow: a higher driver (either a protocol or filter driver)
issues a request and a lower driver (either a miniport or filter driver) completes it.

Regular or Direct OID requests are dispatched recursively. The following diagram shows
the function call sequence. Note that the sequence itself is much like the sequence
described in the diagrams from the previous section, but is arranged to show the
recursive nature of the requests.

How Regular and Direct OID requests work

If there are enough filters installed, NDIS will be forced to allocate a new thread stack to
keep recursing deeper.

NDIS considers an NDIS_OID_REQUEST structure to be valid for only a single hop along
the stack. If a filter driver wants to pass the request down to the next lower driver (which
is the case for the vast majority of OIDs), the filter driver must insert several dozen lines
of boilerplate code to clone the OID request. This boilerplate has several problems:

1. It forces a memory allocation to clone the OID. Hitting the memory pool is both
slow and makes it impossible to guarantee forward progress of the OID request.

2. The OID structure design must remain the same over time because all filter drivers
hard-code the mechanics of copying the contents of one NDIS_OID_REQUEST to
another.

3. Requiring so much boilerplate obscures what the filter is really doing.

The filtering model for Synchronous OID requests takes advantage of the synchronous
nature of the call, to solve the problems discussed in the previous section.

Unlike Regular and Direct OID requests, there are two filter hooks for Synchronous OID
requests: an Issue handler and a Complete handler. A filter driver can register neither,
one, or both hooks.

Issue calls are invoked for each filter driver, starting from the top of the stack down to
the bottom of the stack. Any filter’s Issue call can stop the OID from continuing

The filtering model for Synchronous OID requests

Issue and Complete handlers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

downward, and complete the OID with some status code. If no filter decides to intercept
the OID, then the OID reaches the NIC driver, which must complete the OID
synchronously.

After an OID is completed, Complete calls are invoked for each filter driver, starting from
wherever in the stack the OID was completed, up to the top of the stack. A Complete
call can inspect or modify the OID request, and inspect or modify the OID’s completion
status code.

The following diagram illustrates the typical case, where a protocol issues a Synchronous
OID request and the filters do not intercept the request.

Note that the call model for Synchronous OIDs is iterative. This keeps stack usage
bounded by a constant, eliminating the need to ever expand the stack.

If a filter driver intercepts a Synchronous OID in its Issue handler, the OID is not given to
lower filters or the NIC driver. However, Complete handlers for higher filters are still
invoked, as shown in the following diagram:

Regular and Direct OID requests require a filter driver to clone an NDIS_OID_REQUEST.
In contrast, Synchronous OID requests are not permitted to be cloned. The advantage of
this design is that Synchronous OIDs have lower latency – the OID request isn’t
repeatedly cloned as it travels down the filter stack – and there are fewer opportunities
for failure.

However, that does raise a new problem. If the OID cannot be cloned, where does a
filter driver store its per-request state? For example, suppose a filter driver translates
one OID to another. On the way down the stack, the filter needs to save off the old OID.
On the way back up the stack, the filter needs to restore the old OID.

To solve this problem, NDIS allocates a pointer-sized slot for each filter driver, for each
in-flight Synchronous OID request. NDIS preserves this slot across the call from a filter’s
Issue handler to its Complete handler. This allows the Issue handler to save off state that
is later consumed by the Complete handler. The following code snippet shows an
example.

C++

Minimal memory allocations

NDIS_STATUS
MyFilterSynchronousOidRequest(
 In NDIS_HANDLE FilterModuleContext,
 Inout NDIS_OID_REQUEST *OidRequest,
 _Outptr_result_maybenull_ PVOID *CallContext)
{
 if (. . . should intercept this OID . . .)
 {
 // preserve the original buffer in the CallContext

NDIS saves one PVOID per filter per call. NDIS heuristically allocates a reasonable
number of slots on the stack, so that there are zero pool allocations in the common
case. This is usually no more than seven filters. If the user sets up a pathological case,
NDIS does fall back to a pool allocation.

Consider the boilerplate on Example boilerplate for handling Regular or Direct OID
requests. That code is the cost of entry just to register an OID handler. If you want to
issue your own OIDs, you have to add another dozen lines of boilerplate. With
Synchronous OIDs, there's no need for the additional complexity of handling
asynchronous completion. Therefore, you can cut out much of that boilerplate.

Here's a minimal issue handler with Synchronous OIDs:

C++

 *CallContext = OidRequest->DATA.SET_INFORMATION.InformationBuffer;

 // replace the buffer with a new one
 OidRequest->DATA.SET_INFORMATION.InformationBuffer = . . . something . .
.;
 }

 return NDIS_STATUS_SUCCESS;
}

VOID
MyFilterSynchronousOidRequestComplete(
 In NDIS_HANDLE FilterModuleContext,
 Inout NDIS_OID_REQUEST *OidRequest,
 Inout NDIS_STATUS *Status,
 In PVOID CallContext)
{
 // if the context is not null, we must have replaced the buffer.
 if (CallContext != null)
 {
 // Copy the data from the miniport back into the protocol’s original
buffer.
 RtlCopyMemory(CallContext, OidRequest-
>DATA.SET_INFORMATION.InformationBuffer,...);

 // restore the original buffer into the OID request
 OidRequest->DATA.SET_INFORMATION.InformationBuffer = CallContext;
 }
}

Reduced boilerplate

NDIS_STATUS
MyFilterSynchronousOidRequest(

If you want to intercept or modify a particular OID, you can do it by adding just a couple
lines of code. The minimal Complete handler is even simpler:

C++

Likewise, a filter driver can issue a new Synchronous OID request of its own using only
one line of code:

C++

In contrast, a filter driver that needs to issue a Regular or Direct OID must set up an
asynchronous completion handler and implement some code to distinguish its own OID
completions from the completions of OIDs that it just cloned. An example of this
boilerplate is shown on Example boilerplate for issuing a Regular OID request.

Although the Regular, Direct, and Synchronous calling styles all use the same data
structures, the pipelines do not go to the same handler in the miniport. Furthermore,
some OIDs cannot be used in some of the pipelines. For example, OID_PNP_SET_POWER
requires careful synchronization and often forces the miniport to make blocking calls.
This makes handling it difficult in a Direct OID callback and prevents its use in a
Synchronous OID callback.

Therefore, just as with Direct OID requests, Synchronous OID calls can only be used with
a subset of OIDs. In Windows 10, version 1709, only the

 NDIS_HANDLE FilterModuleContext,
 NDIS_OID_REQUEST *OidRequest,
 PVOID *CallContext)
{
 return NDIS_STATUS_SUCCESS;
}

VOID
MyFilterSynchronousOidRequestComplete(
 NDIS_HANDLE FilterModuleContext,
 NDIS_OID_REQUEST *OidRequest,
 NDIS_STATUS *Status,
 PVOID CallContext)
{
 return;
}

status = NdisFSynchronousOidRequest(binding->NdisBindingHandle, &oid);

Interoperability

OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES OID used in Receive Side Scaling
Version 2 (RSSv2) is supported in the Synchronous OID path.

For more info about implementing the Synchronous OID request interface in drivers, see
the following topics:

Miniport Adapter OID Requests
Filter Module OID Requests
Protocol Driver OID Requests

Implementing Synchronous OID requests

Example boilerplate for handling
Regular or Direct OID requests
Article • 12/15/2021

This topic provides example boilerplate code for handling Regular or Direct OID
requests, to contrast against the examples in Synchronous OID Request Interface in
NDIS 6.80. The Synchronous OID Request Interface is available on Windows 10, version
1709 and later.

C++

NDIS_STATUS
FilterOidRequest(
 NDIS_HANDLE FilterModuleContext,
 PNDIS_OID_REQUEST Request)
{
 PMS_FILTER pFilter = (PMS_FILTER)FilterModuleContext;

 Status = NdisAllocateCloneOidRequest(pFilter->FilterHandle,
 Request,
 FILTER_TAG,
 &ClonedRequest);
 if (Status != NDIS_STATUS_SUCCESS)
 return Status;

 Context = (PFILTER_REQUEST_CONTEXT)(&ClonedRequest->SourceReserved[0]);
 *Context = Request;

 ClonedRequest->RequestId = Request->RequestId;

 Status = NdisFOidRequest(pFilter->FilterHandle, ClonedRequest);

 if (Status != NDIS_STATUS_PENDING)
 {
 FilterOidRequestComplete(pFilter, ClonedRequest, Status);
 Status = NDIS_STATUS_PENDING;
 }
 return Status;
}

VOID
FilterOidRequestComplete(
 NDIS_HANDLE FilterModuleContext,
 PNDIS_OID_REQUEST Request,
 NDIS_STATUS Status)
{
 PMS_FILTER pFilter = (PMS_FILTER)FilterModuleContext;
 PNDIS_OID_REQUEST OriginalRequest;

 Context = (PFILTER_REQUEST_CONTEXT)(&Request->SourceReserved[0]);
 OriginalRequest = (*Context);

 //
 // Copy the information from the returned request to the original request
 //
 switch(Request->RequestType)
 {
 case NdisRequestMethod:
 OriginalRequest->DATA.METHOD_INFORMATION.OutputBufferLength = Request-
>DATA.METHOD_INFORMATION.OutputBufferLength;
 OriginalRequest->DATA.METHOD_INFORMATION.BytesRead = Request-
>DATA.METHOD_INFORMATION.BytesRead;
 OriginalRequest->DATA.METHOD_INFORMATION.BytesNeeded = Request-
>DATA.METHOD_INFORMATION.BytesNeeded;
 OriginalRequest->DATA.METHOD_INFORMATION.BytesWritten = Request-
>DATA.METHOD_INFORMATION.BytesWritten;
 break;

 case NdisRequestSetInformation:
 OriginalRequest->DATA.SET_INFORMATION.BytesRead = Request-
>DATA.SET_INFORMATION.BytesRead;
 OriginalRequest->DATA.SET_INFORMATION.BytesNeeded = Request-
>DATA.SET_INFORMATION.BytesNeeded;
 break;

 case NdisRequestQueryInformation:
 case NdisRequestQueryStatistics:
 default:
 OriginalRequest->DATA.QUERY_INFORMATION.BytesWritten = Request-
>DATA.QUERY_INFORMATION.BytesWritten;
 OriginalRequest->DATA.QUERY_INFORMATION.BytesNeeded = Request-
>DATA.QUERY_INFORMATION.BytesNeeded;
 break;
 }

 NdisFreeCloneOidRequest(pFilter->FilterHandle, Request);

 NdisFOidRequestComplete(pFilter->FilterHandle, OriginalRequest, Status);
}

Example boilerplate for issuing a
Regular OID request
Article • 05/30/2023

This topic provides example boilerplate code for issuing a Regular OID request, to
contrast against the examples in Synchronous OID Request Interface in NDIS 6.80. The
Synchronous OID Request Interface is available on Windows 10, version 1709 and later.

This example is taken from the sample NDIS filter driver .

C++

Status = filterDoInternalRequest(pFilter,
 NdisRequestQueryInformation,
 OID_802_3_CURRENT_ADDRESS,
 MacAddress,
 sizeof(MacAddress),
 0,
 0,
 &BytesProcessed);

_IRQL_requires_max_(DISPATCH_LEVEL)
NDIS_STATUS
filterDoInternalRequest(
 In PMS_FILTER FilterModuleContext,
 In NDIS_REQUEST_TYPE RequestType,
 In NDIS_OID Oid,
 _Inout_updates_bytes_to_(InformationBufferLength, *pBytesProcessed)
 PVOID InformationBuffer,
 In ULONG InformationBufferLength,
 _In_opt_ ULONG OutputBufferLength,
 In ULONG MethodId,
 Out PULONG pBytesProcessed
)
{
 FILTER_REQUEST FilterRequest;
 PNDIS_OID_REQUEST NdisRequest = &FilterRequest.Request;
 NDIS_STATUS Status;
 BOOLEAN bFalse;

 bFalse = FALSE;
 *pBytesProcessed = 0;
 NdisZeroMemory(NdisRequest, sizeof(NDIS_OID_REQUEST));

 NdisInitializeEvent(&FilterRequest.ReqEvent);

 NdisRequest->Header.Type = NDIS_OBJECT_TYPE_OID_REQUEST;
 NdisRequest->Header.Revision = NDIS_OID_REQUEST_REVISION_1;
 NdisRequest->Header.Size = sizeof(NDIS_OID_REQUEST);

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/filter

 NdisRequest->RequestType = RequestType;

 switch (RequestType)
 {
 case NdisRequestQueryInformation:
 NdisRequest->DATA.QUERY_INFORMATION.Oid = Oid;
 NdisRequest->DATA.QUERY_INFORMATION.InformationBuffer =
 InformationBuffer;
 NdisRequest->DATA.QUERY_INFORMATION.InformationBufferLength =
 InformationBufferLength;
 break;

 case NdisRequestSetInformation:
 NdisRequest->DATA.SET_INFORMATION.Oid = Oid;
 NdisRequest->DATA.SET_INFORMATION.InformationBuffer =
 InformationBuffer;
 NdisRequest->DATA.SET_INFORMATION.InformationBufferLength =
 InformationBufferLength;
 break;

 case NdisRequestMethod:
 NdisRequest->DATA.METHOD_INFORMATION.Oid = Oid;
 NdisRequest->DATA.METHOD_INFORMATION.MethodId = MethodId;
 NdisRequest->DATA.METHOD_INFORMATION.InformationBuffer =
 InformationBuffer;
 NdisRequest->DATA.METHOD_INFORMATION.InputBufferLength =
 InformationBufferLength;
 NdisRequest->DATA.METHOD_INFORMATION.OutputBufferLength =
OutputBufferLength;
 break;

 default:
 FILTER_ASSERT(bFalse);
 break;
 }

 NdisRequest->RequestId = (PVOID)FILTER_REQUEST_ID;

 Status = NdisFOidRequest(FilterModuleContext->FilterHandle,
 NdisRequest);

 if (Status == NDIS_STATUS_PENDING)
 {
 NdisWaitEvent(&FilterRequest.ReqEvent, 0);
 Status = FilterRequest.Status;
 }

 if (Status == NDIS_STATUS_SUCCESS)
 {
 if (RequestType == NdisRequestSetInformation)
 {
 *pBytesProcessed = NdisRequest->DATA.SET_INFORMATION.BytesRead;

 }

 if (RequestType == NdisRequestQueryInformation)
 {
 *pBytesProcessed = NdisRequest->DATA.QUERY_INFORMATION.BytesWritten;
 }

 if (RequestType == NdisRequestMethod)
 {
 *pBytesProcessed = NdisRequest->DATA.METHOD_INFORMATION.BytesWritten;
 }

 //
 // The driver below should set the correct value to BytesWritten
 // or BytesRead. But now, we just truncate the value to
InformationBufferLength
 //
 if (RequestType == NdisRequestMethod)
 {
 if (*pBytesProcessed > OutputBufferLength)
 {
 *pBytesProcessed = OutputBufferLength;
 }
 }
 else
 {

 if (*pBytesProcessed > InformationBufferLength)
 {
 *pBytesProcessed = InformationBufferLength;
 }
 }
 }

 return Status;
}

VOID
filterInternalRequestComplete(
 In NDIS_HANDLE FilterModuleContext,
 In PNDIS_OID_REQUEST NdisRequest,
 In NDIS_STATUS Status
)
{
 PFILTER_REQUEST FilterRequest;
 FilterRequest = CONTAINING_RECORD(NdisRequest, FILTER_REQUEST, Request);
 FilterRequest->Status = Status;
 NdisSetEvent(&FilterRequest->ReqEvent);
}

_Use_decl_annotations_
VOID
FilterOidRequestComplete(
 NDIS_HANDLE FilterModuleContext,
 PNDIS_OID_REQUEST Request,

 NDIS_STATUS Status
)
{
 PMS_FILTER pFilter = (PMS_FILTER)FilterModuleContext;
 PNDIS_OID_REQUEST OriginalRequest;
 PFILTER_REQUEST_CONTEXT Context;

 Context = (PFILTER_REQUEST_CONTEXT)(&Request->SourceReserved[0]);
 OriginalRequest = (*Context);

 //
 // This is an internal request
 //
 if (OriginalRequest == NULL)
 {
 filterInternalRequestComplete(pFilter, Request, Status);
 return;
 }

 // . . . other code for handling completion of non-"internal" requests
}

Receive Side Scaling Version 2 (RSSv2)
in NDIS 6.80
Article • 03/14/2023

Receive Side Scaling improves the system performance related to handling of network
data on multiprocessor systems. NDIS 6.80 and later support RSS Version 2 (RSSv2),
which extends RSS by offering per-VPort spreading of queues.

RSSv2 uses the NDIS 6.80 Synchronous OID request interface for one of its OIDs. For
more info about Synchronous OID calls, see Synchronous OID request interface in NDIS
6.80.

For more info about RSSv2, see Receive Side Scaling Version 2 (RSSv2).

２ Warning

Some information in this topic relates to prereleased product, which may be
substantially modified before it's commercially released. Microsoft makes no
warranties, express or implied, with respect to the information provided here.

RSSv2 is preview only in Windows 10, version 1809.

Introduction to NDIS 6.70
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.70 and describes its
major design additions. NDIS 6.70 is included in Windows 10, version 1703.

NDIS 6.70 is a minor version update to NDIS 6.60 for miniport, protocol, filter, and
intermediate drivers. For more information about porting NDIS 6.x drivers to NDIS 6.70,
see Porting NDIS 6.x drivers to NDIS 6.70.

Alongside NDIS 6.70, Windows 10, version 1703 includes a major new feature for NIC
drivers called the Network Adapter WDF Class Extension, a.k.a. NetAdapterCx.
NetAdapterCx is preview only in Windows 10, version 1703. The NetAdapterCx model
enables NIC driver developers to harness the full functionality and simplified driver
model of WDF, meaning NIC drivers are easier to write.

NDIS forms the core foundation for the network driver platform on Windows. For a list
of other network driver features that were updated at the same time as NDIS 6.70, see
the Windows 10, version 1703 section for Networking on What's new in driver
development.

The following network driver features have been deprecated along with the release of
NDIS 6.70:

TCP Chimney Offload
IPsec Offload Version 2

Feature updates

NetAdapterCx

Other feature updates

Feature deprecations

Implementing an NDIS 6.70 driver

NIC drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://learn.microsoft.com/en-us/windows-hardware/drivers/what-s-new-in-driver-development
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-tcp-chimney-offload

For more information about implementing a NIC driver with the NetAdapterCx, see
NetAdapterCx.

An NDIS 6.70 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.70 driver must be compliant with the following requirements:

An NDIS 6.70 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.70. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 70. This requirement applies to miniport, protocol and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.70 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

For more information about compiling a NIC driver with the NetAdapterCx, see Porting
NDIS miniport drivers to NetAdapterCx (Compilation settings).

Miniport, protocol, filter, and intermediate drivers

Compiling an NDIS 6.70 driver

NIC drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/porting-ndis-miniport-drivers-to-netadaptercx#compilation-settings

The WDK for Windows 10, version 1703 supports header versioning. Header versioning
makes sure that NDIS 6.70 drivers use the appropriate NDIS 6.70 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS670_MINIPORT=1 .
For a filter or protocol driver, add NDIS670=1 .

For information on building a driver with the Windows 10, version 1703 release of the
WDK, see Building a Driver.

For more information about NetAdapterCx data structures, see NetAdapterCx.

The following data structures are new in NDIS 6.70.

NDIS_STATUS_WWAN_DEVICE_CAPS_EX

Miniport, protocol, and filter drivers

Using NDIS 6.70 driver data structures

NIC drivers

Miniport, protocol, filter, and intermediate drivers

New data structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/

Introduction to NDIS 6.60
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.60 and describes its
major design additions. NDIS 6.60 is included in Windows 10, version 1607 and
Windows Server 2016 and later.

NDIS 6.60 is a minor version update to NDIS 6.50. For more information about porting
NDIS 6.x drivers to NDIS 6.60, see Porting NDIS 6.x drivers to NDIS 6.60.

NDIS 6.60 is an incremental update to NDIS 6.50 and does not contain any major new
features.

An NDIS 6.60 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.60 driver must be compliant with the following requirements:

An NDIS 6.60 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.60. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 60. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.60 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Feature updates

Implementing an NDIS 6.60 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.60 miniport drivers for Windows 10, version 1607 and Windows Server
2016 and later must use the NDIS 6.60 versions of data structures. For more
information, see Using NDIS 6.60 data structures.

The WDK for Windows 10, version 1607 supports header versioning. Header versioning
makes sure that NDIS 6.60 drivers use the appropriate NDIS 6.60 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS660_MINIPORT=1 .
For a filter or protocol driver, add NDIS660=1 .

For information on building a driver with the Windows 10, version 1607 release of the
WDK, see Building a Driver.

The following data structures were updated in NDIS 6.60.

NDIS_NIC_SWITCH_CAPABILITIES
NDIS_RECEIVE_SCALE_PARAMETERS
NDIS_RECEIVE_SCALE_CAPABILITIES

Compiling an NDIS 6.60 driver

Using NDIS 6.60 data structures

Updated data structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

Introduction to NDIS 6.50
Article • 03/14/2023

This topic introduces Network Driver Interface Specification (NDIS) 6.50 and describes its
major design additions. NDIS 6.50 is included in Windows 10, version 1507 and later.

NDIS 6.50 is a minor version update to NDIS 6.40. For more information about porting
NDIS 6.x drivers to NDIS 6.50, see Porting NDIS 6.x drivers to NDIS 6.50.

NDIS 6.50 is an incremental update to NDIS 6.40 and does not contain any major new
features.

An NDIS 6.50 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 driver.

In addition, an NDIS 6.50 driver must be compliant with the following requirements:

An NDIS 6.50 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.50. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 50. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler (see
Compiling an NDIS 6.50 driver).

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Feature updates

Implementing an NDIS 6.50 driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.50 miniport drivers for Windows 10, version 1507 and later must use the
NDIS 6.50 versions of data structures. For more information, see Using NDIS 6.50
data structures.

The WDK for Windows 10, version 1507 supports header versioning. Header versioning
makes sure that NDIS 6.50 drivers use the appropriate NDIS 6.50 data structures at
compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS650_MINIPORT=1 .
For a filter or protocol driver, add NDIS650=1 .

For information on building a driver with the Windows 10, version 1507 release of the
WDK, see Building a Driver.

The following data structures are new in NDIS 6.50.

OID_WWAN_SYS_CAPS
OID_WWAN_DEVICE_CAPS_EX
OID_WWAN_SLOT_INFO_STATUS
OID_WWAN_NETWORK_IDLE_HINT
NDIS_STATUS_PD_CURRENT_CONFIG
NDIS_PD_CAPABILITIES
NDIS_PD_CLOSE_PROVIDER_PARAMETERS
NDIS_PD_CONFIG
NDIS_PD_COUNTER_PARAMETERS
NDIS_PD_COUNTER_VALUE
NDIS_PD_FILTER_COUNTER
NDIS_PD_FILTER_PARAMETERS

Compiling an NDIS 6.50 driver

Using NDIS 6.50 data structures

New data structures

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pd_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_close_provider_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pd_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_counter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_counter_value
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_filter_counter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_filter_parameters

NDIS_PD_ON_RSS_QUEUE_PARAMETERS
NDIS_PD_OPEN_PROVIDER_PARAMETERS
NDIS_PD_PROVIDER_DISPATCH
NDIS_PD_QUEUE
NDIS_PD_QUEUE_DISPATCH
NDIS_PD_QUEUE_PARAMETERS
NDIS_PD_RECEIVE_QUEUE_COUNTER
NDIS_PD_TRANSMIT_QUEUE_COUNTER
PD_BUFFER
PD_BUFFER_8021Q_INFO
PD_BUFFER_VIRTUAL_SUBNET_INFO

The following data structures were updated in NDIS 6.50.

NET_PNP_EVENT_NOTIFICATION
NDIS_OID_REQUEST
NDIS_NET_BUFFER_LIST_INFO
NdisMGetDeviceProperty
NDIS_SWITCH_OPTIONAL_HANDLERS
NDIS_SWITCH_NIC_SAVE_STATE
NDIS_RECEIVE_FILTER_PARAMETERS

NDIS 6.51 is a very minor version update to NDIS 6.50. NDIS 6.51 is included in Windows
10, version 1511 and later. All information for NDIS 6.50 also applies to NDIS 6.51 with
the following exceptions:

The MinorNdisVersion changes from 50 to 51 when registering your driver with
NDIS.
The compiler settings change from NDIS650_MINIPORT=1 for miniport drivers and
NDIS650=1 for filter or protocol drivers, to NDIS651_MINIPORT=1 and NDIS651=1
respectively.

Updated data structures

NDIS 6.51

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_open_provider_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_provider_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_queue
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_queue_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_receive_queue_counter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_transmit_queue_counter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_pd_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_pd_buffer_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_pd_buffer_virtual_subnet_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblinfo/ne-nblinfo-ndis_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetdeviceproperty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Introduction to NDIS 6.40
Article • 03/14/2023

This section introduces Network Driver Interface Specification (NDIS) 6.40 and describes
its major design additions. NDIS 6.40 is included in the Windows 8.1 and Windows
Server 2012 R2 and later operating systems.

Windows 8.1 and Windows Server 2012 R2 introduce minor updates to the following
features:

NDKPI 1.2 adds the following new elements to the NDKPI DDI:

NdkSendAndInvalidate (NDK_FN_SEND_AND_INVALIDATE) function
NdkGetCqResultsEx (NDK_FN_GET_CQ_RESULTS_EX) function
NDK_RESULT_EX structure
New request callback Flags value: NDK_OP_FLAG_DEFER
New NDK_ADAPTER_INFOAdapterFlags value:
NDK_ADAPTER_FLAG_RDMA_READ_LOCAL_INVALIDATE_SUPPORTED

IEEE 802.11ac very-high throughput (VHT) PHY is now supported. The following DDI
elements have been updated:

DOT11_PHY_TYPE enumeration
OID_DOT11_CURRENT_CHANNEL
OID_DOT11_SUPPORTED_PHY_TYPES
OID_DOT11_SUPPORTED_OFDM_FREQUENCY_LIST

The Hyper-V Extensible Switch forwarding extension sample has been updated to
implement Hybrid Forwarding.

The following documentation sections have been added or significantly expanded:

Feature Updates

NDKPI

Native 802.11 Wireless LAN

Sample and Documentation Updates

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send_and_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_get_cq_results_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_result_ex
https://learn.microsoft.com/en-us/windows/win32/api/ndkinfo/ns-ndkinfo-ndk_adapter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/windot11/ne-windot11-_dot11_phy_type
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-channel
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-supported-phy-types
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-supported-ofdm-frequency-list
https://go.microsoft.com/fwlink/p/?LinkId=617913

Porting NDIS 6.x Drivers to NDIS 6.30
Network Direct Kernel Provider Interface (NDKPI) Design Guide
Network Virtualization using Generic Routing Encapsulation (NVGRE) Task Offload
Receive Segment Coalescing (RSC) Design Guide
Getting Started Writing a Hyper-V Extensible Switch Extension
NVGRE Task Offload Reference

The NetDMA interface is not supported in Windows 8 and Windows Server 2012 and
later. The documentation has now been updated to reflect this.

This section includes the following topics:

Implementing an NDIS 6.40 Driver
Using NDIS 6.40 Data Structures
Compiling an NDIS 6.40 Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Implementing an NDIS 6.40 Driver
Article • 03/14/2023

An NDIS 6.40 driver must follow the requirements that are defined in Implementing an
NDIS 6.30 Driver.

In addition, an NDIS 6.40 driver must be compliant with the following requirements:

An NDIS 6.40 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.40. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 40. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler, see
Compiling an NDIS 6.40 Driver.

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

NDIS 6.40 miniport drivers for the Windows 8.1 and Windows Server 2012 R2
operating systems must use the NDIS 6.40 versions of data structures. For more
information, see Using NDIS 6.40 Data Structures.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics

Using NDIS 6.40 Data Structures
Article • 03/14/2023

The following structures and enumerations were updated for NDIS 6.40.

The following union was updated for NDIS 6.40:

NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO

The following enumeration was updated for NDIS 6.40:

NDIS_SWITCH_PORT_PROPERTY_TYPE

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_port_property_type

Compiling an NDIS 6.40 Driver
Article • 03/14/2023

The WDK for Windows 8.1 supports header versioning. Header versioning makes sure
that NDIS 6.40 drivers use the appropriate NDIS 6.40 data structures at compile time.

Add the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS640_MINIPORT=1.

For a filter or protocol driver, add NDIS640=1.

For information on building a driver with the Windows 8.1 release of the WDK, see
Building a Driver.

For information on converting an driver's build files to a Visual Studio project , see
Creating a Driver From Existing Source Files.

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/creating-a-driver-from-existing-source-files

Introduction to NDIS 6.30
Article • 03/14/2023

This section introduces Network Driver Interface Specification (NDIS) 6.30 and describes
its major design additions. NDIS 6.30 is included in the Windows 8 and Windows
Server 2012 and later operating systems.

You should be familiar with earlier versions of NDIS 6.x before learning about NDIS 6.30.
For more information about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.0

Introduction to NDIS 6.1

Introduction to NDIS 6.20

This section includes the following topics:

Virtualized Networking Enhancements in NDIS 6.30
Power Management Enhancements in NDIS 6.30
Quality of Service (QoS) Support in NDIS 6.30
Windows Filtering Platform Enhancements in NDIS 6.30
Scalable Networking Enhancements in NDIS 6.30
Implementing an NDIS 6.30 Driver
Using NDIS 6.30 Data Structures
Compiling an NDIS 6.30 Driver

Virtualized Networking Enhancements
in NDIS 6.30
Article • 03/14/2023

NDIS supports virtualized networking interface that allow Hyper-V parent and child
partitions to interface the underlying physical networking interface.

NDIS 6.20 included the virtual machine queue (VMQ) interface to support Microsoft
Hyper-V network performance improvements. For more information about VMQ, see
Virtual Machine Queue (VMQ).

NDIS 6.30 extends the support for virtualized networking interfaces with the following
technologies, as described in Overview of Virtualized Networking:

The SR-IOV interface allows for the partitioning of the hardware resources on a PCI
Express (PCIe) network adapter into one or more virtual interfaces, known as virtual
functions (VFs). This allows the adapter resources to be shared in a virtual environment.
SR-IOV enables network traffic to bypass the virtual software switch layer by assigning a
VF to the Hyper-V child partition directly. By doing this, the I/O overhead in the software
emulation layer is diminished and network throughput achieves almost the same
performance as in non-virtualized environments.

For more information about the SR-IOV interface, see Single Root I/O Virtualization (SR-
IOV).

The Hyper-V Extensible Switch is a virtualized Ethernet switch that runs in the
management operating system of the Hyper-V parent partition. Each instance of the
extensible switch routes packets between ports that are connected to the following
types of network adapters:

The external and internal network adapters that are exposed in the management
operating system that runs in the Hyper-V parent partition.

The synthetic or emulated network adapters that are exposed in the guest
operating system that runs in a Hyper-V child partition.

Single Root I/O Virtualization (SR-IOV)

Hyper-V Extensible Switch

Starting with NDIS 6.30, the Hyper-V Extensible Switch supports an extensibility
interface. This interface allows instances of NDIS filter drivers (known as extensions) to
bind within the Hyper-V Extensible Switch driver stack. Once bound and enabled within
the driver stack, extensions are exposed to all packet traffic within the extensible switch
data path. This allows extensions to monitor, modify, and forward packets to extensible
switch ports. This also allows extensions to inspect and inject packets in the virtual
network interfaces that are used by the various Hyper-V partitions.

For more information about the Hyper-V extensible switch interface, see Hyper-V
Extensible Switch.

Power Management Enhancements in
NDIS 6.30
Article • 03/14/2023

NDIS 6.20 included power management new features and improvements to reduce
computer power consumption. NDIS 6.30 extends the NDIS 6.20 power management
support with the following capabilities, as described in Power Management (NDIS 6.30):

Starting with NDIS 6.30, network adapters can support NDIS packet coalescing. This
feature reduces the processing overhead and power consumption on a host system due
to the reception of random broadcast or multicast packets.

For more information, see NDIS Packet Coalescing.

Starting with NDIS 6.30, the NDIS selective suspend interface allows NDIS to suspend an
idle network adapter by transitioning the adapter to a low-power state. This enables the
system to reduce the power overhead on the CPU and network adapter.

For more information, see NDIS Selective Suspend.

Starting with NDIS 6.30, miniport drivers issue an NDIS wake reason status indication
(NDIS_STATUS_PM_WAKE_REASON) to notify NDIS and overlying drivers about the
reason for a system wake-up event. If the network adapter generates a wake-up event,
the miniport driver immediately issues this NDIS status indication when the system
resumes to a full-power state.

Note Support for NDIS wake reason status indications is optional for Mobile Broadband
(MB) miniport drivers.

For more information, see NDIS Wake Reason Status Indications.

NDIS Packet Coalescing

NDIS Selective Suspend

NDIS Wake Reason Status Indications

NDIS No Pause On Suspend

Starting with NDIS 6.30, miniport drivers can specify an attribute flag
(NDIS_MINIPORT_ATTRIBUTES_NO_PAUSE_ON_SUSPEND) in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. The driver passes a
pointer to this structure in its call to the NdisMSetMiniportAttributes function.

If the miniport sets the NDIS_MINIPORT_ATTRIBUTES_NO_PAUSE_ON_SUSPEND
attribute flag, NDIS does not call the miniport driver's MiniportPause function before the
object identifier (OID) request of OID_PNP_SET_POWER is issued to the driver. When the
miniport driver handles the OID request, it must not assume that it had been previously
paused when preparing the miniport adapter for the transition to a low-power state.

For more information, see NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes

Quality of Service (QoS) Support in
NDIS 6.30
Article • 03/14/2023

NDIS 6.30 and later provide support for quality of service (QoS). Miniport drivers use
NDIS QoS for traffic prioritization of transmit, or egress, packets over a network adapter
that is compliant with IEEE 802.1 Data Center Bridging (DCB).

IEEE 802.1 Data Center Bridging (DCB) is a collection of standards that defines a unified
802.3 Ethernet media interface, or fabric, for local area network (LAN) and storage area
network (SAN) technologies. DCB extends the current 802.1 bridging specification to
support the co-existence of LAN- and SAN-based applications over the same
networking fabric within a data center. DCB also supports technologies, such as Fibre
Channel over Ethernet (FCoE) and iSCSI, by defining link-level policies that prevents
packet loss.

NDIS QoS support for DCB allows a miniport driver to be configured with traffic classes
that specify a set of policies. Each policy determine how the network adapter handles
egress packets for prioritized delivery.

Each traffic class specifies the following policies that are applied to egress packets:

Priority Level and Flow Control
This policy defines the IEEE 802.1p priority level and optional flow control algorithms for
the egress traffic.

Traffic Selection Algorithms (TSAs)
This policy specifies how the network adapter selects egress traffic for delivery from its
transmit queues. For example, the adapter could select egress packets based on IEEE
802.1p priority or the percentage of the egress bandwidth that is allocated to each
traffic class.

For more information about NDIS QoS support for DCB, see NDIS QoS for Data Center
Bridging.

Windows Filtering Platform
Enhancements in NDIS 6.30
Article • 03/14/2023

Windows filtering platform (WFP) includes the following enhancements for NDIS 6.30
and later drivers:

Layer 2 Filtering Proxied Connections Tracking Virtual Switch Filtering For more
information about new WFP features, see New Information for WFP.

Scalable Networking Enhancements in
NDIS 6.30
Article • 03/14/2023

Scalable networking includes the following enhancements for NDIS 6.30 and later
drivers:

Receive Segment Coalescing (RSC) Network Direct Kernel Provider Interface (NDKPI)
Network Virtualization using Generic Routing Encapsulation (NVGRE) Task Offload IPsec
Offload Version 2 (IPsecOV2) Updates Receive Side Scaling (RSS) Updates

Note NetDMA is not supported in Windows 8 and later versions of the Windows
operating system.

Implementing an NDIS 6.30 Driver
Article • 03/14/2023

An NDIS 6.30 driver must follow the requirements that are defined in Implementing an
NDIS 6.20 Driver.

In addition, an NDIS 6.30 driver must be compliant with the following requirements:

An NDIS 6.30 driver must report the correct NDIS version when it registers with
NDIS.

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.30. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 30. This requirement applies to miniport, protocol, and filter
drivers. You must also update the version information for the compiler, see
Compiling an NDIS 6.30 Driver.

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

To inform NDIS and overlying drivers about device and driver capabilities, NDIS
6.30 drivers must implement the NDIS 6.30 device capability interfaces for the
following features:

Virtualized Networking

Power Management

NDIS Quality of Service (QoS)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics

NDIS 6.30 miniport drivers for the Windows 8 and Windows Server 2012 operating
systems must use the NDIS 6.30 versions of data structures. For more information,
see Using NDIS 6.30 Data Structures.

Using NDIS 6.30 Data Structures
Article • 03/14/2023

NDIS can support multiple versions of the same data structure. For the Windows 8 and
Windows Server 2012 operating systems, miniport drivers that use an NDIS 6.30 version
of a structure must initialize the Header member of the structure with the correct
version and size values. The Header member is an NDIS_OBJECT_HEADER structure, and
the driver must initialize the Revision member and Size member value of the Header
member to the NDIS 6.30 version and size values.

Note To determine the correct version and size information see the reference pages for
each structure that includes a Header member. The reference pages for structures that
contain a Header member and that were updated for NDIS 6.30 include new
information for NDIS 6.30 drivers. If there is no update to the structure for NDIS 6.30,
the information that is provided for earlier versions of NDIS also applies to NDIS 6.30
drivers.

The following structures were updated for NDIS 6.30:

NDIS_BIND_PARAMETERS
NDIS_MINIPORT_ADAPTER_ATTRIBUTES
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES
NDIS_MINIPORT_ADAPTER_NATIVE_802_11_ATTRIBUTES
NDIS_NET_BUFFER_LIST_FILTERING_INFO
NDIS_NIC_SWITCH_CAPABILITIES
NDIS_OFFLOAD
NDIS_OFFLOAD_PARAMETERS
NDIS_PM_CAPABILITIES
NDIS_PM_PARAMETERS
NDIS_RECEIVE_FILTER_CAPABILITIES
NDIS_RECEIVE_FILTER_INFO_ARRAY
NDIS_RECEIVE_FILTER_PARAMETERS
NDIS_RECEIVE_QUEUE_INFO
NDIS_RECEIVE_QUEUE_PARAMETERS
NDIS_RECEIVE_SCALE_CAPABILITIES
NDIS_RSS_PROCESSOR_INFO
NDIS_SHARED_MEMORY_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff565926(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_offload_handle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_processor_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_shared_memory_parameters

Compiling an NDIS 6.30 Driver
Article • 03/14/2023

In the Windows 8 release of the Windows Driver Kit (WDK), the driver development
environment is integrated into Visual Studio. Most of the tools you need for coding,
building, testing, debugging, deploying, and releasing a driver are available in the Visual
Studio user interface. This is a departure from previous releases of the WDK where the
various stages of the driver life cycle were performed as separate tasks with stand-alone
tools.

The WDK for Windows 8 supports header versioning. Header versioning makes sure that
NDIS 6.30 drivers use the appropriate NDIS 6.30 data structures at compile time. Add
the following compiler settings to the Visual Studio project for your driver:

For a miniport driver, add NDIS630_MINIPORT=1.

For a filter or protocol driver, add NDIS630=1.

For information on building a driver with the Windows 8 release of the WDK, see
Building a Driver.

For information on converting an driver's build files to a Visual Studio project , see
Creating a Driver From Existing Source Files.

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/building-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/creating-a-driver-from-existing-source-files

Introduction to NDIS 6.20
Article • 03/14/2023

This section introduces Network Driver Interface Specification (NDIS) 6.20 and describes
its major design additions. NDIS 6.20 is included in Windows 7 and Windows
Server 2008 R2 and later.

You should be familiar with NDIS 6.0 and NDIS 6.1 before learning about NDIS 6.20:

For more information about NDIS 6.0, see Introduction to NDIS 6.0.

For more information about NDIS 6.1, see Introduction to NDIS 6.1.

For a description of the differences between NDIS 6.20 and earlier versions, and for
detailed information about porting drivers to NDIS 6.20, see Porting NDIS 6.x Drivers to
NDIS 6.20.

This section includes the following topics:

Power Management Enhancements in NDIS 6.20
Virtual Machine Queue (VMQ) in NDIS 6.20
Support for More than 64 Processors in NDIS 6.20
Receive Side Throttle in NDIS 6.20
Media Extensibility in NDIS 6.20
Implementing an NDIS 6.20 Driver
Using NDIS 6.20 Data Structures
Compiling an NDIS 6.20 Driver

Introduction to NDIS 6.30

Related topics

Power Management Enhancements in
NDIS 6.20
Article • 03/14/2023

NDIS 6.20 introduces power management enhancements to reduce computer power
consumption. NDIS 6.20 power management support is mandatory for NDIS 6.20 and
later drivers.

The NDIS 6.20 power management interface is backward compatible with NICs and
miniport drivers that do not support the latest power management features.

The power management interface in NDIS 6.20 and later supports:

Wake on LAN (WOL) patterns that are based on the packet type in addition to the
NDIS 6.1 and earlier methods that support an offset and pattern match. Therefore,
NDIS 6.20 and later WOL patterns can be more specific to avoid unnecessary wake
up events. For example, a NIC can identify TCP synchronize (SYN) packets.

Protocol offloads to NICs for some of the most common protocols. Because the
protocols are offloaded to the NIC, it can respond on behalf of the computer to
avoid unwanted wake up events. For example, a NIC can handle IPv4 Address
Resolution Protocol (ARP) and IPv6 Neighbor Solicitation (NS) protocol packets
without waking the computer.

The power management interface in NDIS 6.20 and later also supports:

WOL WLAN enhancements. If necessary, a NIC can handle IEEE 802.11 group
temporal key (GTK) rekey requests in a low power state.

NDIS 6.20 and later can wake the computer when media connects. The operating
system puts the NIC in a low power state when the media is disconnected.

Some of the NDIS device driver interface elements are obsolete for NDIS 6.20 and later
drivers. For more information about obsolete interfaces, see Obsolete Interfaces in NDIS
6.20.

For more information about power management for NDIS 6.20 and later versions of
NDIS, see Power Management (NDIS 6.20).

Power Management Enhancements in NDIS 6.30

Related topics

Virtual Machine Queue (VMQ) in NDIS
6.20
Article • 03/14/2023

NDIS 6.20 introduces the virtual machine queue (VMQ) interface to support Microsoft
Hyper-V network performance improvements. NDIS 6.20 and later drivers must provide
information about VMQ capabilities during initialization. However, VMQ support is
optional.

The VMQ interface in NDIS 6.20 and later supports:

Classification of received packets by using the destination MAC address to route
the packets to different receive queues.

NIC ability to use DMA to transfer packets directly to a Hyper-V child partition's
shared memory.

Scaling to multiple processors by processing packets for different Hyper-V
partitions on different processors.

Microsoft Hyper-V network performance enhancements also provide chimney support
for Hyper-V child partitions with no driver changes.

For more information about VMQ, see Virtual Machine Queue (VMQ).

Support for More than 64 Processors in
NDIS 6.20
Article • 03/14/2023

The NDIS 6.20 interface introduces support for more than 64 processors. Previous NDIS
versions are limited to no more than 64 processors (32 in x86 versions of the operating
system).

To remain backward compatible with older implementations, NDIS supports processor
groups. Software that has not been updated to support more than 64 processors can
default to processor group zero.

To support more than 64 processors, NDIS 6.20 and later provide updated versions of
these interfaces:

Receive Side Scaling (RSS)

Processor information device driver interfaces (see NDIS System Information
Functions)

Resource allocation (see NDIS Memory Management Interface)

Read and write locks (see NDIS Read Write Lock Reference)

Some of the NDIS device driver interface elements are obsolete for NDIS 6.20 and later
drivers. For more information about obsolete interfaces, see Obsolete Interfaces in NDIS
6.20.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Receive Side Throttle in NDIS 6.20
Article • 03/14/2023

NDIS 6.20 introduces receive-side throttle (RST) enhancements to reduce the possibility
of disruptions during media playback in multimedia applications. RST support is
mandatory for NDIS 6.20 and later drivers.

If an NDIS driver spends too much time at dispatch IRQ level in a deferred procedure
call (DPC), it increases the scheduling latency for multimedia application threads and
might cause disruptions during media playback. To improve media playback with NDIS
6.20 and later drivers, NDIS can control the number of packets that a miniport driver
indicates in a receive DPC.

MiniportInterrupt

MiniportInterruptDPC

MiniportMessageInterrupt

MiniportMessageInterruptDPC

NDIS_RECEIVE_THROTTLE_PARAMETERS

NdisMQueueDpcEx

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_throttle_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpcex

Media Extensibility in NDIS 6.20
Article • 03/14/2023

NDIS 6.20 introduces additional media extensibility features. That is, the network layer of
the driver stack is more media independent.

These features in NDIS 6.20 and later reduce the complexity of the code that is required
to implement drivers that do not implement IEEE 802.3. In addition, these non-IEEE
802.3 implementations do not have to implement ARP and DHCP.

NDIS 6.20 and later provide raw IP frame support with a new media type for raw IP
(NdisMediumIP). For example, NDIS WWAN support uses raw IP.

NDIS 6.20 introduces enhanced support for media specific out of band (OOB) data. The
media specific information has a tag that Microsoft assigns. NDIS 6.20 and later support
multiple media specific information tags.

For more information about media specific information, for more information about
media extensibility, see OID_GEN_PHYSICAL_MEDIUM_EX and
NDIS_NBL_MEDIA_SPECIFIC_INFORMATION_EX.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_nbl_media_specific_information_ex

Implementing an NDIS 6.20 Driver
Article • 03/14/2023

An NDIS 6.20 driver must report the correct NDIS version when it registers with NDIS:

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.20. The
MajorNdisVersion member must contain 6 and the MinorNdisVersion member
must contain 20. This requirement applies to miniport, protocol, and filter drivers.
You must also update the version information for the compiler, see Compiling an
NDIS 6.20 Driver.

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

The NDIS 6.20 power management services are mandatory for NDIS 6.20 and later
miniport drivers. For more information about the NDIS 6.20 power management
interface, see Power Management Enhancements in NDIS 6.20.

The NDIS direct OID request interface is mandatory for NDIS 6.20 and later miniport
drivers. For more information about the direct OIDs interface, see Direct OID Request
Interface in NDIS 6.1.

To inform NDIS and overlying drivers about device and driver capabilities, NDIS 6.20 and
later drivers must implement the NDIS 6.20 device capability interfaces for the following
features:

Power Management

Receive Side Scaling (RSS)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics

Virtual Machine Queue (VMQ)

NDIS 6.20 and later drivers must support receive side throttle (RST) in receive interrupts.
For more information about RST, see Receive Side Throttle in NDIS 6.20.

Replace code that uses obsolete interfaces with the NDIS 6.20 equivalents. For more
information about obsolete functions, see Obsolete Interfaces in NDIS 6.20. For
information about updating structures to support NDIS 6.20 versions, see Using NDIS
6.20 Data Structures.

Use NDIS interfaces that support more than 64 processors, for example, use the NDIS
6.20 read and write lock interface. For more information about support for more than 64
processors, see Support for More than 64 Processors in NDIS 6.20.

Using NDIS 6.20 Data Structures
Article • 03/14/2023

NDIS can support multiple versions of the same data structure. NDIS 6.20 and later
drivers that use updated structures must report the correct Revision member and Size
member value in the NDIS_OBJECT_HEADER structure that is in the Header member of
a structure, if any, when the drivers initialize NDIS 6.20 data structures.

Note To determine the correct version and size information see the reference pages for
each structure that includes a Header member. The reference pages for structures that
contain a Header member and that have been updated for NDIS 6.20 include new
information for NDIS 6.20 and later drivers. If there is no update to the structure for
NDIS 6.20, the information that is provided for NDIS 6.0 or NDIS 6.1 drivers also applies
to NDIS 6.20 and later drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

Compiling an NDIS 6.20 Driver
Article • 03/14/2023

The Build utility for Windows 7 and later supports header versioning. Header versioning
makes sure that NDIS 6.20 drivers use the appropriate NDIS 6.20 data structures at
compile time. You must update the SOURCES file to indicate NDIS 6.20.

For each type of driver, add information to the SOURCES file as follows:

For a miniport driver, add NDIS620_MINIPORT=1.

For a protocol driver, add NDIS620=1.

For a filter driver, add NDIS620=1.

Introduction to NDIS 6.1
Article • 03/14/2023

This section introduces Network Driver Interface Specification (NDIS) 6.1 and describes
its major design additions. NDIS 6.1 is included in the Windows Server 2008 and
Windows Vista with Service Pack 1 (SP1) operating systems.

You should be familiar with NDIS 6.0 before learning about NDIS 6.1. For more
information about NDIS 6.0, see Introduction to NDIS 6.0.

This section includes the following topics:

Header-Data Split in NDIS 6.1
Direct OID Request Interface in NDIS 6.1
IPsec Task Offload Version 2 in NDIS 6.1
NETDMA Updates in NDIS 6.1
Implementing an NDIS 6.1 Driver
Using NDIS 6.1 Data Structures
Compiling an NDIS 6.1 Driver

Introduction to Network Drivers

Introduction to NDIS 6.20

Introduction to NDIS 6.30

Related topics

Header-Data Split in NDIS 6.1
Article • 03/14/2023

Header-data split services improve network performance by splitting the header and
data in received Ethernet frames into separate buffers. By separating the headers and
the data, these services enable the headers to be collected together into smaller regions
of memory. Therefore, more headers fit into a single memory page and more headers fit
into the system caches, so the overhead for memory accesses in the driver stack is
reduced.

The header-data split interface is an optional service that is provided for header-data-
split-capable network interface cards (NICs).

For more information about header-data split, see Header-Data Split.

Direct OID Request Interface in NDIS 6.1
Article • 03/14/2023

NDIS provides a direct OID request interface for NDIS 6.1 and later drivers. The direct
OID request path supports OID requests that are queried or set frequently. For example,
the IPsec offload version 2 (IPsecOV2) interface provides the
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID for direct OID requests.

The direct OID request interface is optional for NDIS drivers. To support the direct OID
path, drivers provide entry points and NDIS provides NdisXxx functions for protocol,
filter, and miniport drivers.

Note NDIS supports specific OIDs for use with the direct OID request interface. To
determine whether your driver can use an OID in the direct OIDs interface, see the notes
in the OID reference page.

For NDIS 6.1, the only interface that uses the direct OID request interface is IPsecOV2.
For more information about IPsecOV2, see IPsec Task Offload Version 2 in NDIS 6.1.

For NDIS 6.1 drivers in the Windows Server 2008 and Windows Vista with Service Pack 1
(SP1) operating systems, you can use only the following OIDs with the direct OID
request interface:

OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA

OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA

OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA

Miniport drivers and filter drivers must be able to handle direct OID requests that are
not serialized. Unlike the standard OID request interface, NDIS does not serialize direct
OID requests with other requests that are sent with the direct OID interface or with the
standard OID request interface. Also, miniport drivers and filter drivers must be able to
handle direct OID requests at IRQL <= DISPATCH_LEVEL.

For more information about how to implement the direct OID interface in drivers, see
the following topics:

Miniport Adapter OID Requests

Protocol Driver OID Requests

Filter Module OID Requests

IPsec Task Offload Version 2 in NDIS 6.1
Article • 03/14/2023

[The IPsec Task Offload feature is deprecated and should not be used.]

IPsec task offload provides offloading services for IPsec network data processing to
IPsec offload-capable network interface cards (NICs). NDIS 6.1 and later support IPsec
offload version 2 (IPsecOV2). IPsecOV2 extends support for additional crypto-
algorithms, IPv6, and co-existence with large send offload (LSO).

IPsecOV2 uses the NDIS 6.1 direct OID request interface. For more information about
the direct OID request interface, see Direct OID Request Interface in NDIS 6.1.

For more information about IPsecOV2, see IPsec Offload Version 2.

NetDMA Updates in NDIS 6.1
Article • 03/14/2023

The NetDMA interface provides offloading of direct memory access (DMA) to network
interface cards (NICs) that support a NetDMA DMA engine. The Windows Server 2008
and Windows Vista with Service Pack 1 (SP1) operating systems add NetDMA versions
1.1 and 2.0. NDIS 6.1 and later drivers can use NetDMA version 1.0, 1.1, and 2.0
interfaces. These interfaces manage interactions with the DMA engine and manage
DMA transfers at run-time.

The NetDMA interface is an optional service that is provided for NICs and other drivers.

For more information about NetDMA, see NetDMA Drivers.

） Important

The NetDMA interface is not supported in Windows 8 and later.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/netdma-drivers

Implementing an NDIS 6.1 Driver
Article • 03/14/2023

An NDIS 6.1 driver must report the correct NDIS version when it registers with NDIS:

You must update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure to support NDIS 6.1. The
MajorNdisVersion member must contain 0x06 and the MinorNdisVersion member
must contain 0x01. This requirement applies to miniport, protocol, and filter
drivers.

Miniport drivers must set the Header member of
NDIS_MINIPORT_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_2.

Filter drivers must set the Header member of
NDIS_FILTER_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_FILTER_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_FILTER_DRIVER_CHARACTERISTICS_REVISION_2.

Protocol drivers must set the Header member of
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS: Set Revision to
NDIS_PROTOCOL_CHARACTERISTICS_REVISION_2 and Size to
NDIS_SIZEOF_PROTOCOL _DRIVER_CHARACTERISTICS_REVISION_2.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics

Using NDIS 6.1 Data Structures
Article • 03/14/2023

NDIS can support multiple versions of the same data structure. NDIS 6.1 drivers that use
updated structures in Windows Server 2008, Windows Vista with Service Pack 1 (SP1), or
both operating systems must report the correct Revision member and Size member
value in the NDIS_OBJECT_HEADER structure that is in the Header member of a
structure, if any, when the drivers initialize NDIS 6.1 data structures.

Note To determine the correct version and size information, see the reference pages for
each structure that includes a Header member. The reference pages for structures that
contain a Header member and that have been updated for NDIS 6.1 include new
information for NDIS 6.1 drivers. If there is no update to the structure for NDIS 6.1, the
information that is provided for NDIS 6.0 drivers also applies to NDIS 6.1 drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

Compiling an NDIS 6.1 Driver
Article • 03/14/2023

The Build utility for Windows Server 2008 supports header versioning. Header versioning
makes sure that NDIS 6.1 drivers use the appropriate NDIS 6.1 data structures at
compile time. You must update the SOURCES file to indicate NDIS 6.1.

For each type of driver, add information to the SOURCES file as follows:

For a miniport driver, add NDIS61_MINIPORT=1.

For a protocol driver, add NDIS61=1.

For a filter driver, add NDIS61=1.

Introduction to NDIS 6.0
Article • 03/14/2023

NDIS 6.0 is the next major version of the Network Driver Interface Specification (NDIS)
library. NDIS specifies a standard interface between kernel-mode network drivers and
the operating system. NDIS also specifies a standard interface between layered network
drivers, thereby abstracting lower-level drivers that manage hardware from upper-level
drivers, such as network transports. NDIS 6.0 is included in the Windows Vista operating
system.

This section provides an introduction to NDIS 6.0 and describes the major design
objectives, how these objectives have been met, and the advantages of NDIS 6.0.

This section includes the following topics:

NDIS 6.0 Design Objectives

Enhanced Performance and Scalability

Simplified Driver Model

For a description of the differences between NDIS 6.0 and earlier versions, and for
detailed information about porting drivers to NDIS 6.0, see Porting NDIS 5.x Drivers to
NDIS 6.0.

Introduction to Network Drivers

Introduction to NDIS 6.1

Introduction to NDIS 6.20

Introduction to NDIS 6.30

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0

NDIS 6.0 Design Objectives
Article • 03/14/2023

Two major objectives have guided the design and development of NDIS 6.0:

1. Enhancing driver performance and scalability. (See Enhanced Performance and
Scalability for more information.)

Major improvements in the following provide significant performance gains for
both clients and servers:

Network data packaging
Send and receive paths
Run-time reconfiguration capabilities
Scatter/gather DMA
Filter drivers
Multiprocessor scaling of received data handling
Offloading TCP tasks to NICs

2. Simplifying the NDIS driver model. (See Simplified Driver Model for more
information.)

The following improvements simplify driver development:

Streamlined driver initialization
Versioning support for NDIS interfaces
Simplified reset handling
A standard interface for obtaining management information
A filter driver model to replace filter intermediate drivers

Enhanced Performance and Scalability
Article • 12/15/2021

NDIS 6.0 introduced the following features to improve performance and scalability:

NET_BUFFER Data Packaging
Improved Send and Receive Paths
Enhanced Run-time Reconfiguration Abilities
Receive Side Scaling Support
New Scatter/Gather DMA Support
Filter Drivers
Full TCP Offload

NET_BUFFER Data Packaging
Article • 12/15/2021

Data packaging was redesigned in NDIS 6.0. The send and receive architecture that is
based on the NDIS_PACKET structure has been replaced with an architecture that is
based on NET_BUFFER and NET_BUFFER_LIST structures. A NET_BUFFER structure is the
functional equivalent of an NDIS_PACKET structure. A NET_BUFFER structure specifies a
buffer (MDL chain) for network data, as well as reserved space for NDIS, protocol drivers,
and miniport drivers. NET_BUFFER structures can be linked together in a list that is
described by a NET_BUFFER_LIST structure. A NET_BUFFER_LIST structure also provides
storage for out-of-band (OOB) data that applies to all the NET_BUFFER structures in the
list.

All components in the Microsoft next generation network driver stack, including the
TCP/IP transport and Winsock, use NET_BUFFER data packaging. Uniform data
packaging throughout the driver stack eliminates the need to repackage data, simplifies
data handling, and reduces the number of function calls.

To accommodate older drivers that use NDIS_PACKET structures, NDIS 6.0 translates
NDIS_PACKET structures to NET_BUFFER structures and vice versa. This translation is
transparent to NDIS drivers.

NDIS propagates a driver's data backfill requirements to higher-level drivers. When
allocating NET_BUFFER and NET_BUFFER_LIST structures for send data, a higher-level
driver allocates enough data space to accommodate all lower-level drivers in the stack.
As a result, lower-level drivers do not have to allocate additional buffer space to
accommodate layer-specific headers. Instead, they can use the preallocated backfill
space for this purpose.

For more information about the NET_BUFFER architecture, see NET_BUFFER Architecture.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Improved Send and Receive Paths
Article • 12/15/2021

The NDIS 6.0 send and receive paths have been improved as follows to enhance
performance:

All of the NDIS 6.0 and later driver send and receive functions can transfer a linked
list of NET_BUFFER_LIST structures and their associated NET_BUFFER structures
with a single function call. This support for true multipacket send and receive
operations substantially reduces the number of function calls that drivers must
make.

When calling a send or receive function, a driver running at DISPATCH_LEVEL can
indicate its IRQL to NDIS. When NDIS subsequently makes calls to other drivers in
the stack, it is not necessary for these drivers to test the IRQL or set it to
DISPATCH_LEVEL. This reduces the overhead that is associated with testing and
setting the IRQL in critical code sections.

When drivers pass packets up and down the driver stack, they can request NDIS to
adjust the NET_BUFFER data offsets to accommodate header information. When
sending a packet, a driver can expand the used data space to accommodate the
driver's header information. When indicating a receive packet, a driver can
decrease the used data space after the driver is done accessing its header
information. This ability to dynamically adjust the used data space in a
NET_BUFFER structure, without allocating and freeing memory or copying data,
reduces the overhead that is required to process network data.

For more information about send and receive data handling in NDIS 6.0, see
NET_BUFFER Architecture.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Enhanced Run-time Reconfiguration
Abilities
Article • 12/15/2021

NDIS 6.0 introduced the ability to pause and restart a driver stack without having to tear
down the stack and build a new one. All NDIS 6.0 and later drivers must support pause
and restart services.

Pausing the stack eliminates synchronization problems by putting all drivers in a known
state before reconfiguration occurs. The ability to pause also gives NDIS the opportunity
to query driver characteristics, and reconfigure other characteristics of the stack.

NDIS can pause a driver stack, for example, to temporarily stop data flow before
performing a Plug and Play operation, such as adding or removing a filter driver, or
binding or unbinding a protocol driver. NDIS restarts the stack after the reconfiguration
takes place.

Miniport and filter drivers handle pause and restart services through function interfaces.
Protocol drivers handle pause and restart services through Plug and Play event
notifications.

For more information about pause and restart operations, see Driver Stack
Management.

Receive Side Scaling Support
Article • 12/15/2021

NDIS 6.0 introduced support for the scaling of receive-packet processing across multiple
processors. The receive side scaling (RSS) interface accommodates several levels of NIC
hardware support.

Based upon its current RSS configuration, a miniport driver or a NIC determines the
target processor to associate with the received data. The RSS configuration can be
adjusted to make the most efficient use of available target processors.

The miniport driver or NIC assigns the received data to a receive queue that is
associated with a target processor. The miniport driver requests NDIS to schedule
deferred procedure calls (DPCs) for target processors with non-empty receive queues.

NDIS schedules a DPC on each of the specified target processors. Each DPC processes a
particular receive queue on the specified target processor.

For more information about NDIS 6.0 receive side scaling, see Receive Side Scaling.

New Scatter/Gather DMA Support
Article • 12/15/2021

Unlike previous versions of NDIS, NDIS 6.0 passes a send packet to a miniport driver
before the packet is mapped for a DMA transfer. After it has obtained the packet, the
miniport driver can request NDIS to supply a scatter/gather list for the packet.

This provides the following benefits:

Because a miniport driver has access to the packet before it is mapped, any
changes that the miniport driver makes to the packet are reflected in the
associated scatter/gather list data.

A miniport driver can optimize the transmission of small or highly fragmented
packets by copying them to a preallocated buffer, thereby eliminating the need for
mapping. This eliminates unnecessary processing.

NDIS can safely pass multiple NET_BUFFER structures to the miniport driver in one
function call. This results in fewer calls to the miniport driver and thus improves
system performance.

Because a miniport driver can preallocate memory for a scatter/gather list, NDIS
does not have to allocate memory for the scatter/gather list at run time.

For more information about NDIS 6.0 scatter/gather DMA, see NDIS 6.0 Scatter/Gather
DMA.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Faster filter drivers
Article • 12/15/2021

The NDIS 6.x filter driver model supersedes the NDIS 5.x filter intermediate driver model.
The new filter driver model enhances system performance in several ways:

Unlike an NDIS filter intermediate driver, an NDIS 6.0 or later filter driver is not
implemented as a combination miniport driver and protocol driver. It has a unique
interface that is similar to miniport and protocol drivers but is optimized for
filtering information that is passed on a driver stack.

NDIS 6.0 and later filter drivers support bypass capabilities so that the driver does
not process data when such processing is not required.

NDIS 6.0 and later filter drivers can be dynamically inserted into or removed from a
driver stack during run time without tearing down bindings. Before such a dynamic
operation occurs, NDIS 6.0 pauses all the NDIS drivers in the stack. NDIS restarts
the stack when the reconfiguration is complete.

For more information about NDIS 6.0 filter drivers, see NDIS 6.0 Filter Drivers.

Full TCP Offload
Article • 12/15/2021

NDIS 6.0 introduced an architecture for full TCP offload. This architecture is called a
"chimney offload" architecture because it provides a direct connection, called a
"chimney," between applications and an offload-capable NIC. The chimney enables the
NIC to perform TCP processing for offloaded connections, including maintaining the
protocol state.

The chimney offload architecture reduces host network processing for network-intensive
applications. This allows networked applications to scale more efficiently while also
reducing end-to-end latency. Fewer servers are needed to host an application, and
servers are able to use the full Ethernet bandwidth.

The TCP chimney offloads all TCP processing for one or more TCP connections. The
primary performance gains are obtained from offloading segmentation and reassembly
(SAR), offloading processing that ensures reliable connections (for example, ACK
processing and TCP retransmission timers), and reducing interrupt loading.

Note The Windows Vista operating system continues to support the individual TCP task
offloads available in earlier versions of the operating system. These tasks can be
offloaded on connections that have not been offloaded through a chimney. An offload-
capable NIC should support both chimney offloads and task offloads. Such a NIC
provides the highest degree of offload optimization.

For information on TCP chimney offload in NDIS 6.0 and later, see NDIS TCP Chimney
Offload.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-tcp-chimney-offload

Simplified Driver Model
Article • 12/15/2021

The following NDIS 6.0 features simplify driver development:

Easier Initialization

Versioned Interfaces

Simplified Reset Handling

NDIS Interface Information

Easier-to-Write Filter Drivers

Easier Initialization
Article • 12/15/2021

All NDIS 6.0 and later drivers have updated driver registration interfaces. These NDIS
interfaces provide simplified driver registration and the ability to register optional
services separately from required services.

Miniport drivers require fewer function calls to register. In general, NDIS 6.0 and later
function interfaces are more consistent when compared to the NDIS 5.x and earlier
interfaces. Resources that are allocated also have a reciprocal function to free them.

An NDIS 6.0 or later intermediate driver can register as a miniport-intermediate driver.
Such a driver has both a virtual miniport for a virtual device and a miniport adapter for a
physical device. Registering as a miniport-intermediate driver simplifies the creation of
an intermediate driver that binds only to a vendor's own NIC. The driver can pass
network data, OID requests, and status indications between its virtual miniport and
physical miniport adapter with internal calls.

Protocol drivers receive most of the information about an underlying adapter in a
binding request. Therefore, protocol drivers do not send OID requests for the
parameters that NDIS already provided in the bind request.

To initialize a miniport adapter, miniport drivers can receive OID requests that combine
the information from many separate OID requests into fewer requests containing the
combined information.

Intermediate drivers have fewer specialized functions and make better use of miniport
driver and protocol driver interfaces.

A miniport driver can read or write the registry at any time -- not just during
initialization. For example, when an application requests through Windows Management
Instrumentation (WMI) that a driver change one of its operating parameters, the driver
can record this change in the registry so that the change persists across reboots.

NDIS provides a bus-independent function call for reading and writing bus-specific
configuration parameters. A driver can call this function regardless of the bus type in the
system. This ensures that NDIS will be able to support future buses without the addition
of new bus-specific functions.

For more information about driver initialization, see the initialization topics in the
following sections:

Writing NDIS Miniport Drivers

Writing NDIS Protocol Drivers

NDIS Filter Drivers

Writing NDIS Intermediate Drivers

Versioned Interfaces
Article • 12/15/2021

NDIS 6.0 supports versioning for key structures. Also, many former function parameters
are moved to structures. Moving the function parameters to versioned structures allows
the function parameters to be changed in later NDIS versions without changing the
function interface.

Versioned structures contain a header that specifies the version of the structure. If the
set of function parameters or other structure members are changed, the structure and
its version are updated.

This versioning simplifies backward compatibility and extends the life of NDIS 6.0 and
later drivers. Also, NDIS drivers can support more than one version of NDIS.

For more information, see NDIS_OBJECT_HEADER.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

Simplified Reset Handling
Article • 12/15/2021

NDIS 6.0 and later drivers do not reset miniport adapters to cancel send or OID
requests. Instead, NDIS provides send cancellation and OID request cancellation
functions.

An NDIS miniport driver can complete or cancel a pending send operation or pending
OID request at any time -- either before or after completing a reset. The miniport driver
does not have to keep track of when it received a request with respect to a reset. Also,
the driver does not have to synchronize a canceled request with the completion of a
reset.

For more information, see Canceling a Send Operation, OID Requests for an Adapter,
Protocol Driver OID Requests, and Filter Module OID Requests.

NDIS Interface Information
Article • 03/14/2023

A standardized interface for querying NDIS management information bases (MIBs)
makes it easier for overlying drivers and user-mode applications to query information
about network interfaces. A MIB client calls NDIS-supplied functions to request
information from an underlying NDIS interface provider. This causes NDIS to issue OID
requests to retrieve the information. To supply the information to the client, NDIS calls a
callback function that the client registered with NDIS.

For more information about NDIS network interface services, see NDIS Network
Interfaces.

NDIS provides enhanced support for Management Instrumentation (WMI). For more
information about NDIS 6.0 support for WMI, see NDIS Support for WMI.

NDIS_INTERFACE_INFORMATION

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information

Easier-to-Write Filter Drivers
Article • 12/15/2021

NDIS 6.0 filter drivers are easier to write than the previous NDIS filter intermediate
drivers.

When compared to filter intermediate drivers, filter drivers provide the following
implementation advantages:

Filter drivers do not include a complete miniport driver interface and a complete
protocol driver interfaces.

Filter drivers do not create and manage a virtual device. There is no virtual miniport
in a filter driver.

If a filter driver filters specific services, the driver can bypass other services. The
driver does not require code for services that are bypassed. For example, if a filter
driver filters OID requests but does not filter send and receive operations, the filter
driver does not require send and receive entry points.

For more information about NDIS 6.0 filter drivers, see NDIS 6.0 Filter Drivers.

Specifying NDIS Version Information
Article • 03/14/2023

This section provides an overview of the support that NDIS and NDIS drivers provide for
NDIS version information.

Many NDIS structures include structure version information in a Header member. NDIS
or NDIS drivers set the version information in such structures. NDIS drivers should check
the version information in structures before they access the structure members.

Also, NDIS drivers specify the NDIS version that they support during driver initialization.

This section includes the following topics:

Overview of NDIS Support for Header Versions
Version Information Requirements for NDIS Drivers
Version Information Requirements for NDIS
Obtaining the NDIS Version
NDIS Object Version Issues for WMI

Overview of NDIS versions

Related topics

Overview of NDIS Support for Header
Versions
Article • 03/14/2023

Many NDIS structures include structure version information. NDIS or NDIS drivers
initialize the Header member in such structures as required for each structure. NDIS
drivers should check the version information, if any, in each structure before they access
the structure members.

The Header member is an NDIS_OBJECT_HEADER structure. This structure contains the
revision number, type, and size of the structure that includes the Header member.

Structures that include the Header member meet the following requirements:

The structure will have a new revision value if new information is added to the
member list for a new NDIS version. For example, if the NDIS 6.1 version of the
structure has new members at the end of the member list, in a union, or in a
bitmask, it will have a different revision value from the NDIS 6.0 version.

After a structure is changed, the size of the later revision of the structure can be
equal to or larger than the size of the earlier revision of the structure, but it will not
be smaller. If the new size is larger than the size of the earlier revision, the new
members are added at the end of the member list.

A structure will only have a new revision if the earlier revision information is still
valid and complete. That is, the new version of the structure contains a superset of
the older versions members. Note If any of the preceding conditions cannot be
met, NDIS provides a new structure with a new name that replaces the existing
structure instead of providing a revised version of the existing structure.

NDIS drivers should always use the predefined revision values. NDIS provides such
definitions in the form Xxx_REVISION_Nn, and NDIS_SIZEOF_Xxx_REVISION_Nn, for
the Revision and Size members of NDIS_OBJECT_HEADER respectively. Also, Xxx
represents the name of the structure and Nn is the revision number. For example,
the revision and size for the first revision of the
NDIS_FILTER_PARTIAL_CHARACTERISTICS structure are
NDIS_FILTER_PARTIAL_CHARACTERISTICS_REVISION_1 and
NDIS_SIZEOF_FILTER_PARTIAL_CHARACTERISTICS_REVISION_1 respectively.

The Header.Size value must be consistent with the Header.Revision value. That is,
if the Revision member contains Xxx_REVISION_1, the Size member value must be

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_partial_characteristics

equal to or greater than NDIS_SIZEOF_Xxx_REVISION_1.

Overview of NDIS versions

Specifying NDIS Version Information

Related topics

Version Information Requirements for
NDIS Drivers
Article • 03/14/2023

NDIS structures that provide version information have a Header member that is defined
as an NDIS_OBJECT_HEADER structure and NDIS drivers must provide support for such
version information.

NDIS can support drivers that support a higher or lower NDIS version than the current
version of NDIS (that is, the version of NDIS that is supported on the version of the
operating system that a computer is running). Also the registered NDIS version (that is,
the version that the driver reported during initialization) of the driver can be lower than
the highest version that the driver supports. For example, an NDIS 5.1 driver or an NDIS
6.1 driver can run on a version of the operating system that is running NDIS 6.0. The
NDIS 5.1 driver simply registers as an NDIS 5.1 driver during initialization. However, the
NDIS 6.1 driver must check the current version of NDIS and must register as a driver that
supports the highest level of NDIS that is available (in this example, NDIS 6.0). For more
information about how to obtain the current NDIS version, see Obtaining the NDIS
Version.

Note A driver is not required to support all the features in a later revision of a structure.
For example, a miniport driver can create a version 2 structure and supply values that
are appropriate for a version 1 structure.

To access the members in structures that have version information, NDIS drivers must
complete the following process:

Check the Header.Revision and Header.Size members before accessing any
members in the structure.

For earlier version structures (that is, structures that have a lower revision number
than the number that is associated with the NDIS version that the driver supports):

The driver must verify that the Header.Size value is correct for the
Header.Revision value. For example, the value of NDIS_SIZEOF_Xxx_REVISION_1
is correct for Xxx_REVISION_1 but it is too small for Xxx_REVISION_2.
The Header.Size value must be equal to or greater than
NDIS_SIZEOF_Xxx_REVISION_Nn (where Nn is the revision number of the
structure that the driver is using) and the driver must correctly handle the
information in the structure as is appropriate for that revision.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

For later version structures (that is, structures that have a higher revision number
than the number that is associated with the NDIS version that the driver supports),
the driver can use the structure as if it were an older revision of the structure. The
higher version structure is always compatible with the older version.

Drivers must use the correct revision of a structure for the registered NDIS version
of the driver. For example, an NDIS 6.1 driver must report its offload capabilities in
NDIS_OFFLOAD structures by setting the members in the NDIS_OBJECT_HEADER
structure to indicate NDIS_OFFLOAD_REVISION_2. However, the driver does not
have to support all the features that are included with
NDIS_OFFLOAD_REVISION_2.

A driver that successfully handles an OID set request must set the
SupportedRevision member in the NDIS_OID_REQUEST structure upon return
from the OID set request. The SupportedRevision member notifies the initiator of
the request of the revision that the driver supported. For example, a miniport
driver can create an Xxx_REVISION_2 structure, supply values that are appropriate
for an Xxx_REVISION_1 structure, and fill the rest of the structure with zeros. The
miniport driver would report Xxx_REVISION_1 in the SupportedRevision member.
In this case, a protocol driver that can support an Xxx_REVISION_2 will use
Xxx_REVISION_1 information that the miniport driver supported.

To determine what information was successfully handled by an underlying driver,
overlying drivers that issue OID requests must check the value in the
SupportedRevision member in the NDIS_OID_REQUEST structure after the OID
request returns.

Overview of NDIS versions

Specifying NDIS Version Information

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Version Information Requirements for
NDIS
Article • 03/14/2023

NDIS supports various header version information requirements that guarantee
consistent behavior between NDIS versions. To support header version information,
NDIS has the following responsibilities:

Handles structures with lower revisions. That is, NDIS checks the header
information and interprets the structure based upon the revision information in the
header.

Fails a function call and returns an appropriate error code if a driver uses an
incorrect structure revision. For example, NDIS fails the function call if an NDIS 6.30
driver uses Xxx_REVISION_1 structures when there is an NDIS 6.30 Xxx_REVISION_2
structure.

Overview of NDIS versions

Specifying NDIS Version Information

Related topics

Obtaining the NDIS Version
Article • 03/14/2023

NDIS versions might not be the same as the operating system versions. For example, if
you use the RtlGetVersion and RtlVerifyVersionInfo routines to get the operating
system version, you do not get a guaranteed association with a particular NDIS version.
Therefore, NDIS drivers must get the NDIS version and the operating system version
separately. NDIS drivers can get the NDIS version with the NdisGetVersion function.

Overview of NDIS versions

Specifying NDIS Version Information

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtlgetversion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-rtlverifyversioninfo
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetversion

NDIS Object Version Issues for WMI
Article • 03/14/2023

This topic describes the NDIS object version issues that affect Windows Management
Instrumentation (WMI) support.

There is no versioning inside a WMI managed object format (MOF) file. Therefore, if the
corresponding NDIS structure has a new revision, more fields have been added to the
MOF data objects.

The NDIS_WMI_Xxx_HEADER structures have a new revision when more members are
added for a new NDIS version. For a list of the current NDIS_WMI_Xxx_HEADER
structures, see NDIS WMI Structures.

When applications access the WMI information for a query operation, they must check
the version in the returned buffer before they access any data. For a set operation,
applications must check the SupportedRevision member in the
NDIS_WMI_OUTPUT_INFO structure to determine which version the underlying driver
has accepted.

Many WMI objects contain the MSNdis_ObjectHeader property, which is equivalent to
the NDIS_OBJECT_HEADER structure. When populating the MSNdis_ObjectHeader
property, set the Type and Revision fields as documented in the NDIS_OBJECT_HEADER
topic. To ensure seamless portability to 64-bit systems, set the Size field to 0xFFFF .

Overview of NDIS versions

Specifying NDIS Version Information

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Porting NDIS 6.x drivers to NDIS 6.89
Article • 05/22/2024

NDIS 6.89 is substantially the same as NDIS 6.88. For detailed information about new
features for NDIS 6.89, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.89.

If you are porting an NDIS 6.x driver to NDIS 6.89, you should be familiar with the
changes to each version between your driver's version and 6.89. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.88
Introduction to NDIS 6.87
Introduction to NDIS 6.86
Introduction to NDIS 6.85
Introduction to NDIS 6.84
Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Porting NDIS 6.x drivers to NDIS 6.88
Article • 05/22/2024

NDIS 6.88 is substantially the same as NDIS 6.87. For detailed information about new
features for NDIS 6.88, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.88.

If you are porting an NDIS 6.x driver to NDIS 6.88, you should be familiar with the
changes to each version between your driver's version and 6.88. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.87
Introduction to NDIS 6.86
Introduction to NDIS 6.85
Introduction to NDIS 6.84
Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Porting NDIS 6.x drivers to NDIS 6.87
Article • 05/22/2024

NDIS 6.87 is substantially the same as NDIS 6.86. For detailed information about new
features for NDIS 6.87, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.87.

If you are porting an NDIS 6.x driver to NDIS 6.87, you should be familiar with the
changes to each version between your driver's version and 6.87. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.86
Introduction to NDIS 6.85
Introduction to NDIS 6.84
Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Porting NDIS 6.x drivers to NDIS 6.86
Article • 03/14/2023

NDIS 6.86 is substantially the same as NDIS 6.85. For detailed information about new
features for NDIS 6.86, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.86.

If you are porting an NDIS 6.x driver to NDIS 6.86, you should be familiar with the
changes to each version between your driver's version and 6.86. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.85
Introduction to NDIS 6.84
Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.85
Article • 03/14/2023

NDIS 6.85 is substantially the same as NDIS 6.84. For detailed information about new
features for NDIS 6.85, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.85.

If you are porting an NDIS 6.x driver to NDIS 6.85, you should be familiar with the
changes to each version between your driver's version and 6.85. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.84
Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.84
Article • 03/14/2023

NDIS 6.84 is substantially the same as NDIS 6.83. For detailed information about new
features for NDIS 6.84, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.84.

If you are porting an NDIS 6.x driver to NDIS 6.84, you should be familiar with the
changes to each version between your driver's version and 6.84. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.83
Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.83
Article • 03/14/2023

NDIS 6.83 is substantially the same as NDIS 6.82. For detailed information about new
features for NDIS 6.83, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.83.

If you are porting an NDIS 6.x driver to NDIS 6.83, you should be familiar with the
changes to each version between your driver's version and 6.83. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.82
Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.82
Article • 03/14/2023

NDIS 6.82 is substantially the same as NDIS 6.81. For detailed information about new
features for NDIS 6.82, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.82.

If you are porting an NDIS 6.x driver to NDIS 6.82, you should be familiar with the
changes to each version between your driver's version and 6.82. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.81
Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.81
Article • 03/14/2023

NDIS 6.81 is substantially the same as NDIS 6.80. For detailed information about new
features for NDIS 6.81, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.81.

If you are porting an NDIS 6.x driver to NDIS 6.81, you should be familiar with the
changes to each version between your driver's version and 6.81. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.80
Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.80
Article • 03/14/2023

For NDIS miniport, protocol, filter, and intermediate drivers, NDIS 6.80 is substantially
the same as NDIS 6.70. For NIC drivers, the NetAdapter class extension (NetAdapterCx)
has been updated to from version 1.0 in NDIS 6.70 to version 1.1 in NDIS 6.80. To port
an NDIS 6.x miniport driver to NetAdapterCx, see Porting NDIS miniport drivers to
NetAdapterCx.

For detailed information about new features for NDIS 6.80, including implementation
and compilation details specific to this version of NDIS, see Introduction to NDIS 6.80.

If you are porting an NDIS 6.x miniport, protocol, filter, or intermediate driver to NDIS
6.80, you should be familiar with the changes to each version between your driver's
version and 6.80. For more information about previous NDIS 6.x versions, see the
following topics:

Introduction to NDIS 6.70
Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/porting-ndis-miniport-drivers-to-netadaptercx

Porting NDIS 6.x drivers to NDIS 6.70
Article • 03/14/2023

For NDIS miniport, protocol, filter, and intermediate drivers, NDIS 6.70 is substantially
the same as NDIS 6.60. Starting in NDIS 6.70, however, NDIS driver developers can also
write a NIC driver using the new Network Adapter WDF Class Extension, a.k.a.
NetAdapterCx. To port an NDIS 6.x miniport driver to NetAdapterCx, see Porting NDIS
miniport drivers to NetAdapterCx.

For detailed information about new features for NDIS 6.70, including implementation
and compilation details specific to this version of NDIS, see Introduction to NDIS 6.70.

If you are porting an NDIS 6.x miniport, protocol, filter, or intermediate driver to NDIS
6.70, you should be familiar with the changes to each version between your driver's
version and 6.70. For more information about previous NDIS 6.x versions, see the
following topics:

Introduction to NDIS 6.60
Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/porting-ndis-miniport-drivers-to-netadaptercx

Porting NDIS 6.x drivers to NDIS 6.60
Article • 03/14/2023

NDIS 6.60 is substantially the same as NDIS 6.50. For detailed information about new
features for NDIS 6.60, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.60.

If you are porting an NDIS 6.x driver to NDIS 6.60, you should be familiar with the
changes to each version between your driver's version and 6.60. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.50
Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x drivers to NDIS 6.50
Article • 03/14/2023

NDIS 6.50 is substantially the same as NDIS 6.40. For detailed information about new
features for NDIS 6.50, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.50.

If you are porting an NDIS 6.x driver to NDIS 6.50, you should be familiar with the
changes to each version between your driver's version and 6.50. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.40
Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x Drivers to NDIS 6.40
Article • 03/14/2023

NDIS 6.40 is substantially the same as NDIS 6.30. For detailed information about new
features for NDIS 6.40, including implementation and compilation details specific to this
version of NDIS, see Introduction to NDIS 6.40.

If you are porting an NDIS 6.x driver to NDIS 6.40, you should be familiar with the
changes to each version between your driver's version and 6.40. For more information
about previous NDIS 6.x versions, see the following topics:

Introduction to NDIS 6.30
Introduction to NDIS 6.20
Introduction to NDIS 6.1
Introduction to NDIS 6.0

Porting NDIS 6.x Drivers to NDIS 6.30
Article • 03/14/2023

This section describes the requirements to port NDIS 6.x drivers to NDIS 6.30.

For information about porting NDIS 6.x drivers to NDIS 6.20, see Porting NDIS 6.x
Drivers to NDIS 6.20.
For information about porting NDIS 5.x and earlier drivers to NDIS 6.x, see Porting
NDIS 5.x Drivers to NDIS 6.0.

For more information about NDIS 6.30 features, see Introduction to NDIS 6.30.

The following topics discuss how to port miniport, protocol, and intermediate drivers to
NDIS 6.30:

NDIS 6.30 Backward Compatibility
Summary of Changes Required to Port a Miniport Driver to NDIS 6.30
Summary of Changes Required to Port a Protocol or Filter Driver to NDIS 6.30
Summary of Changes Required to Port an Intermediate Driver to NDIS 6.30

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0

NDIS 6.30 Backward Compatibility
Article • 03/14/2023

NDIS 6.30 adds backward compatibility features to those that apply to NDIS 6.20 and
NDIS 6.0 drivers. For information about NDIS 6.20 compatibility issues, see NDIS 6.20
Backward Compatibility. For information about NDIS 6.0 compatibility issues, see NDIS
6.0 Backward Compatibility.

For more information about NDIS 6.30 features, see Introduction to NDIS 6.30.

The following features are not supported in Windows 8 and later:

TCP chimney offload is no longer supported for virtual machines. However, it is still
supported for native use.
IPsec task offload version 1. All drivers that support IPsec task offload should be
updated to support IPsec task offload version 2.
Filter intermediate drivers. Instead, use the NDIS 6.x filter driver interface. For more
information about filter drivers, see NDIS Filter Drivers.
802.11 drivers that emulate 802.3. NDIS 802.11 drivers must support the native
802.11 interface. For more information about native 802.11, see Native 802.11
Wireless LAN.
NDIS WAN drivers. NDIS WAN drivers must be ported to the NDIS 6.0 CoNDIS
WAN driver model. For more information about CoNDIS WAN, see WAN Miniport
Drivers.

The following features have been removed from Windows 8 and later:

NDIS 5.x and earlier
IrDA miniport drivers
NetDMA
Token Ring (802.5)

The TCP/IP protocol driver that ships with Windows 8 has been updated to NDIS
6.30. However, this change was relatively minor, so it's not worth porting your

Features that are no longer supported

Features that have been removed

Other changes

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-6-0-backward-compatibility
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560689(v=vs.85)

driver just for this feature. The TCP/IP protocol driver is backward compatible with
NDIS 6.20 and earlier drivers in the driver stack.

Summary of Changes Required to Port a
Miniport Driver to NDIS 6.30
Article • 03/14/2023

To update an NDIS 6.x miniport driver to support NDIS 6.30, you must modify it as
outlined in the following sections.

Build Environment and Testing
General Porting Requirements
Wi-Fi Direct Miniport Drivers
USB-Based WWAN (Mobile Broadband) Miniport Drivers

For more information about NDIS 6.30 features, see Introduction to NDIS 6.30.

Replace the preprocessor definition NDIS60_MINIPORT or NDIS61_MINIPORT or
NDIS620_MINIPORT with NDIS630_MINIPORT. For more information, see
Compiling an NDIS 6.30 Driver

Replace the preprocessor definition NDIS60 or NDIS61 or NDIS620, if present, with
NDIS630. Note This item applies only to NDIS intermediate, protocol, and filter
drivers. Most NDIS miniport drivers don't need this preprocessor definition.

In NDIS 6.30, NDIS can call MiniportInitializeEx twice in parallel if there are two
adapters plugged into the system at the same time or during system startup. Be
sure to test your miniport driver under this "parallel startup" condition.

Update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure as described in Implementing an
NDIS 6.30 Driver.
For all structures that were updated for NDIS 6.30, miniport drivers need to update
the Header member of the structure with the correct Revision and Size values. For
more information, see Using NDIS 6.30 Data Structures.
All miniport drivers should implement the no-pause-on-suspend feature. For more
information, see:

Power Management Enhancements in NDIS 6.30
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES

Build Environment and Testing

General Porting Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes

NET_PNP_EVENT
OID_PNP_SET_POWER

During MiniportInitializeEx, a Wi-Fi Direct-capable miniport driver must initialize the
default 802.11 MAC entity. It must also report its Wi-Fi Direct and Virtual Wi-Fi
capabilities using the NdisMSetMiniportAttributes function.

Note The driver is not required to register with NDIS the NDIS port corresponding to
the default MAC entity.

For USB-based Mobile Broadband devices, Windows 8 provides a class driver that works
with devices conforming to the MBIM specification. This model is referred to as the
Mobile Broadband (MB) Class Driver. However, a class driver cannot support all of the
functionality exposed by an MB device. For this reason, the MB feature provides a well-
defined mechanism that you can use to extend the class driver functionality. For more
information, see MB Device Services.

If your USB-based WWAN miniport driver cannot implement the MB class driver, it must
at least implement the NDIS Selective Suspend feature.

Wi-Fi Direct Miniport Drivers

USB-Based WWAN (Mobile Broadband)
Miniport Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Summary of Changes Required to Port a
Protocol or Filter Driver to NDIS 6.30
Article • 03/14/2023

To update an NDIS 6.x protocol or filter driver to support NDIS 6.30, you must modify it
as outlined in the following sections.

Build Environment
General Porting Requirements for Protocol Drivers
General Porting Requirements for Filter Drivers

Replace the preprocessor definition NDIS60 or NDIS61 or NDIS620, if present, with
NDIS630.
Update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure as described in Implementing an
NDIS 6.30 Driver.

A protocol driver should always complete NetEventSetPower without waiting for
packets. For more information, see:

Power Management Enhancements in NDIS 6.30
Handling PnP Events and Power Management Events in a Protocol Driver

For more information about NDIS 6.30 features, see Introduction to NDIS 6.30.

A filter driver should always complete NetEventSetPower without waiting for packets.
For more information, see:

Power Management Enhancements in NDIS 6.30
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES
NET_PNP_EVENT
OID_PNP_SET_POWER

Build Environment

General Porting Requirements for Protocol
Drivers

General Porting Requirements for Filter Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event

For more information about NDIS 6.30 features, see Introduction to NDIS 6.30.

Summary of Changes Required to Port
an Intermediate Driver to NDIS 6.30
Article • 03/14/2023

To update an NDIS 6.x intermediate (IM) driver to support NDIS 6.30, you must modify it
as outlined in the following sections.

Replace the preprocessor definition NDIS60 or NDIS61 or NDIS620, if present, with
NDIS630.
Update the major and minor NDIS version number in the
NDIS_Xxx_DRIVER_CHARACTERISTICS structure as described in Implementing an
NDIS 6.30 Driver.

Except where noted otherwise, protocol driver and miniport driver changes also
apply to intermediate drivers. For more information about porting these drivers,
see the Summary of Changes Required to Port a Protocol or Filter Driver to NDIS
6.30 and Summary of Changes Required to Port a Miniport Driver to NDIS 6.30.

Build Environment

General Porting Requirements

Porting NDIS 6.x Drivers to NDIS 6.20
Article • 03/14/2023

This section describes the requirements to port NDIS 6.0 and 6.1 drivers to NDIS 6.20.

For information about porting NDIS 5.x or earlier drivers to NDIS 6.x, see Porting NDIS
5.x Drivers to NDIS 6.0.

For more information about NDIS 6.20 features, see Introduction to NDIS 6.20.

For more information about NDIS 6.1 features, see Introduction to NDIS 6.1.

The following topics describe how to port miniport, protocol, and intermediate drivers
to NDIS 6.20 in more detail:

NDIS 6.20 Backward Compatibility
NDIS 6.20 Updates to NDIS 6.1 Features
Obsolete Interfaces in NDIS 6.20
Summary of Changes Required to Port a Miniport Driver to NDIS 6.20
Summary of Changes Required to Port a Protocol Driver to NDIS 6.20
Summary of Changes Required to Port a Filter Driver to NDIS 6.20
Summary of Changes Required to Port an Intermediate Driver to NDIS 6.20

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0

NDIS 6.20 Backward Compatibility
Article • 03/14/2023

NDIS 6.20 adds backward compatibility features to those that apply to NDIS 6.0 drivers.
For information about NDIS 6.0 compatibility issues, see NDIS 6.0 Backward
Compatibility. In addition to the translation features that NDIS 6.0 provides for NDIS 5.x
and earlier drivers, NDIS 6.20 also provides translation for the power management
interface. NDIS 6.20 drivers must support the NDIS 6.20 power management interface.

NDIS 6.20 supports updated versions of the features that were added for NDIS 6.1. For
more information about updates to NDIS 6.1 features, see NDIS 6.20 Support for NDIS
6.1 Features.

Note The NDIS 6.20 interface supports more than 64 processors. Previous NDIS
versions are limited to no more than 64 processors (32 in x86 versions of the operating
system).

To remain backward compatible with older NDIS versions, drivers that have not been
updated to support more than 64 processors default to processor group zero. For more
information about processor groups, see the Kernel-Mode Driver Architecture Design
documentation for processor groups.

Some NDIS 6.1 and earlier functions are obsolete and cannot be used with NDIS 6.20
drivers. See the requirements section of the reference page for a particular function to
determine its NDIS version compatibility. For a list of obsolete interfaces, see Obsolete
Interfaces in NDIS 6.20.

The TCP/IP protocol driver that ships with Windows 7 has been updated to NDIS 6.20.
The TCP/IP protocol driver is backward compatible with NDIS 6.1 and earlier drivers in
the driver stack. However, to obtain the best performance on the Windows 7 driver
stack, all drivers should be updated to NDIS 6.20.

NDIS 5.x and earlier NDIS drivers are deprecated in Microsoft Windows versions after
Windows 7. No new NDIS 5.x drivers will be WHQL certified. All new drivers should be
NDIS 6.0 or later drivers.

IrDA miniport drivers will not be supported in Microsoft Windows versions after
Windows 7.

IPsec task offload version 1 will not be supported in Microsoft Windows versions after
Windows 7. All drivers that support IPsec task offload should be updated to support
IPsec task offload version 2.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-6-0-backward-compatibility

Filter intermediate drivers will not be supported in Microsoft Windows versions after
Windows 7. You should use the NDIS 6.0 filter drivers interface. For more information
about filter drivers, see NDIS Filter Drivers.

802.11 drivers that emulate 802.3 will not be supported in Microsoft Windows versions
after Windows 7. NDIS 802.11 drivers must support the native 802.11 interface. For more
information about native 802.11, see Native 802.11 Wireless LAN.

NDIS WAN drivers will not be supported in Microsoft Windows versions after Windows
7. NDIS WAN drivers must be ported to the NDIS 6.0 CoNDIS WAN driver model. For
more information about CoNDIS WAN, see WAN Miniport Drivers.

ATM and Token Ring drivers will not be supported in Microsoft Windows versions after
Windows 7.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560689(v=vs.85)

NDIS 6.20 Updates to NDIS 6.1 Features
Article • 03/14/2023

NDIS 6.1 added the following interfaces to NDIS 6.0:

Header-Data Split

Direct OID Requests

IPsec Task Offload Version 2

NetDMA 1.1 and 2.0

For more information about NDIS 6.1, see Introduction to NDIS 6.1.

NDIS 6.1 also includes updates to support MSI-X dynamic configuration for receive side
scaling (RSS). For more information about NDIS 6.1 changes in RSS, see NDIS MSI-X. RSS
is updated in NDIS 6.20 to provide support for more than 64 processors.

The direct OID request interface is optional for NDIS 6.1 drivers but it is mandatory for
NDIS 6.20 miniport drivers.

After NDIS 6.20 IPsec task offload version 1 will not be supported. All drivers that
support IPsec task offload should be updated to support IPsec task offload version 2.

NetDMA 1.1 and 2.0 were introduced with NDIS 6.1. NetDMA 2.1 is introduced with
NDIS 6.20 to provide support for more than 64 processors.

Obsolete Interfaces in NDIS 6.20
Article • 03/14/2023

Some NDIS 6.1 application interface elements are obsolete for NDIS 6.20 drivers.

The following table lists NDIS 6.1 interface elements and their NDIS 6.20 replacements.

Obsolete interface Use instead

LOCK_STATE LOCK_STATE_EX

NDIS_CURRENT_PROCESSOR_NUMBER NdisCurrentProcessorIndex

NDIS_MAX_PROCESSOR_COUNT(constant) NdisGroupMaxProcessorCount

NDIS_RW_LOCK NDIS_RW_LOCK_EX

MAXIMUM_PROCESSORS(constant) NdisGroupMaxProcessorCount

NdisSystemProcessorCount NdisGroupMaxProcessorCount

NdisSystemActiveProcessorCount NdisGroupActiveProcessorCount

NdisGetProcessorInformation NdisGetProcessorInformationEx

NdisMQueueDpc NdisMQueueDpcEx

Do not use the TargetProcessors parameter of
MINIPORT_ISR_HANDLER (MiniportInterrupt)

NdisMQueueDpcEx

Do not use the TargetProcessors parameter of
MINIPORT_MSI_ISR_HANDLER (
MiniportMessageInterrupt)

NdisMQueueDpcEx

NDIS_NBL_MEDIA_SPECIFIC_INFORMATION NDIS_NBL_MEDIA_SPECIFIC_INFORMATION_EX

OID_GEN_PHYSICAL_MEDIUM OID_GEN_PHYSICAL_MEDIUM_EX

OID_PNP_ADD_WAKE_UP_PATTERN OID_PM_ADD_WOL_PATTERN

OID_PNP_CAPABILITIES OID_PM_CURRENT_CAPABILITIES

OID_PNP_ENABLE_WAKE_UP OID_PM_PARAMETERS

OID_PNP_REMOVE_WAKE_UP_PATTERN OID_PM_REMOVE_WOL_PATTERN

OID_PNP_WAKE_UP_PATTERN_LIST OID_PM_WOL_PATTERN_LIST

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_lock_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_lock_state_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/ndis-current-processor-number
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscurrentprocessorindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgroupmaxprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_rw_lock
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff567279(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgroupmaxprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissystemprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgroupmaxprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissystemactiveprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgroupactiveprocessorcount
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetprocessorinformation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetprocessorinformationex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpcex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpcex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpcex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_nbl_media_media_specific_information
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_nbl_media_specific_information_ex

Summary of Changes Required to Port a
Miniport Driver to NDIS 6.20
Article • 03/14/2023

This topic summarizes the changes that are required to port an NDIS 6.x miniport driver
to NDIS 6.20.

NDIS 6.20 retains backward compatibility with earlier NDIS versions. For more
information about backward compatibility, see NDIS 6.20 Backward Compatibility.

To update a miniport driver to support the NDIS 6.20 environment, you must modify the
NDIS 6.x miniport driver as follows:

Build Environment
Replace the preprocessor definition NDIS60_MINIPORT_DRIVER or
NDIS61_MINIPORT_DRIVER with NDIS620_MINIPORT_DRIVER.

General Porting Requirements

Replace obsolete interfaces with NDIS 6.20 versions. For more information about
obsolete interfaces, see Obsolete Interfaces in NDIS 6.20.

Update the following interfaces to support more than 64 processors:
Receive side scaling (RSS)
Processor information device driver interfaces
Resource allocation
Read and write locks

For more information about supporting more than 64 processors, see Support for
More than 64 Processors in NDIS 6.20.

Driver Initialization

Set the NDIS version to 6.20 in the MajorNdisVersion and MinorNdisVersion
members of the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure, which is
passed to the NdisMRegisterMiniportDriver function.

Set the miniport driver version in the MajorDriverVersion and MinorDriverVersion
members of the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure to an
appropriate driver-specific value.

Define direct OID request entry points in the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure. Support for the direct OID

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver

request interface was optional for NDIS 6.1 drivers but it is mandatory for NDIS
6.20 drivers. For more information about the miniport driver direct OID request
interface, see Miniport Adapter OID Requests.

Miniport Adapter Initialization

Use the latest version of the miniport adapter capabilities advertisement interfaces.
The following interfaces have updated capabilities:

Power Management
Receive side scaling (RSS)
Hardware assist (VMQ)

Use the updated versions of these structures:
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
NDIS_RESTART_GENERAL_ATTRIBUTES
NDIS_RECEIVE_SCALE_PARAMETERS
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

For information about NDIS structure version information, see Specifying NDIS
Version Information.

Send and Receive Code Paths

NDIS 6.20 drivers must support receive-side throttle (RST) in processing receive
interrupts. The ReceiveThrottleParameters parameters of the MiniportInterruptDPC
and MiniportMessageInterruptDPC DPC handler functions point to an
NDIS_RECEIVE_THROTTLE_PARAMETERS structure. On entry to the deferred
procedure call (DPC) handler, the MaxNblsToIndicate member of the
NDIS_RECEIVE_THROTTLE_PARAMETERS structure specifies the maximum number
of NET_BUFFER_LIST structures that the miniport driver should indicate in the DPC.
For more information about RST, see Receive Side Throttle in NDIS 6.20.

Use the updated version of the NET_BUFFER structure.

Optionally support the virtual machine queue (VMQ) interface. For more
information about VMQ, see Virtual Machine Queue (VMQ) in NDIS 6.20.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_throttle_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Summary of Changes Required to Port a
Protocol Driver to NDIS 6.20
Article • 03/14/2023

This topic summarizes the changes that are required to port an NDIS 6.x protocol driver
to NDIS 6.20.

NDIS 6.20 retains backward compatibility with earlier NDIS versions. For more
information about backward compatibility, see NDIS 6.20 Backward Compatibility.

To update a protocol driver to support the NDIS 6.20 environment, you must modify the
NDIS 6.x protocol driver as follows:

Build Environment
Replace the preprocessor definition NDIS61 or NDIS60 with NDIS620.

General Porting Requirements

Replace obsolete interfaces with NDIS 6.20 versions. For more information about
obsolete interfaces, see Obsolete Interfaces in NDIS 6.20.

Update the following interfaces to support more than 64 processors:
Receive side scaling (RSS)
Processor information device driver interfaces
Resource allocation
Read and write locks

For more information about supporting more than 64 processors, see Support for
More than 64 Processors in NDIS 6.20.

Driver Initialization

Set the NDIS version to 6.20 in the MajorNdisVersion and MinorNdisVersion
members of the NDIS_PROTOCOL_DRIVER_CHARACTERISTICS structure that is
passed to the NdisRegisterProtocolDriver function.

Set the protocol driver version in the MajorDriverVersion and MinorDriverVersion
members of the NDIS_PROTOCOL_DRIVER_CHARACTERISTICS structure to an
appropriate driver-specific value.

Protocol Bind and Unbind Operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver

Use the latest version of the miniport adapter capabilities advertisement interfaces.
The following interfaces have updated capabilities:

Power Management
Power Management
Receive side scaling (RSS)
Hardware assist (VMQ)

Use the updated versions of these structures:
NDIS_BIND_PARAMETERS
NDIS_OFFLOAD_PARAMETERS

For information about NDIS structure version information, see Specifying NDIS
Version Information.

Send and Receive Data Paths

Use the updated version of the NET_BUFFER structure.

Optionally support the virtual machine queue (VMQ) interface. For more
information about VMQ, see Virtual Machine Queue (VMQ) in NDIS 6.20.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Summary of Changes Required to Port a
Filter Driver to NDIS 6.20
Article • 03/14/2023

This topic summarizes the changes that are required to port an NDIS 6.x filter driver to
NDIS 6.20.

NDIS 6.20 retains backward compatibility with earlier NDIS versions. For more
information about backward compatibility, see NDIS 6.20 Backward Compatibility.

To update a filter driver to support the NDIS 6.20 environment, you must modify the
NDIS 6.x filter driver as follows:

Build Environment
Replace the preprocessor definition NDIS61 or NDIS60 with NDIS620.

General Porting Requirements

Replace obsolete interfaces with NDIS 6.20 versions. For more information about
obsolete interfaces, see Obsolete Interfaces in NDIS 6.20.

Update the following interfaces to support more than 64 processors:
Receive side scaling (RSS)
Processor information device driver interfaces
Resource allocation
Read and write locks

For more information about supporting more than 64 processors, see Support for
More than 64 Processors in NDIS 6.20.

Driver Initialization

Set the NDIS version to 6.20 in the MajorNdisVersion and MinorNdisVersion
members of the NDIS_FILTER_DRIVER_CHARACTERISTICS structure that is passed
to the NdisFRegisterFilterDriver function.

Set the filter driver version in the MajorDriverVersion and MinorDriverVersion
members of the NDIS_FILTER_DRIVER_CHARACTERISTICS structure to an
appropriate driver-specific value.

Filter Module Attach and Detach Operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver

Use the latest version of the miniport adapter capabilities advertisement interfaces.
The following interfaces have updated capabilities:

Power Management
Receive-side scaling (RSS)
Hardware assist (VMQ)

Use the updated versions of these structures:
NDIS_FILTER_ATTACH_PARAMETERS
NDIS_OFFLOAD_PARAMETERS

For information about NDIS structure version information, see Specifying NDIS
Version Information.

Send and Receive Data Paths

Use the updated version of the NET_BUFFER structure.

Optionally support the virtual machine queue (VMQ) interface. For more
information about VMQ, see Virtual Machine Queue (VMQ) in NDIS 6.20.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Summary of Changes Required to Port
an Intermediate Driver to NDIS 6.20
Article • 03/14/2023

This topic summarizes the changes that are required to port an NDIS 6.x intermediate
driver to NDIS 6.20.

To update an intermediate driver to support the NDIS 6.20 environment, you must
modify the NDIS 6.x intermediate driver as follows:

Build Environment

Replace the preprocessor definition NDIS60_MINIPORT_DRIVER or
NDIS61_MINIPORT_DRIVER with NDIS620_MINIPORT_DRIVER.

Replace the preprocessor definition NDIS61 or NDIS60 with NDIS620.

General Porting Requirements

Except where noted otherwise, protocol driver and miniport driver changes also
apply to intermediate drivers. For more information about porting these drivers,
see the protocol driver porting summary at Summary of Changes Required to Port
a Protocol Driver to NDIS 6.20 and the miniport driver porting summary at
Summary of Changes Required to Port a Miniport Driver to NDIS 6.20.

NDIS 5.x filter intermediate drivers will not be supported in Microsoft Windows
versions after Windows 7. You should use the NDIS filter drivers interface for all
filter drivers. For more information about NDIS filter drivers, see Summary of
Changes Required to Port a Filter Driver to NDIS 6.20.

Roadmap for Developing NDIS Miniport
Drivers
Article • 03/14/2023

To create a Network Driver Interface Specification (NDIS) miniport driver package, follow
these steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about NDIS.

For general information about NDIS and NDIS drivers, see the following topics:

Windows Network Architecture and the OSI Model

Network Driver Programming Considerations

Driver Stack Management

NET_BUFFER Architecture

Step 3: Determine additional Windows driver design decisions.

For more information about how to make additional Windows design decisions,
see Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers,
and Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For more
information about Windows driver build, debug, and test processes, driver signing,
and Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For more information about building, testing, verifying, and debugging
tools, see Driver Development Tools.

Step 5: Read the miniport driver introduction topics:

Types of NDIS Miniport Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/

Network Interface Card Support

Sample NDIS Miniport Drivers

Step 6: Read the writing miniport drivers section.

This section provides an overview of the primary miniport driver interfaces. These
interfaces included functions that miniport drivers provide (MiniportXxx functions)
and NDIS calls to initiate operations. NDIS provides NdisXxx functions that
miniport drivers call to perform NDIS operations.

Step 7: Review the NDIS miniport driver sample in the Windows driver samples
repository on GitHub.

Step 8: (optional reading) Additional considerations for Miniport Drivers.

Additional considerations include topics that expand on the primary interfaces that
are described in the writing miniport drivers section.

Obtaining and Setting Miniport Driver Information and NDIS Support for WMI

NDIS MSI-X

NDIS Scatter/Gather DMA

NDIS Power Management

Plug and Play for NDIS Miniport Drivers

Reset, Halt, and Shutdown Functions

Miniport Driver with a WDM Lower Interface

WAN Miniport Drivers

Scalable Networking

Step 9: Develop (or port), build, test, and debug your NDIS driver.

See the porting guides if you are porting an existing driver:
Porting NDIS 5.x Drivers to NDIS 6.0
Porting NDIS 6.x Drivers to NDIS 6.20
Porting NDIS 6.x Drivers to NDIS 6.30

For more information about iterative building, testing, and debugging, see
Overview of Build, Debug, and Test Process. This process will help ensure that you
build a driver that works.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/netvmini/6x
https://github.com/Microsoft/Windows-driver-samples
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0
https://learn.microsoft.com/en-us/windows-hardware/drivers

Step 10: Create a driver package for your driver.

For more information about how to install drivers, see Providing a Driver Package.
For more information about how to install an NDIS driver, see Components and
Files Used for Network Component Installation and Notify Objects for Network
Components.

Step 11: Sign and distribute your driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Lab Kit (HLK), you
can distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

Deserialized NDIS Miniport Drivers
Article • 03/14/2023

All NDIS 6.0 and later drivers are deserialized.

A deserialized NDIS miniport driver serializes the operation of its own MiniportXxx
functions and queues internally all send requests rather than relying on NDIS to perform
these functions. As a result, a deserialized miniport driver can achieve significantly better
full-duplex performance than a serialized miniport driver.

The deserialized driver model is the default model for NDIS miniport drivers.
Connection-oriented miniport drivers, as well as miniport drivers with a WDM lower
edge, must be deserialized drivers. When writing a new NDIS miniport driver, you
should write a deserialized driver. If possible, you should also port older drivers to NDIS
6.0 or later. For more information about porting drivers, see:

Porting NDIS 5.x Drivers to NDIS 6.0
Porting NDIS 6.x Drivers to NDIS 6.20
Porting NDIS 6.x Drivers to NDIS 6.30

A deserialized miniport driver must meet the following requirements when it interfaces
with NDIS:

A deserialized miniport driver must identify itself as such to NDIS during
initialization.

A deserialized miniport driver must complete all send requests asynchronously. To
complete a send request, connectionless NDIS 6.0 and later miniport drivers call
the NdisMSendNetBufferListsComplete function. Connection-oriented NDIS 6.0
and later miniport drivers call the NdisMCoSendNetBufferListsComplete function.

A deserialized miniport driver that supports NDIS 6.0 or later sets the Status
member of the NET_BUFFER_LIST structure that it will pass to
NdisMSendNetBufferListsComplete.

If a deserialized miniport driver cannot immediately complete send requests, it
cannot return the requests to NDIS for requeuing. Instead, the miniport driver
must queue send requests internally until sufficient resources are available to
transmit the data.

A deserialized miniport driver must not examine the structures that it passes to
NDIS in receive indications until after NDIS returns them. NDIS returns

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0

NET_BUFFER_LIST structures to a miniport driver's MiniportReturnNetBufferLists
function.

A deserialized miniport driver must meet the following driver-internal requirements:

A deserialized miniport driver must protect its network buffer queues with spin
locks. A deserialized miniport driver must also protect its shared state from
simultaneous access by its own MiniportXxx functions.

A deserialized miniport driver's MiniportXxx functions can run at IRQL <=
DISPATCH_LEVEL. Consequently, the driver writer cannot assume that MiniportXxx
functions will be called in the sequence in which they process requests. One
MiniportXxx function can preempt another MiniportXxx function that is running at a
lower IRQL.

A deserialized miniport driver is responsible for network buffer-queue
management. When the miniport driver experiences a resource problem, it cannot
return send requests to NDIS for requeuing. Instead, the miniport driver must
queue internally all send requests until sufficient resources are available to send
the data.

A deserialized miniport driver should complete send requests in the protocol-
determined order.

For more information about send and receive requirements for NDIS drivers, see Send
and Receive Operations.

Note that a deserialized miniport driver usually completes send requests in protocol-
determined order. However, a miniport driver that supports packet priority (for example,
IEEE 802.1p) can reorder send requests based on priority information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/introduction-to-spin-locks

Serialized NDIS Miniport Drivers
Article • 03/14/2023

Serialized NDIS miniport drivers are obsolete for Windows Vista and later versions.
Serialized miniport drivers are not supported for NDIS 6.0 drivers. Windows Vista
supports serialized miniport drivers only for NDIS 5.1 and earlier drivers. Unlike
deserialized miniport drivers, a serialized miniport driver relies on NDIS to serialize the
operation of its own MiniportXxx functions and to manage the queue for sending
network data packets.

If you are writing a new miniport driver, you should write a deserialized driver. If
possible, you should also port older drivers to NDIS 6.0 or later. For more information
about porting drivers to NDIS 6.0, see Porting NDIS 5.x Drivers to NDIS 6.0.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0

Connection-Oriented NDIS Miniport
Drivers
Article • 03/14/2023

A connection-oriented miniport driver controls one or more miniport adapters for
connection-oriented media. Connection-oriented miniport drivers must be deserialized.
For more information about deserialized drivers, see Deserialized NDIS Miniport Drivers.

A connection-oriented miniport driver provides an interface between connection-
oriented protocol drivers (connection-oriented clients and call managers) and NIC
hardware (for example, physical miniport adapters). For a summary of connection-
oriented operations performed by a connection-oriented miniport driver, see
Connection-Oriented Operations Performed by Miniport Drivers.

A connection-oriented miniport driver must register the following MiniportXxx functions
that are specific to connection-oriented operations:

MiniportCoCreateVc

MiniportCoDeleteVc

MiniportCoActivateVc

MiniportCoDeactivateVc

MiniportCoSendNetBufferLists

MiniportCoOidRequest

For more information about registering these functions, see
NdisMRegisterMiniportDriver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_delete_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_activate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_deactivate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver

NDIS Miniport Drivers with a WDM
Lower Edge
Article • 03/14/2023

You can write an NDIS miniport driver that controls a device on a bus — for example,
the Universal Serial Bus (USB) or the IEEE 1394 (firewire) bus. Such a miniport driver must
expose a standard NDIS miniport driver interface at its upper edge and use the class
interface for the particular bus at its lower edge. The miniport driver communicates with
devices that are attached to the bus by sending I/O request packets (IRPs) to the bus
through its Microsoft Windows Driver Model (WDM) lower interface.

A miniport driver with a WDM lower edge must be deserialized. For more information
about deserialized drivers, see Deserialized NDIS Miniport Drivers.

For more information about miniport drivers with a WDM lower edge, see Miniport
Drivers with a WDM Lower Interface.

Network Interface Card Support
Article • 12/15/2021

This topic describes the types of Network Interface Cards (NICs) that an NDIS miniport
driver can manage, as well as how the different kinds of NICs affect the way a driver
transfers network data.

To report a medium type for a NIC, a miniport driver passes a pointer to an
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure in the MiniportAttributes
parameter of the NdisMSetMiniportAttributes function. A miniport driver calls
NdisMSetMiniportAttributes from its MiniportInitializeEx function during initialization.
Miniport drivers should set the MiniportAttributes attributes after setting the registration
attributes in the NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure and
before setting any other attributes. Setting the MiniportAttributes attributes is
mandatory. The driver sets the MediaType member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure to the appropriate media
type when setting the MiniportAttributes attributes.

When an overlying NDIS protocol driver calls NdisOpenAdapterEx to bind to a specified
miniport adapter, it provides a list of medium types on which it can operate. NDIS uses
the information from the miniport driver and from the protocol driver to set up a
binding. This binding provides the path for transferring network data up and down the
driver stack.

The steps that a miniport driver completes to initialize a miniport adapter and to send
and receive network data can depend on the features of a physical device, as follows.

NDIS-WDM NICs

With NDIS-WDM NICs, such as USB-based NICs, the way the miniport driver
manages memory with DMA does not matter to NDIS and is not visible to it.

Bus-master DMA NICs

These NICs can directly access host memory through an on-board DMA controller
that manages the transfer of data between the network and host memory without
using the host CPU.

Reporting a NIC's medium type to NDIS

Physical NICs

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

To send, the miniport driver sets up the NIC to map the outgoing buffers. The
miniport driver then causes the device to start its transfer from this memory. The
NIC DMA controller transfers the data from shared system memory onto the
network and interrupts the CPU when the send is complete. To receive, the DMA
controller transfers incoming data to host memory before notifying the host with
an interrupt.

A bus-master DMA NIC typically has an onboard ring buffer that the miniport
driver maps to a set of buffers in system memory. Typically, the NIC can be
programmed to efficiently handle several packets. A miniport driver that manages
such a NIC typically supports multipacket sends and receives because the NIC can
efficiently handle several packets and thereby improve its I/O throughput.

Nonbusmaster DMA NICs

Currently, nonbusmaster DMA NICs include the following:

System DMA NICs

A miniport driver that manages such a NIC uses the system DMA controller to
manage the transfer of packet data to and from the network. Transfer of the
data requires the cooperation of the host CPU.

In a virtual machine, NDIS miniport drivers can manage either software-only resources
as a virtual miniport, or they can manage a virtual NIC that represents hardware
resources. The following table explains the differences between a virtual miniport and a
virtual NIC.

Attribute Virtual miniport Virtual NIC

Definition An NDIS miniport
driver that maps to a
software-enumerated
PnP device.

A NIC managed by the host OS hypervisor. The hypervisor
makes the virtual machine think that it has some hardware,
but no such hardware actually exists in the physical world.

Has
interrupts

No Yes

Can use
DMA

No Yes

Virtual NICs and miniports

Attribute Virtual miniport Virtual NIC

Is created
or
destroyed
by...

The guest OS The host OS

Can reach
outside
of a guest
VM

No Yes

MiniportXxx Functions
Article • 12/15/2021

The typical miniport driver uses a small number of functions to communicate through
NDIS with the upper layers and hardware. Not all of these functions are required. For
more information about which functions are optional, which are required, and why, see
Initializing a Miniport Driver.

NDIS miniport drivers and upper-layer drivers use the NDIS Library (Ndis.sys) to
communicate with each other through calls to NdisXxx functions.

Many miniport driver functions can operate either synchronously or asynchronously. The
asynchronous functions have NdisXxxComplete functions that must be called when an
operation is finished. For example, if a protocol driver calls NdisOidRequest to query
miniport driver information, the miniport driver's MiniportOidRequest function can pend
the reset operation by returning NDIS_STATUS_PENDING. Eventually, the miniport driver
must call NdisMOidRequestComplete to indicate the final status of the query request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

Linking to the NDIS Library
Article • 03/14/2023

The NDIS Library is packaged in Ndis.sys, a kernel-mode export library, as a set of
functions, with emphasis on macros for maximum performance. (An export library is a
.sys file that functions similarly to a dynamic-link library.) All NDIS drivers link themselves
to the NDIS Library. The NDIS Library functions are described in the Network Reference
sections of the Microsoft Windows Driver Kit (WDK) documentation.

The WDK provides Ndis.h as the main header file for miniport drivers. This file defines
the entry points for the miniport driver, the NDIS Library functions, and common data
structures. The Network Reference section describes the miniport driver, protocol driver,
and NdisXxx functions and the common data structures and OIDs.

Miniport Adapter Context
Article • 12/15/2021

NDIS uses a software object called a miniport adapter to represent each virtual or
physical network device in the system. This object is maintained by NDIS and is opaque
to the miniport driver and to protocol drivers. NDIS passes a handle to this structure to
the miniport driver's MiniportInitializeEx function. The miniport driver subsequently
supplies this handle in all calls to NdisXxx functions that pertain to the miniport adapter
that the handle specifies.

When a miniport driver is called to initialize a miniport adapter that it manages, it
creates its own internal data structure to represent the miniport adapter. The driver uses
this structure, referred to as the miniport adapter context, to maintain device-specific
state information that the driver needs to manage the miniport adapter. The driver
passes a handle to this structure to NDIS. For more information about specifying the
miniport adapter context, see Initializing an Adapter.

When NDIS calls one of the miniport driver's MiniportXxx functions that pertains to a
miniport adapter, NDIS passes the miniport adapter context to identify the correct
miniport adapter to the driver. The miniport adapter context is owned and maintained
by the miniport driver and is opaque to NDIS and to protocol drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Virtual Connection Context
Article • 12/15/2021

Before making a call, a connection-oriented client requests a connection-oriented
miniport driver to set up a virtual connection (VC) over which packets can be
transmitted or received. Similarly, before indicating an incoming call to a connection-
oriented client, a call manager or integrated miniport call manager (MCM) driver
requests the miniport driver to set up a VC for the incoming call.

A VC is a logical connection between two connection-oriented entities. Connection-
oriented transmissions and receptions always occur on a specific VC.

A connection-oriented miniport driver maintains state information in a miniport driver-
allocated context area about each VC that it sets up. This per-VC context is maintained
by the miniport driver and is opaque to NDIS and to protocol drivers. In its
MiniportCoCreateVc function, a connection-oriented miniport driver passes a handle to
the VC context area to NDIS, and NDIS passes an NdisVcHandle that uniquely identifies
the created VC back to the miniport driver, to the appropriate connection-oriented
client, and to the call manager or integrated miniport call manager (MCM) driver.

Before data can be sent or received on a VC, the VC must be activated. The call manager
initiates activation of the VC by calling Ndis(M)CmActivateVc and passing call
parameters that include the characteristics of the VC to be activated. In response to this
call, NDIS calls the miniport driver's MiniportCoActivateVc function, which activates the
VC.

After a call is complete or a VC is otherwise not needed, the call manager can deactivate
the VC by calling Ndis(M)CmDeactivateVc, which causes NDIS to call the miniport
driver's MiniportCoDeactivateVc function. Either the connection-oriented client or the
call manager can initiate the deletion of the VC by calling NdisCoDeleteVc, which causes
NDIS to call the miniport driver's MiniportCoDeleteVc function.

For more information about miniport driver operations on VCs, see Operations on VCs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_activate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_deactivate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_delete_vc

Debugger 2PF KDNET Support
Article • 08/23/2023

This topic describes how to enable your miniport NDIS driver for 2PF debugger support
to allow increased performance for high speed adapters, often used in data centers. This
feature is available in Windows 11 and later.

When enabling kernel debugging on a NIC, the kernel debugging support takes over
the physical device to provide both a kernel debugging and network connection on the
box. This works fine on consumer low bandwidth NICs (1-10 Gbps), but on high
throughput devices that support 10-40+ Gbps the kernel debugging extensibility
modules that talk to the hardware generally cannot keep up with the amount of traffic
that comes from Windows networking stack, so this degradates overall system
performance.

Using the PCI multiple Physical Function (PF) feature for KDNET allows for debugging to
be enabled with almost no performance impact.

The Physical Function (PF) is a PCI Express (PCIe) function of a network adapter that
supports the single root I/O virtualization (SR-IOV) interface. The PF includes the SR-IOV
Extended Capability in the PCIe Configuration space. The capability is used to configure
and manage the SR-IOV functionality of the network adapter, such as enabling
virtualization and exposing PCIe Virtual Functions (VFs).

The PF supports the SR-IOV Extended Capability structure in its PCIe configuration
space. This structure is defined in the PCI-SIG Single Root I/O Virtualization and Sharing
1.1 specification .

The debugger transport will take advantage of multiple or 2PF enabled miniport drivers.
To allow debugging of systems of high speed servers, it is recommended that NIC
vendors enable 2PF in all NICs that support multiple PF in the the network card
firmware.

For information on configuring 2PF support to test a connection, see Setting Up 2PF
Kernel-Mode Debugging using KDNET.

The Multiple PF (2PF) functionality is to add/assign a new PF to the original PCI
network port (e.g. Bus.dev.fun0.0).

Multiple PF KDNET architecture overview

https://pcisig.com/specifications/iov/single_root/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-kernel-mode-debugging-using-2pf

The new added PF (e.g. bus.dev.fun0.1) is used only by KDNET to route Debugger
packets to/from the target.

The original PF will be used by the Windows inbox NIC driver to route the
Windows networking packets (TCP/IP) .

Using this approach both drivers can work in parallel w/o interfering with each
other work.

Both drivers will run over the partitioned PCI configuration space

Windows Inbox driver will run out of the original network port at bus.dev.fun0.0

KDNET-KDNET-Ext. module will run out of the added PF at bus.dev.fun0.1, This
way ensures that the Windows inbox NIC driver does not get impacted by
sharing the NIC with KDNET.

The kdnet.exe user mode tool configures the 2PF feature using the Windows inbox
driver by adding specific IOCTL codes to add/remove KDNET PF.

1. The KDNET 2PF feature needs to work for all current KD scenarios whether it is the
pre-NT OS (e.g. Boot Manager, OS loader, WinResume, Hyper-V, SK, etc.), NT OS,
or Windows Desktop.

2. Rebooting the system will be required when adding a new PF for a device results in
a change needed to the BCD configuration for debugging settings. This means that
the configuration for an additional PF must be persistent across boots.

3. The KDNET 2PF should be used only by the debugger to ensure that there is not
any other Windows/UEFI ethernet driver accessing/running from the PCI 2PF
location when the debugger owns the debug device (the 2PF location is
configured using dbgsettings::busparams).

Multiple PFs feature design requirements

4. Windows or UEFI Ethernet drivers cannot run out of the added KDNET 2PF even
when KDNET is not enabled in the system.

5. The 2PF feature should support a dynamic mechanism for adding/enabling and
removing/disabling the functionality on the current NIC.

6. The Windows miniport drivers will implement the 2PF feature via servicing the
following NDIS OIDs.

OID Name Description

OID_KDNET_ENUMERATE_PFS Enumerates PFs on the current bus.dev.fun (BDF), where
the miniport driver is running.

OID_KDNET_ADD_PF Adds a PF to the current BDF, where the miniport driver
is running.

OID_KDNET_REMOVE_PF Removes the added PF, from the passed in BDF.

OID_KDNET_QUERY_PF_INFORMATION Queries PF information data from the passed in BDF.

The OIDs and their structures are defined in ntddndis.h and kdnetpf.h files that are
released with the public WDK.

See the details below on Input/Output parameters for each OID and the information
provided in the kdnetpf.h header file.

7. KDNET should be configured via the KDNET 2PF feature on NICS where multiple PF
feature is available, and the NIC enables 2PF functionality by following all of the
requirements described above.

To support the KDNET Multiple PF Interface Miniport drivers will need to implement the
handling of the following four NDIS OIDs.

OID_KDNET_ENUMERATE_PFS

OID_KDNET_ADD_PF

OID_KDNET_REMOVE_PF

OID_KDNET_QUERY_PF_INFORMATION

KDNET Multiple PF Interface for Windows NIC
Drivers

These OIDs and structures are populated in the ntddndis.h and kdnetpf.h files in the
public WDK release on this path:

<WDK root directory>\ddk\inc\ndis

These files also are available in the Windows SDK, and can be found in this directory.

\Program Files (x86)\Windows Kits\10\Include\<Version for example

10.0.21301.0>\shared

The client tool (kdnet.exe) uses a private NDIS IOCTL to route the KDNET 2PF NDIS OIDs
to the miniport drivers.

The Multiple PF feature is operated by using these four NDIS OIDs.

OID_KDNET_ENUMERATE_PFS returns a list of all BDFs associated to the given
primary port from where the miniport driver is running from. The port is
represented by the bus.dev.fun (BDF). The operation will list/enumerate the list of
PFs that are associated only to the bus.dev.fun (BDF port) from where the miniport
driver is running on the system, since every miniport driver can determine its BDF
location.

The list of PFs will be returned to the client via a NDIS Query operation.

The OID_KDNET_ENUMERATE_PFS OID is associated with the
NDIS_KDNET_ENUMERATE_PFS structure.

The OID_KDNET_ENUMERATE_PFS driver handler will return a buffer containing
the PFs list with each PF element described by the type
NDIS_KDNET_PF_ENUM_ELEMENT.

The PfNumber field contains the PF Function Number, (e.g. bus.dev.fun)

The PfState field contains the PF state possible values- each element type
described by NDIS_KDNET_PF_STATE enum.

NDIS_KDNET_PF_STATE::NdisKdNetPfStatePrimary - This is a primary PF and it's
usually used only by the miniport driver.

The Multiple PF feature NDIS OIDs

1. Enumerate PFs on the miniport BDF primary port using OID:
OID_KDNET_ENUMERATE_PFS, see definition below.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ns-kdnetpf-ndis_kdnet_enumerate_pfs
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ns-kdnetpf-ndis_kdnet_pf_enum_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ne-kdnetpf-ndis_kdnet_pf_state

NDIS_KDNET_PF_STATE::NdisKdnetPfStateEnabled - This is an added secondary
PF, that is used by KDNET.

NDIS_KDNET_PF_STATE::NdisKdnetPfStateConfigured - This is an added PF, but it
is only added/configured and is not used.

If the PF list output buffer size is not large enough to allocate the actual PFs list,
then the OID handler needs to return E_NOT_SUFFICIENT_BUFFER error return value,
together with the required buffer size, so the client tool can allocate the required
size buffer, and then the client can make another call with the correct buffer size
allocated. In addition, the that the OID request status field (described by
NDIS_IOCTL_OID_REQUEST_INFO.status) should be set to equal to
NDIS_STATUS_BUFFER_TOO_SHORT .

Add a PF to the miniport primary port. The port is represented by the BDF.

The newly added PF will be returned to the client via a NDIS Query operation.

The OID_KDNET_ADD_PF OID is associated with the NDIS_KDNET_ADD_PF
structure.

The OID_KDNET_ADD_PF driver handler will return an ULONG containing the
added PF function number.

This OID request will have only one Output parameter: AddedFunctionNumber . The
AddedFunctionNumber indicates the added Function number value at the miniport
PCI location (the BDF miniport). The kdnet.exe utility will receive this value and
setup dbgsettings::busparams to points to the added PF.

Remove a PF from the given port. The port is represented by the BDF.

2. Add PCI PF to the miniport BDF primary port (OID:
OID_KDNET_ADD_PF, see definition below)

７ Note

The added PF can be used exclusively by KDNET, so Windows NIC drivers are
rigged to expressly *NOT* run on an added PF, so this also applies when KDNET is
NOT enabled on the system and the PF has been added to the port.

3. Remove PCI PF (OID: OID_KDNET_REMOVE_PF, see definition
below)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ns-kdnetpf-ndis_kdnet_add_pf

The OID_KDNET_REMOVE_PF OID is associated with the NDIS_KDNET_REMOVE_PF
structure.

The OID_KDNET_REMOVE_PF OID has an input BDF port and returns an ULONG
containing the removed PF function number via a NDIS Method operation.

This function will succeed only on the PFs that has been added via using the
OID_KDNET_ADD_PF OID.

This OID request will have the input BDF port from where needs to be removed the
BDF. This function has an Output parameter of FunctionNumber . The output
FunctionNumber will contain the removed Function number value.

This OID code allows querying specific PF data on a given port. The port is
represented by the BDF.

The requested PF information will be returned to the client via a NDIS Method
operation.

The OID_KDNET_QUERY_PF_INFORMATION OID is associated with the
NDIS_KDNET_QUERY_PF_INFORMATION structure.

The OID_KDNET_QUERY_PF_INFORMATION OID has an input BDF port and
returns a buffer containing the following data:

MAC Address: Network address of the assigned new KDNET PF if there is any.

Usage Tag: Describes the entity that owns the PF port. It contains a constant
value described by NDIS_KDNET_PF_USAGE_TAG enum.

Maximum Number of PFs: Contains an ULONG with the maximum number of
PFs that can be added to the given BDF.

Device ID: Contains the device ID associated to the given BDF port. This is
required for cases where the NIC FW assigns a new device ID to the new added
KDNET PF port.

This OID requests the information for any passed in BDF port (BDF is an input
parameter for this operation), so it’s not necessarily related to the current BDF from
where the driver is running from.

4. Query PCI PF information (OID:
OID_KDNET_QUERY_PF_INFORMATION, see definition below)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ns-kdnetpf-ndis_kdnet_remove_pf
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ns-kdnetpf-ndis_kdnet_query_pf_information
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/ne-kdnetpf-ndis_kdnet_pf_usage_tag

Ntddndis.h file defines the OIDs.

C++

Kdnetpf.h file describes the type and structures associated with the NDIS OIDs.

C++

NDIS OIDs for KDNET on 2PF

#if (NDIS_SUPPORT_NDIS686)

 //

 // Optional OIDs to handle network multiple PF feature.

 //
#define OID_KDNET_ENUMERATE_PFS 0x00020222
#define OID_KDNET_ADD_PF 0x00020223
#define OID_KDNET_REMOVE_PF 0x00020224
#define OID_KDNET_QUERY_PF_INFORMATION 0x00020225
#endif // (NDIS_SUPPORT_NDIS686)

#if (NDIS_SUPPORT_NDIS686)

 //
 // Used to query/add/remove Physical function on a network port.
 // These structures are used by these OIDs:
 // OID_KDNET_ENUMERATE_PFS
 // OID_KDNET_ADD_PF
 // OID_KDNET_REMOVE_PF
 // OID_KDNET_QUERY_PF_INFORMATION
 // These OIDs handle PFs that are primary intended to be used by KDNET.
 //
 //
 // PCI location of the port to query
 //
 typedef struct _NDIS_KDNET_BDF
 {
 ULONG SegmentNumber;
 ULONG BusNumber;
 ULONG DeviceNumber;
 ULONG FunctionNumber;
 ULONG Reserved;
 } NDIS_KDNET_BDF, *PNDIS_KDNET_PCI_BDF;

 //
 // PF supported states.
 //
 typedef enum _NDIS_KDNET_PF_STATE
 {
 NdisKdNetPfStatePrimary = 0x0,

 NdisKdnetPfStateEnabled = 0x1,
 NdisKdnetPfStateConfigured = 0x2,
 } NDIS_KDNET_PF_STATE,*PNDIS_KDNET_PF_STATE;

 //
 // PF Usage Tag
 // Used to indicate the entity that owns the PF.
 // Used by the query NdisKdnetQueryUsageTag.
 //
 typedef enum _NDIS_KDNET_PF_USAGE_TAG
 {
 NdisKdnetPfUsageUnknown = 0x0,
 NdisKdnetPfUsageKdModule = 0x1,
 } NDIS_KDNET_PF_USAGE_TAG,*PNDIS_KDNET_PF_USAGE_TAG;

 //
 // PF element array structure
 //
 typedef struct _NDIS_KDNET_PF_ENUM_ELEMENT
 {
 NDIS_OBJECT_HEADER Header;

 //
 // PF value (e.g. if <bus.dev.fun>, then PF value = fun)
 //
 ULONG PfNumber;

 //
 // The PF state value (defined by NDIS_KDNET_PF_STATE)
 //
 NDIS_KDNET_PF_STATE PfState;

 } NDIS_KDNET_PF_ENUM_ELEMENT, *PNDIS_KDNET_PF_ENUM_ELEMENT;
#define NDIS_KDNET_PF_ENUM_ELEMENT_REVISION_1 1
#define NDIS_SIZEOF_KDNET_PF_ENUM_ELEMENT_REVISION_1 \
 RTL_SIZEOF_THROUGH_FIELD(NDIS_KDNET_PF_ENUM_ELEMENT, PfState)

 //
 // This structure describes the data required to enumerate the list of PF
 // Used by OID_KDNET_ENUMERATE_PFS.
 //
 typedef struct _NDIS_KDNET_ENUMERATE_PFS
 {
 NDIS_OBJECT_HEADER Header;

 //
 // The size of each element is the sizeof(NDIS_KDNET_PF_ENUM_ELEMENT)
 //
 ULONG ElementSize;

 //
 // The number of elements in the returned array
 //
 ULONG NumberOfElements;

 //
 // Offset value to the first element of the returned array.
 // Each array element is defined by NDIS_KDNET_PF_ENUM_ELEMENT.
 //
 ULONG OffsetToFirstElement;
 } NDIS_KDNET_ENUMERATE_PFS, *PNDIS_KDNET_ENUMERATE_PFS;

#define NDIS_KDNET_ENUMERATE_PFS_REVISION_1 1
#define NDIS_SIZEOF_KDNET_ENUMERATE_PFS_REVISION_1 \
 RTL_SIZEOF_THROUGH_FIELD(NDIS_KDNET_ENUMERATE_PFS,
 OffsetToFirstElement)

 //
 // This structure indicates the data required to add a PF to the BDF port.
 // Used by OID_KDNET_ADD_PF.
 //
 typedef struct _NDIS_KDNET_ADD_PF
 {
 NDIS_OBJECT_HEADER Header;

 //
 // One element containing the added PF port number
 //
 ULONG AddedFunctionNumber;
 } NDIS_KDNET_ADD_PF, *PNDIS_KDNET_ADD_PF;

#define NDIS_KDNET_ADD_PF_REVISION_1 1
#define NDIS_SIZEOF_KDNET_ADD_PF_REVISION_1 \
 RTL_SIZEOF_THROUGH_FIELD(NDIS_KDNET_ADD_PF, AddedFunctionNumber)

 //
 // This structure indicates the data required to remove a PF from the BDF
port.
 // Used by OID_KDNET_REMOVE_PF.
 //

 typedef struct _NDIS_KDNET_REMOVE_PF
 {
 NDIS_OBJECT_HEADER Header;

 //
 // PCI location that points to the PF that needs to be removed
 //
 NDIS_KDNET_BDF Bdf;

 //
 // One element containing the removed PF port
 //
 ULONG FunctionNumber;
 } NDIS_KDNET_REMOVE_PF, *PNDIS_KDNET_REMOVE_PF;
#define NDIS_KDNET_REMOVE_PF_REVISION_1 1
#define NDIS_SIZEOF_KDNET_REMOVE_PF_REVISION_1 \
 RTL_SIZEOF_THROUGH_FIELD(NDIS_KDNET_REMOVE_PF, FunctionNumber)

 //

Setting Up 2PF Kernel-Mode Debugging using KDNET

Network OIDs

kdnetpf.h header

 // This structure describes the data required to query the PF management
data
 // Used by OID_KDNET_QUERY_PF_INFORMATION
 //
 typedef struct _NDIS_KDNET_QUERY_PF_INFORMATION
 {
 NDIS_OBJECT_HEADER Header;

 //
 // PF PCI location to query for
 //
 NDIS_KDNET_BDF Bdf;

 //
 // PF assigned MAC address
 //
 UCHAR NetworkAdddress[6];

 //
 // PF Usage tag described by NDIS_KDNET_PF_USAGE_TAG
 //
 ULONG UsageTag;

 //
 // Maximum number of Pfs that can be associated to the Primary BDF.
 //
 ULONG MaximumNumberOfSupportedPfs;

 //
 // KDNET PF device ID (Used if there is a new added PF and
 // the FW assigns a new DeviceID to the added KDNET PF)
 //
 ULONG DeviceId;

 } NDIS_KDNET_QUERY_PF_INFORMATION, *PNDIS_KDNET_QUERY_PF_INFORMATION;
#define NDIS_KDNET_QUERY_PF_INFORMATION_REVISION_1 1
#define NDIS_SIZEOF_KDNET_QUERY_PF_INFORMATION_REVISION_1 \
 RTL_SIZEOF_THROUGH_FIELD(NDIS_KDNET_QUERY_PF_INFORMATION, DeviceId)

#endif // (NDIS_SUPPORT_NDIS686)

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/setting-up-kernel-mode-debugging-using-2pf
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/kdnetpf/

Network OIDs
Article • 12/15/2021

A miniport driver maintains information about its capabilities and current status, as well
as information about each miniport adapter that it manages. Each information type is
identified by an object identifier (OID). OIDs are system-defined. NDIS handles many of
the OID requests for miniport drivers and NDIS does not pass such requests on to the
miniport driver. The miniport driver reports many of its capabilities, which were formerly
reported in response to OID queries, in its attributes during initialization. For more
information about reporting attributes, see Initializing an Adapter.

NDIS and higher level drivers can query and, in some cases, set information by using
OIDs.

Higher level drivers for connectionless media call NdisOidRequest to query or set
information in a connectionless miniport driver. To perform a query or a set
operation, NDIS calls the miniport driver's MiniportOidRequest function.

Higher level drivers for connection-oriented media call NdisCoOidRequest to
query or set information in a connection-oriented miniport driver. To perform both
query and set operations, NDIS calls the miniport driver's MiniportCoOidRequest
function.

NDIS maps many of the system-defined OIDs for miniport drivers to globally unique
identifiers (GUIDs). NDIS registers these GUIDs with the kernel-mode Microsoft
Windows Management Instrumentation (WMI) that supports user-mode Web-Based
Enterprise Management (WBEM) applications. When a WMI client queries or sets one of
these GUIDs, NDIS translates the request to a query OID operation or a set OID
operation, as appropriate, and then passes any returned information and the status back
to WMI. You can map custom GUIDs to custom OIDs or miniport driver status. A
miniport driver must register custom GUID-to-OID or GUID-to-status mappings with
NDIS during initialization.

For more information about querying and setting OIDs, creating custom OIDs, and NDIS
support for WMI, see Obtaining and Setting Miniport Driver Information and NDIS
Support for WMI.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

Sample NDIS Miniport Drivers
Article • 03/14/2023

The Network driver samples in the Windows driver samples repository on GitHub
includes sample code for miniport drivers that manage several types of network cards.
You can modify these sample drivers to your needs. The sample drivers contain
functions that can be adapted to a new but similar driver. There are always hardware-
dependent functions that you must write. However, many functions are fairly standard.
For example, functions that communicate with the NDIS Library instead of a network
interface card are typically standard. For these driver functions, the code in a sample
driver might be usable with little or no modification.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network
https://github.com/Microsoft/Windows-driver-samples/tree/develop

Initializing a Miniport Driver
Article • 12/15/2021

When a networking device becomes available, the system loads the NDIS miniport
driver to manage the device (if the driver is not already loaded). Every miniport driver
must provide a DriverEntry function. The system calls DriverEntry after it loads the
driver. DriverEntry registers the miniport driver's characteristics with NDIS (including the
supported NDIS version and the driver entry points).

The system passes two arguments to DriverEntry:

A pointer to the driver object, which was created by the I/O system.

A pointer to the registry path, which specifies where driver-specific parameters are
stored.

In DriverEntry, miniport drivers pass both of these pointers in a call to the
NdisMRegisterMiniportDriver function. Miniport drivers export a set of standard
MiniportXxx functions by storing their entry points in an
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure and passing that structure to
NdisMRegisterMiniportDriver.

DriverEntry for miniport drivers returns the value that is returned by the call to
NdisMRegisterMiniportDriver.

A miniport driver also performs any other driver-specific initialization that it requires in
DriverEntry. The driver performs adapter-specific initialization in the MiniportInitializeEx
function. For more information about adapter initialization, see Initializing an Adapter.

DriverEntry can allocate the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure on
the stack because the NDIS library copies the relevant information to its own storage.
DriverEntry should clear the memory for this structure with NdisZeroMemory before
setting any driver-supplied values in its members. The MajorNdisVersion and
MinorNdisVersion members must contain the major and minor versions of NDIS that
the driver supports. In each XxxHandler member of the characteristics structure,
DriverEntry must set the entry point of a driver-supplied MiniportXxx function, or the
member must be NULL.

To enable a miniport driver to configure optional services, NDIS calls the
MiniportSetOptions function within the context of the miniport driver's call to
NdisMRegisterMiniportDriver. For more information about optional services, see
Configuring Optional Miniport Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiszeromemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver

Drivers that call NdisMRegisterMiniportDriver must be prepared for NDIS to call their
MiniportInitializeEx functions any time after DriverEntry returns. Such a driver must have
sufficient installation and configuration information stored in the registry or available
from calls to an NdisXxx bus-type-specific configuration function to set up any NIC-
specific resources the driver will need to carry out network I/O operations.

The miniport driver must eventually call NdisMDeregisterMiniportDriver to release
resources that it allocated by calling NdisMRegisterMiniportDriver. If the driver
initialization fails after the call to NdisMRegisterMiniportDriver succeeded, the driver
can call NdisMDeregisterMiniportDriver from within DriverEntry. Otherwise, the
miniport driver must release the driver-specific resources that it allocates in its
MiniportDriverUnload function. In other words, if NdisMRegisterMiniportDriver does not
return NDIS_STATUS_SUCCESS, DriverEntry must release any resources that it allocated
before it returns control. The driver will not be loaded if this occurs. For more
information, see Unloading a Miniport Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload

Unloading a Miniport Driver
Article • 12/15/2021

The driver object that is associated with an NDIS miniport driver specifies an Unload
routine. The system calls the Unload routine when all the devices that the driver services
have been removed. NDIS provides the Unload routine for miniport drivers. NDIS calls a
miniport driver's MiniportDriverUnload function from the Unload routine.

A miniport driver must call NdisMDeregisterMiniportDriver from MiniportDriverUnload.

A miniport driver's MiniportDriverUnload function should also release any driver-specific
resources. The system will complete a driver unload operation after
MiniportDriverUnload returns.

The functionality of the MiniportDriverUnload function is driver-specific. As a general
rule, MiniportDriverUnload should undo the operations that were performed during
driver initialization. For more information about driver initialization, see Initializing a
Miniport Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver

Miniport Adapter States and Operations
Article • 12/15/2021

For each adapter that it manages, an NDIS 6.0 or later miniport driver must support the
following set of operational states:

Halted
The Halted state is the initial state of all adapters. When an adapter is in the Halted state,
NDIS can call the driver's MiniportInitializeEx function to initialize the adapter.

Shutdown
In the Shutdown state, a system shutdown and restart must occur before the system can use
the adapter again.

Initializing
In the Initializing state, a miniport driver completes any operations that are required to
initialize an adapter.

Paused
In the Paused state, the adapter does not indicate received network data or accept send
requests.

Restarting
In the Restarting state, a miniport driver completes any operations that are required to restart
send and receive operations for an adapter.

Running
In the Running state, a miniport driver performs send and receive processing for an adapter.

Pausing
In the Pausing state, a miniport driver completes any operations that are required to stop
send and receive operations for an adapter.

In the following table, the headings are the adapter states. Major events are listed in the first
column. The rest of the entries in the table specify the next state that the adapter enters after
an event occurs within a state. The blank entries represent invalid event/state combinations.

Event \ State Halted Shutdown Initializing Paused Restarting Running Pausing

MiniportInitializeEx Initializing

Initialize is
complete

Paused

MiniportShutdownEx Shutdown Shutdown Shutdown Shutdown

MiniportHaltEx Halted

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Event \ State Halted Shutdown Initializing Paused Restarting Running Pausing

MiniportRestart Restarting

Restart is complete Running

MiniportPause Pausing

Pause is complete Paused

Initialize failed Halted

Restart failed Paused

Send and receive
operations

Running Pausing

OID requests Paused Restarting Running Pausing

Note The events listed in the preceding table are the primary events for an NDIS 6.0 or later
adapter.

Note The reset operation does not affect miniport adapter operational states. The state of the
adapter might change while a reset operation is in progress. For example, NDIS might call a
driver's pause handler when there is a reset operation in progress. In this case, the driver can
complete either the reset or the pause operation in any order while following the normal
requirements for each operation. For a reset operation, the driver can fail transmit request
packets or it can keep them queued and complete them later. However, you should note that
an overlying driver cannot complete a pause operation while its transmit packets are pending.

The primary miniport driver events are defined as follows:

MiniportInitializeEx
NDIS called the driver's MiniportInitializeEx function to initialize an adapter. For more
information about adapter initialization, see Initializing a Miniport Adapter.

Initialize is complete
After MiniportInitializeEx returns successfully, the initialize operation is complete and the
adapter is in the Paused state.

MiniportShutdownEx
NDIS called the driver's MiniportShutdownEx function to shutdown an adapter. For more
information, see Miniport Adapter Shutdown.

MiniportHaltEx
NDIS called the driver's MiniportHaltEx function to halt an adapter. For more information, see
Halting a Miniport Adapter.

MiniportRestart
NDIS called the driver's MiniportRestart function to restart a paused adapter. Because an

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart

adapter is in the Paused state after initialization, this event is also required to start the adapter
after adapter initialization is complete. For more information, see Starting an Adapter.

Restart is complete
After the driver is ready to handle send and receive operations, the restart operation is
complete and the adapter is in the Running state.

MiniportPause
NDIS called the driver's MiniportPause function to pause an adapter. For more information,
see Pausing an Adapter.

Pause is complete
After the driver has completed all operations that are necessary to stop send and receive
operations, the pause operation is complete and the adapter is in the Paused state.

Note The driver must wait for NDIS to return all its outstanding receive indications before the
pause operation is complete.

Initialize failed
If NDIS calls a driver's MiniportInitializeEx function and the initialization attempt fails, the
adapter returns to the Halted state.

Restart failed
If NDIS calls a driver's MiniportRestart function and the restart attempt fails, the adapter
remains in the Paused state.

Send and Receive Operations
A driver must handle send and receive operations in the Running and Pausing states. For
more information about send and receive operations, see Miniport Driver Send and Receive
Operations.

OID Requests
A driver must handle OID Requests in the Running, Restarting, Paused, and Pausing states. For
more information about OID requests, see OID Requests for an Adapter.

Halting a Miniport Adapter

Initializing a Miniport Adapter

Miniport Adapter Shutdown

Miniport Driver Send and Receive Operations

Pausing an Adapter

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart

Starting an Adapter

Initializing a Miniport Adapter
Article • 08/29/2023

When a networking device becomes available, the system loads the required NDIS
miniport driver, if it is not already loaded. Subsequently, the Plug and Play (PnP)
manager sends NDIS a Plug and Play IRP to start the device. NDIS calls the miniport
driver's MiniportInitializeEx function to initialize an adapter for network I/O operations.
NDIS can call MiniportInitializeEx at any time after the driver is initialized. For more
information about miniport driver initialization, see Initializing a Miniport Driver.

Until MiniportInitializeEx returns, NDIS submits no requests for the adapter being
initialized. The adapter is in the Initializing state.

A miniport driver typically performs the following tasks in MiniportInitializeEx:

1. Obtains configuration information for the adapter.

2. Obtains information about the hardware resources for the adapter.

3. Calls the NdisMSetMiniportAttributes and provides the following attributes that
are associated with the adapter:

A pointer to a driver-allocated context area.
Appropriate attributes flags.
The time-out interval for calling its MiniportCheckForHangEx function.
The interface type.

4. Initializes adapter-specific resources.

The miniport driver specifies the adapter attributes in the
NDIS_MINIPORT_ADAPTER_ATTRIBUTES structure that MiniportInitializeEx passes to
NdisMSetMiniportAttributes.

Typically, MiniportInitializeEx allocates adapter-specific resources in the following order:

1. Nonpaged pool memory.

2. NET_BUFFER and NET_BUFFER_LIST pools (see Miniport Driver Send and Receive
Operations).

3. Spin locks.

4. Timers.

5. IO ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

6. DMA (see Scatter/Gather DMA).

7. Shared memory.

8. Interrupts (see Managing Interrupts).

After MiniportInitializeEx returns successfully, the adapter is in the Paused state. NDIS
can call the MiniportRestart function to transition the adapter to the Running state. For
more information, see Starting a Miniport Adapter.

If MiniportInitializeEx returns NDIS_STATUS_SUCCESS, the driver should release all the
resources for the adapter in the MiniportHaltEx function. For more information, see
Halting a Miniport Adapter.

The driver must call NdisMSetMiniportAttributes and set the GeneralAttributes in the
NDIS_MINIPORT_ADAPTER_ATTRIBUTES structure if it returns NDIS_STATUS_SUCCESS.

If MiniportInitializeEx failed, MiniportInitializeEx must release all resources that it
allocated before it returns and the adapter returns to the Halted state.

Halting a Miniport Adapter

Miniport Adapter States and Operations

Miniport Driver Send and Receive Operations

Scatter/Gather DMA

Starting a Miniport Adapter

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Halting a Miniport Adapter
Article • 12/15/2021

NDIS calls an NDIS miniport driver's MiniportHaltEx function to deallocate resources
when an adapter is removed from the system, and to stop the hardware. NDIS can call
MiniportHaltEx after the driver's MiniportInitializeEx function returns successfully. For
more information about MiniportInitializeEx, see Initializing a Miniport Adapter.

MiniportHaltEx must free any resources that the driver allocated for a device. The driver
must call the reciprocals of the NdisXxx functions with which it originally allocated the
resources. As a general rule, a MiniportHaltEx function should call the reciprocal NdisXxx
functions in the reverse order used during initialization.

If an adapter generates interrupts, a miniport driver's MiniportHaltEx function can be
preempted by the driver's MiniportInterrupt function until MiniportHaltEx disables
interrupts.

NDIS does not call MiniportHaltEx if there are outstanding OID requests or send
requests. NDIS submits no further requests for the affected device after NDIS calls
MiniportHaltEx.

After MiniportHaltEx returns, the miniport driver is in the Halted state.

Adapter States of a Miniport Driver

Miniport Adapter States and Operations

Miniport Driver Halt Handler

Writing NDIS Miniport Drivers

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Starting and Pausing a Miniport
Adapter Overview
Article • 12/15/2021

NDIS pauses an adapter to stop data flow that could interfere with Plug and Play
operations, such as adding or removing a filter driver, or requests, such as setting a
packet filter or multicast address list on the NIC. For more information about how to
modify a running driver stack, see Modifying a Running Driver Stack.

NDIS restarts an adapter from the Paused state. The adapter enters the Paused start
after adapter initialization is complete or after a pause operation is complete.

The following topics provide more information about starting and pausing and adapter:

Starting an Adapter
Pausing an Adapter

Starting an Adapter
Article • 12/15/2021

NDIS calls a miniport driver's MiniportRestart function to initiate a restart request for an
adapter that is in the Paused state. The driver can resume indicating received data
immediately after NDIS calls MiniportRestart and before the miniport driver completes
the restart operation, either synchronously or asynchronously.

When it calls a miniport driver's MiniportRestart function, NDIS passes a pointer to an
NDIS_RESTART_ATTRIBUTES structure to the miniport driver in the RestartAttributes
member of the NDIS_MINIPORT_RESTART_PARAMETERS structure.

To complete the restart operation asynchronously, MiniportRestart returns
NDIS_STATUS_PENDING and the driver must call the NdisMRestartComplete function
after the operation is complete.

The miniport driver should be ready to accept send requests after it completes the
restart operation. NDIS does not initiate any other Plug and Play operations, such as
halt, initialize, or a pause request, until the restart operation is complete.

After the driver is ready to handle send and receive operations, the adapter is in the
Running state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_restart_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismrestartcomplete

Pausing an Adapter
Article • 12/15/2021

NDIS calls a miniport driver's MiniportPause function to initiate a pause operation. The
adapter remains in the Pausing state until the pause operation is complete.

In the Pausing state, the miniport driver must complete outstanding receive operations.
The driver must also complete any outstanding send operations and it should reject any
new send requests.

To complete receive operations, the driver waits for all calls to the
NdisMIndicateReceiveNetBufferLists function to return and NDIS must return all
outstanding NET_BUFFER_LIST structures to the miniport driver's
MiniportReturnNetBufferLists function.

To complete outstanding send operations, the miniport driver should call the
NdisMSendNetBufferListsComplete function for all of the outstanding
NET_BUFFER_LIST structures. The driver should reject any new send requests made to its
MiniportSendNetBufferLists function immediately.

After a miniport driver completes all outstanding send and receive operations, the driver
must complete the pause request either synchronously or asynchronously. If the pause
operation is completed asynchronously, the driver calls NdisMPauseComplete to
complete the pause request. After completing the pause request, the miniport driver is
in the Paused state.

NDIS does not initiate other Plug and Play operations, such as halt, initialize, power
change, or restart operations, while the miniport driver is in the Pausing state. NDIS can
initiate these Plug and Play operations after a miniport driver is in the Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismpausecomplete

Configuring Optional Miniport Driver
Services
Article • 12/15/2021

NDIS calls a miniport driver's MiniportSetOptions function to allow the driver to
configure optional services. NDIS calls MiniportSetOptions within the context of the
miniport driver's call to the NdisMRegisterMiniportDriver function.

MiniportSetOptions registers the default entry points for optional MiniportXxx functions
and can allocate other driver resources. To register optional MiniportXxx functions, the
miniport driver calls the NdisSetOptionalHandlers function and passes a characteristics
structure at the OptionalHandlers parameter.

Starting with NDIS 6.0, the valid characteristics structures include the following:

NDIS_MINIPORT_CO_CHARACTERISTICS

NDIS_MINIPORT_PNP_CHARACTERISTICS

NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS

NDIS_PROVIDER_CHIMNEY_OFFLOAD_GENERIC_CHARACTERISTICS (see NDIS 6.0 TCP
chimney offload documentation)

NDIS_PROVIDER_CHIMNEY_OFFLOAD_TCP_CHARACTERISTICS (see NDIS 6.0 TCP
chimney offload documentation)

Starting with NDIS 6.30, the valid characteristics structures also include the following:

NDIS_MINIPORT_SS_CHARACTERISTICS

NDIS_NDK_PROVIDER_CHARACTERISTICS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_pnp_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_provider_chimney_offload_generic_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_provider_chimney_offload_tcp_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_ss_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/ns-ndisndk-_ndis_ndk_provider_characteristics

Miniport Driver Send and Receive
Operations
Article • 12/15/2021

Miniport drivers handle send requests from overlying drivers and originate receive
indications. In a single function call, NDIS miniport drivers can indicate a linked list with
multiple received NET_BUFFER_LIST structures. Miniport drivers can handle send
requests for lists of multiple NET_BUFFER_LIST structures with multiple NET_BUFFER
structures on each NET_BUFFER_LIST structure.

Miniport drivers must manage receive buffer pools. Most miniport drivers create pools
that preallocate a single NET_BUFFER structure with each NET_BUFFER_LIST structure.

The following topics provide more information about miniport driver buffer
management, send operations, and receive operations:

Miniport Driver Buffer Management

Sending Data from a Miniport Driver

Canceling a Send Request in a Miniport Driver

Indicating Received Data from a Miniport Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Miniport Driver Buffer Management
Article • 12/15/2021

Miniport drivers typically call NdisAllocateNetBufferListPool from MiniportInitializeEx to
create a pool of NET_BUFFER_LIST structures. Miniport drivers use these structures to
indicate received data.

Typically, a miniport driver that allocates a NET_BUFFER_LIST structure will allocate and
queue one NET_BUFFER structure on that NET_BUFFER_LIST structure. It is more efficient
to preallocate NET_BUFFER structures when you allocate a pool of NET_BUFFER_LIST
structures than to allocate NET_BUFFER_LIST structures and NET_BUFFER structures
separately.

Miniport drivers can call NdisAllocateNetBufferListPool and set the AllocateNetBuffer
parameter to TRUE to indicate that NET_BUFFER structures are preallocated. In this case,
a NET_BUFFER structure is preallocated with each NET_BUFFER_LIST structure that the
driver allocates from the pool. Such drivers must call
NdisAllocateNetBufferAndNetBufferList to allocate structures from this pool.

Typically, a miniport driver calls NdisAllocateNetBufferAndNetBufferList from
MiniportInitializeEx to allocate as many buffers as it will require for subsequent receive
operations. In this case, the driver manages an internal list of free buffers.

The MiniportReturnNetBufferLists function can prepare a returned NET_BUFFER_LIST
structure for reuse in a subsequent receive indication. Although
MiniportReturnNetBufferLists could return the NET_BUFFER_LIST structures to a pool (for
example, it could call NdisFreeNetBufferList), it can be more efficient to reuse the
structures without returning them to the pool.

A miniport driver should free all the NET_BUFFER_LIST structures and associated data
when NDIS halts the adapter. A driver can call NdisFreeNetBufferList to free the
structures and the NdisFreeNetBufferListPool function to free the NET_BUFFER_LIST
pool.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferandnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlistpool

Sending Data from a Miniport Driver
Article • 12/15/2021

The following figure illustrates a miniport driver send operation.

NDIS calls a miniport driver's MiniportSendNetBufferLists function to transmit the
network data that is described by a linked list of NET_BUFFER_LIST structures.

Miniport drivers call the NdisMSendNetBufferListsComplete function to return a linked
list of NET_BUFFER_LIST structures to an overlying driver and to return the final status of
a send request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

Canceling a Send Request in a Miniport
Driver
Article • 12/15/2021

The following figure illustrates a miniport driver cancel send operation.

Protocol, filter, and intermediate drivers can call NdisCancelSendNetBufferLists to
cancel outstanding send requests. These overlying drivers must mark the send data with
a cancellation ID before making a send request.

NDIS calls a miniport driver's MiniportCancelSend function to cancel the transmission of
all NET_BUFFER_LIST structures that are marked with a specified cancellation identifier.

A miniport driver's MiniportCancelSend function performs the following operations:

1. Traverses its list of outstanding send requests for the specified adapter and calls
NDIS_GET_NET_BUFFER_LIST_CANCEL_ID to obtain the cancellation identifier for
each NET_BUFFER_LIST structure. The miniport driver compares the cancellation ID
that NDIS_GET_NET_BUFFER_LIST_CANCEL_ID returns with the cancellation ID that
NDIS passed to MiniportCancelSend.

2. Removes from all NET_BUFFER_LIST structures whose cancellation identifiers match
the specified cancellation identifier from its list of outstanding send requests.

3. Calls the NdisMSendNetBufferListsComplete function for all canceled
NET_BUFFER_LIST structures to return the structures.The miniport driver sets the
status field of the NET_BUFFER_LIST structures to NDIS_STATUS_SEND_ABORTED.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscancelsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_get_net_buffer_list_cancel_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

NDIS Poll Mode
Article • 01/17/2024

NDIS Poll Mode is an OS controlled polling execution model that drives the network
interface datapath.

Previously, NDIS had no formal definition of a datapath execution context. NDIS drivers
typically relied on Deferred Procedure Calls (DPCs) to implement their execution model.
However using DPCs can overwhelm the system when long indication chains are made
and avoiding this problem requires a lot of code that's tricky to get right. NDIS Poll
Mode offers an alternative to DPCs and similar execution tools.

NDIS Poll Mode moves the complexity of scheduling decisions away from NIC drivers
and into NDIS, where NDIS sets work limits per iteration. To achieve this Poll Mode
provides:

1. A mechanism for the OS to exert back pressure on the NIC.

2. A mechanism for the OS to finely control interrupts.

NDIS Poll Mode is available to NDIS 6.85 and later miniport drivers.

The following sequence diagram illustrates a typical example of how an NDIS miniport
driver handles a burst of Rx packets using a DPC. In this example the hardware is
standard in terms of PCIe NICs. It has a receive hardware queue and an interrupt mask
for that queue.

Overview of NDIS Poll Mode

Problems with the DPC model

When there's no network activity the hardware has the Rx interrupt enabled. When an
Rx packet arrives:

1. The hardware generates an interrupt and NDIS calls the driver’s MiniportInterrupt
function (ISR).

2. The driver does very little work in the ISR because they run at a very high IRQL. The
driver disables the interrupt from the ISR and defers the hardware processing to a
MiniportInterruptDPC function (DPC).

3. NDIS eventually calls the driver's DPC and the driver drains any completions from
the hardware queue and indicates them to the OS.

Two pain points can affect the network stack when the driver defers I/O operations to a
DPC:

1. The driver doesn't know if the system is capable of processing all of the data that is
being indicated, so the driver has no choice but to drain as many elements as
possible from its hardware queue and indicate them up the stack.

2. Since the driver is using a DPC to defer work from its ISR, all the indications are
made at DISPATCH_LEVEL. This can overwhelm the system when long indication
chains are made and cause Bug Check 0x133 DPC_WATCHDOG_VIOLATION.

Avoiding these pain points requires a lot of tricky code in your driver. While you can
check if the DPC watchdog is close to the limit with the
KeQueryDpcWatchdogInformation function and break out of the DPC, you still need to

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-0x133-dpc-watchdog-violation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kequerydpcwatchdoginformation

build an infrastructure around this in your driver: You need some way to pause for a bit,
then continue to indicate the packets, and at the same time you need to synchronize all
this with the lifetime of the datapath.

NDIS Poll Mode introduces the Poll object to resolve the pain points associated with
DPCs. A Poll object is an execution context construct. Miniport drivers can use a Poll
object in place of a DPC when dealing with datapath operations.

A Poll object offers the following:

It provides a way for NDIS to set work limits per iteration.

It is closely tied to a notification mechanism. This keeps the OS and the NIC in sync
regarding when work needs to be processed.

It has a concept of iteration and interrupts built in. When using DPCs, drivers are
forced to re-enable the interrupt every time they finish a DPC. When using Poll
objects, drivers don't need to re-enable the interrupt each polling iteration
because Poll Mode will let your driver know when it's done polling and it's time to
re-enable the interrupt again.

When making scheduling decisions, the system can be smart about whether to run
at DISPATCH_LEVEL or PASSIVE_LEVEL. This can allow fine-tuned prioritization of
traffic from different NICs and lead to a fairer workload distribution on the
machine.

It has serialization guarantees. Once you are running code from within a Poll
object's execution context you are guaranteed that no other code related to the
same execution context will run. This allows a NIC driver to have a lock free
implementation of its datapath.

The following sequence diagram illustrates how the same hypothetical PCIe NIC driver
handles a burst of Rx packets using a Poll object instead of a DPC.

Introduction to Poll objects

The NDIS Poll Mode model

Like the DPC model, when an Rx packet arrives the hardware generates an interrupt,
NDIS calls the driver’s ISR, and the driver disables the interrupt from the ISR. At this
point the Poll Mode model diverges:

1. Instead of queueing a DPC, the driver queues a Poll object (that it previously
created) from the ISR to notify NDIS that new work is ready to be processed.

2. At some point in the future NDIS calls the driver's poll iteration handler to process
the work. Unlike a DPC, the driver is not allowed to indicate as many Rx NBLs as
there are elements ready in its hardware queue. The driver should instead check
the handler's poll data parameter to get the maximum number of NBLs it can
indicate.

Once the driver fetches up to the maximum number of Rx packets it should
initialize NBLs, add them to the NBL queue provided by the poll handler, and exit

the callback. The driver shouldn't enable the interrupt before exiting.

3. NDIS continues to poll the driver until it assesses that the driver is no longer
making forward progress. At this point NDIS will stop polling and ask the driver to
re-enable the interrupt.

The following keyword must be used to enable or disable support for NDIS Poll Mode:

*NdisPoll Enumeration standardized INF keywords have the following attributes:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value
is stored in NDI\params\ SubkeyName\Value.

EnumDesc
The display text that is associated with each value that appears in the menu.

Default
The default value for the menu.

SubkeyName ParamDesc Value EnumDesc

*NdisPoll Ndis Poll Mode 0 Disabled

1 (Default) Enabled

For more information about using enumeration keywords, see Enumeration Keywords.

To create a Poll object, the miniport driver does the following in its MiniportInitializeEx
callback function:

Standardized INF keyword for NDIS Poll Mode

ﾉ Expand table

Creating a Poll object

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

1. Allocates a private miniport context.
2. Allocates an NDIS_POLL_CHARACTERISTICS structure to specify entry points for

the NdisPoll and NdisSetPollNotification callback functions.
3. Calls NdisRegisterPoll to create the Poll object and store it in the miniport context.

The following example shows how a miniport driver might create a Poll object for a
receive queue flow. Error handling is omitted for simplicity.

C++

From an ISR, miniport drivers call NdisRequestPoll to queue a Poll object for execution.
The following example shows receive handling but ignores the sharing of interrupt lines
for simplicity.

NDIS_SET_POLL_NOTIFICATION NdisSetPollNotification;
NDIS_POLL NdisPoll;

NDIS_STATUS
MiniportInitialize(
    In NDIS_HANDLE NdisAdapterHandle,
    In NDIS_HANDLE MiniportDriverContext,
    In NDIS_MINIPORT_INIT_PARAMETERS * MiniportInitParameters
)
{
 // Allocate a private miniport context
    MINIPORT_CONTEXT * miniportContext = ...;

    NDIS_POLL_CHARACTERISTICS pollCharacteristics;
    pollCharacteristics.Header.Type = NDIS_OBJECT_TYPE_DEFAULT;
    pollCharacteristics.Header.Revision = NDIS_POLL_CHARACTERISTICS_REVISION
_1;
    pollCharacteristics.Header.Size = NDIS_SIZEOF_NDIS_POLL_CHARACTERISTICS_
REVISION_1;
    pollCharacteristics.SetPollNotificationHandler =
NdisSetPollNotification;
    pollCharacteristics.PollHandler = NdisPoll;

    // Create a Poll object and store it in the miniport context
    NdisRegisterPoll(
 NdisAdapterHandle,
 miniportContext,
 &pollCharacteristics,
 &miniportContext->RxPoll);

    return NDIS_STATUS_SUCCESS;
}

Queuing a Poll object for execution

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nc-poll-ndis_poll
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nc-poll-ndis_set_poll_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nf-poll-ndisregisterpoll
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nf-poll-ndisrequestpoll

C++

NDIS invokes the miniport driver's NdisPoll callback to poll for receive indications and
send completions. NDIS first invokes NdisPoll when the driver calls NdisRequestPoll to
queue a Poll object. NDIS will keep invoking NdisPoll while the driver is making forward
progress on receive indications or transmit completions.

For receive indications, the driver should do the following in NdisPoll:

1. Check the receive parameter of the NDIS_POLL_DATA structure to get the
maximum number of NBLs it can indicate.

2. Fetch up to the maximum number of Rx packets.
3. Initialize the NBLs.
4. Add them to the NBL queue provided by the NDIS_POLL_RECEIVE_DATA structure

(located in the NDIS_POLL_DATA structure of the NdisPoll PollData parameter).
5. Exit the callback.

For transmit completions, the driver should do the following in NdisPoll:

1. Check the transmit parameter of the NDIS_POLL_DATA structure to get the
maximum number of NBLs it can complete.

2. Fetch up to the maximum number of Tx packets.
3. Complete the NBLs.

BOOLEAN
MiniportIsr(
  KINTERRUPT * Interrupt,
  void * Context
)
{
    auto miniportContext = static_cast<MINIPORT_CONTEXT *>(Context);
    auto hardwareContext = miniportContext->HardwareContext;

    // Check if this interrupt is due to a received packet
    if (hardwareContext->ISR & RX_OK)
    {
        // Disable the receive interrupt and queue the Poll
        hardwareContext->IMR &= ~RX_OK;
        NdisRequestPoll(miniportContext->RxPoll, nullptr);
    }

    return TRUE;
}

Implementing the Poll iteration handler

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nc-poll-ndis_poll
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nf-poll-ndisrequestpoll
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_receive_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_data

4. Add them to the NBL queue provided by the NDIS_POLL_TRANSMIT_DATA
structure (located in the NDIS_POLL_DATA structure of the NdisPoll PollData
parameter).

5. Exit the callback.

The driver shouldn't enable the Poll object's interrupt before exiting the NdisPoll
function. NDIS will keep polling the driver until it assesses that no forward progress is
being made. At this point NDIS will stop polling and ask the driver to re-enable the
interrupt.

Here's how a driver might implement NdisPoll for a receive queue flow.

C++

_Use_decl_annotations_
void
NdisPoll(
    void * Context,
    NDIS_POLL_DATA * PollData
)
{
    auto miniportContext = static_cast<MINIPORT_CONTEXT *>(Context);
    auto hardwareContext = miniportContext->HardwareContext;

    // Drain received frames
    auto & receive = PollData->Receive;
 receive.NumberOfRemainingNbls = NDIS_ANY_NUMBER_OF_NBLS;
 receive.Flags = NDIS_RECEIVE_FLAGS_SHARED_MEMORY_VALID;

    while (receive.NumberOfIndicatedNbls < receive.MaxNblsToIndicate)
    {
        auto rxDescriptor = HardwareQueueGetNextDescriptorToCheck(hardwareCo
ntext->RxQueue);

        //
If this descriptor is still owned by hardware stop draining packets
        if ((rxDescriptor->Status & HW_OWN) != 0)
            break;

        auto nbl = MakeNblFromRxDescriptor(miniportContext-
>NblPool, rxDescriptor);

 AppendNbl(&receive.IndicatedNblChain, nbl);
 receive.NumberOfIndicatedNbls++;

        // Move to next descriptor
        HardwareQueueAdvanceNextDescriptorToCheck(hardwareContext->RxQueue);
    }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_transmit_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/ns-poll-ndis_poll_data

Miniport drivers implement the NdisSetPollNotification callback to enable or disable the
interrupt associated with a Poll object. NDIS typically invokes the NdisSetPollNotification
callback when it detects that the miniport driver is not making forward progress in
NdisPoll. NDIS uses NdisSetPollNotification to tell the driver that it will stop invoking
NdisPoll. The driver should invoke NdisRequestPoll when new work is ready to be
processed.

Here's how a driver might implement NdisSetPollNotification for a receive queue flow.

C++

Managing interrupts

_Use_decl_annotations_
void
NdisSetPollNotification(
    void * Context,
    NDIS_POLL_NOTIFICATION * Notification
)
{
    auto miniportContext = static_cast<MINIPORT_CONTEXT *>(Context);
    auto hardwareContext = miniportContext->HardwareContext;

    if (Notification->Enabled)
    {
        hardwareContext->IMR |= RX_OK;
    }
    else
    {
        hardwareContext->IMR &= ~RX_OK;
    }
}

６ Collaborate with us on
GitHub

The source for this content can
be found on GitHub, where you
can also create and review
issues and pull requests. For
more information, see our
contributor guide.

Windows driver
documentation feedback
Windows driver documentation is an
open source project. Select a link to
provide feedback:

 Open a documentation issue

 Provide product feedback

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nc-poll-ndis_set_poll_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nc-poll-ndis_poll
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/poll/nf-poll-ndisrequestpoll
https://learn.microsoft.com/contribute/
https://github.com/MicrosoftDocs/windows-driver-docs/issues/new?template=customer-feedback.yml&pageUrl=https%3A%2F%2Flearn.microsoft.com%2Fen-us%2Fwindows-hardware%2Fdrivers%2Fnetwork%2Fndis-poll-mode&pageQueryParams=&contentSourceUrl=https%3A%2F%2Fgithub.com%2FMicrosoftDocs%2Fwindows-driver-docs%2Fblob%2Fstaging%2Fwindows-driver-docs-pr%2Fnetwork%2Fndis-poll-mode.md&documentVersionIndependentId=8f35f4c4-267b-cea8-76fb-a6c432ef422c&feedback=%0A%0A%5BEnter+feedback+here%5D%0A&author=%40aviviano&metadata=*+ID%3A+8f35f4c4-267b-cea8-76fb-a6c432ef422c+%0A*+Service%3A+**windows-hardware-driver-quality**%0A*+Sub-service%3A+**network**&title=Customer+feedback+-+
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app

Indicating Received Data from a
Miniport Driver
Article • 12/15/2021

The following figure illustrates a miniport driver receive indication.

Miniport drivers call the NdisMIndicateReceiveNetBufferLists function to indicate the
receipt of data from the network. The NdisMIndicateReceiveNetBufferLists function
passes the indicated list of NET_BUFFER_LIST structures up the stack to overlying
drivers.

If a miniport driver sets the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags
parameter of NdisMIndicateReceiveNetBufferLists, this indicates that the miniport
driver must regain ownership of the NET_BUFFER_LIST structures immediately. In this
case, NDIS does not call the miniport driver's MiniportReturnNetBufferLists function to
return the NET_BUFFER_LIST structures. The miniport driver regains ownership
immediately after NdisMIndicateReceiveNetBufferLists returns.

If a miniport driver does not set the NDIS_RECEIVE_FLAGS_RESOURCES flag in the
ReceiveFlags parameter of NdisMIndicateReceiveNetBufferLists, NDIS returns the
indicated NET_BUFFER_LIST structures to the miniport driver's
MiniportReturnNetBufferLists function. In this case, the miniport driver relinquishes
ownership of the indicated structures until NDIS returns them to
MiniportReturnNetBufferLists.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists

Registering and Deregistering Interrupts
Article • 12/15/2021

A miniport driver calls NdisMRegisterInterruptEx to register an interrupt. The driver
allocates and initializes an NDIS_MINIPORT_INTERRUPT_CHARACTERISTICS structure
to specify the interrupt characteristics and function entry points. The driver passes the
structure to NdisMRegisterInterruptEx.

Drivers call the NdisMDeRegisterInterruptEx function to release resources that were
previously allocated with NdisMRegisterInterruptEx.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_interrupt_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterinterruptex

Handling interrupts for NDIS miniport
drivers
Article • 03/14/2023

NDIS calls the MiniportInterrupt function when a NIC, or another device that shares the
interrupt with the NIC, generates an interrupt.

MiniportInterrupt should return FALSE immediately if the underlying NIC did not
generate the interrupt. Otherwise, it returns TRUE after processing the interrupt.

A miniport driver should do as little work as possible in its MiniportInterrupt function. It
should defer I/O operations to the MiniportInterruptDPC function. NDIS calls
MiniportInterruptDPC to complete the deferred processing of an interrupt.

To queue additional DPCs after MiniportInterrupt returns, the miniport driver sets the
bits of the TargetProcessors parameter of the MiniportInterrupt function. To request
additional DPCs from MiniportInterrupt or MiniportInterruptDPC, the miniport driver calls
the NdisMQueueDpc function.

The miniport driver can call NdisMQueueDpc to request additional DPC calls for other
processors.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpc

Synchronizing with Interrupts
Article • 12/15/2021

If a miniport driver's MiniportInterrupt function shares resources, such as NIC registers or
state variables, with another MiniportXxx function that runs at a lower IRQL, that
MiniportXxx function must call NdisMSynchronizeWithInterruptEx. This call ensures that
the miniport driver's MiniportSynchronizeInterrupt function accesses the shared
resources in a synchronized and multiprocessor-safe manner.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsynchronizewithinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_synchronize_interrupt

Interrupt Moderation
Article • 12/15/2021

To reduce the number of interrupts, many NICs use interrupt moderation. With interrupt
moderation, the NIC hardware will not generate an interrupt immediately after it
receives a packet. Instead, the hardware waits for more packets to arrive, or for a time-
out to expire, before generating an interrupt. The hardware vendor specifies the
maximum number of packets, time-out interval, or other interrupt moderation
algorithm.

The measured round-trip time for a packet is one of the most commonly used
techniques to determine the network bandwidth between two endpoints. However,
when interrupt moderation is enabled, receiving a packet does not generate an
immediate interrupt and therefore the perceived round-trip time for a particular packet
becomes larger than the average time. To allow accurate measurement of round trip
time for a packet, NDIS provides the ability to disable and enable interrupt moderation
on demand.

All NDIS 6.0 and later miniport drivers must support the
OID_GEN_INTERRUPT_MODERATION OID. If a miniport driver does not support interrupt
moderation, the driver must specify NdisInterruptModerationNotSupported in the
InterruptModeration member of the NDIS_INTERRUPT_MODERATION_PARAMETERS
structure.

NDIS 6.0 and later miniport drivers must support both the
OID_GEN_INTERRUPT_MODERATION OID set and query requests. The set request directs
the miniport driver to enable or disable interrupt moderation and the query request
reports the current state of interrupt moderation.

A miniport driver that supports interrupt moderation should turn this capability on by
default unless the InterruptModeration standard keyword in the registry disables it. For
more information about the standard keywords, see Standardized INF Keywords for
Network Devices.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters

Miniport Adapter OID Requests
Article • 12/15/2021

NDIS defines object identifier (OID) values to identify miniport adapter parameters,
which include operating parameters such as device characteristics, configurable settings
and statistics. For more information about OIDs, see NDIS OIDs.

For NDIS 6.1 and later miniport drivers, NDIS provides a Direct OID Request Interface.
The Direct OID request path supports OID requests that are queried or set frequently.
The Direct OID Request Interface is optional for NDIS drivers.

For NDIS 6.80 and later miniport drivers, NDIS provides a Synchronous OID Request
Interface. The Synchronous OID request path supports OIDs that require synchronization
or OIDs that should not be queued by filter drivers, such as RSSv2 OIDs. The
Synchronous OID Request Interface is optional for NDIS drivers but is required if the
miniport driver advertises support for RSSv2.

The following topics provide more information about miniport driver OID requests:

Handling OID Requests In a Miniport Adapter

Miniport Adapter OID Request Serialization

Miniport Adapter Direct OID Requests

Miniport Adapter Synchronous OID Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Miniport adapter OID request
serialization
Article • 12/15/2021

All OID requests to a miniport adapter are serialized by NDIS except for direct OID
requests, which were designed not be serialized. A miniport adapter will not receive a
new OID request until any pending request is completed. Therefore, miniport adapters
must complete OIDs promptly.

One exception to this OID serialization rule is for Wi-Fi miniport adapters that use WDI,
which may see a second OID request if they take too long to complete the previous OID.
The following example explains what happens in this situation:

1. The first OID request is passed to the WDI miniport adapter.
2. The NIC does not respond to the OID within the time limit specified by the driver.
3. WDI calls the driver's MINIPORT_WDI_ADAPTER_HANG_DIAGNOSE callback

function to collect diagnostic data about the NIC.
4. The first OID is no longer considered to block serialization. This means the WDI

miniport adapter can now receive other OID requests, even though the first OID is
serialized. However, these other OIDS are also serialized, which means the WDI
miniport adapter will not pend more than 2 OIDs simultaneously (the first OID that
is still hung and a second OID).

For more information about WDI UE hang detection, see UE hang detection: Steps 1-14.

For more information about OID requests in NDIS, see Simplifying your OID request
handler on the NDIS blog.

７ Note

We recommend completing an OID request in less than 1000ms, or 1 second, so
the user will not notice any delay in performance. For specific information about
timing OID requests, see the NdisTimedOidComplete Driver Verifier rule.

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_adapter_hang_diagnose
https://learn.microsoft.com/en-us/archive/blogs/ndis/simplifying-your-oid-request-handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/ndis-ndistimedoidcomplete

Handling OID Requests In a Miniport
Adapter
Article • 12/15/2021

NDIS calls a miniport driver's MiniportOidRequest function to submit an OID request to
query or set information in the driver. NDIS calls the MiniportOidRequest function either
on its own behalf or on behalf of an overlying driver that called the NdisOidRequest or
NdisFOidRequest function.

NDIS passes MiniportOidRequest a pointer to an NDIS_OID_REQUEST structure that
contains the request information. The request structure contains an OID_Xxx identifier
that indicates the type of request and other members to define the request data.

The Timeout member specifies a time-out, in seconds, for the request. NDIS can reset
the driver or cancel the request if the time-out expires before the driver completes the
request.

The RequestId member specifies an optional identifier for the request. Miniport drivers
can set the RequestId member of a status indication to the value obtained from the
RequestId member of an associated OID request. Typically, miniport drivers can ignore
this member. If a driver must set this member, the reference page for the particular OID
provides the required values. For more information about status indications, see Adapter
Status Indications.

A miniport driver that successfully handles an OID set request must set the
SupportedRevision member in the NDIS_OID_REQUEST structure upon return from the
OID set request. The SupportedRevision member notifies the initiator of the request of
the revision that the driver supported. For example, a miniport driver can create an
Xxx_REVISION_2 structure, supply values that are appropriate for an Xxx_REVISION_1
structure, and fill the rest of the structure with zeros. The miniport driver would report
Xxx_REVISION_1 in the SupportedRevision member. In this case, a protocol driver that
can support an Xxx_REVISION_2 will use Xxx_REVISION_1 information that the miniport
driver supported. For more information about version information in NDIS structures,
see Specifying NDIS Version Information.

A miniport driver can complete an OID request synchronously by returning a success or
failure status.

A miniport driver can complete an OID request asynchronously by returning
NDIS_STATUS_PENDING. In this case, the miniport driver must call the
NdisMOidRequestComplete function to complete the operation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

If MiniportOidRequest returns NDIS_STATUS_PENDING, NDIS will not call
MiniportOidRequest with another request for the adapter until the pending request is
completed.

NDIS can call a miniport driver's MiniportCancelOidRequest function to cancel an OID
request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_oid_request

Miniport Adapter Direct OID Requests
Article • 12/15/2021

To support the direct OID request path, miniport drivers provide MiniportXxx function
entry points in the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure and NDIS
provides NdisMXxx functions for miniport drivers.

The direct OID request interface is similar to the standard OID request interface. For
example, the NdisMDirectOidRequestComplete and MiniportDirectOidRequest functions
are similar to the NdisMOidRequestComplete and MiniportOidRequest functions.

Note NDIS 6.1 supports specific OIDs for use with the direct OID request interface. OIDs
that existed before NDIS 6.1 and some NDIS 6.1 OIDs are not supported. To determine if
an OID can be used in the direct OIDs interface, see the OID reference page.

Miniport drivers must be able to handle direct OID requests that are not serialized.
Unlike the standard OID request interface, NDIS does not serialize direct OID requests
with other requests that are sent with the direct OID interface or with the standard OID
request interface. Also, miniport drivers must be able to handle direct OID requests at
IRQL <= DISPATCH_LEVEL.

To support the direct OIDs request interface, use the documentation for the standard
OID request interface. The following table shows the relationship between the functions
in the direct OID request interface and the standard OID request interface.

Direct OID function Standard OID function

MiniportDirectOidRequest MiniportOidRequest

MiniportCancelDirectOidRequest MiniportCancelOidRequest

NdisMDirectOidRequestComplete NdisMOidRequestComplete

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismdirectoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismdirectoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

Miniport Adapter Synchronous OID
Requests
Article • 12/15/2021

To support the Synchronous OID request path, miniport drivers provide a
MiniportSynchronousOidRequest function entry point in the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure when they call the
NdisMRegisterMiniportDriver function.

For miniport drivers, the Synchronous OID request interface differs from the Regular and
Direct OID request interfaces in that miniport drivers do not have to register an
asynchronous complete callback function. This is because of the synchronous nature of
the path. For more info about the differences between Regular, Direct, and Synchronous
OIDs in general, see Synchronous OID Request Interface in NDIS 6.80.

To support the Synchronous OID request interface, use the documentation for the
standard OID request interface. The following table shows the relationship between the
functions in the Synchronous OID request interface and the standard OID request
interface.

Synchronous OID function Standard OID function

MiniportSynchronousOidRequest MiniportOidRequest

７ Note

NDIS 6.80 supports specific OIDs for use with the Synchronous OID request
interface. OIDs that existed before NDIS 6.80 and some NDIS 6.80 OIDs are not
supported. To determine if an OID can be used in the Synchronous OID request
interface, see the OID reference page.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-miniport_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-miniport_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Miniport Adapter Status Indications
Article • 12/15/2021

Miniport drivers call the NdisMIndicateStatusEx function to report a change in the
status of a miniport adapter. The miniport driver passes NdisMIndicateStatusEx a
pointer to an NDIS_STATUS_INDICATION structure that contains the status information.

The status indication includes information to identify the type of status and a reason for
the status change.

The miniport driver should set the SourceHandle member to the handle that NDIS
passed to the MiniportAdapterHandle parameter of the MiniportInitializeEx function. If
the status indication is associated with an OID request, the miniport driver can set the
DestinationHandle and RequestId members so that NDIS can provide the status
indication to a specific protocol binding.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Miniport Adapter Device PnP Event
Notifications
Article • 12/15/2021

NDIS calls a miniport driver's MiniportDevicePnPEventNotify function to notify the driver
of Plug and Play (PnP) events.

NDIS provides an event code that describes the PnP event. The code can indicate that
the adapter has been unexpectedly removed from the system or that the power profile
of the host system has changed.

If the event code indicates that the power profile has changed, NDIS also indicates the
type of change. Either the system is running on battery power or the system is running
on AC power.

The miniport driver should adjust the adapter settings accordingly.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

Miniport Adapter Check-for-Hang and
Reset Operations
Article • 12/15/2021

NDIS calls an NDIS miniport driver's MiniportCheckForHangEx function to check the
operational state of an NDIS adapter that represents a network interface card (NIC).
MiniportCheckForHangEx checks the internal state of the adapter and returns TRUE if it
detects that the adapter is not operating correctly.

By default, NDIS calls MiniportCheckForHangEx approximately every 2 seconds. If
MiniportCheckForHangEx returns TRUE, NDIS calls the NDIS miniport driver's
MiniportResetEx function. If the default time-out value of 2 seconds is too small, your
miniport driver can set a different value at initialization time as follows:

1. Set the CheckForHangTimeInSeconds member of the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure to a nonzero
value.

2. Pass the NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure in the
MiniportAttributes parameter of the NdisMSetMiniportAttributes function.

For more information about setting driver attributes, see Initializing an Adapter. The
value of CheckForHangTimeInSeconds should be greater than the initialize time of your
miniport driver. However, if your driver takes longer than CheckForHangTimeInSeconds
seconds to initialize, this time-out expires, causing NDIS to call your driver's
MiniportCheckForHangEx function. If MiniportCheckForHangEx returns TRUE, NDIS will
then call your driver's MiniportResetEx function. For this reason, you should synchronize
your driver's MiniportCheckForHangEx function with driver initialization so that
MiniportCheckForHangEx will not return TRUE if the driver has not finished initializing.

If your miniport driver does not complete an OID request within two successive calls to
MiniportCheckForHangEx, NDIS can call the driver's MiniportResetEx function. For some

Overview

２ Warning

Check-for-Hang (CFH) and Reset operations are discouraged for all NDIS 6.83 and
later drivers. For more information, see Check-for-Hang and Reset operations in
NDIS 6.83 and later.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang

OID requests, NDIS calls MiniportResetEx if the driver does not complete the request
within four successive calls to MiniportCheckForHangEx.

The reset operation does not affect miniport adapter operational states. Also, the state
of the adapter might change while a reset operation is in progress. For example, NDIS
might call a driver's MiniportPause function when there is a reset operation in progress.
In this case, the driver can complete either the reset or the pause operation in any order
while following the normal requirements for each operation.

For a reset operation, the driver can fail transmit request packets or it can keep them
queued and complete them later. However, you should note that an overlying driver
cannot complete a pause operation while its transmit packets are pending.

A miniport driver can complete a reset request synchronously by returning a success or
failure status. The driver can complete a reset request asynchronously by returning
NDIS_STATUS_PENDING. In this case, the driver must call NdisMResetComplete to
complete the operation.

In versions of NDIS before 6.83, Check-for-Hang (CFH) and Reset operations were
discouraged for Always On, Always Connected (AOAC) systems due to battery life issues.
However, drivers could still use CFH on other non-AOAC Windows systems by
implementing the optional MiniportCheckForHangEx and MiniportResetEx callback
functions.

Starting in NDIS 6.83, these callback functions are discouraged on all Windows systems
regardless of power capabilities. Although it is not a logo test violation to use CFH in
NDIS 6.83 and later, NDIS drivers should use the following table for guidance about its
usage.

Caller Recommendation Notes

Drivers targeting
AOAC systems

Must not implement Causes battery life issues due
to periodic check-for-hang
activity

Drivers targeting
Windows Server
systems

Must not implement Causes issues when the CPU
is stressed

Check-for-Hang and Reset operations in NDIS
6.83 and later

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismresetcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

Caller Recommendation Notes

Virtual (software-
only) miniport
drivers

Must not implement Reset not possible without
hardware

Other new NDIS
6.83 and later
drivers

Should not implement

Other existing
NDIS 6.82 and
earlier code

Not required to change, but should consider
removing Check-for-Hang and Reset in
future rework

Miniport Driver Hardware Reset

Miniport Driver Reset and Halt Functions

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff564064(v=vs.85)

Miniport Adapter Shutdown
Article • 12/15/2021

An NDIS miniport driver must register a MiniportShutdownEx function during miniport
driver initialization.

NDIS calls an NDIS miniport driver's MiniportShutdownEx function when the system is
shutting down. MiniportShutdownEx restores the hardware to a known state.

The ShutdownAction parameter that NDIS passed to MiniportShutdownEx informs the
miniport driver of the reason for the shutdown.

The shutdown handler can be called as a result of a user operation, in which case it runs
at IRQL = PASSIVE_LEVEL. It can also be called as a result of an unrecoverable system
error, in which case it can be running at any IRQL.

MiniportShutdownEx should call no NdisXxx functions. The miniport driver can call
functions for reading and writing I/O ports or disabling the DMA engine to return the
hardware to a known state.

Unlike MiniportHaltEx, MiniportShutdownEx should not release any allocated resources.
MiniportShutdownEx should just stop the NIC.

Adapter States of a Miniport Driver

Halting a Miniport Adapter

Miniport Adapter States and Operations

Writing NDIS Miniport Drivers

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown

NDIS Management Information and
OIDs
Article • 03/14/2023

Each miniport driver contains its own management information base (MIB), which is an
information block in which the driver stores dynamic configuration information and
statistical information that a management entity can query or set. An Ethernet multicast
address list is an example of configuration information. The number of broadcast
packets received is an example of statistical information. Each information element
within the MIB is referred to as an object. To refer to each such managed object, NDIS
defines an object identifier (OID). Therefore, if a management entity wants to query or
set a particular managed object, it must provide the specific OID for that object.

The MIB tracks three classes of objects:

Objects that are general to all NDIS miniport drivers.

Objects that are specific to all NDIS miniport drivers for a given medium type, such
as Ethernet.

Objects that are specific to a particular vendor implementation.

The general and mandatory media-specific OIDs are documented in the Network
Reference section of the WDK documentation. The implementation-specific OIDs for a
particular network interface card (NIC) driver should be listed and described in the
documentation that accompanies a given miniport driver.

Objects are classified as operational characteristics (for example, multicast address list)
or statistics (for example, broadcast packets received), and they are also classified as
mandatory or optional. All operational characteristics objects for general or media-
specific classes are mandatory, but only some statistics objects are mandatory. All
implementation-specific objects are classified as mandatory.

For more information about OID classifications, see NDIS OIDs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Querying a Connectionless Miniport
Driver
Article • 12/15/2021

To query OIDs that a connectionless miniport driver maintains, a bound protocol calls
NdisOidRequest and passes an NDIS_OID_REQUEST structure that specifies the object
(OID) that is being queried and that points to a buffer into which NDIS eventually writes
the requested information.

If NDIS does not respond for the miniport driver, the call to NdisOidRequest causes
NDIS to call the miniport driver's MiniportOidRequest function, which returns the
requested information to NDIS. MiniportOidRequest can complete synchronously or
asynchronously with a call to NdisMOidRequestComplete.

NDIS can also call a miniport driver's MiniportOidRequest function on its own behalf--for
example, after the miniport driver's MiniportInitializeEx function has returned
NDIS_STATUS_SUCCESS--to query the miniport driver's capabilities, status, or statistics.
The following diagram illustrates querying a connectionless miniport driver.

NDIS responds to many OID requests on behalf of the miniport driver. The miniport
driver reports many of its OID values during initialization and in status indications. For
more information about OID values that are reported in attributes, see
NDIS_MINIPORT_ADAPTER_ATTRIBUTES and the related attributes structures.

When MiniportOidRequest is called with OID_GEN_MAC_OPTIONS, it must return a
bitmask that specifies the optional operations that the miniport driver performs. The set
of flags includes:

NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA. This flag indicates to a protocol
driver that it can access indicated data by any means. If a miniport driver indicates
data out of on-board shared memory, it must not set this flag.

NDIS_MAC_OPTION_NO_LOOPBACK. If this flag is set, the miniport driver does not
loopback a packet that is passed to MiniportSendNetBufferLists(Packets) that is
directed to a receiver on the same computer and that the miniport driver expects
NDIS to perform the loopback. If NDIS performs the loopback of a packet, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_attributes

packet is not passed down to the miniport driver. A miniport driver always sets this
flag unless a NIC performs hardware loopbacks.

NDIS_MAC_OPTION_RECEIVE_SERIALIZED. If this flag is set, the miniport driver
does not indicate any newly received packet up until the previously received
packet has been fully processed, including transferring the data. Most miniport
drivers, except those that indicate up packets by calling
NdisMIndicateReceiveNetBufferLists, set this flag.

A miniport driver must never use the flag NDIS_MAC_OPTION_RESERVED, which is
reserved for NDIS internal use.

MiniportOidRequest is also queried with a media-specific OID to determine the NIC's
current address. For instance, the miniport driver for a NIC of type 802.3 will be queried
with OID_802_3_CURRENT_ADDRESS.

The miniport drivers for certain media types will receive additional OIDs that are media-
specific. For example, a miniport driver whose NIC is of type 802.3 is queried with
OID_802.3_MAXIMUM_LIST_SIZE. For more information, see General Objects.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546510(v=vs.85)

Querying a Connection-Oriented
Miniport Driver
Article • 12/15/2021

To query information objects that a connection-oriented miniport driver maintains, a
bound protocol calls NdisCoOidRequest and passes an NDIS_OID_REQUEST structure
that specifies the object (OID) that is being queried and that provides a buffer into
which NDIS eventually writes the requested information. The call to NdisCoOidRequest
causes NDIS to call the miniport driver's MiniportCoOidRequest function, which returns
the requested information to NDIS. MiniportCoOidRequest can complete synchronously
or asynchronously with a call to NdisCoOidRequestComplete.

NDIS can also call a miniport driver's MiniportCoOidRequest function on its own behalf—
for example, after the miniport driver's MiniportInitializeEx function has returned
NDIS_STATUS_SUCCESS—to query the miniport driver's capabilities, status, or statistics.
The following diagram illustrates querying a connection-oriented miniport driver.

A connection-oriented miniport driver must be able to provide information about a
global basis for all virtual connections (VCs) for a particular NIC and also on a per-VC
basis. For example, if a non-NULL NdisVcHandle is supplied to MiniportCoOidRequest for
a query of OID_GEN_CO_RCV_CRC_ERROR, the miniport driver returns the number of
CRC errors that were encountered in all receives on the specified VC. For the same
request with a NULL NdisVcHandle, the miniport driver returns the total number of CRC
errors that are encountered for all incoming receives through a NIC.

The following list contains the set of mandatory general operational OIDs for
connection-oriented miniport drivers:

OID_GEN_CO_SUPPORTED_LIST

OID_GEN_CO_HARDWARE_STATUS

OID_GEN_CO_MEDIA_SUPPORTED

OID_GEN_CO_MEDIA_IN_USE

OID_GEN_CO_LINK_SPEED

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

OID_GEN_CO_VENDOR_ID

OID_GEN_CO_VENDOR_DESCRIPTION

OID_GEN_CO_VENDOR_DRIVER_VERSION

OID_GEN_CO_DRIVER_VERSION

OID_GEN_CO_MAC_OPTIONS

OID_GEN_CO_MEDIA_CONNECT_STATUS

OID_GEN_CO_MINIMUM_LINK_SPEED

The miniport driver's MiniportCoOidRequest function must be prepared to respond to
queries or sets, as appropriate, to any of the preceding OIDs.

When MiniportCoOidRequest is called with OID_GEN_CO_MAC_OPTIONS, it must return
a bitmask that specifies the optional operations that the miniport driver performs. The
set of flags includes:

NDIS_MAC_OPTION_NO_LOOPBACK. If this flag is set, the miniport driver does not
loopback a packet that is passed to MiniportCoSendNetBufferLists that is directed
to a receiver on the same computer and that the miniport driver expects NDIS to
perform the loopback. If NDIS performs the loopback of a packet, the packet is not
passed down to the miniport driver. A miniport driver always sets this flag unless a
NIC performs hardware loopbacks.

NDIS_MAC_ETOX_INDICATION. If this flag is set, the miniport driver indicates that a
send is complete only after the NIC transmits the packet.

A miniport driver must never use the NDIS_MAC_OPTION_RESERVED flag, which is
reserved for NDIS internal use.

MiniportCoOidRequest will also be queried with a media-specific OID to determine the
NIC's current address.

For more information, see OIDs for Connection-Oriented Call Managers and Clients and
General Objects.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546510(v=vs.85)

Querying a Miniport Driver Directly
From User Mode
Article • 12/15/2021

An application can use IOCTL_NDIS_QUERY_GLOBAL_STATS to directly query
information from a miniport driver's NIC. In this operation, the application can use any
query OID that the miniport driver supports.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff548975(v=vs.85)

Querying 64-Bit Statistics OIDs
Article • 12/15/2021

All miniport drivers that are 1 Gigabyte per second (Gbps) and faster must support 64-
bit counters for certain statistics OIDs. All 100 Megabytes per second (Mbps) and faster
miniport drivers should support 64-bit counters for such OIDs. For more information
about statistics OIDs for connectionless miniport drivers, see General Statistics. For more
information about such OIDs for connection-oriented miniport drivers, see General
Statistics for Connection-Oriented Miniport Drivers.

A requester that queries a statistics OID sets NDIS_OID_REQUEST
InformationBufferLength to 4 (bytes) to indicate a 32-bit statistics request or to 8
(bytes) to indicate a 64-bit statistics request. In its response, the miniport driver sets
NDIS_OID_REQUEST BytesNeeded to the size of the statistics value that the miniport
driver supports (4 for 32-bits or 8 for 64-bits). The miniport driver sets
NDIS_OID_REQUEST BytesWritten to the smaller of the InformationBufferLength value
and the size of statistics that the miniport driver supports.

The following sections describe how a miniport driver that supports 64-bit statistics
OIDs responds to queries of such OIDs.

NDIS_OID_REQUEST InformationBufferLength is greater than or equal to 8.

The miniport driver:

Returns the 64-bit value in the information buffer.

Sets NDIS_OID_REQUEST BytesWritten to 8.

Returns NDIS_STATUS_SUCCESS from its MiniportOidRequest or
MiniportCoOidRequest function.

NDIS_OID_REQUEST InformationBufferLength is greater to or equal to 4 and less than
8.

The miniport driver:

Returns, in the information buffer, the lower 32 bits of the 64-bit value.

64-bit query of a 64-bit value

32-bit query of a 64-bit value

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

Sets NDIS_OID_REQUEST BytesWritten to 4.

Sets NDIS_OID_REQUEST BytesNeeded to 8.

Returns NDIS_STATUS_SUCCESS from its MiniportOidRequest or
MiniportCoOidRequest function.

NDIS_OID_REQUEST InformationBufferLength is less than 4.

The miniport driver:

Does not return any value in the information buffer.

Sets NDIS_OID_REQUEST BytesWritten to 0.

Sets NDIS_OID_REQUEST BytesNeeded to 8.

Returns NDIS_STATUS_INVALID_LENGTH from its MiniportOidRequest or
MiniportCoOidRequest function.

Invalid-length query of a 64-bit value

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

Setting Information for a
Connectionless Miniport Driver
Article • 12/15/2021

To set an OID that a connectionless miniport driver maintains, a bound protocol calls
NdisOidRequest and passes an NDIS_OID_REQUEST structure that specifies the object
(OID) that is being queried and that points to a buffer that contains the value to which
the object should be set. The call to NdisOidRequest causes NDIS to call the miniport
driver's MiniportOidRequest function, which sets the object with the supplied value.

The call to MiniportOidRequest can complete synchronously or asynchronously. To
complete the call asynchronously, the miniport driver calls NdisMOidRequestComplete.
The following diagram illustrates setting information in a connectionless miniport driver
(per binding).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

Setting Information for a Connection-
Oriented Miniport Driver
Article • 12/15/2021

To set an OID that a connection-oriented miniport driver maintains, a bound protocol
calls NdisCoOidRequest and passes an NDIS_OID_REQUEST structure that specifies the
object (OID) that is being queried and that points to a buffer that contains the value to
which the object should be set. The call to NdisCoOidRequest causes NDIS to call the
miniport driver's MiniportCoOidRequest function, which sets the object with the
supplied value.

The call to NdisCoOidRequest can complete synchronously or asynchronously. To
complete the call asynchronously, a miniport driver calls NdisCoOidRequestComplete.
The following diagram illustrates setting information in a connection-oriented miniport
driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete

Occasions for Setting Miniport Driver
Information
Article • 12/15/2021

The MiniportOidRequest function in a connectionless miniport driver and the
MiniportCoOidRequest function in a connection-oriented miniport driver are called
during initialization. These functions can also be called:

During a hardware reset,

If a protocol calls NdisCloseAdapterEx.

MiniportOidRequest or MiniportCoOidRequest is called during hardware reset operation.
In this case, MiniportOidRequest or MiniportCoOidRequest is called to reset the miniport
driver to its initial state with respect to its addresses.

NDIS calls MiniportOidRequest or MiniportCoOidRequest when a miniport driver's NIC is
closed by a protocol's NdisCloseAdapterEx call. Such a miniport driver will be requested
to update its addressing information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex

Reporting Hardware Status
Article • 12/15/2021

A connectionless miniport driver indicates changes in hardware status to upper layers by
calling NdisMIndicateStatusEx. A connection-oriented miniport driver indicates changes
by calling NdisMCoIndicateStatusEx.

NdisM(Co)IndicateStatusEx takes both a general status code and a buffer that contains
media-specific information that further defines the reason for the status change. NDIS
reports this status change to bound protocol drivers. NDIS does not interpret or
otherwise intercept the status code.

The miniport driver can make one or more such calls. However, unlike earlier versions of
NDIS, the miniport driver does not indicate that it has finished sending status. The
protocol driver or configuration manager can log the status or take corrective action, as
appropriate.

NdisMCoIndicateStatusEx takes any valid NDIS_STATUS_Xxx value.

The miniport driver is responsible for indicating status codes that make sense to a
protocol or higher level driver. A protocol driver ignores any status values in which it is
not interested or that do not make sense in the context of its operations.

A miniport driver cannot indicate status in the context of its MiniportInitializeEx,
MiniportInterrupt, MiniportHaltEx, or MiniportShutdownEx function.

A miniport driver can also be interrogated by an upper layer driver or by NDIS about the
miniport driver's hardware status. When the MiniportOidRequest function of a
connectionless miniport driver or the MiniportCoOidRequest function of a connection-
oriented miniport driver receives OID_GEN_HARDWARE_STATUS, it responds with any of
the applicable status values that are defined in NDIS_HARDWARE_STATUS. These status
values include:

NdisHardwareStatusReady

NdisHardwareStatusInitializing

NdisHardwareStatusReset

NdisHardwareStatusClosing

NdisHardwareStatusNotReady

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

The miniport driver can be queried so that NDIS can synchronize operations between
layers of NDIS drivers--for example, by determining whether a NIC is ready to accept
packets.

Indicating Connection Status
Article • 12/15/2021

A miniport driver calls NdisMIndicateStatusEx or NdisMCoIndicateStatusEx to indicate
a change in the media connection status. The miniport driver passes one of the
following status indications to NdisM(Co)IndicateStatus:

NDIS_STATUS_MEDIA_CONNECT
Indicates a media connection status change from disconnected to connected. A media
connect status change occurs when a disconnected adapter makes a network
connection. For example, the adapter connects when it comes within range (for a
wireless adapter) or the user connects the network cable.

NDIS_STATUS_MEDIA_DISCONNECT
Indicates a media connection status change from connected to disconnected. A media
disconnect status change occurs when a connected adapter loses a network connection.
For example, the adapter loses the connection because it is out of range (for a wireless
adapter) or the user unplugs the network cable.

Unless specified otherwise, miniport drivers should indicate media connection status
changes within two seconds after detecting the status change.

A miniport driver can check the media connection status while performing certain
operations (see the following list). If the status is the same after the operation is
complete as it was before the operation started,the miniport driver does not have to
report any status changes that might have occurred during the operation.

The following list describes additional requirements for indicating media connection
status changes for miniport drivers:

Resetting
NDIS calls MiniportResetEx to reset a miniport driver. The miniport driver can complete
the reset either synchronously or asynchronously.

If the media connection status is different after resetting, the driver should indicate the
status within two seconds after completing the reset.

A miniport driver should not complete the reset operation until it has determined the
media connection status.

Halting
A miniport driver must not indicate any media connection status changes when NDIS
calls MiniportHaltEx.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Initializing
NDIS calls a miniport driver's MiniportInitializeEx function to initialize an adapter. During
the adapter initialization, the miniport driver must follow these guidelines:

If the miniport driver does not indicate the media connection status after returning
from MiniportInitializeEx, NDIS uses the value of the MediaConnectState member
of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure to determine
the media connection status. The miniport driver provides NDIS with this structure
when the driver calls NdisMSetMiniportAttributes from its MiniportInitializeEx
function.

Note If the MediaConnectState member is set to MediaConnectStateUnknown,
NDIS will proceed as if the adapter is disconnected.

If an adapter is connected after NDIS calls MiniportInitializeEx, the miniport driver
can indicate NDIS_STATUS_MEDIA_CONNECT within 5 seconds after it returns from
MiniportInitializeEx.

If an adapter is disconnected after NDIS calls MiniportInitializeEx, the miniport
driver should indicate NDIS_STATUS_MEDIA_DISCONNECT within 2 seconds after it
returns from MiniportInitializeEx.

While initializing, the miniport driver should process
OID_GEN_MEDIA_CONNECT_STATUS or OID_GEN_CO_MEDIA_CONNECT_STATUS
requests asynchronously. The miniport driver should not complete such requests
until after it has determined the connection status.

Determination of the media connection status should not delay initialization. If
necessary, the miniport driver should initiate the process to determine the
connection status within MiniportInitializeEx, and complete the process at a later
time. For example, the miniport driver could set a timer to poll the adapter for the
connection status.

A deserialized miniport driver can indicate a media disconnect during initialization,
but a serialized miniport driver should not.

Sleeping
A miniport driver enters a network sleep state when it receives an OID_PNP_SET_POWER
request to set a device power state of D1, D2, or D3.

A miniport driver must not indicate any media connection status changes when it enters
a sleep state or while it is in a sleeping state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Waking
A miniport driver wakes from a sleep state when it receives an OID_PNP_SET_POWER
request to set the device power state to D0.

If the adapter's media connection status after waking is the same as the status was prior
to sleeping, the miniport driver should not indicate a media connection status change. If
the connection status changed, the miniport driver should indicate the new connection
status within two seconds after waking.

While waking, the miniport driver should process OID_GEN_MEDIA_CONNECT_STATUS
or OID_GEN_CO_MEDIA_CONNECT_STATUS requests asynchronously. The miniport
driver should not complete such requests until after it has determined the connection
status.

NDIS Support for WMI
Article • 03/14/2023

Through NDIS, clients of Windows Management Instrumentation (WMI) can obtain and
set information that NDIS and NDIS drivers service. WMI clients can also register to
receive status updates.

NDIS automatically registers miniport adapters, named virtual connections (VCs), and a
set of globally unique identifiers (GUIDs) for each miniport adapter with WMI. For more
information about these GUIDs, see Standard Miniport Driver OIDs Registered with WMI.
Miniport drivers can also provide support for custom object identifiers (OIDs) and
custom status indications, as the Customized OIDs and Status Indications topic
describes.

NDIS does not provide WMI support for protocol drivers. A protocol driver, or an
intermediate driver, can create a device object for itself and register directly with WMI.
For more information about registering directly with WMI, see Registering as a WMI
Data Provider.

For more information about the WMI architecture, see Windows Management
Instrumentation.

This section includes:

Registration and Deregistration of NDIS Miniport Drivers with WMI

Mapping of GUIDs to OIDs and Miniport Driver Status

Support for Named VCs

NDIS-Supported WMI Operations

Standard WMI OIDs and Status Indications

Customized OIDs and Status Indications

NDIS WMI GUIDs

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/registering-as-a-wmi-data-provider
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/implementing-wmi

Registration and Deregistration of NDIS
Miniport Drivers with WMI
Article • 03/14/2023

NDIS automatically registers each miniport adapter with WMI. A miniport driver does
not have to explicitly register with WMI, because NDIS automatically registers for the
associated miniport adapter after the miniport driver returns from the
MiniportInitializeEx function.

After NDIS registers a miniport adapter as a data provider with WMI, WMI clients can
send it query and set requests and register to receive status indications.

Before NDIS calls the miniport driver's MiniportHaltEx function, NDIS automatically
deregisters the miniport adapter with WMI so that WMI will no longer send WMI
requests to the miniport driver.

For each miniport adapter that NDIS registers with WMI, NDIS registers GUIDs that
correspond to particular OIDs or status indications. NDIS registers GUIDs for a miniport
adapter's supported set of standard OIDs and status indications. For more information
about these standard GUIDs, see Standard Miniport Driver OIDs Registered with WMI
and Standard Miniport Driver Status Registered with WMI.

NDIS can also register custom GUIDs for custom OIDs and status indications. If the
miniport driver supports custom OIDs, it must provide the associated custom GUIDs. For
more information about customized OIDs and status indications, see Customized OIDs
and Status Indications.

For connection-oriented miniport drivers, NDIS also registers any named virtual
connections (VCs). WMI clients can work only with VCs that a stand-alone call manager,
or connection-oriented client, has named with the NdisCoAssignInstanceName
function. For more information about NDIS WMI support for named VCs, see Support
for Named VCs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscoassigninstancename

Mapping of GUIDs to OIDs and Miniport
Driver Status
Article • 12/15/2021

When WMI sends a WMI request to a miniport adapter (that is, when WMI sends an I/O
request packet [IRP] to a functional device object that NDIS created), NDIS intercepts
the request. NDIS does not forward the request to the miniport driver if NDIS already
has the information that it requires to service the request. Otherwise, NDIS maps the
WMI GUID to an OID and then queries or sets the OID.

If the miniport driver is a connectionless miniport driver, NDIS can call the miniport
driver's MiniportOidRequest function to handle the OID request. If the miniport driver is
a connection-oriented miniport driver, NDIS can call the miniport driver's
MiniportCoOidRequest function to handle the OID request. NDIS returns the results of
the query or set request to WMI.

Miniport drivers generate status indications with the NdisMIndicateStatusEx or
NdisMCoIndicateStatusEx function. If a WMI client registers for a WMI event and a
miniport driver generates an associated status indication, NDIS maps that status
indication to a WMI GUID and passes a WMI event indication to WMI. WMI then passes
the WMI event indication to all of the WMI clients that have registered for the WMI
event.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

Support for Named VCs
Article • 12/15/2021

NDIS allows WMI clients to query and set information on a per-virtual connection (VC)
basis for connection-oriented miniport adapters. WMI clients can also enumerate VCs.
Before a WMI client can query or set information that is associated with a particular VC,
a stand-alone call manager or connection-oriented client must name the VC by calling
the NdisCoAssignInstanceName function.

After a stand-alone call manager or connection-oriented client initiates the setup of a
VC by calling the NdisCoCreateVC function, the stand-alone call manager or
connection-oriented client can name the VC with NdisCoAssignInstanceName. NDIS
assigns the VC an instance name and registers the instance name with WMI. WMI clients
can then enumerate the VC and query or set OIDs that are relative to the VC.

A miniport call manager (MCM) cannot use NdisCoAssignInstanceName to name its
VCs. Instead, an MCM should create a custom GUID and OID for the VC and register the
GUID-to-OID mapping with NDIS. For more information about registering custom OIDs,
see Customized OIDs and Status Indications.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscoassigninstancename
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscoassigninstancename

NDIS-Supported WMI Operations
Article • 03/14/2023

NDIS supports the following WMI operations:

Enumerate adapter and enumerate virtual connection (VC).

NDIS registers global GUIDs (GUID_NDIS_ENUMERATE_ADAPTER_EX and
GUID_NDIS_ENUMERATE_VC) with WMI that enable WMI clients to enumerate all
miniport adapters (that is, miniport driver instances) and all named VCs. Because
NDIS track all of the loaded miniport drivers and all of the named VCs, NDIS does
not query miniport drivers for such information.

QUERY SINGLE INSTANCE and SET SINGLE INSTANCE

Through NDIS, a WMI client can query or set a single instance of a data block,
which corresponds to a single OID. For a query, NDIS returns all of the information
that is associated with an adapter or VC. A WMI client cannot query or set a data
item that is within an OID. For example, a query of the
GUID_NDIS_GEN_CO_LINK_SPEED GUID returns both the outbound and inbound
speed. A WMI client cannot query only the outbound speed or only the inbound
speed.

QUERY ALL DATA

NDIS satisfies a QUERY ALL DATA request on a particular GUID by obtaining the
appropriate data and returning the combined data for all of the instances of the
GUID to WMI. For example, in response to a QUERY ALL DATA request on
GUID_NDIS_ENUMERATE_ADAPTER_EX, NDIS returns a list of all of the loaded
miniport drivers to WMI. For a QUERY ALL DATA on the GUID that maps to
OID_GEN_CO_XMIT_PDUS_OK, NDIS queries that OID for each VC on each
connection-oriented miniport driver and returns the combined data to WMI.
Because the overhead for a QUERY ALL DATA request might be very high, WMI
clients should use a QUERY ALL DATA request only to enumerate adapters and VCs.
After determining the adapter or VC interest, the client can then query individual
GUID instances.

EVENT NOTIFICATION

WMI clients can register with NDIS to be notified for a particular status indication.
When such a status indication occurs, NDIS passes the status information with the
appropriate GUID to WMI for delivery to the clients as a WMI event.

EXECUTE METHOD

Through NDIS, a WMI client can run a method that is associated with a data block,
which corresponds to a single OID. WMI clients provide the information that NDIS
requires to run the method. Method requests can be associated with miniport
adapters, NDIS ports, or VCs. NDIS returns the resulting information after the
method is successfully run.

Standard Miniport Driver OIDs
Registered with WMI
Article • 12/15/2021

NDIS registers WMI GUIDs with WMI for miniport adapters. To obtain the list of OIDs
that a miniport adapter supports, NDIS issues an OID_GEN_SUPPORTED_LIST query to
the associated miniport driver. The miniport driver must provide the list of all of the
OIDs that the miniport adapter supports. This list must contain all of the mandatory
OIDs and should contain optional and custom OIDs, if any.

NDIS maps the supported OIDs to WMI GUIDs and registers the GUIDs with WMI. NDIS
translates WMI GUID requests to OID requests, if necessary, for the registered OIDs.

NDIS drivers can also register custom GUIDs with WMI. For more information about
custom GUIDs, see Customized OIDs and Status Indications.

NDIS also translates status indications to WMI events. For more information about
translating status indications to WMI events, see Standard Miniport Driver Status
Registered with WMI.

Standard Miniport Driver Status
Indications Registered with WMI
Article • 12/15/2021

NDIS automatically registers GUIDs with WMI for the NDIS status indications that
miniport drivers indicate with the NdisMIndicateStatusEx or NdisMCoIndicateStatusEx
function. For a list of general status indications, see Status Indications.

If a WMI client registers with WMI to receive an NDIS WMI event, NDIS translates the
corresponding NDIS status indication to the WMI event and reports the event to all of
the WMI clients that registered for the event.

NDIS drivers can also generate custom status indications. For more information about
custom status indications and WMI, see Customized OIDs and Status Indications.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Customized OIDs and Status Indications
Article • 12/15/2021

You can create a custom OID that NDIS maps to a custom GUID that you create. NDIS
registers the custom GUID with WMI for the miniport driver so that WMI clients can
query or set the associated information.

To provide a custom status indication, NDIS miniport drivers must use the
NDIS_STATUS_MEDIA_SPECIFIC_INDICATION_EX status indication. The WMI clients must
use the data that is included with the WMI event to identify the custom event. NDIS
does not register custom GUIDs for status indications.

To obtain a miniport adapter's custom OIDs and the associated WMI GUIDs, NDIS issues
OID requests to the miniport driver after the miniport driver has completed initialization.
NDIS issues an OID_GEN_SUPPORTED_LIST query to obtain the list of the OIDs that the
miniport driver supports. The miniport driver includes both custom OIDs and standard
OIDs in its response. To obtain the GUIDs that are associated with the custom OIDs,
NDIS issues an OID_GEN_SUPPORTED_GUIDS query to connectionless miniport drivers
or an OID_GEN_CO_SUPPORTED_GUIDS query to connection-oriented miniport drivers.

The query to OID_GEN_SUPPORTED_GUIDS or OID_GEN_CO_SUPPORTED_GUIDS returns
an array of NDIS_GUID structures to NDIS. Each NDIS_GUID structure maps a custom
GUID to a custom OID.

To support custom OIDs and status indications, you must fill in NDIS_GUID structures.
You must also create a managed object format (MOF) file that describes the GUID and
build this file with the miniport driver.

This section includes:

Filling in an NDIS_GUID Structure

Including a MOF File

Filling in an NDIS_GUID Structure
Article • 03/14/2023

An NDIS_GUID structure is defined as follows:

C++

To obtain a GUID for the Guid member of the structure, you can run the Uuidgen.exe
application. For more information about this application, see Generating Interface
UUIDs.

The Oid or Status member is a ULONG that is an OID code. NDIS 6.0 does not map
custom status indications to WMI GUIDs.

If the NDIS_GUID structure maps an OID that returns an array of data items, the Size
member specifies the size, in bytes, of each data item in the array. If the data is not an
array, the Size member specifies the size of the data. If the size of the data items is
variable, or if the OID does not return data, the Size member must be -1.

A bitwise OR of the following values for the Flags member indicates the type of data
that is associated with the GUID:

fNDIS_GUID_TO_OID
When this flag is set, the NDIS_GUID structure maps a GUID to an OID.

fNDIS_GUID_TO_STATUS
Reserved for NDIS. Miniport drivers should not use this flag.

fNDIS_GUID_ANSI_STRING
When this flag is set, a null-terminated ANSI string is supplied for the GUID.

fNDIS_GUID_UNICODE_STRING
When this flag is set, a Unicode string is supplied for the GUID.

typedef struct _NDIS_GUID {
 GUID Guid;
 union {
 NDIS_OID Oid;
 NDIS_STATUS Status;
 };
 ULONG Size;
 ULONG Flags;
} NDIS_GUID, *PNDIS_GUID;

https://learn.microsoft.com/en-us/windows/win32/rpc/generating-interface-uuids

fNDIS_GUID_ARRAY
When this flag is set, an array of data items is supplied for the GUID. The specified Size
value indicates the length of each data item in the array.

fNDIS_GUID_ALLOW_READ
When this flag is set, all users are allowed to use this GUID to obtain information.

fNDIS_GUID_ALLOW_WRITE
When this flag is set, all users are allowed to use this GUID to set information.

Note By default, custom WMI GUIDs that a miniport driver supplies are accessible only
to users with administrator privileges. A user with administrator privileges can always
read or write to a custom GUID if the miniport driver supports the read or write
operation for that GUID. You can set the fNDIS_GUID_ALLOW_READ and
fNDIS_GUID_ALLOW_WRITE flags to allow all users to access a custom GUID.

Note that for all custom GUIDs that a driver registers, the driver must set
fNDIS_GUID_TO_OID. Miniport drivers should never set fNDIS_GUID_TO_STATUS. All of
the other flags can be combined by using a bitwise OR operation.

Including a MOF File
Article • 12/15/2021

You must include a description of all of the custom GUIDs that map to a miniport
driver's custom OIDs in a managed object format (MOF) file that must be compiled and
included in the miniport driver's resource (*.rc) file.

The MOF source file must be of type MOFDATA and must have an extension of .mof. You
must compile the MOF source file into a binary file with Mofcomp.exe and must check
this file with Wmimofck.exe.

You must insert the following line in the miniport driver's resource file (*.rc) to include
the MOF binary:

Text

FileName represents the file name of the MOF source file.

NdisMofResource MOFDATA filename.bmf

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/compiling-a-driver-s-mof-file
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-wmimofck-exe

GUID_NDIS_STATUS_LINK_STATE
Article • 03/14/2023

The GUID_NDIS_STATUS_LINK_STATE event GUID indicates that there has been a change
in the link state of a miniport adapter. This WMI GUID is supported in NDIS 6.0 and later
versions.

Miniport drivers use the NDIS_STATUS_LINK_STATE status indication to notify NDIS and
overlying drivers that there has been a change in link state.

When a miniport driver indicates a link state change, NDIS translates the status
indication to a WMI GUID_NDIS_STATUS_LINK_STATE event for WMI clients.

The data buffer that NDIS provides with the GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an NDIS_LINK_STATE structure.
The NDIS_LINK_STATE structure specifies the physical state of the medium.

For more information about link status, see OID_GEN_LINK_STATE and
NDIS_STATUS_LINK_STATE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

GUID_NDIS_STATUS_OPER_STATUS
Article • 03/14/2023

The GUID_NDIS_STATUS_OPER_STATUS event GUID indicates the current operational
state of an NDIS network interface. This WMI GUID is supported in NDIS 6.0 and later
versions.

NDIS generates an NDIS_STATUS_OPER_STATUS status indication to report the current
operational state of an NDIS network interface.

When NDIS indicates a change in the current operational state of an NDIS network
interface, NDIS also translates the status indication to a WMI
GUID_NDIS_STATUS_OPER_STATUS event for WMI clients.

The data buffer that NDIS provides with the GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an NDIS_OPER_STATE structure.
For a list of the possible values, see NDIS_STATUS_OPER_STATUS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_oper_state

GUID_NDIS_STATUS_NETWORK_CHANG
E
Article • 03/14/2023

The GUID_NDIS_STATUS_NETWORK_CHANGE event GUID indicates that the layer-three
addresses must be renegotiated. This WMI GUID is supported in NDIS 6.0 and later
versions.

NDIS or a miniport driver can generate an NDIS_STATUS_NETWORK_CHANGE status
indication to report a change in network status.

When miniport drivers or NDIS indicate a change in the network status, NDIS translates
the status indication to a WMI GUID_NDIS_STATUS_NETWORK_CHANGE event for WMI
clients.

The data buffer that NDIS provides with this GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an
NDIS_NETWORK_CHANGE_TYPE-typed value. For a list of the possible values, see
NDIS_STATUS_NETWORK_CHANGE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header

GUID_NDIS_STATUS_PACKET_FILTER
Article • 03/14/2023

The GUID_NDIS_STATUS_PACKET_FILTER event GUID indicates that there has been a
change in the packet filter for miniport adapter. This WMI GUID is supported in NDIS 6.0
and later versions.

NDIS generates the NDIS_STATUS_PACKET_FILTER status indication to notify overlying
drivers that there might be a change in the packet filter configuration.

NDIS translates the status indication to a WMI GUID_NDIS_STATUS_PACKET_FILTER event
for WMI clients.

The data buffer that NDIS provides with the GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by a ULONG value. For more
information about packet filter status and the possible values, see
OID_GEN_CURRENT_PACKET_FILTER.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header

GUID_NDIS_STATUS_MEDIA_SPECIFIC_IN
DICATION_EX
Article • 03/14/2023

The GUID_NDIS_STATUS_MEDIA_SPECIFIC_INDICATION_EX event GUID indicates a
media-specific status. This WMI GUID is supported in NDIS 6.0 and later versions.

When a miniport driver indicates media-specific status, NDIS translates the status
indication to a WMI GUID_NDIS_STATUS_MEDIA_SPECIFIC_INDICATION_EX indication for
WMI clients.

Miniport drivers make media-specific status indications by calling the
NdisMIndicateStatusEx function with the StatusCode member of the
NDIS_STATUS_INDICATION structure that the StatusIndication parameter points to set to
NDIS_STATUS_MEDIA_SPECIFIC_INDICATION_EX. The StatusBuffer member of this
structure points to a driver-allocated buffer that contains data in a format that is specific
to the status indication that is identified in StatusCode.

Depending on the type of media-specific indication, the GUID header could be followed
by data that is specific to the media-specific indication. The data buffer that NDIS
provides with this GUID contains an NDIS_WMI_EVENT_HEADER structure that is
followed by the media-specific data, if any.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header

GUID_NDIS_GEN_LINK_STATE
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_LINK_STATE method GUID to determine the
current link state. This WMI GUID is supported in NDIS 6.0 and later versions.

NDIS handles this GUID and miniport drivers do not receive an OID query.

When a WMI client issues a GUID_NDIS_GEN_LINK_STATE WMI method request, NDIS
returns the current link state for the miniport adapter or NDIS port.

The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and the WMI
input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

The data buffer that NDIS returns with this GUID contains an NDIS_LINK_STATE
structure.

Miniport drivers supply the link state during initialization and provide updates with
status indications. WMI clients can use the GUID_NDIS_GEN_LINK_STATE GUID to receive
updates when the link state changes.

For more information about link status, see OID_GEN_LINK_STATE and
NDIS_STATUS_LINK_STATE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

GUID_NDIS_GEN_STATISTICS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_STATISTICS method GUID to obtain miniport
adapter statistics. This WMI GUID is supported in NDIS 6.0 and later versions.

When a WMI client issues a GUID_NDIS_GEN_STATISTICS WMI method request, NDIS
returns the current statistics for the miniport adapter or NDIS port. The WMI method
identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and the WMI input buffer should
contain an NDIS_WMI_METHOD_HEADER structure.

NDIS uses the OID_GEN_STATISTICS OID to obtain the statistics for a miniport adapter.
This OID is mandatory for miniport drivers that support NDIS 6.0 and later versions. The
statistics counters are unsigned 64-bit values. The miniport driver returns the statistics in
an NDIS_STATISTICS_INFO structure.

The data buffer that NDIS returns with the GUID contains an NDIS_STATISTICS_INFO
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header

GUID_NDIS_STATUS_PORT_STATE
Article • 03/14/2023

The GUID_NDIS_STATUS_PORT_STATE event GUID indicates a change in the state of an
NDIS port. This WMI GUID is supported in NDIS 6.0 and later versions.

Miniport drivers that support NDIS ports use the NDIS_STATUS_PORT_STATE status
indication to indicate changes in the state of an NDIS port.

When a miniport driver indicates a port state change, NDIS translates the status
indication to a WMI GUID_NDIS_STATUS_PORT_STATE event for WMI clients.

The data buffer that NDIS provides with this GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an NDIS_PORT_STATE structure.

For more information about the port state, see OID_GEN_PORT_STATE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header

GUID_NDIS_GEN_PORT_STATE
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_PORT_STATE method GUID to obtain the state
of an NDIS port. This WMI GUID is supported in NDIS 6.0 and later versions.

GUID_NDIS_GEN_PORT_STATE requires a WMI method request to return the state of an
NDIS port. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and
the WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

NDIS handles this GUID, and miniport drivers do not receive an OID query.

The data buffer that NDIS returns with the GUID contains an NDIS_PORT_STATE
structure.

For more information about the port state, see OID_GEN_PORT_STATE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header

GUID_NDIS_GEN_ENUMERATE_PORTS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_ENUMERATE_PORTS method GUID to obtain
list of the ports that are associated with a miniport adapter. This WMI GUID is supported
in NDIS 6.0 and later versions.

NDIS handles this request, and miniport drivers do not receive an OID query.

GUID_NDIS_GEN_ENUMERATE_PORTS requires a WMI method request to enumerate the
ports. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID. The
WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure that
identifies the NDIS network interface name for the miniport adapter in the NetLuid
member and that specifies zero for the PortNumber member. WMI clients can obtain
the NetLuid value of the adapter with the GUID_NDIS_ENUMERATE_ADAPTERS_EX
method GUID.

The data buffer that NDIS returns with the GUID contains an NDIS_PORT_ARRAY
structure. The NumberOfPorts member of NDIS_PORT_ARRAY contains the number of
active ports that are associated with the miniport adapter. The Ports member of
NDIS_PORT_ARRAY contains a list of pointers to NDIS_PORT_CHARACTERISTICS
structures. Each NDIS_PORT_CHARACTERISTICS structure defines the characteristics of a
single NDIS port.

For more information about enumerating ports, see OID_GEN_ENUMERATE_PORTS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics

GUID_NDIS_GEN_PORT_AUTHENTICATI
ON_PARAMETERS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_PORT_AUTHENTICATION_PARAMETERS set
GUID to set the port authentication parameters for an NDIS port. This WMI GUID is
supported in NDIS 6.0 and later versions.

NDIS translates this GUID to the OID_GEN_PORT_AUTHENTICATION_PARAMETERS OID
to set the current authentication configuration of an NDIS port. Miniport drivers that
support NDIS ports must support this OID.

The WMI input buffer specifies an NDIS_WMI_SET_HEADER structure that is followed by
an NDIS_PORT_AUTHENTICATION_PARAMETERS structure.

For more information about port parameters, see
OID_GEN_PORT_AUTHENTICATION_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_set_header

GUID_NDIS_GEN_LINK_PARAMETERS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_LINK_PARAMETERS set GUID to set the link
parameters for a miniport adapter. This WMI GUID is supported in NDIS 6.0 and later
versions.

NDIS translates this GUID to the OID_GEN_LINK_PARAMETERS OID to set the current link
parameters of a miniport adapter. This OID is mandatory for miniport drivers that
support NDIS 6.0 and later versions.

The WMI input buffer specifies the data that NDIS should set. The input buffer contains
an NDIS_WMI_SET_HEADER structure that is followed by an NDIS_LINK_PARAMETERS
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_set_header

GUID_NDIS_ENUMERATE_ADAPTERS_EX
Article • 03/14/2023

WMI clients can use the GUID_NDIS_ENUMERATE_ADAPTERS_EX GUID to obtain an
enumeration of all of the miniport adapters on the computer. This WMI GUID is
supported in NDIS 6.0 and later versions. Because NDIS tracks all of the loaded miniport
adapters, NDIS does not query miniport drivers for this information.

WMI clients can use this GUID to find a device name and the associated value in the
NetLuid member of the NDIS_WMI_ENUM_ADAPTER structure. WMI clients can use the
NetLuid value of the adapter in subsequent GUID requests.

The data buffer that NDIS returns with the GUID contains array of
NDIS_WMI_ENUM_ADAPTER structures.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_enum_adapter

GUID_NDIS_GEN_INTERRUPT_MODERAT
ION
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_INTERRUPT_MODERATION method GUID to
obtain the interrupt moderation parameters that are associated with the specified port
of a miniport adapter.

This GUID requires a WMI method request to return the interrupt moderation
parameters. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID,
and the WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

NDIS translates this GUID to an OID_GEN_INTERRUPT_MODERATION query request for
the associated miniport adapter. This OID is mandatory for miniport drivers that support
NDIS 6.0 and later versions.

The data buffer that NDIS returns with the GUID contains an
NDIS_INTERRUPT_MODERATION_PARAMETERS structure.

For more information about the port state, see OID_GEN_INTERRUPT_MODERATION.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters

GUID_NDIS_GEN_INTERRUPT_MODERAT
ION_PARAMETERS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_PORT_PARAMETERS set GUID to set the
interrupt moderation configuration for a miniport adapter. This WMI GUID is supported
in NDIS 6.0 and later versions.

NDIS translates this GUID to the OID_GEN_INTERRUPT_MODERATION OID to set the
current configuration. All NDIS miniport drivers must support this OID.

The WMI input buffer contains an NDIS_WMI_SET_HEADER structure that is followed by
an NDIS_INTERRUPT_MODERATION_PARAMETERS structure.

For more information about port parameters, see OID_GEN_INTERRUPT_MODERATION.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_set_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters

GUID_NDIS_TCP_OFFLOAD_CAPABILITIE
S
Article • 03/14/2023

WMI clients can use the GUID_NDIS_TCP_OFFLOAD_CAPABILITIES method GUID to
obtain the task offload capabilities that are associated with the specified port of a
miniport adapter.

This GUID requires a WMI method request to return the offload capabilities of an NDIS
port. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and the
WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

NDIS handles this GUID, and miniport drivers do not receive an OID query.

The data buffer that NDIS returns with the GUID contains an NDIS_OFFLOAD structure.

For more information about the port state, see OID_TCP_OFFLOAD_CURRENT_CONFIG.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

GUID_NDIS_TCP_OFFLOAD_HW_CAPABI
LITIES
Article • 03/14/2023

WMI clients can use the GUID_NDIS_TCP_OFFLOAD_HW_CAPABILITIES method GUID to
obtain the TCP offload capabilities that are supported by the hardware that is associated
with the specified port of a miniport adapter.

This GUID requires a WMI method request to return the hardware capabilities of an
NDIS port. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and
the WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

NDIS handles this GUID, and miniport drivers do not receive an OID query.

The data buffer that NDIS returns with the GUID contains an NDIS_OFFLOAD structure.

For more information about the port state, see
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

GUID_NDIS_TCP_OFFLOAD_ADMIN_SET
TINGS
Article • 03/14/2023

WMI clients can use the GUID_NDIS_TCP_OFFLOAD_ADMIN_SETTINGS set GUID to set
the offload configuration parameters for an NDIS port. This WMI GUID is supported in
NDIS 6.0 and later versions.

NDIS translates this GUID to the OID_TCP_OFFLOAD_PARAMETERS OID to set the
current configuration of an NDIS port. NDIS miniport drivers that provide any kind of
support for task offload must support this OID.

The WMI input buffer contains an NDIS_WMI_SET_HEADER structure that is followed by
an NDIS_OFFLOAD_PARAMETERS structure.

For more information about port parameters, see OID_TCP_OFFLOAD_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_set_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

GUID_NDIS_STATUS_OFFLOAD_CAPABILI
TIES_CHANGE
Article • 03/14/2023

The GUID_NDIS_STATUS_OFFLOAD_CAPABILITIES_CHANGE event GUID indicates that
there has been a change in the offload characteristics of an NDIS port or miniport
adapter. This WMI GUID is supported in NDIS 6.0 and later versions.

Miniport drivers use the NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status
indication to notify NDIS and overlying drivers that there has been a change in task
offload capabilities.

When a miniport driver indicates a task offload change, NDIS translates the status
indication to a WMI GUID_NDIS_STATUS_OFFLOAD_CAPABILITIES_CHANGE event for
WMI clients.

The data buffer that NDIS provides with the GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an NDIS_OFFLOAD structure.

For more information about task offload capabilities, see
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG and
OID_TCP_OFFLOAD_CURRENT_CONFIG.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

GUID_NDIS_STATUS_OFFLOAD_HW_CAP
ABILITIES
Article • 03/14/2023

The GUID_NDIS_STATUS_OFFLOAD_HW_CAPABILITIES event GUID indicates that there
has been a change in the offload characteristics of the hardware that is associated with
an NDIS port or miniport adapter. The hardware change typically reflects adding or
deleting hardware that is associated with an MUX intermediate driver. This WMI GUID is
supported in NDIS 6.0 and later versions.

MUX intermediate drivers use the
NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES status indication to notify
NDIS and overlying drivers that there has been a change in task offload capabilities.

When the driver indicates a task offload hardware change, NDIS translates the status
indication to a WMI GUID_NDIS_STATUS_OFFLOAD_HW_CAPABILITIES event for WMI
clients.

The data buffer that NDIS provides with the GUID contains an
NDIS_WMI_EVENT_HEADER structure that is followed by an NDIS_OFFLOAD structure.

For more information about task offload capabilities, see
NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES and
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_event_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

Overview of NDIS MSI-X
Article • 03/14/2023

Message-signaled interrupts (MSIs) provide an alternative to traditional line-based
interrupts that network devices and their miniport drivers can use. Starting with
Windows Vista, the operating system supports two types of MSIs: PCI V2.2 MSI and PCI
V3.0 MSI-X.

Miniport drivers that support MSI-X can specify an interrupt affinity, which is a subset of
central processing units (CPUs) that the drivers' message interrupt service routines run
on. You can specify the interrupt affinity for each MSI-X message--for example, you can
specify interrupt affinities on computers with Non-Uniform Memory Access (NUMA)
architecture in terms of the "nearness" of their device to certain CPUs.

MSI-X support can provide significant performance benefits, especially for network
interface cards (NICs) that support receive side scaling (RSS). For more information
about receive side scaling, see Receive Side Scaling.

For more information about line-based interrupts, see Managing Interrupts.

This section includes:

MSI-X Initialization

Handling an MSI Interrupt

Synchronizing with an MSI Interrupt

Changing the CPU Affinity of MSI-X Table Entries

MSI-X Initialization
Article • 12/15/2021

To support MSI-X, MSI initialization requires a pre-registration phase in which the
miniport driver establishes a function that filters resource-requirements. This function
can change the interrupt affinity for each MSI-X message or remove message interrupt
resources if the driver will register for line-based interrupts in the MiniportInitializeEx
function.

The pre-registration phase occurs before NDIS calls the MiniportInitializeEx function. As
with line-based interrupts, miniport drivers also register MSI interrupts while initializing
miniport adapters in MiniportInitializeEx.

This section includes:

MSI-X Pre-Registration

MSI-X Resource Filtering

Registering and Deregistering an MSI Interrupt

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

MSI-X Pre-Registration
Article • 12/15/2021

To support changing interrupt affinities for MSI-X or to remove message interrupt
resources, a miniport driver must establish a resource-requirements filter function. This
pre-registration step occurs before NDIS calls the MiniportInitializeEx function.

To establish a resource-requirements filter function, the miniport driver must provide a
MiniportSetOptions function. When the miniport driver calls the
NdisMRegisterMiniportDriver function from the DriverEntry routine, the driver passes
the entry point for MiniportSetOptions in the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure. NDIS calls the
MiniportSetOptions function in the context of NdisMRegisterMiniportDriver.

From MiniportSetOptions, the miniport driver calls the NdisSetOptionalHandlers
function and specifies an NDIS_MINIPORT_PNP_CHARACTERISTICS structure. This
structure defines the entry points for the MiniportAddDevice, MiniportRemoveDevice,
MiniportStartDevice, and MiniportFilterResourceRequirements functions.

When NDIS receives an add-device request from the Plug and Play (PnP) manager, NDIS
calls the miniport driver's MiniportAddDevice function. The handle that NDIS passes to
MiniportAddDevice in the MiniportAdapterHandle parameter is the handle that NDIS later
passes to the MiniportInitializeEx function.

In MiniportAddDevice, the driver initializes an
NDIS_MINIPORT_ADD_DEVICE_REGISTRATION_ATTRIBUTES structure and passes this
structure to the NdisMSetMiniportAttributes function. The
NDIS_MINIPORT_ADD_DEVICE_REGISTRATION_ATTRIBUTES structure contains the
MiniportAddDeviceContext member that is a handle to a miniport driver-allocated
context area for the device. NDIS later provides this context handle to the
MiniportRemoveDevice, MiniportFilterResourceRequirements, MiniportStartDevice, and
MiniportInitializeEx functions. For MiniportInitializeEx, the context handle is passed in the
MiniportAddDeviceContext member of the NDIS_MINIPORT_INIT_PARAMETERS
structure that the MiniportInitParameters parameter points to.

After NDIS calls MiniportAddDevice and MiniportAddDevice returns
NDIS_STATUS_SUCCESS, NDIS calls the MiniportFilterResourceRequirements function
every time that it receives the IRP_MN_FILTER_RESOURCE_REQUIREMENTS I/O request
packet (IRP). MiniportFilterResourceRequirements can change the interrupt affinity for
each MSI-X message, add message interrupt resources, or remove message interrupt
resources if the driver will register for line-based interrupts in the MiniportInitializeEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_pnp_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_remove_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_add_device_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_remove_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-filter-resource-requirements
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

function. For more information about establishing an interrupt affinity policy, see MSI-X
Resource Filtering.

When NDIS receives a remove-device request from the PnP manager, NDIS calls the
miniport driver's MiniportRemoveDevice function. The MiniportRemoveDevice function
should undo the operations that the MiniportAddDevice function performed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_remove_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device

MSI-X Resource Filtering
Article • 12/15/2021

Miniport drivers must register a resource-requirements filter function if they support
MSI-X and will change the interrupt affinity for each MSI-X message or will remove
message interrupt resources.

NDIS calls the MiniportFilterResourceRequirements function after NDIS receives the
IRP_MN_FILTER_RESOURCE_REQUIREMENTS I/O request packet (IRP) for a network
interface card (NIC). NDIS calls MiniportFilterResourceRequirements after the underlying
function drivers in the device stack have completed the IRP.

NDIS will call MiniportFilterResourceRequirements after the MiniportAddDevice function
returns NDIS_STATUS_SUCCESS. NDIS may call MiniportFilterResourceRequirements again
at any time before calling MiniportRemoveDevice. NDIS may call
MiniportFilterResourceRequirements while the miniport is running. While the miniport
may modify the resource list as described below, the miniport should not immediately
attempt to use the new resources. NDIS will eventually halt and re-initialize the miniport
with the new resources; only then should the miniport attempt to use the new
resources.

IRP_MN_FILTER_RESOURCE_REQUIREMENTS provides a resource list as an
IO_RESOURCE_REQUIREMENTS_LIST structure at Irp->IoStatus.Information. The
resources in the list are described by IO_RESOURCE_DESCRIPTOR structures.

A miniport driver can modify the interrupt affinity policy for each resource of type
CmResourceTypeInterrupt that describes an MSI-X message. If an affinity policy
requests targeting for a specific set of processors, the miniport driver also sets a
KAFFINITY mask at Interrupt.TargetedProcessors in the IO_RESOURCE_DESCRIPTOR
structure.

A miniport driver can remove all resources of type CmResourceTypeInterrupt that are
message interrupt resources. The driver can then register for line-based interrupts in the
MiniportInitializeEx function. If the miniport driver does not remove these message
interrupt resources, the operating system will fail if the driver tries to register line-based
interrupts in MiniportInitializeEx.

An NDIS 6.1 or later miniport driver can add message interrupt resources to the
resources list. For example on a computer with eight CPUs, if the NIC can generate four
MSI-X messages and if the operating system enables the four message interrupts, the
operating system initializes four message table entries in the device's MSI-X
configuration space and puts four message interrupt resources in the resources list. In

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-filter-resource-requirements
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_remove_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-filter-resource-requirements
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_resource_requirements_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_io_resource_descriptor
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/interrupt-affinity-and-priority#about-kaffinity
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

this case, because the miniport driver requires more message interrupt resources, it can
allocate four more message interrupt resources to the resources list and set the affinity
of each MSI-X message to a CPU. If the operating system can provide more message
interrupt resources, the miniport adapter receives eight message interrupt resources
when it is started. In this case, the messages have numbers from 0 through 7.

Each message interrupt resource in the list is assigned a message number later that
corresponds to the order it shows in the list. For example, the first message interrupt
resources in the list is assigned to message 0, the second one is assigned to message 1,
and so on.

To assign an MSI-X table entry to a CPU at run time, the miniport driver can call the
NdisMConfigMSIXTableEntry function, which maps a table entry to an MSI-X message
that already has the affinity set to the CPU. For more information about configuration
operations for MSI-X table entries, see Changing the CPU Affinity of MSI-X Table Entries.

To allocate memory for a new resource-requirements list, use the
NdisAllocateMemoryWithTagPriority function. You can free the memory for the old
resources-requirement list with the NdisFreeMemory function.

Miniport drivers should not modify other resources, such as CmResourceTypeMemory
and CmResourceTypePort resources. Miniport drivers should avoid adding a new
resource to the resource list. However, NDIS 6.1 and later miniport drivers can add more
message interrupt resources. If the miniport driver adds more message interrupt
resources, it must not remove them from the MiniportStartDevice function.

For more information about adding and removing resources, see
IRP_MN_FILTER_RESOURCE_REQUIREMENTS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismconfigmsixtableentry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatememorywithtagpriority
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreememory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-filter-resource-requirements

Registering and Deregistering an MSI
Interrupt
Article • 12/15/2021

To register for MSI support, a miniport driver calls the NdisMRegisterInterruptEx
function to register an MSI interrupt. The driver allocates and initializes an
NDIS_MINIPORT_INTERRUPT_CHARACTERISTICS structure to specify the interrupt
characteristics and function entry points. The driver must set the MsiSupported member
of the NDIS_MINIPORT_INTERRUPT_CHARACTERISTICS structure to TRUE. The driver
then passes the structure to NdisMRegisterInterruptEx.

You must define the following functions to support MSI interrupts:

MiniportMessageInterrupt

MiniportMessageInterruptDpc

MiniportDisableMessageInterrupt

MiniportEnableMessageInterrupt

The miniport driver should provide entry points for the line-based interrupt functions
(which are shown in the following list), even if the driver supports the MSI entry points. If
NDIS does not grant an MSI interrupt, it can grant a normal interrupt as a fallback
condition.

The line-interrupt functions include the following:

MiniportInterrupt

MiniportInterruptDPC

MiniportDisableInterruptEx

MiniportEnableInterruptEx

Drivers should call the NdisMDeregisterInterruptEx function to release resources that
were previously allocated with NdisMRegisterInterruptEx.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_interrupt_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_disable_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_enable_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_disable_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_enable_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterinterruptex

Handling an MSI Interrupt
Article • 12/15/2021

NDIS calls the MiniportMessageInterrupt function when a network interface card (NIC)
generates an interrupt. The MessageId parameter in this function identifies the MSI-X
message.

MiniportMessageInterrupt should always return TRUE after processing the interrupt
because message interrupts are not shared.

A miniport driver should do as little work as possible in its MiniportMessageInterrupt
function. The driver should defer I/O operations to the MiniportMessageInterruptDpc
function, which NDIS calls to complete the deferred processing of an interrupt.

To queue additional deferred procedure calls (DPCs) after MiniportMessageInterrupt
returns, the miniport driver sets the bits of the TargetProcessors parameter of the
MiniportMessageInterrupt function. To request additional DPCs from
MiniportMessageInterrupt or MiniportMessageInterruptDPC, the miniport driver can call
the NdisMQueueDpc function.

The miniport driver can call NdisMQueueDpc to request additional DPCs for other
processors.

NDIS 6.1 and later versions guarantees that DPCs for different messages that are
scheduled for the same CPU are queued separately. For example, if a miniport driver
schedules two DPCs at the same time on CPU 1 (one DPC for message 0 and the other
DPC for message 1), two DPCs are queued for CPU 1 (one DPC with message 0 and the
other DPC with message 1).

NDIS also guarantees that DPCs for the same message that are scheduled on different
CPUs are queued separately. For example, if a miniport driver schedules two DPCs (one
DPC on CPU 0 for message 0 and one DPC on CPU 1 for message 0), two separate DPCs
are queued on CPU 0 and CPU 1, both for message 0.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueuedpc

Synchronizing with an MSI Interrupt
Article • 12/15/2021

If a miniport driver's MiniportMessageInterrupt function shares resources, such as
network interface card (NIC) registers or state variables, with another MiniportXxx
function that runs at a lower IRQL, the other MiniportXxx function must call the
NdisMSynchronizeWithInterruptEx function. This call ensures that the miniport driver's
MiniportSynchronizeMessageInterrupt function accesses the shared resources in a
synchronized and multiprocessor-safe manner.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_message_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsynchronizewithinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_synchronize_interrupt

Changing the CPU Affinity of MSI-X
Table Entries
Article • 12/15/2021

NDIS 6.1 and later miniport drivers that support MSI-X can call the
NdisMConfigMSIXTableEntry function to mask, unmask, or map MSI-X table entries to
device-assigned MSI-X messages. Miniport drivers that support RSS use
NdisMConfigMSIXTableEntry to change the CPU affinity of MSI-X table entries at run
time.

NdisMConfigMSIXTableEntry is a wrapper around the
GUID_MSIX_TABLE_CONFIG_INTERFACE query. Miniport drivers can call
NdisMConfigMSIXTableEntry after NDIS calls the MiniportInitializeEx function and
before the drivers return from the MiniportHaltEx function.

A miniport driver that assigns an MSI-X table entry for each RSS queue and has fewer
queues than the number of RSS processors can add additional MSI-X message resources
in the MiniportFilterResourceRequirements function. For more information about how to
modify assigned resources for a device, see MSI-X Resource Filtering.

The miniport driver can set the CPU affinity of MSI-X interrupt resources so that the
device has at least one MSI-X message for each RSS processor. Note that the PCI bus
driver initially maps the n MSI-X table entries (where n is the number of MSI-X table
entries that the NIC hardware reported to the bus) to the first n MSI-X messages in
modified resources. After NDIS calls MiniportInitializeEx, when the miniport driver
changes the target processor of a particular MSI-X table entry, the driver calls
NdisMConfigMSIXTableEntry to map that table entry to an MSI-X message that already
has the affinity set to the desired processor.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismconfigmsixtableentry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_pci_msix_table_config_interface
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp

NDIS Scatter/Gather DMA
Article • 03/14/2023

NDIS miniport drivers can use the Scatter/Gather DMA (SGDMA) method to transfer
data between a NIC and system memory. A successful DMA transfer requires the
physical address of the data to be in an address range that the NIC supports. HAL
provides a mechanism for drivers to obtain the physical address list for an MDL chain
and, if necessary, will double-buffer the data to a physical address range.

In NDIS versions prior to NDIS 6.0, SGDMA support in miniport drivers and NDIS is
limited in some respects, and in particular does not work well in a multipacket send
scenario. The NDIS 6.0 SGDMA support overcomes these limitations while providing a
simple interface for miniport drivers.

In NDIS versions prior to NDIS 6.0, NDIS obtains a scatter gather (SG) list for each packet
before sending the packet to the miniport driver. NDIS also handles the case where the
original attempt to get the SG list fails due to excessive fragmentation. In this case, NDIS
double-buffers the packet to a contiguous buffer and tries again. HAL can also double-
buffer the data to a physical address that the NIC supports if, for example, the physical
address of the data is above the 32-bit maximum and the NIC does not support 64-bit
DMA.

To avoid a deadlock situation, NDIS obtains a SG list for a packet, and sends one packet
at a time. If NDIS attempts to map all the packets before sending them to the miniport
driver, the system could run out resources. In this case, NDIS would be waiting for map
registers to become available while some map registers are locked down for the packets
that have not been sent. Locked down packets cannot be reused.

Ｕ Caution

For Arm and Arm64 processors, we strongly recommend that NDIS driver writers
use WDF DMA or WDM DMA instead of NDIS Scatter/Gather DMA.

For more information about WDF DMA, see Handling DMA Operations in KMDF
Drivers.

For more information about WDM DMA, see the DMA-related child topics of
Managing Input/Output for Drivers.

History of NDIS SGDMA

https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/introduction-to-dma-in-windows-driver-framework
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/handling-irps

This approach to SGDMA support has the following limitations:

Because the packet is mapped before it gets to the miniport driver, the driver
cannot optimize for small packets or packets that are too fragmented. The
miniport driver cannot double buffer the packet to a known physical address.

There is no guarantee that the physical address array that NDIS passed to the
miniport driver maps to the virtual address of the original data. Therefore, if the
driver changes the data at the virtual address in the MDL chain before sending it,
the modifications made to the data are not reflected in the data in the physical
addresses. In this case, the NIC sends the unmodified data.

NDIS is limited to sending one packet at a time to avoid a deadlock due to
resource issues. This is not as efficient as sending multiple packets.

Because NDIS cannot determine the transmit capabilities of miniport drivers, it
cannot preallocate the storage for an SG list buffer. Therefore, NDIS must allocate
the necessary storage at run time. This is not as efficient as preallocating the
storage.

HAL functions that allocate an SG list should be called at IRQL = DISPATCH_LEVEL.
NDIS does not have the current IRQL information, so it has to set the IRQL to
DISPATCH_LEVEL even if it is already at DISPATCH_LEVEL. This is not efficient if the
IRQL is already at DISPATCH_LEVEL.

In the NDIS 6.0 and later SGDMA interface, NDIS does not map the data buffer before
sending it down to the miniport driver. Instead, NDIS provides an interface for the driver
to map the network data.

This approach yields the following benefits:

Since NDIS provides the interface to HAL for mapping the network data, NDIS
shields miniport drivers from the complexity and details of the mapping process.

Miniport drivers have access to the data before it is mapped. Therefore, any
changes made to the original data are reflected in the data represented by the SG
list even if NDIS or HAL double-buffers the data.

Miniport drivers can optimize the transmission of small or highly fragmented
packets by copying them to a preallocated buffer with a known physical address.
This approach avoids mapping that is not required and therefore improves system
performance.

Benefits of NDIS SGDMA Support

NDIS can send multiple buffers to the miniport driver safely. This results in fewer
calls to miniport drivers and therefore improves system performance.

Miniport drivers can preallocate the memory for an SG list as part of the transmit
descriptor blocks. Therefore, NDIS or miniport drivers are not required to allocate
memory for SG lists at run time.

Because miniport drivers can be running at IRQL = DISPATCH_LEVEL, miniport
drivers can avoid unnecessary calls to raise the IRQL to DISPATCH_LEVEL. For
example, because completing a send happens in the context of an interrupt DPC,
miniport drivers can free the SG list without raising the IRQL.

An NDIS miniport driver calls the NdisMRegisterScatterGatherDma function from its
MiniportInitializeEx function to register a DMA channel with NDIS.

The miniport driver passes a DMA description to NdisMRegisterScatterGatherDma in
the DmaDescription parameter. NdisMRegisterScatterGatherDma returns a size for the
buffer that should be large enough to hold the scatter/gather list. Miniport drivers
should use this size to preallocate the storage for scatter/gather lists.

The miniport driver also passes NdisMRegisterScatterGatherDma the entry points for
the MiniportXxx functions that NDIS calls to process the scatter/gather list. NDIS calls
the miniport driver's MiniportProcessSGList function after HAL has built the
scatter/gather list for a buffer. NdisMRegisterScatterGatherDma supplies a handle in
the pNdisMiniportDmaHandle parameter, which the miniport driver must use in
subsequent calls to NDIS scatter/gather DMA functions.

An NDIS miniport driver calls the NdisMDeregisterScatterGatherDma function from its
MiniportHaltEx function to release scatter/gather DMA resources.

An NDIS miniport driver calls the NdisMAllocateNetBufferSGList function in its
MiniportSendNetBufferLists function. The miniport driver calls
NdisMAllocateNetBufferSGList once for each NET_BUFFER structure that it must map.
After the resources become available and HAL has the SG list ready, NDIS calls the
driver's MiniportProcessSGList function. NDIS can call MiniportProcessSGList before or
after the miniport driver's call to NdisMAllocateNetBufferSGList returns.

Registering and Deregistering DMA Channels

Allocating and Freeing Scatter/Gather Lists

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterscattergatherdma
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterscattergatherdma
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterscattergatherdma
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_process_sg_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterscattergatherdma
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocatenetbuffersglist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_process_sg_list

To improve system performance, the scatter/gather list is generated from the network
data starting at the beginning of the MDL that is specified at the CurrentMdl member of
the associated NET_BUFFER_DATA structure. The start of the network data in the SG list
is offset from the beginning of the SG list by the value specified in the CurrentMdlOffset
member of the associated NET_BUFFER_DATA structure.

While handling a DPC for a send-complete interrupt, and after the miniport driver does
not need the SG list any more, the miniport driver should call the
NdisMFreeNetBufferSGList function to free the SG list.

Note Do not call NdisMFreeNetBufferSGList while the driver or hardware is still
accessing the memory that is described by the NET_BUFFER structure that is associated
with the scatter/gather list.

Before accessing received data, miniport drivers must call NdisMFreeNetBufferSGList to
flush the memory cache.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreenetbuffersglist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreenetbuffersglist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreenetbuffersglist

Exporting a
MiniportDevicePnPEventNotify Function
Article • 12/15/2021

NDIS calls a miniport driver's MiniportDevicePnPEventNotify function to notify the
miniport driver of the following Plug and Play (PnP) events:

The surprise removal of a NIC that the miniport driver controls.

A change in the system's power source.

If a miniport driver does not export a MiniportDevicePnPEventNotify function, NDIS
cannot notify the driver of these PnP events.

All NDIS 6.0 and later miniport drivers must export a MiniportDevicePnPEventNotify
function. In addition, all miniport drivers that have a WDM lower edge should export a
MiniportDevicePnPEventNotify function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

Handling the Surprise Removal of a NIC
Article • 12/15/2021

A surprise removal occurs when a user removes a network interface card (NIC) from a
running system without notifying the system beforehand through the user interface (UI).

Miniport drivers for Windows Vista and later versions of the operating system should be
able to handle surprise removals. In particular, NDIS miniport drivers with a Windows
Driver Model (WDM) lower edge should be able to handle such events. If an NDIS-WDM
miniport driver does not handle a surprise removal, any pending IRPs that the miniport
driver sent to the underlying bus driver before the surprise removal cannot be
completed.

For Windows Vista and later versions, a miniport driver (such as a miniport driver with a
WDM lower edge) that does not control hardware directly should set the
NDIS_MINIPORT_ATTRIBUTES_SURPRISE_REMOVE_OK attribute flag when calling
NdisMSetMiniportAttributes. Setting this flag prevents a warning from being displayed
when a user performs a surprise removal of a NIC. A miniport driver that cannot handle
a surprise removal should not set this flag.

A miniport driver that supports surprise removal should itself attempt to detect a
surprise removal during normal operations--outside of the context of
MiniportDevicePnPEventNotify. After a NIC is removed, an attempt to read a NIC's I/O
ports typically results in return values that have all bits set to one. If a miniport driver
reads such a value, it should check for the presence of the hardware with a more
conclusive test. For example, the miniport driver could write a value to an I/O port and
then try to read the value from that port. The miniport driver could also check for valid
values in the NIC's I/O registers. Detecting a surprise removal in such a way prevents the
miniport driver from hanging in an infinite loop when it attempts to read a removed
NIC's registers in an interrupt DPC.. A miniport driver that stops responding in this way
stops NDIS from calling the driver's MiniportDevicePnPEventNotify function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

Handling a Change in the System's
Power Source
Article • 12/15/2021

The system can change from battery power to AC power or vice versa.

After initializing a miniport driver, NDIS calls a miniport driver's
MiniportDevicePnPEventNotify function to notify the miniport driver of the system's
power source. The miniport driver can use this information to adjust the power
consumption of a NIC. For example, the miniport driver for a wireless LAN (WLAN)
device could reduce power consumption if the system is running on battery power or
increase power consumption if the system is running on AC power.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

Overview of NDIS Processing of Plug
and Play Events
Article • 03/14/2023

The function drivers for a network interface card (NIC) are implemented as an NDIS and
miniport driver pair. When a NIC is added to the system, NDIS creates the functional
device object (FDO) for the NIC. NDIS then subsequently handles all IRPs, including Plug
and Play (PnP) and power management IRPs, that are passed to this FDO. The miniport
driver for the NIC provides the operational interface for the NIC.`

The following sections describe how NDIS processes PnP IRPs on behalf of a NIC:

Adding a NIC

Starting a NIC

Stopping a NIC

Removing a NIC

Processing the Surprise Removal of a NIC

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/function-drivers

Adding a NIC
Article • 12/15/2021

The following description starts with the loading of the miniport driver and describes
how a NIC is added. For the initial processing that the PnP manager performs when a
NIC is added to a running system, see steps 1-11 of Adding a PnP Device to a Running
System.

1. If the miniport driver for the NIC is not already loaded, the PnP manager loads the
driver and then calls the miniport driver's DriverEntry function. If the driver is
already loaded, processing continues with step 4.

2. From its DriverEntry function, the miniport driver registers as a miniport drivers
and performs other drivers initialization. For more information about registering as
a miniport driver, see Initializing a Miniport Driver.

3. NDIS fills in the following entries in the driver object for the miniport driver:

The entry point for the AddDevice routine.
The DispatchXxx entry points for handling IRPs.
The entry point for the Unload routine.

4. The PnP manager calls NDIS's AddDevice routine. NDIS's AddDevice routine creates
a functional device object (FDO) for the newly added NIC and attaches this FDO to
the device stack for the NIC.

5. NDIS reads information from the registry to obtain configuration information for
the NIC. This information includes binding information and the hardware attributes
of the NIC.

6. The PnP manager assigns resources to the NIC, if necessary.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/adding-a-pnp-device-to-a-running-system

Starting a NIC
Article • 12/15/2021

The following steps describe how NDIS participates in the starting of a NIC:

1. The PnP manager issues an IRP_MN_START_DEVICE request. This IRP contains
information that informs NDIS about the resources that the PnP manager has
allocated for the NIC.

2. NDIS sets an IoCompletion routine and passes the IRP_MN_START_DEVICE request
down the device stack to the next lowest driver, which is typically the bus driver.
When the bus driver receives the IRP_MN_START_DEVICE request, the bus driver
performs its start operations on the device and passes the completed
IRP_MN_START_DEVICE request back up the device stack.

3. When NDIS receives the completed IRP_MN_START_DEVICE request (that is, when
NDIS's DispatchPnP routine gains control after all lower drivers have finished with
the IRP), NDIS calls the miniport driver's MiniportInitializeEx function.

4. If the MiniportInitializeEx function returns NDIS_STATUS_SUCCESS, NDIS schedules
an event to call the ProtocolBindAdapterEx function of all protocol drivers that are
supposed to bind to the adapter, as indicated by the binding information in the
registry. Note that the miniport driver has no information about bindings.

5. NDIS completes the IRP_MN_START_DEVICE request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-start-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-io_completion_routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

Stopping a NIC
Article • 12/15/2021

The PnP manager stops a NIC so that it can reconfigure or rebalance the hardware
resources that it assigned to the NIC. The following steps describe how NDIS
participates in the stopping of a NIC:

1. The PnP manager issues an IRP_MN_QUERY_STOP_DEVICE request.

2. When NDIS receives this IRP, it calls the FilterNetPnPEvent function of the lowest
filter driver that is attached to the NIC in the driver stack. In this call, NDIS specifies
an event code of NetEventQueryRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function. A filter driver advertises this entry point when it
calls the NdisFRegisterFilterDriver function.

3. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventQueryRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventQueryRemoveDevice.

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

4. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventQueryRemoveDevice event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventQueryRemoveDevice.

5. If a protocol driver fails the NetEventQueryRemoveDevice event by returning a
failure code from ProtocolNetPnPEvent, NDIS or the PnP manager might ignore the
failure and subsequently succeed the IRP_MN_QUERY_STOP_DEVICE request. A
protocol driver must, therefore, be prepared to handle the removal of the NIC even
though the protocol driver failed the NetEventQueryRemoveDevice event.

6. The PnP manager issues an IRP_MN_STOP_DEVICE request to stop the device or
an IRP_MN_CANCEL_STOP_DEVICE request to cancel the pending stop.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-stop-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-stop-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-cancel-stop-device

7. If the PnP manager issues an IRP_MN_CANCEL_STOP_DEVICE request, NDIS calls
the FilterNetPnPEvent function of the lowest filter driver that is attached to the NIC
in the driver stack. In this call, NDIS specifies an event code of
NetEventCancelRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function.

8. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventCancelRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventCancelRemoveDevice.

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

9. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventCancelRemoveDevice event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventCancelRemoveDevice.

10. If the PnP manager issues an IRP_MN_STOP_DEVICE request, NDIS performs these
steps:

a. It pauses all protocol drivers that are bound to the NIC.

b. It pauses all filter drivers that are attached to the NIC.

c. It pauses the miniport driver for the NIC.

d. It calls the ProtocolUnbindAdapterEx function of all protocol drivers that are
bound to the NIC.

e. It calls the FilterDetach function of all filter modules that are attached to the
NIC.

11. After all protocol and filter drivers are unbound and detached from the NIC, NDIS
calls the miniport driver's MiniportHaltEx function. NDIS sets the HaltAction
parameter of MiniportHaltEx to NdisHaltDeviceStopped.

12. When processing an IRP_MN_STOP_DEVICE request, NDIS does not destroy the
functional device object (FDO) that it created for the NIC when the AddDevice

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

routine was called. NDIS destroys the device object only after receiving an
IRP_MN_REMOVE_DEVICE request for the NIC.

If the PnP manager issues an IRP_MN_START_DEVICE to restart the NIC, NDIS will
reuse the FDO that was previously created for the NIC. NDIS will then restart the
NIC. For more information on this procedure, see Starting a NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-remove-device

Removing a NIC
Article • 12/15/2021

The following steps describe how NDIS participates in the removal of a NIC:

1. The PnP manager issues an IRP_MN_QUERY_REMOVE_DEVICE request to query
whether the NIC can be removed without disrupting the computer.

2. When NDIS receives this IRP, it calls the FilterNetPnPEvent function of the lowest
filter driver that is attached to the NIC in the driver stack. In this call, NDIS specifies
an event code of NetEventQueryRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function. A filter driver advertises this entry point when it
calls the NdisFRegisterFilterDriver function.

3. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventQueryRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventQueryRemoveDevice.

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

4. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventQueryRemoveDevice event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventQueryRemoveDevice.

5. If a protocol driver fails the NetEventQueryRemoveDevice event by returning a
failure code NDIS_STATUS_FAILURE from ProtocolNetPnPEvent, NDIS or the PnP
manager might ignore the failure and subsequently succeed the
IRP_MN_QUERY_REMOVE_DEVICE request. A protocol driver must, therefore, be
prepared to handle the removal of the NIC even though the protocol driver failed
the NetEventQueryRemoveDevice event.

6. The PnP manager issues an IRP_MN_REMOVE_DEVICE request to remove the
software representation (device objects, and so on) for the NIC or an
IRP_MN_CANCEL_REMOVE_DEVICE request to cancel the pending removal. Note

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-remove-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-remove-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-remove-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-cancel-remove-device

that an IRP_MN_REMOVE_DEVICE request is not always preceded by an
IRP_MN_QUERY_REMOVE_DEVICE request.

7. If the PnP manager issues an IRP_MN_CANCEL_REMOVE_DEVICE request, NDIS
calls the FilterNetPnPEvent function of the lowest filter driver that is attached to the
NIC in the driver stack. In this call, NDIS specifies an event code of
NetEventCancelRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function.

8. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventCancelRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventCancelRemoveDevice.

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

9. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventCancelRemoveDevice event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventCancelRemoveDevice. This event code ends the removal sequence.

10. If the PnP manager issues an IRP_MN_REMOVE_DEVICE request, NDIS performs
these steps:

a. It pauses all protocol drivers that are bound to the NIC.

b. It pauses all filter drivers that are attached to the NIC.

c. It pauses the miniport driver for the NIC.

d. It calls the ProtocolUnbindAdapterEx function of all protocol drivers that are
bound to the NIC.

e. It calls the FilterDetach function of all filter modules that are attached to the
NIC.

11. If the miniport driver was successfully initialized, NDIS calls the miniport driver's
MiniportHaltEx function. NDIS sets the HaltAction parameter of MiniportHaltEx to
NdisHaltDeviceDisabled.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

12. NDIS sends the IRP_MN_REMOVE_DEVICE request to the next lower device object
in the stack.

13. When NDIS receives the completed IRP_MN_REMOVE_DEVICE request from the
next lower device object in the stack, NDIS destroys the functional device object
(FDO) that it created for the NIC.

Processing the Surprise Removal of a
NIC (Windows Vista)
Article • 12/15/2021

The following steps describe how NDIS participates in the surprise removal of a NIC in
Windows Vista and Windows Server 2008:

1. The PnP manager issues an IRP_MN_SURPRISE_REMOVAL request to the device
stack for the NIC.

2. When NDIS receives this IRP, it calls the FilterNetPnPEvent function of the lowest
filter driver that is attached to the NIC in the driver stack. In this call, NDIS specifies
an event code of NetEventQueryRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function. A filter driver advertise this entry point when it
calls the NdisFRegisterFilterDriver function.

3. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventQueryRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventQueryRemoveDevice..

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

4. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventQueryRemoveDevice. event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventQueryRemoveDevice..

5. If the miniport driver was successfully initialized, NDIS calls the
MiniportDevicePnPEventNotify function with an event code of
NdisDevicePnPEventSurpriseRemoved. The miniport driver should note that the
device has been physically removed. If the miniport driver is an NDIS-WDM driver,
it should cancel any pending IRPs that it sent down to the underlying bus driver. If
the miniport driver was not successfully initialized, processing continues.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-surprise-removal
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

6. NDIS sends the IRP_MN_SURPRISE_REMOVAL request to the next-lower device
object in the stack. After receiving the returned IRP_MN_SURPRISE_REMOVAL
request from the next-lower device object in the stack, NDIS completes the
IRP_MN_SURPRISE_REMOVAL request.

7. The PnP manager issues an IRP_MN_REMOVE_DEVICE request to remove the
software representation (device objects, and so forth) for the NIC.

8. NDIS performs the following steps:

a. It pauses all protocol drivers that are bound to the NIC.

b. It pauses all filter drivers that are attached to the NIC.

c. It pauses the miniport driver for the NIC.

d. It calls the ProtocolUnbindAdapterEx function of all protocol drivers that are
bound to the NIC.

e. It calls the FilterDetach function of all filter modules that are attached to the
NIC.

9. After all protocol and filter drivers are unbound and detached from the NIC, NDIS
calls the miniport driver's MiniportHaltEx function. NDIS sets the HaltAction
parameter of MiniportHaltEx to NdisHaltDeviceSurpriseRemoved.

10. NDIS sends the IRP_MN_REMOVE_DEVICE request to the next lower device object
in the stack.

11. When NDIS receives the completed IRP_MN_REMOVE_DEVICE request from the
next lower device object in the stack, NDIS destroys the functional device object
(FDO) that it created for the NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-remove-device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Processing the Surprise Removal of a
NIC (Windows 7 and Later Versions)
Article • 12/15/2021

In Windows 7 and Windows Server 2008 R2 and later, NDIS may participate in the
surprise removal of a network interface card (NIC) differently than it had in previous
versions of Windows. NDIS performs a revised surprise removal procedure if any of the
following conditions are true:

The operating system is Windows 8 / Windows Server 2012 or later.
The operating system is Windows 7, and the hotfix for KB2471472 has been
installed.
The operating system is Windows 7, and the network adapter is a mobile
broadband (MBB) device.

If none of these conditions are met, NDIS participates in the surprise removal process as
it did in previous versions of Windows. For more information about this procedure, see
Processing the Surprise Removal of a NIC (Windows Vista).

The following steps describe the revised way in which NDIS participates in the surprise
removal of a NIC:

1. The PnP manager issues an IRP_MN_SURPRISE_REMOVAL request to the device
stack for the NIC.

2. When NDIS receives this IRP, it calls the FilterNetPnPEvent function of the lowest
filter driver that is attached to the NIC in the driver stack. In this call, NDIS specifies
an event code of NetEventQueryRemoveDevice.

Note NDIS performs this step only for filter drivers that advertise an entry point
for the FilterNetPnPEvent function. A filter driver advertise this entry point when it
calls the NdisFRegisterFilterDriver function.

3. Within the context of the call to its FilterNetPnPEvent function, the filter driver
must call NdisFNetPnPEvent to forward the NetEventQueryRemoveDevice event
up to the next filter driver in the driver stack. This causes NDIS to call that filter
driver's FilterNetPnPEvent function with an event code of
NetEventQueryRemoveDevice.

Note NDIS performs this step only for the next filter driver in the driver stack that
advertises an entry point for the FilterNetPnPEvent function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-surprise-removal
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event

4. Each filter driver in the driver stack repeats the previous step until the highest filter
driver in the stack has forwarded the NetEventQueryRemoveDevice event.

When this happens, NDIS calls the ProtocolNetPnPEvent function of all protocol
drivers that are bound to the NIC. In this call, NDIS specifies an event code of
NetEventQueryRemoveDevice.

5. NDIS calls the MiniportDevicePnPEventNotify function with an event code of
NdisDevicePnPEventSurpriseRemoved. The miniport driver should note that the
device has been physically removed. If the miniport driver is an NDIS-WDM driver,
it should cancel any pending IRPs that it sent down to the underlying bus driver.

6. NDIS performs the following steps:

a. It pauses all protocol drivers that are bound to the NIC.

b. It pauses all filter drivers that are attached to the NIC.

c. It pauses the miniport driver for the NIC.

d. It calls the ProtocolUnbindAdapterEx function of all protocol drivers that are
bound to the NIC.

e. It calls the FilterDetach function of all filter modules that are attached to the
NIC.

7. After all protocol and filter drivers are unbound and detached from the NIC, NDIS
calls the miniport driver's MiniportHaltEx function. NDIS sets the HaltAction
parameter of MiniportHaltEx to NdisHaltDeviceSurpriseRemoved.

8. NDIS sends the IRP_MN_SURPRISE_REMOVAL request to the next-lower device
object in the stack. After receiving the returned IRP_MN_SURPRISE_REMOVAL
request from the next-lower device object in the stack, NDIS completes the
IRP_MN_SURPRISE_REMOVAL request.

9. The PnP manager issues an IRP_MN_REMOVE_DEVICE request to remove the
software representation (device objects, and so forth) for the NIC.

10. NDIS sends the IRP_MN_REMOVE_DEVICE request to the next lower device object
in the stack.

11. When NDIS receives the completed IRP_MN_REMOVE_DEVICE request from the
next lower device object in the stack, NDIS destroys the functional device object
(FDO) that it created for the NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-remove-device

Miniport Driver Hardware Reset
Article • 12/15/2021

A miniport driver must register a MiniportResetEx function with
NdisMRegisterMiniportDriver.

MiniportResetEx can complete synchronously or asynchronously with a call to
NdisMResetComplete(see the following figure).

MiniportResetEx should:

Disable further interrupts.

Clear out the data that is associated with any sends in progress. For example, on a
ring buffer for a bus-master direct memory access (DMA) device, the pointers to
send buffers should be cleared. Deserialized and connection-oriented miniport
drivers must return NDIS_STATUS_REQUEST_ABORTED for any queued send
requests.

Restore the hardware state and the miniport driver's internal state to the state that
existed before the reset operation.

The miniport driver is responsible for restoring the hardware state of the device except
for multicast addresses, packet filters, task offload settings, and wake up patterns. These
setting are restored by either the miniport driver or NDIS. The miniport driver
determines who is responsible for restoring these settings by returning a Boolean value
in the AddressingReset parameter.

If the miniport driver returns FALSE in the AddressingReset parameter, the miniport
driver restores its multicast addresses, packet filters, task offload settings, and wake up
patterns to their initial state. If the miniport driver returns TRUE in AddressingReset, NDIS
calls a connectionless miniport driver's MiniportOidRequest function or a connection-
oriented miniport driver's MiniportCoOidRequest function to set the following
configuration settings:

The network packet filter through a set request of
OID_GEN_CURRENT_PACKET_FILTER.

The multicast address list through a set request of OID_802_3_MULTICAST_LIST.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismresetcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

Task offload encapsulation settings through a set request of
OID_OFFLOAD_ENCAPSULATION.

Power management wake-up patterns through a set request of
OID_PNP_ADD_WAKE_UP_PATTERN. Note Starting with NDIS 6.20, wake-up
patterns set through OID_PM_ADD_WOL_PATTERN must be restored by the
miniport driver.

Adapter States of a Miniport Driver

Miniport Adapter States and Operations

Miniport Driver Reset and Halt Functions

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff564064(v=vs.85)

Miniport Driver Halt Handler
Article • 12/15/2021

An NDIS miniport driver must supply a MiniportHaltEx function to
NdisMRegisterMiniportDriver.

MiniportHaltEx should undo everything that MiniportInitializeEx did. For example, the
NDIS miniport driver might:

Free ports. (For more information, see Freeing an NDIS Port.)

Release all of the hardware resources that MiniportInitializeEx claimed.

Free interrupt resources by calling NdisMDeregisterInterruptEx.

Free any memory that MiniportInitializeEx allocated.

Stop the NIC, unless the MiniportShutdownEx function has already restored the NIC
to its initial state.

The following diagram illustrates unloading a miniport driver.

MiniportHaltEx should complete the operations that are necessary to unload the driver
before returning. If the miniport driver has any outstanding receive indications (that is,
received network data that it has indicated up to NDIS but which NDIS has not yet
returned), MiniportHaltEx must not return until such data is returned to the miniport
driver's MiniportReturnNetBufferLists function.

The preceding figure shows a set of calls that could be made by a MiniportHaltEx
function. These calls are only a subset of the calls that could be made. The actual set of
calls depends on previous actions of the miniport driver. The miniport driver can make
these same calls in MiniportInitializeEx if it cannot successfully initialize the network
adapter because of hardware problems or because it cannot acquire a resource that it
needs. In such a case, MiniportInitializeEx should unload the driver by undoing its
previous actions. Otherwise, MiniportHaltEx will undo the actions of MiniportInitializeEx.

The following list describes the calls that are required to reverse certain actions that the
miniport driver might take:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists

If the miniport driver registered an interrupt, it should call
NdisMDeregisterInterruptEx.

If the miniport driver set up a timer or timers, it should call
NdisCancelTimerObject for each timer that it created. If a call to
NdisCancelTimerObject fails, the timer might have already fired. In this case, the
miniport driver should wait for the timer handler to complete before returning
from MiniportHaltEx.

If the miniport driver allocated any memory with
NdisAllocateMemoryWithTagPriority, it should call NdisFreeMemory to free that
memory.

If the miniport driver allocated any memory with NdisMAllocateSharedMemory,
or NdisMAllocateSharedMemoryAsyncEx, it should call
NdisMFreeSharedMemory to free that memory.

If the miniport driver allocated and initialized storage for a pool of packet
descriptors with NdisAllocateNetBufferPool, it should call NdisFreeNetBufferPool
to free that storage.

If the miniport driver allocated or reserved any hardware resources, these should
be returned. For example, if the miniport driver mapped an I/O port range on a
NIC, it should release the ports by calling NdisMDeregisterIoPortRange.

Adapter States of a Miniport Driver

Freeing an NDIS Port

Halting a Miniport Adapter

Miniport Adapter States and Operations

Miniport Driver Reset and Halt Functions

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterinterruptex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceltimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatememorywithtagpriority
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreememory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocatesharedmemoryasyncex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterioportrange
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff564064(v=vs.85)

Overview of Miniport Drivers with a
WDM Lower Interface
Article • 12/15/2021

A miniport driver with a Microsoft Windows Driver Model (WDM) lower interface is also
known as an NDIS-WDM miniport driver. This type of miniport driver:

Uses a WDM lower edge.

Can call both NDIS and non-NDIS functions. However, whenever possible, the
miniport driver should call NDIS functions.

Can initialize a miniport instance that is used to control devices that are attached
to a particular bus and that communicates with those devices over that bus.

For example, a miniport driver that controls devices on either Universal Serial Bus (USB)
or IEEE 1394 (Firewire) buses must expose a standard NDIS miniport driver interface at
its upper edge and use the class interface for the particular bus at its lower edge. Such a
miniport driver communicates with devices that are attached to the bus by sending I/O
request packets (IRPs) to the bus.

The following topics describe how to implement a miniport driver that uses a WDM
lower edge:

Miniport Driver with a WDM Lower Edge

Registering Miniport Driver Functions for WDM Lower Edge

Initializing a Miniport Driver with a WDM Lower Edge

Issuing Commands to Communicate with Devices

Implementation Tips and Requirements for WDM Lower Edge

Compile Flags for WDM Lower Edge

Power Management for WDM Lower Edge

Installing NDIS-WDM Miniport Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/writing-wdm-drivers

Miniport Driver with a WDM Lower
Edge
Article • 12/15/2021

A miniport driver with a WDM lower edge (an NDIS-WDM miniport driver) follows the
WDM rule that specifies that a WDM header file must be included in the driver's source
files. An NDIS-WDM miniport driver requires a WDM header file to call kernel-mode
routines on its lower edge. Typically, NDIS miniport drivers should just call functions that
NDIS provides. This restriction is shown by the way NDIS wraps around NDIS miniport
drivers in the figure in the NDIS Drivers section. Although typical NDIS miniport drivers
are not called WDM drivers, they indirectly follow WDM rules because NDIS itself
follows WDM rules.

The following diagram shows an NDIS-WDM miniport driver that interfaces with the
USB driver stack by using a WDM lower edge.

The following list describes the components that the preceding diagram shows:

IPX/SPX Compatible and TCP/IP
NDIS protocol drivers that transmit packets by using underlying miniport drivers.

NDIS
The Ndis.sys driver that provides a standard interface between layered network drivers.

NDIS-WDM Miniport Driver for USB
An NDIS-WDM miniport driver that interfaces with the USB driver stack.

USB Client Drivers
Other vendor-supplied USB client drivers.

USB Class Interface
USB Routines and I/O requests that USB client drivers can use to interface with the USB
driver stack.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff540046(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff537421(v=vs.85)

USB Driver Stack
Driver stack for USB devices. For more information, see USB Driver Stack Architecture.

https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-3-0-driver-stack-architecture

Registering Miniport Driver Functions
for WDM Lower Edge
Article • 12/15/2021

A miniport driver that has a WDM lower edge must call the
NdisMRegisterMiniportDriver function in its DriverEntry routine to register certain
entry-point functions with the NDIS library. These entry-point functions compose the
miniport driver's upper edge and are described in Initializing a Miniport Driver. However,
a miniport driver that has a WDM lower edge is not required to set up certain entry-
point functions. For example, the following entry-point functions are not set up for the
following reasons:

MiniportInterrupt, MiniportInterruptDPC, MiniportEnableInterruptEx, and
MiniportDisableInterruptEx

Because the miniport driver does not receive interrupts from a physical network
interface card (NIC), it does not require these entry-point routines. The driver for
the particular bus receives interrupts when packets arrive on the bus that are
intended for the miniport driver. The bus driver then notifies the miniport driver.

MiniportSharedMemoryAllocateComplete

Because the miniport driver does not allocate shared memory, a completion entry-
point routine is not specified.

MiniportCheckForHangEx

The miniport driver can rely on NDIS to determine if its miniport instance has
stopped responding, based on sends and requests that time out, so this routine is
not typically required.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_enable_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_disable_interrupt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_allocate_shared_mem_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang

Initializing a Miniport Driver with a
WDM Lower Edge
Article • 12/15/2021

After a miniport driver has been loaded by the operating system, NDIS calls the miniport
driver's MiniportInitializeEx function to initialize a miniport instance that the miniport
driver manages. To communicate through a miniport instance that has a WDM lower
edge, the miniport driver must retrieve specific information to set up its
communications.

During initialization of this miniport instance, the miniport driver must call the
NdisMGetDeviceProperty function to retrieve device objects that are required to set up
communication with the miniport instance through a WDM interface. In this call, the
miniport driver passes the handle to the miniport instance in the MiniportAdapterHandle
parameter and buffers that receive pointers to DEVICE_OBJECT structures. The miniport
driver uses the retrieved pointer to the next-device object (NextDeviceObject parameter)
to create and submit IRPs. For more information, see Handling IRPs.

A miniport driver with a WDM lower edge must be a deserialized miniport driver. A
deserialized miniport driver manages its own queue of send and receive requests
internally whenever it has insufficient resources to handle these requests immediately; if
a miniport driver is not deserialized, NDIS manages this queue. An NDIS-WDM miniport
driver must be deserialized because it sends and receives packets outside of the context
of NDIS calls. During initialization of a miniport instance, an NDIS-WDM miniport driver
must specify the deserialized feature. All NDIS 6.0 and later miniport drivers are
deserialized.

Note that an NDIS-WDM miniport driver cannot be an intermediate driver (a driver that
exposes a miniport driver interface at the top and a protocol driver interface at the
bottom).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetdeviceproperty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/handling-irps

Issuing Commands to Communicate
with Devices
Article • 12/15/2021

A miniport driver with a WDM lower edge that controls devices on a bus issues
commands to the bus interface to communicate with those devices. For more
information, see Handling IRPs and the documentation for the particular bus-driver
interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/handling-irps

Implementation Tips and Requirements
for WDM Lower Edge
Article • 12/15/2021

This topic describes tips and requirements for implementing an NDIS-WDM miniport
driver. An NDIS-WDM miniport driver can call both NDIS and non-NDIS functions. These
non-NDIS functions include, for example, WDM-kernel-mode support routines and
functions for a particular bus-driver interface.

When implementing an NDIS-WDM miniport driver, keep the following in mind:

Building an NDIS-WDM miniport driver requires that the NDIS_WDM flag is
defined before the Ndis.h header file is included. Defining the NDIS_WDM flag
ensures that Ndis.h automatically includes the appropriate WDM header file. The
NDIS_WDM flag should be either embedded at the start of the miniport driver's
source code or set in the miniport driver's Sources file. An NDIS-WDM miniport
driver requires a WDM header file to call kernel-mode routines such as
IoCallDriver and IoAllocateIrp.

Function calls for a particular bus-driver interface require the header files for that
bus driver.

Including NDIS and non-NDIS headers in the same source file is not recommended
because they might not be compatible. That is, separate source files should be
created for code that calls NDIS functions and for code that calls non-NDIS
functions.

An NDIS-WDM miniport driver should call appropriate NDIS functions to allocate
and release resources unless the NDIS-WDM miniport driver allocates and releases
resources in one of the following scenarios:

A resource, typically a memory resource, is allocated by the NDIS-WDM
miniport driver and is later released by a non-NDIS entity such as a bus-driver
interface,
A resource, typically a memory resource, is allocated by a non-NDIS entity and
is later released by the NDIS-WDM miniport driver.

For the preceding scenarios, the NDIS-WDM miniport driver should call the
appropriate WDM routines to allocate or release resources for the non-NDIS entity.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioallocateirp

Compile Flags for WDM Lower Edge
Article • 12/15/2021

You must include the following compile flags in the Sources file for an NDIS-WDM
miniport driver to build the NDIS-WDM miniport driver:

-DNDIS_WDM=1

Directs NDIS to include the appropriate WDM header file.

Alternatively, you can embed compile flags at the start of the miniport driver's source
code before the Ndis.h header file is included.

Power Management for WDM Lower
Edge
Article • 12/15/2021

NDIS handles all Plug and Play (PnP) and power management IRPs for NDIS-WDM
miniport drivers. Therefore, NDIS-WDM miniport drivers should respond to PnP and
power management OIDs, based on device capabilities, as described in Power
Management for NDIS Miniport Drivers.

Installing NDIS-WDM Miniport Drivers
Article • 03/14/2023

When you implement the installation mechanism for an NDIS-WDM miniport driver, you
should keep the following items in mind:

Create an information (INF) file for a Net class of network component as described
in Creating Network INF Files.

Include Plug and Play (PnP) identifiers (ID) of devices as is typically done for any
Net class of network component; however, make these IDs specific to the bus type
to which the devices are attached.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Overview of WAN Miniport Drivers
Article • 09/27/2024

This section describes CoNDIS WAN miniport drivers, CoNDIS WAN call managers,
CoNDIS WAN miniport call managers (MCMs), and the environments in which they
operate. These WAN drivers support the Remote Access Service (RAS) and the Point-to-
Point Protocol (PPP) over such media as ISDN, Frame Relay, or Switched 56.

This section includes the following topics:

Choosing a WAN Driver Model

Overview of the WAN Architecture

Implementing CoNDIS WAN Miniport Drivers

CoNDIS WAN Operations That Support Telephonic Services

WAN Packet Framing

WAN Miniport Driver Build Parameters

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

WAN Driver Models
Article • 12/15/2021

Microsoft Windows 2000 and later operating systems support two WAN driver models:
NDIS WAN and CoNDIS WAN.

NDIS WAN miniport drivers are built on the NDIS model for connectionless miniport
drivers. NDIS WAN miniport drivers are not supported for NDIS version 5.0 and later
drivers. New drivers should be based on the CoNDIS WAN driver architecture.

CoNDIS WAN drivers are built on the connection-oriented NDIS (CoNDIS) driver model.

CoNDIS WAN miniport drivers and miniport call managers (MCMs) can:

Call the same NDIS functions that non-WAN connection-oriented miniport drivers
call.

Export the same set of MiniportXxx functions that non-WAN connection-oriented
miniport drivers export.

Provide additional WAN-specific capabilities.

For more information about CoNDIS drivers, see Connection-Oriented NDIS.

If you are writing a new WAN driver, we recommend that you use the CoNDIS WAN
model.

Microsoft will continue to support existing NDIS WAN miniport drivers. You do not have
to write CoNDIS drivers for old hardware.

The following topics describe the primary advantages of using the CoNDIS WAN model:

CoNDIS WAN Is More Flexible

CoNDIS WAN Is Less Complex

Other Benefits of CoNDIS WAN

Other NDIS Features Available to CoNDIS WAN Drivers

CoNDIS WAN Is More Flexible
Article • 03/14/2023

In the CoNDIS model, major functions (such as call management and data transfer) are
compartmentalized into discrete components or subcomponents. This organization
enables you to use system-supplied and third-party components and update
functionality more easily.

The CoNDIS model provides four types of drivers:

Connection-oriented client drivers

Call managers

Connection-oriented miniport drivers

Integrated miniport call managers (MCMs)

For more information about CoNDIS drivers, see Connection-Oriented NDIS.

The separation of call manager and miniport driver components enables you to update
the miniport driver to support new hardware while the call manager remains
unchanged. In many cases, the call manager might require upgrades only to correct
defects.

The separation of architectural components remains clearly defined in an MCM. The call
manager subcomponent of the MCM handles the signaling aspects of connections, and
the CoNDIS WAN miniport driver subcomponent handles the NIC hardware.

You can use a system-supplied call manager. If the system does not provide a call
manager for your media type (as with, for example, ISDN), you can write one or possibly
obtain one from a third party.

The Microsoft Windows operating system includes a PPP CoNDIS client, and CoNDIS
WAN miniport drivers are available for many devices. You can write CoNDIS WAN clients
to extend the system to support other protocol drivers in addition to PPP.

The CoNDIS WAN model is not restricted to PPP data. You can implement a custom
WAN client driver and miniport driver to handle, for example, raw data streaming or
proprietary encryption.

CoNDIS WAN Is Less Complex
Article • 03/14/2023

CoNDIS defines objects that correspond to each of the logical entities that are involved
in a connection. These entities include address families (AFs), virtual connections (VCs),
service access points (SAPs), and parties.

In the CoNDIS environment, the system handles many of the complex TAPI
requirements. Therefore, a CoNDIS WAN miniport driver or MCM does not have to
handle as many TAPI OIDs as an NDIS WAN miniport driver. In addition, the CoNDIS
WAN miniport driver or MCM is not required to handle the following status indications:

NDIS_STATUS_TAPI_INDICATION

NDIS_STATUS_WAN_LINE_UP

NDIS_STATUS_WAN_LINE_DOWN

The separation of the call manager and miniport driver functions enables you to
implement two simple drivers. The simplified drivers should be easier to maintain and
debug than one large and complex driver.

Other Benefits of CoNDIS WAN
Article • 03/14/2023

In addition to flexibility and simplicity, the CoNDIS WAN model provides the following
benefits:

CoNDIS WAN miniport drivers support multipacket send and receive operations.

When a CoNDIS miniport driver indicates a receive packet, a bound protocol can
defer processing of the packet. When an NDIS WAN miniport driver indicates a
receive packet, a bound protocol must copy the data immediately.

CoNDIS WAN supports multipoint calls. For more information about making
multipoint calls, see Making a Call.

CoNDIS WAN supports quality of service (QoS). CoNDIS WAN drivers use the
NET_BUFFER structure. For more information about CoNDIS QoS, see Client-
Initiated Request to Change Call Parameters.

Only CoNDIS WAN will support future NDIS enhancements that apply to WAN
drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Other NDIS Features Available to
CoNDIS WAN Drivers
Article • 03/14/2023

CoNDIS WAN miniport drivers or MCMs can take advantage of the following
functionality:

Plug and Play (PnP) event notification for miniport drivers

64-bit statistical counters

Canceling send packets

Registering a MiniportShutdownEx function

New miniport driver attributes

Safe functions

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown

Overview of the WAN Architecture
Article • 12/15/2021

The WAN architecture consists primarily of the components that interface directly to
WAN miniport drivers. However, the WAN architecture is best introduced within the
broader context of the RAS architecture. The RAS architecture includes some
components that are essential for a high-level understanding of the WAN architecture
but are otherwise out of the scope of the Microsoft Windows Driver Kit (WDK) and the
Windows Driver Development Kit (DDK).

The following topics describe an overview of the RAS architecture, the major WAN
system components, and the primary implementation differences between the CoNDIS
WAN and NDIS WAN models:

RAS Architecture Overview

NDISWAN Overview

WAN Driver Bindings and Connections

NDISTAPI Overview

NDPROXY Overview

RAS Architecture Overview
Article • 12/06/2022

The Remote Access Service (RAS) enables remote workstations to establish a dial-up
connection to a LAN and access resources on the LAN as if the remote workstation were
on the LAN. WAN miniport drivers provide the interface between RAS and wide area
network (WAN) cards such as ISDN, X.25, and Switched 56 adapters.

The primary system-supplied components of the RAS architecture include the following:

NDISWAN

TAPI service

NDPROXY

NDISTAPI

Developers provide TAPI-aware applications and WAN miniport drivers. CoNDIS WAN
developers can also provide WAN client protocol drivers, a miniport call manager
(MCM), or a separate call manager.

The following figure shows the RAS architecture.

The following sections briefly describe the components in the RAS architecture.

RAS and TAPI Components

The components on the right side of the preceding figure implement TAPI-related call
management operations, such as setting up and tearing down calls and connections.
The details of these operations depend on the WAN model (NDIS WAN or CoNDIS
WAN).

User-mode applications call RAS functions to make RAS connections with remote
computers. After a RAS connection is established, such applications can connect to
network services by using standard network interfaces such as Microsoft Windows
Sockets, NetBIOS, Named Pipes, or RPC.

TAPI-aware applications, which are capable of telephony communication, run in both
application and service processes. Service providers communicate with specific devices.
TAPI-aware applications communicate through the TAPI interface (Tapi32.dll) with their
service providers. These service providers run in the TAPI service process.

The TAPI service (Tapisrv.exe) process presents the Telephony Service Provider Interface
(TSPI) of service providers to TAPI-aware applications. These service providers are DLLs
that run in the context of the TAPI service process.

The operating system supplies service providers that NDIS WAN or CoNDIS WAN
miniport drivers use to communicate with user-mode applications. The service provider
for NDIS WAN miniport drivers is KMDDSP. The service provider for CoNDIS WAN
miniport drivers (and MCMs) is NDPTSP.

KMDDSP (Kmddsp.tsp) is a service provider DLL that runs in the context of the TAPI
service process. KMDDSP provides a TSPI interface that the TAPI service presents to
TAPI-aware applications so that NDISTAPI can communicate with user-mode
applications.

KMDDSP works with NDISTAPI to convert user-mode requests to corresponding TAPI
OIDs (OID_TAPI_Xxx). For more information about TAPI OIDs, see TAPI Objects.

RAS Functions

TAPI-Aware Applications

TAPI Service

KMDDSP

NDPTSP

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff564235(v=vs.85)

NDPTSP (Ndptsp.tsp) is a service provider DLL that runs in the context of the TAPI
service process. NDPTSP provides a TSPI interface that the TAPI service presents to TAPI-
aware applications so that NDPROXY can communicate with user-mode applications.

NDPTSP works with NDPROXY to convert user-mode requests to TAPI connection-
oriented OIDs (OID_CO_TAPI_Xxx). For more information about TAPI connection-
oriented OIDs, see TAPI Extensions for Connection-Oriented NDIS.

NDISTAPI (Ndistapi.sys) receives TAPI requests from KMDDSP and then calls
NdisOidRequest to route the corresponding TAPI OIDs to NDIS WAN miniport drivers.
For more information about NDISTAPI, see NDISTAPI Overview.

NDPROXY (Ndproxy.sys) communicates with TAPI through the TSPI interface that
NDPTSP provides. NDPROXY communicates through NDIS with NDISWAN and CoNDIS
WAN miniport drivers, MCMs, and call managers.

For more information about NDPROXY, see NDPROXY Overview.

The RAS system component provides transports such as PPP Authentication (PAP, CHAP)
and network configuration protocol drivers (IPCP, IPXCP, NBFCP, LCP, and so on). A
WAN miniport driver (or MCM) implements only PPP media-specific framing.

NDISWAN (Ndiswan.sys) is an NDIS intermediate driver. NDISWAN binds to NDIS
protocol drivers at its upper edge and WAN miniport drivers at its lower edge.

NDISWAN provides PPP protocol/link framing, compression/decompression, and
encryption/decryption. NDISWAN interfaces with both NDIS WAN and CoNDIS WAN
miniport drivers.

For more information about NDISWAN, see NDISWAN Overview.

NDISTAPI

NDPROXY

Driver Stack

WAN Transports

NDISWAN

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

The serial driver component is a standard device driver for internal serial ports or
multiport serial cards. The asynchronous WAN miniport driver included with Microsoft
Windows 2000 and later uses the internal serial driver for modem communications. Any
driver that exports the same functions as the serial driver can interface with the built-in
asynchronous WAN miniport driver.

Note X.25 vendors can implement serial driver emulators for an X.25 interface card. In
this case, each virtual circuit on the X.25 card appears as a serial port with an X.25
packet assembler/disassembler (PAD) attached to it. The connection interface must
correctly emulate serial signals such as DTR, DCD, CTS, RTS, and DSR. X.25 vendors who
implement a serial driver emulator for their X.25 card must also make an entry for their
PAD in the Pad.inf file. This file contains the command/response script required to make
a connection through the X.25 PAD.

A WAN miniport driver provides the interface between NDISWAN and WAN NICs.

A WAN miniport driver can be implemented as an NDIS WAN miniport driver or a
CoNDIS WAN miniport driver. For more information about choosing the miniport driver
model that is most appropriate for your application, see Choosing a WAN Driver Model.

Serial Driver

WAN Miniport Driver

NDISWAN Overview
Article • 03/14/2023

NDISWAN is a system-supplied NDIS intermediate driver that provides functionality
such as data compression, encryption, loopback, and simple PPP framing that is used by
WAN miniport drivers. WAN miniport drivers are therefore required to implement only
those features that are specific to the medium (for example, Q931 signaling is required
for ISDN).

The following figure shows how NDISWAN interfaces with other components in the RAS
architecture.

To overlying protocol drivers, NDISWAN presents both NDIS and CoNDIS miniport driver
interfaces. To underlying WAN miniport drivers, NDISWAN presents both NDIS and
CoNDIS protocol interfaces that include some WAN-specific elements.

In a CoNDIS environment, the WAN miniport driver can be a connection-oriented
miniport driver or an integrated miniport call manager (MCM).

NDISWAN provides the following functionality:

Packet conversion

NDISWAN converts send packets that are passed to it by protocol drivers from
LAN to PPP format. NDISWAN performs the reverse conversion for receive packets
passed to it by WAN miniport drivers. NDISWAN uses simple HDLC framing. Most
of the media-specific framing must be done by the miniport driver. For more
information about WAN packet framing, see WAN Packet Framing.

Packet processing

Send packets include configuration options for header compression, data
compression, and encryption. NDISWAN applies these operations in that order on
send packets. NDISWAN applies these options in the reverse order on receive
packets. If NDISWAN determines that a configuration option such as compression
or encryption is enabled, NDISWAN sends an OID to inform the underlying WAN
miniport driver.

Simplified binding for drivers

NDISWAN simplifies the bindings between protocol drivers and WAN miniport
drivers. For more information about WAN driver bindings, see WAN Driver
Bindings and Connections.

Data forwarding

In an NDIS WAN environment, NDISWAN examines the header of the descriptor of
a send packet and determines over which link the packet will be sent. NDISWAN
copies the packet into a contiguous buffer and forwards it to the underlying
miniport driver. In a CoNDIS WAN environment, NDISWAN forwards packets based
on the packet's associated virtual connection (VC). For more information about
WAN driver links and connections, see WAN Driver Bindings and Connections.

WAN Driver Bindings and Connections
Article • 12/15/2021

This topic provides an overview of bindings and connections between NDISWAN,
overlying protocol drivers, and the underlying WAN miniport drivers.

NDISWAN binds to one or more WAN miniport drivers and one or more protocol drivers
bind to NDISWAN.

The following figure illustrates the binding relationships between WAN client protocol
drivers, NDISWAN, and WAN miniport drivers.

Protocol drivers bind once to NDISWAN and do not bind to WAN miniport drivers. This
type of binding saves memory and simplifies WAN miniport drivers. Because there are
typically several protocol drivers in a given system and there could be more than one
WAN miniport driver, the reduction in the number of bindings saves memory. That is,
each protocol does not have to bind to each WAN miniport driver. Also, because
protocol drivers can rely on only having a single WAN binding, these protocol drivers
can be simplified.

NDIS WAN and CoNDIS WAN miniport drivers implement different models for
connections:

An NDIS WAN miniport driver uses links to send and receive data. Links are logical,
point-to-point bidirectional communication channels. There can be many links per
NIC. Links are dynamically established and torn down. The link speed and quality
of the link can vary for each connection. However, the padding and link parameters

Bindings

Connections

must be the same for all links that a NIC supports. For example, if an NDIS WAN
miniport driver specifies a 20-byte header padding and 4-byte tail padding, this
padding must remain constant for all links that the miniport driver's NIC supports.

A CoNDIS WAN miniport driver sends and receives data over virtual connections
(VCs). There can be many VCs per NIC. While the data transmission speed can vary
from VC to VC, the other VC parameters are the same for all VCs that the NIC
supports. A CoNDIS WAN miniport driver can specify a maximum frame size for
any net packet that the miniport driver can send and receive. If the miniport driver
specifies a maximum frame size, that maximum frame size must remain constant
for all VCs on that NIC.

Like other miniport drivers, every WAN miniport driver must have at least one NIC for
which it allocates and maintains a NIC-specific context area. The NIC-specific context
area is simply a way to store, retrieve, and use information about the hardware specifics
of the NIC (such as interrupt, bus type, I/O range, and memory) and to maintain the run-
time state for connections. A miniport driver should specify one NIC-specific context
area for each network card in the system that it supports.

If a particular WAN miniport driver specifies that it does not require PPP address and
control-field compression, it is assumed true for all connections on the miniport driver's
NIC.

Before a WAN miniport driver can send or receive packets on a wide area network, a
connection must be created:

In an NDIS environment, an application must set up a connection that originates
on the sending node or accept a connection that originates on a remote node by
making or accepting a call. The setup, supervision, and tear-down of a connection
is done through TAPI. TAPI requests and status indications to TAPI all go through
NDISTAPI. For more information about TAPI and NDISTAPI, see NDISTAPI Overview.

In a CoNDIS environment, a VC must be created. The NDPROXY driver creates a VC
for an outgoing call that an application originated. Similarly, a call manager (or
MCM) initiates the creation of a VC for an incoming call that the call manager
indicates to NDISWAN and NDPROXY. The call manager must communicate and
sometimes negotiate the parameters for the VC with the remote party. The setup,
supervision, and tear-down of a connection is done through TAPI. TAPI requests
and status indications to TAPI all go through NDPROXY. For more information
about TAPI and NDPROXY, see NDPROXY Overview.

NDISTAPI Overview
Article • 03/14/2023

NDISTAPI is a system-provided driver that interfaces NDISWAN and NDIS WAN miniport
drivers to the TAPI services. NDIS WAN miniport drivers are not supported for NDIS 5.0
and later drivers. New drivers should be based on the CoNDIS WAN driver architecture.

NDPROXY Overview
Article • 12/15/2021

Note If you are reading this page because of the 27 November 2013 Microsoft Security
Advisory (2914486) affecting Windows XP and Windows Server 2003, you may find this
Trustworthy Computing blog post helpful.

NDPROXY is a system-provided driver that interfaces NDISWAN and CoNDIS WAN
drivers (WAN miniport drivers, call managers, and miniport call managers) to the TAPI
services. This topic introduces NDPROXY operations that are further documented in
CoNDIS WAN Operations that Support Telephonic Services.

The following figure shows how NDPROXY interfaces with other components in the RAS
architecture.

NDPROXY provides the kernel-mode component of the service provider interface (SPI)
for CoNDIS WAN. TAPI-aware applications make user-mode TAPI requests and the TAPI

https://learn.microsoft.com/en-us/security-updates/SecurityAdvisories/2014/2914486
https://msrc-blog.microsoft.com/2013/11/27/microsoft-releases-security-advisory-2914486/

service routes these requests to NDPTSP. NDPTSP converts the user-mode TAPI service
requests to kernel-mode SPI requests and passes the SPI requests to NDPROXY.

NDPROXY communicates through NDIS with the NDISWAN driver and one of the
following:

A miniport driver with a separate call manager

An integrated miniport call manager (MCM)

The miniport driver interface and call manager interface to NDISWAN and NDPROXY are
the same regardless of the configuration.

Note You can use the miniport driver with a separate call manager in situations where
multiple hardware platforms need to be supported. In this situation, the same call
manager can be used in combination with multiple miniport drivers to simplify
development.

The following list summarizes the interfaces that exist between NDPROXY and the other
components in the CoNDIS WAN driver stack:

NDPROXY presents a connection-oriented client interface to CoNDIS WAN
miniport drivers and a call manager interface to NDISWAN.

NDISWAN presents a connection-oriented client interface to NDPROXY, CoNDIS
WAN miniport drivers, and MCMs.

CoNDIS WAN call managers or MCMs present a call manager interface to
NDPROXY.

CoNDIS WAN miniport drivers and MCMs present a CoNDIS miniport driver
interface to NDISWAN.

For more information about connection-oriented clients, call managers, miniport drivers,
and MCMs, see Connection-Oriented Environment.

NDPROXY calls the NdisCoOidRequest function with connection-oriented TAPI OIDs to
determine the capabilities of a CoNDIS WAN miniport driver. NDPROXY also registers
the TAPI-specific address family, creates virtual connections (VCs), makes and accepts
calls, and activates VCs so that data can be sent and received on those VCs. For more
information about handling OID requests in the CoNDIS WAN miniport driver, see
Handling Queries in a CoNDIS WAN Miniport Driver and Setting CoNDIS WAN Miniport
Driver Information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest

Implementing CoNDIS WAN Miniport
Drivers
Article • 03/14/2023

CoNDIS WAN miniport drivers are the same as other CoNDIS drivers with the exception
of features added to support WAN operations. For more information about connection-
oriented NDIS, see Connection-Oriented NDIS. For more information about features that
support WAN operations, see WAN-Specific Capabilities of CoNDIS WAN Drivers.

The following topics provide information specific to CoNDIS WAN miniport drivers:

Registering CoNDIS WAN Drivers

Registering the WAN Address Family

Handling Queries in a CoNDIS WAN Miniport Driver

Setting CoNDIS WAN Miniport Driver Information

Sending Packets from a CoNDIS WAN Miniport Driver

Indicating Received Data from a CoNDIS WAN Miniport Driver

Indicating CoNDIS WAN Miniport Driver Status

WAN-Specific Capabilities of CoNDIS
WAN Drivers
Article • 03/14/2023

CoNDIS WAN drivers differ from a non-WAN CoNDIS drivers as follows:

CoNDIS WAN drivers that support TAPI services use the
CO_ADDRESS_FAMILY_TAPI_PROXY address family.

CoNDIS WAN drivers support WAN-specific OIDs:
OID_WAN_PERMANENT_ADDRESS, OID_WAN_CURRENT_ADDRESS, and
OID_WAN_MEDIUM_SUBTYPE.

CoNDIS WAN miniport drivers support a set of CoNDIS WAN OIDs to set and
query operating characteristics. For more information about CoNDIS WAN OIDs,
see CoNDIS WAN Objects.

CoNDIS WAN miniport drivers that provide TAPI services support a set of CoNDIS
TAPI OIDs to set and query operating characteristics. For more information about
CoNDIS TAPI OIDs, see TAPI Extensions for Connection-Oriented NDIS.

CoNDIS WAN miniport drivers support a set of WAN-specific status indications
that denote changes in the status of a link. For more information about CoNDIS
WAN miniport driver status indications, see Indicating CoNDIS WAN Miniport
Driver Status.

CoNDIS WAN miniport drivers keep a WAN-specific set of statistics. The
OID_WAN_CO_GET_STATS_INFO OID requests the miniport driver to return the
statistics information.

CoNDIS WAN miniport drivers never attempt to loop back any packets; NDISWAN
provides loop-back support.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561220(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561200(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561216(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index

Registering CoNDIS WAN Drivers
Article • 03/14/2023

A CoNDIS WAN miniport driver or MCM calls NdisMRegisterMiniportDriver from its
DriverEntry function to register its standard MiniportXxx functions with NDIS. For more
information about registering MiniportXxx functions, see Initializing a Miniport Driver.

A CoNDIS WAN call manager is an NDIS protocol driver. As such, a call manager calls
NdisRegisterProtocolDriver to register its standard ProtocolXxx functions. For more
information about registering an NDIS protocol driver, see Initializing a Protocol Driver.
For information about other differences between call manager initialization and MCM
initialization, see Differences in Initialization.

The call to NdisMRegisterMiniportDriver provides an
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure from the miniport driver. You
must specify the correct NDIS version number. For more information about setting the
NDIS version number, see NDIS_MINIPORT_DRIVER_CHARACTERISTICS.

CoNDIS WAN drivers must indicate NDIS version 5.0 or later.

NDIS 6.0 and later drivers must register CoNDIS callback functions as follows:

To register CoNDIS ProtocolXxx and MiniportXxx functions, all CoNDIS drivers must
call the NdisSetOptionalHandlers function.

To register its CoNDIS MiniportXxx functions, a miniport driver or miniport call
manager (MCM) must call the NdisSetOptionalHandlers function from its
MiniportSetOptions function and pass it an
NDIS_MINIPORT_CO_CHARACTERISTICS structure. To register call manager
ProtocolXxx functions, MCMs also provide an
NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS structure.

To register its CoNDIS ProtocolXxx functions, a client or call managers must call the
NdisSetOptionalHandlers function from its ProtocolSetOptions function and must
provide an NDIS_PROTOCOL_CO_CHARACTERISTICS structure. Clients must also
provide an NDIS_CO_CLIENT_OPTIONAL_HANDLERS structure and call managers
must also provide an NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS
structure.

For more information about CoNDIS driver registration, see CoNDIS Registration.

.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_client_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers

Registering the WAN Address Family
Article • 12/15/2021

This topic describes how to register the TAPI address family from a CoNDIS WAN
miniport call manager (MCM) or a separate call manager.

Either type of call manager calls the NdisCmRegisterAddressFamilyEx function to
register its call manager entry points and the address family type
CO_ADDRESS_FAMILY_TAPI_PROXY. By doing so, the driver indicates that it provides
TAPI services. For more information about registering an address family in a CoNDIS
driver, see Registering and Opening an Address Family.

NDIS notifies NDPROXY of the newly-registered address family. NDPROXY determines
that it can use the TAPI services that the call manager provides. NDPROXY opens the
TAPI-proxy address family that is associated with the driver and registers NDPROXY's
connection-oriented entry points with NDIS. These entry points are used to
communicate with the driver.

NDPROXY can enumerate the TAPI capabilities of the miniport driver and later send TAPI
requests that are encapsulated in NDIS structures. For details about using CoNDIS
extensions for TAPI support, see CoNDIS WAN Operations That Support Telephonic
Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregisteraddressfamilyex

Handling Queries in a CoNDIS WAN
Miniport Driver
Article • 03/14/2023

This topic provides an overview of the requirements for handling queries in a CoNDIS
WAN miniport driver. An upper-layer driver calls NdisCoOidRequest with a query
request to determine WAN-specific capabilities and current status of a CoNDIS WAN
miniport driver and the miniport driver's NIC.

After the NDISWAN intermediate driver forwards the query request, NDIS calls the
miniport driver's MiniportCoOidRequest function. In a CoNDIS WAN miniport driver,
this function is the same as in any connection-oriented miniport driver, except that the
CoNDIS WAN miniport driver supports CoNDIS WAN Objects.

If the CoNDIS WAN miniport driver completes MiniportCoOidRequest asynchronously by
returning a status of NDIS_STATUS_PENDING, it must complete the query later by calling
NdisCoOidRequestComplete.

When NDIS calls MiniportCoOidRequest, NDIS passes a pointer to the
NDIS_OID_REQUEST structure that contains the query OID and a buffer to hold the
information retrieved from the miniport driver. The miniport driver controls this buffer
until the request completes. If the number of bytes specified in the
InformationBufferLength member of NDIS_OID_REQUEST is insufficient for the
information that the OID requires, the miniport driver should fail the query request and
set the BytesNeeded member of NDIS_OID_REQUEST to the number of bytes that the
OID requires.

No other requests will be submitted to the particular WAN miniport driver until the
current query request completes.

The following table summarizes the OIDs used to get or set operational characteristics
for CoNDIS WAN miniport drivers.

Name Optional or Required

OID_WAN_CO_GET_INFO Get information
about virtual connections (VCs).

Required

OID_WAN_CO_GET_LINK_INFO Get information
about a VC.

Required

OID_WAN_CO_GET_STATS_INFO Get statistics
information for a VC.

Optional

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

A CoNDIS WAN miniport driver can support all of the NDIS General Objects. To learn
more about setting information in a CoNDIS miniport driver, see Querying or Setting
Information.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546510(v=vs.85)

Setting CoNDIS WAN Miniport Driver
Information
Article • 03/14/2023

This topic provides an overview of the requirements for setting information in a CoNDIS
WAN miniport driver. An upper-layer driver calls NdisCoOidRequest with a set request
to change information that a CoNDIS WAN miniport driver and the miniport driver's NIC
maintain.

After the NDISWAN intermediate driver forwards the set request, NDIS calls the WAN
miniport driver's MiniportCoOidRequest function. In a CoNDIS WAN miniport driver,
this function is the same as in any CoNDIS miniport driver, except that the CoNDIS WAN
miniport driver supports CoNDIS WAN Objects.

No other requests will be submitted to the CoNDIS WAN miniport driver until the
current set request is complete. If the miniport driver does not immediately complete
the set request, it returns NDIS_STATUS_PENDING from MiniportCoOidRequest and must
later call NdisCoOidRequestComplete to complete the request.

A CoNDIS WAN miniport driver must recognize and respond properly to the following
CoNDIS WAN OIDs.

Name Optional or Required

OID_WAN_CO_SET_LINK_INFO Set information
for a VC.

Required

A CoNDIS WAN miniport driver also supports the NDIS General Objects. To learn more
about setting information in a CoNDIS miniport driver, see Querying or Setting
Information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546510(v=vs.85)

Sending Packets from a CoNDIS WAN
Miniport Driver
Article • 03/14/2023

An upper-layer driver calls NdisCoSendNetBufferLists to send network data packets to
an underlying CoNDIS WAN miniport driver in a list of NET_BUFFER_LIST structures. The
NDISWAN intermediate driver forwards those NET_BUFFER_LIST structures from the
upper-layer driver. NDISWAN repackages the structures before sending them.
NDISWAN forwards packets in new NET_BUFFER_LIST structures.

The NDISWAN intermediate driver calls NDIS to forward the new NET_BUFFER_LIST
structures, NDIS calls the WAN miniport driver's MiniportCoSendNetBufferLists
function.

The CoNDIS WAN miniport driver owns both the NET_BUFFER_LIST structures and
associated data until the send completes. The miniport driver must later call
NdisMSendNetBufferListsComplete to complete the send request.

A completion call does not necessarily indicate that the network datahas been
transmitted; however with the exception of intelligent NICs, the network data usually has
been transmitted. A completion call does however, indicate that the miniport driver is
ready to release ownership of the NET_BUFFER_LIST structures.

After the CoNDIS WAN miniport driver receives NET_BUFFER_LIST structure that contains
a network data packet, it should send the packet out on an active virtual connection
(VC).

A CoNDIS WAN miniport driver specifies the number of outstanding packets that it can
have per VC in the MaxSendWindow member of the NDIS_WAN_CO_INFO structure.
The miniport driver provides this structure when the miniport driver responds to the
OID_WAN_CO_GET_INFO request from the protocol driver. However, the miniport driver
can adjust this number dynamically and on a per-VC basis by using the SendWindow
member in the WAN_CO_LINKPARAMS structure. The miniport driver passes this
structure to the NdisMCoIndicateStatusEx function. NDISWAN uses the current
SendWindow value as its limit on outstanding sends. The miniport driver can set the
value of the SendWindow member to zero to specify that it cannot handle any
outstanding packets. That is, if the SendWindow member is set to zero, the send
window is shut down and NDISWAN stops sending packets for the particular VC.

Packets that a WAN miniport driver sends contain simple HDLC PPP framing if PPP
framing is set. For SLIP or RAS framing, packets contain only the data portion with no

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

framing whatsoever. For more information about WAN packet framing, see WAN Packet
Framing.

A WAN miniport driver must not attempt to provide software loopback or promiscuous-
mode loopback. Both of these loopback types are fully supported by the NDISWAN
driver.

Indicating Received Data from a CoNDIS
WAN Miniport Driver
Article • 03/14/2023

The following operations occur when a CoNDIS WAN miniport driver receives a network
data packet:

1. The driver removes driver-specific encapsulation from the network data packet, if
necessary before calling NdisMCoIndicateReceiveNetBufferLists to indicate the
received data in a NET_BUFFER_LIST structure. For example, the driver can remove
PPPoE encapsulation. However, the miniport driver should leave encapsulated data,
such as PPP header and payload, intact.

2. The driver calls the NdisMCoIndicateReceiveNetBufferLists function to indicate to
NDISWAN that a packet has arrived.

3. NDISWAN processes the packet and calls NdisMIndicateReceiveNetBufferLists to
indicate the arrival of the packet.

4. To forward the packet, NDIS calls the ProtocolReceiveNetBufferLists function of
bound overlying protocol drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists

Indicating CoNDIS WAN Miniport Driver
Status
Article • 03/14/2023

A CoNDIS WAN miniport driver calls NdisMCoIndicateStatusEx to indicate status
changes up to bound protocol drivers. For more information about indicating status
from a CoNDIS miniport driver or MCM, see Indicating Miniport Driver Status.

Bound protocol drivers can ignore these status indications. However, processing these
indications typically results in improved performance for protocol drivers and the
miniport driver.

The NDISWAN intermediate driver forwards status indications to NDIS. NDIS calls the
ProtocolCoStatusEx functions of bound protocol drivers or a configuration manager.
These protocol drivers or configuration manager can log these indications and possibly
take corrective action, if necessary.

For a CoNDIS WAN miniport driver, a call to NdisMCoIndicateStatusEx is the same as in
any CoNDIS miniport driver, except that the CoNDIS WAN miniport driver indicates a
WAN-specific status for each virtual connection (VC) on the miniport driver's NIC. The
miniport driver calls NdisMCoIndicateStatusEx with an explicit VC handle to indicate
these changes up to a protocol driver that shares this VC. If the driver specifies a
NULLNdisVcHandle, the status pertains to a general change in the state of the NIC.

Each status indication provides two basic pieces of information:

A status code that specifies the general status. There are a limited number of
defined general status codes; this list is subject to future expansion.

A buffer that contains the status information. This status information can be
specific to a NIC, or, for a CoNDIS WAN miniport driver, specific to a VC on a NIC.
For example, a buffer might contain the new transmit speed of an X.25 connection,
which recently decreased by a factor of two.

The CoNDIS WAN VC status indications are:

NDIS_STATUS_WAN_CO_LINKPARAMS

A CoNDIS WAN miniport driver calls NdisMCoIndicateStatusEx to indicate that the
parameters for a particular VC that is active on the NIC have changed. In this call,
the miniport driver passes the handle to the VC in the NdisVcHandle parameter,
NDIS_STATUS_WAN_CO_LINKPARAMS in the GeneralStatus parameter, and a

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

pointer to a WAN_CO_LINKPARAMS structure in the StatusBuffer parameter.
WAN_CO_LINKPARAMS describes new parameters for the VC.

NDIS_STATUS_WAN_CO_FRAGMENT

A CoNDIS WAN miniport driver calls NdisMCoIndicateStatusEx to indicate that it
has received a partial packet from the endpoint of a VC. In this call, the miniport
driver passes the handle to the VC in the NdisVcHandle parameter,
NDIS_STATUS_WAN_CO_FRAGMENT in the GeneralStatus parameter, and a pointer
to an NDIS_WAN_CO_FRAGMENT structure in the StatusBuffer parameter.
NDIS_WAN_CO_FRAGMENT describes the reason that the partial packet was
received.

After this indication occurs, a connection-oriented client should send frames to the
connection-oriented client at the other end of the VC. These frames will notify the
opposite endpoint of the partial-packet situation, so that the opposite endpoint is
not required to wait for a time-out to occur.

NDISWAN monitors dropped packets by counting the number of fragment
indications on each VC.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559030(v=vs.85)

CoNDIS WAN Operations that Support
Telephonic Services
Article • 03/14/2023

This section describes how CoNDIS WAN miniport drivers implement telephonic services
using NDIS functions in a connection-oriented environment. CoNDIS WAN miniport
drivers communicate through NDIS with the NDPROXY and NDISWAN drivers. The
NDPROXY driver communicates with telephony applications through a telephony service
provider. For more information, see the Telephony Application Programming Interface
(TAPI).

The following topics describe the NDPROXY driver more fully. These topics also describe
how a CoNDIS WAN miniport driver registers and enumerates its TAPI capabilities, how
it brings up lines, and how it sets up and closes calls that are initiated by TAPI requests:

NDPROXY Overview

CoNDIS TAPI Registration

CoNDIS TAPI Initialization

Making Outgoing Calls

Accepting Incoming Calls

CoNDIS TAPI Shutdown

Call Manager Requirements for Voice Streaming

Non-WAN-Specific Extensions to Support Telephonic Services Over Connection-
Oriented NDIS

These descriptions briefly discuss the concepts embodied in TAPI, but the reader should
consult the Windows SDK for details about TAPI. For more information about how TAPI
models line devices and how all WAN miniport drivers should maintain the state of their
connections, see Line Devices, Addresses, and Calls (NDIS 5.1) and Maintaining State
Information (NDIS 5.1).

https://learn.microsoft.com/en-us/windows/win32/tapi/telephony-application-programming-interfaces
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549181(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549232(v=vs.85)

CoNDIS TAPI Registration
Article • 03/14/2023

This section discusses how a CoNDIS WAN miniport driver indicates that it supports TAPI
services and how it sets up TAPI-specific communications with the NDISWAN and
NDPROXY drivers.

After a CoNDIS WAN miniport driver has registered its miniport driver entry points for
one or more NICs, the following operations cause the NDISWAN and NDPROXY drivers
to become associated, in a TAPI-specific way, with those NICs.

The CoNDIS WAN miniport driver calls the NdisMCmRegisterAddressFamilyEx
function from within its MiniportInitializeEx function to register its call manager
entry points and the address family type CO_ADDRESS_FAMILY_TAPI_PROXY. By
doing so, the miniport driver advertises that it provides TAPI services.

NDIS calls NDPROXY's ProtocolCoAfRegisterNotify function to notify NDPROXY of
the newly registered address family. NDPROXY's ProtocolCoAfRegisterNotify
examines the address-family data and determines that it can use the TAPI services
provided by the call manager that is integrated into the CoNDIS WAN miniport
driver. A TAPI-capable CoNDIS WAN miniport driver is an integrated miniport call
manager (MCM) driver.

NDPROXY calls the NdisClOpenAddressFamilyEx function to open the TAPI-proxy
address family that is associated with the CoNDIS WAN miniport driver.
NdisClOpenAddressFamilyEx registers NDPROXY's connection-oriented entry
points with NDIS. These entry points are used to communicate with a TAPI-capable
CoNDIS WAN miniport driver.

NDPROXY calls NdisCmRegisterAddressFamilyEx to register its call manager entry
points and the address family type CO_ADDRESS_FAMILY_TAPI. By doing so,
NDPROXY advertises that it implements TAPI services.

NDIS calls NDISWAN's ProtocolCoAfRegisterNotify function to notify NDISWAN of
the newly registered address family. NDISWAN's ProtocolCoAfRegisterNotify
examines the address-family data and determines that NDISWAN can use the TAPI
services provided by NDPROXY.

NDISWAN calls the NdisClOpenAddressFamilyEx function to open the TAPI
address family that is associated with NDPROXY. NdisClOpenAddressFamilyEx
registers NDISWAN's connection-oriented entry points with NDIS. These entry
points are used to communicate with NDPROXY.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_af_register_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregisteraddressfamilyex

NDISWAN calls the NdisClRegisterSap function to inform NDPROXY that
NDISWAN can accept incoming calls on a particular Service Access Point (SAP). In
this call, NDISWAN passes a CO_SAP structure that describes the SAP. NDISWAN
sets the SapType member of CO_SAP to AF_TAPI_SAP_TYPE to specify that the SAP
will be used for TAPI calls. NDISWAN sets the Sap member of CO_SAP to a string
for a particular TAPI device class. A TAPI application provides this string when the
application calls the TAPI lineGetID function. NDPROXY should notify NDISWAN
about all incoming calls addressed to the SAP.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545392(v=vs.85)

CoNDIS TAPI Initialization
Article • 03/14/2023

This section discusses how a CoNDIS WAN miniport driver enumerates its TAPI
capabilities for applications. These TAPI capabilities consist of:

Number of line devices the miniport driver supports--line devices include, for
example, a modem, a fax board, and an ISDN card.

Information for specific lines--line information includes, for example, a line
identifier and the number of channel addresses (telephone numbers) the line
supports for simultaneous transmission of voice and data.

Information for specific channel addresses on lines of devices--address information
includes, for example, the identity of a caller (Caller ID) and the number of active
calls possible.

To retrieve information about underlying hardware, NDPROXY issues requests for line
and channel-address capabilities. That is, the NDPROXY driver queries the TAPI
capabilities of a CoNDIS WAN miniport driver. The NDPROXY driver calls the
NdisCoOidRequest function to query the TAPI capabilities of the miniport driver. In this
call, NDPROXY passes an NDIS_OID_REQUEST structure. NDPROXY specifies the
following in NDIS_OID_REQUEST:

NdisRequestQueryInformation value in the RequestType member

Object identifier (OID) that specifies the TAPI capability to retrieve from the
miniport driver in the Oid member

Buffer to hold the TAPI-capability information that is returned in the
InformationBuffer member

All queries sent to a CoNDIS WAN miniport driver by the NDPROXY driver can be
completed either synchronously or asynchronously. If a CoNDIS WAN miniport driver
determines that it cannot complete the query immediately, then it can simply return
NDIS_STATUS_PENDING and call the NdisMCmOidRequestComplete function from
within its ProtocolCoOidRequest function when it has completed the query.

After a CoNDIS WAN miniport driver notifies NDPROXY about the registration of a new
address family as specified in CoNDIS TAPI Registration, NDPROXY queries the following
OIDs to determine the TAPI-specific capabilities of the CoNDIS WAN miniport driver and
the miniport driver's NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequestcomplete

NDPROXY queries the miniport driver with OID_CO_TAPI_CM_CAPS to determine
the number of lines supported by the miniport driver's device (the device for which
it provides TAPI services). This OID also requests the miniport driver to indicate
whether these lines have dissimilar line capabilities.

NDPROXY next queries the miniport driver with OID_CO_TAPI_LINE_CAPS to
determine the telephony capabilities for the specified line. This OID also requests
the miniport driver to indicate whether addresses on this line have dissimilar
address capabilities.

If the previous query of OID_CO_TAPI_CM_CAPS indicated that the miniport
driver's device supports only one line, or if the device supports multiple lines
that have the same line capabilities, NDPROXY has to query
OID_CO_TAPI_LINE_CAPS only once to obtain the line capabilities of the device.
In this case, the line capabilities returned by the miniport driver apply to all lines
on the device.
If the device supports multiple lines with dissimilar line capabilities, NDPROXY
must query OID_CO_TAPI_LINE_CAPS once for each line to obtain the line
capabilities of each line.

Finally, NDPROXY queries the miniport driver with OID_CO_TAPI_ADDRESS_CAPS to
determine the telephony capabilities for a specified address on a specified line.

If the previous query of OID_CO_TAPI_LINE_CAPS indicated that the line
supports only one address or that all addresses on the line have the same
address capabilities, NDPROXY queries OID_CO_TAPI_ADDRESS_CAPS only once
to determine the capabilities of all the addresses on the line.
If a line supports multiple addresses that have dissimilar capabilities, NDPROXY
queries OID_CO_TAPI_ADDRESS_CAPS once for each address on the line.

The NDPROXY driver uses the information obtained with the TAPI enumeration OIDs to
do the following:

Create TAPI parameters for subsequent TAPI calls.

Determine whether to accept or reject subsequent incoming TAPI calls.

Register one or more TAPI service access points (SAPs) on which to receive
subsequent incoming TAPI calls.

Making Outgoing Calls
Article • 12/15/2021

If an application attempts to make an outgoing call, it must first open a line. A line is
opened as a result of an application calling the TAPI lineOpen function. To place a
telephony call on the previously opened line, the application calls the TAPI lineMakeCall
function and passes a pointer to the specific destination address. If anything but default
call-setup parameters are requested, the application also passes a pointer to a
LINECALLPARAMS structure. If the application uses default call-setup parameters,
lineMakeCall provides those parameters in a LINECALLPARAMS structure. Members of
this structure specify how the telephony call should be set up.

These TAPI-function calls cause the NDPROXY driver to first create a virtual connection
(VC) with the CoNDIS WAN miniport driver and then to encapsulate TAPI parameters in
NDIS structures in order to make the outgoing call. The miniport driver will use these
TAPI parameters to set up the outgoing call. The following describes how the outgoing
call is connected, set up, and made:

NDPROXY calls NdisCoCreateVc to initiate the creation of the VC with the miniport
driver. After NDPROXY calls NdisCoCreateVc, NDIS calls, as a synchronous
operation, the ProtocolCoCreateVc function of the call manager integrated into the
miniport driver. NDIS passes to ProtocolCoCreateVc a handle that represents the
VC. If the call to NdisCoCreateVc is successful, NDIS fills and returns the VC handle.
ProtocolCoCreateVc performs any necessary allocations of dynamic resources and
structures that the miniport call manager (MCM) driver requires to perform
subsequent operations on the VC that will later be activated. Such resources
include, but are not limited to, memory buffers, data structures, events, and other
such similar resources.

NDPROXY specifies the TAPI parameters for an outgoing call in a
CO_AF_TAPI_MAKE_CALL_PARAMETERS structure. NDPROXY fills this structure's
members with the following information that was passed in the TAPI lineMakeCall
function:

The destination address in the DestAddress member
The open-line identifier in the ulLineID member
The LINECALLPARAMS structure in the LineCallParams member

NDPROXY overlays the CO_AF_TAPI_MAKE_CALL_PARAMETERS structure on the
Parameters member of a CO_SPECIFIC_PARAMETERS structure and sets the
Length member of CO_SPECIFIC_PARAMETERS to the size of
CO_AF_TAPI_MAKE_CALL_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545373(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545396(v=vs.85)

NDPROXY sets the CO_SPECIFIC_PARAMETERS structure to the MediaSpecific
member of a CO_MEDIA_PARAMETERS structure.

NDPROXY sets a pointer to the CO_MEDIA_PARAMETERS structure to the
MediaParameters member of a CO_CALL_PARAMETERS structure.

Once NDPROXY encapsulates TAPI parameters, NDPROXY calls the
NdisClMakeCall function to initiate the outgoing call. In this function call,
NDPROXY passes a pointer to the filled CO_CALL_PARAMETERS structure. NDIS in
turn calls the ProtocolCmMakeCall function of the CoNDIS WAN miniport driver's
call manager. The miniport driver should examine only the
CO_AF_TAPI_MAKE_CALL_PARAMETERS structure embedded in
CO_CALL_PARAMETERS. No other call parameters are meaningful in this case. If the
miniport driver subsequently activates the VC for the outgoing call, the miniport
driver calls the NdisMCmActivateVc function and passes a pointer to the filled
CO_CALL_PARAMETERS.

After the miniport driver has negotiated with the network to establish the
telephony-call parameters for the VC and set up a NIC for those call parameters,
the miniport driver calls the NdisMCmMakeCallComplete function to indicate that
it is ready to make data transfers on the VC. In this call, the miniport driver must
pass the handle to the VC and modifications made to telephony-call parameters.

The miniport driver must modify the CallMgrParameters member of the
CO_CALL_PARAMETERS structure to specify the quality of service (QoS) of
transferring packets, such as the bandwidth. To set this CallMgrParameters
member, the miniport driver fills members of a
CO_CALL_MANAGER_PARAMETERS structure and points this structure to
CallMgrParameters. For example, to identify the transmit and receive speeds in
bytes per second for the VC, the miniport driver must set the PeakBandwidth
members of the Transmit and Receive members of
CO_CALL_MANAGER_PARAMETERS. The Transmit and Receive members are
FLOWSPEC structures. For more information about the FLOWSPEC structure, see
the Microsoft Windows SDK.

If the miniport driver has modified telephony-call parameters, it must set the Flags
member in the CO_CALL_PARAMETERS structure with
CALL_PARAMETERS_CHANGED. As a result of the NdisMCmMakeCallComplete call
made by the miniport driver, NDIS calls NDPROXY's ProtocolClMakeCallComplete
function to complete the asynchronous operations that were initiated with
NdisClMakeCall.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545388(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_make_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmmakecallcomplete
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545381(v=vs.85)

After the miniport driver successfully completes the outgoing call, NDPROXY
notifies a TAPI application that the call is connected. This TAPI application then
calls the TAPI lineGetID function to inform NDPROXY to locate the appropriate
CoNDIS client. In this lineGetID call, the TAPI application supplies a string for a
particular TAPI device class to which the application requires a handle. NDPROXY
uses this string to locate the CoNDIS client that previously registered a SAP for the
particular TAPI device class. If the CoNDIS client is NDISWAN, the string is NDIS. If
NDPROXY locates a SAP with a string that matches the string passed by the TAPI
application, NDPROXY calls NdisMCmCreateVc to set up a connection endpoint
with NDISWAN on which it can dispatch notification of the outgoing call that was
made. NDIS in turn calls NDISWAN's ProtocolCoCreateVc function and passes a
handle that represents the VC.

After NDPROXY sets up the connection endpoint with NDISWAN, it calls the
NdisCmDispatchIncomingCall function to notify NDISWAN about the outgoing
call. In this call, NDPROXY passes the encapsulated
CO_AF_TAPI_MAKE_CALL_PARAMETERS structure that contains the outgoing call
parameters. NDIS in turn calls NDISWAN's ProtocolClIncomingCall function, within
which NDISWAN either accepts or rejects the requested connection. If NDISWAN
changes the call parameters passed to it, it must set the Flags member in the
CO_CALL_PARAMETERS structure with CALL_PARAMETERS_CHANGED.

After deciding whether to accept the connection and after possibly changing the
call parameters, NDISWAN calls the NdisClIncomingCallComplete function. NDIS
in turn calls the miniport driver's ProtocolCmIncomingCallComplete function.
Depending on whether NDISWAN accepted the outgoing call and whether the
miniport driver accepts or rejects NDISWAN's proposed changes to the call
parameters, the miniport driver calls either NdisCmDispatchCallConnected or
NdisCmDispatchIncomingCloseCall functions. NdisCmDispatchCallConnected
notifies NDISWAN that data transfers can begin on the VC that NDPROXY created
for the outgoing call. NdisCmDispatchIncomingCloseCall informs NDISWAN and
NDPROXY to tear down the proposed outgoing call.

After NDISWAN accepts the outgoing call, NDPROXY calls the
NdisCoGetTapiCallId function to retrieve a string that identifies NDISWAN's
context for the VC. NDPROXY passes this string back to the TAPI application. The
TAPI application uses this VC-context string to complete its call to lineGetID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmcreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclincomingcallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchcallconnected
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscogettapicallid

Accepting Incoming Calls
Article • 12/15/2021

Before an application can accept an incoming call, it first must have a line open. A line is
opened as a result of an application calling the TAPI lineOpen function. This TAPI-
function call causes underlying drivers to encapsulate TAPI parameters in NDIS
structures in order to prepare to receive an incoming call. After the CoNDIS WAN
miniport driver receives an incoming call, the miniport driver must first create a virtual
connection (VC) with the NDPROXY driver and then notify NDPROXY of the incoming
call. NDPROXY in turn notifies the application through TAPI. The following list describes
how the incoming call is set up, connected, and made:

NDPROXY specifies the TAPI parameters for an incoming connection in a
CO_AF_TAPI_SAP structure. NDPROXY fills this structure's members with the
following information that was passed in the TAPI lineOpen function:

Open-line identifier in the ulLineID member
Address of the incoming connection in the ulAddressID member
Media mode of the incoming connection's information stream in the
ulMediaModes member

NDPROXY overlays the CO_AF_TAPI_SAP structure on the Sap member of a
CO_SAP structure and sets the SapLength member of CO_SAP to the size of
CO_AF_TAPI_SAP. NDPROXY must also set the SapType member of CO_SAP to
AF_TAPI_SAP_TYPE.

Once NDPROXY encapsulates TAPI parameters, NDPROXY calls the
NdisClRegisterSap function to make itself ready to receive incoming calls. In this
function call, NDPROXY passes a pointer to the filled CO_SAP structure that
specifies the Service Access Point (SAP) on which NDPROXY can receive incoming
calls. NDIS forwards the CO_SAP structure to the ProtocolCmRegisterSap function
of the CoNDIS WAN miniport call manager (MCM) driver. ProtocolCmRegisterSap
communicates with network control devices or other media-specific agents, as
necessary, to register the SAP on the network for NDPROXY. After the miniport
driver has registered the SAP, it can accept an incoming-call offer directed to that
SAP.

A CoNDIS WAN miniport driver is alerted to an incoming call by signaling
messages from the network. From these signaling messages, the miniport driver
extracts the call parameters for the call, including the SAP to which the incoming
call is addressed.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545376(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545392(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap

Before indicating an incoming call to NDPROXY, the miniport driver calls the
NdisMCmCreateVc function to initiate the creation of a VC with NDPROXY.
NDPROXY allocates and initializes resources required for the VC and stores the
handle to the VC.

The CoNDIS WAN miniport driver sets the TAPI parameters for an incoming call in
a CO_AF_TAPI_INCOMING_CALL_PARAMETERS structure. The miniport driver fills
this structure's members with the following information that was extracted from
signaling messages:

Line identifier in the ulLineID member
Address of the incoming call in the ulAddressID member
CO_TAPI_FLAG_INCOMING_CALL bit in the ulFlags member. All other bits of
ulFlags are reserved and must be set to 0.
LINECALLPARAMS structure in the LineCallInfo member. Members of
LINECALLPARAMS specify TAPI call parameters for an incoming call.

The miniport driver overlays CO_AF_TAPI_INCOMING_CALL_PARAMETERS on the
Parameters member of a CO_SPECIFIC_PARAMETERS structure and sets the
Length member of CO_SPECIFIC_PARAMETERS to the size of
CO_AF_TAPI_INCOMING_CALL_PARAMETERS.

The miniport driver sets the CO_SPECIFIC_PARAMETERS structure to the
MediaSpecific member of a CO_MEDIA_PARAMETERS structure.

The miniport driver sets a pointer to the CO_MEDIA_PARAMETERS structure to the
MediaParameters member of a CO_CALL_PARAMETERS structure.

The miniport driver must also set the CallMgrParameters member of the
CO_CALL_PARAMETERS structure to specify the quality of service (QoS) of
transferring packets, such as the bandwidth. To set this CallMgrParameters
member, the miniport driver fills members of a
CO_CALL_MANAGER_PARAMETERS structure and points this structure to
CallMgrParameters. For example, to identify the transmit and receive speeds in
bytes per second for the VC, the miniport driver must set the PeakBandwidth
members of the Transmit and Receive members of
CO_CALL_MANAGER_PARAMETERS. The Transmit and Receive members are
FLOWSPEC structures. For more information about the FLOWSPEC structure, see
the Microsoft Windows SDK.

After the miniport driver encapsulates TAPI parameters and fills the
CallMgrParameters member of CO_CALL_MANAGER_PARAMETERS, it calls the
NdisMCmDispatchIncomingCall function to indicate the incoming call to
NDPROXY. In this call, the miniport driver passes the following:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmcreatevc
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545372(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545396(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545388(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545381(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingcall

A handle that identifies the SAP to which the incoming call is addressed
A handle that identifies the VC for the incoming call
A pointer to the filled CO_CALL_PARAMETERS structure

NDPROXY returns NDIS_STATUS_PENDING to the miniport driver so NDPROXY can
complete NdisMCmDispatchIncomingCall asynchronously.

After the TAPI application answers the incoming call with the lineAnswer function,
NDPROXY calls the NdisClIncomingCallComplete function. NDIS in turn calls the
miniport driver's ProtocolCmIncomingCallComplete function. If NDPROXY returns
an NDIS_STATUS_SUCCESS code, it indicates acceptance of the call parameters. If
NDPROXY finds the call parameters unacceptable, it can request a change in the
call parameters by setting the Flags member in the CO_CALL_PARAMETERS
structure to CALL_PARAMETERS_CHANGED and by supplying revised call
parameters. If NDPROXY accepts the incoming call, the miniport driver should send
signaling messages to indicate to the calling entity that the call has been accepted.
Otherwise, the miniport driver should send signaling messages to indicate that the
call has been rejected. If NDPROXY is requesting a change in call parameters, the
miniport driver sends signaling messages to request a change in call parameters.

The miniport driver activates the VC that the miniport driver created with
NDPROXY and must also call the NdisMCmActivateVc function to notify NDPROXY
that the miniport driver is ready to transfer packets on the VC.

If NDPROXY rejects the call, the miniport driver calls the NdisMCmDeactivateVc
function to deactivate the VC that the miniport driver created for the incoming call.
After the VC is deactivated, the miniport driver calls the NdisMCmDeleteVc
function to delete the VC.

Depending on whether NDPROXY accepted the incoming call and whether the
end-to-end connection was successfully established, the miniport driver calls either
NdisMCmDispatchCallConnected or NdisMCmDispatchIncomingCloseCall
functions. Note that if the remote calling entity tore down the call, it sends
signaling messages to indicate that the end-to-end connection was not
successfully established. NdisMCmDispatchCallConnected notifies NDPROXY that
data transfers can begin on the VC that the miniport driver created and activated
for the incoming call. NdisMCmDispatchIncomingCloseCall informs NDPROXY to
tear down the incoming call.

If NDPROXY is directed to tear down the incoming call, it calls the NdisClCloseCall
function to acknowledge that it will neither attempt to send nor expect to receive
data on the VC. NDIS in turn calls the miniport driver's ProtocolCmCloseCall
function. The miniport driver then calls the NdisMCmDeactivateVc function to

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclincomingcallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchcallconnected
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall

deactivate the VC. After the VC is deactivated, the miniport driver calls the
NdisMCmDeleteVc function to delete the VC.

After the TAPI application accepts the incoming call and NDPROXY notifies the
application that the call is connected, the application calls the TAPI lineGetID
function to inform NDPROXY to locate the appropriate CoNDIS client. In this
lineGetID call, the TAPI application supplies a string for a particular TAPI device
class to which the application requires a handle. NDPROXY uses this string to
locate the CoNDIS client that previously registered a SAP for the particular TAPI
device class. If the CoNDIS client is NDISWAN, the string is NDIS. If NDPROXY
locates a SAP with a string that matches the string passed by the TAPI application,
NDPROXY calls NdisMCmCreateVc to set up a connection endpoint with
NDISWAN on which it can dispatch notification of the incoming call. NDIS in turn
calls NDISWAN's ProtocolCoCreateVc function and passes a handle that represents
the VC.

After NDPROXY sets up the connection endpoint with NDISWAN, it calls the
NdisCmDispatchIncomingCall function to notify NDISWAN about the incoming
call. In this call, NDPROXY passes the encapsulated
CO_AF_TAPI_INCOMING_CALL_PARAMETERS structure that contains the incoming
call parameters. NDIS in turn calls NDISWAN's ProtocolClIncomingCall function,
within which NDISWAN either accepts or rejects the requested connection.

After deciding whether to accept the connection and after possibly changing the
call parameters, NDISWAN calls the NdisClIncomingCallComplete function. NDIS
in turn calls the miniport driver's ProtocolCmIncomingCallComplete function.
Depending on whether NDISWAN accepted the incoming call and whether the
miniport driver accepts or rejects NDISWAN's proposed changes to the call
parameters, the miniport driver calls either NdisCmDispatchCallConnected or
NdisCmDispatchIncomingCloseCall functions. NdisCmDispatchCallConnected
notifies NDISWAN that data transfers can begin on the VC that the miniport driver
created for the incoming call. NdisCmDispatchIncomingCloseCall informs
NDISWAN and NDPROXY to tear down the incoming call.

After NDISWAN accepts the incoming call, NDPROXY calls the
NdisCoGetTapiCallId function to retrieve a string that identifies NDISWAN's
context for the VC. NDPROXY passes this string back to the TAPI application. The
TAPI application uses this VC-context string to complete its call to lineGetID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscogettapicallid

CoNDIS TAPI Shutdown
Article • 03/14/2023

A TAPI session begins after a CoNDIS WAN miniport driver has enumerated its TAPI
capabilities to an application. Within a session, one or more lines can be opened and
one or more calls can be established. During the time a line is open, many calls can be
established and then closed or dropped. During a session, one or more lines can go
through transitions from open to closed many times. How a miniport driver handles
such transitions is described in this section.

An in-process call can be closed either by the local node or by the remote node. The call
can be closed on the local node, either because the last application with a handle to the
call has closed the handle, or perhaps because the miniport driver's MiniportHaltEx or
MiniportResetEx has been called. If the remote node hangs up an in-process call, the
miniport driver must inform upper layers to tear down the call.

If an application on the local node closes the call, it must disconnect the call. A call is
disconnected as a result of an application calling the TAPI lineDrop function. This TAPI-
function call causes the NDPROXY driver to call the NdisClCloseCall function and to
pass a handle that represents the VC for the call. NDIS in turn calls the CoNDIS WAN
miniport driver's ProtocolCmCloseCall function. The miniport driver should return
NDIS_STATUS_PENDING to NDPROXY so the miniport driver can complete
NdisClCloseCall asynchronously.

The miniport driver's ProtocolCmCloseCall must communicate with network control
devices to terminate a connection between the local node and a remote node. The
miniport driver must then call the NdisMCmDeactivateVc function to initiate
deactivation of the VC used for the call.

After the miniport driver terminates the connection, its ProtocolCmCloseCall can call the
NdisMCmCloseCallComplete function to complete the call closure.

If the remote node hangs up an in-process call, the miniport driver calls the
NdisCmDispatchIncomingCloseCall function to inform NDISWAN and NDPROXY to tear
down the incoming call.

Closing a Call

Closing a Line

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_close_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmclosecallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingclosecall

A line is closed when the last application with an open handle to the line has closed the
handle. A line is closed as a result of an application calling the TAPI lineClose function.
This TAPI-function call causes the NDPROXY driver to initiate the closure of all calls on
that line as described in the preceding section. The miniport driver should drop those
calls and clean up their state.

Session termination can be initiated by either the upper layers or a CoNDIS WAN
miniport driver. After the last client process has detached from the higher-level
Telephony module, the NDPROXY driver will be informed that it must terminate its
session with each of the registered adapters. To do so, the NDPROXY driver calls the
NdisClCloseAddressFamily function and passes the handle to the TAPI address family.
NDIS in turn calls the miniport driver's ProtocolCmCloseAf function. The miniport driver
should terminate any related activities it has in progress on the specified adapter and
release any relevant resources. After calling NdisClCloseAddressFamily, the client should
consider the handle to the TAPI address family invalid.

Driver-initiated session termination can occur if the miniport driver is being unloaded in
its MiniportHaltEx function. Typically, the miniport driver would complete any
outstanding NDPROXY requests and notify NDISWAN that all calls are closing. If the
miniport driver were reloaded again later, it would go through the same initialization
process described previously.

The CoNDIS WAN miniport driver might also initiate session termination if it underwent
some dynamic reconfiguration that necessitated a complete reinitialization of all clients
and drivers. For example, if an adapter's line-device modeling (for example, the number
of line devices supported) was changed on the fly.

Closing a Session

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclcloseaddressfamily
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_close_af

Responding to an
OID_CO_TAPI_LINE_CAPS Query
Article • 12/06/2022

In response to an OID_CO_TAPI_LINE_CAPS query, a call manager or MCM returns a
CO_TAPI_LINE_CAPS structure that contains a LINE_DEV_CAPS structure. To support
voice streaming, a call manager or MCM must specify the following values in the
LINE_DEV_CAPS structure:

ulMediaModes

This field should contain LINEMEDIAMODE_AUTOMATEDVOICE, which maps to
TAPIMEDIAMODE_AUDIO in TAPI 3.0.

ulAddressTypes

This field must be filled in appropriately. For a description of valid values, see the
description of dwAddressTypes. This field must not be zero.

ulGenerateDigitModes

This field must be filled in with a bitwise OR of the LINEDIGITMODE_constants that
specify the digit modes that can be generated on the line. For a description of the
LINEDIGITMODE_constant, see the description of dwGenerateDigitModes.

ulMonitorDigitModes

This field must be filled in with a bitwise OR of the LINEDIGITMODE_constants that
specify the digit modes than can be detected on this line. For a description of the
LINEDIGITMODE_constants, see the description of dwMonitorDigitModes.

https://learn.microsoft.com/en-us/windows/win32/api/tapi/ns-tapi-linedevcaps
https://learn.microsoft.com/en-us/windows/win32/api/tapi/ns-tapi-linedevcaps
https://learn.microsoft.com/en-us/windows/win32/api/tapi/ns-tapi-linedevcaps

Specifying Parameters for an Outgoing
Call
Article • 12/15/2021

When making an outgoing call, a call manager or MCM that supports voice streaming
must supply the following values in the CO_CALL_MANAGER_PARAMETERS structure:

Maximum transmit SDU size (CallMgrParameters->Transmit.MaxSduSize)

Maximum receive SDU size (CallMgrParameters->Receive.MaxSduSize)

A call manager or MCM that supports an address family other than
CO_ADDRESS_FAMILY_TAPI_PROXY fills in these values when translating TAPI call
parameters to NDIS call parameters in response to a query of
OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS.

A call manager or MCM that supports the CO_ADDRESS_FAMILY_TAPI_PROXY family
writes these values to the CO_CALL_MANAGER_PARAMETERS structure in the context of
its ProtocolCmMakeCall function. Note that the maximum SDU sizes passed to the
ProtocolCmMakeCall function are incorrect. The ProtocolCmMakeCall function must
overwrite the incorrect values with correct values.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545381(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_make_call

Specifying Parameters for an Incoming
Call
Article • 12/06/2022

When indicating an incoming call with Ndis(M)CmDispatchIncomingCall, a call
manager or MCM that supports voice streaming must specify the following values in the
CO_CALL_MANAGER_PARAMETERS structure:

Maximum transmit SDU size (CallMgrParameters->Transmit.MaxSduSize)

Maximum receive SDU size (CallMgrParameters->Receive.MaxSduSize)

In addition, a call manager or an MCM must specify the following values in the
LINE_CALL_INFO structure:

ulMediaMode

This field should contain LINEMEDIAMODE_AUTOMATEDVOICE, which maps to
TAPIMEDIAMODE_AUDIO in TAPI 3.0.

ulCallerIDFlags

ulCallerIDSize

ulCallerIDOffset

ulCallerIDNameSize

ulCallerIDNameOffset

ulCalledIDFlags

ulCalledIDSize

ulCalledIDOffset

ulCalledIDNameSize

ulCalledDNameOffset

ulCallerIDAddressType

ulCalledIDAddressType

A call manager or MCM that supports an address family other than
CO_ADDRESS_FAMILY_TAPI_PROXY specifies the preceding LINE_CALL_INFO members

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545381(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/tapi/ns-tapi-linecallinfo

when responding to an OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS query.

A call manager or an MCM that supports the CO_ADDRESS_FAMILY_TAPI_PROXY family
specifies the above-listed LINE_CALL_INFO members in the media-specific portion of the
CO_CALL_MANAGER_PARAMETERS structure that it supplies to
Ndis(M)CmDispatchIncomingCall.

Non-WAN-Specific Extensions to
Support Telephonic Services Over
Connection-Oriented NDIS
Article • 03/14/2023

This topic describes non-WAN-specific extensions for TAPI support over connection-
oriented NDIS. These extensions are the NDIS/TAPI translation OIDs. These extensions
allow non-WAN-specific call managers and integrated miniport call manager (MCM)
drivers to translate TAPI parameters to NDIS parameters or TAPI parameters to NDIS
parameters. These extensions allow call managers and MCMs that support ATM, for
example, to provide TAPI access over connection-oriented media. For information about
WAN-specific extensions for TAPI support over connection-oriented NDIS, see CoNDIS
WAN Operations that Support Telephonic Services.

The NDIS/TAPI translation OIDs should not be used for call managers or MCMs that
respectively register CO_ADDRESS_FAMILY_TAPI_PROXY with
NdisCmRegisterAddressFamilyEx or NdisMCmRegisterAddressFamilyEx. Instead, such
call managers and MCMs, as well as their TAPI clients, should encapsulate TAPI
parameters inside connection-oriented structures, as described in CoNDIS WAN
Operations that Support Telephonic Services.

The NDIS/TAPI translation OIDs are as follows:

OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS

This OID requests a call manager or MCM to translate TAPI call parameters
supplied by the client to NDIS call parameters. The client typically uses the NDIS
call parameters returned by the call manager or MCM as an input (formatted as a
CO_CALL_PARAMETERS structure) to NdisClMakeCall. The client uses
NdisClMakeCall to initiate a connection-oriented call.

OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS

This OID requests a call manager or MCM to translate NDIS call parameters for an
incoming call (passed in a CO_CALL_PARAMETERS structure to the client's
ProtocolClIncomingCall function) to TAPI call parameters. The client uses the
translated TAPI call parameters returned by the call manager or MCM to determine
whether to accept or reject the incoming call.

OID_CO_TAPI_TRANSLATE_SAP

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmregisteraddressfamilyex
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_call

This OID requests a call manager or MCM to prepare one or more NDIS SAPs from
TAPI call parameters that are supplied by the client. The client typically uses an
NDIS SAP returned by the call manager or MCM as an input (formatted as a
CO_SAP structure) to NdisClRegisterSap, with which the client registers a SAP on
which to receive incoming calls.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545392(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap

WAN Packet Framing Overview
Article • 12/15/2021

This section provides information about WAN packet framing.

The NDISWAN intermediate driver retrieves information about the WAN packet framing
performed by a WAN miniport driver from the miniport driver's response to the
OID_WAN_MEDIUM_SUBTYPE query information request.

NDISWAN converts an out-going packet from LAN to PPP format. NDISWAN uses
simple HDLC framing. Most of the media-specific framing must be done by the miniport
driver.

Before sending packets to the WAN miniport driver's send function, NDISWAN does
simple PPP HDLC framing. Simple PPP HDLC framing is PPP's HDLC framing without the
FCS, bit or byte stuffing, and any beginning or end flags.

The following topics provide additional information about WAN packet framing:

Asynchronous Framing

ISDN and Switched-56K Framing

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561216(v=vs.85)

Asynchronous Framing
Article • 12/15/2021

The following diagram illustrates asynchronous framing with compression turned off.

ISDN and Switched 56K Framing
Article • 12/15/2021

Initially, ISDN B channels (not D channels) should be used. Multiple B channel support is
done through NDISWAN's multilink support. Initially, bit-synchronous HDLC framing
with NRZ encoding should be used. Transparency should be provided by the driver or
ISDN hardware. It is also the responsibility of the ISDN driver or hardware to provide for
NRZ encoding, to calculate the FCS to add the PPP end flag (0x7E), and to insert any
inter-frame time fill. Switched 56K drivers should frame in the same manner as ISDN.

WAN Miniport Driver Build Parameters
Article • 12/15/2021

This topics provides some information about defining build parameters for NDIS and
CoNDIS WAN miniport drivers.

Add the following line to your Sources file before building to identify your driver as a
miniport driver.

Text

If you are writing an NDIS WAN miniport driver that supports connections through TAPI,
you must add the following line to your Sources file before building to identify the TAPI
version that your driver supports.

Text

If you are writing a CoNDIS WAN miniport driver that is an integrated miniport call
manager (MCM) and that supports the CoNDIS address family type
CO_ADDRESS_FAMILY_TAPI_PROXY, you must add the following line to your sources file
before building to identify the TAPI version that your driver supports.

Text

For WAN miniport drivers, the include paths should include Ndiswan.h as well as Ndis.h.

If the WAN miniport driver supports connections through TAPI, the driver should also
include Ndistapi.h.

C_DEFINES=/DNDIS_MINIPORT_DRIVER

C_DEFINES=-DNDIS_TAPI_CURRENT_VERSION=0x00010003

C_DEFINES=-DNDIS_TAPI_CURRENT_VERSION=0x00030000

Standardized INF Keywords for Network
Devices
Article • 12/15/2021

This section provides information about standardized keywords that appear in the
registry and are specified in INF files. NDIS 6.0 and later versions of NDIS support
standardized keywords for miniport drivers in network devices.

Standardized keywords provide:

Standardized user interface properties for end users.

The ability for both home network users and large-scale enterprises to easily
configure networks that include devices from multiple hardware manufacturers.

The ability to programmatically test for all advanced network device features.

The following standard INF keywords are mandatory for connectionless NDIS 6.0 and
later miniport drivers:

*IfType

*MediaType

*PhysicalMediaType

If the mandatory keywords are missing from the driver's INF file, NDIS does not call the
miniport driver's MiniportInitializeEx function.

Standardized keywords are required for NDIS 6.0 and later miniport drivers if both of the
following are true:

An INF setting must be exposed in the Advanced properties page of the user
interface.

The device fully supports the specified properties.

Note Standardized keywords are optional but recommended for NDIS 5.1 and earlier
NDIS miniport drivers.

This section specifies the INF keywords that are exposed in the user interface. However,
miniport drivers must read the registry settings during initialization to determine the
current configuration settings.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Within an INF file, definitions for these keywords are placed with the other definitions
for the advanced properties page. For more information about advanced properties, see
Specifying Configuration Parameters for the Advanced Properties Page.

All standardized keyword names start with an asterisk (*). This naming convention
enables you to easily distinguish standardized names from non-standard names.

There are three types of standardized keyword data that are exposed in the user
interface:

Enum
Values that can be selected from a list that appears in a drop down menu in the
Advanced properties page.

Int
Numerical values that you can edit.

Edit
Text values that you can edit.

The following topics include descriptions for the standardized keywords that are
common to all networking technologies:

Enumeration Keywords

Keywords That Can Be Edited

Keywords Not Displayed in the User Interface

In addition, standardized keywords that are specific to networking technologies are
described in the following topics:

INF File Settings for Filter Drivers

INF Requirements for NDKPI

MB Miniport Driver INF Requirements

Standardized INF Keywords for Header-Data Split

Standardized INF Keywords for NDIS Quality of Service (QoS)

Standardized INF Keywords for NDIS Selective Suspend

Standardized INF Keywords for NVGRE Task Offload

Standardized INF Keywords for NDIS Packet Timestamping

Standardized INF Keywords for Packet Coalescing

Standardized INF Keywords for Power Management

Standardized INF Keywords for RSC

Standardized INF Keywords for RSS

Standardized INF Keywords for Single Root I/O Virtualization (SR-IOV)

Standardized INF Keywords for Virtual Machine Queue (VMQ)

Enumeration Keywords
Article • 12/15/2021

NDIS 6.0 and later versions of NDIS provide standardized enumeration keywords for
miniport drivers of network devices. Enumeration keywords are associated with values
that appear as a list in a menu.

The following example shows an INF file definition for an enumeration keyword.

INF

The general enumeration keywords are:

*SpeedDuplex
Speed and duplex settings that a device supports. The device INF file should list only the
settings that the associated device supports. That is, for an Ethernet 10/100 device that
can support only full-duplex mode, settings for Gigabit or higher speeds or half duplex
should not be listed in the associated INF file.

Speed values that are not specifically defined already with enumerated values of 0
through 10 may be set as a number that is the value directly in Mbps. Direct values must
be at least 1,000 Mbps (1 Gbps) and above. Here are a few examples for specifying the
speed directly:

SpeedDuplex value Resulting speed

1,000 1 Gbps

10,000 10 Gbps

25,000 25 Gbps

50,000 50 Gbps

100,000 100 Gbps

HKR, Ndi\params\<SubkeyName>, ParamDesc, 0, "%<SubkeyName>%"
HKR, Ndi\params\<SubkeyName>, Type, 0, "enum"
HKR, Ndi\params\<SubkeyName>, Default, 0, "3"
HKR, Ndi\params\<SubkeyName>, Optional, 0, "0"
HKR, Ndi\params\<SubkeyName>\enum, "0", 0, "%Disabled%"
HKR, Ndi\params\<SubkeyName>\enum, "1", 0, "%Tx Enabled%"
HKR, Ndi\params\<SubkeyName>\enum, "2", 0, "%Rx Enabled%"
HKR, Ndi\params\<SubkeyName>\enum, "3", 0, "%Rx & Tx Enabled%"

*FlowControl
The ability for the device to enable or disable flow control in the send or receive path.

Note Ethernet devices today support flow control, and the Windows 8 in-box drivers
for LAN have flow control enabled by default. When a kernel debugger attaches to one
of these LAN adapters, the NIC will start pushing flow control pause frames into the
network. Most network switches will react by temporarily taking down the network for
all other computers that are connected to the same hub. This is a common development
scenario, and the end-user experience is both undesirable and difficult to diagnose.

Note Client and Server defaults are not the same; refer to the table of defaults below.

For this reason, in Windows 8 and later, NDIS will disable flow control automatically
when debugging is enabled on the computer (for example, by typing bcdedit /set
debug on at the command line). When kernel debugging is enabled and the miniport
calls NdisReadConfiguration and passes "*FlowControl" for the Keyword parameter,
NDIS will override the configured value and return zero.

If you need to enable flow control while debugging, NDIS provides the
AllowFlowControlUnderDebugger registry value to allow you to do that. The
AllowFlowControlUnderDebugger registry value prevents NDIS from disabling flow
control, and allows NICs to keep their configured behavior. It can be found under the
following registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\NDIS\Parameters

Set this registry value to 0x00000001.

If it does not exist, you can create a value with the name
AllowFlowControlUnderDebugger and the type REG_DWORD and set it to 0x00000001.

*PriorityVLANTag
A value that indicates whether the device has enabled or disabled the ability to insert
the 802.1Q tags for packet priority and virtual LANs (VLANs). This keyword does not
indicate whether the device enabled or disabled packet priority or VLAN tags. Instead, it
describes the following:

Whether the device inserts 802.1Q tags during a send operation
Whether 802.1Q tag information is available in the NET_BUFFER_LIST out-of-band
(OOB) information
Whether the device copies 802.1Q tags to OOB during receive operations

The miniport driver should remove the 802.1Q header from all receive packets
regardless of the *PriorityVLANTag setting. If the 802.1Q header is left in a packet, other

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

drivers might not be able to parse the packet correctly.

If the Rx flag is enabled on the receive path, the miniport driver should copy the
removed 802.1Q header into OOB.

Otherwise, if the Rx flag is disabled, the miniport driver should not copy the removed
802.1Q header into OOB.

If the Tx flag is enabled on the transmit path, the miniport driver should do the
following:

Insert the 802.1Q header into each outgoing packet and fill it up with the data
from OOB (if any non-zero data exists in OOB).
Advertise appropriate MacOptions in
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
(NDIS_MAC_OPTION_8021P_PRIORITY and NDIS_MAC_OPTION_8021Q_VLAN).

Otherwise, if the Tx flag is disabled, then:

The miniport filter should not honor 802.1Q information in OOB (and therefore not
insert any tag).
The miniport filter should not advertise appropriate MacOptions in
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES.

Note If the miniport driver supports NDIS quality of service (QoS), it must also read the
*QOS keyword value. Based on the *QOS keyword value, the *PriorityVLANTag keyword
values are interpreted differently. For more information, see Standardized INF Keywords
for NDIS QoS.

*InterruptModeration
A value that describes whether the device enabled or disabled interrupt moderation.
Interrupt moderation algorithms are device-dependent. The device manufacturer can
use non-standardized keywords to support algorithmic settings. For more information
about interrupt moderation, see Interrupt Moderation.

*RSS
A value that describes whether the device enabled or disabled receive side scaling (RSS).
For more information about RSS, see Receive Side Scaling.

*HeaderDataSplit
A value that describes whether the device enabled or disabled header-data split. For
more information about header-data split, see Header-Data Split.

The following keywords are associated with connection offload services:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes

*TCPConnectionOffloadIPv4

*TCPConnectionOffloadIPv6

For more information about the connection offload keywords, see Using Registry Values
to Enable and Disable Connection Offloading.

The following keywords are associated with task offload services:

*IPChecksumOffloadIPv4

*TCPChecksumOffloadIPv4

*TCPChecksumOffloadIPv6

*UDPChecksumOffloadIPv4

*UDPChecksumOffloadIPv6

*LsoV1IPv4

*LsoV2IPv4

Note For devices that support both large send offload version 1 (LSOv1) and LSOv2
over IPv4, only the *LsoV2IPv4 keyword should be used in the INF file and registry
values. If, for example, the *LsoV2IPv4 keyword appears in the INF file and the
*LsoV1IPv4 keyword appears in the registry (or vice versa), the *LsoV2IPv4 keyword
always takes precedence.

*LsoV2IPv6

*IPsecOffloadV1IPv4

*IPsecOffloadV2

*IPsecOffloadV2IPv4

*TCPUDPChecksumOffloadIPv4

*TCPUDPChecksumOffloadIPv6

For more information about the TCP/IP offload keywords, see Using Registry Values to
Enable and Disable Task Offloading.

The columns in the table at the end of this topic describe the following attributes for
enumeration keywords:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value
is stored in NDI\params\SubkeyName\Value.

EnumDesc
The display text that is associated with each value that appears in the menu.

Default
The default value for the menu.

The following table lists all of the keywords and describes the values that a driver must
use for the preceding attributes. For more information about a keyword, search for the
keyword in the WDK documentation.

SubkeyName ParamDesc Value EnumDesc

*SpeedDuplex Speed & Duplex 0 (Default) Auto Negotiation

1 10 Mbps Half Duplex

2 10 Mbps Full Duplex

3 100 Mbps Half Duplex

4 100 Mbps Full Duplex

5 1.0 Gbps Half Duplex

6 1.0 Gbps Full Duplex

7 10 Gbps Full Duplex

8 20 Gbps Full Duplex

9 40 Gbps Full Duplex

10 100 Gbps Full Duplex

*FlowControl Flow Control 0 (Server
Default)

Tx & Rx Disabled

1 Tx Enabled

SubkeyName ParamDesc Value EnumDesc

2 Rx Enabled

3 (Client
Default)

Rx & Tx Enabled

4 Auto Negotiation

*PriorityVLANTag Packet Priority & VLAN 0 Packet Priority &
VLAN Disabled

1 Packet Priority
Enabled

2 VLAN Enabled

3 (Default) Packet Priority &
VLAN Enabled

*InterruptModeration Interrupt Moderation 0 Disabled

1 (Default) Enabled

*RSS Receive Side Scaling 0 Disabled

1 (Default) Enabled

*HeaderDataSplit Header Data Split 0 (Default) Disabled

1 Enabled

*TCPConnectionOffloadIPv4 TCP Connection Offload
(IPv4)

0 Disabled

1 (Default) Enabled

*TCPConnectionOffloadIPv6 TCP Connection Offload
(IPv6)

0 Disabled

1 (Default) Enabled

*IPChecksumOffloadIPv4 IPv4 Checksum Offload 0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Rx & Tx Enabled

*TCPChecksumOffloadIPv4 TCP Checksum Offload
(IPv4)

0 Disabled

SubkeyName ParamDesc Value EnumDesc

1 Tx Enabled

2 Rx Enabled

3 (Default) Rx & Tx Enabled

*TCPChecksumOffloadIPv6 TCP Checksum Offload
(IPv6)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Rx & Tx Enabled

*UDPChecksumOffloadIPv4 UDP Checksum Offload
(IPv4)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Rx & Tx Enabled

*UDPChecksumOffloadIPv6 UDP Checksum Offload
(IPv6)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Rx & Tx Enabled

*LsoV1IPv4 Large Send Offload
Version 1 (IPv4)

0 Disabled

1 (Default) Enabled

*LsoV2IPv4 Large Send Offload
Version 2 (IPv4)

0 Disabled

1 (Default) Enabled

*LsoV2IPv6 Large Send Offload
Version 2 (IPv6)

0 Disabled

1 (Default) Enabled

*IPsecOffloadV1IPv4 IPsec Offload Version 1
(IPv4)

0 Disabled

SubkeyName ParamDesc Value EnumDesc

1 Auth Header Enabled

2 ESP Enabled

3 (Default) Auth Header & ESP
Enabled

*IPsecOffloadV2 IPsec Offload 0 Disabled

1 Auth Header Enabled

2 ESP Enabled

3 (Default) Auth Header & ESP
Enabled

*IPsecOffloadV2IPv4 IPsec Offload (IPv4 only) 0 Disabled

1 Auth Header Enabled

2 ESP Enabled

3 (Default) Auth Header & ESP
Enabled

*TCPUDPChecksumOffloadIPv4 TCP/UDP Checksum
Offload (IPv4)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Tx and Rx Enabled

*TCPUDPChecksumOffloadIPv6 TCP/UDP Checksum
Offload (IPv6)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3 (Default) Tx and Rx Enabled

Keywords That Can Be Edited
Article • 12/15/2021

NDIS 6.0 and later versions of NDIS provide standardized keywords that can be edited
for miniport drivers of network devices. These standardized keywords are associated
with numeric or text values that you can edit in the user interface.

The following example shows an INF file definition for a keyword that can be edited.

INF

The standard keywords that can be edited are:

*JumboPacket The size, in bytes, of the largest supported Jumbo Packet (an Ethernet
frame that is greater than 1514 bytes) that the hardware can support. This is also known
as a Jumbo Frame. *JumboPacket's range of values and maximum value are IHV-defined.
For more info, check with your IHV.

*ReceiveBuffers
The number of receive descriptors used by the miniport adapter. The miniport driver can
choose any default value that is appropriate for performance-tuning. Note that if the
value is too small, the miniport adapter may run out of receive buffers under heavy load.
If the value is too large, system resources are wasted.

*TransmitBuffers
The size, in bytes, of the transmit buffers that the hardware can support. This size is
hardware-dependent and can include data buffers, buffer descriptors, and so on.
Hardware vendors can assign any value that is appropriate for their purposes.

*NetworkAddress
The network address of the device. The format for a MAC address is: XX-XX-XX-XX-XX-
XX. The hyphens (-) are optional.

The columns in the table at the end of this topic describe the following attributes for
keywords that can be edited:

HKR, Ndi\params\<SubkeyName>,ParamDesc, 0, "<ParamDesc>"
HKR, Ndi\params\<SubkeyName>,Type, 0, "int"
HKR, Ndi\params\<SubkeyName>,Default, 0, "<IHV defined>"
HKR, Ndi\params\<SubkeyName>,Optional, 0, "0"
HKR, Ndi\params\<SubkeyName>,Min, 0, "0"
HKR, Ndi\params\<SubkeyName>,Max, 0, "<IHV defined>"

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Type
The type of value that can be edited. The value can be either numeric (Int) or text that
can be edited (Edit).

Default value
The default value for the integer or text. <IHV defined> indicates that the value is
associated with the particular independent hardware vendor (IHV) requirements.

Min
The minimum value that is allowed for an integer. <IHV defined> indicates that the
minimum value is associated with the particular IHV requirements.

Max
The maximum value that is allowed for an integer. <IHV defined> indicates that the
minimum value is associated with the particular IHV requirements.

The following table lists all of the keywords and describes the values that a driver must
use for the preceding attributes. For more information about a keyword, search for the
keyword in the WDK documentation.

SubkeyName ParamDesc Type Default value Min Max

*JumboPacket Jumbo Packet Int 1514 1514

*ReceiveBuffers Receive Buffers Int 1

*TransmitBuffers Transmit Buffers Int 0

*NetworkAddress Network Address Edit N/A N/A N/A

Keywords Not Displayed in the User
Interface
Article • 12/15/2021

NDIS 6.0 and later versions of NDIS provide some standardized keywords for miniport
drivers of network devices. These standardized keywords appear in INF files but not in
the user interface.

These general keywords are described in the following list. For more information about
a particular keyword, search for the keyword in the WDK documentation.

*IfType
The NDIS interface type for a device. For more information about the NDIS interface
type, see NDIS Interface Types.

*MediaType
The media type for a device. For more information about the media type of the miniport
adapter, see OID_GEN_MEDIA_SUPPORTED.

*PhysicalMediaType
The physical media type for a device. For more information about the physical media
type of the miniport adapter, see OID_GEN_PHYSICAL_MEDIUM.

*NdisDeviceType
The type of the device. The default value is zero, which indicates a standard networking
device that connects to a network. Set *NdisDeviceType to
NDIS_DEVICE_TYPE_ENDPOINT (1) if this device is an endpoint device and is not a true
network interface that connects to a network. For example, you must specify
NDIS_DEVICE_TYPE_ENDPOINT for devices such as smart phones that use a networking
infrastructure to communicate to the local computer system but do not provide
connectivity to an external network. However, you must *not* set this keyword to
NDIS_DEVICE_TYPE_ENDPOINT for virtual adapters such as VPN interfaces, because they
provide connectivity to an external network.

Note Windows Vista automatically identifies and monitors the networks a computer
connects to. If the NDIS_DEVICE_TYPE_ENDPOINT flag is set, the device is an endpoint
device and is not a connection to a true external network. Consequently, Windows
ignores the endpoint device when it identifies networks. The Network Awareness APIs
indicate that the device does not connect the computer to a network. For end users in
this situation, the Network and Sharing Center and the network icon in the notification

area do not show the NDIS endpoint device as connected. However, the connection is
shown in the Network Connections Folder.

Roadmap for Developing NDIS Protocol
Drivers
Article • 03/14/2023

To create a Network Driver Interface Specification (NDIS) protocol driver package, follow
these steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about NDIS.

For general information about NDIS and NDIS drivers, see the following topics:

Windows Network Architecture and the OSI Model

Network Driver Programming Considerations

Driver Stack Management

NET_BUFFER Architecture

Step 3: Determine additional Windows driver design decisions.

For more information about how to make additional Windows design decisions,
see Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers,
and Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For more
information about Windows driver build, debug, and test processes, driver signing,
and Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For more information about building, testing, verifying, and debugging
tools, see Driver Development Tools.

Step 5: Read the protocol driver introduction topics. Introduction to NDIS Protocol
Drivers Protocol Driver Design Concepts

Step 6: Read the writing protocol drivers section.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/

This section provides an overview of the primary protocol driver interfaces. These
interfaces included functions that protocol drivers provide (ProtocolXxx functions)
and NDIS calls to initiate operations. NDIS provides NdisXxx functions that
protocol drivers call to perform NDIS operations.

Step 7: Review the NDIS protocol driver sample in the Windows driver samples
repository on GitHub.

Step 8: Develop (or port), build, test, and debug your NDIS driver.

See the porting guides if you are porting an existing driver:
Porting NDIS 5.x Drivers to NDIS 6.0
Porting NDIS 6.x Drivers to NDIS 6.20
Porting NDIS 6.x Drivers to NDIS 6.30

For more information about iterative building, testing, and debugging, see
Overview of Build, Debug, and Test Process. This process will help ensure that you
build a driver that works.

Step 9: Create a driver package for your driver.

For more information about how to install drivers, see Providing a Driver Package.
For more information about how to install an NDIS driver, see Components and
Files Used for Network Component Installation and Notify Objects for Network
Components.

Step 10: Sign and distribute your driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Lab Kit (HLK), you
can distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/ndisprot/6x
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

Introduction to NDIS Protocol Drivers
Article • 03/14/2023

An NDIS protocol driver exports a set of ProtocolXxx functions at its lower edge. Such a
protocol driver communicates with NDIS to send and receive network data. The protocol
driver binds to an underlying miniport driver or intermediate driver that exports a
MiniportXxx interface at its upper edge.

Note The miniport driver upper edge of an intermediate driver (virtual miniport) does
not manage physical devices. Underlying miniport drivers manage physical devices.

Protocol drivers always use NDIS-provided functions to communicate with underlying
NDIS drivers to send and receive network data. For example, a protocol driver that has a
connectionless lower-edge (which communicates with underlying drivers for
connectionless media, such as Ethernet) must call NdisSendNetBufferLists to send
network data to an underlying NDIS driver. The protocol driver can call NdisOidRequest
to query or set OIDs that underlying connectionless drivers support. A protocol driver
that has a connection-oriented lower edge (which communicates with underlying drivers
for connection-oriented media, such as ISDN) must call NdisCoSendNetBufferLists to
send network data to a lower-level NDIS driver. It can also call NdisCoOidRequest to
query or set OIDs that are supported by underlying connection-oriented drivers.

NDIS also provides a set of NdisXxx functions that hide the details of the underlying
operating system. For example, a protocol driver can call NdisInitializeEvent to create
an event for synchronization purposes and NdisInitializeListHead to create a linked list.
Protocol drivers that use the NDIS versions of such functions are more portable across
Microsoft operating systems. However, protocol drivers can also call kernel-mode
support routines, such as IoCreateDevice. For more information, see Summary of
Kernel-Mode Support Routines.

Developers of protocol drivers should use the same programming considerations that
are applied to other NDIS drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinitializeevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinitializelisthead
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/index

Initializing a Protocol Driver
Article • 12/15/2021

The system calls a protocol driver's DriverEntry routine after it loads the driver. Protocol
drivers load as system services. They can load at any time before, during, or after the
miniport drivers load.

Protocol drivers allocate driver resources and register ProtocolXxx functions in
DriverEntry. This includes CoNDIS clients and stand-alone call managers. To register its
ProtocolXxx functions with NDIS, a protocol driver calls the NdisRegisterProtocolDriver
function.

DriverEntry returns STATUS_SUCCESS, or its equivalent NDIS_STATUS_SUCCESS, if the
driver registered as an NDIS protocol driver successfully. If DriverEntry fails initialization
by propagating an error status that was returned by an NdisXxx function or by a kernel-
mode support routine, the driver will not remain loaded. DriverEntry must execute
synchronously; that is, it cannot return STATUS_PENDING or its equivalent
NDIS_STATUS_PENDING.

The DriverEntry function of an NDIS protocol driver must call the
NdisRegisterProtocolDriver function. To register the driver's ProtocolXxx entry points
with the NDIS library, a protocol driver initializes an
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS structure and passes it to
NdisRegisterProtocolDriver.

Drivers that call NdisRegisterProtocolDriver must be prepared for an immediate call to
any of their ProtocolXxx functions.

NDIS protocol drivers provide the following ProtocolXxx functions, which are updated
versions of the functions that legacy drivers provide:

ProtocolSetOptions

ProtocolBindAdapterEx

ProtocolUnbindAdapterEx

ProtocolOpenAdapterCompleteEx

ProtocolCloseAdapterCompleteEx

ProtocolNetPnPEvent

ProtocolUninstall

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_open_adapter_complete_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_close_adapter_complete_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_uninstall

NDIS protocol drivers provide the following ProtocolXxx functions for send and receive
operations:

ProtocolReceiveNetBufferLists

ProtocolSendNetBufferListsComplete

All types of NDIS protocol drivers should register fully functional ProtocolBindAdapterEx
and ProtocolUnbindAdapterEx functions to support Plug and Play (PnP). In general, a
DriverEntry function should call NdisRegisterProtocolDriver immediately before it
returns control with a status value of STATUS_SUCCESS or NDIS_STATUS_SUCCESS.

Any protocol driver that exports a set of standard kernel-mode driver routines in
addition to its NDIS-defined ProtocolXxx functions must set the entry points for those
driver routines in the given driver object that is passed in to its DriverEntry function. For
more information about the functionality of such a protocol driver's DriverEntry
function, see Writing a DriverEntry Routine.

If an attempt to allocate resources that the driver needs to carry out network I/O
operations fails, DriverEntry should release all resources that it already allocated before
it returns control with a status other than STATUS_SUCCESS or NDIS_STATUS_SUCCESS.

If an error occurs after a successful call to NdisRegisterProtocolDriver, the driver must
call the NdisDeregisterProtocolDriver function before DriverEntry returns.

To allow a protocol driver to configure optional services, NDIS calls the
ProtocolSetOptions function within the context of the protocol driver's call to
NdisRegisterProtocolDriver. For more information about optional services, see
Configuring Optional Protocol Driver Services.

CoNDIS client drivers must call the NdisSetOptionalHandlers function from the
ProtocolSetOptions function. The driver initializes an
NDIS_CO_CLIENT_OPTIONAL_HANDLERS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

CoNDIS stand-alone call managers must also call the NdisSetOptionalHandlers function
from the ProtocolSetOptions function. The driver initializes an
NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

MCMs are not protocol drivers. Therefore, they must call the NdisSetOptionalHandlers
function from the MiniportSetOptions function. The MCM initializes an
NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/writing-a-driverentry-routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisderegisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_client_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers

To unregister with NDIS, a protocol driver calls NdisDeregisterProtocolDriver from its
Unload routine.

To perform cleanup operations before a protocol driver is uninstalled, a protocol driver
can register a ProtocolUninstall function. The ProtocolUninstall function is optional. For
example, the protocol lower edge of an intermediate driver might require a
ProtocolUninstall function. The intermediate driver can release its protocol edge
resources in ProtocolUninstall before NDIS calls its MiniportDriverUnload function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisderegisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_uninstall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload

Protocol Binding States and Operations
Article • 12/15/2021

An NDIS protocol driver must support the following operational states for each binding that
the driver manages:

Unbound
The Unbound state is the initial state of a binding. In this state, the protocol driver waits for
NDIS to call the ProtocolBindAdapterEx function.

Opening
In the Opening state, a protocol driver allocates resources for the binding and attempts to
open the adapter.

Running
In the Running state, a protocol driver performs send and receive processing for a binding.

Closing
In the Closing state, the protocol driver closes the binding to the adapter and then releases
the resources for the binding.

Pausing
In the Pausing state, a protocol driver completes any operations that are required to stop
send and receive operations for a binding.

Paused
In the Paused state, the protocol driver does not perform send or receive operations for a
binding.

Restarting
In the Restarting state, a protocol driver completes any operations that are required to restart
send and receive operations for a binding.

In the following table, the headings represent the binding states, and events are listed in the
first column. The rest of the entries in the table specify the next state that the binding enters
after an event occurs within a state. The blank entries represent invalid event/state
combinations.

Event \ State Unbound Opening Closing Paused Restarting Running Pausing

ProtocolBindAdapterEx Opening

Bind failed Unbound

Bind is complete Paused

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

Event \ State Unbound Opening Closing Paused Restarting Running Pausing

ProtocolUnbindAdapterEx Closing

Unbind is complete Unbound

PnP pause Pausing

Pause is complete Paused

PnP restart Restarting

Restart is complete Running

Restart failed Paused

Send and receive
operations

Running Pausing

OID requests Closing Paused Restarting Running Pausing

Note The events listed in the preceding table are the primary events for an NDIS protocol
binding. Additional events will be added to this table as the information becomes available.

The primary binding events are defined as follows:

ProtocolBindAdapterEx
After NDIS calls the driver's ProtocolBindAdapterEx function, the binding enters the Opening
state. For more information, see Binding to an Adapter.

Bind failed
If the protocol driver fails to bind to the adapter, the binding returns to the Unbound state.

Bind is complete
If the driver successfully opens the adapter, the binding enters the Paused state. The driver
completes the bind operation.

ProtocolUnbindAdapterEx
After NDIS calls the driver's ProtocolUnbindAdapterEx hander, the binding enters the Closing
state. For more information, see Unbinding from an Adapter.

Unbind is complete
After the driver completes the unbind operation, the binding enters the Unbound state.

PnP Pause
After NDIS sends the protocol driver a network Plug and Play (PnP) pause event notification,
the binding enters the Pausing state. For more information see Pausing a Binding.

Pause is complete
After the driver has completed all operations that are required to stop send and receive

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

operations, the pause operation is complete and the binding is in the Paused state.

Note The driver must wait for all its outstanding send requests to complete before the
pause operation is complete.

PnP Restart
After NDIS sends the protocol driver a network PnP restart event notification, the binding
enters the Restarting state. For more information, see Restarting a Binding.

Restart is complete
After the driver is ready to handle send and receive operations, the restart operation is
complete and the binding is in the Running state.

Restart failed
If NDIS sends the protocol driver a network PnP restart event notification and the restart
attempt fails, the binding returns to the Paused state.

Send and Receive Operations
A protocol driver must handle send and receive operations in the Running and Pausing
states. For more information about send and receive operations, see Protocol Driver Send
and Receive Operations.

OID Requests
A protocol driver can initiate OID requests to set or query information in underlying drivers.
A protocol driver can initiate OID requests from all states, except Unbound and Opening.

Writing NDIS Protocol Drivers

Related topics

Binding to an Adapter
Article • 12/15/2021

NDIS calls a protocol driver's ProtocolBindAdapterEx function to open a binding
whenever an underlying adapter to which the driver can bind becomes available. After
NDIS calls ProtocolBindAdapterEx, the binding enters the Opening state. In the Opening
state, the protocol driver allocates resources for the binding and opens the adapter.

NDIS passes to ProtocolBindAdapterEx the NDIS context for the binding operation as
well as a pointer to an NDIS_BIND_PARAMETERS structure. This structure contains
information about the adapter such as:

The name of the adapter.

The registry location for parameters specific to this binding under protocol service
entry in the registry.

The physical device object for the adapter.

To open an adapter, protocol drivers call the NdisOpenAdapterEx function. The protocol
driver passes the following to NdisOpenAdapterEx:

The handle that NDIS returned to the driver at the NdisProtocolHandle parameter
of the NdisRegisterProtocolDriver function.

The protocol driver's context for this binding.

A pointer to a structure of type NDIS_OPEN_PARAMETERS.

NDIS_OPEN_PARAMETERS contains information such as name of the adapter that
NdisOpenAdapterEx should open, an array of medium types that the protocol driver
supports and, optionally, an array of frame types that the driver can receive on this
binding.

If a protocol driver returns NDIS_STATUS_PENDING from ProtocolBindAdapterEx, it must
call NdisCompleteBindAdapterEx with the final status to complete the bind request.

If NDIS returns NDIS_STATUS_PENDING from NdisOpenAdapterEx, NDIS later calls the
protocol driver's ProtocolOpenAdapterCompleteEx function with the final status after the
open request has been completed.

After the driver successfully opens the binding to the adapter, the binding is in the
Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_open_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_open_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscompletebindadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_open_adapter_complete_ex

A protocol driver calls the NdisCloseAdapterEx function to close the adapter. The driver
can call NdisCloseAdapterEx from the ProtocolBindAdapterEx function or
ProtocolUnbindAdapterEx function.

If after opening the adapter and before completing the bind request,
ProtocolBindAdapterEx encounters a failure and must close the binding to the adapter, it
can call NdisCloseAdapterEx. For more information about closing an adapter, see
Unbinding from an Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

Unbinding from an Adapter
Article • 12/15/2021

NDIS calls a protocol driver's ProtocolUnbindAdapterEx function to request that the
driver unbind from an underlying adapter. As the reciprocal of ProtocolBindAdapterEx,
NDIS calls ProtocolUnbindAdapterEx to close the binding to the adapter and to release
the resources that the driver allocated for the binding.

In ProtocolUnbindAdapterEx, a protocol driver calls NdisCloseAdapterEx to close the
binding to an underlying adapter. The protocol driver passes NdisCloseAdapterEx the
handle that NdisOpenAdapterEx provided at its NdisBindingHandle parameter. This
handle identifies the binding that NDIS should close.

Protocol drivers must close an adapter from the ProtocolBindAdapterEx function or
ProtocolUnbindAdapterEx function.

If a protocol driver must initiate an operation to close a binding, the driver can call
NdisUnbindAdapter. NdisUnbindAdapter schedules a work item that results in an NDIS
call to ProtocolUnbindAdapterEx. This work item can run before the call to
NdisUnbindAdapter returns. Therefore, driver writers must assume that the binding
handle is invalid after NdisUnbindAdapter returns.

If a protocol driver returns NDIS_STATUS_PENDING from ProtocolUnbindAdapterEx, it
must call NdisCompleteUnbindAdapterEx with the final status to complete the bind
request.

If NDIS returns NDIS_STATUS_PENDING from NdisCloseAdapterEx, NDIS later calls the
protocol driver's ProtocolCloseAdapterCompleteEx function.

NDIS can call ProtocolUnbindAdapterEx if the binding is in the Paused state.

After all the unbind operations are complete, the binding is in the Unbound state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisunbindadapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscompleteunbindadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_close_adapter_complete_ex

Starting and Pausing a Binding
Article • 12/15/2021

NDIS pauses a binding to stop data flow that could interfere with Plug and Play (PnP)
operations, for example, adding or removing a filter module in a driver stack, or, to add
a new binding. For more information about how to modify a running driver stack, see
Modifying a Running Driver Stack.

NDIS starts a binding from the Paused state. The binding enters the Paused state after
the bind operation is complete or after a pause operation is complete.

The following topics provide more information about starting and pausing a binding:

Restarting a Binding

Pausing a Binding

Restarting a Binding
Article • 12/15/2021

To restart a binding that is paused, NDIS sends the protocol driver a network Plug and
Play (PnP) restart event notification. After the protocol driver receives the restart
notification, the affected binding enters the Restarting state.

To send a restart notification, NDIS calls a protocol driver's ProtocolNetPnPEvent
function. The NET_PNP_EVENT_NOTIFICATION structure that NDIS passes to
ProtocolNetPnPEvent specifies NetEventRestart in the NetEvent member and the Buffer
member contains a pointer to the NDIS_PROTOCOL_RESTART_PARAMETERS structure.
NDIS provides a pointer to an NDIS_RESTART_ATTRIBUTES structure in the
RestartAttributes member of the NDIS_PROTOCOL_RESTART_PARAMETERS structure.

Note While the binding was paused, NDIS could have reconfigured the driver stack. The
new stack configuration can support a different set of capabilities for the underlying
adapter. These new capabilities can affect how the protocol driver communicates on a
binding.

The protocol driver should use the information in the
NDIS_PROTOCOL_RESTART_PARAMETERS structure to avoid unnecessary OID requests.

In the Restarting state, the protocol driver can:

Use OID requests to query the driver stack. For example, the driver can find out
about support for receive side scaling by using
OID_GEN_RECEIVE_SCALE_CAPABILITIES.

Reallocate NET_BUFFER and NET_BUFFER_LIST pools, if necessary.

Enumerate the list of the underlying filter modules.

Use OID requests to reveal new adapter capabilities.

After the driver is ready to resume send and receive operations for the binding, the
binding enters the Running state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_restart_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_restart_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Pausing a Binding
Article • 12/15/2021

After NDIS sends a protocol driver a network Plug and Play (PnP) pause event
notification for a binding, the binding enters the Pausing state.

To notify the protocol driver of the PnP pause event, NDIS calls the ProtocolNetPnPEvent
function with the NetEvent member of the NET_PNP_EVENT_NOTIFICATION structure is
set to NetEventPause. The Buffer member contains an
NDIS_PROTOCOL_PAUSE_PARAMETERS structure.

For a binding in the Pausing state, the protocol driver:

Should not initiate any new send requests.

Must wait for outstanding send requests to complete. The pause operation is not
complete until NDIS calls the ProtocolSendNetBufferListsComplete function for all
of the driver's outstanding send requests.

Should handle receive indications as usual. The underlying miniport driver waits for
outstanding receive data to return before completing a pause operation. This
ensures that there are no ongoing receive operations in the driver stack after the
miniport driver is paused.

Should return new receive indications to NDIS immediately. If necessary, the driver
can copy such receive indications before it returns them.

For more information about protocol driver send and receive operations, see Protocol
Driver Send and Receive Operations.

A binding enters the Paused state after the protocol driver is done returning
outstanding receive indications for the binding and NDIS has completed all of the
outstanding send requests for the binding.

For a binding in the Paused state, the protocol driver:

Must not make any send requests.

Should return receive indications immediately. If necessary, the driver can copy
such receive indications before it returns them.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_pause_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete

Configuring Optional Protocol Driver
Services
Article • 12/15/2021

NDIS calls a protocol driver's ProtocolSetOptions function to allow a protocol driver to
configure optional services. NDIS calls ProtocolSetOptions within the context of the
protocol driver's call to the NdisRegisterProtocolDriver function

ProtocolSetOptions registers default entry points for optional ProtocolXxx functions and
can allocate other driver resources. To register optional ProtocolXxx functions, the
protocol driver calls the NdisSetOptionalHandlers function and passes a characteristics
structure at the OptionalHandlers parameter. In this case, the protocol driver passes the
handle from the NdisDriverHandle parameter of ProtocolSetOptions at the NdisHandle
parameter of NdisSetOptionalHandlers.

A protocol driver can also call NdisSetOptionalHandlers from the
ProtocolBindAdapterEx function or the ProtocolOpenAdapterCompleteEx function after
the protocol driver has a valid handle from the NdisOpenAdapterEx function. In this
case, the protocol driver passes the handle from the NdisBindingHandle parameter of
NdisOpenAdapterEx at the NdisHandle parameter of NdisSetOptionalHandlers.

In this case, the valid characteristics structures are:

NDIS_PROTOCOL_CO_CHARACTERISTICS

NDIS_CO_CLIENT_OPTIONAL_HANDLERS

NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS

NDIS_CLIENT_CHIMNEY_OFFLOAD_GENERIC_CHARACTERISTICS (see NDIS 6.0 TCP
chimney offload documentation)

NDIS_CLIENT_CHIMNEY_OFFLOAD_TCP_CHARACTERISTICS (see NDIS 6.0 TCP chimney
offload documentation)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_open_adapter_complete_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_client_optional_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers

Protocol Driver Send and Receive
Operations
Article • 12/15/2021

Protocol drivers originate send requests and handle the receive indications of
underlying drivers. In a single function call, NDIS protocol drivers can send multiple
NET_BUFFER_LIST structures with multiple NET_BUFFER structures on each
NET_BUFFER_LIST structure. In the receive path, protocol drivers can receive a list of
NET_BUFFER_LIST structures.

Protocol drivers must manage send buffer pools. Proper management of such pools
requires preallocation of sufficient buffer space to optimize system performance.

The following topics provide more information about protocol driver buffer
management, send operations, and receive operations:

Protocol Driver Buffer Management

Sending Data from a Protocol Driver

Receiving Data in Protocol Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Protocol Driver Buffer Management
Article • 12/15/2021

A protocol driver must manage NET_BUFFER_LIST structure pools and NET_BUFFER
structure pools for send operations. To create these pools, drivers call the following
functions:

NdisAllocateNetBufferListPool

NdisAllocateNetBufferPool

Protocol drivers can use the following functions to allocate structures from the pools:

NdisAllocateNetBufferAndNetBufferList

NdisAllocateNetBufferList

NdisAllocateNetBuffer

Calling NdisAllocateNetBufferAndNetBufferList is more efficient than calling
NdisAllocateNetBufferList followed by NdisAllocateNetBuffer. However,
NdisAllocateNetBufferAndNetBufferList only creates one NET_BUFFER structure on the
NET_BUFFER_LIST structure. To use NdisAllocateNetBufferAndNetBufferList, the driver
must set the AllocateNetBuffer parameter to TRUE when it calls
NdisAllocateNetBufferListPool.

Protocol drivers can use OID requests to query the back-fill and context space
requirements of the underlying drivers. A protocol driver should determine the back-fill
and context requirements for a binding in the Opening or Restarting states. The driver
should allocate sufficient back-fill and context space for the entire stack. If necessary, a
protocol driver can free the pools and reallocate them in the Restarting state.

Protocol drivers use the following functions to free the pools:

NdisFreeNetBufferListPool

NdisFreeNetBufferPool.

Protocol drivers use the following functions to free the structures allocated from the
pools:

NdisFreeNetBufferList

NdisFreeNetBuffer

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferandnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbuffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbuffer

Drivers should free NET_BUFFER structures allocated with NdisAllocateNetBuffer before
freeing the associated NET_BUFFER_LIST structure. NET_BUFFER structures allocated with
NdisAllocateNetBufferAndNetBufferList are freed when the driver calls
NdisFreeNetBufferList for the associated NET_BUFFER_LIST structure.

Sending Data from a Protocol Driver
Article • 12/15/2021

The following figure illustrates a protocol driver send operation, which involves a
protocol driver, NDIS, and underlying drivers in a driver stack.

Protocol drivers call the NdisSendNetBufferLists function to send the network data that
is defined in a list of NET_BUFFER_LIST structures.

A protocol driver must set the SourceHandle member of each NET_BUFFER_LIST
structure to the same value that it passes to the NdisBindingHandle parameter. The
binding handle provides the information that NDIS requires to return the
NET_BUFFER_LIST structure to the protocol driver after the underlying miniport driver
calls NdisMSendNetBufferListsComplete.

Before calling NdisSendNetBufferLists, a protocol driver can set information that
accompanies the send request with the NET_BUFFER_LIST_INFO macro. The underlying
drivers can retrieve this information with the NET_BUFFER_LIST_INFO macro.

As soon as a protocol driver calls NdisSendNetBufferLists, it relinquishes ownership of
the NET_BUFFER_LIST structures and all associated resources. NDIS calls the
ProtocolSendNetBufferListsComplete function to return the structures and data to the
protocol driver. NDIS can collect the structures and data from multiple send requests
into a single linked list of NET_BUFFER_LIST structures before it passes the list to
ProtocolSendNetBufferListsComplete.

Until NDIS calls ProtocolSendNetBufferListsComplete, the current status of a protocol-
driver-initiated send is unknown. A protocol driver temporarily releases ownership of all
resources it allocated for a send request when it calls NdisSendNetBufferLists. A
protocol driver should never attempt to examine the NET_BUFFER_LIST structures or any
associated data before NDIS returns the structures to
ProtocolSendNetBufferListsComplete.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete

ProtocolSendNetBufferListsComplete performs whatever postprocessing is necessary to
complete a send operation. For example, the protocol driver can notify the clients, that
requested the protocol driver to send the network data, that the send operation is
complete.

When NDIS calls ProtocolSendNetBufferListsComplete, the protocol driver regains
ownership of all of the resources associated with the NET_BUFFER_LIST structures that
are specified by the NetBufferLists parameter. ProtocolSendNetBufferListsComplete can
either free these resources (for example, by calling NdisFreeNetBuffer and
NdisFreeNetBufferList) or prepare them for reuse in a subsequent call to
NdisSendNetBufferLists.

Although NDIS always submits protocol-supplied network data to the underlying
miniport driver in the protocol-determined order as passed to NdisSendNetBufferLists,
the underlying driver can complete the send requests in random order. That is, every
bound protocol driver can rely on NDIS to submit the network data that the protocol
driver passes to NdisSendNetBufferLists in FIFO order to the underlying driver.
However, no protocol driver can rely on the underlying driver to call
NdisMSendNetBufferListsComplete in the same order.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbuffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlist

Receiving Data in Protocol Drivers
Article • 12/15/2021

The following figure illustrates a basic receive operation, which involves a protocol
driver, NDIS, and underlying drivers in a driver stack.

NDIS calls a protocol driver's ProtocolReceiveNetBufferLists function to process receive
indications that come from underlying drivers. NDIS calls ProtocolReceiveNetBufferLists
after an underlying driver calls a receive indication function (for example,
NdisMIndicateReceiveNetBufferLists) to indicate received network data or loop-back
data.

If the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter of
ProtocolReceiveNetBufferLists is not set, the protocol driver retains ownership of the
NET_BUFFER_LIST structures until it calls the NdisReturnNetBufferLists function. If NDIS
sets the NDIS_RECEIVE_FLAGS_RESOURCES flag, the protocol driver cannot retain the
NET_BUFFER_LIST structure and the associated resources. The set
NDIS_RECEIVE_FLAGS_RESOURCES flag indicates that an underlying driver is running
low on receive resources. In this case, the ProtocolReceiveNetBufferLists function should
copy the received data into protocol-allocated storage and return as quickly as possible.

Note NDIS can change the flags that an underlying driver indicates. For example, if a
miniport driver sets the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags
parameter of the NdisMIndicateReceiveNetBufferLists function, NDIS can copy the
indicated data and pass the copy to ProtocolReceiveNetBufferLists with the
NDIS_RECEIVE_FLAGS_RESOURCES flag cleared.

Note If the NDIS_RECEIVE_FLAGS_RESOURCES flag is set, the protocol driver must
retain the original set of NET_BUFFER_LIST structures in the linked list. For example,
when this flag is set the driver might process the structures and indicate them up the
stack one at a time but before the function returns it must restore the original linked list.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Protocol drivers call the NdisReturnNetBufferLists function to release ownership of a list
of NET_BUFFER_LIST structures, along with the associated NET_BUFFER structures, and
network data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Protocol Driver OID Requests
Article • 12/15/2021

NDIS defines object identifier (OID) values to identify adapter parameters which include
operating parameters such as device characteristics, configurable settings and statistics.
For more information about OIDs, see NDIS OIDs.

Protocol drivers can query or set the operating parameters of underlying drivers.

NDIS also provides a direct OID request interface for NDIS 6.1 and later protocol drivers.
The direct OID request path supports OID requests that are queried or set frequently. For
example, the IPsec offload version 2 (IPsecv2) interface provides the
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID for direct OID requests. The direct OID
request interface is optional for NDIS drivers.

The following topics provide more information about protocol driver OID requests:

Generating OID Requests from an NDIS Protocol Driver

Protocol Driver Direct OID Requests

Protocol Driver Synchronous OID Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Generating OID Requests from an NDIS
Protocol Driver
Article • 03/14/2023

To originate an OID request to underlying drivers, a protocol calls the NdisOidRequest
function.

The following figure illustrates an OID request that is originated by a protocol driver.

After a protocol driver calls the NdisOidRequest function, NDIS calls the request
function of the next underlying driver. For more information about how a miniport
driver handles OID requests, see OID Requests for an Adapter. For more information
about how a filter driver handles OID requests, see Filter Module OID Requests.

To complete synchronously, NdisOidRequest returns NDIS_STATUS_SUCCESS or an error
status. To complete asynchronously, NdisOidRequest returns NDIS_STATUS_PENDING.

If NdisOidRequest returns NDIS_STATUS_PENDING, NDIS calls the
ProtocolOidRequestComplete function after the underlying drivers complete the OID
request. In this case, NDIS passes the results of the request at the OidRequest parameter
of ProtocolOidRequestComplete. NDIS passes the final status of the request at the Status
parameter of ProtocolOidRequestComplete.

If NdisOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter. In this case,
NDIS does not call the ProtocolOidRequestComplete function.

To determine what information was successfully handled by an underlying driver,
protocol drivers that issue OID requests must check the value in the SupportedRevision
member in the NDIS_OID_REQUEST structure after the OID request returns. For more
information about NDIS version information, see Specifying NDIS Version Information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

If the underlying driver should associate the OID request with a subsequent status
indication, the protocol driver should set the RequestId member in the
NDIS_OID_REQUEST structure. When the underlying driver makes a status indication, it
sets the RequestId member in the NDIS_STATUS_INDICATION structure to the value
that is provided in the OID request.

A driver can call NdisOidRequest when a binding is in the Restarting, Running, Pausing,
or Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Protocol Driver Direct OID Requests
Article • 12/15/2021

To support the direct OID request path, protocol drivers provide ProtocolXxx function
entry points in the NDIS_PROTOCOL_DRIVER_CHARACTERISTICS structure and NDIS
provides NdisXxx functions for protocol drivers.

The direct OID request interface is similar to the standard OID request interface. For
example, the NdisDirectOidRequest and ProtocolDirectOidRequestComplete functions
are similar to the NdisOidRequest and ProtocolOidRequestComplete functions.

Note NDIS 6.1 and later support specific OIDs for use with the direct OID request
interface. OIDs that existed before NDIS 6.1 and some NDIS 6.1 OIDs are not supported.
To determine if an OID can be used in the direct OIDs interface, see the OID reference
page. For example, see the note in the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID.

To support the direct OIDs request interface, use the documentation for the standard
OID request interface. The following table shows the relationship between the functions
in the direct OID request interface and the standard OID request interface.

Direct OID function Standard OID function

ProtocolDirectOidRequestComplete ProtocolOidRequestComplete

NdisDirectOidRequest NdisOidRequest

NdisCancelDirectOidRequest NdisCancelOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisdirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_direct_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_direct_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisdirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceldirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceloidrequest

Protocol Driver Synchronous OID
Requests
Article • 12/15/2021

To support the Synchronous OID request path, protocol drivers call the
NdisSynchronousOidRequest function to issue a Synchronous OID.

For protocol drivers, the Synchronous OID request interface differs from the Regular and
Direct OID request interfaces in that protocol drivers do not have to implement an
asynchronous complete callback function. This is because of the synchronous nature of
the path. For more info about the differences between Regular, Direct, and Synchronous
OIDs in general, see Synchronous OID Request Interface in NDIS 6.80.

To support the Synchronous OID request interface, use the documentation for the
standard OID request interface. The following table shows the relationship between the
functions in the Synchronous OID request interface and the standard OID request
interface.

Synchronous OID function Standard OID function

NdisSynchronousOidRequest NdisOidRequest

７ Note

NDIS 6.80 supports specific OIDs for use with the Synchronous OID request
interface. OIDs that existed before NDIS 6.80 and some NDIS 6.80 OIDs are not
supported. To determine if an OID can be used in the Synchronous OID request
interface, see the OID reference page.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissynchronousoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissynchronousoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

Handling Status Indications in a
Protocol Driver
Article • 01/18/2023

Protocol drivers must supply a ProtocolStatusEx function that NDIS calls when an
underlying driver reports status.

NDIS calls a protocol driver's ProtocolStatusEx function, after an underlying driver calls a
status indication function (NdisMIndicateStatus or NdisFIndicateStatus). For more
information about indicating status from a miniport driver, see Adapter Status
Indications.

For more information about indicating status from a filter driver, see Filter Module
Status Indications.

If the status indication is associated with an OID request, the underlying driver can set
the DestinationHandle and RequestId members so that NDIS can provide the status
indication to a specific protocol binding. For more information about OID requests, see
Protocol Driver OID Requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus

Handling PnP Event Notifications in a
Protocol Driver
Article • 12/15/2021

NDIS 6.0 and later protocol drivers handle the same Plug and Play (PnP) event
notifications as NDIS 5.x drivers in addition to event notifications that are specific to
NDIS 6.0 and later. The handling of PnP event notifications is driver specific.

To notify a protocol driver of a network PnP event, NDIS calls the driver's
ProtocolNetPnPEvent function. To define the type of event and characteristics of the
event, NDIS passes a NET_PNP_EVENT_NOTIFICATION structure at the NetPnPEvent
event parameter of ProtocolNetPnPEvent.

Protocol drivers should handle driver stack changes. For more information about driver
stack changes, see Modifying a Running Driver Stack.

Protocol drivers that do not handle stack change notifications are unbound from the
adapter and rebound. Bindings for protocol drivers that handle driver stack notifications
successfully are not affected.

Protocol drivers should handle driver stack pause notifications. For more information
about these notifications, see Pausing a Driver Stack.

Protocol drivers should handle driver stack restart notifications. For more information
about these notifications, see Restarting a Driver Stack.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification

NDIS protocol driver installation
Article • 05/30/2023

To install a protocol driver, you must first provide a single INF file. The configuration
manager reads configuration information about the protocol driver from the INF file and
copies it to the registry.

For more information about protocol driver INF files, see Installation Requirements for
Network Protocols. For an example protocol driver INF file, see the ndisprot 630
sample driver.

Once you have provided your protocol driver INF file, to install or uninstall your protocol
driver you must use the INetCfg family of Network Configuration Interfaces. For
example, to install or remove network components, call into the INetCfgClassSetup
interface. You can either call into these interfaces programmatically or you can indirectly
call them with netcfg.exe, which calls INetCfg for you. You can't install a driver package
through the INetCfg and use the Driver Store feature on older Windows versions. To
successfully install the driver package in this scenario, you need to have a minimum OS
build number of 25319. You can't use SetupAPI to install or uninstall an NDIS protocol
driver.

For an example of calling into INetCfg through code, see the Bindview Network
Configuration Utility sample .

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/ndisprot/6x/sys/630
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559080(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547709(v=vs.85)
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/netcfg
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/run-from-driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/setupapi
https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/config/bindview

Pageable and Discardable Code in a
Protocol Driver
Article • 12/15/2021

Driver developers should designate code as pageable whenever possible, freeing system
space for code that must be memory-resident. You can mark functions as pageable with
the NDIS_PAGEABLE_FUNCTION macro. The IRQL, resource management features, and
other characteristics of a function might prohibit the function from being pageable.

Every ProtocolXxx function runs at an IRQL in the range from PASSIVE_LEVEL to
DISPATCH_LEVEL. Functions that run exclusively at IRQL = PASSIVE_LEVEL should be
marked as pageable.

A driver function that runs at IRQL = PASSIVE_LEVEL can be made pageable as long as it
neither calls nor is called by any function that runs at IRQL >= DISPATCH_LEVEL--such as
a function that acquires a spin lock. Acquiring a spin lock causes the IRQL of the
acquiring thread to be raised to DISPATCH_LEVEL. A driver function, such as
ProtocolBindAdapterEx, that runs at IRQL = PASSIVE_LEVEL must not call any NdisXxx
functions that run at IRQL >= DISPATCH_LEVEL if that driver function is marked as
pageable code. For more information about the IRQL for each NdisXxx function, see
NDIS Library Functions.

The DriverEntry function of NDIS protocol drivers, as well as code that is called only
from DriverEntry, should be specified as initialization-only code, by using the
NDIS_INIT_FUNCTION macro. Code that is identified with this macro is assumed to run
only once at system initialization time, and, as a result, is mapped only during that time.
After a function marked as initialization-only returns, it is discarded.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557121(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557039(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557007(v=vs.85)

Protocol Driver Reset Operations
Article • 12/15/2021

Protocol drivers cannot initiate a reset operation in NDIS 6.0 and later versions.

Typically, an underlying miniport driver resets a NIC because the NIC is timing out
during send or request operations. This condition causes NDIS to call the miniport
driver's MiniportCheckForHangEx and subsequently MiniportResetEx functions.
Alternatively, the miniport driver determines a NIC's receive capability is dysfunctional.

If a reset is initiated by NDIS and MiniportResetEx returns NDIS_STATUS_PENDING, NDIS
calls the ProtocolStatusEx(or ProtocolCoStatusEx) function of each bound protocol
driver with a status of NDIS_STATUS_RESET_START. When the miniport driver calls
NdisMResetComplete, NDIS again calls ProtocolStatusEx(or ProtocolCoStatusEx) with a
status of NDIS_STATUS_RESET_END.

A protocol driver must handle the possibility that outstanding sends on a binding to an
underlying NIC can be canceled because the NIC is reset. If a bound protocol driver has
any transmit requests pending, NDIS will indicate a send complete to the protocol driver
with an appropriate status. The protocol driver must resubmit the send requests when
the reset operation is completed, assuming the NIC becomes operational again.

When a protocol driver receives a status of NDIS_STATUS_RESET_START, it should:

Hold any network data that is ready to be transmitted until Protocol(Co)Status
receives an NDIS_STATUS_RESET_END notification.

Not make any NDIS calls that are directed to the underlying miniport driver, except
calls to return resources such as returning network data with
NdisReturnNetBufferLists.

After ProtocolStatusEx(or ProtocolCoStatusEx) receives an NDIS_STATUS_RESET_END
message, the protocol driver can resume sending network data and OID requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismresetcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists

Handling PnP Events and Power
Management Events in a Protocol Driver
Article • 12/15/2021

When the operating system issues a Plug and Play (PnP) I/O request packet (IRP) or a
power management IRP to a target device object that represents a network interface
card (NIC), NDIS intercepts the IRP. NDIS indicates the event to each bound protocol
driver and each bound intermediate driver by calling the driver's ProtocolNetPnPEvent
function. In the call to ProtocolNetPnPEvent, NDIS passes a pointer to a
NET_PNP_EVENT_NOTIFICATION that contains a NET_PNP_EVENT structure. The
NET_PNP_EVENT structure describes the PnP event or power management event being
indicated. For more information about the protocol driver PnP interface, see Handling
PnP Event Notifications in a Protocol Driver.

The following list contains PnP and power management events, as indicated by the
NetEvent code in the NET_PNP_EVENT structure:

NetEventSetPower

Indicates a Set Power request, which specifies that the miniport adapter should
transition to a particular power state. A power management–aware protocol driver
should always succeed this event by returning NDIS_STATUS_SUCCESS. An old
protocol driver can return NDIS_STATUS_NOT_SUPPORTED to indicate that NDIS
should unbind it from the miniport adapter.

After issuing the set power request, NDIS pauses the driver stack if the miniport
adapter is transitioning to a low-power state. NDIS restarts the driver stack before
the set-power request if the miniport adapter is transitioning to the working state
(D0). For more information about pausing and restarting the driver stack, see
Pausing a Driver Stack.

If the miniport adapter is in a low-power state, the protocol driver cannot issue any
OID requests. This requirement is an additional power management restriction that
is added to the other restrictions that apply when the driver stack is in the Paused
state.

If the underlying miniport adapter is not power management–aware, the miniport
driver sets the PowerManagementCapabilities member of
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES to NULL and NDIS sets the
PowerManagementCapabilities member of NDIS_BIND_PARAMETERS to NULL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

Note Starting with NDIS 6.30, after being notified of this event, the protocol driver
must stop generating new I/O requests and should not wait for the completion of
any pending I/O requests within the context of the call to ProtocolNetPnPEvent.

For more information about set-power events, see Handling PnP Events and Power
Management Events in an Intermediate Driver.

NetEventQueryPower

Indicates a Query Power request, which queries whether the underlying miniport
adapter can make a transition to a particular power state. A protocol driver should
always succeed a NetEventQueryPower . After establishing an active connection, a
protocol driver can call PoRegisterSystemState to register a continuous busy state.
As long as the state registration is in effect, the power manager does not attempt
to put the system to sleep. After the connection becomes inactive, the protocol
driver cancels the state registration by calling PoUnregisterSystemState. A
protocol driver should never try to prevent the system from transitioning to the
sleeping state by failing a NetEventQueryRemoveDevice. Note that a
NetEventQueryPower is always followed by a NetEventSetPower. A
NetEventSetPower that sets the device's current power state in effect cancels the
NetEventQueryPower.

Note Starting with NDIS 6.30, after being notified of this event, the protocol driver
should not wait for the completion of any pending I/O requests within the context
of the call to ProtocolNetPnPEvent.

NetEventQueryRemoveDevice

Indicates a Query Remove Device request, which queries whether the NIC can be
removed without disrupting operations. If a protocol driver cannot release a device
(for example, because the device is in use), it must fail a
NetEventQueryRemoveDevice by returning NDIS_STATUS_FAILURE.

NetEventCancelRemoveDevice

Indicates a Cancel Remove Device request, which cancels the removal of an
underlying NIC. The protocol driver should always succeed this event by returning
NDIS_STATUS_SUCCESS.

NetEventReconfigure

Indicates that the configuration has changed for a network component. For
example, if a user changes the IP address for TCP/IP, NDIS indicates this event to
the TCP/IP protocol with the NetEventReconfigure code. The protocol driver can,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-poregistersystemstate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-pounregistersystemstate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event

in rare circumstances, return a failure code if it is not able to apply the indicated
configuration changes and there are no available default values. A failed attempt
to allocate memory is an example of a case in which the protocol returns a failure
code. Returning an error code can result in prompting the user to restart the
system.

A protocol should validate NetEventReconfigure-related data passed to its
ProtocolNetPnPEvent function. For more information about such data, see
NET_PNP_EVENT for Protocol Drivers.

NetEventBindList

Indicates to a protocol driver that its bind list processing order has been
reconfigured. This list indicates a relative order to be applied to the protocol's
bindings when processing, for example, a user request that might be routed to one
of several bindings. The buffer passed with this event contains a list of device
names formatted as NULL-terminated Unicode strings. The format of each device
name is identical to the DeviceName parameter that is passed to a call to
ProtocolBindAdapterEx.

A protocol should validate NetEventBindList-related data passed to its
ProtocolNetPnPEvent function. For more information about such data, see
NET_PNP_EVENT for Protocol Drivers.

A protocol should validate NetEventBindList-related data passed to its
ProtocolNetPnPEvent function. For more information about such data, see
NET_PNP_EVENT for Protocol Drivers.

NetEventBindsComplete

Indicates that a protocol driver has bound to all the NICs to which it can bind.
NDIS will not indicate any more bindings to the protocol driver unless, for
example, a PnP NIC is plugged into the system.

NetEventPnPCapabilities

Indicates that the user enabled or disabled the wake-up capabilities of the
underlying adapter. (The ProtocolBindingContext parameter that NDIS passes to
ProtocolNetPnPEvent specifies the binding .)

NetEventPause

Indicates that the specified protocol binding should enter thePausing state. The
binding will enter the Paused state after NDIS has completed all of the outstanding

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event

send requests for the binding. For more information about pausing a binding, see
Pausing a Binding.

NetEventRestart

Indicates that the specified protocol binding has entered the Restarting state. After
the protocol driver is ready to resume send and receive operations for the binding,
the binding enters the Running state. For more information about restarting a
binding, see Restarting a Binding.

NetEventPortActivation

Indicates the activation of a list of ports that are associated with the specified
binding. For more information about pausing a binding, see Handling the Port
Activation PnP Event.

NetEventPortDeactivation

Indicates the deactivation of a list of ports that are associated with the specified
binding. For more information about pausing a binding, see Handling the Port
Deactivation PnP Event.

NetEventIMReEnableDevice

Indicates that the configuration has changed for a virtual miniport of an NDIS 6.0
or later intermediate driver. NetEventIMReEnableDevice is similar to the
NetEventReconfigure event except that the intermediate driver receives this event
for a single virtual miniport and the NetEventReconfigure event applies to all of
the intermediate driver's virtual miniports. For example, an intermediate driver
receives the NetEventIMReEnableDevice event when a user disables and then
enables a single virtual miniport from the Device Manager or another source. For
examples of intermediate driver power management, see the NDIS MUX
Intermediate Driver and Notify Object driver sample available in the Windows
driver samples repository on GitHub.

The Buffer member of the NET_PNP_EVENT structure points to a buffer that contains
information specific to the event being indicated.

A protocol driver can complete the call to ProtocolNetPnPEvent asynchronously with
NdisCompleteNetPnPEvent.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/mux
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscompletenetpnpevent

Send and Receive Operations in
Protocol Drivers
Article • 12/15/2021

There are two different interfaces for send and receive operations in NDIS protocol
drivers. Protocol drivers with a connectionless lower edge call the
NdisSendNetBufferLists function to send network data. A connectionless protocol
driver must supply a ProtocolReceiveNetBufferLists function. NDIS calls
ProtocolReceiveNetBufferLists when an underlying connectionless miniport driver calls
the NdisMIndicateReceiveNetBufferLists function to indicate received network data. For
more information about sending and receiving data in connectionless protocol drivers,
see Protocol Driver Send and Receive Operations.

Connection-oriented NDIS (CoNDIS) protocol drivers call the NdisCoSendNetBufferLists
function to send network data. A CoNDIS protocol driver must supply a
ProtocolCoReceiveNetBufferLists function. NDIS calls ProtocolCoReceiveNetBufferLists
when an underlying CoNDIS miniport driver calls the
NdisMCoIndicateReceiveNetBufferLists function to indicate received network data. For
more information about send and operations in connection-oriented protocol drivers,
see Connection-Oriented Operations.

For an introduction to send and receive operations, see Send and Receive Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists

OID Request Operations in a Protocol
Driver
Article • 12/15/2021

There are two different interfaces for OID request operations in a protocol driver. NDIS
protocol drivers with a connectionless lower edge call the NdisOidRequest function to
initiate an OID request. An NDIS protocol driver with a connectionless lower edge must
supply a ProtocolOidRequestComplete function. NDIS calls
ProtocolOidRequestComplete when the underlying drivers complete a pending OID
request. For more information about OID requests in connectionless protocol drivers,
see Protocol Driver OID Requests.

Connection-oriented NDIS (CoNDIS) protocol drivers call the NdisCoOidRequest
function to initiate an OID request. A CoNDIS protocol driver must supply a
ProtocolCoOidRequestComplete function. NDIS calls ProtocolOidRequestComplete when
the underlying drivers complete a pending OID request. For more information OID
requests in connection-oriented protocol drivers, see Connection-Oriented Operations.

For more information about OIDs, see NDIS OIDs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Status Indications in a Protocol Driver
Article • 12/15/2021

There are two different interfaces for status indications in a protocol driver. An NDIS
protocol driver with a connectionless lower edge is required to supply a
ProtocolStatusEx function. NDIS calls ProtocolStatusEx when an underlying
connectionless miniport driver calls NdisMIndicateStatusEx to report a change in its
hardware status. NDIS calls ProtocolStatusEx when the status change begins. For more
information about status indications in connectionless protocol drivers, see Handling
Status Indications in a Protocol Driver.

A connection-oriented protocol driver must supply a ProtocolCoStatusEx function. NDIS
calls ProtocolCoStatusEx when an underlying connection-oriented miniport driver calls
NdisMCoIndicateStatusEx to report a change in its hardware status. NDIS calls
ProtocolCoStatusEx when the status change begins. For more information about status
indications in connection-oriented protocol drivers, see Connection-Oriented
Operations

For a complete list of the possible status indications, see Status Indications.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Roadmap for Developing NDIS Filter
Drivers
Article • 03/14/2023

To create a Network Driver Interface Specification (NDIS) filter driver package, follow
these steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about NDIS.

For general information about NDIS and NDIS drivers, see the following topics:

Windows Network Architecture and the OSI Model

Network Driver Programming Considerations

Driver Stack Management

NET_BUFFER Architecture

Step 3: Determine additional Windows driver design decisions.

For more information about how to make additional Windows design decisions,
see Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers,
and Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For more
information about Windows driver build, debug, and test processes, driver signing,
and Windows Hardware Compatibilty testing, see Building, Debugging, and Testing
Drivers. For more information about building, testing, verifying, and debugging
tools, see Driver Development Tools.

Step 5: Read the filter driver introduction topics.

Step 6: Read the writing protocol drivers section.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/design/compatibility/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/

This section provides an overview of the primary protocol driver interfaces. These
interfaces included functions that protocol drivers provide (ProtocolXxx functions)
and NDIS calls to initiate operations. NDIS provides NdisXxx functions that
protocol drivers call to perform NDIS operations.

Step 7: Review the NDIS filter driver sample in the Windows driver samples
repository on GitHub.

Step 8: Develop (or port), build, test, and debug your NDIS driver.

See the porting guides if you are porting an existing driver:
Porting NDIS 5.x Drivers to NDIS 6.0
Porting NDIS 6.x Drivers to NDIS 6.20
Porting NDIS 6.x Drivers to NDIS 6.30

For more information about iterative building, testing, and debugging, see
Overview of Build, Debug, and Test Process. This process will help ensure that you
build a driver that works.

Step 9: Create a driver package for your driver.

For more information about how to install drivers, see Providing a Driver Package.
For more information about how to install an NDIS driver, see Components and
Files Used for Network Component Installation and Notify Objects for Network
Components.

Step 10: Sign and distribute your driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Compatibilty
Program, you can distribute it through the Microsoft Windows Update program.
For more information about how to distribute a driver, see Get started with the
hardware submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/filter
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/design/compatibility/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

Getting started with NDIS Filter Drivers
Article • 03/14/2023

Filter drivers provide filtering services for miniport drivers. NDIS driver stacks must
include miniport drivers and protocol drivers and optionally include filter drivers. For
more information about NDIS drivers and the driver stack, see Driver Stack
Management.

The following applications might require a filter driver:

Data filtering applications for security or other purposes.

Applications that monitor and collect network data statistics.

The following topics provide an introduction to filter driver characteristics and services:

Filter Driver Characteristics

Filter Driver Services

Types of Filter Drivers

Mandatory Filter Drivers

Filter Driver Characteristics
Article • 12/15/2021

Filter drivers have the following characteristics:

An instance of a filter driver is called a filter module. Filter modules are attached to
an underlying miniport adapter. Multiple filter modules from the same filter driver
or different filter drivers can be stacked over an adapter.

Overlying protocol drivers are not required to provide alternate functionality when
filter modules are installed between such drivers and the underlying miniport
drivers (otherwise stated, filter modules are transparent to overlying protocol
drivers).

Because filter drivers do not implement virtual miniports like an intermediate
driver, filter drivers are not associated with a device object. A miniport adapter with
overlying filter modules functions as a modified version of the miniport adapter.
For more information about the driver stack, see NDIS 6.0 Driver Stack.

NDIS uses configuration information to attach the filter modules to the adapter in
the correct driver stack order. For more information about the driver stack order of
filter modules, see INF File Settings for Filter Drivers.

NDIS can dynamically insert or delete filter modules in the driver stack, or
reconfigure the filter modules, without tearing down the entire stack. For more
information, see Modifying a Running Driver Stack.

Protocol drivers can obtain the list of filter modules in a driver stack when NDIS
restarts the driver stack.

For more information about the list of filter modules, see
NDIS_PROTOCOL_RESTART_PARAMETERS.

Filter drivers can filter most communication to and from the underlying miniport
adapter. Filter modules are not associated with any particular binding between
overlying protocol drivers and the miniport adapter. For more information about
the types of filtering services that a filter driver can provide, see Filter Driver
Services.

Filter drivers can select the services that are filtered and can be bypassed for the
services that are not filtered. The selection of the services that are bypassed and
the services that are filtered can be reconfigured dynamically. For more
information, see Data Bypass Mode.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_restart_parameters

NDIS guarantees the availability of context space (see NET_BUFFER_LIST_CONTEXT
structure) for filter drivers. Therefore, filter drivers are not required to include the
code to copy buffers to obtain context space. For more information about how to
manage buffers, see Filter Driver Buffer Management.

Filter Driver Services
Article • 12/15/2021

Filter drivers can provide the following services:

Originate send requests and receive indications.

Modify data buffer ordering or timing in the send and receive data paths.

Add, modify, delete network data buffers in both the send and receive data paths
of a driver stack. For more information about filtering send and receive data, see
Filter Module Send and Receive Operations.

Originate query and set OID requests to the underlying drivers.

Filter query and set OID requests to the underlying drivers.

Filter responses of OID requests from the underlying drivers. For more information
about OID requests, see Filter Module OID Requests.

Originate status indications to the overlying drivers.

Filter status indications from the underlying drivers. For more information, see
Filter Module Status Indications.

Manage configuration parameters in the registry for each miniport adapter with
which it interfaces. For more information, see Accessing Configuration Information
for a Filter Driver.

Types of Filter Drivers
Article • 12/15/2021

There are two primary types of filter drivers:

Monitoring
These filter drivers monitor the behavior in a driver stack. However, they only pass on
information and do not modify the behavior of the driver stack. Monitoring filter drivers
cannot modify or originate data.

Modifying
These filter drivers modify the behavior of the driver stack. The type of modification is
driver-specific.

The FilterType entry in the INF file is 0x00000001 for monitoring filter drivers and
0x00000002 for modifying filter drivers.

You can specify that a filter driver is mandatory. This feature is generally used with
modifying filter drivers. If a mandatory filter driver does not load, the associated driver
stack will be torn down. For more information about mandatory filter drivers, see
Mandatory Filter Drivers.

Mandatory Filter Drivers
Article • 12/15/2021

Mandatory filter drivers are filter drivers that must be present for a driver stack to
function properly. If the mandatory filter module does not attach, the rest of the driver
stack will be torn down. Modifying or monitoring filter drivers can be mandatory. All
filter intermediate drivers are optional.

To attach a mandatory filter module to a driver stack, NDIS unbinds all the protocol
bindings, attaches the filter module, and then reestablishes all the protocol bindings. If
the driver does not attach, NDIS tears down the underlying driver stack.

To detach a mandatory filter module from a driver stack, NDIS unbinds all the protocol
bindings detaches the filter module, and then reestablishes the protocol bindings. To
detach an optional filter module, NDIS pauses the stack and restarts it without
unbinding the protocol drivers.

When a computer restarts, NDIS will not bind any protocol drivers to a miniport adapter
if any mandatory filter module that is associated with the adapter does not attach to the
miniport adapter.

To install a mandatory filter driver, you must specify a value of 0x00000001 for
FilterRunType in the INF file. To install an optional filter driver, you must specify a value
of 0x00000002 for FilterRunType in the INF file.

Initializing a Filter Driver
Article • 12/15/2021

Filter driver initialization occurs immediately after the system loads the driver. Filter
drivers load as system services. The system can load the filter drivers at any time before,
during, or after the miniport drivers load. NDIS can attach a filter module to a miniport
adapter after a miniport adapter of the type supported by the filter driver becomes
available and the filter driver initialization is complete.

While a driver stack is starting, the system loads the filter drivers if they are not already
loaded. For more information about starting a driver stack that includes filter modules,
see Starting a Driver Stack.

After a filter driver loads, the system calls the driver's DriverEntry routine.

The system passes two arguments to DriverEntry:

A pointer to the driver object, which was created by the I/O system.

A pointer to the registry path, which specifies where driver-specific parameters are
stored.

DriverEntry returns STATUS_SUCCESS, or its equivalent NDIS_STATUS_SUCCESS, if the
driver successfully registered as an NDIS filter driver. If DriverEntry fails initialization by
propagating an error status returned by an NdisXxx function or by a kernel-mode
support routine, the driver will not remain loaded. DriverEntry must execute
synchronously; that is, it cannot return STATUS_PENDING or its equivalent
NDIS_STATUS_PENDING.

The filter driver passes the driver object to the NdisFRegisterFilterDriver function when it
registers with NDIS as a filter driver. The driver can use the registry path to obtain
configuration information. For more information about how to access filter driver
configuration information, see Accessing Configuration Information for a Filter Driver.

A filter driver calls NdisFRegisterFilterDriver from its DriverEntry routine. Filter drivers
export a set of FilterXxx functions by passing an
NDIS_FILTER_DRIVER_CHARACTERISTICS structure to NdisFRegisterFilterDriver at the
FilterCharacteristics parameter.

The NDIS_FILTER_DRIVER_CHARACTERISTICS structure specifies entry points for
mandatory and optional FilterXxx functions. Some optional functions can be bypassed.
For more information about bypassing functions, see Data Bypass Mode.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics

Drivers that call NdisFRegisterFilterDriver must be prepared for an immediate call to any
of their FilterXxx functions.

The NDIS_FILTER_DRIVER_CHARACTERISTICS structure specifies the entry points for
these mandatory FilterXxx functions:

FilterAttach

FilterDetach

FilterRestart

FilterPause

The NDIS_FILTER_DRIVER_CHARACTERISTICS structure specifies the entry points for
these optional, and not changeable at run-time, FilterXxx functions:

FilterSetOptions

FilterSetModuleOptions

FilterOidRequest

FilterOidRequestComplete

FilterStatus

FilterNetPnPEvent

FilterDevicePnPEventNotify

FilterCancelSendNetBufferLists

The NDIS_FILTER_DRIVER_CHARACTERISTICS structure specifies the default entry points
for these optional, and changeable at run-time, FilterXxx functions:

FilterSendNetBufferLists

FilterSendNetBufferListsComplete

FilterReturnNetBufferLists

FilterReceiveNetBufferLists

The preceding four functions are also defined in the
NDIS_FILTER_PARTIAL_CHARACTERISTICS structure. This structure specifies the
functions that can be changed at a run time by calling the NdisSetOptionalHandlers
function from the FilterSetModuleOptions function. If a filter driver will change these

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_device_pnp_event_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_partial_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options

partial characteristics at runtime, it must provide the entry point for
FilterSetModuleOptions. The partial characteristics can be different for each filter module.
For more information, see Starting a Filter Module.

NDIS calls the FilterSetOptions function within the context of the call to
NdisFRegisterFilterDriver. FilterSetOptions registers optional services with NDIS. For
more information, see Configuring Optional Filter Driver Services.

If the call to NdisFRegisterFilterDriver succeeds, NDIS fills the variable at
NdisFilterDriverHandle with a filter driver handle. The filter driver saves this handle and
later passes this handle to NDIS functions, such as NdisFDeregisterFilterDriver, that
require a filter driver handle as an input parameter. When the driver unloads, it must call
the NdisFDeregisterFilterDriver function to release the driver resources allocated by
NdisFRegisterFilterDriver.

After FilterSetOptions returns, the filter modules are in the Detached state. NDIS can call
the filter driver's FilterAttach function at any time after the call to FilterSetOptions
returns. The driver performs filter module-specific initialization in the FilterAttach
function. For more information about attaching a filter module to a driver stack, see
Attaching a Filter Module.

A filter driver also performs any other driver-specific initialization that it requires in
DriverEntry. The filter driver must release the driver-specific resources that it allocates in
its FilterDriverUnload routine. For more information, see Unloading a Filter Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfderegisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

Unloading a Filter Driver
Article • 12/15/2021

The driver object that is associated with an NDIS filter driver specifies an Unload routine
called FilterDriverUnload. The system can call the FilterDriverUnload routine when all the
miniport adapters that the filter driver services have been removed.

Unload should release any driver-specific resources. Any device objects that the filter
driver created must be destroyed. The system can complete a driver unload operation
after FilterDriverUnload returns.

The functionality of the unload function is driver-specific. As a general rule, Unload
should undo the operations that were performed during driver initialization. For more
information about driver initialization, see Initializing a Filter Driver.

A filter driver must call the NdisFDeregisterFilterDriver function from Unload.
NdisFDeregisterFilterDriver calls FilterDetach to detach all currently attached filter
modules that are associated with this filter driver.

For more information about unloading filter drivers, see Stopping a Driver Stack.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfderegisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach

Filter Module States and Operations
Article • 12/15/2021

A filter driver must support the following operational states for each filter module
(instance of a filter driver) that the driver manages:

Detached
The Detached state is the initial state of a filter module. When a filter module is in this
state, NDIS can call the filter driver's FilterAttach function to attach the filter module to
the driver stack.

Attaching
In the Attaching state, a filter driver prepares to attach the filter module to the driver
stack.

Paused
In the Paused state, the filter driver does not perform send or receive operations.

Restarting
In the Restarting state, a filter driver completes any operations that are required to
restart send and receive operations for a filter module.

Running
In the Running state, a filter driver performs normal send and receive processing for a
filter module.

Pausing
In the Pausing state, a filter driver completes any operations that are required to stop
send and receive operations for a filter module.

In the following table, the headings are the filter module states. Major events are listed
in the first column. The rest of the entries in the table specify the next state that the filter
module enters after an event occurs within a state. The blank entries represent invalid
event/state combinations.

Event/State Detached Attaching Paused Restarting Running Pausing

Filter attach Attaching

Attach is
complete

Paused

Filter detach Detached

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

Event/State Detached Attaching Paused Restarting Running Pausing

Filter restart Restarting

Restart is
complete

Running

Filter pause Pausing

Pause is
complete

Paused

Attach failed Detached

Restart
failed

Paused

Send and
Receive

Running Pausing

OID
Requests

Paused Restarting Running Pausing

The primary filter driver events are defined as follows:

Filter attach
NDIS called the driver's FilterAttach function to attach a filter module to a driver stack.
For more information about attaching a filter module, see Attaching a Filter Module.

Attach is complete
When a filter module is in the Attaching state and the filter driver completes initialization
of all the resources that the filter module requires, the filter module enters the Paused
state.

Filter detach
NDIS called the driver's FilterDetach function to detach a filter module from a driver
stack. For more information, see Detaching a Filter Module.

Filter restart
NDIS called the driver's FilterRestart function to restart a paused filter module. For more
information, see Starting a Filter Module.

Restart is complete
When the filter module is in the Restarting state and the driver is ready to perform send
and receive operations, the filter module enters the Running state.

Filter pause
NDIS called the driver's FilterPause function to pause a filter module. For more

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause

information, see Pausing a Filter Module.

Pause is complete
After the driver has completed all operations that are required to stop send and receive
operations, the pause operation is complete and the filter module is in the Paused state.

Attach failed
If NDIS calls a driver's FilterAttach function and the attach operation fails (for example,
because the required resources are not available), the filter module returns to the
Detached state.

Restart failed
If NDIS calls a driver's FilterRestart function and the restart attempt fails, the filter
module returns to the Paused state.

Send and Receive Operations
A driver can handle send and receive operations in the Running and Pausing states. For
more information about send and receive operations, see Filter Module Send and
Receive Operations.

OID Requests
A driver can handle OID requests in the Running, Restarting, Paused, and Pausing states.
For more information about OID requests, see Filter Module OID Requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart

Attaching a Filter Module
Article • 12/15/2021

To initiate the process of inserting a filter module into a driver stack, NDIS calls a filter
driver's FilterAttach function. At the start of execution in the FilterAttach function, the
filter module enters the Attaching state. For more information about attaching a filter
module to a driver stack, see Starting a Driver Stack.

A filter driver uses the handle, that NDIS passes at the NdisFilterHandle parameter of
FilterAttach in all future NdisXxx function calls that refer to this filter module. Such
functions include status indications, send requests, receive indications, and OID
requests.

While a filter module is in the Attaching state, the driver:

Creates a context area for the filter module and allocates buffer pools and other
filter module-specific resources. For more information about buffer pools, see Filter
Driver Buffer Management.

Calls the NdisFSetAttributes function by using the NdisFilterHandle value that
NDIS passed to FilterAttach. The FilterModuleContext parameter of
NdisFSetAttributes specifies the filter driver's context area for this filter module.
NDIS passes this context area to the filter driver's FilterXxx functions.

Optionally, reads configuration parameters for this filter module from the registry.
For more information, see Accessing Configuration Information for a Filter Driver.

If the preceding operations completed successfully, the filter module is in the
Paused state.

If the preceding operations failed, the filter driver must release any resources that
it allocated in the FilterAttach function and return the filter module to the Detached
state.

Returns NDIS_STATUS_SUCCESS or an appropriate failure code. If the driver returns
a failure code, NDIS terminates the driver stack.

Note The registry can contain a flag, which specifies that a filter module is optional. If
an optional filter module does not attach, NDIS does not terminate the rest of the driver
stack.

A filter driver cannot make send requests, indicate received data, make OID requests, or
make status indications from the Attaching state. Send and receive operations are

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsetattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

supported in the Running and Pausing states. OID requests and status indications are
supported in the Paused, Restarting, Running, and Pausing states.

NDIS calls the FilterDetach function to detach a filter module that NDIS attached with
FilterAttach. For more information, see Detaching a Filter Module.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

Detaching a Filter Module
Article • 12/15/2021

To initiate the process of detaching a filter module from a driver stack, NDIS calls a filter
driver's FilterDetach function. At the start of execution in the FilterDetach function, the
filter module enters the Detached state. Before detaching a filter module, NDIS must
pause the driver stack. For more information about pausing the driver stack, see Pausing
a Driver Stack.

In its FilterDetach function, the driver frees its context areas and other resources (such as
buffer pools) for the affected filter module. A filter driver cannot fail the call to
FilterDetach. Therefore, filter drivers should preallocate, during the attach operation, all
the resources required to perform the detach operation successfully. For more
information about attaching a filter module, see Attaching a Filter Module.

After the filter module returns from FilterDetach, NDIS can start the paused driver stack.
For more information about starting a driver stack, see Starting a Driver Stack.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach

Starting and Pausing a Filter Module
Article • 12/15/2021

NDIS pauses a filter module to stop data flow that could interfere with Plug and Play
operations, for example, adding or removing a filter module in a driver stack, or to add a
new binding. For more information about how to modify a running driver stack, see
Modifying a Running Driver Stack.

NDIS starts a filter module from the Paused state. The filter module enters the Paused
state after the attach operation is complete or after a pause operation is complete.

The following topics provide more information about starting and pausing a filter
module:

Starting a Filter Module

Pausing a Filter Module

Starting a Filter Module
Article • 12/15/2021

To start a paused filter module, NDIS calls the filter driver's FilterSetModuleOptions
function, if any, followed by a call to the FilterRestart function. The filter module enters
the Restarting state at the start of execution in the FilterRestart function.

If the driver provided an entry point for FilterSetModuleOptions, the driver can change
the partial characteristic for a filter module. For more information, see Data Bypass
Mode.

When it calls a filter driver's FilterRestart function, NDIS passes a pointer to an
NDIS_RESTART_ATTRIBUTES structure to filter driver in the RestartAttributes member
of the NDIS_FILTER_RESTART_PARAMETERS structure. Filter drivers can modify the
restart attributes that are specified by underlying drivers. For more information about
how to modify restart attributes, see FilterRestart.

Note NDIS calls FilterSetModuleOptions for all filter modules in a stack before NDIS calls
the FilterRestart function for any filter module in the stack.

NDIS starts a filter module as part of a Plug and Play operation to restart a driver stack.
For an overview of restarting the driver stack, see Restarting a Driver Stack.

On behalf of a filter module that is in the Restarting state, the filter driver:

Completes any operations that are required to restart normal send and receive
operations.

For more information about send and receive operations, see Filter Module Send
and Receive Operations.

Can read or write configurable parameters for the filter module.

Can receive network data indications. The driver can copy and queue such data
and indicate it to overlying drivers later, or it can discard the data.

Should not initiate any new receive indications.

Should reject all new send requests made to its FilterSendNetBufferLists function
immediately by calling the NdisFSendNetBufferListsComplete function. It should
set the complete status in each NET_BUFFER_LIST to NDIS_STATUS_PAUSED.

Can provide status indications with the NdisFIndicateStatus function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_restart_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus

For more information about status indications, see Filter Module Status Indications.

Should handle OID requests in the FilterOidRequest function.

For more information about OID requests, see Filter Module OID Requests.

Should not initiate any new send requests.

Should return new receive indications to NDIS immediately by calling the
NdisFReturnNetBufferLists function. If necessary, the driver can copy such receive
indications before it returns them.

Can make OID requests to the underlying drivers to set or query updated
configuration information.

Should handle status indications in its FilterStatus function.

Should Indicate NDIS_STATUS_SUCCESS or a failure status. If a filter module does
not restart, NDIS will detach it and if it is a mandatory filter, NDIS terminates the
entire driver stack.

After the filter driver successfully restarts the send and receive operations, it must
complete the restart operation. The filter driver can complete the restart operation
synchronously or asynchronously by returning NDIS_STATUS_SUCCESS or
NDIS_STATUS_PENDING respectively from FilterRestart.

If the driver returns NDIS_STATUS_PENDING, it must call the NdisFRestartComplete
function after it completes the restart operation. In this case, the driver passes the final
status of the restart operation to NdisFRestartComplete.

After the restart operation is complete, the filter module is in the Running state. The
driver resumes normal send and receive processing.

NDIS does not initiate other Plug and Play operations, such as, attach, detach, or pause
requests, while the filter driver is in the Restarting state. NDIS can initiate pause requests
after a filter driver is in the Running state. For more information about pausing a filter
module, see Pausing a Filter Module.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfrestartcomplete

Pausing a Filter Module
Article • 12/15/2021

To pause a running filter module, NDIS calls the filter driver's FilterPause function. The
filter module enters the Pausing state at the start of execution in the FilterPause
function.

NDIS pauses a filter module as part of a Plug and Play operation to pause a driver stack.
For an overview of pausing the driver stack, see Pausing a Driver Stack.

On behalf of a filter module that is in the Pausing state, the filter driver:

Should not originate any new receive indications.

For more information about send and receive operations, see Filter Module Send
and Receive Operations.

If there are receive operations that the filter driver originated and that NDIS has
not completed, the filter driver must wait for NDIS to complete such operations.
The pause operation is not complete until NDIS calls the FilterReturnNetBufferLists
function for all such outstanding receive indications.

Should return any outstanding receive indications that underlying drivers
originated to NDIS immediately. The pause operation is not complete until the
driver calls the NdisFReturnNetBufferLists function for such outstanding receive
indications. These outstanding receive indications can exist if the driver queues the
buffers that it receives from underlying drivers.

Should return new receive indications that underlying drivers originate to NDIS
immediately by calling the NdisFReturnNetBufferLists function. If necessary, the
driver can copy receive indications and queue them before it returns them.

Note NdisFReturnNetBufferLists should not be called for NBLs indicated with
NDIS_RECEIVE_FLAGS_RESOURCES flag set in a corresponding
FilterReceiveNetBufferLists call. Such NBLs are returned to NDIS synchronously by
returning from the FilterReceiveNetBufferLists routine.

Should not originate any new send requests.

If there are send operations that the filter driver originated and that NDIS has not
completed, the filter driver must wait for NDIS to complete such operations. The
pause operation is not complete until NDIS calls the
FilterSendNetBufferListsComplete function for all such outstanding send requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete

Should return all new send requests made to its FilterSendNetBufferLists function
immediately by calling the NdisFSendNetBufferListsComplete function. The filter
driver should set the Status member in each NET_BUFFER_LIST structure to
NDIS_STATUS_PAUSED.

Can provide status indications with the NdisFIndicateStatus function.

For more information about status indications, see Filter Module Status Indications.

Should handle status indications in its FilterStatus function.

Should handle OID requests in the FilterOidRequest function.

For more information about OID requests, see Filter Module OID Requests.

Can initiate OID requests.

Should not free the resources the driver allocated during the attach operation.

Should cancel timers, if required to stop send and receive operations.

For more information about timers, see NDIS 6.0 Timer Services.

After the filter driver successfully pauses the send and receive operations, it must
complete the pause operation. The filter driver can complete the pause operation
synchronously or asynchronously by returning NDIS_STATUS_SUCCESS or
NDIS_STATUS_PENDING respectively from FilterPause.

If the driver returns NDIS_STATUS_PENDING, it must call the NdisFPauseComplete
function after it completes the pause operation.

On behalf of a filter module that is in the Paused state, the filter driver:

Should not originate new receive indications.

Should return new receive indications that underlying drivers originate to NDIS
immediately by calling the NdisFReturnNetBufferLists function. If necessary, the
driver can copy receive indications and queue them before it returns them.

Should not originate new send requests.

Should return all new send requests made to its FilterSendNetBufferLists function
immediately by calling the NdisFSendNetBufferListsComplete function. The filter
driver should set the Status member in each NET_BUFFER_LIST structure to
NDIS_STATUS_PAUSED.

Can provide status indications with the NdisFIndicateStatus function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfpausecomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus

Should handle status indications in its FilterStatus function.

Should handle OID requests in the FilterOidRequest function.

Can initiate OID requests.

NDIS does not initiate other Plug and Play operations, such as, attach, detach, or a
restart requests, while the filter driver is in the Pausing state. NDIS can initiate detach or
restart requests after a filter driver is in the Paused state. For more information about
how to detach a filter module, see Detaching a Filter Module. For more information
about how to restart a filter module, see Starting a Filter Module.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request

Data Bypass Mode
Article • 12/15/2021

The filter driver data bypass mode can provide improved system performance. NDIS
does not call FilterXxx functions that are bypassed. For example, if the send and receive
services are not required for a given filter application, the filter driver can bypass the
send and receive functions.

A filter driver specifies the default entry points, for functions that can be bypassed,
during driver initialization when it calls the NdisFRegisterFilterDriver function. The entry
points are NULL for functions that are bypassed by default. For more information about
initialization, see Initializing a Filter Driver.

To change the bypass state at runtime, the driver must specify an entry point for the
FilterSetModuleOptions function during driver initialization. The driver can initialize an
NDIS_FILTER_PARTIAL_CHARACTERISTICS structure and pass the new characteristics to
the NdisSetOptionalHandlers function from within the context of
FilterSetModuleOptions.

NDIS calls the FilterSetModuleOptions function, if any, at the start of a restart operation.
A filter driver can set bypass mode independently for each filter module. For more
information, see Starting a Filter Module.

Filter drivers can bypass the following optional FilterXxx functions that are specified in
the NDIS_FILTER_DRIVER_CHARACTERISTICS structure:

FilterSendNetBufferLists

FilterSendNetBufferListsComplete

FilterCancelSendNetBufferLists

FilterReturnNetBufferLists

FilterReceiveNetBufferLists

To set a FilterXxx function to bypass mode, a filter driver specifies NULL for that
function's entry point. However, if a driver calls any NDIS function that has an associated
FilterXxx function, it must provide an entry point for that FilterXxx function. For example,
if a driver calls the NdisFIndicateReceiveNetBufferLists function, it must provide a
FilterReturnNetBufferLists function.

If a filter driver specifies a FilterSendNetBufferLists function and it queues send requests,
it must also specify a FilterCancelSendNetBufferLists function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_set_module_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_partial_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_send_net_buffer_lists

If a filter driver specifies a FilterReceiveNetBufferLists or FilterReturnNetBufferLists
function, the driver must also specify a FilterStatus function.

To change its bypass mode settings at run time, a filter driver can call the
NdisFRestartFilter function. NdisFRestartFilter schedules a pause operation that is
followed by a restart operation for the specified filter module. When NDIS calls
FilterSetModuleOptions, the filter driver can change the functions for that filter module
by calling NdisSetOptionalHandlers and specifying a new set of entry points.

Note Pause and restart could cause some network packets to be dropped on the
transmit path, or receive path, or both. Network protocols that provide a reliable
transport mechanism might retry the network I/O operation in the case of a lost packet,
but other protocols that do not guarantee reliability do not retry the operation.

A filter driver can register additional optional functions that support optional driver
services. The driver registers these optional services in the FilterSetOptions function. For
more information about these optional services, see Configuring Optional Filter Driver
Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfrestartfilter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options

Configuring Optional Filter Driver
Services
Article • 12/15/2021

NDIS calls a filter driver's FilterSetOptions function to configure optional filter driver
services. NDIS calls FilterSetOptions within the context of the filter driver's call to the
NdisFRegisterFilterDriver function

FilterSetOptions registers the default entry points for optional FilterXxx functions that are
required for optional services, and can allocate other driver resources. To register
optional services, the filter driver calls the NdisSetOptionalHandlers function and passes
a characteristics structure at the OptionalHandlers parameter.

There are no optional filter driver services in the current Windows version.

Filter drivers can also call NdisSetOptionalHandlers to set the some FilterXxx function
entry points for a given filter module. For more information, see Data Bypass Mode.

If the filter driver calls NdisSetOptionalHandlers from FilterRestart, the configuration
changes only affect the filter module that NDIS is restarting. The configuration of other
filter modules is not affected.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers

Filter Module Send and Receive
Operations
Article • 12/15/2021

This section documents send and receive operations for NDIS 6.0 filter drivers. Filter
drivers can initiate send requests and receive indications or filter the requests and
indications of other drivers.

Filter modules are stacked over a miniport adapter. For more information about the
driver stack, see NDIS 6.0 Driver Stack.

The filter modules in the driver stack can filter all send requests and receive indications
that are associated with the underlying adapter. This is true for all protocol bindings to
an adapter. For more information about NDIS 6.0 send and receive operations, see Send
and Receive Operations.

Filter drivers do not provide direct support for legacy send and receive operations that
are based on the NDIS_PACKET structure. Instead, NDIS converts receive indications
from legacy miniport drivers to NET_BUFFER structures. Also, NDIS handles the required
conversions from send requests that are based on NET_BUFFER structures to legacy
send requests that are based on NDIS_PACKET structures.

Note A filter driver can change the send and receive FilterXxx functions for a filter
module dynamically. For more information, see Data Bypass Mode.

The following topics provide additional information about filter driver send and receive
operations:

Filter Driver Buffer Management

Sending Data from a Filter Driver

Canceling a Send Request in a Filter Driver

Receiving Data in a Filter Driver

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Filter Driver Buffer Management
Article • 12/15/2021

Filter drivers create buffers to copy network data obtained from other drivers, or to
initiate send or receive operations.

If a filter driver does not create buffers, the driver does not manage buffer pools. Such a
driver simply passes on the buffers that it receives from other drivers.

A filter driver that creates buffers to support send or receive operations must manage
NET_BUFFER_LIST structure pools and NET_BUFFER structure pools.

To create these pools, drivers call the following functions:

NdisAllocateNetBufferListPool

NdisAllocateNetBufferPool

Filter drivers can use the following functions to allocate structures from the pools:

NdisAllocateNetBufferAndNetBufferList

NdisAllocateNetBufferList

NdisAllocateNetBuffer

Calling NdisAllocateNetBufferAndNetBufferList is more efficient than calling
NdisAllocateNetBufferList followed by NdisAllocateNetBuffer. However,
NdisAllocateNetBufferAndNetBufferList only creates one NET_BUFFER structure on the
NET_BUFFER_LIST structure. To use NdisAllocateNetBufferAndNetBufferList, the driver
must set the AllocateNetBuffer parameter to TRUE when it calls
NdisAllocateNetBufferListPool.

Filter drivers that originate send requests should determine the context and backfill
space requirements of the underlying drivers. Filter drivers use restart attributes to
determine the backfill requirements of underlying drivers. A filter driver should
determine the backfill and context requirements in the Restarting state. The driver
should allocate sufficient backfill and context space for the entire stack. If necessary, a
filter driver can free the pools and reallocate them in the Restarting state.

Filter drivers use the following functions to free the pools:

NdisFreeNetBufferListPool

NdisFreeNetBufferPool

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferandnetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbuffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlistpool
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferpool

Filter drivers use the following functions to free the structures allocated from the pools:

NdisFreeNetBufferList

NdisFreeNetBuffer

Drivers should free NET_BUFFER structures allocated with NdisAllocateNetBuffer before
freeing the associated NET_BUFFER_LIST structure. NET_BUFFER structures allocated with
NdisAllocateNetBufferAndNetBufferList are freed when the driver calls
NdisFreeNetBufferList for the associated NET_BUFFER_LIST structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbuffer

Sending Data from a Filter Driver
Article • 12/15/2021

Filter drivers can initiate send requests or filter send requests that overlying drivers
initiate. When a protocol driver calls the NdisSendNetBufferLists function, NDIS submits
the specified NET_BUFFER_LIST structure to the topmost filter module in the driver
stack.

The following figure illustrates a send operation that is initiated by a filter driver.

Filter drivers call the NdisFSendNetBufferLists function to send the network data that is
defined in a list of NET_BUFFER_LIST structures.

A filter driver must set the SourceHandle member of each NET_BUFFER_LIST structure
that it creates to the same value that it passes to the NdisFilterHandle parameter of
NdisFSendNetBufferLists. NDIS drivers should not modify the SourceHandle member
for NET_BUFFER_LIST structures that the driver did not originate.

Before calling NdisFSendNetBufferLists, a filter driver can set information that
accompanies the send request with the NET_BUFFER_LIST_INFO macro. The underlying
drivers can retrieve this information with the NET_BUFFER_LIST_INFO macro.

As soon as a filter driver calls NdisFSendNetBufferLists, it relinquishes ownership of the
NET_BUFFER_LIST structures and all associated resources. NDIS can handle the send
request or pass the request to underlying drivers.

NDIS calls the FilterSendNetBufferListsComplete function to return the structures and
data to the filter driver. NDIS can collect the structures and data from multiple send
requests into a single linked list of NET_BUFFER_LIST structures before it passes the list
to FilterSendNetBufferListsComplete

Send Requests Initiated by a Filter Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete

Until NDIS calls FilterSendNetBufferListsComplete, the current status of a send request is
unknown. A filter driver should never try to examine the NET_BUFFER_LIST structures or
any associated data before NDIS returns the structures to
FilterSendNetBufferListsComplete.

FilterSendNetBufferListsComplete performs whatever postprocessing is necessary to
complete a send operation.

When NDIS calls FilterSendNetBufferListsComplete, the filter driver regains ownership of
all the resources associated with the NET_BUFFER_LIST structures that are specified by
the NetBufferLists parameter. FilterSendNetBufferListsComplete can either free these
resources (for example, by calling the NdisFreeNetBuffer and NdisFreeNetBufferList
functions) or prepare them for reuse in a subsequent call to NdisFSendNetBufferLists.

NDIS always submits filter-supplied network data to the underlying drivers in the filter-
driver-determined order as passed to NdisFSendNetBufferLists. However, after sending
the data in the specified order, the underlying drivers can return the buffers in any
order.

A filter driver can request loopback for send requests that it originates. To request
loopback, the driver sets the NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK flag in the
SendFlags parameter of NdisFSendNetBufferLists. NDIS indicates a received packet that
contains the send data.

Note A filter driver should keep track of send requests that it originates and make sure
that it does not call the NdisFSendNetBufferListsComplete function when such requests
are complete.

The following figure illustrates filtering a send request that is initiated by an overlying
driver.

Filtering Send Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbuffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisfreenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete

NDIS calls a filter driver's FilterSendNetBufferLists function to filter the send request of
an overlying driver.

The filter driver must not modify the SourceHandle member in the NET_BUFFER_LIST
structures that it receives from other drivers.

The filter driver can filter the data and send the filtered data to underlying drivers. For
each NET_BUFFER structure submitted to FilterSendNetBufferLists, a filter driver can do
the following:

Pass the buffer on to the next underlying driver by calling the
NdisFSendNetBufferLists function. NDIS guarantees the availability of context
space (see NET_BUFFER_LIST_CONTEXT structure) for filter drivers. The filter driver
can modify the buffer contents before calling NdisFSendNetBufferLists. The
processing of the filtered data proceeds as with a send operation initiated by a
filter driver.

Drop the buffer by calling the NdisFSendNetBufferListsComplete function.

Queue the buffer in a local data structure for later processing. The design of the
filter driver dictates what causes the driver to process a queued buffer. Some
examples include processing after a time-out or processing after a specific buffer is
received.

Note If the driver queues send requests for later processing, it must support send
cancellation requests. For more information about send cancellation requests, see
Canceling Send Requests in a Filter Driver.

Copy the buffer and originate a send request with the copy. The send operation is
similar to a filter driver initiated send request. In this case, the driver must return
the original buffer to the overlying driver by calling the
NdisFSendNetBufferListsComplete function.

Completion of send requests proceeds up the driver stack. When the miniport driver
calls the NdisMSendNetBufferListsComplete function, NDIS calls the
FilterSendNetBufferListsComplete function for the lowest overlying filter module.

After the send operation is complete, the filter driver reverses the modifications to the
overlying driver's buffer descriptors that the filter driver made in FilterSendNetBufferLists.
The driver calls the NdisFSendNetBufferListsComplete function to return the linked list
of NET_BUFFER_LIST structures to the overlying drivers and to return the final status of
the send request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete

When the topmost filter module calls NdisFSendNetBufferListsComplete, NDIS calls the
originating protocol driver's ProtocolSendNetBufferListsComplete function.

A filter driver that does not provide a FilterSendNetBufferLists function can still initiate a
send request. If such a driver does initiate a send request, it must provide a
FilterSendNetBufferListsComplete function and it must not pass the complete event up
the driver stack.

A filter driver can pass on or filter the loopback request of an overlying driver. To pass
on a loopback request, if NDIS set NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK in the
SendFlags parameter of FilterSendNetBufferLists, the filter driver sets
NDIS_SEND_FLAGS_CHECK_FOR_LOOPBACK in the SendFlags parameter when it calls
NdisFSendNetBufferLists. NDIS indicates a received packet that contains the send data.

In general, if a filter driver modifies any behavior in such a way that NDIS cannot provide
a standard service (such as loopback), the filter driver must provide that service for
NDIS. For example, a filter driver that modifies a request for the hardware address (see
OID_802_3_CURRENT_ADDRESS), should handle loopback of buffers directed to the new
hardware address. In this case, NDIS cannot provide the loopback service it typically
provides because the filter altered the address. Also, if the filter driver sets promiscuous
mode (see OID_GEN_CURRENT_PACKET_FILTER), it should not pass on the extra data
that it receives to overlying drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_send_net_buffer_lists_complete

Canceling a Send Request in a Filter
Driver
Article • 12/15/2021

Filter drivers can cancel send requests that were originated by the filter driver or that
were originated by overlying drivers.

The following figure illustrates canceling a send request that was originated by a filter
driver.

A filter driver calls the NDIS_SET_NET_BUFFER_LIST_CANCEL_ID macro for each
NET_BUFFER_LIST structure that it creates for send operations. The
NDIS_SET_NET_BUFFER_LIST_CANCEL_ID function marks the specified data with a
cancellation identifier.

Before assigning cancellation IDs to network data, a filter driver must call
NdisGeneratePartialCancelId to obtain the high-order byte of each cancellation ID that
it assigns. This ensures that the driver does not duplicate cancellation IDs assigned by
other drivers in the system. Drivers typically call NdisGeneratePartialCancelId one time
from the DriverEntry routine. However, drivers can obtain more than one partial
cancellation identifier by calling NdisGeneratePartialCancelId multiple times.

To cancel the pending transmission of data in a marked NET_BUFFER_LIST structure, a
filter driver passes the cancellation ID to the NdisFCancelSendNetBufferLists function.
Drivers can obtain a NET_BUFFER_LIST structure's cancellation ID by calling the
NDIS_GET_NET_BUFFER_LIST_CANCEL_ID macro.

Canceling Filter Driver Send Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_set_net_buffer_list_cancel_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgeneratepartialcancelid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfcancelsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_get_net_buffer_list_cancel_id

If a filter driver marks all NET_BUFFER_LIST structures with the same cancellation
identifier, it can cancel all pending transmissions with a single call to
NdisFCancelSendNetBufferLists. If a filter driver marks all NET_BUFFER_LIST structures
within a subgroup of NET_BUFFER_LIST structures with a unique identifier, it can cancel
all pending transmissions within that subgroup with a single call to
NdisFCancelSendNetBufferLists.

NDIS calls the cancel send function of the underlying drivers. After aborting the pending
transmission, the underlying drivers call a send complete function (for example
NdisMSendNetBufferListsComplete) to return the NET_BUFFER_LIST structures with a
completion status of NDIS_STATUS_SEND_ABORTED. NDIS, in turn, calls the filter driver's
FilterSendNetBufferListsComplete function.

In FilterSendNetBufferListsComplete, a filter driver can call
NDIS_SET_NET_BUFFER_LIST_CANCEL_ID with CancelId set to NULL. This prevents the
NET_BUFFER_LIST from accidentally being used again with a stale cancellation ID.

The following figure illustrates canceling a send request that was originated by an
overlying driver.

Overlying drivers call a cancel send function (NdisFCancelSendNetBufferLists or
NdisCancelSendNetBufferLists) to cancel outstanding send requests. These overlying
drivers must mark the send data with a cancellation ID before making a send request.

NDIS calls a filter driver's FilterCancelSendNetBufferLists function to cancel the
transmission of all NET_BUFFER_LIST structures that are marked with a specified
cancellation identifier.

FilterCancelSendNetBufferLists performs the following operations:

Canceling Send Requests Originated by Overlying Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfcancelsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscancelsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

1. Traverses the filter driver's list of queued NET_BUFFER_LIST structures for the
specified filter module and calls the NDIS_GET_NET_BUFFER_LIST_CANCEL_ID
macro to obtain the cancellation identifier for each structure. The filter driver
compares the cancellation ID that NDIS_GET_NET_BUFFER_LIST_CANCEL_ID returns
with the cancellation ID that NDIS passed to FilterCancelSendNetBufferLists.

2. Removes from the send queue (unlinks) all NET_BUFFER_LIST structures whose
cancellation identifiers match the specified cancellation identifier.

3. Calls the NdisFSendNetBufferListsComplete function for all unlinked
NET_BUFFER_LIST structures to return the structures. The filter driver sets the status
field of the NET_BUFFER_LIST structures to NDIS_STATUS_SEND_ABORTED.

4. Calls the NdisFCancelSendNetBufferLists function to pass the cancel send request
to underlying drivers. The filter driver passes on the cancellation identifier that it
received from the overlying driver. The cancel operation proceeds as with a filter-
driver-originated cancel send operation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_get_net_buffer_list_cancel_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete

Receiving Data in a Filter Driver
Article • 12/15/2021

Filter drivers can initiate receive indications or filter receive indications from underlying
drivers. When a miniport driver calls the NdisMIndicateReceiveNetBufferLists function,
NDIS submits the specified NET_BUFFER_LIST structure to the lowest overlying filter
module in the driver stack.

The following figure illustrates a receive indication that is initiated by a filter driver.

Filter drivers call the NdisFIndicateReceiveNetBufferLists function to indicate received
data. The NdisFIndicateReceiveNetBufferLists function passes the indicated list of
NET_BUFFER_LIST structures up the stack to overlying drivers. The filter driver allocates
the structures from pools that it created during initialization.

If a filter driver sets the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags
parameter of NdisFIndicateReceiveNetBufferLists, this indicates that the filter driver
must regain ownership of the NET_BUFFER_LIST structures immediately. In this case,
NDIS does not call the filter driver's FilterReturnNetBufferLists function to return the
NET_BUFFER_LIST structures. The filter driver regains ownership immediately after
NdisFIndicateReceiveNetBufferLists returns.

If a filter driver does not set the NDIS_RECEIVE_FLAGS_RESOURCES flag in the
ReceiveFlags parameter of NdisFIndicateReceiveNetBufferLists, NDIS returns the
indicated NET_BUFFER_LIST structures to the filter driver's FilterReturnNetBufferLists
function. In this case, the filter driver relinquishes ownership of the indicated structures
until NDIS returns them to FilterReturnNetBufferLists.

Note A filter driver should keep track of receive indications that it initiates and make
sure that it does not call the NdisFReturnNetBufferLists function when the receive
operation is complete.

Receive Indications Initiated by a Filter Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists

The following figure illustrates a filtered receive indication that is initiated by an
underlying driver.

NDIS calls a filter driver's FilterReceiveNetBufferLists function to process receive
indications that come from underlying drivers. NDIS calls FilterReceiveNetBufferLists after
an underlying driver calls a receive indication function (for example,
NdisMIndicateReceiveNetBufferLists) to indicate received network data or loopback
data.

If the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter of
FilterReceiveNetBufferLists is not set, the filter driver keeps ownership of the
NET_BUFFER_LIST structures until it calls the NdisFReturnNetBufferLists function.

If the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter is set, the
filter driver cannot keep the NET_BUFFER_LIST structure and the associated underlying
driver-allocated resources. This flag can indicate that the underlying driver is running
low on receive resources. The FilterReceiveNetBufferLists function should return as
quickly as possible.

Note If the NDIS_RECEIVE_FLAGS_RESOURCES flag is set, the filter driver must retain
the original set of NET_BUFFER_LIST structures in the linked list. For example, when this
flag is set, the driver might process the structures and indicate them up the stack one at
a time but before the function returns, it must restore the original linked list.

Filter drivers can perform filter operations on received data before indicating the data to
overlying drivers. For each buffer submitted to its FilterReceiveNetBufferLists function a
filter driver can do the following:

Pass it on to the next overlying driver by calling
NdisFIndicateReceiveNetBufferLists. The driver can modify the contents of the
buffer. NDIS guarantees the availability of context space (see
NET_BUFFER_LIST_CONTEXT structure).

Filtering Receive Indications

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists

A filter driver can change the status that NDIS passed to FilterReceiveNetBufferLists
or simply pass it on to NdisFIndicateReceiveNetBufferLists.

Note A filter driver can pass on a buffer with NdisFIndicateReceiveNetBufferLists
even if NDIS sets the NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags
parameter of FilterReceiveNetBufferLists. In this case, the filter driver must not
return from FilterReceiveNetBufferLists until it regains ownership of the buffer.

Discard the buffer. If NDIS cleared the NDIS_RECEIVE_FLAGS_RESOURCES flag in
the ReceiveFlags parameter of FilterReceiveNetBufferLists, call the
NdisFReturnNetBufferLists function to discard the buffer. If NDIS set the
NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter of
FilterReceiveNetBufferLists, take no action and return from
FilterReceiveNetBufferLists to discard the buffer.

Queue the buffer in a local data structure for later processing. If NDIS set the
NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter of
FilterReceiveNetBufferLists, the filter driver must create a copy before returning
from FilterReceiveNetBufferLists.

Copy the buffer and originate a receive indication with the copy. The receive
indication is similar to a filter-driver-initiated receive indication. In this case, the
driver must return the original buffer to the underlying driver.

The NdisFIndicateReceiveNetBufferLists function passes the indicated list of
NET_BUFFER_LIST structures up the driver stack to overlying drivers. The receive
operation proceeds similarly to a filter-driver-initiated receive operation.

If an overlying driver retained ownership of the buffer, NDIS calls the
FilterReturnNetBufferLists function for the filter module. In its FilterReturnNetBufferLists
function, the filter driver will undo the operations that it performed on the buffer on the
receive indication path.

When the lowest layer filter module indicates that it is done with a buffer, NDIS returns
the buffer to the miniport driver. If NDIS cleared the NDIS_RECEIVE_FLAGS_RESOURCES
flag in the ReceiveFlags parameter of FilterReceiveNetBufferLists, the filter driver calls
NdisFReturnNetBufferLists to return the buffer. If NDIS set the
NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter of
FilterReceiveNetBufferLists, returning from FilterReceiveNetBufferLists returns the buffer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists

Filter Module OID Requests
Article • 12/15/2021

NDIS defines object identifier (OID) values to identify adapter parameters, which include
operating parameters such as device characteristics, configurable settings and statistics.
For more information about OIDs, see NDIS OIDs.

Filter drivers can query or set the operating parameters of underlying drivers or filter the
OID requests of overlying drivers.

NDIS also provides a direct OID request interface for NDIS 6.1 and later filter drivers. The
direct OID request path supports OID requests that are queried or set frequently. For
example, the IPsec offload version 2 (IPsecv2) interface provides the
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID for direct OID requests. The direct OID
request interface is optional for NDIS drivers.

For NDIS 6.81 and later filter drivers, NDIS provides a Synchronous OID Request
Interface. The Synchronous OID request path supports OIDs that require synchronization
or OIDs that should not be queued by filter drivers, such as RSSv2 OIDs. The
Synchronous OID Request Interface is optional for NDIS drivers but is required if the
filter driver advertises support for RSSv2.

The following topics provide more information about filter driver OID requests:

Filtering OID Requests in an NDIS Filter Driver

Generating OID Requests from an NDIS Filter Driver

Filter Module Direct OID Requests

Filter Module Synchronous OID Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Filtering OID Requests in an NDIS Filter
Driver
Article • 03/14/2023

Filter drivers can process OID requests that are originated by overlying drivers. NDIS
calls the FilterOidRequest function to process each OID request. Filter drivers can forward
OID requests to underlying drivers by calling the NdisFOidRequest function.

NDIS can call a filter driver's FilterCancelOidRequest function to cancel an OID request.
When NDIS calls FilterCancelOidRequest, the filter driver should try to call the
NdisFOidRequest function as soon as possible.

The following figure illustrates a filtered OID request.

The filter driver can complete the OID request synchronously or asynchronously by
returning NDIS_STATUS_SUCCESS or NDIS_STATUS_PENDING, respectively, from
FilterOidRequest. FilterOidRequest can also complete synchronously with an error status.

A filter driver that successfully handles an OID set request must set the
SupportedRevision member in the NDIS_OID_REQUEST structure upon return from the
OID set request. The SupportedRevision member notifies the initiator of the OID
request about which revision the driver supported. For more information about version
information in NDIS structures, see Specifying NDIS Version Information.

If FilterOidRequest returns NDIS_STATUS_PENDING, it must call the
NdisFOidRequestComplete function after it completes the OID request. In this case, the
driver passes the results of the request at the OidRequest parameter of
NdisFOidRequestComplete. The driver passes the final status of the request at the
Status parameter of NdisFOidRequestComplete.

If FilterOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter. In this case,
the driver does not call the NdisFOidRequestComplete function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

To forward an OID request to underlying drivers, a filter driver calls the
NdisFOidRequest function. If a request should not be forwarded to the underlying
drivers, a filter driver can complete the request immediately. To complete the request
without forwarding, the driver can return NDIS_STATUS_SUCCESS (or an error status)
from FilterOidRequest, or it can call NdisFOidRequestComplete after returning
NDIS_STATUS_PENDING.

Note Before the driver calls NdisFOidRequest, the driver must allocate an
NDIS_OID_REQUEST structure and transfer the request information to the new structure
by calling NdisAllocateCloneOidRequest.

The forwarded request proceeds the same as a request initiated by a filter driver. For
more information, see Generating OID Requests from an NDIS Filter Driver.

After the underlying drivers complete a forwarded request, the filter driver can modify
the response, if necessary, and pass it to overlying drivers.

A filter driver can receive OID requests from overlying drivers when it is in the Restarting,
Running, Pausing, or Paused state.

Note Like miniport drivers, filter drivers can receive only one OID request at a time.
Because NDIS serializes requests that are sent to a filter module, a filter driver cannot be
called at FilterOidRequest before it completes the previous request.

The following is an example of a filter driver modifying an OID request:

A filter driver adds a header. In this case, after the driver receives a response to a
query for OID_GEN_MAXIMUM_FRAME_SIZE from the underlying drivers, the filter
subtracts the size of its header from the response. The driver subtracts its header
size because the driver inserts a header in front of each sent packet and removes
the header in each received packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatecloneoidrequest

Generating OID Requests from an NDIS
Filter Driver
Article • 03/14/2023

A filter driver can originate OID query or set requests to underlying drivers by calling the
NdisFOidRequest function.

The following figure illustrates an OID request that is originated by a filter driver.

After a filter driver calls the NdisFOidRequest function, NDIS calls the request function
of the next underlying driver. For more information about how a miniport driver handles
OID requests, see OID Requests for an Adapter.

To complete synchronously, NdisFOidRequest returns NDIS_STATUS_SUCCESS or an
error status. To complete asynchronously, NdisFOidRequest returns
NDIS_STATUS_PENDING.

To determine what information was successfully handled by an underlying driver, filter
drivers that issue OID requests must check the value in the SupportedRevision member
in the NDIS_OID_REQUEST structure after the OID request returns. For more information
about NDIS version information, see Specifying NDIS Version Information.

If NdisFOidRequest returns NDIS_STATUS_PENDING, NDIS calls the
FilterOidRequestComplete function after the underlying drivers complete the OID
request. In this case, NDIS passes the results of the request at the OidRequest parameter
of FilterOidRequestComplete. NDIS passes the final status of the request at the Status
parameter of FilterOidRequestComplete.

If NdisFOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter. In this case,
NDIS does not call the FilterOidRequestComplete function.

A driver can call NdisFOidRequest when it is in the Restarting, Running, Pausing, or
Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Note A filter driver should keep track of OID requests that it originates and make sure
that it does not call the NdisFOidRequestComplete function when such requests are
complete.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequestcomplete

Filter Module Direct OID Requests
Article • 12/15/2021

To support the direct OID request path, filter drivers provide FilterXxx function entry
points in the NDIS_FILTER_DRIVER_CHARACTERISTICS structure and NDIS provides
NdisFXxx functions for filter drivers.

The direct OID request interface is similar to the standard OID request interface. For
example, the NdisFDirectOidRequest and FilterDirectOidRequest functions are similar to
the NdisFOidRequest and FilterOidRequest functions.

Note NDIS 6.1 and later support specific OIDs for use with the direct OID request
interface. OIDs that existed before NDIS 6.1 and some NDIS 6.1 OIDs are not supported.
To determine if an OID can be used in the direct OIDs interface, see the OID reference
page. For example, see the note in the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID.

Filter drivers must be able to handle direct OID requests that are not serialized. Unlike
the standard OID request interface, NDIS does not serialize direct OID requests with
other requests that are sent with the direct OID interface or with the standard OID
request interface. Also, filter drivers must be able to handle direct OID requests at IRQL
<= DISPATCH_LEVEL.

To support the direct OIDs request interface, use the documentation for the standard
OID request interface. The following table shows the relationship between the functions
in the direct OID request interface and the standard OID request interface.

Direct OID function Standard OID function

FilterDirectOidRequest FilterOidRequest

FilterCancelDirectOidRequest FilterCancelOidRequest

FilterDirectOidRequestComplete FilterOidRequestComplete

NdisFDirectOidRequest NdisFOidRequest

NdisFDirectOidRequestComplete NdisFDirectOidRequestComplete

NdisFCancelDirectOidRequest NdisFCancelOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfdirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_direct_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_cancel_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_direct_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfdirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfdirectoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfdirectoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfcanceldirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfcanceloidrequest

Filter Module Synchronous OID
Requests
Article • 12/15/2021

To support the Synchronous OID request path, filter drivers provide a
FilterSynchronousOidRequest function entry point in the
NDIS_FILTER_DRIVER_CHARACTERISTICS structure when they call the
NdisFRegisterFilterDriver function.

To support the Synchronous OID request interface, use the documentation for the
standard OID request interface. The following table shows the relationship between the
functions in the Synchronous OID request interface and the standard OID request
interface.

Synchronous OID function Standard OID function

FilterSynchronousOidRequest FilterOidRequest

FilterSynchronousOidRequestComplete FilterOidRequestComplete

７ Note

NDIS 6.81 supports specific OIDs for use with the Synchronous OID request
interface. OIDs that existed before NDIS 6.80 and some NDIS 6.80 OIDs are not
supported. To determine if an OID can be used in the Synchronous OID request
interface, see the OID reference page.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete

Filter Module PnP Event Notifications
Article • 12/15/2021

Filter drivers can receive all the device Plug and Play (PnP) notifications that underlying
miniport drivers receive. Also, filter drivers can receive all the network PnP notifications
that overlying protocol drivers receive.The handling of PnP notifications is driver specific.

The following figure illustrates a filtered device PnP event notification.

Filter drivers provide a FilterDevicePnPEventNotify function that NDIS calls to pass in
device PnP and Power Management event notifications. This is similar to the
MiniportDevicePnPEventNotify function.

Filter drivers can forward device PnP and Power Management events to underlying
drivers. To forward a device PnP or Power Management event, call the
NdisFDevicePnPEventNotify function.

The following figure illustrates a filtered network PnP event notification.

Filter drivers provide a FilterNetPnPEvent function that NDIS calls to pass in network PnP
and Power Management event notifications. This is similar to the ProtocolNetPnPEvent
function.

Filter drivers can forward network PnP and Power Management events to overlying
drivers. To forward a network PnP or Power Management event, call the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_device_pnp_event_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfdevicepnpeventnotify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event

NdisFNetPnPEvent function.

Filter drivers should handle driver stack changes. For more information about driver
stack changes, see Modifying a Running Driver Stack.

If necessary to allow handling of these events, NDIS can initiate a pause operation after
the PnP or Power Management notification. For more information, see Pausing a Driver
Stack.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfnetpnpevent

Filter Module Status Indications
Article • 12/15/2021

Filter drivers can supply a FilterStatus function that NDIS calls when an underlying driver
reports status. Filter drivers can also initiate status indications.

The following figure illustrates a filtered status indication.

NDIS calls a filter driver's FilterStatus function, after an underlying driver calls a status
indication function (NdisMIndicateStatusEx or NdisFIndicateStatus). For more
information about how to indicate status from a miniport driver, see Adapter Status
Indications.

A filter driver calls NdisFIndicateStatus in its FilterStatus function, to pass on a filtered
status indication to overlying drivers. A filter driver can filter out status indications (by
not calling NdisFIndicateStatus) or modify the indicated status before it calls
NdisFIndicateStatus.

To originate status indications, filter drivers call NdisFIndicateStatus without a prior call
to FilterStatus.

In this case, the filter driver should set the SourceHandle member to the handle that
NDIS passed to the NdisFilterHandle parameter of the FilterAttach function. If the status
indication is associated with an OID request, the filter driver can set the
DestinationHandle and RequestId members so that NDIS can provide the status
indication to a specific protocol binding.

After a filter driver calls NdisFIndicateStatus, NDIS calls the status function
(ProtocolStatusEx or FilterStatus) of the next overlying driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex

NDIS Filter Driver Installation
Article • 05/30/2023

This section provides information about installing NDIS filter drivers. Lightweight Filter
drivers are different from filter intermediate drivers. The configuration manager supplies
NDIS with a list of filter modules for each miniport adapter. There's no virtual device (or
virtual miniport) that is associated with a filter driver as there is with an NDIS filter
intermediate driver.

To install a filter driver, you must provide a single INF file. The configuration manager
reads configuration information about the filter driver from the INF file and copies it to
the registry.

The filter driver INF file defines a network service. Filter drivers don't have a miniport INF
file. For an example filter driver INF file, see the ndislwf sample driver.

Once you have provided your filter driver INF file, to install or uninstall your filter driver
you must use the INetCfg family of Network Configuration Interfaces. For example, to
install or remove network components, call into the INetCfgClassSetup interface. You
can either call into these interfaces programmatically or you can indirectly call them with
netcfg.exe, which calls INetCfg for you. You can't install a driver package through the
INetCfg and use the Driver Store feature on older Windows versions. To successfully
install the driver package in this scenario, you need to have a minimum OS build
number of 25319. You can't use SetupAPI to install or uninstall an NDIS filter driver.

For an example of calling into INetCfg through code, see the Bindview Network
Configuration Utility sample .

This section includes:

Specifying Filter Driver Binding Relationships

INF File Settings for Filter Drivers

Accessing Configuration Information for a Filter Driver

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/filter
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559080(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547709(v=vs.85)
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/netcfg
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/run-from-driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/setupapi
https://github.com/Microsoft/Windows-driver-samples/tree/main/network/config/bindview

Specifying Filter Driver Binding
Relationships
Article • 12/15/2021

In a network driver INF file, the UpperRange entry lists the possible upper bindings and
the LowerRange entry lists the possible lower bindings. These entries can contain
various system-defined values.

For filter drivers, you must set the value of the UpperRange and LowerRange entries to
noupper and nolower, respectively. The following example illustrates these INF file
entries for a filter driver.

INF

In a filter driver, the FilterMediaTypes entry in the filter INF file defines the driver's
bindings to other drivers. FilterMediaTypes specifies the media types that the filter
driver services. For a list of possible media types, see the list of Microsoft-supplied
LowerRange values in Specifying Binding Interfaces. The following example illustrates a
FilterMediaTypes entry for a filter driver.

INF

When the computer loads a filter driver, the driver is inserted into all of the existing
protocol-to-adapter bindings, depending on the media types that FilterMediaTypes
lists.

HKR, Ndi\Interfaces,UpperRange,,"noupper"
HKR, Ndi\Interfaces,LowerRange,,"nolower"

HKR, Ndi\Interfaces, FilterMediaTypes,,"ethernet"

INF File Settings for Filter Drivers
Article • 12/15/2021

The filter driver INF file settings specify the characteristics of the filter driver. For
example, filter drivers can be modifying or monitoring and can be mandatory or
optional. The INF file also specifies general configuration parameters and other
information to associate the filter driver with particular miniport adapters. Filter drivers
are identified by a unique filter identification GUID (FID GUID).

This section includes:

Configuring an INF File for a Monitoring Filter Driver

Configuring an INF File for a Modifying Filter Driver

Configuring an INF File for a Monitoring
Filter Driver
Article • 05/30/2023

The following NDIS filter driver installation issues are associated with monitoring filter
drivers:

Set the Class INF file entry to NetService in the INF file. The following example
shows a sample Class entry for the INF file.

INF

The DDInstall section in a filter driver INF file must have a Characteristics entry.
The following example shows how you should define the Characteristics entry in
your filter INF file.

INF

The 0x40000 value indicates that NCF_LW_FILTER (0x40000) is set. Filter drivers
must not set the NCF_FILTER (0x400) flag. The values of the NCF_ Xxx flags are
defined in Netcfgx.h. For more information about NCF_ Xxx flags, see DDInstall
Section in a Network INF File.

Set the NetCfgInstanceId INF file entry in the INF file, as the following example
shows.

INF

You can use the Uuidgen.exe tool to create the GUID for the NetCfgInstanceId
entry.

The DDInstall section of the INF file for a filter driver must include an Addreg
directive for an Ndi key. The INF file must specify the Service entry under the Ndi
key. The ServiceBinary entry in the service-install section of the INF file specifies
the path to the binary for the filter driver. For more information, see Adding

Class = NetService

Characteristics=0x40000

NetCfgInstanceId="{5cbf81bf-5055-47cd-9055-a76b2b4e3697}"

Service-Related Values to the Ndi Key and DDInstall.Services Section in a Network
INF File.

The DDInstall section in a filter driver INF file must have FilterType and
FilterRunType entries. To specify a monitoring filter, define the FilterType entry in
your INF file, as the following example shows.

INF

The FilterType value 0x00000001 indicates that the filter is a monitoring filter.

Define the FilterRunType entry in your INF file, as the following example shows.

INF

The 0x00000002 value in the preceding example indicates that the filter module is
optional. To install a mandatory filter module, set the FilterRunType entry to
0x00000001. For more information, see Mandatory Filter Drivers.

Note We highly recommend that a monitoring lightweight filter (LWF) driver
should not be mandatory, unless it is to be used in a controlled environment
where there will be no optional modifying LWF drivers. This is because a
mandatory monitoring LWF driver can cause optional modifying LWF drivers to fail
FilterAttach. A monitoring LWF driver is bound over every modifying filter and
binding by design to facilitate monitoring of networking traffic at all levels.
Consider the following scenario:

An instance of a mandatory monitoring LWF driver is installed over an optional
modifying LWF driver.
The lower modifying optional LWF driver fails to attach to a lower component.
This will cause the mandatory monitoring LWF driver’s FilterAttach handler not
to be called.
Because now an instance of a mandatory LWF driver is not loaded, NDIS will not
bind any protocols (such as TCP/IP) to the interface or NIC, thus rendering the
interface to be unusable.

The following example shows how a filter driver INF file specifies the name of the
service.

INF

HKR, Ndi,FilterType,0x00010001 ,0x00000001

HKR, Ndi,FilterRunType,0x00010001 ,0x00000002

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach

In this example, "NdisMon" is the name of the driver's service as it is reported to
NDIS. Note that the name of a filter driver's service can be different from the name
of the binary for the driver, but typically they are the same.

The following example shows how the filter INF file references the name of the
filter driver's service when it adds that service.

INF

A filter INF file must specify at least the primary service name of the filter for the
CoServices attribute, as the following example shows.

INF

For more information about the CoServices attribute, see Adding Service-Related
Values to the Ndi Key.

The FilterClass value in the INF file for a filter driver determines its order in a stack
of modifying filters. However, monitoring filter drivers do not define the FilterClass
key. Instead the monitoring filter module that is installed first is closest to the
miniport adapter.

You must define the following entries in the monitoring filter driver INF file to
control the driver bindings:

INF

HKR, Ndi,Service,,"NdisMon"

[Install.Services]
AddService=NdisMon,,NdisMon_Service_Inst

[NdisMon_Service_Inst]
DisplayName = %NdisMon_Desc%
ServiceType = 1 ;SERVICE_KERNEL_DRIVER
StartType = 1 ;SERVICE_SYSTEM_START
ErrorControl = 1 ;SERVICE_ERROR_NORMAL
ServiceBinary = %13%\ndisMon.sys
LoadOrderGroup = NDIS
Description = %NdisMon_Desc%
AddReg = Common.Params.Reg

HKR, Ndi,CoServices,0x00010000,"NdisMon"

HKR, Ndi\Interfaces,UpperRange,,"noupper"
HKR, Ndi\Interfaces,LowerRange,,"nolower"

For more information about controlling the driver bindings, see Specifying Filter
Driver Binding Relationships.

A monitoring filter INF file can specify common parameter definitions for the filter
driver, parameters that are associated with a specific adapter, and parameters that
are associated with a particular instance (filter module). The following example
shows some common parameter definitions.

INF

HKR, Ndi\Interfaces, FilterMediaTypes,,"ethernet"

Ｕ Caution

Using HKR AddReg to put keys directly under the service state is a
compliance violation. These keys need to be added under the Parameters key
of the service to be compliant.

[Common.Params.reg]

HKR, FilterDriverParams\DriverParam, ParamDesc, ,"Driverparam for
filter"
HKR, FilterDriverParams\DriverParam, default, ,"5"
HKR, FilterDriverParams\DriverParam, type, ,"int"

HKR, FilterAdapterParams\AdapterParam, ParamDesc, ,"Adapterparam for
filter"
HKR, FilterAdapterParams\AdapterParam, default, ,"10"
HKR, FilterAdapterParams\AdapterParam, type, ,"int"

HKR, FilterInstanceParams\InstanceParam, ParamDesc, ,"Instance param
for filter"
HKR, FilterInstanceParams\InstanceParam, default, ,"15"
HKR, FilterInstanceParams\InstanceParam, type, ,"int"

Configuring an INF File for a Modifying
Filter Driver
Article • 11/30/2022

The following NDIS filter driver installation issues are associated with modifying filter
drivers. To create your own modifying filter driver INF file, you can also adapt the sample
NDIS 6.0 filter driver .

Set the Class INF file entry to NetService in the INF file. The following example
shows a sample Class entry for the INF file.

INF

The DDInstall section in a filter driver INF file must have a Characteristics entry.
The following example shows how you should define the Characteristics entry in
your filter INF file.

INF

The 0x40000 value indicates that NCF_LW_FILTER (0x40000) is set. Filter drivers
must not set the NCF_FILTER (0x400) flag. The values of the NCF_ Xxx flags are
defined in Netcfgx.h. For more information about NCF_ Xxx flags, see DDInstall
Section in a Network INF File.

Set the NetCfgInstanceId INF file entry in the INF file, as the following example
shows.

INF

You can use the Uuidgen.exe tool to create the GUID for the NetCfgInstanceId
entry.

The DDInstall section of the INF file for a filter driver must include an Addreg
directive for an Ndi key. The INF file must specify the Service entry under the Ndi
key. The ServiceBinary entry in the service-install section of the INF file specifies

Class = NetService

Characteristics=0x40000

NetCfgInstanceId="{5cbf81bd-5055-47cd-9055-a76b2b4e3697}"

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/filter

the path to the binary for the filter driver. For more information, see Adding
Service Related Values to the Ndi Key and DDInstall.Services Section in a Network
INF File.

The DDInstall section in a filter driver INF file must have FilterType and
FilterRunType entries. To specify a modifying filter, define the FilterType entry in
your INF file, as the following example shows.

INF

The FilterType value 0x00000002 indicates that the filter is a modifying filter.

Define the FilterRunType entry in your INF file, as the following example shows.

INF

The 0x00000001 value in the preceding example indicates that the filter module is
mandatory. To install an optional filter module, set the FilterRunType entry to
0x00000002. For more information, see Mandatory Filter Drivers.

The following example shows how a modifying filter driver INF file specifies the
name of the service.

INF

In this example, NdisLwf is the name of the driver's service as it is reported to
NDIS. Note that the name of a filter driver's service can be different from the name
of the binary for the driver—but typically they are the same.

The following example shows how the filter INF file references the name of the
filter driver's service when it adds that service.

INF

HKR, Ndi,FilterType,0x00010001 ,0x00000002

HKR, Ndi,FilterRunType,0x00010001 ,0x00000001

HKR, Ndi,Service,,"NdisLwf"

[Install.Services]
AddService=NdisLwf,,NdisLwf_Service_Inst;, common.EventLog

[NdisLwf_Service_Inst]
DisplayName = %NdisLwf_Desc%

A filter INF file must specify at least the primary service name of the filter for the
CoServices attribute, as the following example shows.

INF

For more information about the CoServices attribute, see Adding Service Related
Values to the Ndi Key.

The FilterClass value in the INF file for a filter driver determines its order in a stack
of filters. Filter drivers must define the FilterClass key. The class of the driver can be
one of the values in the following table.

Value Description

scheduler Packet scheduling filter service. This class of
filter driver is the highest-level driver that
can exist above encryption class filters in a
driver stack. A packet scheduler detects the
802.1p priority classification that is given to
packets by quality of service (QoS) signaling
components and the scheduler sends those
packets levels to underlying drivers
according to their priority.

encryption Encryption class filter drivers exist between
scheduler and compression class filters.

compression Compression class filter drivers exist
between encryption and vpn class filters.

vpn VPN class filter drivers exist between
compression and load balance filter drivers.

ServiceType = 1 ;SERVICE_KERNEL_DRIVER
StartType = 1 ;SERVICE_SYSTEM_START
ErrorControl = 1 ;SERVICE_ERROR_NORMAL
ServiceBinary = %13%\ndislwf.sys
LoadOrderGroup = NDIS
Description = %NdisLwf_Desc%
AddReg = Common.Params.reg

HKR, Ndi,CoServices,0x00010000,"NdisLwf"

Value Description

loadbalance Load balancing filter service. This class of
filter driver exists between packet
scheduling and failover drivers. A load
balancing filter service balances its workload
of packet transfers by distributing the
workload over its set of underlying miniport
adapters.

failover Failover filter service. This class of filter
driver exists between load balance and
diagnostics drivers.

diagnostic Diagnostic filter drivers exist below failover
drivers in the stack.

custom Filter drivers in custom class exist below
diagnostic drivers.

provider_address Provider address filter drivers exist below
the in-box Hyper-V Network Virtualization
ms_wnv filter and operate on provider
address (PA) packets.

Note If multiple filter drivers have the same FilterClass, they will all be added to the
layered stack of filter drivers. The system assigns a layering order to each modifying
filter driver with the same FilterClass. In some cases, the system administrator can
rearrange the relative order of filter drivers that have the same FilterClass.

The following example shows a sample FilterClass .

INF

Only Hyper-V switch extension filter drivers are valid in the Hyper-V Extensible
Switch. Hyper-V extensible switch filter drivers must define the FilterClass key with
one of the values in the following table.

Value Description

HKR, Ndi,FilterClass,, compression

Value Description

ms_switch_capture Starting with NDIS 6.30, capture drivers
monitor packet traffic in the Hyper-V
extensible switch driver stack. This class of
filter driver exists below custom drivers in
the stack.

For more information about this class of
driver, see Capturing Extensions.

ms_switch_filter Starting with NDIS 6.30, filtering drivers filter
packet traffic and enforce port or switch
policy for packet delivery through the
extensible switch driver stack. This class of
filter driver exists below ms_switch_capture
drivers in the stack.

For more information about this class of
driver, see Filtering Extensions.

ms_switch_forward Starting with NDIS 6.30, forwarding drivers
filter perform the same functions as a
filtering driver. Forwarding drivers also
forward packets to and from extensible
switch ports. This class of filter driver exists
below ms_switch_filter drivers in the stack.

For more information about this class of
driver, see Forwarding Extensions.

You must define the following entries in the modifying filter driver INF file to
control the driver bindings.

INF

For more information about controlling the driver bindings, see Specifying Filter
Driver Binding Relationships.

A modifying filter INF file can specify common parameter definitions for the driver
and parameters that are associated with a specific adapter. The following example
shows some common parameter definitions.

HKR, Ndi\Interfaces,UpperRange,,"noupper"
HKR, Ndi\Interfaces,LowerRange,,"nolower"
HKR, Ndi\Interfaces, FilterMediaTypes,,"ethernet"

Ｕ Caution

INF

Using HKR AddReg to put keys directly under the service state is a compliance
violation. These keys need to be added under the Parameters key of the service to
be compliant.

[Common.Params.reg]

HKR, FilterDriverParams\DriverParam, ParamDesc, , "Driverparam for lwf"
HKR, FilterDriverParams\DriverParam, default, , "5"
HKR, FilterDriverParams\DriverParam, type, , "int"

HKR, FilterAdapterParams\AdapterParam, ParamDesc, , "Adapterparam for lwf"
HKR, FilterAdapterParams\AdapterParam, default, , "10"
HKR, FilterAdapterParams\AdapterParam, type, , "int"

Accessing Configuration Information for
a Filter Driver
Article • 12/15/2021

NDIS supports a set of functions that provide access to filter driver registry parameters.
Filter drivers can access these parameters during the attach or restart operations or
when they are processing a Plug and Play (PnP) notification. For more information about
PnP notifications, see Filter Module PnP Event Notifications. For more information about
attaching a filter module, see Attaching a Filter Module. For more information about
restart operations, see Starting a Filter Module.

Filter drivers call the NdisOpenConfigurationEx function to access the registry settings.
If a filter driver obtained the handle in the NdisHandle member of the
NDIS_CONFIGURATION_OBJECT structure by calling the NdisFRegisterFilterDriver
function, the NdisOpenConfigurationEx function provides a handle to the registry
location where the filter driver's configuration parameters are stored. Filter drivers can
use the configuration handle until they call the NdisFDeregisterFilterDriver function.

If a filter driver obtained the handle in NdisHandle from the NdisFilterHandle parameter
of the FilterAttach function, NdisOpenConfigurationEx provides a handle to the registry
location where a filter module's configuration parameters are stored. The filter driver
can use the configuration handle until NDIS detaches the filter module and the
FilterDetach function returns. If a monitoring filter driver specifies the
NDIS_CONFIG_FLAG_FILTER_INSTANCE_CONFIGURATION flag in the Flags member of
the NDIS_CONFIGURATION_OBJECT structure, the driver can access the filter module
configuration for a specific filter module when there are multiple filter modules that are
configured over the same miniport adapter. Modifying filter drivers must not use this
flag.

After a driver is done accessing the configuration information, the driver must call the
NdisCloseConfiguration function to release the configuration handle and related
resources.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenconfigurationex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_configuration_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfregisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfderegisterfilterdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenconfigurationex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_configuration_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseconfiguration

NDIS Intermediate Drivers Guide
Article • 03/14/2023

NDIS intermediate drivers interface between upper-level protocol drivers and miniport
drivers. Some applications that might require an intermediate driver include:

Media translation between an old transport driver and a miniport driver that
manages a media type unknown to the transport driver.

Data filtering for security or other purposes.

Load Balancing Failover (LBFO) solutions.

Monitoring and collecting of network data statistics.

Before attempting to write an intermediate driver, you should read about NDIS miniport
and protocol drivers. For more information about NDIS miniport drivers, see NDIS
Miniport Drivers. For more information about NDIS protocol drivers, see NDIS Protocol
Drivers.

The following sections introduce intermediate drivers and describe how to create and
install such drivers:

Roadmap for Developing NDIS Intermediate Drivers

Introduction to NDIS Intermediate Drivers

Writing NDIS Intermediate Drivers

Intermediate Driver Design Concepts

Installing Intermediate Drivers

Roadmap for Developing NDIS
Intermediate Drivers
Article • 03/14/2023

To create a Network Driver Interface Specification (NDIS) intermediate driver package,
follow these steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about NDIS.

For general information about NDIS and NDIS drivers, see the following topics:

Windows Network Architecture and the OSI Model

Network Driver Programming Considerations

Driver Stack Management

NET_BUFFER Architecture

Step 3: Determine additional Windows driver design decisions.

For more information about how to make additional Windows design decisions,
see Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers,
and Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For more
information about Windows driver build, debug, and test processes, driver signing,
and Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For more information about building, testing, verifying, and debugging
tools, see Driver Development Tools.

Step 5: Read the intermediate driver, miniport driver, and protocol driver
introduction topics. Introduction to NDIS Intermediate Drivers Introduction to
NDIS Miniport Drivers NDIS Protocol Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/

Step 6: Read the writing intermediate drivers section.

Intermediate drivers use a combination of protocol driver and miniport driver
interfaces in addition to some intermediate driver specific interfaces. As an option,
you can also read the miniport driver and protocol driver design guides.

Step 7: Review the NDIS intermediate driver sample in the Windows driver
samples repository on GitHub.

Step 8: Develop (or port), build, test, and debug your NDIS driver.

See the porting guides if you are porting an existing driver:

Porting NDIS 5.x Drivers to NDIS 6.0

Porting NDIS 6.x Drivers to NDIS 6.20

Porting NDIS 6.x Drivers to NDIS 6.30

For more information about iterative building, testing, and debugging, see
Overview of Build, Debug, and Test Process. This process will help ensure that
you build a driver that works.

Step 9: Create a driver package for your driver.

For more information about how to install drivers, see Providing a Driver Package.
For more information about how to install an NDIS driver, see Components and
Files Used for Network Component Installation and Notify Objects for Network
Components.

Step 10: Sign and distribute your driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Lab Kit (HLK), you
can distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://github.com/microsoft/Windows-driver-samples/tree/95037b3f77f3a745f7682f991ac80e81f91f5362/network/ndis/mux
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-ndis-5-x-drivers-to-ndis-6-0
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

NDIS Intermediate Drivers Overview
Article • 03/14/2023

NDIS driver stacks must include miniport drivers and protocol drivers and can also
include intermediate drivers. Because intermediate drivers are optional, you must
understand the relationships between miniport drivers, protocol drivers, and NDIS
before addressing intermediate drivers.

Miniport drivers control NIC devices and communicate with the lower edge of protocol
drivers. Protocol drivers implement protocols, such as TCP/IP, and are above the
miniport drivers in the driver stack. NDIS provides services to simplify development and
maintenance of miniport drivers and protocol drivers.

The relationships between miniport drivers, protocol drivers, and NDIS are illustrated in
the following figure.

NDIS miniport drivers and protocol drivers are bound together through standard NDIS
interfaces.

NDIS intermediate drivers include a protocol driver interface at their upper edge and a
miniport driver interface at their lower edge. The intermediate driver's protocol interface
allows it to load above a driver with a miniport driver interface. Therefore, intermediate
drivers can load above miniport drivers or other intermediate drivers. The intermediate
driver's miniport interface allows it to load below a driver with a protocol lower edge
interface. Therefore, intermediate drivers can load below protocol drivers or below other
intermediate drivers.

The relationships between miniport drivers, protocol drivers, intermediate drivers, and
NDIS are illustrated in the following figure.

The intermediate driver miniport interface is called a virtual miniport. It is virtual in that
it does not control a physical device directly. Instead, it relies on an underlying miniport
driver to communicate with the physical device.

Bindings between the intermediate driver and other drivers are called external bindings.
NDIS controls external bindings. The upper edge of the virtual miniport binds with the
next-higher driver, which can be a protocol driver or another intermediate driver. The
lower edge of the intermediate driver protocol binds to the next lower driver, which can
be another intermediate driver or an underlying miniport driver.

The lower edge of the virtual miniport and the upper edge of the intermediate driver
protocol do not require external bindings. Instead, the intermediate driver binds its
virtual miniport and its protocol internally. These internal bindings, which are
implementation specific, are not controlled by NDIS.

The following figure illustrates the internal bindings between the virtual miniport and
the intermediate driver protocol.

There are two types of NDIS intermediate drivers: filter intermediate drivers and MUX
intermediate drivers. The following topics describe these driver types:

NDIS Filter Intermediate Drivers

NDIS MUX Intermediate Drivers

NDIS Filter Intermediate Drivers
Article • 03/14/2023

Note Filter intermediate drivers are not supported in NDIS 6.0 and later. You should use
the NDIS filter driver interface instead. For more information about NDIS filter drivers,
see NDIS Filter Drivers.

In NDIS 5.x, an NDIS filter intermediate driver exposes one virtual miniport for each
underlying miniport driver that is bound to the intermediate driver's lower (protocol)
edge.

NDIS MUX Intermediate Drivers
Article • 03/14/2023

The number of virtual miniports that are exposed by a MUX intermediate driver can be
different than the number of lower physical adapters that are bound to the driver. A
MUX intermediate driver exposes virtual miniports in a one-to-n, n-to-one, or even an
m-to-n relationship with underlying adapters. This variety results in complicated internal
bindings and data paths.

In a one-to-n configuration, a single MUX intermediate driver can bind to many physical
adapters below. Transport drivers bind to the virtual miniport of the MUX intermediate
driver in the same way that they bind to nonvirtual miniports. The MUX intermediate
driver repackages and passes down all requests and send packets that are submitted to
the intermediate driver for a specific connection. A Load Balancing Failover (LBFO) driver
is an example of this type of MUX intermediate driver.

The following figure illustrates a one-to-n MUX intermediate driver configuration.

In an n-to-one configuration, a MUX intermediate driver can expose many virtual
miniports for a single physical adapter below. Overlying protocol drivers bind to these
virtual miniports of the MUX intermediate driver in the same way that they bind to
nonvirtual miniports. The MUX intermediate driver handles requests and sends that are
submitted to the driver for specific connections at each virtual miniport. The driver
repackages and transfers these requests and sends down to the NDIS miniport driver for
the bound physical adapter.

The following figure illustrates an n-to-one MUX intermediate driver configuration.

MUX intermediate drivers require a notify object DLL. When a MUX intermediate driver
is initialized, its bindings are determined by the configuration established by its notify
object DLL. For more information about installing MUX intermediate drivers, see MUX
Intermediate Driver Installation.

The following list describes examples of n-to-one MUX intermediate drivers:

802 and proprietary virtual LANs are technologies that could be implemented as
intermediate drivers similar to the MUX sample.

The MUX Intermediate Driver Sample is an n-to-one MUX intermediate driver.
MUX creates multiple virtual miniports layered above a single underlying miniport
adapter.

Getting started writing NDIS
Intermediate Drivers
Article • 03/14/2023

Unless noted otherwise, NDIS intermediate drivers provide the same services as
miniport drivers and protocol drivers. The intermediate driver's miniport edge provides
miniport driver services and the protocol edge provides protocol driver services. (For
more information, see Writing NDIS Miniport Drivers and Writing NDIS Protocol
Drivers.)The initialization for NDIS 6.0 and later intermediate drivers is different from the
initialization for legacy intermediate drivers. Also, NDIS 6.0 and later drivers can register
as a combined miniport-intermediate driver.

The following topics provide more information about intermediate driver initialization:

Initializing an Intermediate Driver
Initializing a Miniport-Intermediate Driver
Unloading an Intermediate Driver
Initializing a Virtual Miniport
Halting a Virtual Miniport

Initializing an Intermediate Driver
Article • 12/15/2021

An NDIS intermediate driver registers its MiniportXxx functions and its ProtocolXxx
functions in the context of its DriverEntry routine. To register its MiniportXxx functions,
an intermediate driver must call the NdisMRegisterMiniportDriver function with the
NDIS_INTERMEDIATE_DRIVER flag set. This flag is in the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure that the driver passes at
MiniportDriverCharacteristics. To register its ProtocolXxx functions, an intermediate driver
must call the NdisRegisterProtocolDriver function.

DriverEntry returns STATUS_SUCCESS, or its equivalent NDIS_STATUS_SUCCESS, if the
driver registered as an NDIS intermediate driver successfully. If DriverEntry fails
initialization by propagating an error status that was returned by an NdisXxx function or
by a kernel-mode support routine, the driver will not remain loaded. DriverEntry must
execute synchronously; that is, it cannot return STATUS_PENDING or its equivalent
NDIS_STATUS_PENDING.

To register the intermediate driver with NDIS, the DriverEntry routine must, at a
minimum:

Call the NdisMRegisterMiniportDriver function with the
NDIS_INTERMEDIATE_DRIVER flag set to register the driver's MiniportXxx functions.
Call the NdisRegisterProtocolDriver function to register the driver's ProtocolXxx
functions if the driver subsequently binds itself to an underlying NDIS driver.
Call the NdisIMAssociateMiniport function to inform NDIS about the association
between the driver's miniport upper edge and protocol lower edge.

If an error occurs in DriverEntry after NdisMRegisterMiniportDriver returns successfully,
the driver must call the NdisMDeregisterMiniportDriver function before DriverEntry
returns. If DriverEntry succeeds, the driver must call NdisMDeregisterMiniportDriver
from its MiniportDriverUnload function.

Intermediate drivers share most of the DriverEntry requirements of protocol drivers and
miniport drivers.

The initialization of an intermediate driver's virtual miniport occurs when the driver calls
the NdisIMInitializeDeviceInstanceEx function from its ProtocolBindAdapterEx function.

NDIS calls the ProtocolBindAdapterEx function after all underlying miniport drivers have
initialized.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimassociateminiport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

In effect, the DriverEntry function of an NDIS intermediate driver can ignore the
RegistryPath pointer after passing it to NdisMRegisterMiniportDriver. Such a driver can
also ignore the DriverObject pointer after passing it to NdisMRegisterMiniportDriver.
However, the driver should save the miniport driver handle value that is returned by
NdisMRegisterMiniportDriver at NdisMiniportDriverHandle and the protocol handle
value that is returned by NdisRegisterProtocolDriver at NdisProtocolHandle for
subsequent calls to NdisXxx functions. The intermediate driver's ProtocolBindAdapterEx
function binds the driver to each underlying miniport driver before its
MiniportInitializeEx function is called to initialize the intermediate driver's virtual
miniport. Still higher level protocol drivers subsequently bind themselves to the virtual
miniport that it creates. This strategy enables an NDIS intermediate driver to allocate
resources at the creation of the virtual miniport according to the features of the
underlying miniport driver to which it is bound.

Initializing a Miniport-Intermediate
Driver
Article • 12/15/2021

A miniport-intermediate driver combines a miniport driver for a virtual device, a
protocol driver, and a miniport driver for a physical device. A miniport-intermediate
driver functions similarly to an intermediate driver layered over a miniport driver. Such a
driver allows an intermediate driver to communicate directly with an underlying
miniport driver without incurring the performance penalties that might result with two
separate drivers.

To register its physical miniport driver, a miniport-intermediate driver calls the
NdisMRegisterMiniportDriver function with appropriate parameters just as for any
miniport driver. To register its virtual miniport, the driver calls
NdisMRegisterMiniportDriver again, but with the NDIS_INTERMEDIATE_DRIVER flag set
in the structure at MiniportDriverCharacteristics .

For each virtual or physical device instance of a miniport-intermediate driver, if the
IMMiniport registry key is set to DWORD:0x0000001, NDIS calls the MiniportInitializeEx
function that the driver registered for the virtual device. Otherwise, NDIS calls the
driver's MiniportInitializeEx function that the driver registered for the physical device.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Unloading an Intermediate Driver
Article • 12/15/2021

NDIS calls the MiniportDriverUnload function to unload an intermediate driver.
Intermediate drivers must perform the same operations in MiniportDriverUnload as
other miniport drivers. In addition to calling the NdisMDeregisterMiniportDriver
function, an intermediate driver also calls NdisDeregisterProtocolDriver.
MiniportDriverUnload should also perform any necessary cleanup operations, such as
deallocating any protocol driver resources.

To perform cleanup operations before a intermediate driver is uninstalled, an
intermediate driver can register a ProtocolUninstall function. For example, the protocol
lower edge of an intermediate driver might require a ProtocolUninstall function. The
intermediate driver can release its protocol edge resources in ProtocolUninstall before
NDIS calls its MiniportDriverUnload function.

A miniport-intermediate driver calls NdisMDeregisterMiniportDriver twice, once for its
physical device interface, and again for its virtual device interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisderegisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_uninstall

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Initializing a Virtual Miniport
Article • 04/29/2024

To initiate the initialization of a virtual miniport, an intermediate driver calls the
NdisIMInitializeDeviceInstanceEx function. The intermediate driver usually makes this
call from its ProtocolBindAdapterEx function. After the intermediate driver calls
NdisIMInitializeDeviceInstanceEx and the Plug and Play manager requests NDIS to start
the virtual device, NDIS calls the driver's MiniportInitializeEx function.

The call to MiniportInitializeEx can be in the context of NdisIMInitializeDeviceInstanceEx
if the Plug and Play manager starts the virtual device before
NdisIMInitializeDeviceInstanceEx returns. If the intermediate driver provides more than
one virtual miniport, the driver must call NdisIMInitializeDeviceInstanceEx for each
virtual miniport that it makes available.

NDIS passes initialization parameters to MiniportInitializeEx in an
NDIS_MINIPORT_INIT_PARAMETERS structure at MiniportInitParameters . The
IMDeviceInstanceContext member of the structure specifies a pointer to the context
area for a virtual device. The driver passed this pointer to the
NdisIMInitializeDeviceInstanceEx function at the DeviceContext parameter.

In MiniportInitializeEx, the intermediate driver performs the operations required to
initialize a virtual miniport. This initialization is similar to the initialization of any other
miniport adapter.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex

Halting a Virtual Miniport
Article • 12/15/2021

If an NDIS intermediate driver calls the NdisIMDeinitializeDeviceInstance function, NDIS
calls the MiniportHaltEx function for the affected virtual miniport. An intermediate driver
usually calls NdisIMDeInitializeDeviceInstance from its ProtocolUnbindAdapterEx
function.

NDIS sets the HaltAction parameter to NdisHaltDeviceInstanceDeInitialized to indicate
that NDIS is halting the adapter in response to an intermediate driver's call to the
NdisIMDeInitializeDeviceInstance function.

The intermediate driver's MiniportHaltEx function must release all driver-allocated
resources that are associated with a virtual miniport.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimdeinitializedeviceinstance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Intermediate Driver Design Concepts
Article • 12/15/2021

This section provides some basic information to help you start writing an NDIS
intermediate driver. To write an NDIS intermediate driver, you must understand the
NDIS miniport driver and protocol driver operations and functions.

The MUX intermediate driver sample in the Microsoft Windows Driver Kit (WDK)
provides a basic example of an n-to-one MUX intermediate driver that you can adapt to
your specific needs.

The virtual miniport of an NDIS intermediate driver must be deserialized. Deserialized
drivers serialize the operation of their own MiniportXxx functions and queue internally all
incoming send network data instead of relying on NDIS to perform these operations.
This action results in significantly better full-duplex performance, if the driver's critical
sections (code that can be executed by only one thread at a time) are kept small. For
more information about deserialized drivers, see Deserialized NDIS Miniport Drivers.

An NDIS intermediate driver can support only connectionless communication at its
virtual miniport. At its protocol interface, however, an NDIS intermediate driver can
support either connectionless communication or connection-oriented communication.
For more information about connection-oriented communication, see Connection-
Oriented NDIS.

An intermediate driver is typically layered above one or more NDIS miniport drivers and
below a transport driver. Intermediate drivers can also be layered with other
intermediate drivers.

The following topics provide additional information about writing NDIS intermediate
drivers:

Intermediate Driver DriverEntry Function

Dynamic Binding in an Intermediate Driver

Intermediate Driver Query and Set Operations

Intermediate Driver Network Data Management

Receiving Data in an Intermediate Driver

Transmitting Network Data Through an Intermediate Driver

Handling PnP Events and Power Management Events in an Intermediate Driver

Intermediate Driver Reset Operations

Status Indications in an Intermediate Driver

Intermediate Driver DriverEntry
Function
Article • 12/15/2021

An intermediate driver's initial required entry point must be explicitly named
DriverEntry so that the loader can properly identify it. All other exported driver
functions, which are described in this section as MiniportXxx and ProtocolXxx, can have
any vendor-specified name because they are passed as addresses to NDIS.

In an intermediate driver, DriverEntry must at a minimum:

1. Call NdisMRegisterMiniportDriver and save the handle that is returned in the
NdisMiniportDriverHandle parameter.

2. Call NdisRegisterProtocolDriver to register the driver's ProtocolXxx functions if the
driver subsequently binds itself to an underlying NDIS driver.

3. Call NdisIMAssociateMiniport to inform NDIS about the association between the
driver's miniport upper edge and protocol lower edge.

An intermediate driver must register a MiniportDriverUnload unload handler. This unload
handler is called when the system unloads the intermediate driver. If DriverEntry fails,
this unload handler is not called; instead, the driver is simply unloaded. For more
information about the unload handler, see Unloading an Intermediate Driver.

The unload handler should call NdisDeregisterProtocolDriver to deregister the protocol
portion of the intermediate driver. The unload handler should also perform any
necessary cleanup operations, such as reallocating resources used by the protocol
portion of the driver.

Note that an unload handler differs from a MiniportHaltEx function: the unload handler
has a more global scope, and the scope of the MiniportHaltEx function is restricted to a
particular miniport adapter. The intermediate driver should clean up state information
and reallocate resources when each underlying miniport driver that is bound to it is
halted. For information about handling the halt operation for virtual miniports, see
Halting a Virtual Miniport.

ProtocolUninstall is an optional unload handler. Register an entry point for this function
in the ProtocolCharacteristics structure that you pass to NdisRegisterProtocolDriver.
NDIS calls ProtocolUninstall in response to a user request to uninstall an intermediate
driver. NDIS calls ProtocolUnbindAdapterEx once for each bound adapter, and then NDIS
calls ProtocolUninstall. This handler is called before the system actually unloads the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimassociateminiport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisderegisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_uninstall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

driver. This timing provides a chance to release any device objects or other resources
that might otherwise prevent the system from calling the unload handler that is
registered with NdisMRegisterMiniportDriver and unloading the driver.

DriverEntry can initialize spin locks to protect any globally-shared resources that the
intermediate driver allocates, such as state variables, structures, and memory areas. The
driver uses these resources to track connections and to track sends in progress or
driver-allocated queues.

If DriverEntry fails to allocate any resources that the driver needs to carry out network
I/O operations, it should release any previously allocated resources and return an
appropriate error status.

The following topics further describe how to register intermediate drivers:

Registering as an NDIS Intermediate Driver

Registering an Intermediate Driver as a Miniport Driver

Registering an Intermediate Driver as a Protocol Driver

Registering as an NDIS Intermediate
Driver
Article • 03/14/2023

An NDIS intermediate driver must register its MiniportXxx functions and its ProtocolXxx
functions with NDIS in the context of its DriverEntry function. To register its MiniportXxx
functions, an intermediate driver must call NdisMRegisterMiniportDriver with the
NDIS_INTERMEDIATE_DRIVER flag set. This flag is in the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure that the driver passes at
MiniportDriverCharacteristics . This call exports the intermediate driver's MiniportXxx
functions. For more information about registering MiniportXxx functions, see Registering
an Intermediate Driver as a Miniport Driver.

Note that the intermediate driver controls when its virtual miniports are initialized, and
thus, when the driver is ready to accept sends and requests on an adapter. NDIS calls
the intermediate driver's MiniportInitializeEx function after the Plug and Play (PnP)
manager has started the virtual miniport device and after the intermediate driver has
called NdisIMInitializeDeviceInstanceEx for that device. The call to MiniportInitializeEx
can happen at a later time and therefore is not necessarily within the context of the call
to NdisIMInitializeDeviceInstanceEx. If the intermediate driver exports more than one
virtual miniport, the driver must call NdisIMInitializeDeviceInstanceEx for each virtual
miniport that it makes available for network requests.

To register its ProtocolXxx functions, an intermediate driver must call the
NdisRegisterProtocolDriver function. For more information about registering
ProtocolXxx functions, see Registering an Intermediate Driver as a Protocol Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver

Registering an Intermediate Driver as a
Miniport Driver
Article • 12/15/2021

An intermediate driver calls NdisMRegisterMiniportDriver to export its MiniportXxx
functions. The NdisMiniportDriverHandle that is returned by
NdisMRegisterMiniportDriver must be retained by the intermediate driver and input to
NDIS when the driver calls NdisIMInitializeDeviceInstanceEx.

The intermediate driver must:

1. Zero-initialize an NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure with
NdisZeroMemory.

2. Store the addresses of the mandatory MiniportXxx functions, as well as any
optional MiniportXxx functions that the driver exports.

An intermediate driver that supports NDIS 6.0 features must register as a version 6.0
miniport driver. For more information about specifying miniport driver version numbers,
see NDIS_MINIPORT_DRIVER_CHARACTERISTICS.

You must set the following entries in MiniportCharacteristics to a valid MiniportXxx
function address unless the function is optional and is not exported. If the driver does
not export the function, set the address to NULL.

SetOptionsHandler
MiniportSetOptions is an optional function. NDIS calls MiniportSetOptions so the
intermediate driver can specify optional handlers.

InitializeHandlerEx
NDIS calls MiniportInitializeEx as a result of the intermediate driver calling
NdisIMInitializeDeviceInstanceEx to initialize its miniport adapter operations for the
virtual miniport being initialized.

HaltHandlerEx
MiniportHaltEx is a required function. NDIS calls MiniportHaltEx if the virtual miniport
device that the intermediate driver exposed is disabled or stopped, or if the
intermediate driver called NdisIMDeInitializeDeviceInstance to initiate its removal.

UnloadHandler
MiniportDriverUnload is a required function. NDIS calls MiniportDriverUnload to unload
the intermediate driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiszeromemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimdeinitializedeviceinstance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload

PauseHandler
MiniportPause is a required function. NDIS calls MiniportPause to stop the flow of
network data through a specified virtual miniport of the intermediate driver.

RestartHandler
MiniportRestart is a required function. NDIS calls MiniportRestart to restart the flow of
network data through a specified virtual miniport of the intermediate driver.

OidRequestHandler
MiniportOidRequest receives OID_XXX requests originating from an overlying driver that
has called NdisOidRequest or from NDIS. The intermediate driver might handle a
request or pass it on to the underlying miniport driver.

SendNetBufferListsHandler
MiniportSendNetBufferLists receives an array of one or more pointers to
NET_BUFFER_LIST structures that specify network data for transmission over the
network. Every intermediate driver should supply a MiniportSendNetBufferLists function.
For more information, see Transmitting Network Data Through an Intermediate Driver.

ReturnNetBufferListsHandler
MiniportReturnNetBufferLists receives a returned NET_BUFFER_LIST structure that it
previously indicated to a higher-level driver by calling
NdisMIndicateReceiveNetBufferLists. The call to NdisMIndicateReceiveNetBufferLists
relinquishes control of the resources indicated to the higher-level driver. After the
higher-level driver consumes each indication, the intermediate driver allocated
NET_BUFFER_LIST structure and the resources it describes are returned to the
MiniportReturnNetBufferLists function.

CancelSendHandler
MiniportCancelSend is a required function. NDIS calls MiniportCancelSend to cancel a
send request.

CheckForHangHandler
MiniportCheckForHangEx is not required for intermediate drivers, so they should set this
entry point to NULL.

ResetHandlerEx
MiniportResetEx is not required for intermediate drivers, so they should set this entry
point to NULL.

DevicePnPEventNotifyHandler
The entry point for the MiniportDevicePnPEventNotify function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_check_for_hang
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

ShutdownHandlerEx
MiniportShutdownEx is a required function. MiniportShutdownEx restores the virtual
miniport to its initial state (before the intermediate driver's DriverEntry routine runs).

CancelOidRequestHandler
MiniportCancelOidRequest is a required function. NDIS calls MiniportCancelOidRequest to
cancel an OID request.

An intermediate driver might require other MiniportXxx functions that are
implementation specific. For information about registering optional, see Configuring
Optional Miniport Driver Services.

Certain miniport driver handler functions are never supplied by an intermediate driver.
Reasons for this include: such drivers do not manage interrupting devices, or such
drivers do not allocate buffers at raised IRQL.

Note Intermediate drivers must include pause and restart functionality. Include support
for pause and restart of virtual miniports, if needed, when NDIS pauses an underlying
driver stack. For more information about pause and restart, see Driver Stack
Management.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_oid_request

Registering an Intermediate Driver as a
Protocol
Article • 12/15/2021

An intermediate driver registers its ProtocolXxx functions with NDIS in the context of its
DriverEntry function by calling NdisRegisterProtocolDriver.

Registering an intermediate driver as a protocol is nearly identical to registering as a
protocol driver. For more information, see Initializing a Protocol Driver.

An intermediate driver with a connection-oriented lower edge must register as a
connection-oriented client. A connection-oriented client uses the call-set-up and tear-
down services of a call manager or integrated miniport call manager (MCM). A
connection-oriented client also uses the send and receive capabilities of a connection-
oriented miniport driver or an MCM to send and receive data. For more information, see
Connection-Oriented Operations Performed by Clients.

An intermediate driver might require other ProtocolXxx functions that are
implementation specific. For information about registering optional ProtocolXxx
functions, see Configuring Optional Protocol Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisregisterprotocoldriver

Dynamic Binding in an Intermediate
Driver
Article • 12/15/2021

An intermediate driver must support dynamic binding to underlying miniport adapters
by providing both a ProtocolBindAdapterEx and a ProtocolUnbindAdapterEx function.

When a miniport adapter becomes available, NDIS calls the ProtocolBindAdapterEx
function of any intermediate driver that can bind to that miniport adapter. As part of the
binding operation, the intermediate driver should initialize a virtual miniport that is
associated with that miniport adapter. When a miniport adapter is removed, NDIS calls
the ProtocolUnbindAdapterEx function of any intermediate driver that is bound to that
miniport adapter.

The following topics contain additional information about dynamic binding operations
in intermediate drivers:

Intermediate Driver Binding Operations

Opening an Adapter Underlying an Intermediate Driver

Initializing Virtual Miniports

Intermediate Driver Unbinding Operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

Intermediate Driver Binding Operations
Article • 12/15/2021

When a miniport adapter becomes available, NDIS calls the ProtocolBindAdapterEx
function of any intermediate driver that can bind to that miniport adapter.

An intermediate driver must provide the protocol binding operations documented in
Binding to an Adapter.

Binding-time actions include allocating and initializing an adapter-specific context area
for the binding, initializing any virtual miniports, and calling NdisOpenAdapterEx to
bind to the adapter.

Intermediate drivers are not required to allocate separate NET_BUFFER_LIST structure
pools for each binding. Intermediate drivers are required to allocate NET_BUFFER_LIST
structure pools only if the drivers design requires it to allocate its own structures.
Otherwise, the driver can just pass on the structures that it receives from other drivers.
Such drivers should allocate different pools for send and receive.

For information about the requirements to allocate and manage network data, see
Intermediate Driver Network Data Management.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Opening an Adapter Underlying an
Intermediate Driver
Article • 12/15/2021

Opening an adapter underlying an intermediate driver is the same as opening an
underlying adapter in a protocol driver. For more information about opening an
underlying adapter in an intermediate driver, see Binding to an Adapter.

Initializing Virtual Miniports
Article • 12/15/2021

An intermediate driver initializes its virtual miniports after it has successfully opened an
underlying miniport adapter and is ready to accept requests and sends on its virtual
miniports. An intermediate driver calls NdisIMInitializeDeviceInstanceEx from its
ProtocolBindAdapterEx function one or more times to request initialization of one or
more virtual miniports.

Note An intermediate driver is not required to call NdisIMInitializeDeviceInstanceEx
when it opens an underlying miniport adapter. There does not have to be a one-to-one
relationship between virtual miniports and open adapters.

Set the DriverInstance parameter of NdisIMInitializeDeviceInstanceEx to the device
name for the virtual miniport being initialized. The intermediate driver obtains the
device name from the UpperBindings registry key.

For an n-to-one MUX intermediate driver that layers multiple virtual miniports over a
single physical NIC, there must be a device name for every virtual miniport. The MUX
intermediate driver requires a notify object that maintains the list of virtual miniport
device names. The recommended location for the list is the UpperBindings registry key.
In this case, the UpperBindings registry key is a MULTI_SZ entry that contains the list of
device names. The MUX intermediate driver calls NdisIMInitializeDeviceInstanceEx once
for each device name that is specified in the device name list.

Calling NdisIMInitializeDeviceInstanceEx results in a call to the intermediate driver's
MiniportInitializeEx function to perform the initialization of the specified virtual miniport,
provided that NDIS receives an IRP_MN_START_DEVICE to start the device. If NDIS does
not receive such an IRP, NDIS will not call the intermediate driver's MiniportInitializeEx
function. The call to MiniportInitializeEx can happen at a later time and therefore is not
necessarily within the context of the call to NdisIMInitializeDeviceInstanceEx. If NDIS
never calls MiniportInitializeEx for the virtual miniport referenced in a call to
NdisIMInitializeDeviceInstanceEx, and the intermediate driver no longer requires the
virtual miniport, the intermediate driver should call
NdisIMCancelInitializeDeviceInstance to cancel the initialization of the virtual miniport.
For example, suppose that an intermediate driver creates a virtual miniport in response
to a successful binding to an underlying miniport. If that binding is removed before
NDIS calls MiniportInitializeEx, the intermediate driver should call
NdisIMCancelInitializeDeviceInstance to cancel the initialization of the miniport.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimcancelinitializedeviceinstance

MiniportInitializeEx must allocate and initialize a virtual-miniport-specific context area.
For more information about specifying the context area, see Initializing a Virtual
Miniport.

An intermediate driver must operate as a deserialized driver. For more information
about deserialized drivers, see Deserialized NDIS Miniport Drivers.

An intermediate driver should verify that the state information it maintains is properly
initialized. If the driver requires send-related resources--for example, new
NET_BUFFER_LIST structures for network data that MiniportSendNetBufferLists will
transmit to the next lower layer--the NET_BUFFER_LIST structure pool can be allocated
at this time.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists

Intermediate Driver Unbinding
Operations
Article • 12/15/2021

An intermediate driver unbinds from an underlying miniport driver by calling
NdisCloseAdapterEx from its ProtocolUnbindAdapterEx function. NDIS calls
ProtocolUnbindAdapterEx if the underlying miniport adapter is no longer available.

An intermediate driver's ProtocolUnbindAdapterEx function might be called when the
driver has an outstanding call to NdisIMInitializeDeviceInstanceEx. This situation occurs
when NDIS has not yet called MiniportInitializeEx to initialize the corresponding virtual
miniports. In this case, the intermediate driver must call
NdisIMCancelInitializeDeviceInstance to attempt to cancel the initialization of these
virtual miniports.

If the binding that is being closed is mapped to a device exported by the intermediate
driver, and if that device was initialized by calling NdisIMInitializeDeviceInstanceEx, the
intermediate driver can call NdisIMDeInitializeDeviceInstance to close the device. The
result is that the intermediate driver's virtual miniport becomes no longer available for
sends or requests made by higher-level drivers.

If an NDIS intermediate driver calls the NdisIMDeInitializeDeviceInstance function,
NDIS calls the MiniportHaltEx function for the affected virtual miniport. For information
about handling the halt operation for virtual miniports, see Halting a Virtual Miniport.

After an intermediate driver calls NdisCloseAdapterEx, it should fail any send requests
for that binding with an appropriate error status.

For additional information about intermediate driver unbinding operations, see
Unbinding from an Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimcancelinitializedeviceinstance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiminitializedeviceinstanceex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisimdeinitializedeviceinstance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Intermediate Driver Query and Set
Operations
Article • 12/15/2021

After it has successfully bound to an underlying miniport adapter and initialized its
virtual miniports, an intermediate driver queries the operating characteristics of the
underlying miniport adapter and sets its own internal state. If appropriate, the
intermediate driver also negotiates such parameters as lookahead buffer size for the
binding with the underlying miniport adapter. Most of the attributes that are associated
with an underlying miniport adapter are passed to the intermediate driver at the
BindParameters parameter of the ProtocolBindAdapterEx function. Intermediate drivers
should use the values that are passed to ProtocolBindAdapterEx, if possible, instead of
issuing OID queries. However, an intermediate driver with a connectionless lower edge
can issue OID queries by calling NdisOidRequest. An intermediate driver with a
connection-oriented lower edge can issue OID queries by calling NdisCoOidRequest.

An intermediate driver can also receive query and set requests from higher level drivers
through its MiniportOidRequest function. The driver can either respond to those requests
or pass them down to the underlying driver. How an intermediate driver responds to
queries and sets depends on the implementation.

Note The behavior of intermediate drivers can also be affected by the power state of
the virtual miniport and the underlying miniport driver. To learn more about the effects
of the power state on query and set operations, see Handling a Set Power Request.

The Network Reference section contains information about all of the general,
connection-oriented, nonmedia-specific OIDs and about required media-specific OIDs
of interest to intermediate driver developers.

The following topics provide additional information about issuing and responding to
queries and sets in an intermediate driver:

Issuing Set and Query Requests from an Intermediate Driver

Responding to Sets and Queries in an Intermediate Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Issuing Set and Query Requests from an
Intermediate Driver
Article • 12/15/2021

The protocol edge of an intermediate driver can issue set and query information
requests to the underlying miniport driver. The virtual miniport edge of an intermediate
driver can use the information obtained from the underlying driver to determine how to
respond to set and query requests.

To cancel an OID request, call the NdisCancelOidRequest function.

For more information about responding to set and query requests, see Responding to
Sets and Queries in an Intermediate Driver. For more information about issuing OID
requests, see OID Request Operations in a Protocol Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceloidrequest

Responding to Sets and Queries in an
Intermediate Driver
Article • 12/15/2021

Because an NDIS intermediate driver is bound to an overlying NDIS driver, it can also
receive queries and sets from its MiniportOidRequest function. In some cases, the
intermediate driver just passes such requests through to the underlying miniport driver.
Otherwise, it can respond to these queries and sets as appropriate to the medium that it
exports at its upper edge. Note that an intermediate driver must always pass through
any OID_PNP_Xxx requests that it receives from an overlying NDIS driver to the
underlying miniport driver. NDIS 6.0 intermediate drivers can also cancel OID requests.

To forward a request down to the underlying drivers, an NDIS intermediate driver calls
NdisAllocateCloneOidRequest to allocate a cloned NDIS_OID_REQUEST structure. The
driver calls the NdisOidRequest function to send the request. When the request is
complete, the driver must call the NdisFreeCloneOidRequest function to free the
NDIS_OID_REQUEST structure.

To cancel an OID request, call the NdisCancelOidRequest function.

Typically, the general OIDs that an intermediate driver receives are the same or similar to
those that the intermediate driver sends to the underlying miniport driver. The medium-
specific OIDs that an intermediate driver receives are the type of the medium that the
overlying driver requires.

If an intermediate driver itself processes the setting of an OID rather than passing the
set request to an underlying miniport, it should validate the value to be set. If the
intermediate driver determines that the value to be set is out of bounds, it should fail
the set request.

Note If an intermediate driver modifies the contents of TCP network data that it
forwards down to an underlying miniport driver such that TCP offload functions cannot
be performed on the network data, the intermediate driver should respond to
OID_TCP_OFFLOAD_CURRENT_CONFIG queries with a status of
NDIS_STATUS_NOT_SUPPORTED instead of passing the request down to the underlying
miniport.

For additional information about responding to sets and queries in an intermediate
driver, see Obtaining and Setting Miniport Driver Information and NDIS Support for
WMI.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatecloneoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreecloneoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceloidrequest

Intermediate Driver Network Data
Management
Article • 12/15/2021

An intermediate driver receives NET_BUFFER_LIST structures with one or more
associated MDLs from a higher-level driver to send over the network. The intermediate
driver can pass the data through to the underlying driver by calling
NdisSendNetBufferLists if the driver has a connectionless lower edge, or by calling
NdisCoSendNetBufferLists if the driver has a connection-oriented lower edge.
Alternatively, the intermediate driver can take some actions to modify either the
contents of the chained buffers or the ordering or timing of the incoming data relative
to other transmissions.

Depending on the purpose of the intermediate driver, such a driver can repackage
buffers that are chained to incoming NET_BUFFER_LIST structures. For example, an
intermediate driver repackages network data in the following circumstances:

The intermediate driver receives a larger data buffer from an overlying protocol
driver than can be sent in a single buffer over the underlying medium.
Consequently, the intermediate driver must divide the incoming data into smaller
buffers.

The intermediate driver changes the length or content of the network data by
compressing or encrypting the data before forwarding each send to the underlying
driver.

For information about creating network data management, see Protocol Driver Buffer
Management.

NDIS provides interfaces to clone and fragment NET_BUFFER_LIST structures. For more
information about cloning and fragmenting structures, see Derived NET_BUFFER_LIST
Structures.

NET_BUFFER_LIST structures can be allocated as needed, at driver initialization time, or
in the ProtocolBindAdapterEx function. An intermediate driver developer can, if
necessary and for performance reasons, allocate a number of structures at initialization
time so that ProtocolReceiveNetBufferLists has preallocated resources into which to
copy incoming data for indicating to a higher-level driver, and so that
MiniportSendNetBufferLists has available NET_BUFFER_LIST structures (and possibly
buffers) to pass incoming send network data on to the next lower driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

If an intermediate driver copies send data or received data to a new buffer or buffers,
and the length of actual data in the last buffer is less than the allocated length of the
buffer, the intermediate driver can call NdisAdjustMdlLength to adjust the buffer to the
actual length of the data.

An intermediate driver with a connectionless lower edge always receives incoming data
from an underlying miniport adapter from its ProtocolReceiveNetBufferLists function.

An intermediate driver with a connection-oriented lower edge always receives incoming
data from an underlying miniport adapter from its ProtocolCoReceiveNetBufferLists
function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_receive_net_buffer_lists

Receiving Data in an Intermediate Driver
with a Connectionless Lower Edge
Article • 12/15/2021

An intermediate driver with a connectionless lower edge must have a
ProtocolReceiveNetBufferLists function to receive network data.

Underlying connectionless miniport drivers call the
NdisMIndicateReceiveNetBufferLists, passing a linked list of one or more
NET_BUFFER_LIST structures, relinquishing ownership of the indicated structures to
higher level drivers. When the higher level drivers have consumed the data, they return
the NET_BUFFER_LIST structures (and the resources they specify) to the miniport driver.

For more information about receiving data in an intermediate driver with a
connectionless lower edge, see Protocol Driver Send and Receive Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Receiving Data in an Intermediate Driver
with a Connection-Oriented Lower Edge
Article • 12/15/2021

If an intermediate driver is layered above a connection-oriented miniport driver, NDIS
then calls the intermediate driver's ProtocolCoReceiveNetBufferLists function to
indicate received data.

An underlying connection-oriented miniport driver indicates network data by calling
NdisMCoIndicateReceiveNetBufferLists, passing a linked list of one or more
NET_BUFFER_LIST structures.

For more information about receiving data in an intermediate driver with a connection-
oriented lower edge, see Connection-Oriented Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Indicating Receive Network Data to
Higher Level Drivers
Article • 12/15/2021

A connectionless intermediate driver indicates receive network data to the next higher
driver by calling the NdisMIndicateReceiveNetBufferLists function. A connection-
oriented intermediate driver indicates receive network data to the next higher driver by
calling the NdisMCoIndicateReceiveNetBufferLists function.

Before indicating the receive network data, the driver processes the data, perhaps
converting it to the format expected by a higher-level driver, and if required, copying
relevant data into MDLs that are associated with an intermediate-driver-allocated
NET_BUFFER structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Transmitting Network Data Through an
Intermediate Driver
Article • 12/15/2021

As discussed in Registering an Intermediate Driver as a Miniport Driver, an intermediate
driver must provide a MiniportSendNetBufferLists function when it registers with
NdisMRegisterMiniportDriver. The MiniportSendNetBufferLists function can forward
incoming NET_BUFFER_LIST structures by calling NdisSendNetBufferLists if the driver
has a connectionless lower edge . MiniportSendNetBufferLists can send the list of
NET_BUFFER_LIST structures it receives with NdisSendNetBufferLists without regard to
the capabilities of the underlying miniport driver.

MiniportSendNetBufferLists receives a list of NET_BUFFER_LIST structures arranged in an
order determined by an overlying caller of NdisSendNetBufferLists. In most cases, the
intermediate driver should maintain this ordering as it passes an incoming array of
NET_BUFFER_LIST structures on to the underlying miniport driver. An intermediate driver
that modifies data in network data before passing them on to the underlying driver can
reorder a list.

NDIS always preserves the ordering of NET_BUFFER_LIST structure pointers as passed as
a linked list to NdisSendNetBufferLists. The underlying miniport driver also assumes
that list that is passed in to its MiniportSendNetBufferLists function implies the network
data should be transmitted in the same order.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Handling PnP Events and Power
Management Events in an Intermediate
Driver
Article • 12/15/2021

An intermediate driver must be able to handle Plug and Play (PnP) events and power
management events. Specifically:

An intermediate driver must set the
NDIS_MINIPORT_ATTRIBUTES_NO_HALT_ON_SUSPEND flag in the AttributeFlags
member of the NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure
that is passed to NdisMSetMiniportAttributes. For more information, see
Initializing as a Miniport.

The virtual miniport of an intermediate driver must handle OID_PNP_Xxx requests.

The protocol section of an intermediate driver should propagate appropriate
OID_PNP_Xxx requests to the underlying miniport drivers. The virtual miniport of
the intermediate driver should pass the underlying miniport driver's responses to
these requests back to the protocol driver that originated the requests. The
intermediate driver does not have to pass requests that are not required by design.
For example, when there is not a one-to-one relationship between virtual
miniports and underlying miniport adapters as in Load Balancing Failover (LBFO)
applications.

The protocol portion of an intermediate driver must supply a ProtocolNetPnPEvent
function.

Intermediate driver protocol and miniport event handlers are not called in any particular
order. Event handlers for intermediate drivers should be implemented accordingly.

This section includes the following topics:

Initializing Intermediate Drivers to Handle PnP and Power Management Events

Handling OID_PNP_Xxx Queries and Sets

Implementing a ProtocolNetPnPEvent Handler in an Intermediate Driver

Handling a Set Power Request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event

Initializing Intermediate Drivers to
Handle PnP and Power Management
Events
Article • 12/15/2021

To handle Plug and Play (PnP) and power management events, NDIS intermediate
drivers must do the following:

When NDIS calls the intermediate driver's ProtocolBindAdapterEx function, the
BindParameters parameter points to an NDIS_PM_CAPABILITIES structure that
contains the capabilities of the underlying miniport adapter. The power
management capabilities are reported in one of the following members:

PowerManagementCapabilities

For NDIS 6.0 and NDIS 6.1 intermediate drivers, this member contains the
power management capabilities within an NDIS_PNP_CAPABILITIES structure.
For more information about this structure, see OID_PNP_CAPABILITIES.

Note For NDIS 6.20 and later intermediate drivers, the
PowerManagementCapabilities member is set to NULL and the power
management capabilities are reported in the PowerManagementCapabilitiesEx
member.

PowerManagementCapabilitiesEx

For NDIS 6.20 and later intermediate drivers, this member contains the power
management capabilities within an NDIS_PM_CAPABILITIES structure.

Note For NDIS 6.0 and NDIS 6.1 intermediate drivers, the
PowerManagementCapabilitiesEx member is set to NULL and the power
management capabilities are reported in the PowerManagementCapabilities
member.

Note If the underlying miniport adapter does not support power management events,
the PowerManagementCapabilities and PowerManagementCapabilitiesEx members
are set to NULL.

When NDIS calls MiniportInitializeEx for each virtual miniport supported by the
NDIS intermediate driver, the driver reports its power management capabilities by
calling NdisMSetMiniportAttributes in the following ways:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

1. Depending on the version of the NDIS intermediate driver, the power
management capabilities are reported in either the
PowerManagementCapabilities member (for NDIS 6.0 and NDIS 6.1
intermediate drivers) or PowerManagementCapabilitiesEx member (for NDIS
6.20 and later intermediate drivers) of
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES. If either the
PowerManagementCapabilities or PowerManagementCapabilitiesEx
member of the NDIS_BIND_PARAMETERS structure is not NULL, the
intermediate driver must do the following:

Save the original values of the MinMagicPacketWakeUp,
MinPatternWakeUp, and MinLinkChangeWakeUp members of the
PowerManagementCapabilities(NDIS 6.0 and NDIS 6.1) or
PowerManagementCapabilitiesEx(NDIS 6.20 and later) members.

Disable the power management functionality by setting the
MinMagicPacketWakeUp, MinPatternWakeUp, and
MinLinkChangeWakeUp members to NdisDeviceStateUnspecified.

Pass the address of the modified
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure as the
MiniportAttributes parameter in the call to NdisMSetMiniportAttributes.

2. An intermediate driver must set the
NDIS_MINIPORT_ATTRIBUTES_NO_HALT_ON_SUSPEND flag in the
AttributeFlags member of the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. The
driver must pass the address of this structure as the MiniportAttributes
parameter in the call to NdisMSetMiniportAttributes.

For more information about the initialization requirements of NDIS intermediate
drivers, see Initializing Virtual Miniports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Handling OID_PNP_Xxx Queries and
Sets
Article • 12/15/2021

The virtual miniport of an intermediate driver must export the MiniportOidRequest
function. NDIS calls the intermediate driver's MiniportOidRequest function when an
overlying driver that is bound to the intermediate driver's virtual miniport calls
NdisOidRequest to query or set information objects (OID_Xxx). NDIS can also call
MiniportOidRequest on its own behalf. For more information about miniport driver
handling of sets and queries to information objects, see Obtaining and Setting Miniport
Driver Information and NDIS Support for WMI.

The intermediate driver should retain information about the capabilities of the
underlying miniport adapters that it receives in the ProtocolBindAdapterEx function. If
the miniport adapter is not power management-aware, NDIS sets the
PowerManagementCapabilities member of NDIS_BIND_PARAMETERS to NULL.

The intermediate driver can query or set an OID_Xxx that is maintained by the
underlying miniport driver. It does this with NdisOidRequest(if the intermediate driver
has a connectionless lower edge), or with NdisCoOidRequest(if the intermediate driver
has a connection-oriented lower edge).

An intermediate driver should handle queries and sets as follows:

OID_PNP_CAPABILITIES

In response to this OID query, intermediate drivers must report the PnP capabilites
of the underlying physical miniport adapters. Note that miniport adapters for
physical devices do not receive this OID query.

The intermediate driver receives the PnP capabilities of the underlying miniport
adapters in the bind parameters. It should pass them to overlying drivers as
appropriate for the intermediate driver's intended use. Intermediate drivers and
miniport drivers report PnP capabilities in miniport adapter attributes. The
intermediate driver does not issue OID_PNP_CAPABILITIES requests to the
underlying miniport driver. If the underlying miniport adapter is power
management-aware, in the NDIS_PM_WAKE_UP_CAPABILITIES structure in the
virtual miniport attributes, the intermediate driver must specify a device power
state of NdisDeviceStateUnspecified for each wake-up capability:

MinMagicPacketWakeUp
MinPatternWakeUp

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest

MinLinkChangeWakeUp

Such a setting indicates that the intermediate driver is power management-aware
but cannot wake up the system.

OID_PNP_QUERY_POWER and OID_PNP_SET_POWER

The intermediate driver must always return NDIS_STATUS_SUCCESS to a query of
OID_PNP_QUERY_POWER or a set of OID_PNP_SET_POWER. The intermediate
driver must never propagate either of these OID requests to the underlying
miniport driver.

"Wake-up OIDs"

If an underlying NIC is power management-aware, the intermediate driver must
pass to the underlying miniport driver (by calling NdisOidRequest or
NdisCoOidRequest) the following OID_PNP_Xxx that relate to wake-up events:

OID_PNP_ENABLE_WAKE_UP

OID_PNP_ADD_WAKE_UP_PATTERN

OID_PNP_REMOVE_WAKE_UP_PATTERN

OID_PNP_WAKE_UP_PATTERN_LIST

OID_PNP_WAKE_UP_ERROR

OID_PNP_WAKE_UP_OK

The intermediate driver must also propagate the underlying miniport driver's response
to these OIDs to the overlying protocol drivers.

If the underlying miniport adapter is not power management-aware, the miniport driver
sets the PowerManagementCapabilities member of
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES to NULL and NDIS sets the
PowerManagementCapabilities member of NDIS_BIND_PARAMETERS to NULL.

If an underlying miniport adapter is not power management-aware, the intermediate
driver should return NDIS_STATUS_NOT_SUPPORTED in response to a query or set of
these OIDs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

Implementing a ProtocolNetPnPEvent
Handler in an Intermediate Driver
Article • 12/15/2021

The implementation of a ProtocolNetPnPEvent function in intermediate drivers is nearly
identical to the implementation in protocol drivers. For more information about
implementing a ProtocolNetPnPEvent handler in an intermediate driver, see Handling
PnP Events and PM Events in a Protocol Driver.

NDIS intermediate drivers pass on PnP events to higher layer drivers by calling the
NdisMNetPnPEvent function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent

Handling a Set Power Request
Article • 12/15/2021

An intermediate driver must handle requests to set power to the working state (a
network device power state of D0) and to sleeping states (a network device power state
of D1, D2, or D3). The intermediate driver should also maintain power state variables
and a StandBy flag. These issues are discussed further in this topic.

For examples of intermediate driver power management, see the NDIS MUX
Intermediate Driver and Notify Object driver sample in the Windows driver samples
repository on GitHub.

There are two cases where an intermediate driver must handle a set power request to a
sleeping state:

NDIS requests that the virtual miniport upper edge of the intermediate driver go to
a sleeping state.

The intermediate driver protocol lower edge handles the underlying miniport
driver transition to a sleeping state when it receives a Plug and Play (PnP) event
notification.

These events can happen in any order and one event does not necessarily accompany
the other.

When the virtual miniport upper edge of the intermediate driver receives a request to
set power to a sleeping state, the sequence of events for handling the request is as
follows:

1. NDIS calls the ProtocolNetPnPEvent function of each protocol driver bound to the
virtual miniport. The call to ProtocolNetPnPEvent specifies a NetEventSetPower
event for a sleeping state. Protocol drivers that are bound to the intermediate
driver stop sending network data and making OID requests to the intermediate
driver virtual miniport. The protocol lower edge of the intermediate driver can
continue to send network data and requests down until NDIS indicates that the
underlying miniport driver is making the transition to a sleeping state.

2. NDIS pauses the overlying drivers and then the virtual miniport after issuing the
NetEventSetPower event. The specified reason for the pause is a transition to a

Handling a Set Power Request to a Sleeping State

https://github.com/microsoft/Windows-driver-samples/tree/develop/network/ndis/mux
https://github.com/Microsoft/Windows-driver-samples/tree/develop
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event

low-power state. For more information about pausing a virtual miniport, see
Pausing an Adapter.

Note No OID requests can be sent to the virtual miniport while it is in a low-power
state, with the exception of OID_PNP_SET_POWER.

3. NDIS issues an OID_PNP_SET_POWER request to the virtual miniport of the
intermediate driver. The intermediate driver accepts the request by returning
NDIS_STATUS_SUCCESS. The intermediate driver must not propagate the
OID_PNP_SET_POWER request to the underlying miniport driver. After the
intermediate driver completes this request, it should not indicate any more
received network data or indicate status, even if it keeps receiving network data
and status indications from the underlying miniport driver.

When the protocol lower edge of the intermediate driver transitions the underlying
miniport driver to a sleeping state, the sequence of events for handling the transition is
as follows:

1. NDIS calls the ProtocolNetPnPEvent function of the intermediate driver protocol
lower edge. The call to ProtocolNetPnPEvent specifies a NetEventSetPower event
for a sleeping state. The intermediate driver must stop sending network data and
making OID requests to the underlying miniport driver. If there are outstanding
requests or sends, the intermediate driver should return NDIS_STATUS_PENDING
from the call to ProtocolNetPnPEvent. The intermediate driver calls
NdisCompleteNetPnPEvent to complete the call to ProtocolNetPnPEvent. The
protocol edge of an intermediate driver can still get received packet and status
indications from the underlying miniport driver. Received network data can be
ignored. If an intermediate driver's implementation depends upon monitoring the
status of the underlying miniport driver, status indications should still be
monitored.

2. NDIS pauses the protocol edge of the intermediate driver and then pauses the
underying miniport adapter after issuing the NetEventSetPower event. The
specified reason for the pause is a transition to a low-power state. For more
information about pausing a protocol binding, see Pausing a Binding.

Note No OID requests can be sent to the underlying miniport adapter while it is in
a low-power state, with the exception of OID_PNP_SET_POWER.

3. NDIS issues an OID_PNP_SET_POWER request to the underlying miniport driver.
However, if the underlying miniport driver does not support power management, it
will be halted. In this case, even though NDIS halts the underlying miniport driver,
it does not request the intermediate driver protocol to unbind from the underlying

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscompletenetpnpevent

miniport driver and NIC. After the underlying miniport driver has successfully
completed processing the OID (or the miniport driver is halted), it will not indicate
any more network data or status.

There are two cases where an intermediate driver handles a set power request to the
working state:

NDIS requests that the virtual miniport upper edge of the intermediate driver go to
the working state.

The intermediate driver protocol lower edge handles the underlying miniport
driver transition to the working state, when it receives a Plug and Play (PnP) event
notification.

These events can occur in any order and one event does not necessarily accompany the
other.

When the virtual miniport upper edge of the intermediate driver receives a request to
set power to a working state, the sequence of events for handling the request is as
follows:

1. NDIS issues an OID_PNP_SET_POWER to the virtual miniport of the intermediate
driver. The intermediate driver returns NDIS_STATUS_SUCCESS to the set power
request. The intermediate driver must not propagate the OID_PNP_SET_POWER
request to the underlying miniport driver.

2. NDIS restarts the virtual miniport and then restarts the overlying drivers after
issuing the set power OID. For more information about restarting a virtual
miniport, see Starting an Adapter.

3. NDIS calls the ProtocolNetPnPEvent function of the overlying protocol drivers. The
call to ProtocolNetPnPEvent specifies a NetEventSetPower event to set the working
state (D0). Bound protocol drivers can start sending network data to the
intermediate driver's virtual miniport.

When the protocol lower edge of the intermediate driver transitions the underlying
miniport driver to a working state, the sequence of events for handling the transition is
as follows:

1. NDIS issues an OID_PNP_SET_POWER to the underlying miniport driver or calls its
MiniportInitializeEx handler if the underlying miniport driver was halted.

Handling a Set Power Request to the Working State

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

2. NDIS restarts the underlying miniport driver and then the protocol edge of the
intermediate NDIS and the underlying miniport adapter after issuing the OID. For
more information about pausing a protocol binding, see Restarting a Binding.

3. NDIS calls the ProtocolNetPnPEvent function of the intermediate driver. The call to
ProtocolNetPnPEvent specifies a NetEventSetPower event to set the working state
(D0). The intermediate driver can start sending network data to the underlying
miniport driver.

The intermediate driver should maintain a separate power state variable for each virtual
miniport instance and for each underlying miniport driver to which the driver is bound.
The intermediate driver should also maintain a StandingBy flag for each virtual miniport
that is:

Set to TRUE when the power state of either the virtual miniport or the underlying
miniport driver leaves D0.

Set to FALSE when the power state of either the virtual miniport or the underlying
miniport driver returns to D0.

Note For MUX intermediate drivers, there can be multiple virtual miniports that are
associated with an underlying miniport driver or multiple underlying miniports that are
associated with each virtual miniport. When the power state of any miniport adapter
changes, the behavior of all of the associated miniports are also affected. How the
behavior is affected is implementation-specific. For example, a driver that implements a
Load Balancing Failover (LBFO) solution might not deactivate the virtual miniports when
a single underlying miniport driver is deactivated. However, a driver implementation that
depends on all underlying miniport drivers would require deactivation of virtual
miniports when any underlying miniport driver is deactivated.

The intermediate driver should use the StandingBy flag and power state variables when
processing requests as follows:

The driver's MiniportSendNetBufferLists function should fail unless the virtual
miniport and its underlying miniport adapter are both in D0.

The driver's MiniportOidRequest function should always succeed
OID_PNP_QUERY_POWER to ensure that the driver receives the subsequent
OID_PNP_SET_POWER requests.

Power States and the Standby Flag

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

The driver's MiniportOidRequest function should fail if the virtual miniport is not in
D0 or if StandingBy is TRUE. Otherwise, it should queue a single request if the
underlying miniport driver is not in D0. A queued request should be processed
when the underlying miniport driver state becomes D0.

The intermediate driver virtual miniport should report status only if both the
underlying miniport driver and virtual miniport are in D0.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Intermediate Driver Reset Operations
Article • 12/15/2021

An intermediate driver must be prepared to handle the situation where its outstanding
sends on a binding to an underlying driver can be dropped because the underlying NIC
is reset.

An underlying driver typically resets a NIC because NDIS calls the miniport driver's
MiniportResetEx function when NDIS times out queued sends or requests that are bound
for the NIC. If an underlying NIC is reset, NDIS calls the ProtocolStatusEx(or
ProtocolCoStatusEx) function of each bound protocol and intermediate driver with a
status of NDIS_STATUS_RESET_START. When the miniport driver completes the reset,
NDIS again calls ProtocolStatusEx(or ProtocolCoStatusEx) with a status of
NDIS_STATUS_RESET_END.

When a NIC is reset, if a bound intermediate driver has any transmit network data that is
pending to that NIC, NDIS completes those network data back to the intermediate
driver with an appropriate status. The intermediate driver must resubmit these network
data again when the reset is completed.

When an intermediate driver receives a status of NDIS_STATUS_RESET_START, it should:

Hold any network data ready to be transmitted until ProtocolStatusEx or
ProtocolCoStatusEx receives an NDIS_STATUS_RESET_END notification.

Hold any received network data that are ready to be indicated up to the next
higher driver until ProtocolStatusEx(or ProtocolCoStatusEx) receives an
NDIS_STATUS_RESET_END notification.

Clean up any internal state it maintains for in-progress operations and NIC status.

After ProtocolStatusEx(or ProtocolCoStatusEx) receives NDIS_STATUS_RESET_END, the
intermediate driver can resume sending network data, making requests and making
indications to higher-level drivers.

An intermediate driver does not provide a MiniportResetEx function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

Status Indications in an Intermediate
Driver
Article • 12/15/2021

The implementation of status indications in intermediate drivers is nearly identical to the
implementation in protocol drivers. For more information about intermediate driver
status indications, see Status Indications in a Protocol Driver.

When an intermediate driver receives a status indication, it can indicate the status
indication up to the higher-level drivers by calling NdisMIndicateStatusEx. An
intermediate driver should indicate status changes to overlying drivers as appropriate
for its specific design requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

Installing an Intermediate Driver
Article • 12/15/2021

Intermediate drivers require two INF files. One of the INF files defines the installation
parameters for the protocol lower edge. The other INF file defines the installation
parameters for the virtual miniport upper edge.

The protocol INF file is the primary INF file. After the protocol lower edge is installed,
the virtual miniport upper edge is installed, based on references to the miniport driver
INF file that are defined in the protocol INF file.

On Windows Vista, you can use a notify object or a custom setup application to copy
the miniport driver INF file to the system INF directory. For Windows Vista and later
operating system versions, you should use the INF CopyINF directive in the protocol
INF file to copy the miniport driver INF file. For more information about the notify object
and copying INF files, see Intermediate Driver Notify Object.

The system-supplied device setup class for the protocol lower edge is NetService for
filter intermediate drivers and NetTrans for MUX intermediate drivers. The driver class
for the virtual miniport is always Net.

In addition to the INF files, you must also provide a notify object with a MUX
intermediate driver. The notify object is optional for filter intermediate drivers.

The virtual miniport device is always removed from the user interface by using the
ExcludeFromSelect directive. Therefore, the user only sees the protocol and installs the
protocol from the protocol INF file.

Note The ExcludeFromSelect directive does not remove the virtual device from the
Connections dialog box. However, the NCF_HIDDEN flag in the miniport driver INF file
DDInstall section's Characteristics entry prevents the virtual miniport from being
displayed in any part of the user interface, including the Connections dialog box.

This section provides information about intermediate INF files and notify objects. This
information is described in the following topics:

Intermediate Driver UpperRange And LowerRange INF File Entries

MUX Intermediate Driver Installation

Intermediate Driver Notify Object

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-copyinf-directive

Intermediate Driver UpperRange And
LowerRange INF File Entries
Article • 12/15/2021

This topic describes how to use the UpperRange and LowerRange INF file entries to
define NDIS intermediate driver binding relationships.

In a network driver INF file, the UpperRange entry lists the possible upper bindings and
the LowerRange entry lists the possible lower bindings. There are various system-
defined values for these lists.

For filter intermediate drivers, you must set the value of the UpperRange and
LowerRange entries to noupper and nolower, respectively. You should define these
entries only in the protocol INF file; they are not required in the miniport driver INF file.
The following code example illustrates these entries for a filter intermediate driver.

INF

In a filter intermediate driver, the FilterMediaTypes entry in the protocol INF file defines
the driver's bindings to other drivers. FilterMediaTypes specifies the media types
serviced by the filter intermediate driver. For a list of possible media types, see the list of
Microsoft-supplied LowerRange values in Specifying Binding Interfaces. The following
code example illustrates this entry for a filter intermediate driver.

INF

When a filter intermediate driver is initialized, it inserts itself into all existing protocol-to-
miniport bindings, as appropriate to the media types listed in FilterMediaTypes.

For MUX intermediate drivers, you should always set UpperRange in the protocol INF
file to noupper. Set LowerRange to a list of values taken from those values allowed for
LowerRange, as specified in Specifying Binding Interfaces. The following code example
illustrates these entries for a MUX intermediate driver's lower edge.

INF

HKR, Ndi\Interfaces, UpperRange, , noupper
HKR, Ndi\Interfaces, LowerRange, , nolower

HKR, Ndi\Interfaces, FilterMediaTypes, , "ethernet, tokenring, fddi, wan"

For MUX intermediate drivers, you should always set LowerRange in the miniport driver
INF file to nolower. Set the UpperRange to a list of values taken from those values
allowed for the UpperRange, as specified in Specifying Binding Interfaces. The following
code example illustrates these entries for a MUX intermediate driver virtual miniport.

INF

HKR, Ndi\Interfaces, UpperRange, 0, "noupper"
HKR, Ndi\Interfaces, LowerRange, 0, "ndis5"

HKR, Ndi\Interfaces, UpperRange, 0, "ndis5"
HKR, Ndi\Interfaces, LowerRange, 0, "nolower"

MUX Intermediate Driver Installation
Article • 12/15/2021

This topic provides an overview of MUX intermediate driver installation issues. For
additional information about the structure of intermediate driver INF files, see
Installation Requirements for Network MUX Intermediate Drivers.

A MUX intermediate driver requires two INF files. The protocol INF file defines the
installation parameters for the protocol lower edge. The miniport INF file defines the
installation parameters for the virtual miniport upper edge. Set the Class INF file entry to
Net in the virtual miniport INF file and NetTrans in the protocol INF file. The following
code example shows a Class entry for the protocol INF file.

INF

The DDInstall section in a MUX intermediate driver INF file must have a Characteristics
entry. Define the Characteristics entry in your protocol INF file as demonstrated in the
following code example.

INF

NCF_HAS_UI (0x80) is required to enable custom property pages, which in this case is
the notify object

Define the Characteristics entry in your miniport INF file as demonstrated in the
following code example.

INF

The Characteristics value 0x21 indicates the NCF_VIRTUAL (0x1) and
NCF_NOT_USER_REMOVABLE (0x20) flags are set. NCF_VIRTUAL specifies that the device
is a virtual adapter. NCF_NOT_USER_REMOVABLE is optional and specifies that the user
cannot remove the intermediate driver. If you want to hide the virtual miniport from the
user (you should not do this if your user must install devices manually) you can define

Class = NetTrans

Characteristics = 0x80

Characteristics = 0x21

the NCF_HIDDEN (0x8) flag. The NCF_Xxx flags are defined in Netcfgx.h. For more
information about the Characteristics entry and NCF_Xxx flags, see DDInstall Section.

The DDInstall section of the protocol INF file for a MUX intermediate driver must include
an Addreg directive for an Ndi key. For more information, see Adding Service-Related
Values to the Ndi Key and DDInstall.Services Section.

In addition to the INF files, you must also provide a notify object with a MUX
Intermediate driver. The notify object is responsible for installation of virtual miniports.
Reference the notify object with the ComponentDll entry in the protocol INF as follows:

INF

The user installs the protocol INF file which defines configuration parameters, copies
installation files and also installs the notify object DLL. The user adds virtual miniports
through the user interface provided by the notify object. The miniport INF file should
define the ExcludeFromSelect entry to prevent the user from installing the miniport INF
file instead of the protocol INF file.

The protocol name that the driver registers must match the service name.

INF

The UpperRange and LowerRange INF file entries determine the bindings for a MUX
intermediate driver. The protocol INF file must define the protocol edge bindings, as the
following code example shows.

INF

The miniport INF file must define the upper edge bindings, as the following code
example shows.

INF

HKR, Ndi, ComponentDll, , mux.dll

HKR, Ndi, Service, 0, MUXP

HKR, Ndi\Interfaces, UpperRange, 0, "noupper"
HKR, Ndi\Interfaces, LowerRange, 0, "ndis5"

HKR, Ndi\Interfaces, UpperRange, 0, "ndis5"
HKR, Ndi\Interfaces, LowerRange, 0, "nolower"

You should replace "ndis5" in the preceding code examples with the protocol bindings
required by your driver. For more information about intermediate driver bindings and
the UpperRange/LowerRange entries, see Intermediate Driver UpperRange And
LowerRange INF File Entries.

Intermediate Driver Notify Object
Article • 05/30/2023

An intermediate driver notify object is an extension of the network class installer. The
network class installer loads and initializes your notify object and sends it notifications
of events (such as virtual miniport removal notifications) related to your driver. If you
want an overview of notify objects in general or more information about notify objects,
see Notify Objects for Network Components.

To include the notify object in your installation, you must reference it in your
intermediate driver protocol INF. Filter intermediate drivers do not require a notify
object. You can include a notify object with your filter intermediate driver if you would
like to provide more flexible configuration options to your user.

On Windows Vista, you can use the notify object or a custom setup application to copy
the miniport INF file to the system INF directory. For either of these, you use
SetupCopyOEMInf to copy the INF. For Windows Vista and later operating system
versions, you should use the INF CopyINF directive in the protocol INF to copy the
miniport INF. On older versions of Windows you can't create a driver package with a
notify object that is executed from the Driver Store. To successfully install a driver
package in this scenario, you need to have a minimum OS build number of 25341. For
more information about copying INF files, see Copying INFs.

A MUX intermediate driver notify object must provide services to install and remove
virtual miniports. This can be done automatically or by providing a user interface. It must
manage the virtual miniports' device name list in the registry. The device name list
defines the bindings between virtual miniports and physical devices. For example, the n-
to-one MUX intermediate driver sample notify object maintains a list of virtual miniports
bound to each physical device in an UpperBindings registry entry. The MUX sample
driver reads the UpperBindings list and initializes a virtual miniport for each entry.

Your MUX intermediate driver should use the UpperRange/LowerRange entries to
control external bindings. However, you can control external bindings from your notify
object if necessary. For more information about bindings in intermediate drivers, see
Intermediate Driver UpperRange And LowerRange INF File Entries

Your notify object can optionally provide a user interface that allows the user to change
or view your driver's configuration. The MUX intermediate driver sample includes an
example user interface for a notify object.

https://learn.microsoft.com/en-us/windows/win32/api/setupapi/nf-setupapi-setupcopyoeminfa
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-copyinf-directive
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/copying-inf-files

Connection-Oriented NDIS
Article • 03/14/2023

This section describes connection-oriented NDIS (CoNDIS). Most CoNDIS 6.0 and later
driver operations have not changed from their CoNDIS 5.x versions. For more
information about the differences between CoNDIS 5.x and CoNDIS 6.0, see Porting
CoNDIS 5.x Drivers to CoNDIS 6.0.

Unless noted otherwise, CoNDIS drivers provide the same services as connectionless
NDIS drivers. You should be familiar with connectionless NDIS drivers before you
attempt to write CoNDIS drivers. For more information about connectionless NDIS
drivers, see Writing NDIS Miniport Drivers, Writing NDIS Protocol Drivers, and Writing
NDIS Intermediate Drivers.

The following sections describe connection-oriented NDIS:

Connection-Oriented Environment

Using AFs, VCs, SAPs, and Parties

Quality of Service

MCM Drivers vs. Call Managers

Connection-Oriented Timing Features

CoNDIS Registration

Connection-Oriented Operations

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/porting-a-condis-5-x-driver-to-condis-6-0

Connection-Oriented Environment
Article • 12/15/2021

NDIS supports the following connection-oriented drivers:

Connection-oriented client

Call manager

Integrated miniport call manager (MCM) driver

Connection-oriented miniport driver

The following figure shows a configuration of connection-oriented clients, a call
manager, and a miniport driver.

The following figure shows a configuration of connection-oriented clients and an
integrated MCM driver.

A connection-oriented miniport driver controls one or more network interface cards
(NICs) and provides an interface between connection-oriented protocol drivers
(connection-oriented clients and call managers) and the NIC hardware.

For a summary of connection-oriented operations performed by a connection-oriented
miniport driver, see Connection-Oriented Operations Performed by Miniport Drivers.

A call manager is an NDIS protocol driver that provides call setup and tear-down
services for connection-oriented clients. A call manager:

Uses the send and receive capabilities of a connection-oriented miniport driver to
exchange signaling messages with network entities, such as network switches or
remote peers.

Supports one or more signaling protocol drivers. For a summary of connection-
oriented operations performed by a call manager, see Connection-Oriented
Operations Performed by Call Managers.

An integrated MCM driver is a connection-oriented miniport driver that also provides call
manager services to connection-oriented clients. An MCM driver has the following
characteristics:

An MCM driver provides the same connection-oriented services to clients as a call
manager that is paired with a connection-oriented miniport driver; however, the
call manager-to-miniport driver interface is internal to the driver and therefore
opaque to NDIS.

Multiple call managers and MCM drivers can coexist in the same environment.

Each call manager or MCM driver can support multiple signaling protocol drivers.

For a detailed comparison of MCM drivers and call managers, see How an MCM Driver
Differs from a Call Manager.

A connection-oriented client:

Uses the call setup and tear-down services of a call manager or MCM driver.

Uses the send and receive capabilities of a connection-oriented miniport driver or
an MCM driver to send and receive data.

Can provide its own network and transport-layer services to a higher-layer
application at its upper edge.

Uses the services of a call manager and a connection-oriented miniport driver, or it
uses the services of an MCM driver at its upper edge.

Can be an adaptation layer, that resides between an old protocol and connection-
oriented NDIS.

Such adaptation layers use call management services to establish underlying
connections but hide the connection-oriented nature of this interface from the
connectionless protocols above it.

Note The definition of a connection-oriented client's upper-edge interface is beyond
the scope of the NDIS documentation. If a client serves as an adaptation layer, its upper-

edge interface is defined by the protocol that it adapts to connection-oriented NDIS.

For a summary of connection-oriented operations performed by a connection-oriented
client, see Connection-Oriented Operations Performed by Clients.

NDIS Miniport Drivers

Related topics

Using AFs, VCs, SAPs, and Parties
Article • 12/15/2021

Connection-oriented drivers create and use entities including address families (AFs),
virtual connections (VCs), service access points (SAPs), and parties.

When a connection-oriented driver registers an AF or creates a VC, SAP, or party, it
passes a pointer to its local context area for that entity to NDIS. NDIS then returns to the
driver (as well as to other appropriate connection-oriented drivers) a handle that
represents the newly registered AF or the newly created VC, SAP, or party.

The following topics describe the entities that connection-oriented drivers create and
use:

Address Families

Virtual Connections

Service Access Points

Parties

Address Families
Article • 12/15/2021

An address family (AF) represents an association between one of the following sets of
drivers:

A connection-oriented client, a call manager, and the underlying connection-
oriented miniport driver.

A connection-oriented client and an MCM driver for a specific signaling protocol.

An address family also specifies a particular signaling protocol.

A call manager or MCM driver advertises its call manager services for a specific signaling
protocol by registering the address family with NDIS. NDIS then notifies each client on
the binding of the newly registered address family. Before it can use the call manager
services provided by a call manager or MCM driver, a connection-oriented client must
open the address family with the call manager or MCM driver that advertised it.

For more information about operations on address families, see Registering and
Opening an Address Family and Closing an Address Family.

Virtual Connections
Article • 12/15/2021

On a local computer, a virtual connection (VC) is an endpoint (or association) that can
host a single call between a client, call manager or MCM driver, and a miniport driver.
On the network, a VC refers to a connection between two communicating endpoints,
such as two connection-oriented clients.

Many VCs can be active on a NIC at the same time, enabling the NIC to simultaneously
service many calls. Each connection can be to different endpoints on different
computers.

VCs on a network vary in the type of service that they provide to clients. For example, a
VC can provide unidirectional or bidirectional service. Quality of service (QoS)
parameters for each direction can guarantee specific performance thresholds, such as
bandwidth and latency. Depending on the signaling protocol, the QoS for a VC may be
negotiable. For more information about NDIS support of QoS, see Quality of Service.

A VC on a network can be a switched VC (SVC) or a permanent VC (PVC):

An SVC is created as needed for a particular call. For example, a connection-
oriented client initiates the creation of a VC for an outgoing call that it is going to
make. Similarly, a call manager or MCM driver initiates the creation of a VC for an
incoming call that it is going to indicate to a connection-oriented client. The call
manager or MCM driver must communicate and sometimes negotiate the
parameters for the VC with the remote party.

A permanent VC is manually created and eventually deleted by an operator using a
configuration utility, which is not supplied in NDIS. A client that monitors such
manual creation and deletion of PVCs can use the OID_CO_ADD_PVC and
OID_CO_DELETE_PVC OIDs to request that a call manager or MCM driver add or
delete a PVC to or from its list of configured PVCs. The QoS for a PVC is configured
by the operator and is not negotiable over the network.

In NDIS, a VC consists of resources that are allocated by a miniport driver to maintain
state information about a VC on a network. These resources could include, but are not
limited to, memory buffers, events, and data structures. The miniport driver is requested
to create such a context for a VC by a connection-oriented client for an outgoing call or
a call manager for an incoming call. For more information about the creation of VCs, see
Creating a VC.

Before a created VC can be used for data transmission, it must be activated by a call
manager or MCM driver. To activate a VC, a miniport driver or MCM driver sets up
resources for the VC and communicates with a NIC as necessary to prepare the NIC to
receive or transmit data on the VC. For more information about VC activation, see
Activating a VC.

When tearing down a call, a call manager or MCM driver deactivates the VC used for the
call.

After a call is torn down, the creator of the VC (a connection-oriented client, call
manager, or MCM driver) can either initiate the deletion of the VC or use the VC for
another call.

Service Access Points
Article • 12/15/2021

A service access point (SAP) identifies the characteristics of incoming calls of interest to a
connection-oriented client. By registering a SAP with a call manager or MCM driver, a
client indicates that the call manager or MCM driver should notify the client of all
incoming calls addressed to that SAP.

A client does not always register a SAP, for example, if it does not handle incoming calls.
A client can register multiple SAPs with a call manager or MCM driver.

For more information about SAPs, see Registering a SAP and Deregistering a SAP.

Parties
Article • 12/15/2021

A party represents one of possibly many leaves of a point-to-multipoint connection.
When making an outgoing call, a connection-oriented client can specify a party. This
makes the call a multipoint call, with the client acting as the root of the call and the
remote party as a leaf. The client can then request that additional remote parties be
added as leaf nodes to the call.

For more information about adding parties to a point-to-multipoint call, see Adding a
Party to a Multipoint Call. For information about deleting parties from a point-to-
multipoint call, see Dropping a Party from a Multipoint Call.

Quality of Service
Article • 12/15/2021

The originator of a call on an SVC can specify quality of service (QoS) parameters for the
call that specify performance parameters for the call. Depending on the signaling
protocol that is being used, a call manager or MCM driver that is setting up an outgoing
or incoming call can negotiate the QoS with a network entity such as a network switch
or a remote client. If allowed by the signaling protocol, a connection-oriented client
might also request a change of QoS when determining whether to accept an incoming
call.

The QoS parameters for a call are specified as call parameters in a
CO_CALL_PARAMETERS structure. CO_CALL_PARAMETERS points to two other
structures:

CO_CALL_MANAGER_PARAMETERS, which specifies call manager parameters that
a call manager or MCM driver use to set up a call.

CO_MEDIA_PARAMETERS, which specifies media parameters that a miniport driver
or MCM driver use to activate a VC.

Both CO_CALL_MANAGER_PARAMETERS and CO_MEDIA_PARAMETERS contain generic
parameters (flags) that apply to all drivers that use the parameters. Each of these
structures also points to a CO_SPECIFIC_PARAMETERS structure that specifies call
manager-specific parameters (when pointed to by a CO_CALL_MANAGER_PARAMETERS
structure) or media-specific parameters (when pointed to by a CO_MEDIA_PARAMETERS
structure).

For more information about QoS operations, see Client-Initiated Request to Change Call
Parameters and Incoming Request to Change Call Parameters.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545381(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545388(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545396(v=vs.85)

MCM Drivers vs. Call Managers
Article • 12/15/2021

An integrated MCM driver is a connection-oriented miniport driver that also provides
call manager services to connection-oriented clients. As such, an MCM driver performs
all the connection-oriented functions of both a connection-oriented miniport driver and
a call manager. Like all miniport drivers, MCM drivers must use NdisXxx calls to
communicate with the underlying NIC hardware.

An MCM driver differs from a call manager in two major ways:

A call manager is an NDIS connection-oriented protocol driver with added call
manager functionality. An MCM driver is an NDIS connection-oriented miniport
driver with added call manager functionality.

The interface between a call manager and a connection-oriented miniport driver is
fully exposed to NDIS--that is, all communication between the call manager and
the miniport driver passes through NDIS. Except for the activation and deactivation
of client VCs (VCs used for transmitting outgoing or incoming client data), the
interface between the call manager part of an MCM driver and the miniport driver
part of an MCM driver is opaque to NDIS. The activation and deactivation of client
VCs must be accomplished through NDIS because NDIS keeps track of client VCs.

The differences between an MCM driver and a call manager are further described in the
following sections:

Differences in Initialization

Differences in Calls to NdisXxx Functions

Differences in Virtual Connections

Differences in Initialization
Article • 12/15/2021

A call manager is an NDIS protocol; therefore, it follows the initialization sequence for a
connection-oriented protocol, but with one additional step. In its ProtocolBindAdapterEx
handler, immediately after completing the initialization steps for a connection-oriented
protocol, a call manager must register an address family by calling
NdisCmRegisterAddressFamilyEx. The call to NdisCmRegisterAddressFamilyEx, in
which a call manager registers its call manager functions, identifies the protocol as a call
manager. The call manager must register an address family for each NIC to which it
binds itself.

An MCM driver is a miniport driver; therefore, it follows the initialization sequence for a
connection-oriented miniport driver with the addition of the following step: an MCM
driver must register an address family by calling NdisMCmRegisterAddressFamilyEx in
its MiniportInitializeEx function, immediately after completing the miniport driver
initialization sequence . The call to NdisMCmRegisterAddressFamilyEx, in which an
MCM driver registers its call manager functions, distinguishes the MCM driver from a
regular connection-oriented miniport driver. Although an MCM driver registers its
miniport driver handlers only once during initialization by calling
NdisMRegisterMiniportDriver, it must call NdisMCmRegisterAddressFamilyEx once for
each NIC that it controls.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver

Differences in Calls to NdisXxx
Functions
Article • 12/15/2021

A call manager calls a different set of call manager functions than an MCM driver. A call
manager calls NdisCm_Xxx_ functions, and an MCM driver calls NdisMCm_Xxx_
functions.

An MCM driver does not call the NdisCo_Xxx_ functions that both connection-oriented
clients and call managers call. Instead, an MCM driver calls the following comparable
NdisMCm_Xxx_ functions:

NdisMCmCreateVc instead of NdisCoCreateVc

NdisMCmDeleteVc instead of NdisCoDeleteVc

NdisMCmOidRequest instead of NdisCoOidRequest

NdisMCmOidRequestComplete instead of NdisCoOidRequestComplete

An MCM driver does not require a call that is comparable to NdisCoSendNetBufferLists,
because the send interface between the call manager and the miniport driver is internal
to an MCM driver and therefore opaque to NDIS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmcreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists

Differences in Virtual Connections
Article • 12/15/2021

A call manager uses signaling VCs to send and receive signaling messages to and from
network entities, such as switches. A call manager's signaling VCs are visible to NDIS.
The call manager must create, activate, deactivate, and delete all VCs with calls to NDIS.
An MCM driver's signaling VCs, however, are opaque to NDIS. An MCM driver does not
create, activate, deactivate, and delete signaling VCs with calls to NDIS. Instead, an MCM
driver performs such operations internally. An MCM driver must call NDIS to perform
operations on VCs that are used to send or receive client data. This is because NDIS
must keep track of client VCs.

Because MCM driver is both a call manager and a miniport driver, certain connection-
oriented functions are redundant. Specifically, MiniportCoCreateVc and
MiniportCoDeleteVc are redundant and are therefore not supplied by an MCM driver.
VC operations are handled by:

An MCM driver's ProtocolCoCreateVc and ProtocolCoDeleteVc functions when a
client requests the creation or deletion of a VC.

NdisMCmCreateVc and NdisMCmDeleteVc when the MCM driver creates or
deletes a VC.

NdisMCmActivateVc and NdisCmDeactivateVc when the MCM driver activates or
deactivates a VC.

An MCM driver must supply a MiniportCoOidRequest function for a client to use in
querying or setting miniport driver information, and a MiniportCoSendNetBufferLists
function to handle send operations from a client.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_delete_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_delete_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmcreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists

Connection-Oriented Timing Features
Article • 12/15/2021

Connection-oriented NDIS supports using a NIC's local time for scheduling the
transmission of packets and for time-stamping send and receive packets.

Note These connection-oriented timing features are optional. These features are not
supported by all CoNDIS NICs.

A connection-oriented protocol driver can call NdisCoOidRequest to query the local
timing capabilities of a connection-oriented miniport driver or an MCM driver with
OID_GEN_CO_GET_TIME_CAPS. In response to such a query, the miniport driver or MCM
driver returns information about:

Whether there is a readable clock on the NIC.

Whether the NIC derives its time from the network connection.

The precision of the local clock.

Whether the NIC can timestamp received packets with its local time.

Whether the NIC can schedule a send packet for transmission according to its local
time.

Whether the NIC can timestamp transmitted packets with its local time.

To obtain a NIC's local time, a connection-oriented protocol can call NdisCoOidRequest
to query a connection-oriented miniport driver or MCM driver with
OID_GEN_CO_GET_NETCARD_TIME. The connection-oriented miniport driver or MCM
driver synchronously returns its local time, which the connection-oriented protocol can
then use to schedule the transmission of packets.

Timing information for a send or receive packet is contained in the packet's out-of-band
(OOB) data. For more information, see NET_BUFFER_LIST.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

CoNDIS Miniport Driver Registration
Article • 03/14/2023

CoNDIS miniport drivers initialize like other miniport drivers and also must register
additional CoNDIS entry points. For general information about miniport driver
initialization, see Initializing a Miniport Driver.

To register CoNDIS entry points for MiniportXxx functions, CoNDIS miniport drivers call
the NdisSetOptionalHandlers function from the MiniportSetOptions function. In
MiniportSetOptions, the miniport driver initializes an
NDIS_MINIPORT_CO_CHARACTERISTICS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

Miniport call managers (MCMs) also register ProtocolXxx functions in
MiniportSetOptions. For more information about MCM driver registration, see CoNDIS
MCM Registration.

For more information about configuring optional miniport driver services, see
Configuring Optional Miniport Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_co_characteristics

CoNDIS Client Registration
Article • 03/14/2023

CoNDIS clients initialize like other protocol drivers and also must register additional
CoNDIS entry points. For general information about protocol driver initialization, see
Initializing a Protocol Driver.

To register CoNDIS entry points for ProtocolXxx functions, CoNDIS clients call the
NdisSetOptionalHandlers function from the ProtocolSetOptions function. In
ProtocolSetOptions, all CoNDIS protocol drivers initialize an
NDIS_PROTOCOL_CO_CHARACTERISTICS structure and pass it at the OptionalHandlers
parameter of NdisSetOptionalHandlers.

To specify entry points for a CoNDIS client, a protocol driver initializes an
NDIS_CO_CLIENT_OPTIONAL_HANDLERS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

For more information about configuring optional protocol driver services, see
Configuring Optional Protocol Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_client_optional_handlers

CoNDIS Call Manager Registration
Article • 03/14/2023

CoNDIS stand-alone call managers initialize like other protocol drivers and also must
register additional CoNDIS entry points. For general information about protocol driver
initialization, see Initializing a Protocol Driver.

To register CoNDIS entry points for ProtocolXxx functions, call managers call the
NdisSetOptionalHandlers function from the ProtocolSetOptions function. In
ProtocolSetOptions, all CoNDIS protocol drivers initialize an
NDIS_PROTOCOL_CO_CHARACTERISTICS structure and pass it at the OptionalHandlers
parameter of NdisSetOptionalHandlers.

To specify entry points for a call manager, a protocol driver initializes an
NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

Miniport call managers (MCMs) also register call manager ProtocolXxx functions. For
more information about MCM driver registration, see CoNDIS MCM Registration.

For more information about configuring optional protocol driver services, see
Configuring Optional Protocol Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers

CoNDIS MCM Registration
Article • 03/14/2023

CoNDIS miniport call managers (MCMs) initialize like other miniport drivers and also
must register additional CoNDIS entry points. For general information about miniport
driver initialization, see Initializing a Miniport Driver.

To register CoNDIS entry points for MiniportXxx functions and ProtocolXxx functions,
CoNDIS MCMs call the NdisSetOptionalHandlers function from the MiniportSetOptions
function. In MiniportSetOptions, an MCM initializes an
NDIS_MINIPORT_CO_CHARACTERISTICS structure and passes it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

To register call manager entry points, MCMs initialize an
NDIS_CO_CALL_MANAGER_OPTIONAL_HANDLERS structure and pass it at the
OptionalHandlers parameter of NdisSetOptionalHandlers.

For more information about configuring optional miniport driver services, see
Configuring Optional Miniport Driver Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_co_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_co_call_manager_optional_handlers

Connection-Oriented Operations
Performed by Clients
Article • 12/15/2021

A connection-oriented client:

Opens and closes an address family.

On receiving notification from NDIS that a call manager or MCM driver has
registered an address family, a connection-oriented driver can open that address
family with the call manager or MCM driver. The client can then use the call
manager services provided by the call manager or MCM driver. A client releases
the association between itself and a call manager or MCM driver by closing the
address family.

Registers and deregisters SAPs.

After opening an address family with a call manager or an MCM driver, a
connection-oriented client can register one or more SAPs with the call manager or
MCM driver. The call manager or MCM driver will then indicate to the client any
incoming calls addressed to the registered SAPs. A client releases an SAP by
deregistering the SAP.

Adds and deletes PVCs.

A connection-oriented client can monitor when an operator manually configures
or deconfigures a permanent VC (PVC). In response to such an action, the client
can request a call manager or MCM driver to add a PVC to its list of configured
PVCs or to delete a PVC from such a list (see OID_CO_ADD_PVC and
OID_CO_DELETE_PVC).

Makes outgoing calls.

Before making an outgoing call, a client must initiate the creation of a VC for the
call. A client can then make an outgoing call. To make a point-to-multipoint call, a
client specifies a party when making the call.

Adds a party to or drops a party from a point-to-multipoint call.

A client can add a party to a point-to-multipoint call and delete a party from a
point-to-multipoint call. A client can also respond to an incoming request to drop
a party from a point-to-multipoint call.

Accepts or rejects an incoming call.

A client can accept or reject an incoming call that is addressed to a SAP that the
client previously registered with a call manager or MCM driver.

Negotiates the call parameters for an active VC.

Depending on what is allowed by the signaling protocol, a client can negotiate the
call parameters for an active VC. A client can request a change in quality of service
(QoS) and respond to an incoming request to change the QoS for an active VC. A
client can also respond to a request from the remote party to change the QoS for a
call.

Sends and receives packets.

A client can send packets through a connection-oriented miniport driver or MCM
driver. A client can also receive packets through a connection-oriented miniport
driver or MCM driver.

Initiates the deletion of a VC.

A client can initiate the deletion of a VC that it created.

Initiates the tear-down of a call.

A client can initiate the tear-down of a outgoing call that it made or an incoming
call that it accepted.

Queries or sets information.

A client can query or set information maintained by a bound call manager or the
call manager portion of an MCM driver. A client can also respond to queries and
sets from a bound call manager or MCM driver.

In addition, a client can query or set information maintained by a bound miniport
driver or the miniport driver portion of a bound MCM driver.

Inputsminiport driver status indications.

A client can input status indicated by a connection-oriented miniport driver or an
MCM driver.

Connection-Oriented Operations
Performed by Call Managers
Article • 12/15/2021

A call manager performs:

Registers and deregisters one or more address families (AFs).

A call manager registers one or more address families with NDIS . By registering an
address family, a call manager advertises its call manager services (specifically, a
signaling protocol) to bound connection-oriented clients. For information about
registering entry points with NDIS, see CoNDIS Registration.

Registers and deregisters SAPs at the request of a connection-oriented client.

A call manager receives a bound connection-oriented client's requests to register
SAPs and to deregister SAPs. The call manager sends signaling messages over the
network to register or deregister SAPs on behalf of clients.

Sets up an outgoing call at the request of a connection-oriented client.

When a connection-oriented client makes an outgoing call, the call manager
communicates (exchanges signaling messages) with network control devices, as
necessary, to make a connection. If the call is accepted by the remote party, the
call manager activates the VC that is created for the call.

Sets up and indicates an incoming call to a connection-oriented client.

A call manager indicates to a bound connection-oriented client all calls that are
addressed to a SAP registered by that client. Before indicating the incoming call to
the client, the call manager initiates creation of a VC for the call then initiates
activation of the VC.

Communicates requests for a change in QoS.

Depending on the signaling protocol, the call manager can communicate a request
from the local client to change the QoS for an outgoing or incoming call or a
request from the remote party to change the QoS for a call.

Communicates requests to add and drop parties.

A call manager communicates a local client's request to add a party to or drop a
party from a point-to-multipoint call. A call manager also communicates a remote

party's incoming request to drop itself from a point-to-multipoint call.

Tears down a call.

At the request of a connection-oriented client, a call manager closes a call by
communicating with network control devices to terminate a connection. At the
request of a remote party, a call manager indicates to a local connection-oriented
client a remote party's request to close a call. In the process of tearing down a call,
the call manager deactivates the VC that is used for the call. If the call manager
created the VC (for an incoming call), the call manager can also delete the VC.

Queries or sets information.

A call manager can query or set information maintained by a bound connection-
oriented client. A call manager can also respond to query and set operations from
a bound connection-oriented client.

In addition, a call manager can query or set information maintained by a bound
miniport driver or by the miniport driver portion of a bound MCM driver.

Inputsminiport driver status indications.

A call manager inputs status indications from a bound connection-oriented
miniport driver.

Connection-Oriented Operations
Performed by Miniport Drivers
Article • 12/15/2021

In addition to controlling NIC hardware, a connection-oriented miniport driver:

Sends and receives packets.

A connection-oriented miniport driver sends and receives packets on behalf of
connection-oriented clients or call managers.

Creates (sets up) VCs.

At the request of a connection-oriented client, a connection-oriented miniport
driver allocates and initializes the resources for a VC for an outgoing call. At the
request of a call manager, a connection-oriented miniport driver allocates and
initializes the resources for a VC for an incoming call or on which the call manager
will send or receive signaling messages.

Activates VCs.

At the request of a call manager, a connection-oriented miniport driver
communicates with a NIC to prepare the NIC to receive or transmit data across a
VC (see Activating a VC).

Deactivates VCs.

At the request of a call manager, a connection-oriented miniport driver
communicates with a NIC to terminate all communication across a VC (see
Deactivating a VC).

Deletes VCs.

At the request of a connection-oriented client, a connection-oriented miniport
driver deallocates the resources for a VC whose creation was initiated by that client
(see Deleting a VC). At the request of a call manager, a connection-oriented
miniport driver deallocates the resources for a VC whose creation was initiated by
that call manager.

Responds to information queries or sets.

A connection-oriented miniport driver responds to query and set operations by a
bound connection-oriented client or call manager.

Indicates status.

A connection-oriented miniport driver can indicate changes in its status or the
status of a NIC to bound connection-oriented clients and call managers.

Resets the NIC.

At the request of NDIS, a connection-oriented miniport driver resets a NIC.

Operations on Address Families and
SAPs
Article • 12/15/2021

A call manager or MCM driver must register its call manager entry points with NDIS and
advertise its call manager services to connection-oriented clients. For more information
about registering entry points with NDIS, see CoNDIS Registration.

To use the call manager services of a call manager or MCM driver, a connection-oriented
client must open an address family with that call manager or MCM driver. To receive
incoming calls, the client must also register one or more SAPs with the call manager or
MCM driver.

The following connection-oriented operations pertain to address families and SAPs:

Registering and Opening an Address Family

Registering a SAP

Deregistering a SAP

Closing an Address Family

Registering and Opening an Address
Family
Article • 12/15/2021

A call manager must register an address family for each NIC on which it provides call
manager services to connection-oriented clients. Similarly, an MCM driver must register
an address family for the NIC that it manages.

By registering an address family, a call manager or MCM driver causes NDIS to advertise
the call manager's or MCM driver's services to all connection-oriented clients that bind
to the adapter.

If a connection-oriented client can use the services advertised by a call manager or
MCM driver, it can open an address family with the call manager or MCM driver.

After its ProtocolBindAdapterEx function binds to an underlying miniport driver with
NdisOpenAdapterEx, a call manager calls NdisCmRegisterAddressFamilyEx to register
an address family for the binding (see the following figure).

The call to NdisCmRegisterAddressFamilyEx advertises the call manager's specific
signaling services. A call manager must register an address family each time that its
ProtocolBindAdapterEx function and is called and successfully binds to a NIC with
NdisOpenAdapterEx.

The call manager can support more than one address family across all the miniport
drivers to which it is bound. The call manager can also support more than one address
family on a single NIC to which it is bound. The call manager must register the same
entry points for each address family on the binding. Only one call manager can support
a particular type of address family for clients bound to any particular miniport driver. For
more information about registering entry points for a call manager, see CoNDIS
Registration.

Registering an Address Family from a Call Manager

Registering an Address Family from an MCM Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

An MCM driver calls NdisMCmRegisterAddressFamilyEx from its MiniportInitializeEx
function after registering its miniport driver entry points with
NdisMRegisterMiniportDriver. For more information about regsitering entry points see,
CoNDIS Registration. An MCM driver calls NdisMCmRegisterAddressFamilyEx once to
advertise its services to connection-oriented clients (see the following figure).

A miniport driver of a NIC that has on-board connection-oriented signaling support can
register itself as an MCM driver even though a call manager may be available. By doing
so, such an MCM driver preempts the call manager as the call manager for that NIC.

A call manager's or MCM driver's call to Ndis(M)CmRegisterAddressFamily causes NDIS
to call the ProtocolCoAfRegisterNotify function of each connection-oriented client on
the binding (as shown in two previous figures).

ProtocolCoAfRegisterNotify examines the address-family data to determine whether the
client can use the services of this particular CM or MCM driver. Whether the client can
make modifications in the (M)CM-supplied address-family data depends on the
particular signaling-protocol support of the call manager or MCM driver.

If the client finds the offered call-management services acceptable,
ProtocolCoAfRegisterNotify allocates a per-AF context area for the client and calls
NdisClOpenAddressFamilyEx. NdisClOpenAddressFamilyEx does not register the
client's connection-oriented entry points with NDIS. For more information about
registering connection-oriented entry points with NDIS, see CoNDIS Registration.

The call to NdisClOpenAddressFamilyEx causes NDIS to call the call manager's or MCM
driver's ProtocolCmOpenAf function (as shown already in the two earlier figures).
ProtocolCmOpenAf ensures that the client passed in a valid address family and allocates
and initializes the resources necessary to perform operations on behalf of the client that
is opening this instance of the address family. ProtocolCmOpenAf also stores an NDIS-
supplied NdisAfHandle that represents the association between the call manager and
client for the open address family.

ProtocolCmOpenAf can complete synchronously or asynchronously. To complete
asynchronously, the ProtocolCmOpenAf function of a call manager calls
NdisCmOpenAddressFamilyComplete; the ProtocolCmOpenAf function of an MCM

Opening an Address Family

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmregisteraddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_af_register_notify
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_open_af
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmopenaddressfamilycomplete

driver calls NdisMCmOpenAddressFamilyComplete. The call to
Ndis(M)CmOpenAddressFamilyComplete causes NDIS to call the
ProtocolOpenAfComplete function of the client that originally called
NdisClOpenAddressFamilyEx.

If the client's call to NdisClOpenAddressFamilyEx is successful, NDIS returns to the
client an NdisAfHandle that represents the association between the call manager and
client for the open address family.

If a client accepts incoming calls, it usually registers one or more SAPs from its
ProtocolClOpenAfCompleteEx function by calling NdisClRegisterSap following its
successful call to NdisClOpenAddressFamilyEx.

If a client makes outgoing calls, it could create one or more VCs in its
ProtocolClOpenAfCompleteEx function in anticipation of a request by one or more its
clients to make an outgoing call.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmopenaddressfamilycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex

Registering a SAP
Article • 12/15/2021

If a client accepts incoming calls, its ProtocolClOpenAfCompleteEx function usually
registers one or more SAPs with the call manager by calling NdisClRegisterSap.

The following figure shows a client of a call manager registering a SAP.

The following figure shows a client of an MCM driver registering a SAP.

With the call to NdisClRegisterSap, a client requests notifications of incoming calls on a
particular SAP. NDIS forwards the SAP information supplied by the client to the call
manager's or MCM driver's ProtocolCmRegisterSap function for validation. If the given
SAP is already in use or if the call manager or MCM driver does not recognize the client-
supplied SAP specification, the call manager or MCM driver fails this request.

In ProtocolCmRegisterSap, the call manager or MCM driver might communicate with
network control devices or other media-specific agents to register the SAP on the
network for a connection-oriented client. ProtocolCmRegisterSap also stores an NDIS-
supplied NdisSapHandle that represents the SAP.

ProtocolCmRegisterSap can complete synchronously or asynchronously. To complete
asynchronously, the ProtocolCmRegisterSap function of a call manager calls
NdisCmRegisterSapComplete. The ProtocolCmRegisterSap function of an MCM driver
calls NdisMCmRegisterSapComplete. The call to Ndis(M)CmRegisterSapComplete
causes NDIS to call the client's ProtocolClRegisterSapComplete function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_open_af_complete_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_reg_sap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmregistersapcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmregistersapcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_register_sap_complete

If the client's call to NdisClRegisterSap is successful, NDIS returns to the client an
NdisSapHandle that represents the SAP.

After a call manager registers a SAP on behalf of a connection-oriented client, it notifies
that client of an incoming call offer directed to that SAP by calling
NdisCmDispatchIncomingCall. An MCM driver calls
NdisMCmDispatchIncomingCall(see Indicating an Incoming Call). A client can receive
incoming calls on a SAP even while SAP registration is still pending; that is, before its
ProtocolClRegisterSapComplete function is called.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingcall

Deregistering a SAP
Article • 12/15/2021

A connection-oriented client deregisters a SAP with NdisClDeregisterSap.

The following figure shows a client of a call manager deregistering a SAP.

The following figure shows a client of an MCM driver deregistering a SAP.

The call to NdisClDeregisterSap causes NDIS to call the call manager's or MCM driver's
ProtocolCmDeregisterSap function. In ProtocolCmDeregisterSap, the call manager or
MCM driver might communicate with network control devices or other media-specific
agents to deregister the SAP on the network. In addition, ProtocolCmDeregisterSap must
free any resources that it dynamically allocated for the SAP.

ProtocolCmDeregisterSap can complete synchronously or asynchronously. To complete
asynchronously, the ProtocolCmDeregisterSap function of a call manager calls
NdisCmDeregisterSapComplete. The ProtocolCmDeregisterSap function of an MCM
driver calls NdisMCmDeregisterSapComplete. Ndis(M)CmDegisterSapComplete
notifies both NDIS and the client that the call manager has completed the SAP-
deregistration request for which its ProtocolCmDeregisterSap function previously
returned NDIS_STATUS_PENDING.

A call to Ndis(M)CmDeregisterSapComplete causes NDIS to call the client's
ProtocolClDeregisterSapComplete function. A call to ProtocolClDeregisterSapComplete
indicates that the client's preceding call to NdisClDeregisterSap has been processed by
the call manager or MCM driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclderegistersap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_deregister_sap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmderegistersapcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmderegistersapcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_deregister_sap_complete

Note that a client can deregister a SAP without affecting an incoming call that has
already been received on that SAP and without affecting the VC for that incoming call.

Closing an Address Family Overview
Article • 12/15/2021

A connection-oriented client calls NdisClCloseAddressFamily to delete the association
between itself, a call manager, and a particular underlying NIC.

When a CoNDIS stand-alone call manager is closing a binding to an underlying miniport
adapter, or a miniport call manager (MCM) is halting a miniport adapter, the call
manager or the MCM must notify NDIS if an associated address family (AF) should be
closed. NDIS then notifies each CoNDIS client that has the AF open that the client
should close the AF.

This section includes the following topics:

Closing a CoNDIS Call Manager or MCM

Closing an Address Family in a CoNDIS Client

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclcloseaddressfamily

Closing a CoNDIS Call Manager or MCM
Article • 03/14/2023

When a stand-alone call manager is unbinding from an underlying miniport adapter, the
call manager must notify all of the affected CoNDIS clients that they must close the
associated AF. To notify each client, NDIS stand-alone call managers call the
NdisCmNotifyCloseAddressFamily function.

If a CoNDIS miniport adapter that an MCM manages is halting, the MCM must notify all
of the affected clients that they must close the associated AF. To notify each client, the
MCMs call the NdisMCmNotifyCloseAddressFamily function.

If a stand-alone call manager or MCM calls NdisCmNotifyCloseAddressFamily or
NdisMCmNotifyCloseAddressFamily, respectively, NDIS calls the
ProtocolClNotifyCloseAf function of the CoNDIS client that is associated with the
handle in the NdisAfHandle parameter of NdisCmNotifyCloseAddressFamily or
NdisMCmNotifyCloseAddressFamily. This call notifies the client to close the AF. If
NdisCmNotifyCloseAddressFamily or NdisMCmNotifyCloseAddressFamily returns
NDIS_STATUS_PENDING, NDIS will call the call manager's
ProtocolCmNotifyCloseAfComplete function when the close notification operation is
complete.

For more information about closing an address family in a CoNDIS client, see Closing an
Address Family in a CoNDIS Client.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmnotifycloseaddressfamily
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmnotifycloseaddressfamily
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_notify_close_af
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_notify_close_af_complete

Closing an Address Family in a CoNDIS
Client
Article • 03/14/2023

To close AFs, a CoNDIS client must provide a ProtocolClNotifyCloseAf function. NDIS
calls ProtocolClNotifyCloseAf when a stand-alone call manager or MCM calls the
NdisCmNotifyCloseAddressFamily function or the NdisMCmNotifyCloseAddressFamily
function, respectively.

From within ProtocolClNotifyCloseAf, the client finishes closing the specified AF, or it
returns NDIS_STATUS_PENDING and calls the
NdisClNotifyCloseAddressFamilyComplete function to complete the operation. After
the client calls NdisClNotifyCloseAddressFamilyComplete, NDIS calls the
ProtocolCmNotifyCloseAfComplete function to notify the call manager that the client
closed the AF.

To close the AF, the client should:

1. If the client has active multipoint connections, call the NdisClDropParty function as
many times as necessary until only a single party remains active on each multipoint
virtual connection (VC).

2. Call the NdisClCloseCall function as many times as necessary to close all of the
calls that are still open and are associated with the address family.

3. Call the NdisClDeregisterSap function as many times as necessary to deregister all
of the service access points (SAPs) that the client registered with the call manager.

4. Call the NdisClCloseAddressFamily function to close the AF.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_notify_close_af
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmnotifycloseaddressfamily
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmnotifycloseaddressfamily
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclnotifycloseaddressfamilycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_notify_close_af_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclderegistersap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclcloseaddressfamily

Creating a VC
Article • 12/15/2021

Before making an outgoing call, a connection-oriented client initiates the creation a
virtual connection (VC). Before indicating an incoming call to a connection-oriented
client, a call manager or an MCM driver initiates the creation of a VC . After the VC has
been set up and activated, client data can be transmitted or received on the VC.

A call manager or an MCM driver can also initiate the creation of a VC on which
signaling messages are exchanged with network components, such as a network switch.

Before making a call with NdisClMakeCall, a connection-oriented client calls
NdisCoCreateVc to initiate the creation of a VC.

The following figure shows a client of a call manager initiating the creation of a VC.

The following figure shows a client of an MCM driver initiating the creation of a VC.

When a connection-oriented client of a call manager calls NdisCoCreateVc, NDIS calls,
as a synchronous operation, the ProtocolCoCreateVc function of the call manager and
the MiniportCoCreateVc function of the underlying miniport driver (see the first figure
in this topic). NDIS passes an NdisVcHandle that represents the VC to both
ProtocolCoCreateVc and MiniportCoCreateVc. If the call to NdisCoCreateVc is successful,
NDIS returns the NdisVcHandle to NdisCoCreateVc.

ProtocolCoCreateVc allocates and initializes any dynamic resources and structures that
the call manager requires to perform subsequent operations on a VC that will be

Client-Initiated Creation of a VC

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_create_vc

activated. MiniportCoCreateVc allocates and initializes any resources that the miniport
driver requires to maintain state information about the VC. Both ProtocolCoCreateVc and
MiniportCoCreateVc store the NdisVcHandle .

When a connection-oriented client of an MCM driver, the call to NdisCoCreateVc causes
NDIS to call the MCM driver's ProtocolCoCreateVc function (see Client-Initiated Creation
of a VC (MCM Driver Present)). In this case, ProtocolCoCreateVc performs the necessary
allocation and initialization of resources for the VC. There is no call (internal or
otherwise) to MiniportCoCreateVc, because an MCM driver does not supply such a
function.

Before indicating an incoming call to a connection-oriented client with
NdisCmDispatchIncomingCall, a call manager calls NdisCoCreateVc to initiate the
creation of a VC (see the following figure).

When a call manager calls NdisCoCreateVc, NDIS calls, as a synchronous operation, the
ProtocolCoCreateVc function of the connection-oriented client that registered the SAP
on which the call is being received, as well as the MiniportCoCreateVc function of the
underlying miniport. NDIS passes an NdisVcHandle that represents the VC to both
ProtocolCoCreateVc and MiniportCoCreateVc. If the call to NdisCoCreateVc is successful,
NDIS returns the NdisVcHandle to NdisCoCreateVc.

Before indicating an incoming call to a connection-oriented client with
NdisMCmDispatchIncomingCall, an MCM driver calls NdisMCmCreateVc to initiate the
creation of a VC (see the following figure).

Call Manager-Initiated Creation of a VC

MCM Driver-Initiated Creation of a VC

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_create_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmcreatevc

When an MCM driver calls NdisMCmCreateVc, NDIS calls, as a synchronous operation
before NdisMCmCreateVc returns, the ProtocolCoCreateVc function of the connection-
oriented client that registered the SAP on which the call is being received. NDIS passes
an NdisVcHandle that represents the VC to ProtocolCoCreateVc. If the call to
NdisMCmCreateVc is successful, NDIS returns the NdisVcHandle to NdisMCmCreateVc.

ProtocolCoCreateVc allocates and initializes any dynamic resources and structures that
the client requires to perform subsequent operations on the VC. ProtocolCoCreateVc
also stores the NdisVcHandle .

Note that when an MCM driver creates a VC for exchanging signaling messages with a
network component, it does not use NdisXxx calls to create a VC. In fact, an MCM driver
does not use NdisXxx calls to create, activate, deactivate, or delete such VCs. Instead, an
MCM driver performs these operations internally. Such VCs are therefore opaque to
NDIS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_create_vc

Activating a VC
Article • 12/15/2021

After a virtual connection (VC) has been created (see Creating a VC), it must be activated
before data can be transmitted or received on it. A call manager initiates the activation
of a VC by calling NdisCmActivateVc(see the following figure).

An MCM driver initiates the activation of a VC by calling NdisMCmActivateVc(see the
following figure).

A call manager or MCM driver could initiate reactivation of an active VC if the local client
or a remote party successfully negotiates a change in call parameters on that VC (see
Client-Initiated Request to Close a Call and Incoming Request to Change Call
Parameters). The call manager or MCM driver can call Ndis(M)CmActivateVc many times
for a single VC to change the call parameters for an already active call.

For a client-initiated outgoing call, a call manager or an MCM driver usually calls
Ndis(M)CmActivateVc immediately following the packet exchange confirming a
negotiated agreement with the remote target of the call or successful call-setup at the
switch. The call manager or MCM driver calls Ndis(M)CmActivateVc before it notifies
NDIS (and the client) of outgoing call completion with
Ndis(M)CmMakeCallComplete(see Making a Call). For an incoming call, a call manager
or MCM driver usually calls Ndis(M)CmActivateVc after it has called
NdisCo(MCm)CreateVc successfully and before it calls
Ndis(M)CmDispatchIncomingCall(see Indicating an Incoming Call).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc

A call manager's call to NdisCmActivateVc causes NDIS to call the
MiniportCoActivateVc function of the underlying miniport driver. MiniportCoActivateVc
must validate the call parameters for this VC to verify that the adapter can support the
requested call. If the call parameters are acceptable, MiniportCoActivateVc
communicates with its adapter as necessary to prepare the adapter to receive or
transmit data across the virtual connection (for example, programming receive buffers).
If the requested call parameters cannot be supported, the miniport driver fails the
request.

MiniportCoActivateVc can complete synchronously or asynchronously. The call to
NdisMCoActivateVcComplete causes NDIS to call the call manager's
ProtocolCmActivateVcComplete function. ProtocolCmActivateVcComplete must check
the status returned by NdisMCoActivateVcComplete to ensure that the virtual
connection has been activated successfully. If the miniport driver did not successfully
activate the VC, the call manager must not attempt to communicate over the VC.
ProtocolCmActivateVcComplete must also complete any processing required by the
network media to ensure that the virtual connection is ready for data transmission
before returning control to NDIS.

An MCM driver's call to NdisMCmActivateVc informs NDIS that it has set up call and
media parameters on a newly created VC or changed the call parameters on an
established VC. This action notifies NDIS that the MCM driver has made a NIC ready for
transfers on the VC. NDIS completes the activation sequence by calling the MCM driver's
ProtocolCmActivateVcComplete function.

An MCM driver calls NdisMCmActivateVc to activate only VCs used for transmitting
and/or receiving client data, but not to activate VCs used for exchanging signaling
messages between the MCM driver and network components such as a switch. An MCM
driver activates a signaling VC internally without calling any NdisXxx function. Any VC
that an MCM driver sets up for its own signaling purposes is therefore opaque to NDIS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_activate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoactivatevccomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_activate_vc_complete

Deactivating a VC
Article • 12/15/2021

A call manager calls NdisCmDeactivateVc as an essential step in closing either an
outgoing or incoming call, typically after the packet exchange with network components
that tears down the call (see Client-Initiated Request to Close a Call and Incoming
Request to Close a Call). An MCM driver does the same thing by calling
NdisMCmDeactivateVc.

The call to NdisCmDeactivateVc causes NDIS to call the underlying miniport driver's
MiniportCoDeactivateVc function (see the following figure). MiniportCoDeactivateVc
communicates with its network adapter to terminate all communication across this VC
(for example, clearing receive or send buffers on the adapter).

Before it deactivates a VC, the miniport driver must complete any pending transfers on
the VC. That is, the miniport driver must wait until it has completed all sends in progress
and until all receive packets that it has indicated are returned to it. After deactivating the
VC, the miniport driver cannot indicate receives or transmit sends on the VC.

Note that MiniportCoDeactivateVc does not delete the VC. The creator (client, call
manager, or MCM driver) of a particular VC that will not be reused calls NdisCoDeleteVc
to destroy that VC. A deactivated VC can be reactivated by a connection-oriented client,
a call manager, or an MCM driver.

MiniportCoDeactivateVc can complete synchronously or asynchronously. A call to
NdisMCoDeactivateVcComplete. causes NDIS to call the
ProtocolCmDeactivateVcComplete function of the call manager that originally
requested the VC deactivation. Completion of the deactivation means that all call

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_deactivate_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcodeactivatevccomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_deactivate_vc_complete

parameters for the VC used on activation are no longer valid. Any further use of the VC
is prohibited except to reactivate it with a new set of call parameters.

An MCM driver's call to NdisMCmDeactivateVc informs NDIS that it has deactivated a
VC or changed the call parameters on an established VC (see the following figure). NDIS
completes the deactivation sequence by calling the MCM driver's
ProtocolCmDeactivateVcComplete function.

An MCM driver does not call NdisMCmDeactivateVc to deactivate VCs used for
exchanging signaling messages between the MCM driver and network components such
as a switch. An MCM driver deactivates a signaling VC internally without calling any
NdisXxx function.

Deleting a VC
Article • 12/15/2021

Only the connection-oriented client, call manager, or MCM driver that initiated the
creation of a virtual circuit (VC) can initiate the deletion of that VC. A client therefore
deletes a VC that it previously created for an outgoing call, a call manager or MCM
driver deletes a VC that it previously created for an incoming call over the network, and
a call manager deletes a VC that it previously created for exchanging signaling messages
over the network. (An MCM driver does not call NDIS to delete a VC that it created for
exchanging signaling messages. The MCM driver deletes such a VC with an internal
operation that is opaque to NDIS.)

A connection-oriented client or call manager initiates the deletion of a VC with
NdisCoDeleteVc.

The following figure shows a client of a call manager initiating the deletion of a VC.

The following figure shows a client of an MCM driver initiating the deletion of a VC.

The following figure shows a call manager initiating the deletion of a VC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc

When a client or call manager calls NdisCoDeleteVc or when an MCM driver calls
NdisMCmDeleteVc, there must be no outstanding calls on the given VC and that VC
must already have been deactivated. To meet these requirements implies that the
following conditions are satisfied:

The client has already called NdisClCloseCall with the given NdisVcHandle and its
close-call request has completed successfully.

The call manager has already called NdisCmDeactivateVc or the MCM driver has
already called NdisMCmDeactivateVc with the given NdisVcHandle and the
deactivation request has completed successfully (see Incoming Request to Close a
Call).

A client's or call manager's call to NdisCoDeleteVc causes NDIS to call both the
underlying miniport driver's MiniportCoDeleteVc function and the ProtocolCoDeleteVc
function of the client or call manager with which the caller shares the NdisVcHandle (see
the three preceding figures).

MiniportCoDeleteVc frees any resources allocated for the VC, as well as the miniport
driver's context for the VC. ProtocolCoDeleteVc releases any resources that the client or
call manager used to perform operations on and track state for the VC. Both
MiniportCoDeleteVc and ProtocolCoDeleteVc are synchronous functions that cannot
return NDIS_STATUS_PENDING.

An MCM driver initiates the deletion of a VC with NdisMCmDeleteVc(see the following
figure).

An MCM driver's call to NdisMCmDeleteVc causes NDIS to call the ProtocolCoDeleteVc
function of the client with which the MCM driver shared the NdisVcHandle .

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_delete_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_delete_vc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_delete_vc

When NdisCoDeleteVc or NdisMCmDeleteVc returns control, the NdisVcHandle is no
longer valid.

Making a Call
Article • 12/15/2021

The following figure shows a client making an outgoing call through a call manager.

The following figure shows a client making an outgoing call through an MCM driver.

Before making an outgoing call, a connection-oriented client must:

Initialize call parameters in a structure of type CO_CALL_PARAMETERS. The call
manager or MCM driver typically uses the call parameters the client specifies to set
up the call and to derive media parameters for use by the miniport driver.

Initiate the creation of a VC with NdisCoCreateVc.

On the successful return of NdisCoCreateVc, the client calls NdisClMakeCall to initiate
the call (see the two figures in this section).

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscocreatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall

In its call to NdisClMakeCall, the client passes a pointer to the CO_CALL_PARAMETERS
structure initialized previously. The client also passes an NdisVcHandle (returned by
NdisCoCreateVc) that identifies the VC on which the client will transmit (and perhaps
receive) data for the call. If the client is making a multipoint call (a call to more than one
remote party), it also passes a ProtocolPartyContext that specifies a handle to a client-
allocated resident context area in which the client will maintain per-party state for the
initial party on the multipoint VC.

The call to NdisClMakeCall causes NDIS to forward this request to the
ProtocolCmMakeCall function of the call manager or MCM driver with which the client
shares the given NdisVcHandle . ProtocolCmMakeCall must validate the input call
parameters that were set up by the client.

ProtocolCmMakeCall communicates (exchanges signaling messages) with network
control devices to make a connection. A call manager calls NdisCoSendNetBufferLists
to initiate such an exchange (see Sending NET_BUFFER Structures from CoNDIS Drivers).
An MCM driver never calls NdisCoSendNetBufferLists. Instead, it transmits the data
directly across the network.

The call manager or MCM driver can modify the client-supplied call parameters while
negotiating with relevant network components and can return different traffic
parameters than the client originally gave to NdisClMakeCall(see Incoming Request to
Change Call Parameters).

An explicit NdisPartyHandle passed to ProtocolCmMakeCall indicates that the VC created
by the client will be used for a multipoint call. The call manager or MCM driver must
allocate and initialize any necessary resources required to maintain per-party state
information and control the multipoint call.

After a call manager has done all the necessary communication with its networking
hardware as required by its medium, it must call NdisCmActivateVc to initiate the
activation of the VC on which call data will be sent and perhaps received. An MCM driver
must call NdisMCmActivateVc.

When the underlying miniport driver is ready to make data transfers on the VC (that is,
after the VC has been activated), a call manager calls NdisCmMakeCallComplete, and an
MCM driver calls NdisMCmMakeCallComplete. At this point, the call manager or MCM
driver should have negotiated with the network to establish call parameters for the VC,
and the underlying miniport driver should have completed activation of the VC.

In the call to Ndis(M)CmMakeCallComplete, the call manager or MCM driver passes the
call parameters for the VC as a pointer to a structure of type CO_CALL_PARAMETERS. If
the call manager has modified the call parameters as originally specified by the client, it

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_make_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmmakecallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmmakecallcomplete

can notify the client by setting the CALL_PARAMETERS_CHANGED flag in the
CO_CALL_PARAMETERS structure.

A call to Ndis(M)CmMakeCallComplete causes NDIS to call the
ProtocolClMakeCallComplete function of the client that originated the outgoing call. A
call to ProtocolClMakeCallComplete indicates that the call manager has completed
processing the client's request to establish a virtual connection with NdisClMakeCall.

If the client's attempt to establish an outgoing call was successful,
ProtocolClMakeCallComplete should check the CALL_PARAMETERS_CHANGED flag to
determine whether the call parameters originally specified by the client were modified. If
the flag is set, indicating that the call parameters were changed,
ProtocolClMakeCallComplete should examine the returned call parameters to determine
whether they are acceptable for this connection.

If the call parameters are acceptable, ProtocolClMakeCallComplete simply returns
control. If the call parameters are not acceptable and if the signaling protocol allows
renegotiation at this point, the client can call NdisClModifyCallQoS to request a change
in call parameters (see Client-Initiated Request to Close a Call). If the signaling protocol
does not allow renegotiation of unacceptable call parameters,
ProtocolClMakeCallComplete must tear down the call with NdisClCloseCall(see Client-
Initiated Request to Close a Call).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_make_call_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmodifycallqos

Indicating an Incoming Call
Article • 12/15/2021

A call manager or MCM driver is alerted to an incoming call by signaling messages from
the network. From these signaling messages, the call manager or MCM driver extracts
the call parameters for the call, including the SAP to which the incoming call is
addressed.

The following figure shows an MCM driver indicating an incoming call.

The following figure shows a call manager indicating an incoming call.

If the incoming call parameters are unacceptable to the call manager or MCM driver, it
can attempt to negotiate a change in these parameters with the remote party if such
negotiation is allowed by the signaling protocol. Alternatively, the client to which the

incoming call is directed could attempt to negotiate the call parameters after receiving
the call indication from the call manager or MCM driver (see Client-Initiated Request to
Change Call Parameters). If the call manager or MCM driver cannot negotiate acceptable
call parameters for the call with the remote party, it might refuse the call. The signaling
protocol determines what is possible in such cases.

Before indicating an incoming call to a client, the call manager or MCM driver must
identify the SAP to which the call is directed. The SAP must have been previously
registered by a client. The call manager or MCM driver must also initiate the creation of
a VC and initiate the activation of this VC.

The call manager or MCM driver then indicates the incoming call to the client that
registered the SAP to which the incoming call is directed. A call manager indicates an
incoming call with NdisCmDispatchIncomingCall. An MCM driver indicates an incoming
call with NdisMCmDispatchIncomingCall.

In the call to Ndis(M)CmDispatchIncomingCall, the call manager or MCM driver passes
the following:

An NdisSapHandle that identifies the SAP to which the incoming call is addressed.

An NdisVcHandle that identifies the virtual circuit for the incoming call.

A pointer to a structure of type CO_CALL_PARAMETERS, which contains the call
parameters for the call.

The call to Ndis(M)CmDispatchIncomingCall causes NDIS to call the client's
ProtocolClIncomingCall function, within which the client either accepts or rejects the
requested connection. ProtocolClIncomingCall should validate the SAP, VC, and call
parameters.

ProtocolClIncomingCall can complete synchronously or it can return
NDIS_STATUS_PENDING and complete asynchronously with
NdisClIncomingCallComplete. A call to NdisClIncomingCallComplete causes NDIS to
call the call manager's or MCM driver's ProtocolCmIncomingCallComplete function.

The NDIS_STATUS code that is returned by a synchronous completion of
ProtocolClIncomingCall or supplied to NdisClIncomingCallComplete indicates the
client's acceptance or rejection of the incoming call. The client also returns the call
parameters for the call in a buffered CO_CALL_PARAMETERS structure. If the client finds
the call parameters unacceptable, it can, if allowed by the signaling protocol, request a
change in the call parameters by setting the Flags member in the
CO_CALL_PARAMETERS structure with CALL_PARAMETERS_CHANGED and by supplying
the revised call parameters in a buffered CO_CALL_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingcall
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclincomingcallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_incoming_call_complete

If the client accepts the incoming call, the call manager or MCM driver should send
signaling messages to indicate to the calling entity that the call has been accepted.
Otherwise, the call manager or MCM driver should send signaling messages to indicate
that the call has been rejected. If the client is requesting a change in call parameters, the
call manager or MCM driver sends signaling messages to request a change in call
parameters.

If the client accepted the call, or if the client's requested change in call parameters was
accepted by the remote party, a call manager calls NdisCmDispatchCallConnected, and
an MCM driver calls NdisMCmDispatchCallConnected. The call to
Ndis(M)CmDispatchCallConnected causes NDIS to call the client's
ProtocolClCallConnected function.

If the client rejected the call and the call manager or MCM driver has already activated a
VC for the incoming call, the call manager or MCM driver calls Ndis(M)CmDeactivateVc
to deactivate the VC if the VC is activated. The call manager or MCM driver can then
initiate deletion of the VC by calling NdisCoDeleteVc in the case of the call manager or
NdisMCmDeleteVc in the case of the MCM driver.

If the client accepted the call but the end-to-end connection was not successfully
established (because, for example, the remote party tore down the call), the call
manager or MCM driver will not call Ndis(M)CmDispatchCallConnected. Instead, it will
call Ndis(M)CmDispatchIncomingCloseCall, which causes NDIS to call the client's
ProtocolClIncomingCloseCall function. The client must then call NdisClCloseCall to
complete the teardown of the call. The call manager or MCM driver then calls
Ndis(M)CmDeactivateVC to deactivate the VC that it created for the incoming call. The
call manager or MCM driver can then initiate deletion of the VC by calling
NdisCoDeleteVc in the case of the call manager or NdisMCmDeleteVc in the case of the
MCM driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchcallconnected
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchcallconnected
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc

Client-Initiated Request to Change Call
Parameters
Article • 12/15/2021

A client requests a change in quality of service (QoS) on an active virtual connection (VC)
with NdisClModifyCallQoS.

The following figure shows the client of a call manager requesting a change in quality of
service.

The following figure shows the client of an MCM driver requesting a change in quality of
service.

In the call to NdisClModifyCallQoS, the client supplies:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmodifycallqos

An NdisVcHandle parameter that identifies the VC.

A pointer to a CO_CALL_PARAMETERS structure that contains the call parameters
the client is requesting.

The circumstances under which a client can request a change in QoS are determined by
the signaling protocol.

The call to NdisClModifyCallQoS causes NDIS to call the call manager's or MCM driver's
ProtocolCmModifyCallQoS function, which inputs the NdisVcHandle and buffered
CO_CALL_PARAMETERS structure that the client passes to NdisClModifyCallQoS.
ProtocolCmModifyQoS communicates with network control devices or other media-
specific agents, as necessitated by its media, to modify the media-specific call
parameters for an established virtual connection.

After communicating with the network and determining that the changes were
successful, a call manager must call NdisCmActivateVc(and an MCM driver must call
NdisMCmActivateVc) to activate the specified VC with the new call parameters.

If the network does not accept the new call parameters or if the underlying miniport
driver cannot accept the parameters, the call manager or MCM driver must restore the
VC to the state that existed before any modifications were attempted, and return
NDIS_STATUS_FAILURE.

To indicate the status of the client's request to change QoS, a call manager calls
NdisCmModifyCallQoSComplete, and an MCM driver calls
NdisMCmModifyCallQoSComplete. In this call, the call manager or MCM driver passes:

An NDIS_STATUS that indicates the status of the request.

An NdisVcHandle that identifies the VC.

A pointer to a CO_CALL_PARAMETERS structure that contains the call parameters
for the VC.

If allowed by the signaling protocol, the call manager or MCM driver can pass modified
call parameters back to the client. These modifications can be the product of
negotiation with the network or they can be supplied by the call manager or MCM
driver itself. A call manager or MCM driver should indicate that the call parameters have
been modified by setting the CALL_PARAMETERS_CHANGED flag in the
CO_CALL_PARAMETERS structure.

The call to Ndis(M)CmModifyCallQoSComplete causes NDIS to call the client's
ProtocolClModifyCallQoSComplete function. NDIS passes the following to
ProtocolClModifyCallQoSComplete:

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_modify_qos_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmmodifycallqoscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmmodifycallqoscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_modify_call_qos_complete

An NDIS_STATUS that indicates the status of the client's request to change the
QoS.

A ProtocolVcContext handle that identifies the VC.

A pointer to a CO_CALL_PARAMETERS structure that contains the call parameters
that are passed by the call manager or MCM driver to
Ndis(M)CmModifyCallQoSComplete.

If the CALL_PARAMETERS_CHANGED flag is set in the CO_CALL_PARAMETERS structure,
the client must examine the returned call parameters and determine whether the
modifications are acceptable. If the client's call to NdisClModifyCallQoS succeeds,
ProtocolClModifyCallQoSComplete can accept the QoS change by simply returning
control. Otherwise, ProtocolClModifyCallQoSComplete can engage in further negotiation
with the call manager if allowed by the signaling protocol and as long as the client's
developer places some reasonable limit on the number of possible renegotiations.
Alternatively, ProtocolClModifyCallQoSComplete can simply tear down the call with
NdisClCloseCall(see Client-Initiated Request to Close a Call) whenever the call manager
rejects a request to change the QoS and the previously established QoS has become
unacceptable to the client.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall

Incoming Request to Change Call
Parameters
Article • 12/15/2021

A call manager or MCM driver is alerted to an incoming request from a remote party to
change the call parameters on an active VC by signaling messages from the network.
Whether a call manager or MCM driver supports dynamic QoS changes on active calls
depends on the signaling protocol.

The following figure shows an incoming request through a call manager to change call
parameters.

The following figure shows an incoming request through an MCM driver to change call
parameters.

After receiving an incoming request to change call parameters, a call manager passes
appropriately modified call parameters to NdisCmActivateVc to notify the underlying
miniport driver of the proposed QoS change. An MCM driver passes modified call
parameters to NdisMCmActivateVc(see Activating a VC). If the underlying miniport
driver accepts the changed call parameters, a call manager then calls

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmactivatevc

NdisCmDispatchIncomingCallQosChange(see Incoming Request to Change Call
Parameters). An MCM driver calls NdisMCmDispatchIncomingCallQosChange(see
Incoming Request to Change Call Parameters). The call manager or MCM driver passes
an NdisVcHandle and a buffered CO_CALL_PARAMETERS structure to
Ndis(M)CmDispatchIncomingCallQoSChange.

A call to Ndis(M)CmDispatchIncomingCallQoSChange causes NDIS to call the client's
ProtocolClIncomingCallQoSChange function. NDIS passes a ProtocolVcContext handle
that identifies the VC and the modified call parameters in a buffered
CO_CALL_PARAMETERS structure to ProtocolClIncomingCallQoSChange.

The client accepts the proposed modifications to the call parameters for the VC by
doing nothing, except possibly updating any state it maintains about the QoS for the
VC, and returning control. If the proposed modifications are unacceptable, the client can
attempt to renegotiate the call parameters with NdisClModifyCallQoS if allowed by the
signaling protocol (see Client-Initiated Request to Change Call Parameters). Otherwise,
the client rejects the proposed QoS change by tearing down the call with
NdisClCloseCall(see Client-Initiated Request to Close a Call).

After ProtocolClIncomingCallQoS returns, the call manager or MCM driver
communicates the client's acceptance or rejection of the proposed change to the
remote party that originated the request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingcallqoschange
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingcallqoschange
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_call_qos_change
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmodifycallqos
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall

Adding a Party to a Multipoint Call
Article • 12/15/2021

A client requests to add a party to a multipoint call with NdisClAddParty. A client can
add a party only to an existing multipoint call--that is, a call for which the client supplied
a ProtocolPartyContext to NdisClMakeCall(see Making a Call).

The following figure shows a client of a call manager requesting to add a party to
multipoint call.

The following figure shows a client of an MCM driver requesting to add a party to
multipoint call.

Before it calls NdisClAddParty, a client must allocate and initialize its context area for
the party to be added. Clients commonly pass a pointer to such a context area as the
ProtocolPartyContext and a pointer to a variable within that context area as the
NdisPartyHandle parameters when they call NdisClAddParty.

In addition to an NdisVcHandle and a ProtocolPartyContext, the client passes call
parameters (a buffered CO_CALL_PARAMETERS structure) to NdisClAddParty. The
underlying network medium determines whether a client can specify per-party traffic
parameters on a multipoint VC.

The call to NdisClAddParty causes NDIS to forward this request to the
ProtocolCmAddParty function of the call manager or MCM driver with which the client
shares the given NdisVcHandle . NDIS passes the following to the ProtocolCmAddParty:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscladdparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_add_party

A CallMgrVcContext that indicates the VC for the call.

A pointer to a CO_CALL_PARAMETERS structure that contains the call parameters
that the client passes to NdisClAddParty.

An NdisPartyHandle that identifies the party to be added.

ProtocolCmAddParty allocates and initializes any dynamic resources needed for the
party being added to the call. From ProtocolCmAddParty, a call manager or MCM driver
communicates with network control devices or other media-specific agents, as
necessary, to add the specified party to the multipoint call.

If the client passed in call parameters that did not match those already established for
the multipoint VC, the call manager or MCM driver can, for example:

Set up the per-party traffic parameters if the underlying network medium supports
this feature on multipoint VCs.

Reset the client-supplied traffic parameters to those originally established for the
VC.

Change the call parameters for the VC and for every party currently connected on
it.

Fail the client's attempt to add a party.

ProtocolCmAddParty can complete synchronously or, more probably, asynchronously
with NdisCmAddPartyComplete, in the case of a call manager, or
NdisMCmAddPartyComplete, in the case of an MCM driver. Whether the call manager
or MCM driver completes the operation synchronously or asynchronously, it passes the
buffered call parameters to NDIS.

The call to Ndis(M)CmAddPartyComplete causes NDIS to call the client's
ProtocolClAddPartyComplete function. If the client's request to add the party
succeeded and if the signaling protocol allows the call manager or MCM driver to
modify the call parameters, ProtocolClAddPartyComplete should test the
CALL_PARAMETERS_CHANGED flag in the buffered CO_CALL_PARAMETERS structure to
determine whether the call parameters were modified. The signaling protocol
determines what the client can do if it finds the modifications to CO_CALL_PARAMETERS
unacceptable. Usually, a client calls NdisClDropParty in this case (see Dropping a Party
from a Multipoint Call).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmaddpartycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmaddpartycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_add_party_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty

Dropping a Party from a Multipoint Call
Article • 12/15/2021

A connection-oriented client that serves as the root of a multipoint call must eventually
drop each party from that call with NdisClDropParty or NdisClCloseCall.

A client drops a party from a call in the following situations:

Before initiating the tear down of a multipoint call with NdisClCloseCall(see Client-
Initiated Request to Close a Call), a client must drop all but the last party with
successive calls to NdisClDropParty. The client specifies the last party to drop from
the call with NdisClCloseCall.

In response to a remote party's request to be dropped from a multipoint call (see
Incoming Request to Drop a Party from a Multipoint Call), a client, from its
ProtocolClIncomingDropParty function, calls NdisClDropParty.

A client's call to NdisClDropParty causes NDIS to call the ProtocolCmDropParty
function of the call manager or MCM driver that shares the same NdisVcHandle to the
multipoint VC.

The following figure shows the client of a call manager requesting to drop a party from
a multipoint call.

The next figure shows the client of an MCM driver requesting to drop a party from a
multipoint call.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_drop_party
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_drop_party

ProtocolCmDropParty communicates with network control devices to drop a party from
an existing multipoint call. NDIS can pass to ProtocolCmDropParty a pointer to a buffer
that contains data (supplied to the client in the call to NdisClDropParty).
ProtocolCmDropParty must send any such data across the network before the
connection is dropped.

ProtocolCmDropParty can complete synchronously, or more probably, asynchronously
with NdisCmDropPartyComplete, in the case of a call manager, or
NdisMCmDropPartyComplete, in the case of an MCM driver.

The call to Ndis(M)CmDropPartyComplete causes NDIS to call the client's
ProtocolClDropPartyComplete function. If the client is in the process of tearing down a
multipoint VC that it created, ProtocolClDropPartyComplete can call NdisClDropParty
with any valid NdisPartyHandle to one of the remaining parties on the client's active
multipoint VC. If only one party remains on its multipoint VC, the client should drop that
party by passing its NdisPartyHandle to NdisClCloseCall(see Client-Initiated Request to
Close a Call).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdroppartycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdroppartycomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_drop_party_complete

Incoming Request to Drop a Party from
a Multipoint Call
Article • 12/15/2021

A call manager or MCM driver is alerted to an incoming request from a remote party to
drop that party from a multipoint call by signaling messages from the network. A call
manager or MCM driver can also signal an incoming request to drop a party if it detects
network problems that prevent further data transfers on the VC.

If the party that is being dropped from the call is not the last party on the VC, a call
manager calls NdisCmDispatchIncomingDropParty. An MCM driver calls
NdisMCmDispatchIncomingDropParty. If the party that is being dropped is the last
party on the VC, a call manager calls NdisCmDispatchIncomingCloseCall, and an MCM
driver calls NdisMCmDispatchIncomingCloseCall(see Incoming Request to Close a Call).

A call to Ndis(M)CmDispatchIncomingDropParty causes NDIS to call the client's
ProtocolClIncomingDropParty function.

The following shows an incoming request through a call manager to drop a party
through a multipoint call.

The next figure shows an incoming request through an MCM driver to drop a party
through a multipoint call.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingdropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingdropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_drop_party

ProtocolClIncomingDropParty should carry out any protocol-determined operations for
dropping the party from the client's multipoint VC. If the party that is being dropped is
not the last party on the VC, ProtocolClIncomingDropParty must call
NdisClDropParty(see Dropping a Party from a Multipoint Call). If the party being
dropped is the last party on the VC, ProtocolClIncomingDropParty must call
NdisClCloseCall(see Client-Initiated Request to Close a Call).

Sending and receiving data in CoNDIS
Article • 03/14/2023

Transferring data involves sending or receiving packets over an established and
activated VC.

Note Protocol drivers must not call NdisCoSendNetBufferLists to send data to a VC
after calling NdisClCloseCall for that VC.

The CoNDIS send and receive functions are similar to connectionless send and receive
functions. The primary difference between the CoNDIS and connectionless interfaces is
the management of virtual connections (VCs). For more information about
connectionless send and receive operations, see Send and Receive Operations.

In a single function call, CoNDIS drivers can send multiple NET_BUFFER_LIST structures
with multiple NET_BUFFER structures on each NET_BUFFER_LIST structure. Also, CoNDIS
drivers can indicate completed send operations for multiple NET_BUFFER_LIST structures
with multiple NET_BUFFER structures on each NET_BUFFER_LIST structure.

In the receive path, CoNDIS miniport drivers can provide a list of NET_BUFFER_LIST
structures to indicate receives. Each NET_BUFFER_LIST that a miniport driver provides
contains one NET_BUFFER structure. Because a different protocol binding can process
each NET_BUFFER_LIST structure, NDIS can independently return each NET_BUFFER_LIST
structure to the miniport driver.

To support NDIS 5.x and earlier drivers, CoNDIS provides a translation layer between
legacy NDIS_PACKET structures and the NET_BUFFER-based structures. CoNDIS
performs the necessary conversion between NET_BUFFER structures and NDIS_PACKET
structures. To avoid degrading performance because of the translation, CoNDIS drivers
must be updated to support NET_BUFFER structures and should support multiple
NET_BUFFER_LIST structures in all data paths.

This section includes the following topics:

Sending NET_BUFFER Structures from CoNDIS Drivers

Receiving NET_BUFFER Structures in CoNDIS Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557086(v=vs.85)

Sending NET_BUFFER Structures from
CoNDIS Drivers
Article • 03/14/2023

The following figure illustrates a basic CoNDIS send operation, which involves a protocol
driver, NDIS, and a miniport driver.

As the preceding figure shows, protocol drivers call the NdisCoSendNetBufferLists
function to send NET_BUFFER_LIST structures on a virtual connection (VC). NDIS then
calls the miniport driver's MiniportCoSendNetBufferLists function to forward the
NET_BUFFER_LIST structures to an underlying miniport driver.

All NET_BUFFER-based send operations are asynchronous. Therefore, the miniport driver
always calls the NdisMCoSendNetBufferListsComplete function and provides an
appropriate status code when it is done sending the data. The miniport driver can
complete the send operation for each NET_BUFFER_LIST structure independent of other
NET_BUFFER_LIST structures. NDIS calls the protocol driver's
ProtocolCoSendNetBufferListsComplete function each time the miniport driver calls
NdisMCoSendNetBufferListsComplete.

Protocol drivers can reclaim the ownership of the NET_BUFFER_LIST structures and all
associated structures and data as soon as NDIS calls the protocol driver's
ProtocolCoSendNetBufferListsComplete function.

The miniport driver or NDIS can return the NET_BUFFER_LIST structures in any order. But
protocol drivers are guaranteed that the list of NET_BUFFER structures that are attached
to each NET_BUFFER_LIST structure has not been modified.

Protocols drivers set the SourceHandle member in the NET_BUFFER_LIST structure to
the same value as the NdisVcHandle parameter of NdisCoSendNetBufferLists. NDIS
uses the SourceHandle member to return the NET_BUFFER_LIST structures to the
protocol driver that sent the NET_BUFFER_LIST structures.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcosendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Intermediate drivers also set the SourceHandle member in the NET_BUFFER_LIST
structure to the NdisVcHandle value. If an intermediate driver forwards a send request,
the driver must save the SourceHandle value that the overlying driver provided before it
writes to the SourceHandle member. When NDIS returns a forwarded NET_BUFFER_LIST
structure to the intermediate driver, the intermediate driver must restore the
SourceHandle that it saved.

Protocol drivers can cancel send requests by using the same mechanisms as
connectionless drivers. For more information about canceling send requests, see
Canceling a Send Operation.

Receiving NET_BUFFER Structures in
CoNDIS Drivers
Article • 03/14/2023

The following figure illustrates a basic CoNDIS receive operation, which involves a
protocol driver, NDIS, and a miniport driver.

As the preceding figure shows, miniport drivers call the
NdisMCoIndicateReceiveNetBufferLists function to indicate NET_BUFFER structures to
overlying drivers. In most miniport drivers, each NET_BUFFER structure is attached to a
separate NET_BUFFER_LIST structure, so protocol drivers can create a subset of the
original list of NET_BUFFER_LIST structures and forward them to different clients.
However, the number of NET_BUFFER structures that are attached to a NET_BUFFER_LIST
depends on the driver.

After the miniport driver links all the NET_BUFFER_LIST structures, the miniport driver
passes a pointer to the first NET_BUFFER_LIST structure in the list to the
NdisMCoIndicateReceiveNetBufferLists function. NDIS examines the NET_BUFFER_LIST
structures and calls the ProtocolCoReceiveNetBufferLists function of the protocol driver
that is associated with the specified virtual connection (VC). NDIS passes a subset of the
list that includes only the NET_BUFFER_LIST structures that are associated with the
correct binding to each protocol driver.

If the NDIS_RECEIVE_FLAGS_STATUS_RESOURCES flag is set in the CoReceiveFlags
parameter for a protocol driver's ProtocolCoReceiveNetBufferLists function, NDIS regains
ownership of the NET_BUFFER_LIST structures immediately after
ProtocolCoReceiveNetBufferLists returns.

If the NDIS_RECEIVE_FLAGS_STATUS_RESOURCES flag is not set in the CoReceiveFlags
parameter for a protocol driver's ProtocolCoReceiveNetBufferLists function, the
protocol driver can retain ownership of the NET_BUFFER_LIST structures. In this case, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_receive_net_buffer_lists

protocol driver must return the NET_BUFFER_LIST structures by calling the
NdisReturnNetBufferLists function.

If a miniport driver runs low on receive resources, it can set the
NDIS_RECEIVE_FLAGS_STATUS_RESOURCES flag in the CoReceiveFlags parameter for the
NdisMCoIndicateReceiveNetBufferLists function. In that case, the driver can reclaim
ownership of all of the indicated NET_BUFFER_LIST structures and embedded
NET_BUFFER structures as soon as NdisMCoIndicateReceiveNetBufferLists returns. If a
miniport driver indicates NET_BUFFER structures with the
NDIS_RECEIVE_FLAGS_RESOURCES flag set, the protocol drivers must copy the data, so
you should avoid using NDIS_RECEIVE_FLAGS_RESOURCES in this way. A miniport driver
should detect when it has low receive resources and should complete any steps that are
necessary to avoid this situation.

NDIS calls a miniport driver's MiniportReturnNetBufferLists function after the protocol
driver calls NdisReturnNetBufferLists.

Note If a miniport driver indicates a NET_BUFFER_LIST structure with a given status,
NDIS is not required to indicate the NET_BUFFER_LIST structure to the overlying drivers
with the same status. For example, NDIS could copy a NET_BUFFER_LIST structure with
the NDIS_RECEIVE_FLAGS_RESOURCES flag set and indicate the copy to the overlying
drivers with this flag cleared.

NDIS can return NET_BUFFER_LIST structures to the miniport driver in any arbitrary order
and in any combination. That is, the linked list of NET_BUFFER_LIST structures that NDIS
returns to a miniport driver by calling MiniportReturnNetBufferLists can have
NET_BUFFER_LIST structures from different previous calls to
NdisMCoIndicateReceiveNetBufferLists.

Miniport drivers must set the SourceHandle member in the NET_BUFFER_LIST
structures to the same value as the NdisVcHandle parameter of
NdisMCoIndicateReceiveNetBufferLists. so that NDIS can return the NET_BUFFER_LIST
structures to the correct miniport driver.

Intermediate drivers also set the SourceHandle member in the NET_BUFFER_LIST
structure to the NdisVcHandle value. If an intermediate driver forwards a receive
indication, the driver must save the SourceHandle value that the underlying driver
provided before it writes to the SourceHandle member. When NDIS returns a forwarded
NET_BUFFER_LIST structure to the intermediate driver, the intermediate driver must
restore the SourceHandle that it saved.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Client-Initiated Request to Close a Call
Article • 12/15/2021

If a client is closing a multipoint call to which more than one party is still connected, it
must first call NdisClDropParty as many times as necessary to drop all but the last party
from the call (see Dropping a Party from a Multipoint Call).

A client initiates the closing of a call with NdisClCloseCall. The following figure shows a
client initiating the closing of a call through a call manager.

The next figure shows a client initiating the closing of a call through an MCM driver.

A connection-oriented client typically calls NdisClCloseCall in any one of the following
circumstances:

To close an established outgoing or incoming call.

From the ProtocolClIncomingCloseCall function to tear down an established call
(see Incoming Request to Close a Call).

From the ProtocolClIncomingCallQoSChange function to tear down an established
call if a QoS change that the remote party proposes is unacceptable (see Incoming

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_close_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_call_qos_change

Request to Change Call Parameters).

From the ProtocolClModifyCallQoSComplete function to tear down an established
call if a QoS change that the client proposes is unacceptable to the remote party
(see Client-Initiated Request to Change Call Parameters).

A client's call to NdisClCloseCall causes NDIS to call the call manager's or MCM driver's
ProtocolCmCloseCall function. ProtocolCmCloseCall must communicate with network
control devices to terminate a connection between the local node and a remote node.

If ProtocolCmCloseCall is passed an explicit CallMgrPartyContext, the call that is being
terminated is a multipoint call. The call manager or MCM driver must perform any
necessary network communication with its networking hardware, as appropriate to its
media type, to terminate the call as a multipoint call.

NDIS can pass ProtocolCmCloseCall a pointer to a buffer containing data supplied by the
client in the call to NdisClClose. This data can be diagnostic data that indicates why the
call was closed or any other data that is required by the signaling protocol.
ProtocolCmCloseCall must send any such data across the network before completing the
call termination. If sending data concurrent with a connection being terminated is not
supported, a call manager or MCM driver should return NDIS_STATUS_INVALID_DATA.

ProtocolCmCloseCall can complete synchronously or, more probably, asynchronously
with NdisCmCloseCallComplete(in the case of a call manager) or
NdisMCmCloseCallComplete(in the case of an MCM driver). A call to
Ndis(M)CmCloseCallComplete causes NDIS to call the client's
ProtocolClCloseCallComplete function.

The call manager or MCM driver must then initiate deactivation of the VC used for the
call by respectively calling NdisCmDeactivateVc or NdisMCmDeactivateVc(see
Deactivating a VC). The creator of the VC (client, call manager, or MCM driver) can then
optionally initiate deletion of the VC (see Deleting a VC).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_modify_call_qos_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_close_call
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmclosecallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmclosecallcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_close_call_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdeactivatevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeactivatevc

Incoming Request to Close a Call
Article • 12/15/2021

When the remote client closes a call, the local call manager or MCM driver must indicate
this incoming request to the local client. To indicate such a request, a call manager calls
NdisCmDispatchIncomingCloseCall with the CloseStatus set to NDIS_STATUS_SUCCESS
(see the following figure).

An MCM driver calls NdisMCmDispatchIncomingCloseCall to indicate an incoming
request to close a call (see the following figure).

A call manager or MCM driver also can call Ndis(M)CmDispatchIncomingCloseCall:

From its ProtocolCmIncomingCallComplete function if it determines that the
connection-oriented client is requesting an unacceptable change in call parameters
in response to an incoming call previously that is indicated by the call manager or
MCM driver (see Incoming Request to Change Call Parameters).

If abnormal network conditions force the call manager to tear down active calls.

The call to Ndis(M)CmDispatchIncomingCloseCall causes NDIS to call the
ProtocolClIncomingCloseCall function of the connection-oriented client on that
connection. ProtocolClIncomingCloseCall should carry out any protocol-determined
operations, such as notifying its own client or clients that the connection is being
broken. If the call to be closed is a multipoint VC created by the client,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdispatchincomingclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cm_incoming_call_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_close_call

ProtocolClIncomingCloseCall must call NdisClDropParty one or more times until only a
single party remains on the VC (see Dropping a Party from a Multipoint Call).

ProtocolClIncomingCloseCall must then call NdisClCloseCall(with the handle to the last
party on the VC if the VC is a multipoint VC created by the client) to acknowledge that
the client will no longer attempt to send or expect to receive data on this particular VC.
If the call manager or MCM driver created this VC, ProtocolClIncomingCloseCall should
return control after it calls NdisClCloseCall. The call manager or MCM driver must also
deactivate the VC (see Deactivating a VC).

If the client originally created this VC for an outgoing call and CloseStatus is
NDIS_STATUS_SUCCESS, ProtocolClIncomingCloseCall can optionally tear down the VC
with NdisCoDeleteVc(see Deleting a VC) or reuse the VC for another call. If CloseStatus is
not NDIS_STATUS_SUCCESS, ProtocolClIncomingCloseCall must call NdisCoDeleteVc.

If the call manager or MCM driver originally created this VC for an incoming call, the call
manager or MCM driver can optionally delete the VC by respectively calling
NdisCoDeleteVc or NdisMCmDeleteVc.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscodeletevc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmdeletevc

Querying or Setting Information
Article • 12/15/2021

CoNDIS protocol drivers and NDIS can send OID requests to underlying drivers. CoNDIS
protocol drivers and miniport call managers (MCMs) can also send OID requests to
other protocol drivers.

A connection-oriented client or call manager calls NdisCoOidRequest to query or set
information that is maintained by another protocol driver on a binding or by the
underlying miniport driver.

Before it calls NdisCoOidRequest, a client or call manager allocates a buffer for its
request and initializes an NDIS_OID_REQUEST structure. This structure specifies the type
of request (query or set), identifies the information (OID) that is being queried or set,
and points to buffers that are used for passing OID data.

If the connection-oriented client or call manager passes a valid NdisAfHandle (see
Address Families), NDIS calls the ProtocolCoOidRequest function of each protocol
driver on the binding.

NDIS defines object identifier (OID) values to identify adapter parameters, including
operating parameters such as device characteristics, configurable settings, and statistics.
For more information about OIDs, see NDIS OIDs.

This section includes the following topics:

CoNDIS Miniport Driver OID Requests

CoNDIS Protocol Driver OID Requests

CoNDIS MCM OID Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

CoNDIS Miniport Driver OID Requests
Article • 03/14/2023

NDIS calls a CoNDIS miniport driver's MiniportCoOidRequest function to submit an OID
request to query or set information in the driver. NDIS calls MiniportCoOidRequest either
on its own behalf or on behalf of an overlying driver that called the NdisCoOidRequest
function.

NDIS passes MiniportCoOidRequest a pointer to an NDIS_OID_REQUEST structure that
contains the request information. The request structure contains an OID_Xxx identifier
that indicates the type of request and other members to define the request data.

The Timeout member specifies a time-out, in seconds, for the request. NDIS can reset
the driver or cancel the request if the time-out expires before the driver completes the
request.

The RequestId member specifies an optional identifier for the request. Miniport drivers
can set the RequestId member of a status indication to the value that the driver
obtained from the RequestId member of an associated OID request. Typically, miniport
drivers can ignore this member. If a driver must set this member, the driver must use
one of the required values, which are specified in the reference page for the particular
OID. For more information about status indications, see CoNDIS Miniport Driver Status
Indications.

A miniport driver can complete an OID request synchronously by returning a success or
failure status. The driver can complete an OID request asynchronously by returning
NDIS_STATUS_PENDING. In this case, the driver must call the
NdisMCoOidRequestComplete function to complete the operation.

If the MiniportCoOidRequest function returns NDIS_STATUS_PENDING, NDIS can call
MiniportCoOidRequest with another request for the adapter before the pending request
is completed. You should note that this is different from the connectionless NDIS
interface where all OID requests are serialized.

NDIS can call a miniport driver's MiniportCancelOidRequest function to cancel a CoNDIS
OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_oid_request

CoNDIS Protocol Driver OID Requests
Article • 03/14/2023

CoNDIS protocol drivers, either clients or call managers, can query or set the operating
parameters of miniport drivers and other protocol drivers. CoNDIS protocol drivers can
also query or set information in miniport call managers (MCMs). For more information
about OID requests and MCMs, see CoNDIS MCM OID Requests.

To originate an OID request to an underlying driver, a protocol driver calls the
NdisCoOidRequest function and sets the address family (AF) handle, at the
NdisAfHandle parameter, to NULL. To originate an OID request to another CoNDIS
protocol driver, a protocol driver calls NdisCoOidRequest and provides a valid AF
handle.

After a protocol driver calls the NdisCoOidRequest function, NDIS calls the OID request
function of the other driver (an underlying driver or another CoNDIS protocol driver).
For miniport drivers, NDIS calls the MiniportCoOidRequest function. For protocol
drivers, NDIS calls the ProtocolCoOidRequest function.

The following figure illustrates an OID request that is directed to a miniport driver.

The following figure illustrates an OID request that is directed to a protocol driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request

To complete synchronously, NdisCoOidRequest returns NDIS_STATUS_SUCCESS or an
error status. To complete asynchronously, NdisCoOidRequest returns
NDIS_STATUS_PENDING.

If NdisCoOidRequest returns NDIS_STATUS_PENDING, NDIS calls the
ProtocolCoOidRequestComplete function after the other driver completes the OID
request by calling the NdisMCoOidRequestComplete function or the
NdisCoOidRequestComplete function. In this case, NDIS passes the results of the
request at the OidRequest parameter of ProtocolCoOidRequestComplete. NDIS passes the
final status of the request at the Status parameter of ProtocolCoOidRequestComplete.

If NdisCoOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter points. In this
case, NDIS does not call the ProtocolCoOidRequestComplete function.

If an underlying driver should associate the OID request with a subsequent status
indication, the protocol driver should set the RequestId and RequestHandle members in
the NDIS_OID_REQUEST structure. If the underlying driver makes a status indication, the
driver sets the RequestId member in the NDIS_STATUS_INDICATION structure to the
value from the RequestId member of the NDIS_OID_REQUEST structure and the
DestinationHandle member in the NDIS_STATUS_INDICATION structure to the value
from the RequestHandle member of the NDIS_OID_REQUEST structure.

A driver can call NdisCoOidRequest when a binding is in the Restarting, Running,
Pausing, or Paused state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest

CoNDIS MCM OID Requests
Article • 03/14/2023

Like other CoNDIS call managers, miniport call managers (MCMs) can query or set the
operating parameters of CoNDIS client drivers. CoNDIS client drivers can query or set
the call manager parameters or the miniport driver parameters of an MCM.

To originate an OID request to a CoNDIS client driver, an MCM calls the
NdisMCmOidRequest function.

The following figure illustrates an OID request that an MCM originated.

After an MCM driver calls the NdisMCmOidRequest function, NDIS calls the
ProtocolCoOidRequest function of the client driver.

To complete synchronously, NdisMCmOidRequest returns NDIS_STATUS_SUCCESS or an
error status. To complete asynchronously, NdisMCmOidRequest returns
NDIS_STATUS_PENDING.

If NdisMCmOidRequest returns NDIS_STATUS_PENDING, NDIS calls the
ProtocolCoOidRequestComplete function of the MCM after the client drivers complete
the OID request by calling the NdisCoOidRequestComplete function. In this case, NDIS
passes the results of the request at the OidRequest parameter of
ProtocolCoOidRequestComplete. NDIS passes the final status of the request at the Status
parameter of ProtocolCoOidRequestComplete.

If NdisMCmOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter. In this case,
NDIS does not call the ProtocolCoOidRequestComplete function of the MCM.

CoNDIS client drivers can query or set the call manager operating parameters or
miniport operating parameters of MCMs. To originate an OID request for MCM call
manager parameters, a client calls the NdisCoOidRequest function and provides a valid
address family (AF) handle at the NdisAfHandle parameter. To originate an OID request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest

for MCM miniport parameters, a client calls the NdisCoOidRequest function and sets
the AF handle to NULL.

After a client calls the NdisCoOidRequest function, NDIS calls either the
MiniportCoOidRequest function or the ProtocolCoOidRequest function of the MCM
driver.

The following figure illustrates an OID request for the miniport parameters of the MCM.

The following figure illustrates an OID request for the call manager parameters of the
MCM.

To complete synchronously, NdisCoOidRequest returns NDIS_STATUS_SUCCESS or an
error status. To complete asynchronously, ProtocolCoOidRequest or
MiniportCoOidRequest returns NDIS_STATUS_PENDING.

If ProtocolCoOidRequest or MininportCoOidRequest returns NDIS_STATUS_PENDING,
NDIS calls the ProtocolCoOidRequestComplete function of the client after the MCM
completes the OID request by calling the NdisMCoOidRequestComplete or
NdisMCmOidRequestComplete function. In this case, NDIS passes the results of the
request at the OidRequest parameter of ProtocolCoOidRequestComplete. NDIS passes the
final status of the request at the Status parameter of ProtocolCoOidRequestComplete.

If NdisCoOidRequest returns NDIS_STATUS_SUCCESS, it returns the results of a query
request in the NDIS_OID_REQUEST structure at the OidRequest parameter. In this case,
NDIS does not call the client's ProtocolCoOidRequestComplete function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcooidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcmoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Indicating Miniport Driver Status
Article • 12/15/2021

Miniport drivers provide status indications to overlying drivers. The CoNDIS status
indication functions are similar to the connectionless status indication functions.

To report a change in the status of a connection-oriented NIC or a change in the status
of a particular VC active on the NIC, a connection-oriented miniport driver calls
NdisMCoIndicateStatusEx. If the miniport driver is reporting a change in the status of a
particular VC, it supplies an NdisVcHandle that identifies the VC.

This section includes the following topics:

CoNDIS Miniport Driver Status Indications

Handling Status Indications in a CoNDIS Protocol Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

CoNDIS Miniport Driver Status
Indications
Article • 03/14/2023

Miniport drivers call the NdisMCoIndicateStatusEx function to report a change in the
status of a miniport adapter. The miniport driver passes NdisMCoIndicateStatusEx a
pointer to an NDIS_STATUS_INDICATION structure that contains the status information.

The status indication includes information to identify the type of status and a reason for
the status change.

The miniport driver should set the SourceHandle member of the
NDIS_STATUS_INDICATION structure to the handle that NDIS passed to the
MiniportAdapterHandle parameter of the MiniportInitializeEx function. If the status
indication is associated with an OID request, the miniport driver can set the
DestinationHandle and RequestId members of NDIS_STATUS_INDICATION so that NDIS
can provide the status indication to a specific protocol binding. For more information
about OID requests, see CoNDIS Miniport Driver OID Requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Handling Status Indications in a CoNDIS
Protocol Driver
Article • 03/14/2023

Protocol drivers must supply a ProtocolCoStatusEx function that NDIS calls when an
underlying driver reports status.

NDIS calls a protocol driver's ProtocolCoStatusEx function after an underlying driver calls
a status indication function (for example, NdisMCoIndicateStatusEx). For more
information about indicating status from a miniport driver, see CoNDIS Miniport Driver
Status Indications.

If the status indication is associated with an OID request, the underlying driver can set
the DestinationHandle and RequestId members of the NDIS_STATUS_INDICATION
structure that contains the status information so that NDIS can provide the status
indication to a specific protocol binding. For more information about OID requests, see
CoNDIS Protocol Driver OID Requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Reset
Article • 12/15/2021

NDIS might call a miniport driver's or MCM driver's MiniportResetEx function to reset a
NIC.

Note AF, SAP, and VC handles that are active and valid before a reset are active and
valid after the reset.

The following figure shows a client issuing a reset request to a miniport driver.

The next figure shows a client issuing a reset request to an MCM driver.

When an underlying connection-oriented driver is resetting a NIC, NDIS notifies each
bound protocol by calling the protocol's ProtocolCoStatusEx function with
NDIS_STATUS_RESET_START.

NDIS will not accept protocol-initiated sends and requests to a miniport driver or MCM
driver while the miniport driver's or MCM driver's NIC is being reset. While a reset is in
progress, a protocol driver must not attempt to send packets to the miniport driver with

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_co_status_ex

NdisCoSendNetBufferLists or request information from the miniport driver with
NdisCoOidRequest.

MiniportResetEx performs any device-dependent actions that are required to reset the
NIC. MiniportResetEx can complete synchronously, or it can complete asynchronously
with a call to NdisMResetComplete:

If the reset completes synchronously, NDIS calls each bound protocol's
ProtocolCoStatusEx function with NDIS_STATUS_RESET_END.

If the reset completes asynchronously, NDIS calls each bound protocol's
ProtocolCoStatusEx function with NDIS_STATUS_RESET_END.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscosendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismresetcomplete

Introduction to NDIS Network Interfaces
Article • 03/14/2023

To support the management information base (MIB), NDIS manages a collection of
network interface information for the local computer. NDIS interface providers provide
information about some network interfaces to NDIS. NDIS provides a proxy interface
provider that registers interfaces and handles interface provider requests for miniport
adapters and filter modules. Therefore, no NDIS drivers are required to be network
interface providers.

However, all NDIS network driver types can register as interface providers. Such drivers
register network interfaces and provide callback functions to respond to interface OID
requests. NDIS interface providers typically provide information about interfaces that are
not directly accessible to NDIS and are not supported by the NDIS proxy interface
provider. For example, a MUX intermediate driver can have internal interfaces between
its virtual miniports and underlying adapters.

This section includes:

Overview of NDIS Network Interfaces

Registering as an Interface Provider

Managing NDIS Network Interfaces

Handling OID Query and Set Requests in an NDIS Interface Provider

Mapping of NDIS Network Interfaces to NDIS OIDs

Overview of NDIS Network Interfaces
Article • 03/14/2023

NDIS network interfaces provide a consistent representation for all of the various
network interfaces that Microsoft Windows supports. Without the NDIS network
interface services, all network interfaces are not visible to the computer administrator,
and the interfaces that are visible do not necessarily support the management
information base (MIB). Also, NDIS network interface services enable the layering
relationships between interfaces to be visible to the administrator.

This section includes:

NDIS Network Interface Services

NDIS Network Interface Architecture

NDIS Interface Provider Operations

NDIS Interface Types

７ Note

 The NDIS 6.0 Network Interfaces section refers to many Request for Comments
(RFCs) from the Internet Engineering Task Force (IETF). To view an IETF RFC, visit the
IETF Request for Comments Web site, and search for the RFC in the RFC number
box under IETF repository retrieval.

https://go.microsoft.com/fwlink/p/?linkid=45661

NDIS Network Interface Services
Article • 03/14/2023

The NDIS network interfaces programming interface provides services to:

Generate a locally unique identifier (NET_LUID) for each interface. NET_LUID
values:

Must persist when the computer restarts. Interface providers must make
NET_LUIDs persistent even if the associated interface is not persistent. For
example, this persistence allows the interface provider to free the NET_LUID
index if there is a computer power failure.
Must be associated with an interface type (IfType in RFC 2863).
Must be unique on a local computer.
Can be converted to a text representation because a NET_LUID is equivalent to
the interface name (ifName in RFC 2863).

Generate a locally unique interface index (a 24-bit value that is also referred to as
IfIndex) for each interface. IfIndex values have the following properties:

Low numbers are preferred. For example, NDIS reuses the lowest available
interface index.
IfIndex values do not persist when the computer restarts.
There is a one-to-one correspondence between a NET_LUID value and an
IfIndex value.

Map between interface indexes, NET_LUID values, and "friendly names" (For
example, a friendly name as displayed in the network connections folder).

Define the layering order of interfaces in a driver stack.

Query and set interface properties and tables that NDIS drivers manage and that
RFCs 2863 and 2864 specify.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh

NDIS Network Interface Architecture
Article • 03/14/2023

NDIS provides a set of services to support network interfaces and interface stacks. In the
WDK, this set of services is referred to as NDIS network interface (NDISIF) services.

The following figure shows the NDISIF architecture for NDIS 6.0 and later.

The NDISIF components of the architecture include:

NDIS IF Services
An NDIS component that handles registration of interface providers and interfaces,
implements OID query and set services for interface providers, and supplies other
NDISIF services.
NDIS IF provider interface
An interface that the NDIS IF Services component supplies to enable NDIS drivers
to implement interface providers.
NDIS proxy interface provider
An NDIS component that implements the NDISIF provider services on behalf of
NDIS miniport drivers (for each miniport adapter) and filter drivers (for each filter
module).
Interface provider
An NDIS driver that provides the NDISIF provider services for interfaces that the
NDIS proxy interface provider component cannot serve. For example, a MUX
intermediate driver can have internal interfaces between its virtual miniports and
underlying adapters.

The NDIS proxy interface provider uses the standard NDIS miniport driver and NDIS
filter driver interfaces to provide NDISIF services for miniport adapters and filter
modules. Therefore, miniport drivers and filter drivers are not required to register as
interface providers.

NDIS Interface Provider Operations
Article • 03/14/2023

All NDIS drivers can register as interface providers. Whenever a driver (or the NDIS
proxy interface provider) detects a new interface that is being introduced to the
computer, it allocates a NET_LUID index, registers the interface, and retains the
associated NET_LUID value in persistent storage (such as the registry). The following list
describes several examples of how a new interface can be introduced to a computer:

Installing a network adapter, either a virtual adapter for an intermediate driver or a
physical adapter. In this case, the NDIS proxy interface provider manages the
interface.

Attaching a filter module. In this case, the NDIS proxy interface provider manages
the interface.

MUX intermediate driver internal bindings. The MUX intermediate driver should
implement NDIS provider services to handle this case because the internal
interfaces are not visible to NDIS.

When the computer subsequently restarts, the interface provider should not allocate a
new NET_LUID for the same interface if the interface is persistent; instead, the interface
provider should use the previously stored NET_LUID value to register the same interface.
Also, even if the interface is not persistent, the interface provider must free the
NET_LUID index if there is a computer power failure. Therefore, the interface provider
should store the NET_LUID in persistent storage (for example, the registry).

If an interface provider detects that an interface is being shut down, it should deregister
the interface.

Note The NDIS proxy provider deregisters interfaces for miniport adapters when they
are uninstalled and filter modules when they are detached.

If an interface provider detects that an interface is being removed completely (for
example, the NDIS proxy provider is notified that a miniport adapter is being
uninstalled), the interface provider deregisters the interface and releases the NET_LUID
index. The NDIS proxy provider also releases the NET_LUID index when a filter module is
detached.

During run time, interface providers handle OID requests for the interfaces that they
registered. The NDIS proxy interface provider might issue OID requests to underlying
drivers to obtain interface information.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh

NDIS Interface Types
Article • 03/14/2023

NDIS interface types correspond to the IfType object that is defined in the management
information base (MIB). These interface types are used in the IfType members and IfType
parameters for many NDIS structures and functions.

NDIS interface types are registered with the Internet Assigned Numbers Authority
(IANA), which publishes a list of interface types periodically in the Assigned Numbers
RFC, or in a derivative of it that is specific to Internet network management number
assignments. For more information about the IANA IfType definitions, see IANA ifType
MIB Definitions . For more information about the IANA, see the IANA Web site.

The following table describes IfType values.

Name Value Comment

IF_TYPE_OTHER 1 Use this value if none of the other
IF_TYPE_Xxx types applies.

IF_TYPE_REGULAR_1822 2

IF_TYPE_HDH_1822 3

IF_TYPE_DDN_X25 4

IF_TYPE_RFC877_X25 5

IF_TYPE_ETHERNET_CSMACD 6

IF_TYPE_IS088023_CSMACD 7

IF_TYPE_ISO88024_TOKENBUS 8

IF_TYPE_ISO88025_TOKENRING 9

IF_TYPE_ISO88026_MAN 10

IF_TYPE_STARLAN 11

IF_TYPE_PROTEON_10MBIT 12

IF_TYPE_PROTEON_80MBIT 13

IF_TYPE_HYPERCHANNEL 14

IF_TYPE_FDDI 15

IF_TYPE_LAP_B 16

https://go.microsoft.com/fwlink/p/?linkid=60066
https://go.microsoft.com/fwlink/p/?linkid=60068

IF_TYPE_SDLC 17

IF_TYPE_DS1 18 DS1-MIB

IF_TYPE_E1 19 Obsolete. See DS1-MIB.

IF_TYPE_BASIC_ISDN 20

IF_TYPE_PRIMARY_ISDN 21

IF_TYPE_PROP_POINT2POINT_SERIAL 22 Proprietary serial

IF_TYPE_PPP 23

IF_TYPE_SOFTWARE_LOOPBACK 24

IF_TYPE_EON 25 CLNP over IP

IF_TYPE_ETHERNET_3MBIT 26

IF_TYPE_NSIP 27 XNS over IP

IF_TYPE_SLIP 28 Generic Slip

IF_TYPE_ULTRA 29 ULTRA Technologies

IF_TYPE_DS3 30 DS3-MIB

IF_TYPE_SIP 31 SMDS and coffee

IF_TYPE_FRAMERELAY 32 DTE only

IF_TYPE_RS232 33

IF_TYPE_PARA 34 Parallel port

IF_TYPE_ARCNET 35

IF_TYPE_ARCNET_PLUS 36

IF_TYPE_ATM 37 ATM cells

IF_TYPE_MIO_X25 38

IF_TYPE_SONET 39 SONET or SDH

IF_TYPE_X25_PLE 40

IF_TYPE_ISO88022_LLC 41

IF_TYPE_LOCALTALK 42

IF_TYPE_SMDS_DXI 43

IF_TYPE_FRAMERELAY_SERVICE 44 FRNETSERV-MIB

IF_TYPE_V35 45

IF_TYPE_HSSI 46

IF_TYPE_HIPPI 47

IF_TYPE_MODEM 48 Generic modem

IF_TYPE_AAL5 49 AAL5 over ATM

IF_TYPE_SONET_PATH 50

IF_TYPE_SONET_VT 51

IF_TYPE_SMDS_ICIP 52 SMDS InterCarrier interface

IF_TYPE_PROP_VIRTUAL 53 Proprietary virtual/internal

IF_TYPE_PROP_MULTIPLEXOR 54 Proprietary multiplexing

IF_TYPE_IEEE80212 55 100BaseVG

IF_TYPE_FIBRECHANNEL 56

IF_TYPE_HIPPIINTERFACE 57

IF_TYPE_FRAMERELAY_INTERCONNECT 58 Obsolete. Use 32 or 44 instead.

IF_TYPE_AFLANE_8023 59 ATM-emulated LAN-for 802.3

IF_TYPE_AFLANE_8025 60 ATM-emulated LAN for 802.5

IF_TYPE_CCTEMUL 61 ATM-emulated circuit

IF_TYPE_FASTETHER 62 Fast Ethernet (100BaseT)

IF_TYPE_ISDN 63 ISDN and X.25

IF_TYPE_V11 64 CCITT V.11/X.21

IF_TYPE_V36 65 CCITT V.36

IF_TYPE_G703_64K 66 CCITT G703 at 64Kbps

IF_TYPE_G703_2MB 67 Obsolete. See DS1-MIB.

IF_TYPE_QLLC 68 SNA QLLC

IF_TYPE_FASTETHER_FX 69 Fast Ethernet (100BaseFX)

IF_TYPE_CHANNEL 70

IF_TYPE_IEEE80211 71 Radio spread spectrum

IF_TYPE_IBM370PARCHAN 72 IBM System 360/370 OEMI channel

IF_TYPE_ESCON 73 IBM Enterprise Systems connection

IF_TYPE_DLSW 74 Data link switching

IF_TYPE_ISDN_S 75 ISDN S/T interface

IF_TYPE_ISDN_U 76 ISDN U interface

IF_TYPE_LAP_D 77 Link access protocol D

IF_TYPE_IPSWITCH 78 IP switching objects

IF_TYPE_RSRB 79 Remote source route bridging

IF_TYPE_ATM_LOGICAL 80 ATM logical port

IF_TYPE_DS0 81 Digital signal level 0

IF_TYPE_DS0_BUNDLE 82 Group of ds0s on the same ds1

IF_TYPE_BSC 83 Bisynchronous protocol

IF_TYPE_ASYNC 84 Asynchronous protocol

IF_TYPE_CNR 85 Combat net radio

IF_TYPE_ISO88025R_DTR 86 ISO 802.5r DTR

IF_TYPE_EPLRS 87 Ext Pos Loc Report Sys

IF_TYPE_ARAP 88 Appletalk remote access protocol

IF_TYPE_PROP_CNLS 89 Proprietary connectionless protocol

IF_TYPE_HOSTPAD 90 CCITT-ITU X.29 PAD protocol

IF_TYPE_TERMPAD 91 CCITT-ITU X.3 PAD facility

IF_TYPE_FRAMERELAY_MPI 92 Multiproto interconnect over FR

IF_TYPE_X213 93 CCITT-ITU X213

IF_TYPE_ADSL 94 Asymmetric digital subscriber loop

IF_TYPE_RADSL 95 Rate-adapt digital subscriber loop

IF_TYPE_SDSL 96 Symmetric digital subscriber loop

IF_TYPE_VDSL 97 Very H-Speed digital subscriber
loop

IF_TYPE_ISO88025_CRFPRINT 98 ISO 802.5 CRFP

IF_TYPE_MYRINET 99 Myricom Myrinet

IF_TYPE_VOICE_EM 100 Voice recEive and transMit

IF_TYPE_VOICE_FXO 101 Voice foreign exchange office

IF_TYPE_VOICE_FXS 102 Voice foreign exchange station

IF_TYPE_VOICE_ENCAP 103 Voice encapsulation

IF_TYPE_VOICE_OVERIP 104 Voice over IP encapsulation

IF_TYPE_ATM_DXI 105 ATM DXI

IF_TYPE_ATM_FUNI 106 ATM FUNI

IF_TYPE_ATM_IMA 107 ATM IMA

IF_TYPE_PPPMULTILINKBUNDLE 108 PPP multilink bundle

IF_TYPE_IPOVER_CDLC 109 IBM ipOverCdlc

IF_TYPE_IPOVER_CLAW 110 IBM common link access to
workstation

IF_TYPE_STACKTOSTACK 111 IBM stackToStack

IF_TYPE_VIRTUALIPADDRESS 112 IBM VIPA

IF_TYPE_MPC 113 IBM multi-proto channel support

IF_TYPE_IPOVER_ATM 114 IBM ipOverAtm

IF_TYPE_ISO88025_FIBER 115 ISO 802.5j Fiber Token Ring

IF_TYPE_TDLC 116 IBM twinaxial data link control

IF_TYPE_GIGABITETHERNET 117

IF_TYPE_HDLC 118

IF_TYPE_LAP_F 119

IF_TYPE_V37 120

IF_TYPE_X25_MLP 121 Multi-link protocol

IF_TYPE_X25_HUNTGROUP 122 X.25 hunt group

IF_TYPE_TRANSPHDLC 123

IF_TYPE_INTERLEAVE 124 Interleave channel

IF_TYPE_FAST 125 Fast channel

IF_TYPE_IP 126 IP (for APPN HPR in IP networks)

IF_TYPE_DOCSCABLE_MACLAYER 127 CATV MAC layer

IF_TYPE_DOCSCABLE_DOWNSTREAM 128 CATV downstream interface

IF_TYPE_DOCSCABLE_UPSTREAM 129 CATV upstream interface

IF_TYPE_A12MPPSWITCH 130 Avalon parallel processor

IF_TYPE_TUNNEL 131 Encapsulation interface

IF_TYPE_COFFEE 132 Coffee pot

IF_TYPE_CES 133 Circuit emulation service

IF_TYPE_ATM_SUBINTERFACE 134 ATM sub-interface

IF_TYPE_L2_VLAN 135 Layer 2 virtual LAN using 802.1Q

IF_TYPE_L3_IPVLAN 136 Layer 3 virtual LAN using IP

IF_TYPE_L3_IPXVLAN 137 Layer 3 virtual LAN using IPX

IF_TYPE_DIGITALPOWERLINE 138 IP over power lines

IF_TYPE_MEDIAMAILOVERIP 139 Multimedia mail over IP

IF_TYPE_DTM 140 Dynamic synchronous transfer
mode

IF_TYPE_DCN 141 Data communications network

IF_TYPE_IPFORWARD 142 IP forwarding interface

IF_TYPE_MSDSL 143 Multi-rate symmetric DSL

IF_TYPE_IEEE1394 144 IEEE 1394 high performance serial
bus

IF_TYPE_IF_GSN 145

IF_TYPE_DVBRCC_MACLAYER 146

IF_TYPE_DVBRCC_DOWNSTREAM 147

IF_TYPE_DVBRCC_UPSTREAM 148

IF_TYPE_ATM_VIRTUAL 149

IF_TYPE_MPLS_TUNNEL 150

IF_TYPE_SRP 151

IF_TYPE_VOICEOVERATM 152

IF_TYPE_VOICEOVERFRAMERELAY 153

IF_TYPE_IDSL 154

IF_TYPE_COMPOSITELINK 155

IF_TYPE_SS7_SIGLINK 156

IF_TYPE_PROP_WIRELESS_P2P 157

IF_TYPE_FR_FORWARD 158

IF_TYPE_RFC1483 159

IF_TYPE_USB 160

IF_TYPE_IEEE8023AD_LAG 161

IF_TYPE_BGP_POLICY_ACCOUNTING 162

IF_TYPE_FRF16_MFR_BUNDLE 163

IF_TYPE_H323_GATEKEEPER 164

IF_TYPE_H323_PROXY 165

IF_TYPE_MPLS 166

IF_TYPE_MF_SIGLINK 167

IF_TYPE_HDSL2 168

IF_TYPE_SHDSL 169

IF_TYPE_DS1_FDL 170

IF_TYPE_POS 171

IF_TYPE_DVB_ASI_IN 172

IF_TYPE_DVB_ASI_OUT 173

IF_TYPE_PLC 174

IF_TYPE_NFAS 175

IF_TYPE_TR008 176

IF_TYPE_GR303_RDT 177

IF_TYPE_GR303_IDT 178

IF_TYPE_ISUP 179

IF_TYPE_PROP_DOCS_WIRELESS_MACLAYER 180

IF_TYPE_PROP_DOCS_WIRELESS_DOWNSTREAM 181

IF_TYPE_PROP_DOCS_WIRELESS_UPSTREAM 182

IF_TYPE_HIPERLAN2 183

IF_TYPE_PROP_BWA_P2MP 184

IF_TYPE_SONET_OVERHEAD_CHANNEL 185

IF_TYPE_DIGITAL_WRAPPER_OVERHEAD_CHANNEL 186

IF_TYPE_AAL2 187

IF_TYPE_RADIO_MAC 188

IF_TYPE_ATM_RADIO 189

IF_TYPE_IMT 190

IF_TYPE_MVL 191

IF_TYPE_REACH_DSL 192

IF_TYPE_FR_DLCI_ENDPT 193

IF_TYPE_ATM_VCI_ENDPT 194

IF_TYPE_OPTICAL_CHANNEL 195

IF_TYPE_OPTICAL_TRANSPORT 196

IF_TYPE_WWANPP 243 Mobile Broadband devices based on
GSM technology

IF_TYPE_WWANPP2 244 Mobile Broadband devices based on
CDMA technology

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Registering as an Interface Provider
Article • 05/20/2024

An NDIS interface provider is a software component that provides and manages
information for NDIS network interfaces. For example, protocol drivers, MUX
intermediate drivers, and NDIS are interface providers. (NDIS provides a proxy interface
provider for miniport drivers and filter drivers. However, miniport drivers and filter
drivers can also be interface providers.) Each interface provider calls the
NdisIfRegisterProvider function to register as a network interface provider.

If the call to NdisIfRegisterProvider succeeds, NdisIfRegisterProvider returns a handle
at the address that the pNdisProviderHandle parameter specifies. The caller uses this
handle in subsequent calls (for example, to register interfaces). The
ProviderCharacteristics parameter points to an NDIS_IF_PROVIDER_CHARACTERISTICS
structure that contains the provider's entry points to handle OID query and set requests.
NDIS_IF_PROVIDER_CHARACTERISTICS includes the following query and set functions:

ProviderQueryObject

ProviderSetObject

For more information about interface provider query and set handlers, see Handling OID
Query and Set Requests in an NDIS Interface Provider.

NDIS drivers can call the NdisIfDeregisterProvider function to deregister as a network
interface provider. For example, NDIS drivers should deregister as an interface providers
when they are unloaded. An interface provider must ensure that it does not have any
interfaces registered before it calls NdisIfDeregisterProvider. The provider must not use
the provider handle that it passed at the NdisProviderHandle parameter of
NdisIfDeregisterProvider after it calls NdisIfDeregisterProvider.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_if_provider_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_query_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_set_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifderegisterprovider

Managing NDIS Network Interfaces
Article • 03/14/2023

NDIS network interface providers register network interfaces with NDIS. Before
registering an interface, an interface provider obtains a NET_LUID value for that
interface. NDIS assigns an interface index (IfIndex in RFC 2863) to an interface when it is
registered.

NDIS also provides services that drivers can use to manage entries in the interface stack
table (ifStackTable in RFC 2863).

This section includes:

NET_LUID Value

Using a NET_LUID Index

Registering a Network Interface

Deregistering a Network Interface

Mapping a NET_LUID Value to an Interface Index

NET_LUID Values for Miniport Adapters and Filter Modules

Maintaining a Network Interface Stack

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh

NET_LUID Value
Article • 12/15/2021

A NET_LUID value is a 64-bit value that identifies an NDIS network interface. The
NET_LUID data type is a union that can provide access to the NET_LUID value as a single
64-bit value or as a structure that contains a NET_LUID index and an interface type.

The NetLuidIndex member of the NET_LUID union is a 24-bit NET_LUID index that NDIS
allocates when an interface provider calls the NdisIfAllocateNetLuidIndex function.
NDIS and interface providers use this index to distinguish between multiple interfaces
that have the same interface type. Therefore, this index is unique within a local
computer.

The IfType member of the NET_LUID union is a 16-bit value that contains an Internet
Assigned Numbers Authority (IANA)-defined interface type. For a list of valid interface
types, see NDIS Interface Types.

The NET_LUID data type is equivalent to the ifName object in RFC 2863, because NDIS
derives the ifName string from a NET_LUID value.

To create a NET_LUID value, an interface provider calls the NdisIfAllocateNetLuidIndex
function to allocate a NET_LUID index and then calls the NDIS_MAKE_NET_LUID macro
to build the NET_LUID value. For more information about creating NET_LUID values, see
Using NET_LUID Indexes.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifallocatenetluidindex
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifallocatenetluidindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/nf-ntddndis-ndis_make_net_luid

Using a NET_LUID Index
Article • 12/15/2021

NDIS provides functions to allocate and free the NET_LUID indexes that are required to
create NET_LUID values. An NDIS interface provider must allocate a NET_LUID value to
register an interface.

To allocate a NET_LUID index, an interface provider calls the NdisIfAllocateNetLuidIndex
function. After allocating the index, the interface provider calls the
NDIS_MAKE_NET_LUID macro to build the NET_LUID value. To free a NET_LUID index, an
interface provider calls the NdisIfFreeNetLuidIndex function.

NdisIfAllocateNetLuidIndex attempts to allocate a 24-bit value that is associated with
the interface type that the caller specified at the IfType parameter and that is unique to
the local computer. If the index allocation succeeds, NdisIfAllocateNetLuidIndex returns
NDIS_STATUS_SUCCESS and provides a NET_LUID index at the address that is provided
in the pNetLuidIndex parameter. If NDIS is not able to find a free NET_LUID index,
NdisIfAllocateNetLuidIndex returns NDIS_STATUS_RESOURCES.
NdisIfAllocateNetLuidIndex can return other NDIS status values to indicate internal
errors within NDIS. NDIS records the allocation of this index for when the computer
subsequently restarts. NDIS will not use a particular index for future callers, even after
the computer restarts, until the interface provider that allocated that index calls the
NdisIfFreeNetLuidIndex function for that index.

NdisIfFreeNetLuidIndex frees a previously allocated NET_LUID index so that NDIS can
possibly reallocate that index to another interface. The caller must pass in the same
interface type at IfType that the caller used when it called NdisIfAllocateNetLuidIndex to
allocate the NET_LUID index. If the free operation succeeds, NdisIfFreeNetLuidIndex
returns NDIS_STATUS_SUCCESS. If the call to NdisIfFreeNetLuidIndex fails, the interface
provider should remove any information that it saved in persistent storage that is
related to the NET_LUID index. Removing the information will ensure that the provider
does not keep trying to free an index that is already freed after every computer restart.
After calling NdisIfFreeNetLuidIndex, the caller must not use the NET_LUID value again
unless it calls NdisIfAllocateNetLuidIndex again for the same interface type and
receives the same NET_LUID index that it freed.

To register a network interface, an interface provider must pass a valid NET_LUID value
to the NdisIfRegisterInterface function. For more information about registering network
interfaces, see Registering a Network Interface.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifallocatenetluidindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/nf-ntddndis-ndis_make_net_luid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiffreenetluidindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiffreenetluidindex
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifallocatenetluidindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface

Registering a Network Interface
Article • 12/15/2021

Whenever a computer restarts, NDIS starts with an empty list of registered network
interfaces. An interface provider calls the NdisIfRegisterInterface function whenever it
starts or detects an interface and its NET_LUID value is known. The mechanism for
starting or detecting an interface is application-specific.

NdisIfRegisterInterface returns NDIS_STATUS_SUCCESS only if NDIS successfully adds
the specified interface to its list of known interfaces on the computer. In this case,
NdisIfRegisterInterface returns an interface index at the pIfIndex parameter. However, a
call to NdisIfRegisterInterface does not imply that the interface is active; this call
guarantees only that the interface exists. NdisIfRegisterInterface returns
NDIS_STATUS_RESOURCES if NDIS does not have sufficient resources available to
register the interface. NdisIfRegisterInterface can also return other NDIS status values.

The ProviderIfContext parameter of NdisIfRegisterInterface contains a handle to the
caller's context area for the interface--this handle is passed to the caller's OID query and
set functions. The pIfInfo parameter contains a pointer to a NET_IF_INFORMATION
structure that includes information about the interface.

The following topics provide more information about network interfaces that
NdisIfRegisterInterface successfully registers:

Allocating an Interface Index

Network Interface Information

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_if_information

Allocating an Interface Index
Article • 12/15/2021

If an interface provider successfully registers an interface by calling the
NdisIfRegisterInterface function, NDIS allocates an interface index for that interface and
returns the index value at the location that the pIfIndex parameter specifies. The
interface index is a 16-bit value that is unique on the local computer. NDIS does not
guarantee that it will allocate the same interface index when an interface provider
registers the same NET_LUID value after the computer restarts. The interface index value
zero (NET_IFINDEX_UNSPECIFIED) is reserved, and NDIS does not assign it to any
interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh

Network Interface Information
Article • 12/15/2021

An interface provider supplies information about each registered interface by using the
following data structures.

NET_IF_INFORMATION

NDIS_INTERFACE_INFORMATION

To register an interface, a provider passes a pointer to an initialized
NET_IF_INFORMATION structure to the NdisIfRegisterInterface function.

NDIS interface providers provide an NDIS_INTERFACE_INFORMATION structure in
response to a query of the OID_GEN_INTERFACE_INFO OID.

NDIS can also query providers with other OIDs. For more information about NDIS
provider OIDs, see NDIS Network Interface to OID Mapping. For more information
about handling OID requests in interface providers, see Handling OID Query and Set
Requests in an NDIS Interface Provider.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_if_information
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information

Deregistering a Network Interface
Article • 12/15/2021

An NDIS interface provider calls the NdisIfDeregisterInterface function to indicate that
a specified interface should be removed from the list of known interfaces on the
computer, for example, because the interface has been uninstalled. Other reasons for
deregistering interfaces are application-specific. To promote good resource
management, interface providers should always deregister interfaces that are no longer
useful.

NdisIfDeregisterInterface releases the interface index that is associated with the
specified interface. NDIS can reassign the index to an interface that is registered in the
future. However the NET_LUID index that is associated with the corresponding
NET_LUID value is not reclaimed--if necessary, the interface provider can release the
NET_LUID index by calling the NdisIfFreeNetLuidIndex function.

Note The NDIS proxy provider deregisters interfaces for miniport adapters when they
are uninstalled and filter modules when they are detached.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifderegisterinterface
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisiffreenetluidindex

Mapping a NET_LUID Value to an
Interface Index
Article • 12/15/2021

NDIS provides services to obtain the interface index for a given NET_LUID value, and
vice versa. Note that the NET_LUID value is the persistent identification for an interface,
and the interface index that corresponds to a particular NET_LUID value can change
even if the computer does not restart (for example, when a filter module is attached and
detached because the associated miniport adapter was disabled and reenabled).

NDIS provides the following mapping functions:

NdisIfGetInterfaceIndexFromNetLuid

NdisIfGetNetLuidFromInterfaceIndex

These functions return NDIS_STATUS_INTERFACE_NOT_FOUND if the given NET_LUID or
interface index is not present in the list of registered interfaces.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifgetinterfaceindexfromnetluid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifgetnetluidfrominterfaceindex

NET_LUID Values for Miniport Adapters
and Filter Modules
Article • 12/15/2021

NDIS registers interfaces on behalf of miniport drivers (for each miniport adapter) and
filter drivers (for each filter module). A protocol driver can query NDIS for the interface
index and NET_LUID value of a miniport adapter that the driver is bound to by using its
binding handle. For example, the protocol-driver lower edge of a MUX intermediate
driver might obtain the NET_LUID values to specify the layering order of its internal
interfaces.

A protocol driver passes a binding handle at the NdisBindingHandle parameter to the
NdisIfQueryBindingIfIndex function and receives interface indexes and NET_LUID
values for the interfaces at the top and bottom of a filter stack. Alternatively, the
protocol driver can retrieve these values in the NDIS_BIND_PARAMETERS structure.

A miniport driver can also query NDIS for the interface index of a miniport adapter by
using the NDIS miniport adapter handle. A miniport driver receives an interface index
and a NET_LUID value in the NDIS_MINIPORT_INIT_PARAMETERS structure.

A filter driver gets an interface index and a NET_LUID value for a filter module in the
NDIS_FILTER_ATTACH_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-net_luid_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifquerybindingifindex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters

Maintaining a Network Interface Stack
Article • 12/15/2021

NDIS provides services to maintain the interface stack table (ifStackTable in RFC 2863).
NDIS maintains the stack table for NDIS miniport adapters, NDIS 5.x filter intermediate
drivers, and NDIS filter modules. NDIS also provides services to enable NDIS drivers to
add and delete entries in this table. For MUX intermediate drivers, NDIS does not have
access to the relationship between the virtual miniport interface and the protocol lower
interface. Therefore, NDIS 6.0 MUX intermediate drivers must specify these internal
interface relationships.

To define a stack relationship between two interfaces, any NDIS driver can pass
HigherLayerIfIndex and LowerLayerIfIndex parameters to the NdisIfAddIfStackEntry
function. These parameters specify one network interface that should be higher in the
network interface stack and one network interface that should be lower in the stack.

A driver that has stack order information about an interface that is related to another
interface (for example, internal bindings in a MUX intermediate driver that are not visible
to NDIS) calls NdisIfAddIfStackEntry to populate the interface stack table. This function
returns NDIS_STATUS_SUCCESS if the stack entry was successfully made. Typically, the
component that owns or is the interface provider for the higher layer interface (which
HigherLayerIfIndex identifies) calls NdisIfAddIfStackEntry.

To remove a stack table entry, a driver passes HigherLayerIfIndex and LowerLayerIfIndex
parameters to the NdisIfDeleteIfStackEntry function.

For an example of maintaining the interface stack, see the MUX 6.0 sample driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifaddifstackentry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifdeleteifstackentry

Handling OID Query and Set Requests
in an NDIS Interface Provider
Article • 03/14/2023

The NDISIF interface defines several interface parameters (including statistical counters)
that can be queried or set which correspond to information in RFC 2863. NDIS accesses
these interface parameters through entry points that the interface provider defines
when it calls the NdisIfRegisterProvider function. For more information about
registering as an interface provider, see Registering as an Interface Provider.

Interface parameters are identified by object identifiers (OIDs). Some OIDs are specific to
interface providers.

The following topics describe how to handle query and set requests for interface
parameters:

Handling an Interface Object Query Request

Handling an Interface Object Set Request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterprovider

Handling an Interface Object Query
Request
Article • 12/15/2021

To obtain the current value that is associated with an interface object, NDIS calls an
interface provider's ProviderQueryObject function. This function returns
NDIS_STATUS_SUCCESS if it successfully processes the query request or an
NDIS_STATUS_Xxx error code otherwise.

For a list of interface provider-specific OID requests, see NDIS Network Interface OIDs.
For a list of OIDs that NDIS uses with providers, miniport adapters, and filter modules to
support network interface objects, see NDIS Network Interface to OID Mapping.

The handle at the ProviderIfContext parameter of ProviderQueryObject identifies the
context area that the interface provider passed to NDIS when it called the
NdisIfRegisterInterface function to register the interface. The ObjectId parameter
specifies the OID for the object that is being queried. The pOutputBufferLength and
pOutputBuffer parameters provide a pointer to the resulting length of the output buffer
and a pointer to the output buffer, respectively.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_query_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_query_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface

Handling an Interface Object Set
Request
Article • 12/15/2021

To set the data that is associated with an interface object, NDIS calls an interface
provider's ProviderSetObject function. This function returns NDIS_STATUS_SUCCESS if it
successfully changed the data or an NDIS_STATUS_Xxx error code otherwise.

For a list of interface provider-specific OID requests, see NDIS Network Interface OIDs.
For a list of OIDs that NDIS uses with providers, miniport adapters, and filter modules to
support network interface objects, see NDIS Network Interface to OID Mapping.

The handle at the ProviderIfContext parameter of ProviderSetObject identifies the
context area that the interface provider passed to NDIS when it called the
NdisIfRegisterInterface function to register the interface. The ObjectId parameter
specifies the OID for the object that is being set. The InputBufferLength and pInputBuffer
parameters provide the length of the input buffer and a pointer to the input buffer,
respectively.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_set_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_set_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface

Mapping of NDIS Network Interfaces to
NDIS OIDs
Article • 03/14/2023

To respond to NDIS interface object requests, NDIS interface providers can cache
information that they obtain from underlying drivers and can also issue OID requests to
obtain information about underlying interfaces.

As a proxy interface provider, NDIS typically caches information that it receives about
miniport adapters and filter modules. The NDIS proxy interface provider uses the cached
information, if appropriate, to respond to interface requests. In some cases, the NDIS proxy
interface provider issues OIDs to obtain information for interfaces. For example, the primary
source of interface information for NDIS 5.x and earlier drivers is through OID requests. In
NDIS 6.0 drivers, there are additional sources of interface information, such as the
NDIS_RESTART_ATTRIBUTES and NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
structures. For more information about alternate sources of information in the OIDs, see the
reference page for each OID.

The NDIS proxy interface provider also generates some interface information on behalf of
miniport adapters and filter modules. For example, NDIS generates an interface alias (ifAlias
in RFC 2863) in response to the ifAlias request. NDIS defines additional OIDs to obtain such
information from NDIS interface providers. For example, OID_GEN_ALIAS allows an interface
provider to specify an ifAlias object. Such OIDs are specific to interface providers and are
never used to obtain information from other NDIS drivers.

In addition to the OIDs that are specific to interface providers, interface providers must
support the other NDIS OIDs that NDIS can use to obtain interface information. NDIS can
issue these OIDs to the provider and the provider can issue these OIDs, if necessary, to
collect information from underlying interfaces.

Note NDIS defines additional statistics that are not included in RFC 2863. For a list that
maps all of the NDIS-supported interface statistics to OIDs, see the members of the
NDIS_INTERFACE_INFORMATION structure. The table in this topic defines the mapping for
statistics that are defined in the RFC 2863 specification for readers that are trying to relate
the specification to the NDIS implementation.

The following table shows the mapping from the objects that are defined in the
management information base (MIB) to NDIS 6.0 OIDs and to OIDs that NDIS might use to
obtain information from NDIS 5.x and earlier drivers. The table also includes some
additional interface objects that are not defined as MIB objects. The interface objects also
correspond to members in the NDIS_INTERFACE_INFORMATION structure that is
associated with the OID_GEN_INTERFACE_INFO OID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information

Note The NDIS 6.0 OIDs in the table that are marked with a asterisk (*) prefix are specific to
interface providers. The other NDIS 6.0 OIDs can be issued to interface providers and other
NDIS drivers.

Interfaces MIB value NDIS 6.0 OIDs NDIS 5.x and earlier OIDs

ifAdminStatus * OID_GEN_ADMIN_STATUS

ifAlias * OID_GEN_ALIAS

ifCounterDiscontinuityTime * OID_GEN_DISCONTINUITY_TIME

ifHCInBroadcastPkts OID_GEN_BROADCAST_FRAMES_RCV OID_GEN_BROADCAST_FRAMES_RCV

ifHCInMulticastPkts OID_GEN_MULTICAST_FRAMES_RCV OID_GEN_MULTICAST_FRAMES_RCV

ifHCInOctets OID_GEN_BYTES_RCV NDIS adds the results from these
OIDs to collect the ifHCInOctets value
from NDIS 5.x drivers:

OID_GEN_DIRECTED_BYTES_RCV+

OID_GEN_MULTICAST_BYTES_RCV+

OID_GEN_BROADCAST_BYTES_RCV

NDIS 6.0 interface providers should
also support these OIDs.

ifHCInUcastPkts OID_GEN_DIRECTED_FRAMES_RCV OID_GEN_DIRECTED_FRAMES_RCV

ifHCOutBroadcastPkts OID_GEN_BROADCAST_FRAMES_XMIT OID_GEN_BROADCAST_FRAMES_XMIT

ifHCOutMulticastPkts OID_GEN_MULTICAST_FRAMES_XMIT OID_GEN_MULTICAST_FRAMES_XMIT

ifHCOutOctets OID_GEN_BYTES_XMIT NDIS adds the results from these
OIDs to collect the ifHCInOctets value
from NDIS 5.x drivers:

OID_GEN_DIRECTED_BYTES_XMIT+

OID_GEN_MULTICAST_BYTES_XMIT+

OID_GEN_BROADCAST_BYTES_XMIT

NDIS 6.0 interface providers should
also support these OIDs.

ifHCOutUCastPkts OID_GEN_DIRECTED_FRAMES_XMIT OID_GEN_DIRECTED_FRAMES_XMIT

ifHighSpeed * OID_GEN_LINK_SPEED_EX, *
OID_GEN_XMIT_LINK_SPEED, *
OID_GEN_RCV_LINK_SPEED

OID_GEN_LINK_SPEED

Interfaces MIB value NDIS 6.0 OIDs NDIS 5.x and earlier OIDs

ifInDiscards OID_GEN_RCV_DISCARDS

ifInErrors OID_GEN_RCV_ERROR OID_GEN_RCV_ERROR

ifLastChange * OID_GEN_LAST_CHANGE

ifMtu OID_GEN_MAXIMUM_FRAME_SIZE OID_GEN_MAXIMUM_FRAME_SIZE

ifOperStatus * OID_GEN_OPERATIONAL_STATUS

ifOutDiscards OID_GEN_XMIT_DISCARDS OID_GEN_XMIT_DISCARDS

ifOutErrors OID_GEN_XMIT_ERROR OID_GEN_XMIT_ERROR

ifPhysAddress OID_802_3_CURRENT_ADDRESS OID_802_3_CURRENT_ADDRESS

ifPromiscuousMode * OID_GEN_PROMISCUOUS_MODE

Not applicable OID_802_3_PERMANENT_ADDRESS OID_802_3_PERMANENT_ADDRESS

Not applicable * OID_GEN_INTERFACE_INFO

Not applicable *
OID_GEN_MEDIA_CONNECT_STATUS_EX

Not applicable * OID_GEN_MEDIA_DUPLEX_STATE

Not applicable OID_GEN_STATISTICS

NDIS_MDL_LINKAGE macro
Article • 03/14/2023

The NDIS_MDL_LINKAGE macro retrieves a pointer to the next MDL that is associated
with the specified MDL.

ManagedCPlusPlus

_Mdl
A pointer to an MDL.

NDIS_MDL_LINKAGE returns a pointer to an MDL or NULL if there is no next MDL.

The NDIS_MDL_LINKAGE macro provides an MDL-based version of the
NDIS_BUFFER_LINKAGE function.

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

IRQL Any level

Syntax

PVOID NDIS_MDL_LINKAGE(
 PMDL _Mdl
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff556919(v=vs.85)

NDIS_BUFFER_LINKAGE

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff556919(v=vs.85)

NDIS_MDL_TO_SPAN_PAGES macro
Article • 03/14/2023

The NDIS_MDL_TO_SPAN_PAGES macro retrieves the number of physical pages of
memory that are being used to back a given MDL.

ManagedCPlusPlus

_Mdl
A pointer to an MDL.

NDIS_MDL_TO_SPAN_PAGES returns the number of pages that are backing the virtual
range for the MDL.

The NDIS_MDL_TO_SPAN_PAGES macro provides an MDL-based version of the
NDIS_BUFFER_TO_SPAN_PAGES function.

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

IRQL Any level

Syntax

int NDIS_MDL_TO_SPAN_PAGES(
 PMDL _Mdl
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff556922(v=vs.85)

NDIS_BUFFER_TO_SPAN_PAGES

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff556922(v=vs.85)

NdisGetMdlPhysicalArraySize macro
Article • 12/15/2021

The NdisGetMdlPhysicalArraySize macro retrieves the number of disconnected physical
memory blocks that are associated with an MDL.

ManagedCPlusPlus

_Mdl
A pointer to an MDL.

_ArraySize
A pointer to a caller-supplied variable in which this macro returns the number of
disconnected physical memory blocks that are associated with the specified MDL.

None

The NdisGetMdlPhysicalArraySize macro provides an MDL-based version of the
NdisGetBufferPhysicalArraySize function.

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Syntax

VOID NdisGetMdlPhysicalArraySize(
 _Mdl,
 _ArraySize
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff552033(v=vs.85)

Header Ndis.h (include Ndis.h)

IRQL <= DISPATCH_LEVEL

DDI compliance rules Irql_NetBuffer_Function

NdisGetBufferPhysicalArraySize

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/ndis-irql-netbuffer-function
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff552033(v=vs.85)

NdisGetNextMdl macro
Article • 12/15/2021

The NdisGetNextMdl macro retrieves the next MDL in an MDL chain, given a pointer to
the current MDL.

ManagedCPlusPlus

_CurrentMdl
A pointer to the specified current MDL.

_NextMdl
A pointer to a caller-supplied variable in which this macro returns a pointer to the next
MDL in the MDL chain, if any, that follows the MDL at _CurrentMdl .

None

The NdisGetNextMdl macro provides an MDL-based version of the NdisGetNextBuffer
function.

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Syntax

VOID NdisGetNextMdl(
 _CurrentMdl,
 _NextMdl
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff552070(v=vs.85)

Header Ndis.h (include Ndis.h)

IRQL Any level

NdisGetNextBuffer

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff552070(v=vs.85)

NdisQueryMdl macro
Article • 12/15/2021

The NdisQueryMdl macro retrieves the buffer length, and optionally the base virtual
address, from an MDL.

ManagedCPlusPlus

_Mdl
A pointer to an MDL.

_VirtualAddress
A pointer to a caller-supplied variable in which this macro returns the base virtual
address of the virtual address range that is described by the MDL. The base virtual
address can be NULL for either of the following reasons:

System resources are low or exhausted and the _Priority parameter is set to
LowPagePriority or NormalPagePriority.

System resources are exhausted and the _Priority parameter is set to
HighPagePriority.

_Length
A pointer to a caller-supplied variable in which this macro returns the length, in bytes, of
the virtual address range that is described by the MDL.

_Priority
A page priority value. For a list of the possible values for this parameter, see the Priority
parameter of the MmGetSystemAddressForMdlSafe macro.

Syntax

VOID NdisQueryMdl(
 _Mdl,
 _VirtualAddress,
 _Length,
 _Priority
);

Parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmgetsystemaddressformdlsafe

None

The NdisQueryMdl macro provides an MDL-based version of the NdisQueryBuffer
function.

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

IRQL <= DISPATCH_LEVEL

DDI compliance rules Irql_NetBuffer_Function

MmGetSystemAddressForMdlSafe

NdisQueryBuffer

Return value

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff554407(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/ndis-irql-netbuffer-function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmgetsystemaddressformdlsafe
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff554407(v=vs.85)

NdisQueryMdlOffset macro
Article • 12/15/2021

The NdisQueryMdlOffset macro retrieves the offset within a physical page at which a
given MDL buffer begins and the length of the buffer.

ManagedCPlusPlus

_Mdl
A pointer to an MDL.

_Offset
A pointer to a caller-supplied variable in which this macro returns the zero-based byte
offset within the physical page that contains the MDL-specified buffer.

_Length
A pointer to a caller-supplied variable in which this macro returns the length, in bytes, of
the virtual address range that is specified by the MDL.

None

The NdisQueryMdlOffset macro provides an MDL-based version of the
NdisQueryBufferOffset function.

Syntax

VOID NdisQueryMdlOffset(
 _Mdl,
 _Offset,
 _Length
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff554411(v=vs.85)

Target platform Desktop

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

IRQL <= DISPATCH_LEVEL

DDI compliance rules Irql_NetBuffer_Function

NdisQueryBufferOffset

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/ndis-irql-netbuffer-function
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff554411(v=vs.85)

Overview of NDIS packet timestamping
Article • 03/14/2023

The NDIS packet timestamping interface supports the hardware timestamping capability
of a network interface card (NIC) for the Precision Time Protocol (PTP) version 2.

Many NICs can generate timestamps in their hardware when a packet is received or
transmitted using their own hardware clock. Starting with NDIS 6.82, NDIS packet
timestamping allows you to add hardware timestamping support to your NIC driver.

You may want to enable timestamping support to improve the accuracy of clock
synchronization applications. The miniport driver should disable all types of
timestamping support by default.

Specifically, NDIS packet timestamping makes hardware timestamps available to the
operating system so that applications implementing the PTP protocol with UDP as the
transport can use them. PTP is a protocol that can utilize hardware timestamps to
achieve more accurate time synchronization between systems.

The closer timestamp generation is to when a packet is sent or received by the network
adapter hardware, the more accurate the synchronization application. NDIS packet
timestamping can help improve the accuracy of time synchronization applications by
enabling them to use timestamps generated in the NIC hardware.

NDIS packet timestamping enables PTP version 2 applications (as defined by IEEE)
operating in the two-step mode to use the NIC’s hardware timestamping capabilities. In
two-step mode, timestamps in PTP packets are retrieved from the hardware and
conveyed as separate messages rather than being generated on the fly in the hardware.

NDIS packet timestamping provides the ability to:

Discover the NIC hardware’s timestamping capabilities.

Associate the NIC hardware clock’s timestamps to PTP version 2 traffic running
over UDP (using the standard UDP ports defined for PTP, for example 319 and
320).

Use the NIC hardware’s clock as a free running clock. The ability to query the
network hardware’s clock and establish a relation between the network hardware
clock and a system clock makes this possible.

Generate software timestamps.

The target of the NDIS packet timestamping interface is Ethernet hardware. The
interface works with both NICs that specifically support hardware timestamp generation
for PTP version 2 traffic as well as NICs that can generate hardware timestamps for all
traffic, as these NICs work with PTP traffic as well.

Reporting timestamping capabilities and current configuration

Attaching timestamps to packets

Standardized INF keywords for NDIS packet timestamping

Querying timestamping capabilities and configuration

In this section

Reporting timestamping capabilities
and current configuration
Article • 12/15/2021

Miniport drivers need to indicate the NIC's hardware timestamping capabilities and the
miniport driver's software timestamping capabilities to NDIS and overlying drivers. They
also need to report which timestamping capabilities are currently enabled or disabled.
Miniport drivers use status indications to report the timestamping capabilities and their
current configuration to the operating system.

During initialization, the miniport driver should report the timestamping capabilities and
their current configuration within the MiniportInitializeEx function. The driver should:

1. Generate an NDIS_STATUS_TIMESTAMP_CAPABILITY status indication to report
the timestamping capabilities.

2. Generate an NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication to
report the current timestamping configuration.

Any time that the miniport driver detects a change in underlying hardware capabilities it
must generate the NDIS_STATUS_TIMESTAMP_CAPABILITY status indication. It must
also report the corresponding change in the current configuration using the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication.

The miniport driver must also generate the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication whenever it detects a
change in the current timestamping configuration.

７ Note

Miniport drivers read the *PtpHardwareTimestamp and *SoftwareTimestamp
keywords values in the INF file to determine which timestamping capabilities are
enabled or disabled. For more information, see Standardized INF keywords for
NDIS packet timestamping.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Attaching timestamps to packets
Article • 12/15/2021

After the miniport driver reports which timestamping capabilities are present and
currently enabled, the driver can attach the relevant timestamps to packets using the
NET_BUFFER_LIST (NBL) structure.

For more information on reporting the NIC's hardware timestamping capabilities and
the miniport driver's software timestamping capabilities to the operating system, see
Reporting timestamping capabilities and current configuration.

The PtpV2OverUdpIPv4EventMsgReceiveHw , PtpV2OverUdpIPv4AllMsgReceiveHw ,
PtpV2OverUdpIPv4EventMsgTransmitHw , PtpV2OverUdpIPv4AllMsgTransmitHw ,
PtpV2OverUdpIPv6EventMsgReceiveHw , PtpV2OverUdpIPv6AllMsgReceiveHw ,
PtpV2OverUdpIPv6EventMsgTransmitHw , PtpV2OverUdpIPv6AllMsgTransmitHw , AllReceiveHw ,
AllTransmitHw and TaggedTransmitHw flags in the
NDIS_TIMESTAMP_CAPABILITY_FLAGS structure indicate which hardware timestamps
the miniport driver supports.

The timestamp that the NIC hardware generates on reception or transmission of a
packet is represented by a 64-bit integer value. This should be the raw value of the NIC
hardware's clock at the point the timestamp is captured. The timestamp is stored in the
NBL structure's NetBufferListInfo array.

Miniport drivers can use the NET_BUFFER_LIST_TIMESTAMP structure to set the
timestamp in the NBL's NetBufferListInfo field. The driver fills the Timestamp field of
the NET_BUFFER_LIST_TIMESTAMP structure with the timestamp generated by the
hardware and calls the NdisSetNblTimestampInfo utility function, passing in the
structure.

Miniport drivers can use NdisGetNblTimestampInfo and NdisCopyNblTimestampInfo
to retrieve and copy timestamps.

If a particular hardware timestamp setting is enabled but a timestamp that corresponds
to that capability isn't generated, the miniport should set the timestamp it attaches to
the NBL to zero.

Hardware timestamps

７ Note

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capability_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/ns-nbltimestamp-net_buffer_list_timestamp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/nf-nbltimestamp-ndissetnbltimestampinfo
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/nf-nbltimestamp-ndisgetnbltimestampinfo
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/nf-nbltimestamp-ndiscopynbltimestampinfo

The hardware should obtain the timestamp as close as possible to the point when the
hardware receives the frame from the medium. This guideline is specified by the IEEE
1588 standard.

When a packet is received, the miniport driver must:

1. Correct the timestamp for any delays that exist between when the hardware
captured the timestamp and when the hardware actually received the frame.

2. Attach the timestamp generated in hardware to the NBL. The timestamp
corresponds to the frame (NET_BUFFER structure) contained in the NBL.

3. Call NdisMIndicateReceiveNetBufferLists to indicate the NBL to NDIS.

Note that in the receive direction, miniport drivers for Ethernet hardware are required to
indicate only one NET_BUFFER per NBL.

The hardware should obtain the timestamp as close as possible to the point when the
hardware transmits the frame to the medium. This guideline is specified by the IEEE
1588 standard.

When a packet is transmitted, the miniport driver must:

1. Correct the timestamp for any delays that exist between when the hardware
captured the timestamp and when the hardware actually transmitted the frame.

2. Attach the timestamp generated in hardware to the NBL. If the NBL contains
multiple NET_BUFFERs, the hardware timestamp corresponding to the first
NET_BUFFER in the NBL should be attached to the NBL.

3. Call NdisMSendNetBufferListsComplete to send complete the NBL to NDIS.

When recognizing PTP version 2 packets to generate hardware timestamps, the
implementation should not restrict timestamp generation to packets that use the
multicast addresses (both IPv4 and IPv6) that are specified by the PTP specification.
The implementation should try to recognize PTP packets in other ways, for example
using the UDP header or the PTP payload. This is so timestamps are still generated
in scenarios where a PTP implementation might not use the multicast addresses
specified in the PTP specification, for example where unicast addresses are used.

Receive side timestamping

Transmit side timestamping

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

Miniports and NIC hardware that report that the TaggedTransmitHw capability flag is
supported and currently enabled should check if the
NDIS_NBL_FLAGS_CAPTURE_TIMESTAMP_ON_TRANSMIT flag is set in the NblFlags field of an
NBL that is given to the miniport for transmission. If this flag is set, this indicates that a
transmit time timestamp is needed for that NBL and a transmit time hardware
timestamp should be generated for the NBL.

The AllReceiveSw , AllTransmitSw and TaggedTransmitSw flags in the
NDIS_TIMESTAMP_CAPABILITY_FLAGS structure indicate if the miniport supports
generating software timestamps.

Software timestamps are also represented as 64-bit integer values and are stored in the
same slot in the NetBufferListInfo array of the NET_BUFFER (NBL) structure as the
hardware timestamps.

If software timestamping capabilities are present and enabled then the miniport driver
sets the timestamp in the NBL using the performance counter value (QPC). The miniport
driver must:

1. Call KeQueryPerformanceCounter to obtain the QPC.

2. Fill the Timestamp field of the NET_BUFFER_LIST_TIMESTAMP structure with the
QPC.

3. Set the timestamp in the NBL by calling NdisSetNblTimestampInfo and passing in
the NET_BUFFER_LIST_TIMESTAMP.

On receive the miniport driver should capture the QPC as early as possible but no earlier
than when the packet arrived.

On transmit the miniport driver should capture the QPC as late as possible before the
packet is given to the hardware for transmission.

The TaggedTransmitSw flag is analogous to the TaggedTransmitHw flag but corresponds
to software timestamps. If the capability is supported and enabled then the miniport
should check the NDIS_NBL_FLAGS_CAPTURE_TIMESTAMP_ON_TRANSMIT flag in the NblFlags
field of the NBL. If this flag is set, the miniport should generate a transmit time software
timestamp for the NBL.

Software timestamps

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capability_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-kequeryperformancecounter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/ns-nbltimestamp-net_buffer_list_timestamp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbltimestamp/nf-nbltimestamp-ndissetnbltimestampinfo

NDIS_STATUS_TIMESTAMP_CAPABILITY
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_TIMESTAMP_CAPABILITY status indication to
report the NIC's hardware timestamping capabilities and the miniport driver's software
timestamping capabilities to NDIS and overlying drivers.

This status indication represents the timestamping capabilities of the hardware and
miniport driver, not which capability is currently enabled or disabled. For more
information on reporting the current timestamping configuration, see
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG.

During initialization, the miniport driver should indicate its hardware and software
timestamp capabilities from within its MiniportInitializeEx function. The driver should:

1. Initialize an NDIS_TIMESTAMP_CAPABILITIES structure with the NIC's hardware
and software timestamp capabilities. The driver sets the members of the
NDIS_TIMESTAMP_CAPABILITIES structure as follows:

The driver uses the TimestampFlags field to indicate the hardware and
software timestamp capabilities.

The driver must set the CrossTimestamp field to TRUE.

The HardwareClockFrequencyHz field should contain the nominal operating
frequency of the hardware clock used for timestamping by the NIC. This data
may be used to display the nominal clock frequency to end users for
informational purposes.

The Type field in the Header field should be set to
NDIS_OBJECT_TYPE_DEFAULT and the Revision to
NDIS_TIMESTAMP_CAPABILITIES_REVISION_1.

Remarks

７ Note

An implementation must support hardware timestamps and cross timestamps.
Supporting software timestamps is optional.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities

2. Generate an NDIS_STATUS_TIMESTAMP_CAPABILITY status indication by calling
NdisMIndicateStatusEx to report the timestamping capabilities. The StatusBuffer
field of the NDIS_STATUS_INDICATION structure should point to the initialized
NDIS_TIMESTAMP_CAPABILITIES structure.

The miniport driver must also generate the NDIS_STATUS_TIMESTAMP_CAPABILITY
status indication whenever it detects a change in underlying hardware capabilities.

Here's how a miniport driver might indicate its supported timestamping capabilities:

C++

// From within its initialization routine, the miniport in this
// example indicates that it supports the following capabilities:
// - PtpV2OverUdpIPv4EventMsgReceiveHw
// - PtpV2OverUdpIPv6EventMsgReceiveHw
// - TaggedTransmitHw
// - CrossTimestamp

NDIS_STATUS MiniportInitializeEx(
 In NDIS_HANDLE MiniportAdapterHandle,
 In NDIS_HANDLE MiniportDriverContext,
 In PNDIS_MINIPORT_INIT_PARAMETERS MiniportInitParameters
)
{
. . .
 NDIS_TIMESTAMP_CAPABILITIES timeStampCapabilities;
 NDIS_STATUS_INDICATION timeStampStatus;
. . .

 // Initialize an NDIS_TIMESTAMP_CAPABILITIES structure

 RtlZeroMemory(&timeStampCapabilities, sizeof(timeStampCapabilities));
 RtlZeroMemory(&timeStampStatus, sizeof(timeStampStatus));

 timeStampCapabilities.Header.Type = NDIS_OBJECT_TYPE_DEFAULT;
 timeStampCapabilities.Header.Size = sizeof(timeStampCapabilities);
 timeStampCapabilities.Header.Revision =
NDIS_TIMESTAMP_CAPABILITIES_REVISION_1;

 timeStampCapabilities.CrossTimestamp = TRUE;
 timeStampCapabilities.TimestampFlags.PtpV2OverUdpIPv4EventMsgReceiveHw =
TRUE;
 timeStampCapabilities.TimestampFlags.PtpV2OverUdpIPv6EventMsgReceiveHw =
TRUE;
 timeStampCapabilities.TimestampFlags.TaggedTransmitHw = TRUE;

 timeStampCapabilities.HardwareClockFrequencyHz = 150000;

 timeStampStatus.Header.Type = NDIS_OBJECT_TYPE_STATUS_INDICATION;
 timeStampStatus.Header.Revision = NDIS_STATUS_INDICATION_REVISION_1;
 timeStampStatus.Header.Size = NDIS_SIZEOF_STATUS_INDICATION_REVISION_1;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

NDIS Version NDIS 6.82 and later

Header Ntddndis.h (include Ndis.h)

Reporting timestamping capabilities and current configuration

NDIS_TIMESTAMP_CAPABILITIES

NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG

MiniportInitializeEx

NdisMIndicateStatusEx

NDIS_STATUS_INDICATION

 timeStampStatus.SourceHandle = MiniportAdapterHandle;
 timeStampStatus.StatusBuffer = &timeStampCapabilities;
 timeStampStatus.StatusBufferSize = sizeof(timeStampCapabilities);
 timeStampStatus.StatusCode = NDIS_STATUS_TIMESTAMP_CAPABILITY;

 // Generate an NDIS_STATUS_TIMESTAMP_CAPABILITY status indication
 NdisMIndicateStatusEx(MiniportAdapterHandle, &timeStampStatus);
. . .
}

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_TIMESTAMP_CURRENT_C
ONFIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status
indication to report the current timestamping configuration of the NIC hardware and
miniport driver to NDIS and overlying drivers.

This status indication represents which timestamping capabilities are currently enabled
or disabled. For information about the status indication driver use to report the
timestamping capabilities, see NDIS_STATUS_TIMESTAMP_CAPABILITY.

During initialization, the miniport driver should indicate the current timestamping
configuration from within its MiniportInitializeEx function. The driver should:

1. Initialize an NDIS_TIMESTAMP_CAPABILITIES structure with the current
timestamping configuration. The driver sets the members of the
NDIS_TIMESTAMP_CAPABILITIES structure as follows:

The driver uses the TimestampFlags field to indicate its current timestamping
configuration. Each flag in the NDIS_TIMESTAMP_CAPABILITY_FLAGS
structure should be set to TRUE if the corresponding timestamping capability
is currently enabled or FALSE if it is not.

Remarks

７ Note

To determine which timestamping capabilities are currently enabled or
disabled, the miniport reads the current values of the timestamping related
keywords *PtpHardwareTimestamp and *SoftwareTimestamp. For more on
using these keywords and determining which timestamping capabilities to
enable, see Standardized INF keywords for NDIS packet timestamping.

７ Note

If an implementation finds both hardware and software timestamps enabled
through the keywords, then the miniport should only enable hardware
timestamps and should disable software timestamps.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capability_flags

The driver should set the CrossTimestamp field to TRUE if hardware cross
timestamps are enabled in the current configuration or FALSE if they are not.

The HardwareClockFrequencyHz field must contain the current operating
frequency of the NIC’s hardware clock.

The Type field in the Header field should be set to
NDIS_OBJECT_TYPE_DEFAULT and the Revision to
NDIS_TIMESTAMP_CAPABILITIES_REVISION_1.

2. Generate an NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication by
calling NdisMIndicateStatusEx to report the current configuration. The
StatusBuffer field of the NDIS_STATUS_INDICATION structure should point to the
initialized NDIS_TIMESTAMP_CAPABILITIES structure.

The miniport driver must generate an NDIS_STATUS_TIMESTAMP_CAPABILITY
indication at least once before indicating
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG. Otherwise NDIS will reject the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication and it will not be
indicated to overlying drivers.

If the miniport driver indicates a change in the NIC’s hardware timestamping capability
using the NDIS_STATUS_TIMESTAMP_CAPABILITY status indication (for example, a
change in the HardwareClockFrequencyHz field in the NDIS_TIMESTAMP_CAPABILITIES
structure because of an underlying change in the NIC hardware), then it must also
report the corresponding change in the current configuration using the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication.

The miniport driver must also generate the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication whenever it detects a
change in current timestamping configuration.

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

NDIS Version NDIS 6.82 and later

Header Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Reporting timestamping capabilities and current configuration

Standardized INF keywords for NDIS packet timestamping

NDIS_STATUS_TIMESTAMP_CAPABILITY

NDIS_TIMESTAMP_CAPABILITIES

NDIS_TIMESTAMP_CAPABILITY_FLAGS

MiniportInitializeEx

NdisMIndicateStatusEx

NDIS_STATUS_INDICATION

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capability_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Standardized INF keywords for NDIS
packet timestamping
Article • 03/14/2023

An INF file can define the following standardized INF keywords to enable or disable the
timestamping capabilities that the miniport driver and NIC hardware supports.

Miniport drivers can use these keywords to determine the current configuration of the
timestamping capabilities. For example, the driver can read these keyword values during
initialization to determine which timestamping capabilities are enabled and the driver
can therefore use.

*PtpHardwareTimestamp INF keyword

*SoftwareTimestamp INF keyword

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

The *PtpHardwareTimestamp keyword is defined to enable or disable support for
hardware timestamping for Precision Time Protocol (PTP) version 2 packets using UDP
as the transport.

The default setting for the *PtpHardwareTimestamp keyword is disabled and the
miniport driver should disable all types of hardware timestamping support in the NIC
hardware by default.

Miniport drivers read the *PtpHardwareTimestamp keyword value to determine if
hardware timestamping is currently enabled or disabled.

If *PtpHardwareTimestamp is enabled, the miniport driver should:

1. Enable the relevant hardware timestamping capabilities in the NIC hardware.

2. Generate the NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication to
report the timestamping capabilities it enabled to NDIS. The driver uses the
NDIS_TIMESTAMP_CAPABILITIES structure to specify which capabilities it enabled.
The flags within the TimestampFlags field in the NDIS_TIMESTAMP_CAPABILITIES
structure that correspond to hardware timestamping are
PtpV2OverUdpIPv4EventMsgReceiveHw , PtpV2OverUdpIPv4AllMsgReceiveHw ,

*PtpHardwareTimestamp INF keyword

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities

PtpV2OverUdpIPv4EventMsgTransmitHw , PtpV2OverUdpIPv4AllMsgTransmitHw ,
PtpV2OverUdpIPv6EventMsgReceiveHw , PtpV2OverUdpIPv6AllMsgReceiveHw ,
PtpV2OverUdpIPv6EventMsgTransmitHw , PtpV2OverUdpIPv6AllMsgTransmitHw ,
AllReceiveHw , AllTransmitHw and TaggedTransmitHw . The CrossTimestamp field in
the NDIS_TIMESTAMP_CAPABILITIES structure for the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indicates if hardware cross
timestamping is enabled.

When *PtpHardwareTimestamp is enabled the miniport should turn on some form of
capability to generate hardware timestamps for both Rx and Tx for PTP version 2 over
UDP. The miniport should also turn on the hardware cross timestamping capability if the
hardware supports it.

The specific hardware timestamping capabilities that the miniport driver should enable
in hardware depends on the capabilities of the NIC hardware. For example, if the NIC
hardware only supports the PtpV2OverUDPIPv4EventMsgReceiveHw ,
PtpV2OverUDPIPv6EventMsgReceiveHw and TaggedTransmitHw capabilities, then the
miniport can turn on these hardware timestamping capabilities if the
*PtpHardwareTimestamp keyword is enabled.

If the NIC hardware supports multiple forms of hardware timestamping capabilities that
can enable the PTP version 2 over UDP scenario, then the IHV should consider their
hardware and issues such as performance impact to decide which capabilities the
miniport should turn on. For example, the hardware may be capable of generating
timestamps for AllTransmitHw and TaggedTransmitHw . If turning on AllTransmitHw is
more expensive than turning on TaggedTransmitHw , then the IHV may choose to only
turn on the TaggedTransmitHw capability for Tx.

In all cases, the miniport driver should accurately report which hardware timestamping
capabilities it enabled or disabled using the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication.

７ Note

PTP over raw Ethernet is not supported. The IHV needs to determine what the most
efficient way of handling PTP over raw Ethernet packets when supporting PTP over
UDP is enabled.

７ Note

The *PtpHardwareTimestamp INF keyword is an enumeration keyword. Enumeration
standardized INF keywords have the following attributes:

SubkeyName: The name of the keyword that you must specify in the INF file.

ParamDesc: The display text that is associated with SubkeyName.

Value: The enumeration integer value that is associated with each SubkeyName in the
list.

EnumDesc: The display text that is associated with each value that appears in the menu.

Default: The default value for the menu.

The following table describes the possible INF entries for the *PtpHardwareTimestamp
INF keyword.

SubkeyName ParamDesc Value EnumDesc

*PtpHardwareTimestamp PTP Hardware Timestamp 0 (Default) Disabled

1 Enabled

The *SoftwareTimestamp keyword corresponds to the types of software timestamping
the miniport driver is capable of. The miniport driver uses the configured value for this
keyword to determine which of the supported software timestamping capabilities are
currently enabled.

No support is needed for PTP version 1. If the NIC hardware also supports PTP
version 1, then the IHV needs to determine the most efficient way of handling PTP
version 1 packets when supporting PTP version 2.

INF entries for *PtpHardwareTimestamp

７ Note

If the miniport driver finds an unsupported value for the *PtpHardwareTimestamp
keyword, then it should disable the hardware timestamping capability completely.

*SoftwareTimestamp INF keyword

The default setting for the *SoftwareTimestamp keyword is disabled and all types of
software timestamping support in the miniport should be disabled by default.

The miniport generates the NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status
indication to inform NDIS of the various timestamping capabilities that are currently
enabled.

The flags within the TimestampFlags field in the NDIS_TIMESTAMP_CAPABILITIES
structure that correspond to software timestamping are AllReceiveSw , AllTransmitSw
and TaggedTransmitSw .

If the *SoftwareTimestamp keyword contains a value that indicates that some
configuration of software timestamping is enabled, then the miniport should enable the
configured software timestamping capabilities and generate a
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication that accurately reports
which software timestamping capabilities have been enabled.

If the miniport does not support any type of software timestamping then the
*SoftwareTimestamp keyword should not be included in its INF file.

The *SoftwareTimestamp INF keyword is an enumeration keyword. Enumeration
standardized INF keywords have the following attributes:

SubkeyName: The name of the keyword that you must specify in the INF file.

ParamDesc: The display text that is associated with SubkeyName.

Value: The enumeration integer value that is associated with each SubkeyName in the
list.

EnumDesc: The display text that is associated with each value that appears in the menu.

Default: The default value for the menu.

The following table describes the possible INF entries for the *SoftwareTimestamp INF
keyword.

SubkeyName ParamDesc Value EnumDesc

*SoftwareTimestamp Software
Timestamp

0
(Default)

Disabled

1 RxAll: This enum value corresponds to the
miniport driver capability to generate software
timestamps for all packets during Rx.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities

SubkeyName ParamDesc Value EnumDesc

2 TxAll: This enum value corresponds to the
miniport driver capability to generate software
timestamps for all packets during Tx.

3 RxAll & TxAll: This enum value corresponds to
the miniport driver capability to generate
software timestamps for all packets during Rx
and Tx.

4 TaggedTx: This enum value corresponds to the
miniport driver capability to generate software
timestamps for a specific Tx packet when
indicated to do so by the operating system.

5 RxAll & TaggedTx: This enum value corresponds
to the miniport driver capability to generate
software timestamps for all packets during Rx
and for a specific Tx packet when indicated to
do so by the operating system.

７ Note

If the miniport driver finds an unsupported value for the *SoftwareTimestamp
keyword, then it should disable the software timestamping capability completely.

Querying timestamping capabilities and
configuration
Article • 12/15/2021

Once the miniport driver is initialized, overlying drivers and applications can issue the
following OID query requests to obtain hardware and software timestamping
information.

OID_TIMESTAMP_CAPABILITY. An overlying driver issues an object identifier (OID)
query request of OID_TIMESTAMP_CAPABILITY to obtain the hardware
timestamping capabilities of the NIC and software timestamping capabilities of the
miniport driver.

OID_TIMESTAMP_CURRENT_CONFIG. An overlying driver issues an OID query
request of OID_TIMESTAMP_CURRENT_CONFIG to obtain the current timestamping
configuration of the NIC.

OID_TIMESTAMP_GET_CROSSTIMESTAMP. An overlying driver issues an OID query
request of OID_TIMESTAMP_GET_CROSSTIMESTAMP to obtain the cross timestamp
from the NIC hardware. Precision Time Protocol (PTP) version 2 applications use
the information provided in this OID to establish a relation between the NIC’s
hardware clock and a system clock.

NDIS handles the OID_TIMESTAMP_CAPABILITY and
OID_TIMESTAMP_GET_CROSSTIMESTAMP OIDs based on the information that the
miniport driver reported when it registered the timestamping capabilities and current
configuration to the operating system.

The miniport driver completes the OID_TIMESTAMP_GET_CROSSTIMESTAMP OID. The
miniport must support this OID if it sets the CrossTimestamp field to TRUE in the
NDIS_TIMESTAMP_CAPABILITIES structure as part of the current configuration.

For more information on how the miniport driver reports the timestamping capabilities,
see Reporting timestamping capabilities and current configuration.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities

Overview of NDIS Ports
Article • 03/14/2023

This section introduces NDIS ports, which are an NDIS 6.0 feature and which enable
overlying networking layers to access subinterfaces. In NDIS, network interfaces are
associated with miniport adapters, and subinterfaces of a miniport adapter are called
NDIS ports.

The architecture of the driver stack is much simpler because every network interface is
treated as a miniport adapter. For example, each miniport adapter has its own IP and
MAC address. In most cases, the overlying drivers do not require information about the
virtual or physical nature of the miniport adapter or information about the physical
device at the bottom of the driver stack.

An NDIS miniport adapter can provide an interface for a physical device or a virtual
device. NDIS intermediate drivers provide interfaces for virtual devices that are called
virtual miniports. NDIS intermediate drivers can bind to underlying miniport adapters
and expose virtual miniports that overlying protocol drivers bind to.

In many cases, there is no one-to-one relationship between the underlying physical
devices and virtual miniports. For example, an intermediate driver that implements
failover functionality can create one virtual miniport to support multiple physical
devices, and a virtual LAN (VLAN) intermediate driver can create multiple virtual
miniports that are associated with a single physical device. Also, a driver that combines
both failover and VLAN functionality can create a set of virtual miniports (N number of
VLANs) while the driver is bound to multiple physical devices (M number of physical
devices). For more information about intermediate drivers and virtual miniports, see
NDIS 6.0 Intermediate Drivers.

In some applications, the ability to address the subinterfaces that are below virtual
miniports is either required or simplifies the design. For example, the Extensible
Authentication Protocol (EAP) protocol must specify the physical device that an EAP
packet is sent or received on. If multiple physical devices are associated with a single
virtual device, the EAP protocol is bound to the virtual device. In that case, the NDIS
interfaces prior to NDIS 6.0 hide the subinterfaces, and the EAP protocol cannot choose
which underlying physical device should carry the EAP packets. The EAP protocol then
does not have any access to the underlying physical miniport adapters. Exposing the
underlying physical miniport adapters as NDIS ports allows the EAP protocol to target a
particular physical device.

The following topics further describe NDIS ports:

Identifying an NDIS Port

Default NDIS Port

Types of NDIS Ports

NDIS Port States

Identifying an NDIS Port
Article • 03/14/2023

An NDIS port is identified by its port number. When a miniport driver calls the
NdisMAllocatePort function to allocate a port, NDIS allocates and assigns the lowest
available port number to the port. When a miniport driver calls the NdisMFreePort
function to free a port, NDIS also frees the port number that is assigned to the freed
port so that NDIS can reuse the port number.

If a driver maintains separate context areas for each port, the driver must provide an
efficient algorithm for translating the port number to the corresponding context area.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocateport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport

Default NDIS Port
Article • 03/14/2023

Port zero is reserved as the default port for a miniport adapter. If the PortNumber
parameter of any function or the PortNumber member of any structure is set to zero,
either the miniport driver did not allocate any ports, or the current activity is not port-
specific.

For a good example of the default NDIS port, consider a load balancing and failover
(LBFO) MUX intermediate driver. The virtual miniport of such a driver can be port zero
(the default port). The intermediate driver can assign ports to the underlying miniport
adapters with the port numbers ranging from 1 through the number of ports (N). An
overlying driver could send data to port zero to allow the LBFO driver to select one of
the underlying ports, or the overlying driver could specify a port number from 1 through
N to choose a specific port for the send operation.

Miniport drivers do not have to allocate any ports or support any port numbers other
than the default port. Even if a miniport driver does not allocate ports, NDIS allocates
the default port and activates it after the miniport driver calls the
NdisMSetMiniportAttributes function to set the registration attributes in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. Miniport drivers can
start operations on the default port when NdisMSetMiniportAttributes successfully
returns. In this case, NDIS frees the default port when the miniport driver returns from
the MiniportHaltEx function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Types of NDIS Ports
Article • 03/14/2023

NDIS ports can be one of the following types:

NdisPortTypeUndefined
The default port type. Use this type for general port applications that do not fit into one
of the following types.

NdisPortTypeBridge
Reserved for system use.

NdisPortTypeRasConnection
A Remote Access Service (RAS) connection.

NdisPortType8021xSupplicant
A remote wireless station that is associated with an access point on this host computer.

NdisPortTypeNdisImPlatform
Reserved for system use.

Note This value is supported only in NDIS 6.30 and later.

The characteristics of an NDIS port vary from one port application to another. For
example, for a bridge interface, the miniport driver upper edge of an intermediate driver
creates an NdisPortTypeBridge port when the protocol edge of the intermediate driver
binds to a physical miniport adapter that requires a bridge at layer three.

Overview of NDIS Ports

Related topics

NDIS Port States
Article • 03/14/2023

NDIS ports have operating states that include initialization states and states that are
specified in the NDIS_PORT_STATE structure. Port states fit into the following categories:

Initialization states
NDIS port initialization states are associated with startup initialization and Plug and Play
(PnP) events. When NDIS or a miniport driver first allocates a port, the port is in the
allocated state. After NDIS or the miniport driver activates a port, the port is in the
activated state. Inactive ports cannot send or receive data, make status indications,
receive OID requests, or initiate PnP events.

Link states
NDIS port link states are similar to link states that are associated with a miniport adapter
and that are specified in an NDIS_LINK_STATE structure. The port link states indicate the
media link connection state and link speeds. The link state of a port can be different
from the link state of the associated miniport adapter.

Authentication states
NDIS port authentication states indicate if a port is controlled (requires authorization),
the direction of data transmission (send, receive, or both), and the authorization state of
a port (authorized, or not authorized). If a port is not controlled, the authenticated and
not authenticated states are ignored.

A miniport driver can activate a port or deactivate a port with a PnP event. For more
information about activating and deactivating ports, see Activating NDIS Ports and
Deactivating NDIS Ports.

Overlying drivers use the OID_GEN_PORT_STATE OID to get the current state of the port
that is specified in the PortNumber member of the NDIS_OID_REQUEST structure. NDIS
handles this OID, and miniport drivers do not receive this OID query.

Miniport drivers that support NDIS ports must use the NDIS_STATUS_PORT_STATE
status indication to indicate changes in the state of an NDIS port. Miniport drivers must
set the port number in the PortNumber member of the NDIS_STATUS_INDICATION
structure.

NDIS and overlying drivers use the OID_GEN_PORT_AUTHENTICATION_PARAMETERS
OID to set the current authentication states of an NDIS port. Miniport drivers that
support NDIS ports must support this OID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Allocating an NDIS Port
Article • 03/14/2023

To allocate an NDIS port for a miniport adapter, a miniport driver calls the
NdisMAllocatePort function. NdisMAllocatePort is synchronous and returns after NDIS
has successfully allocated the resources that are required for the port.

Before the miniport driver calls NdisMAllocatePort, the driver must call the
NdisMSetMiniportAttributes function to set the attributes in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. Miniport drivers can
call NdisMAllocatePort for a miniport adapter after the call to
NdisMSetMiniportAttributes returns successfully and before NDIS calls the
MiniportHaltEx function for that miniport adapter.

NDIS always allocates the default port (port zero) so miniport drivers should not allocate
a default port. NDIS frees the default port after the miniport driver returns form
MiniportHaltEx.

NDIS assigns a port number to a port when the miniport driver calls NdisMAllocatePort.
The driver specifies port characteristics in the NDIS_PORT_CHARACTERISTICS structure
before the driver calls NdisMAllocatePort. When NdisMAllocatePort successfully
returns, the PortNumber member of NDIS_PORT_CHARACTERISTICS that the
PortCharacteristics parameter specifies is set to the port number that NDIS assigned to
the port.

Before returning from MiniportHaltEx, a miniport driver must call the NdisMFreePort
function to free all of the ports that are associated with a miniport adapter. If a miniport
adapter fails initialization, the driver must call NdisMFreePort to free all of the ports that
the driver allocated before it returns from the MiniportInitializeEx function. For more
information about freeing NDIS ports, see Freeing NDIS Ports.

The maximum number of ports that a miniport driver can allocate is 0xffffff. However, in
practice, drivers will set a maximum number that is based on the port type and the
requirements of the driver application. For example, for a bridge application, the
number of ports is unlikely to exceed 16. The number of ports would be higher for
access points that use 802.1x supplicant ports and significantly higher for WAN drivers
that use virtual private network (VPN) ports.

After a miniport driver allocates a port, the port is in the allocated state, and the port is
not active. A port cannot be used to send and receive data, initiate a status indication,
issue an OID request, or initiate a Plug and Play (PnP) event, until the port is activated.
NDIS activates the default port automatically after the miniport driver sets the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocateport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocateport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

registration attributes in an NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES
structure. To request that NDIS not activate the default port, a miniport driver can set
NDIS_MINIPORT_ATTRIBUTES_CONTROLS_DEFAULT_PORT in the AttributeFlags member
of NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES.

NDIS passes the authentication state of the default port to the MiniportInitializeEx
function at the DefaultPortAuthStates member of the
NDIS_MINIPORT_INIT_PARAMETERS structure. If a miniport driver controls the default
port, when the miniport driver activates the default port, it can activate the default port
by using the default authentication settings. For more information about activating the
default port, see Activating NDIS Ports.

Miniport drivers can use the NDIS_PORT_CHAR_USE_DEFAULT_AUTH_SETTINGS flag in
the Flags member of the NDIS_PORT_CHARACTERISTICS structure for the ports that the
drivers allocate and activate. For the allocation case, NDIS assigns the default
authentication states to the new ports and ignores the authentication states that are
passed to the NdisMAllocatePort function.

For more information about NDIS port states, see NDIS Port States. For more
information about activating ports, see Activating NDIS Ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismallocateport

Freeing an NDIS Port
Article • 03/14/2023

Your miniport driver must free all NDIS ports that it allocates for miniport adapters in its
MiniportInitializeEx function. It can free a port any time by calling NdisMFreePort,
except for the two cases noted below.

Your miniport driver must free all allocated ports in these cases:

If your driver’s MiniportInitializeEx function fails, it must free all allocated ports.
If a miniport adapter is halted, your driver’s MiniportHaltEx function must free all
allocated ports.

Your miniport driver cannot simply call NdisMFreePort in these cases:

If the port is the default port, NDIS frees it automatically, so your miniport driver
must not free it. If you try to free the default port, NdisMFreePort returns an
NDIS_STATUS_INVALID_PORT error.
If the port is active, your miniport driver will need to deactivate it before calling
NdisMFreePort.

Allocating NDIS Ports

Deactivating NDIS Ports

Default NDIS Port

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismfreeport

Activating an NDIS Port
Article • 03/14/2023

After a miniport driver successfully allocates an NDIS port, and before using the port
number in NDIS functions, the driver must activate the port. To activate the port, the
miniport driver sends a port activation Plug and Play (PnP) event to NDIS. To send the
port activation PnP event, miniport drivers use the NetEventPortActivation PnP event
code in the call to the NdisMNetPnPEvent function.

To activate ports, the miniport driver must set the members of the
NET_PNP_EVENT_NOTIFICATION structure that the NetPnPEvent parameter of
NdisMNetPnPEvent points to as follows:

PortNumber
The source port of the event notification. Set this member to zero because the port
numbers are provided in the Buffer member of the structure that the NetPnPEvent
member specifies.

NetPnPEvent
A NET_PNP_EVENT structure that describes the port activation event. Set the members
of this structure as follows:

NetEvent
An event code that describes the event. Set this member to NetEventPortActivation.

Buffer
A pointer to a linked list of NDIS_PORT structures. The Next member of the NDIS_PORT
structures points to the next NDIS_PORT structure in the list.

BufferLength
The number of bytes that are specified in Buffer . Set BufferLength to the size of the
NDIS_PORT structures.

Other members
Set the remaining members of NET_PNP_EVENT to NULL.

The miniport driver lists the ports that have changed states from inactive to active in a
linked list of NDIS_PORT structures. However, if the default port of a miniport adapter is
the target of a NetEventPortActivation PnP event, the default port must be the only
port in the list.

When the miniport driver notifies NDIS of the activation of a port (and possibly before
this notification call returns), the miniport driver must be ready to handle send requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port

and OID requests that are associated with the port. Miniport drivers must not use the
port number of a newly activated port in status or receive indications until after the call
to NdisMNetPnPEvent returns.

NDIS does not notify overlying drivers about activated ports until after the default port
is active. When NDIS calls the ProtocolBindAdapterEx function of a protocol driver, NDIS
provides a list of all currently active ports in the ActivePorts member of the
NDIS_BIND_PARAMETERS structure that the BindParameters parameter points to. When
a miniport driver activates new ports, NDIS notifies all of the protocol drivers that are
bound to the miniport driver with the NetEventPortActivation PnP event. For more
information about handling these port activation events in a protocol driver, see
Handling the Port Activation PnP Event.

Before a miniport driver allocates an NDIS port, the driver must call the
NdisMSetMiniportAttributes function to set the registration attributes in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. Miniport drivers can
control the activation of the default port by setting the
NDIS_MINIPORT_CONTROLS_DEFAULT_PORT attribute flag when they call
NdisMSetMiniportAttributes. If a miniport driver assumes the responsibility for
activating the default port, NDIS does not initiate the binding between the miniport
adapter and the overlying drivers until the miniport driver activates the default port with
the port activation PnP event.

All of the ports that are specified by the linked list of NDIS_PORT structures must be in
the allocated state. A miniport driver should not attempt to activate a port that is
already active; if the driver does attempt to activate an active port, NDIS treates the
situation as a port activation failure.

If NDIS fails to activate any ports on the list, it fails the call to NdisMNetPnPEvent, and
none of the ports on the list change state to the activated state. If NDIS fails to activate
the ports because some of the ports do not exist, NdisMNetPnPEvent returns an
NDIS_STATUS_INVALID_PORT return value. If NDIS fails to activate the ports because
some of the ports are not in the allocated state, NdisMNetPnPEvent returns an
NDIS_STATUS_INVALID_PORT_STATE return value.

After a port has been successfully activated, the port is in the activated state. Miniport
drivers can indicate received data and status for a port in the activated state.

NDIS passes the authentication state of the default port to the MiniportInitializeEx
function at the DefaultPortAuthStates member of the
NDIS_MINIPORT_INIT_PARAMETERS structure. If a miniport driver controls the default
port, when the miniport driver activates the default port, it can activate the default port
by using the default authentication settings. To use the default authentication settings,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters

set the NDIS_PORT_CHAR_USE_DEFAULT_AUTH_SETTINGS flag in the Flags member of
NDIS_PORT_CHARACTERISTICS structure. Miniport drivers can use the
NDIS_PORT_CHAR_USE_DEFAULT_AUTH_SETTINGS flag for the ports that they allocate
and activate. For the activation case, NDIS assigns the default authentication states to
the newly activated port and ignores the authentication states that are passed to
NdisMNetPnPEvent for the NetEventPortActivation event.

For more information about controlling the default port and allocating ports, see
Allocating NDIS Ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent

Managing an NDIS Port
Article • 03/14/2023

Interested NDIS drivers and user-mode applications can manage NDIS ports. NDIS
provides services to help manage ports.

NDIS notifies the interested NDIS drivers and user mode applications of port state
changes by issuing the associated status indications, and PnP events.

The port number that is passed to send and receive functions identifies the target port
of a send operation or the source port of a receive indication. Similarly, the port number
in the associated structures identifies the port for status indications, OID requests, and
PnP events. For more information about port numbers, see NDIS Ports Introduction.

To help manage NDIS ports, the following structures include the port number:

NDIS_OID_REQUEST
Describes OID requests.

NDIS_STATUS_INDICATION
Describes NDIS status indications.

NET_PNP_EVENT_NOTIFICATION
Describes PnP event notifications.

This section includes:

NDIS Port Send and Receive Operations

NDIS Port OID Requests

Handling NDIS Ports Status Indications

Handling NDIS Ports PnP Event Notifications

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification

NDIS Port Send and Receive Operations
Article • 03/14/2023

NDIS drivers can associate send and receive operations with NDIS ports.The port
number in the PortNumber parameter of the NDIS send and receive functions identifies
the target port of a send operation or the source port of a receive indication. If
PortNumber is zero, the default port is used. When NDIS handles the default port and
the miniport driver does not allocate any other ports, no NDIS drivers in the driver stack
are required to do anything beyond always setting the PortNumber parameter to zero.
For more information about allocating ports in a miniport driver, see Allocating NDIS
Ports.

If the miniport driver allocates ports, overlying drivers can use the ports to send and
receive data on the appropriate subinterfaces of the associated miniport adapter.
However, the overlying driver must ensure that the ports are active before sending any
data. Miniport drivers activate ports when the associated subinterfaces become
available. For more information about activating a port in a miniport driver, see
Activating NDIS Ports.

When NDIS calls the ProtocolBindAdapterEx function of a protocol driver, NDIS provides
a list of all currently active ports in the ActivePorts member of the
NDIS_BIND_PARAMETERS structure that the BindParameters parameter points to. NDIS
also informs protocol drivers with a PnP event when ports are activated and deactivated.
For more information about PnP port activation and deactivation notifications, see
Handling NDIS Ports PnP Notifications. For more general information about send and
receive operations, see Send and Receive Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

NDIS Port OID Requests
Article • 03/14/2023

NDIS drivers can associate OID requests with NDIS ports. In such an OID request, the
PortNumber member of the NDIS_OID_REQUEST structure is set to the target port
number. The port number is zero if the OID request is for the default port. The overlying
driver must ensure that a port is active before making any OID requests that specify a
specific port number.

When NDIS calls the ProtocolBindAdapterEx function of a protocol driver, NDIS provides
a list of all currently active ports in the ActivePorts member of the
NDIS_BIND_PARAMETERS structure that the BindParameters parameter points to. NDIS
also informs protocol drivers with a PnP event when ports are activated and deactivated.
For more information about PnP port activation and deactivation notifications, see
Handling NDIS Ports PnP Notifications.

The following OIDs are specific to the NDIS ports interface:

OID_GEN_ENUMERATE_PORTS
Enumerates the active ports that are associated with a miniport adapter.

OID_GEN_PORT_STATE
Retrieves the current link and authentication port states.

OID_GEN_PORT_AUTHENTICATION_PARAMETERS
Sets the current authentication states of an NDIS port.

This section includes:

Enumerating Ports
Querying the Port State
Setting Port Authentication Parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

Enumerating Ports
Article • 12/15/2021

NDIS protocol drivers and filter drivers can use an OID_GEN_ENUMERATE_PORTS OID
query request to determine the characteristics of the active NDIS ports that are
associated with an underlying miniport adapter. NDIS handles this OID, and miniport
drivers do not receive this OID query.

If the query succeeds, NDIS provides the results of the query in an NDIS_PORT_ARRAY
structure. The NumberOfPorts member of NDIS_PORT_ARRAY contains the number of
active ports that are associated with the miniport adapter. The Ports member of
NDIS_PORT_ARRAY contains a list of pointers to NDIS_PORT_CHARACTERISTICS
structures. Each NDIS_PORT_CHARACTERISTICS structure defines the characteristics of a
single port.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics

Querying the Port State
Article • 12/15/2021

Overlying drivers can issue an OID_GEN_PORT_STATE OID query request to get the
current state of the port that is specified in the PortNumber member of an
NDIS_OID_REQUEST structure. NDIS handles this OID, and miniport drivers do not
receive this OID query. NDIS receives port state information in the
NDIS_PORT_CHARACTERISTICS structure.

The OID_GEN_PORT_STATE OID is supported in NDIS 6.0 and later versions.

Overlying drivers should avoid using OID_GEN_PORT_STATE when possible and should
instead rely on the NDIS_STATUS_PORT_STATE status indication. For more information
about port-related status indications, see Handling NDIS Ports Status Indications.

If the OID_GEN_PORT_STATE query succeeds, NDIS returns the port state information in
an NDIS_PORT_STATE structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state

Setting Port Authentication Parameters
Article • 12/15/2021

NDIS and overlying drivers use an OID_GEN_PORT_AUTHENTICATION_PARAMETERS OID
set request to set the current state of an NDIS port. Miniport drivers that support NDIS
ports must support this OID.

If the set request is successful, the miniport driver uses the receive port direction, port
control state, and authenticate state from an
NDIS_PORT_AUTHENTICATION_PARAMETERS structure.

The miniport should generate an NDIS_STATUS_PORT_STATE status indication to notify
overlying drivers of any state changes.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_authentication_parameters

Handling NDIS Ports Status Indications
Article • 03/14/2023

If an NDIS port is the source of a status indication, a miniport driver should use the
PortNumber member in the NDIS_STATUS_INDICATION structure to specify the source
port. Miniport drivers never indicate status for inactive ports.

Miniport drivers should use the NDIS_STATUS_PORT_STATE status indication to indicate
changes in the state of an NDIS port. For this status indication, miniport drivers must set
the port number in the PortNumber member of the NDIS_STATUS_INDICATION
structure. The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains
a pointer to an NDIS_PORT_STATE structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state

NDIS Ports PnP Event Notifications
Article • 03/14/2023

NDIS forwards PnP events to notify overlying drivers when ports are activated or
deactivated. NDIS and miniport drivers do not generate a PnP event when a port is
allocated. Miniport drivers notify NDIS that ports have been activated with the
NetEventPortActivation PnP event and miniport drivers generate a
NetEventPortDeactivation PnP event to notify NDIS that some ports have been
deactivated.

When NDIS calls the ProtocolBindAdapterEx function of a protocol driver, NDIS provides
a list of all currently active ports in the ActivePorts member of the
NDIS_BIND_PARAMETERS structure at the BindParameters parameter.

The following topics describe how to handle port PnP events:

Handling the Port Activation PnP Event

Handling the Port Deactivation PnP Event

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

Handling the Port Activation PnP Event
Article • 12/15/2021

Overlying drivers must handle the NetEventPortActivation PnP event when a miniport
driver activates an NDIS port. NDIS does not initiate the binding between a protocol
driver and miniport adapter until the default port has been activated. Therefore,
protocol drivers should treat the call to their ProtocolBindAdapterEx function as a
notification that the default port is active.

Protocol drivers must not use a port number in any NDIS requests unless the driver
received notification that the port is active, either through the bind parameters or
through the NetEventPortActivation PnP event.

NDIS generates a port activation PnP event after the miniport driver activates some
ports. (Miniport drivers specify the NetEventPortActivation PnP event code in the
NET_PNP_EVENT_NOTIFICATION structure that the NetPnPEvent parameter points to in
the call to NdisMNetPnPEvent to activate NDIS ports.)

Miniport drivers can indicate the activation of multiple ports in one PnP notification by
using the Next member in an NDIS_PORT structure to link multiple NDIS_PORT
structures. For more information about the linked list of NDIS_PORT structures, see
Activating NDIS Ports.

NDIS generates a NetEventPortDeactivation PnP event to the bound protocol drivers
when a miniport deactivates some ports. For more information about the
NetEventPortDeactivation PnP event, see Handling the Port Deactivation PnP Event.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port

Handling the Port Deactivation PnP
Event
Article • 12/15/2021

Overlying drivers must handle the NetEventPortDeactivation PnP event when a
miniport driver deactivates an NDIS port. To notify overlying drivers about port
deactivation events, NDIS propagates the port deactivation PnP event from the
underlying miniport driver.

Before a protocol driver completes the handling of a port deactivation PnP event, it
must ensure that all outstanding OID requests and send requests that are associated
with the port have completed. After the protocol driver completes the PnP event, the
driver must ensure that it does not issue any OID requests or send requests for that
port.

Miniport drivers specify the NetEventPortDeactivation PnP event code in the
NET_PNP_EVENT_NOTIFICATION structure that the NetPnPEvent parameter points to in
the call to the NdisMNetPnPEvent function to report that some ports have been
deactivated. The miniport driver specifies an array of NDIS_PORT_NUMBER values to list
the deactivated ports. For more information about the array of port numbers, see
Deactivating NDIS Ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent

Deactivating an NDIS Port
Article • 03/14/2023

To deactivate NDIS ports, a miniport driver sends a port deactivation Plug and Play (PnP)
event to NDIS. After a miniport driver successfully activates a port, the driver must
deactivate the port before it can free the port. Also, the driver might deactivate a port
for application-specific reasons. A port can be reactivated after it is deactivated, but a
port cannot be reactivated if it is freed.

To send a port deactivation PnP event, miniport drivers use the
NetEventPortDeactivation PnP event code in the call to the NdisMNetPnPEvent
function. To deactivate ports, the miniport driver must set the members of the
NET_PNP_EVENT_NOTIFICATION structure that the NetPnPEvent parameter of
NdisMNetPnPEvent points to as follows:

PortNumber
The source port of the event notification. Set this member to zero because the port
numbers are provided in the Buffer member of the structure that the NetPnPEvent
member specifies.

NetPnPEvent
A NET_PNP_EVENT structure that describes the port deactivation event. Set the
members of this structure as follows:

NetEvent
An event code that describes the event. Set this member to NetEventPortDeactivation.

Buffer
A pointer to an array of NDIS_PORT_NUMBER-typed elements. The array contains the
port numbers of all of the ports that the miniport driver is deactivating.

BufferLength
The number of bytes that are specified in Buffer . Set BufferLength to the size of the
array that Buffer points to. To obtain the number of elements in the array, divide the
value in BufferLength by the size of the NDIS_PORT_NUMBER data type.

Other members
Set the remaining members of NET_PNP_EVENT to NULL.

A miniport driver can provide an array with a list of ports to deactivate. However, if the
default port of a miniport adapter is the target of a NetEventPortDeactivation PnP
event, the default port must be the only port that is specified in the array.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event

Miniport drivers can deactivate active ports at any time. However, before a miniport
driver deactivates a port, it must ensure that there are no outstanding status indications
or receive indications that are associated with that port. After the miniport driver sends
the port deactivation PnP event, it must not initiate any status or receive indications that
are associated with the deactivated ports.

A miniport driver can also reactivate a port. For more information about activating NDIS
ports, see Activating NDIS Ports.

When a miniport driver deactivates ports, NDIS notifies all of the protocol drivers that
are bound to the miniport driver with the NetEventPortDeactivation PnP event. This
PnP event lists those ports that have changed to the allocated state and does not
include any ports that are already deactivated. For more information about handling
port deactivation events in a protocol driver, see Handling the Port Deactivation PnP
Event.

Before a miniport driver allocates an NDIS port, the driver must call the
NdisMSetMiniportAttributes function to set the registration attributes in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. Miniport drivers can
control the activation of the default port by setting the
NDIS_MINIPORT_CONTROLS_DEFAULT_PORT attribute flag when they call
NdisMSetMiniportAttributes. If a miniport driver assumes the responsibility for
activating the default port and the miniport driver activated the default port, it must
deactivate the default port before returning from the MiniportHaltEx function.

All of the ports that are specified by the array of NDIS_PORT_NUMBER elements must be
in the activated state. A miniport driver should not attempt to deactivate a port that has
already deactivated.

If NDIS fails to deactivate any ports in the port array, none of the ports in the port array
will change state. If the deactivation fails because some of the specified ports do not
exist, the NdisMNetPnPEvent function returns the NDIS_STATUS_INVALID_PORT return
value. If the deactivation fails because some of the ports are not in the activated state,
NdisMNetPnPEvent returns the NDIS_STATUS_INVALID_PORT_STATE return value.

Until the call to NdisMNetPnPEvent returns, a port is not deactivated, and miniport
drivers must be able to handle OID requests and send requests that are associated with
that port.

When a miniport driver deactivates the default port, NDIS closes all of the bindings
between the overlying protocol drivers and the miniport adapter. If a miniport driver
tries to deactivate the default port and default port is already deactivated,
NdisMNetPnPEvent fails and returns the NDIS_STATUS_INVALID_PORT_STATE return

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent

value. If a miniport driver tries to deactivates the default port and the default port is not
the only port that is specified in the array of NDIS_PORT_NUMBER elements,
NdisMNetPnPEvent fails and returns the NDIS_STATUS_INVALID_PORT return value. If a
miniport driver sets the Buffer member to NULL or BufferLength member to zero, NDIS
fails the NdisMNetPnPEvent call and returns the NDIS_STATUS_INVALID_PARAMETER
return value.

After a port is successfully deactivated, the port is in the allocated state. Miniport drivers
cannot indicate received data or status for the port in the allocated state.

Creating NDIS Interfaces for NDIS Ports
Article • 03/14/2023

By default, NDIS does not create an NDIS network interface for an NDIS port. If
necessary, NDIS drivers can call the NdisIfRegisterProvider function to register as an
NDIS interface provider and call the NdisIfRegisterInterface function to register an
interface for a port.

For more information about NDIS network interfaces, see NDIS 6.0 Network Interfaces.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Power Management (NDIS 6.30)
Article • 03/14/2023

This section describes the power management interface that was introduced with NDIS
6.30 in Windows 8.

This section includes the following topics:

NDIS Packet Coalescing

NDIS Selective Suspend

NDIS Wake Reason Status Indications

Note The NDIS 6.30 power management interface is an extension to the NDIS 6.20
power management interface. For more information about the NDIS 6.20 power
management interface, see Power Management (NDIS 6.20).

Introduction to NDIS Packet Coalescing
Article • 03/14/2023

Starting with NDIS 6.30, network adapters can support NDIS packet coalescing. This
feature reduces the processing overhead and power consumption on a host system due
to the reception of random broadcast or multicast packets.

This section includes the following topics:

Overview of Packet Coalescing

Reporting Packet Coalescing Capabilities

Querying Packet Coalescing Capabilities

Managing Packet Coalescing Receive Filters

Standardized INF Keywords for Packet Coalescing

Overview of Packet Coalescing
Article • 12/15/2021

Certain IP version 4 (IPv4) and IP version 6 (IPv6) network protocols involve the
transmission of packets to broadcast or multicast addresses. These packets are received
by multiple hosts in the IPv4/IPv6 subnet. In most cases, the host that receives these
packets does not do anything with these packets. Therefore, the reception of these
unwanted multicast or broadcast packets causes unnecessary processing and power
consumption to occur within the receiving host.

For example, host A sends a multicast Link-local Multicast Name Resolution (LLMNR)
request on an IPv6 subnet to resolve host B's name. Except for host A, this LLMNR
request is received by all hosts on the subnet. Except for host B, the TCP/IP protocol
stack that runs on the other hosts inspects the packet and determines that the packet is
not intended for it. Therefore, the protocol stack rejects the packet and calls
NdisReturnNetBufferLists to return the packet to the miniport driver.

Starting with NDIS 6.30, network adapters can support NDIS packet coalescing. By
reducing the number of receive interrupts through the coalescing of random broadcast
or multicast packets, the processing overhead and power consumption is significantly
reduced on the system.

Packet coalescing involves the following steps:

1. Overlying drivers, such as the TCP/IP protocol stack, define NDIS receive filters that
are used to screen broadcast and multicast packets. The overlying drivers
download these filters to the underlying miniport driver that supports packet
coalescing. Once downloaded, the miniport driver configures the network adapter
with the packet coalescing receive filters.

For more information about these filters, see Packet Coalescing Receive Filters.

2. Received packets that match receive filters are cached, or coalesced, on the
network adapter. The adapter does not generate a receive interrupt for coalesced
packets. Instead, the adapter interrupts the host when another hardware event
occurs.

When this interrupt is generated, the adapter must indicate a receive event with
the interrupt. This allows the network adapter to process coalesced packets that
were received by the network adapter.

For example, the network adapter that supports packet coalescing can generate a
receive interrupt when one of the following events occur:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists

The expiration of a hardware timer whose expiration time is set to a
maximum coalescing delay value of the matching receive filter.

The available space within the hardware coalescing buffer reaches an
adapter-specified low-water mark.

A packet is received that does not match a coalescing filter.

Another interrupt event, such as a send completion event, has occurred.

For more information about this process, see Handling Packet Coalescing Receive
Filters.

The following points apply to the support of packet coalescing by NDIS:

NDIS supports packet coalescing for packets received on the default NDIS port
(port 0) assigned to the physical network adapter. NDIS does not support packet
coalescing on NDIS ports that are assigned to virtual network adapters. For more
information, see NDIS Ports.

NDIS supports packet coalescing for packets received on the default receive queue
of the network adapter. This receive queue has an identifier of
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

Packet Coalescing Receive Filters
Article • 12/15/2021

Starting with NDIS 6.30, NDIS receive filters have been extended to support packet
coalescing. Each receive filter for packet coalescing defines the following:

A set of fields within the various protocol headers of a packet, such as the
destination address of a media access control (MAC) header or destination port of
a User Datagram Protocol (UDP) header.

The maximum time that a packet that matches a coalescing receive filter is
coalesced by the network adapter. The adapter uses this value to set an expiration
value on a hardware timer on the adapter. As soon as the timer expires, the
adapter must interrupt the host so the miniport driver can process the coalesced
packets.

Note As soon as the first packet that matches a receive filter is coalesced and the
timer is started, the network adapter must coalesce additional packets that match
receive filters without resetting and restarting the timer.

Overlying drivers, such as protocol and filter drivers, download the packet coalescing
receive filters to the miniport driver by issuing object identifier (OID) set requests of
OID_RECEIVE_FILTER_SET_FILTER. For more information, see Setting Packet Coalescing
Receive Filters.

Overlying drivers can also query the packet coalescing receive filters downloaded to the
miniport driver. Overlying drivers do this by issuing OID method requests of
OID_RECEIVE_FILTER_ENUM_FILTERS to the miniport driver. For more information, see
Querying Packet Coalescing Receive Filters.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Reporting Packet Coalescing
Capabilities
Article • 12/15/2021

Miniport drivers register the following capabilities with NDIS during network adapter
initialization:

The packet coalescing capabilities that the network adapter supports.

The packet coalescing capabilities that are currently enabled on the network
adapter.

The packet coalescing receive filtering capabilities that are currently enabled on
the network adapter.

Note A miniport driver's support for packet coalescing can be enabled or disabled
through the *PacketCoalescing INF keyword setting. This setting is displayed in the
Advanced property page for the network adapter. For more information about the
packet coalescing INF file setting, see Standardized INF Keywords for Packet Coalescing.

The miniport driver reports the packet coalescing and filtering capabilities of the
underlying network adapter through an NDIS_RECEIVE_FILTER_CAPABILITIES structure.
If the *PacketCoalescing keyword setting in the registry has a value of one, packet
coalescing is enabled and the miniport driver initializes the
NDIS_RECEIVE_FILTER_CAPABILITIES structure in the following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

If the driver supports packet coalescing, it sets the Revision member of Header to
the NDIS_RECEIVE_FILTER_CAPABILITIES_REVISION_2 and the Size member to
NDIS_SIZEOF_RECEIVE_FILTER_CAPABILITIES_REVISION_2.

2. The miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_SUPPORTED_ON_DEFAULT_QUEUE
flag in the SupportedQueueProperties member.

If this flag is set, the network adapter must support the filtering of received
multicast packets in hardware. This filtering is based on the multicast addresses
that NDIS offloaded to the network adapter by sending it
OID_802_3_MULTICAST_LIST OID set requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

Note Protocol drivers can also change the contents of the multicast address list by
sending OID_802_3_ADD_MULTICAST_ADDRESS and
OID_802_3_DELETE_MULTICAST_ADDRESS requests. NDIS combines these requests
into OID_802_3_MULTICAST_LIST OID set requests.

Note The adapter is required to reject any incoming multicast packet whose destination
media access control (MAC) address does not match any of the multicast addresses
specified by these OID set requests.

3. The miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag in the
EnabledFilterTypes member.

Note If the driver sets this flag, it must also set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_SUPPORTED_ON_DEFAULT_QUEUE
flag in the SupportedQueueProperties member. Otherwise, NDIS will fail the call
to NdisMSetMiniportAttributes by returning
NDIS_STATUS_BAD_CHARACTERISTICS.

4. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must support all receive filter test criteria. The driver advertises this support by
setting the following flags in the SupportedFilterTests member:

NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_EQUAL_SUPPORTED

NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_MASK_EQUAL_SUPPORTED

NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_NOT_EQUAL_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedFilterTests member to zero.

5. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within various fields of the media access
control (MAC), IP version 4 (IPv4), and IP version 6 (IPv6) headers. The driver
advertises this support by setting the following flags in the SupportedHeaders
member:

NDIS_RECEIVE_FILTER_MAC_HEADER_SUPPORTED

NDIS_RECEIVE_FILTER_ARP_HEADER_SUPPORTED

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

NDIS_RECEIVE_FILTER_IPV4_HEADER_SUPPORTED

NDIS_RECEIVE_FILTER_IPV6_HEADER_SUPPORTED

NDIS_RECEIVE_FILTER_UDP_HEADER_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedHeaders member to zero.

6. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within the media access control (MAC)
header of the received packet. The driver advertises this support by setting the
following flags in the SupportedMacHeaderFields member:

NDIS_RECEIVE_FILTER_MAC_HEADER_DEST_ADDR_SUPPORTED

NDIS_RECEIVE_FILTER_MAC_HEADER_PROTOCOL_SUPPORTED

NDIS_RECEIVE_FILTER_MAC_HEADER_PACKET_TYPE_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedMacHeaderFields member to zero.

7. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within the header of a received Address
Resolution Protocol (ARP) packet. The driver advertises this support by setting the
following flags in the SupportedARPHeaderFields member:

NDIS_RECEIVE_FILTER_ARP_HEADER_OPERATION_SUPPORTED

NDIS_RECEIVE_FILTER_ARP_HEADER_SPA_SUPPORTED

NDIS_RECEIVE_FILTER_ARP_HEADER_TPA_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedARPHeaderFields member to zero.

8. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within the Open Systems Interconnection
(OSI) layer 3 (L3) header of a received IP version 4 (IPv4) packet. The driver

advertises this support by setting the following flags in the
SupportedIPv4HeaderFields member:

NDIS_RECEIVE_FILTER_IPV4_HEADER_PROTOCOL_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedIPv4HeaderFields member to zero.

9. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within the L3 header of a received IP
version 6 (IPv6) packet. The driver advertises this support by setting the following
flags in the SupportedIPv6HeaderFields member:

NDIS_RECEIVE_FILTER_IPV6_HEADER_PROTOCOL_SUPPORTED

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver
must set the SupportedIPv6HeaderFields member to zero.

10. If the miniport driver sets the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the miniport
driver must support the filtering of data within the OSI layer 4 (L4) header of a
received User Datagram Protocol (UDP) packet. The driver advertises this support
by setting the following flags in the SupportedIUdpHeaderFields member:

NDIS_RECEIVE_FILTER_UDP_HEADER_DEST_PORT_SUPPORTED

Note If the received UDP packet contains IPv4 options or IPv6 extension headers,
the network adapter can handle the packet as if it failed the UDP filter test. In this
way, the adapter can automatically drop the received packet.

Note If the miniport driver does not set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED flag, the driver must set
the SupportedIUdpHeaderFields member to zero.

11. The miniport driver must report the maximum number of tests on packet header
fields that can be specified for a single packet coalescing filter. The driver specifies
this value in the MaxFieldTestsPerPacketCoalescingFilter member.

Note Network adapters that support packet coalescing must support five or more
packet header fields that can be specified for a single packet coalescing filter. If the
adapter does not support packet coalescing, the miniport driver must set this value
to zero.

12. The miniport driver must report the maximum number of packet coalescing filters
that are supported by the network adapter. The driver specifies this value in the
MaxPacketCoalescingFilters member.

Note Network adapters that support packet coalescing must support ten or more
packet coalescing filters. If the adapter does not support packet coalescing, the
miniport driver must set this value to zero.

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver reports the
packet coalescing and filtering capabilities of the underlying network adapter by
following these steps:

The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

If the *PacketCoalescing keyword setting in the registry has a value of one, the
miniport driver sets the HardwareReceiveFilterCapabilities member to a pointer to
the previously initialized NDIS_RECEIVE_FILTER_CAPABILITIES structure.

If the *PacketCoalescing keyword setting in the registry has a value of zero, the
miniport driver does not advertise support for packet coalescing. It must set the
HardwareReceiveFilterCapabilities member to NULL.

The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The method that is used by miniport drivers to report the packet coalescing and filtering
capabilities of the underlying network adapter is based on the NDIS 6.20 method for
reporting power management capabilities. For more information about this method, see
Reporting Power Management Capabilities.

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

Querying Packet Coalescing Capabilities
Article • 12/15/2021

Once the miniport driver is initialized, overlying drivers and applications can issue the
following OID query requests to obtain the packet coalescing capabilities of the network
adapter:

OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES

OID_RECEIVE_FILTER_CURRENT_CAPABILITIES

OID_RECEIVE_FILTER_GLOBAL_PARAMETERS

NDIS handles these OID query requests for miniport drivers and returns the packet
coalescing capabilities that the miniport driver registered when NDIS called the driver's
MiniportInitializeEx function. Therefore, these OID query requests are not handled by
miniport drivers.

For more information about how the miniport driver registers its packet coalescing
capabilities, see Determining Receive Filtering Capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Guidelines for Managing Packet
Coalescing Receive Filters
Article • 12/15/2021

If the miniport driver supports NDIS packet coalescing, it must follow these guidelines
for managing packet coalescing receive filters:

The miniport driver and underlying network adapter must be able to handle the
setting and clearing of receive filters dynamically. Individual receive filters may be
set or cleared at any time.

The miniport driver must maintain a coalesced packet counter. This 64-bit counter
contains a value for the number of received packets that have matched a packet
coalescing filter. NDIS queries this counter through an OID query request of
OID_PACKET_COALESCING_FILTER_MATCH_COUNT.

Note The miniport driver clears this counter when it transitions to a full-power
state by handling an OID set request of OID_PNP_SET_POWER. The miniport driver
also clears the counter when its MiniportResetEx function is called.

The miniport driver must not discard the packet coalescing receive filters when it
transitions to a low-power state. However, while the network adapter is in a low-
power state, it must only filter received packets based on wake-up patterns that
have been offloaded to the adapter through OID set requests of
OID_PNP_ENABLE_WAKE_UP.

The miniport driver must configure the network adapter with the packet coalescing
receive filters when the adapter transitions to a full-power state.

The miniport driver must not discard the packet coalescing receive filters when
NDIS calls the driver's MiniportResetEx function. After the driver resets the network
adapter, it must configure the adapter with the packet coalescing filters. Also, the
driver must clear the coalesced packet counter.

Note The miniport driver must perform this operation regardless of whether the
driver sets the AddressingReset parameter to TRUE.

If the miniport driver is operating in the Native 802.11 extensible station (ExtSTA)
mode, it must not discard the packet coalescing receive filters when it handles an
OID method request of OID_DOT11_RESET_REQUEST. After the miniport driver
performs the 802.11 reset operation, it must configure the network adapter with

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-reset-request

the packet coalescing receive filters. Also, the driver must not clear the coalesced
packet counter.

For more information about the Native 802.11 extensible station mode, see
Extensible Station Operation Mode.

Note NDIS does not support packet coalescing for native 802.11 miniport drivers
that operate in extensible access point (ExtAP) mode. For more information about
the ExtAP operation mode, see Extensible Access Point Operation Mode.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extensible-station-operation-mode
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extensible-access-point-operation-mode

Specifying a Packet Coalescing Receive
Filter
Article • 12/15/2021

An overlying driver can set one or more receive filters on a miniport driver that support
NDIS packet coalescing. The overlying driver can specify up to the maximum number of
receive filters that the miniport driver specified in the MaxPacketCoalescingFilters
member of the NDIS_RECEIVE_FILTER_CAPABILITIES structure.

Note The overlying protocol driver obtains the NDIS_RECEIVE_FILTER_CAPABILITIES
structure within the NDIS_BIND_PARAMETERS structure. The overlying filter driver
obtains the NDIS_RECEIVE_FILTER_CAPABILITIES structure within the
NDIS_FILTER_ATTACH_PARAMETERS structure.

The overlying driver downloads receive filters to the miniport driver by issuing OID
method requests of OID_RECEIVE_FILTER_SET_FILTER. The InformationBuffer member of
the NDIS_OID_REQUEST structure for this OID request contains a pointer to a caller-
allocated buffer. This buffer is formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the parameters for
an NDIS receive filter.

For more information about how to initialize this structure, see Specifying a
Receive Filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that specifies
the filter test criterion for a field in a network packet header.

For more information about how to initialize these structures, see Specifying
Header Field Tests.

An overlying driver specifies a packet coalescing receive filter by initializing an
NDIS_RECEIVE_FILTER_PARAMETERS structure with the configuration parameters for
the filter. When it initializes the NDIS_RECEIVE_FILTER_PARAMETERS structure, the
overlying driver must follow these rules:

The FilterType member must be set to the NDIS_RECEIVE_FILTER_TYPE
enumeration value of NdisReceiveFilterTypePacketCoalescing.

Specifying a Receive Filter

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_receive_filter_type

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

Note Starting with NDIS 6.30, packet coalescing receive filter are only supported
on the default receive queue of the network adapter. This receive queue has an
identifier of NDIS_DEFAULT_RECEIVE_QUEUE_ID.

If the overlying driver is creating a new receive filter, it must set the FilterId
member to NDIS_DEFAULT_RECEIVE_FILTER_ID.

Note NDIS will generate a unique filter identifier (ID) for the receive filter before it
forwards the OID method request of OID_RECEIVE_FILTER_SET_FILTER to the
miniport driver.

If the overlying driver is modifying an existing receive filter, it must set the FilterId
member to the nonzero filter ID of the receive filter. The overlying driver obtains
the filter ID for the receive filter when it issues an OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS. For more information about how to modify a
receive filter, see Modifying Packet Coalescing Receive Filters.

The FieldParametersArrayOffset, FieldParametersArrayNumElements, and
FieldParametersArrayElementSize members of the
NDIS_RECEIVE_FILTER_PARAMETERS structure must be set to define a field
parameter's array. Each element in the array is an
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure that specifies the parameters
for a header field test of a receive filter.

The RequestedFilterIdBitCount member must be set to zero.

The MaxCoalescingDelay must be set to the maximum time, in units of
milliseconds, that the first packet that matches the receive filter is saved and
coalesced on the network adapter. As soon as the first packet that matches the
filter is received, the network adapter coalesces the packet and starts a hardware
timer whose expiration time is set to the value of the MaxCoalescingDelay
member.

The overlying driver must order the header field tests in the field parameters array to be
in the same order that the associated MAC and protocol headers would exist in a
packet.

For example, before the overlying driver specifies the filter parameters for an IP version
4 (IPv4) protocol field, it must first specify the filter parameters for a MAC header
protocol field (NdisMacHeaderFieldProtocol). In this manner, the driver specifies a
header field test that verifies the field is set to the correct EtherType value (0x0800) for

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

IPv4 packets. If the test fails, the adapter does not have to perform the test of the IPV4
protocol field.

Each receive filter can specify one or more test criteria (header field tests). The network
adapter performs these tests to determine whether a received packet should be
coalesced in a hardware coalescing buffer on the adapter. Also, the overlying driver can
specify separate filter tests for various media access control (MAC), IP version 4 (IPv4),
and IP version 6 (IPv6) header fields.

To optimize filtering on the network adapter, header field tests are based on
standardized header field names instead of byte offset/length specifications within the
packet data. By using header/field names, the network adapter's hardware or firmware
can optimize how multiple header field tests are performed on a received packet.

Each receive filter can contain one or more header field tests specified by an
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure. Each
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure is an element of the field
parameters array that is referenced by the FieldParametersArrayOffset,
FieldParametersArrayNumElements, and FieldParametersArrayElementSize members
of the NDIS_RECEIVE_FILTER_PARAMETERS structure.

The miniport driver must follow these guidelines when it handles an OID method
request of OID_RECEIVE_FILTER_SET_FILTER:

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag is set in the Flags member of the NDIS_RECEIVE_FILTER_FIELD_PARAMETERS
structure, the network adapter must only indicate received packets with a
matching MAC address and untagged packets or packets with a VLAN identifier of
zero. That is, the network adapter must not indicate packets with a matching MAC
address and a nonzero VLAN identifier.

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag is not set and there is no VLAN identifier filter configured by an OID set
request of OID_RECEIVE_FILTER_SET_FILTER, the miniport driver must do one of the
following:

If the miniport driver supports NDIS 6.20, it must return a failed status for the
OID request of OID_RECEIVE_FILTER_SET_FILTER.

If the miniport driver supports NDIS 6.30 or later versions of NDIS, it must
configure the network adapter to inspect and filter the specified MAC address

Specifying Header Field Tests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

fields. If a VLAN tag is present in the received packet, the network adapter must
remove it from the packet data. The miniport driver must put the VLAN tag in
an NDIS_NET_BUFFER_LIST_8021Q_INFO that is associated with the packet's
NET_BUFFER_LIST structure.

If the overlying driver sets a MAC address filter and a VLAN identifier filter in the
NDIS_RECEIVE_FILTER_PARAMETERS structure, it does not set the
NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag in
either of the filter fields. In this case, the miniport driver should indicate packets
that match both the specified MAC address and the VLAN identifier. That is, the
miniport driver should not indicate packets with a matching MAC address that
have a zero VLAN identifier or are untagged packets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Setting a Packet Coalescing Receive
Filter
Article • 12/15/2021

To download and set a receive filter on a miniport driver that supports packet
coalescing, an overlying driver issues an OID method request of
OID_RECEIVE_FILTER_SET_FILTER. The InformationBuffer member of the
NDIS_OID_REQUEST structure for the OID request contains a pointer to a caller-
allocated buffer. This buffer is formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the parameters for
an NDIS receive filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that specifies
the filter test criterion for a field in a network packet header.

For more information about how an overlying driver specifies the parameters for a
packet coalescing receive filter, see Specifying a Packet Coalescing Receive Filter.

When NDIS receives an OID request to set a receive filter on the underlying network
adapter, it verifies the receive filter parameters. If the overlying driver is specifying a new
receive filter, NDIS will also generate a unique filter identifier (ID) for the receive filter.

After NDIS allocates the necessary resources and the filter ID, it forwards the OID
request to the miniport driver. If the miniport driver can successfully allocate the
necessary software and hardware resources for the receive filter, the miniport driver
completes the OID request with a status of NDIS_STATUS_SUCCESS.

After a successful return from the OID method request of
OID_RECEIVE_FILTER_SET_FILTER, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_PARAMETERS structure. This structure is updated by NDIS with
the new filter ID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Using the Filter ID
Article • 12/15/2021

Overlying drivers download receive filters to the miniport driver by issuing OID method
requests of OID_RECEIVE_FILTER_SET_FILTER. Each receive filter that is downloaded to
the miniport driver has a unique filter identifier (ID) that is generated by NDIS. The
overlying driver must use this filter ID in later OID requests in order to do the following:

Query the receive filter parameters. For more information about how to query the
parameters of a receive filter, see Querying Packet Coalescing Receive Filters.

Modify the receive filter parameters. For more information about how to modify
the parameters of a receive filter, see Modifying Packet Coalescing Receive Filters.

Free, or clear, a receive filter. For more information about how to clear receive
filters, see Clearing Packet Coalescing Receive Filters.

The miniport driver must retain the filter IDs for the allocated receive filters. When it
receives an OID request to modify, query, or free a receive filter, the miniport driver
must verify that the specified filter ID in the OID request matches an allocated receive
filter from a previous OID method request of OID_RECEIVE_FILTER_SET_FILTER. If the
filter ID does not match any of the allocated receive filters, the miniport driver must
complete the OID request with a failed status.

Querying Packet Coalescing Receive
Filters
Article • 12/15/2021

Overlying drivers and applications can query packet coalescing receive filters that have
been downloaded to a miniport driver by doing the following:

Request an enumerated list of the receive filters on the miniport driver by issuing
an OID method request of OID_RECEIVE_FILTER_ENUM_FILTERS. For more
information, see Enumerating the Receive Filters on a Miniport Driver.

Request the test criterion parameters for a receive filter on the miniport driver by
issuing an OID method request of OID_RECEIVE_FILTER_PARAMETERS. For more
information, see Querying the Receive Filters on a Miniport Driver

NDIS handles the OID_RECEIVE_FILTER_ENUM_FILTERS and
OID_RECEIVE_FILTER_PARAMETERS method OID requests for miniport drivers. NDIS
obtained the information from an internal cache of the data that it received from the
OID_RECEIVE_FILTER_SET_FILTER OID request.

To obtain a list of all the packet coalescing receive filters that have been downloaded to
a miniport driver, overlying drivers and applications issue an OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_INFO_ARRAY structure.

Note When the overlying driver or application initializes the
NDIS_RECEIVE_FILTER_INFO_ARRAY structure, it must set the QueueId member to
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer is
formatted to contain the following:

An NDIS_RECEIVE_FILTER_INFO_ARRAY structure that specifies a list of receive
filters that are currently configured on a miniport driver.

Enumerating the Receive Filters on a Miniport
Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array

An array of NDIS_RECEIVE_FILTER_INFO structures about a receive filter that is
currently configured on a miniport driver.

To obtain the parameters of a specific packet coalescing receive filter that was
downloaded to the miniport driver, overlying drivers or applications issue an OID
method request of OID_RECEIVE_FILTER_PARAMETERS. The InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_PARAMETERS structure. The overlying driver or application
initializes the NDIS_RECEIVE_FILTER_PARAMETERS structure by setting the FilterId
member to the nonzero ID value of the filter whose parameters are to be returned.

Note The overlying driver obtained the filter ID from an earlier OID method request of
OID_RECEIVE_FILTER_SET_FILTER or OID_RECEIVE_FILTER_ENUM_FILTERS. The application
can only obtain the filter ID from an earlier OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer is
formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the parameters for
an NDIS receive filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that specifies
the filter test criterion for one field in a network packet header.

Querying the Parameters of a Receive Filters on
a Miniport Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

Modifying Packet Coalescing Receive
Filters
Article • 12/15/2021

To modify a receive filter on a miniport driver that supports packet coalescing, an
overlying protocol or filter driver performs the following steps:

1. To obtain a list of all the packet coalescing receive filters that have been
downloaded to a miniport driver, the overlying driver issues an OID method
request of OID_RECEIVE_FILTER_ENUM_FILTERS. The InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_INFO_ARRAY structure.

Note When the overlying driver or application initializes the
NDIS_RECEIVE_FILTER_INFO_ARRAY structure, it must set the QueueId member to
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

After a successful return from the OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an updated
NDIS_RECEIVE_FILTER_INFO_ARRAY structure that is followed by one or more
NDIS_RECEIVE_FILTER_INFO structures. Each NDIS_RECEIVE_FILTER_INFO
structure specifies the identifier (ID) for a filter that is set on the network adapter.

2. To obtain the parameters of a specific packet coalescing receive filter that was
downloaded to the miniport driver, the overlying driver issues OID method request
of OID_RECEIVE_FILTER_PARAMETERS. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_PARAMETERS structure. The overlying driver or application
initializes the NDIS_RECEIVE_FILTER_PARAMETERS structure by setting the FilterId
member to the nonzero ID value of the filter whose parameters are to be returned.

After a successful return from the OID method request, the InformationBuffer
member of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This
buffer is formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the
parameters for the NDIS receive filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that
specifies the filter test criterion for one field in a network packet header.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

3. The overlying driver modifies the receive filter to add, delete, or change the filter's
set of test criterion. The driver does this by adding, deleting, or modifying
individual NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures from the field
parameter array specified by the NDIS_RECEIVE_FILTER_PARAMETERS structure.

When the overlying driver has completed the modifications to the test criterion, it
must update the members of the NDIS_RECEIVE_FILTER_PARAMETERS structure to
reflect the changes that were made to the receive filter. For example, the overlying
driver must update the FieldParametersArrayNumElements member to contain
the new number of elements in the array.

For more information, see Specifying a Packet Coalescing Receive Filter.

4. The overlying driver issues an OID method request of
OID_RECEIVE_FILTER_SET_FILTER to download the modified receive filter to the
miniport driver.

For more information, see Setting a Packet Coalescing Receive Filter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Clearing Packet Coalescing Receive
Filters
Article • 12/15/2021

To free, or clear, a receive filter on a miniport driver that supports packet coalescing, an
overlying driver issues an OID set request of OID_RECEIVE_FILTER_CLEAR_FILTER. The
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to
an NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure.

The overlying driver, such as a protocol or filter driver, initializes the
NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure in the following way:

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

Note Starting with NDIS 6.30, packet coalescing receive filters are only supported
on the default receive queue of the network adapter. This receive queue has an
identifier of NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The FilterId member must be set to the nonzero identifier (ID) value of the filter to
be cleared on the miniport driver. The overlying driver obtained the filter ID from
an earlier OID method request of OID_RECEIVE_FILTER_SET_FILTER or
OID_RECEIVE_FILTER_ENUM_FILTERS.

Note Only the overlying driver that set the packet coalescing receive filter can
clear it.

Note Before it completes the unbind or detach operation, the overlying protocol or
filter driver must clear all the packet coalescing receive filters that it set on the
underlying miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters

Handling Packet Coalescing Receive
Filters
Article • 12/15/2021

Multiple receive filters are downloaded to a miniport driver through OID method
requests of OID_RECEIVE_FILTER_SET_FILTER. Each filter can specify one or more tests
(header field tests) that the network adapter uses to determine whether a received
packet should be coalesced in a hardware coalescing buffer on the adapter.

Before the miniport driver configures the network adapter with the receive filters, the
driver should optimize the receive filters based on the hardware capabilities of the
adapter. For example, all receive filters require a header field test for the MAC header.
Therefore, the driver could optimize filter rules based on the results of this test. This
allows the adapter to determine which Open Systems Interconnection (OSI) layer 3 (L3)
and layer 4 (L4) header field tests to perform next.

As soon as the network adapter has been configured with receive filters, it must do the
following:

All the header field test parameters for a particular filter must match on the
received packet in order to coalesce the packet in the coalescing buffer.

The network adapter combines the results from all header field tests of a receive
filter with a logical AND operation. That is, if any header field test that is included
in the array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures for a receive
filter fails, the received packet does not meet the specified filter criterion and must
not be coalesced.

The network adapter only inspects packet data based on the specified header field
test parameters. The adapter must ignore all header fields in the packet for which
header field tests are not specified.

If a received packet matches all the header field tests for any of the receive filters,
the network adapter must coalesce the packet within the hardware coalescing
buffer. As soon as the first packet is coalesced, the network adapter must start a
hardware timer and must set the expiration time to the value of the
MaxCoalescingDelay member of the NDIS_RECEIVE_FILTER_PARAMETERS
structure for the matching receive filter.

As more packets are received that match a packet coalescing receive filter, the
network adapter puts them into the coalescing buffer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

If the hardware timer is already running, the adapter must not stop or restart the
timer for the matching receive filter. However, the adapter can configure the
hardware timer with the smallest expiration value from matching receive filters. For
example, when the driver receives a packet that matches receive filter X, the
adapter starts the timer with the specified expiration value for that receive filter. If
the adapter then receives a packet that matches receive filter Y, the adapter can
reconfigure the hardware timer with the specified expiration value for that receive
filter.

Note The network adapter must not reconfigure the hardware timer if the time
that is remaining on the timer is less than a receive filter's expiration time.

As soon as received packets are coalesced, the network adapter generates an
interrupt if any of the following events occur:

If the available space within the hardware coalescing buffer reaches a hardware-
specific low-water mark, the network adapter must generate a receive interrupt
so that the miniport driver can process the coalesced receive packets.

If the hardware timer used for the hardware coalescing buffer expires, the
network adapter must generate a receive interrupt so that the miniport driver
can process the coalesced receive packets.

If a receive filter is cleared and packets have been coalesced that match that
filter, the network adapter must generate a receive interrupt so that the
miniport driver can process the coalesced receive packets.

If a received packet does not match any of the receive filters, the network
adapter must generate a receive interrupt so that the miniport driver can
process the received packet. If any packets have been coalesced, the miniport
driver must also process those packets.

If the network adapter generates an interrupt for any other interrupt status
other than a receive interrupt, the network adapter must also signal a receive
interrupt status so that the miniport driver can process the coalesced received
packets.

As soon as the interrupt is generated, the network adapter must stop the hardware
timer if it hasn't expired and must clear the hardware coalescing buffer.

The miniport driver must maintain a coalesced packet counter, which contains a value
for the number of received packets that have matched a packet coalescing filter. NDIS
queries this counter through an OID query request of
OID_PACKET_COALESCING_FILTER_MATCH_COUNT.

The network adapter only performs packet coalescing while the hardware is operating in
a full-power state. While the hardware is in a low-power state, the adapter must only
filter received packets based on wake-up patterns that have been offloaded to the
adapter through OID set requests of OID_PNP_ENABLE_WAKE_UP.

When the network adapter transitions to a full-power state, the miniport driver must
follow these steps:

The miniport driver must configure the network adapter to discard any coalesced
packets within the hardware coalescing buffer. The network adapter may have
coalesced these packets when it was transitioned to a low-power state.

The miniport driver must configure the network adapter with the set of packet
coalescing receive filters that were downloaded to the driver before the low-power
transition.

The miniport driver must clear the coalesced packet counter.

Standardized INF Keywords for Packet
Coalescing
Article • 12/15/2021

A standardized INF keyword is defined to enable or disable support for packet
coalescing on a miniport driver.

The INF file for the miniport driver of an adapter that supports packet coalescing must
specify the *PacketCoalescing standardized INF keyword. Once the driver is installed,
administrators can update the *PacketCoalescing keyword value in the Advanced
property page for the adapter. For more information about advanced properties, see
Specifying Configuration Parameters for the Advanced Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

The *PacketCoalescing INF keyword is an enumeration keyword. The following table
describes the possible INF entries for the *PacketCoalescing INF keyword. The columns
in this table describe the following attributes for an enumeration keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

ParamDesc
The display text that is associated with SubkeyName.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Value
The enumeration integer value that is associated with each SubkeyName in the list.

EnumDesc
The display text that is associated with each value that appears in the menu.

SubkeyName ParamDesc Value EnumDesc

*PacketCoalescing Packet coalescing 0 Disabled

1 (Default) Enabled

The miniport driver must check the *PacketCoalescing keyword value in the registry
before it advertises its support for packet coalescing. If the *PacketCoalescing keyword
has a value of zero, the miniport must not advertise support for any packet coalescing
capabilities. For more information, see Reporting Packet Coalescing Capabilities.

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

Introduction to NDIS Selective Suspend
Article • 03/14/2023

Starting with NDIS 6.30, the NDIS selective suspend interface allows NDIS to suspend an
idle network adapter by transitioning the adapter to a low-power state. This enables the
system to reduce the power overhead on the CPU and network adapter.

This section includes the following topics:

Overview of NDIS Selective Suspend

Reporting NDIS Selective Suspend Capabilities

Registering NDIS Selective Suspend Handler Functions

NDIS Selective Suspend Idle Notifications

Standardized INF Keywords for NDIS Selective Suspend

NDIS Selective Suspend Implementation Guidelines

Note Although the NDIS selective suspend interface is especially useful for USB
network adapters, the interface is bus-independent. As a result, miniport drivers can use
the interface for network adapters on other bus types in order to reduce CPU and power
overhead.

Overview of NDIS Selective Suspend
Article • 03/14/2023

Starting with NDIS 6.30, the NDIS selective suspend interface enables NDIS to suspend
an idle network adapter by transitioning the adapter to a low-power state. This enables
the system to reduce the CPU and power overhead of the adapter.

NDIS selective suspend is especially useful for network adapters that are based on the
USB v1.1 and v2.0 interface. These adapters are continuously polled for received packets
regardless of whether they are active or idle. By suspending idle USB adapters, the CPU
overhead can be reduced by as much as 10 percent.

NDIS selective suspend is based on the USB selective suspend technology. However,
NDIS selective suspend is designed to be bus-independent. In this way, bus-
independent I/O request packets (IRPs) for selective suspend are issued by NDIS. This
makes the miniport driver responsible for issuing any IRPs that are required for selective
suspend on a specific bus. For example, miniport drivers for USB network adapters issue
the bus-specific USB idle request IRP
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the USB bus driver during a
selective suspend operation.

NDIS and the miniport driver participate in NDIS selective suspend in the following way:

1. If a miniport driver has registered its support for NDIS selective suspend, NDIS
monitors the I/O activity of the network adapter. I/O activity includes receive
packet indications, send packet completions, and OID requests that are handled by
the miniport driver.

2. NDIS considers the network adapter to be idle if it has been inactive for longer
than a specified idle time-out period. When this happens, NDIS starts a selective
suspend operation by issuing an idle notification to the miniport driver in order to
transition the network adapter to a low-power state.

For more information about how NDIS determines that a network adapter is idle,
see How NDIS Detects Idle Network Adapters.

７ Note

The length of the idle time-out period is specified by the value of the
*SSIdleTimeout standardized INF keyword. For more information about this
keyword, see Standardized INF Keywords for NDIS Selective Suspend.

https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/usb-selective-suspend
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification

3. NDIS issues the idle notification to the miniport driver by calling the driver's
MiniportIdleNotification handler function. When this function is called, the miniport
driver determines whether the network adapter can transition to a low-power
state. The miniport driver performs this determination in a bus-specific manner.

For example, a USB miniport driver determines whether the network adapter can
transition to a low-power state by issuing a USB idle request IRP
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the underlying USB bus
driver. This informs the bus driver that the network adapter is idle and confirms
whether the adapter can be transitioned to a low-power state.

For more information about how a miniport driver handles an idle notification, see
Handling the NDIS Selective Suspend Idle Notification.

4. After the miniport driver confirms that the network adapter can transition to a low-
power state, it calls NdisMIdleNotificationConfirm. In this call, the miniport driver
specifies the lowest power state that the network adapter can transition to.

5. When NdisMIdleNotificationConfirm is called, NDIS issues OID requests to the
miniport driver to prepare the adapter for the transition to a low-power state.
NDIS also issues IRPs to the underlying bus driver to set the adapter to a low-
power state.

6. After the network adapter has been suspended, it remains in a low power state
until the outstanding idle notification is canceled.

NDIS cancels the outstanding idle notification by calling the miniport driver's
MiniportCancelIdleNotification handler function. NDIS calls this handler function if
one or more of the following conditions are true:

NDIS detects send packet requests or OID requests that are issued to the
miniport driver from overlying protocol or filter drivers.

The network adapter signals a wake-up event. This might occur when the
adapter receives a packet or detects a change in its media connection status.

After the network adapter has been suspended, the miniport driver can also
complete the idle notification in order to resume the adapter to a full-power state.

７ Note

The miniport driver must specify a callback and completion routine for the
USB idle request IRP.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification

The reasons for doing this are specific to the design and requirements of the driver
and adapter.

For more information about how NDIS cancels the idle notification, see Canceling
the NDIS Selective Suspend Idle Notification.

For more information about how the miniport driver completes the idle
notification, see Completing the NDIS Selective Suspend Idle Notification.

7. When the MiniportCancelIdleNotification handler function is called, the miniport
driver determines whether the network adapter can resume to a full-power state.
The driver also cancels any bus-specific IRPs that it may have previously issued for
the idle notification.

The determination that the network adapter can transition to a full-power state is
bus-specific. For example, when MiniportCancelIdleNotification is called, the USB
miniport must cancel the previously issued USB idle request IRP. As soon as the
USB driver has canceled the IRP, it calls the IRP's completion routine to confirm
that the IRP is canceled and the network adapter can resume to a full-power state.
In the context of the completion routine, the miniport driver calls
NdisMIdleNotificationComplete.

When the miniport determines that the network adapter can resume to a full-
power state, it calls NdisMIdleNotificationComplete. This call notifies NDIS that
the idle notification has been completed. NDIS then proceeds with completing the
selective suspend operation by transitioning the network adapter to a full-power
state.

8. When NdisMIdleNotificationComplete is called, NDIS issues OID requests to the
miniport driver to prepare the adapter for the transition to a full-power state. NDIS
also issues IRPs to the underlying bus driver to set the adapter to a full-power
state.

9. When the network adapter resumes to a full-power state, the selective suspend
operation is completed. NDIS resumes monitoring the I/O activity of the network
adapter. If the adapter becomes inactive after another idle time-out period, NDIS
issues an idle notification to the miniport driver in order to suspend the network
adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete

Reporting NDIS Selective Suspend
Capabilities
Article • 03/14/2023

Starting with NDIS 6.30, miniport drivers must report whether the driver has enabled the
support for NDIS selective suspend. The support for NDIS selective suspend is enabled
or disabled through the setting of the *SelectiveSuspend standardized INF keyword. For
more information about this INF keyword, see Standardized INF Keywords for NDIS
Selective Suspend.

When NDIS calls the driver's MiniportInitializeEx function, the miniport driver reports its
support for NDIS selective suspend support by following these steps:

1. The driver initializes an NDIS_PM_CAPABILITIES structure with the power
management capabilities of the underlying hardware.

If the driver enables the support for NDIS selective suspend, it must set the
members of the NDIS_PM_CAPABILITIES structure as follows:

The miniport driver must specify NDIS_PM_CAPABILITIES_REVISION_2 and
NDIS_SIZEOF_NDIS_PM_CAPABILITIES_REVISION_2 for the revision and length
of the NDIS_PM_CAPABILITIES structure within the structure's Header
member.
If the *SelectiveSuspend keyword has a value of one, the miniport driver
support for NDIS selective suspend is enabled. The miniport driver reports
this by setting the NDIS_PM_SELECTIVE_SUSPEND_SUPPORTED flag within
the Flags member of this structure.

2. Once it has initialized the NDIS_PM_CAPABILITIES structure, the miniport driver
sets the PowerManagementCapabilitiesEx member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure to point to the
initialized NDIS_PM_CAPABILITIES structure. The miniport driver passes a pointer
to an NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure in the
MiniportAttributes parameter when the driver calls the
NdisMSetMiniportAttributes function.

The method that is used by miniport drivers to report the support status of NDIS
selective suspend is based on the NDIS 6.20 method for reporting power management
capabilities. For more information about this method, see Reporting Power
Management Capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

Registering NDIS Selective Suspend
Handler Functions
Article • 03/14/2023

If a miniport driver supports NDIS selective suspend, NDIS notifies the driver that the
underlying network adapter has become idle. The miniport driver must provide the
following functions to handle these idle notifications:

MiniportIdleNotification
NDIS calls the MiniportIdleNotification handler function to notify the miniport driver that
the network adapter has become idle. The miniport driver handles the idle notification
by determining whether the network adapter can transition to a low-power state. The
miniport driver performs this determination in a bus-specific manner.

For example, a USB miniport driver determines whether the network adapter can
transition to a low-power state by issuing an I/O request packet (IRP) for a USB idle
request (IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the underlying USB
bus driver. Through the processing of this IRP, the miniport driver is notified that the
adapter is idle and can be transitioned to a low-power state.

MiniportCancelIdleNotification
NDIS calls the MiniportCancelIdleNotification handler function to cancel the outstanding
idle notification. When this function is called, the miniport driver cancels any bus-
specific IRPs that it may have previously issued for the idle notification.

For example, when MiniportCancelIdleNotification is called, the USB miniport must
cancel the previously-issued USB idle request IRP. When the IRP is canceled, the
miniport driver is notified that the adapter can now be transitioned to a full-power state.

When the miniport driver's DriverEntry function is called, the driver registers its NDIS
selective suspend handler functions by following these steps:

1. The miniport driver must set the SetOptionsHandler member of the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure to the entry point for the
driver's MiniportSetOptions function. The driver calls NdisMRegisterMiniportDriver
to register its NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure with NDIS.

2. NDIS calls the MiniportSetOptions function in the context of the call to
NdisMRegisterMiniportDriver.

When MiniportSetOptions is called, the miniport driver initializes an
NDIS_MINIPORT_SS_CHARACTERISTICS structure with pointers to the handler

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_ss_characteristics

functions. The miniport driver then calls NdisSetOptionalHandlers and sets the
OptionalHandlers parameter to a pointer to the
NDIS_MINIPORT_SS_CHARACTERISTICS structure.

For more information on how to handle idle notifications for NDIS selective suspend,
see NDIS Selective Suspend Idle Notifications.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers

Overview of NDIS Selective Suspend
Idle Notifications
Article • 03/14/2023

When the miniport driver has enabled and registered support for NDIS selective
suspend, NDIS monitors the I/O activity of the underlying network adapter. If NDIS
determines that the driver and adapter are idle, NDIS performs a selective suspend
operation. This operation suspends the network adapter by transitioning the adapter to
a low-power state.

NDIS starts the selective suspend operation by issuing an idle notification to the
miniport driver. When the network adapter is suspended in a low-power state, the
adapter can resume to a full-power state only when the idle notification is canceled.
After the notification is canceled and the adapter is in a full-power state, the selective
suspend operation is complete.

The following topics provide more information on the NDIS selective suspend operation
and idle notifications:

How NDIS Detects Idle Network Adapters

Handling the NDIS Selective Suspend Idle Notification

Canceling the NDIS Selective Suspend Idle Notification

Completing the NDIS Selective Suspend Idle Notification

How NDIS Detects Idle Network
Adapters
Article • 03/14/2023

After the miniport driver has enabled NDIS selective suspend and registered its handler
functions, NDIS monitors the I/O activity of the network adapter in the following way:

NDIS monitors the calls to the I/O handler functions that the miniport driver
registers through the NDIS_MINIPORT_DRIVER_CHARACTERISTICS and
NDIS_MINIPORT_PNP_CHARACTERISTICS structures. For example, NDIS monitors
calls to the miniport driver's MiniportSendNetBufferLists or
MiniportReturnNetBufferLists to determine whether the driver is involved in any
packet I/O activity.

NDIS also monitors the calls of NdisOidRequest and NdisDirectOidRequest made
by overlying protocol drivers.

Note NDIS monitors only those object identifier (OID) requests to the underlying
miniport driver that are not handled directly by NDIS.

NDIS determines that the network adapter is idle if it does not detect any activity on the
adapter for an idle time-out period. The duration of this time-out period is specified by
the value of the *SSIdleTimeout standardized INF keyword. For more information about
this keyword, see Standardized INF Keywords for NDIS Selective Suspend.

After the network adapter has become idle, NDIS starts the selective suspend operation.
Through this operation, the network adapter is suspended by transitioning it to a low-
power state.

NDIS begins this selective suspend operation by issuing an idle notification to the
miniport driver. NDIS does this by calling the driver's MiniportIdleNotification handler
function. For more information about how the miniport driver handles this notification,
see Handling the NDIS Selective Suspend Idle Notification.

If NDIS detects that I/O requests to the network adapter are issued from overlaying
drivers or if the adapter signals a wake-up event, NDIS cancels the idle notification. NDIS
does this by calling the miniport driver's MiniportCancelIdleNotification handler function.

For more information about how NDIS cancels the idle notification, see Canceling the
NDIS Selective Suspend Idle Notification.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_pnp_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisdirectoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification

For more information about how the miniport driver completes the idle notification, see
Completing the NDIS Selective Suspend Idle Notification.

Handling the NDIS Selective Suspend
Idle Notification
Article • 03/14/2023

NDIS starts a selective suspend operation if one of the following events occurs:

The network adapter has been inactive for longer than an idle time-out period. The
duration of this time-out period is specified by the value of the *SSIdleTimeout
standardized INF keyword. For more information about this keyword, see
Standardized INF Keywords for NDIS Selective Suspend.

For more information about how NDIS determines that a network adapter is idle,
see How NDIS Detects Idle Network Adapters.

The system that is compliant with the Always On Always Connected (AOAC)
technology is being transitioned to a Connected Standby state.

Through the selective suspend operation, the network adapter is transitioned to a low-
power state. NDIS begins this operation by calling the MiniportIdleNotification handler
function to issue an idle notification to the miniport driver.

The miniport driver may need to perform bus-dependent actions when it handles the
idle notification. The following figure shows the steps that are involved with handling an
idle notification by a miniport driver for a USB network adapter.

This topic includes the following information about how to handle an NDIS selective
suspend idle notification:

Guidelines for Handling the Call to MiniportIdleNotification

Guidelines for the Call to NdisMIdleNotificationConfirm

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification

Canceling and Completing an NDIS Selective Suspend Idle Notification

NDIS and the miniport driver follow these steps when NDIS calls
MiniportIdleNotification:

1. NDIS calls the MiniportIdleNotification handler function to notify the driver that the
underlying network adapter seems to be idle. NDIS sets the ForceIdle parameter of
the MiniportIdleNotification handler function to one of the following values:

NDIS sets the ForceIdle parameter to FALSE when the network adapter has
been inactive for longer than the idle time-out period.

NDIS sets the ForceIdle parameter to TRUE when a system that is compliant
with the Always On Always Connected (AOAC) technology is transitioning to
a Connected Standby state.

2. When MiniportIdleNotification is called, the miniport driver can veto the idle
notification and the selective suspend operation by returning NDIS_STATUS_BUSY.
For example, the driver could veto the idle notification if the driver detects activity
on the network adapter.

If the miniport driver vetoes the idle notification, NDIS restarts the monitor of
activity on the network adapter. If the adapter becomes inactive again within the
idle time-out period, NDIS calls MiniportIdleNotification.

Note The miniport driver must not veto the idle notification if the ForceIdle
parameter is set to TRUE. In this case, the driver must continue with the selective
suspend operation.

3. If the miniport driver does not veto the idle notification, it must perform any bus-
specific operations to prepare the network adapter for a selective suspend
operation. For example, the miniport driver for a USB network adapter performs
the following steps to determine whether the network adapter can transition to a
low-power state:

a. The miniport driver calls IoCallDriver to issue an I/O request packet (IRP) for a
USB idle request (IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the
underlying USB bus driver. In this IRP, the miniport driver must specify a
callback and completion routine.

Guidelines for Handling the Call to
MiniportIdleNotification

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification

The USB bus driver does not immediately complete the IRP. The IRP is left in a
pending state through the low-power transition. The bus driver completes the
IRP later when any of the following events occur:

The miniport driver cancels the IRP.

A system power state change is required.

The device is removed from the USB hub.

b. After the USB bus driver determines that it can put the network adapter in a
low-power state, it calls the miniport driver's IRP callback routine. This call
confirms that the network adapter can transition to a low-power state.

For guidelines on how to write a callback routine for the USB idle request IRP,
see Implementing a USB Idle Request IRP Callback Routine.

4. After the miniport driver completes the preparation of the network adapter for a
selective suspend operation, it calls NdisMIdleNotificationConfirm. In this call, the
miniport driver specifies the lowest power state that the network adapter can
transition to.

Depending on the bus requirements for selective suspend operations, the miniport
driver calls NdisMIdleNotificationConfirm either synchronously in the context of
the call to MiniportIdleNotification or asynchronously after MiniportIdleNotification
returns. For example, the miniport driver for a USB network adapter calls
NdisMIdleNotificationConfirm within the context of the callback routine for the
USB idle request. The USB bus driver calls the callback routine either synchronously
in the context of the call to IoCallDriver or asynchronously after
MiniportIdleNotification returns.

5. If the network adapter can be transitioned to a low-power state, the miniport
driver returns NDIS_STATUS_PENDING from the call to MiniportIdleNotification.

Note The miniport driver returns NDIS_STATUS_PENDING because the idle
notification is not completed until the driver calls NdisMIdleNotificationComplete.
The miniport driver must not return NDIS_STATUS_SUCCESS from
MiniportIdleNotification.

The miniport driver should perform the following operations until the network adapter is
suspended and transitioned to a low-power state:

The miniport driver should process received packets and indicate them to NDIS by
calling NdisMIndicateReceiveNetBufferLists.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

The miniport driver should process completed send packets and indicate them to
NDIS by calling NdisMSendNetBufferListsComplete.

Note NDIS will not call the driver's MiniportSendNetBufferLists function to send
packets if MiniportIdleNotification returns NDIS_STATUS_PENDING.

NDIS and the miniport driver follow these steps when the miniport driver calls
NdisMIdleNotificationConfirm:

1. NDIS issues IRP_MN_WAIT_WAKE to the underlying bus driver. This IRP enables
the bus driver to wake the network adapter in response to an external wake-up
signal.

2. NDIS issues an object identifier (OID) set request of OID_PM_PARAMETERS to the
miniport driver. This OID request is associated with an NDIS_PM_PARAMETERS
structure that specifies the settings under which the network adapter generates a
wake-up event.

The miniport driver must follow these guidelines when it processes the members
of the NDIS_PM_PARAMETERS structure:

If the ForceIdle parameter of the MiniportIdleNotification handler function was
set to FALSE, NDIS only sets the NDIS_PM_SELECTIVE_SUSPEND_ENABLED
flag in the WakeUpFlags member of the NDIS_PM_PARAMETERS structure.
In this case, the network adapter can signal a wake-up event when one of the
following events occur:

The network adapter receives a packet that matches a receive packet filter.
The adapter is configured to use these filters through OID set requests of
OID_GEN_CURRENT_PACKET_FILTER.

The network adapter detects other external events that require processing
by the networking driver stack, such as when the link state changes to
either media disconnect or media connected.

If the ForceIdle parameter of the MiniportIdleNotification handler function was
set to TRUE, NDIS does not set the NDIS_PM_SELECTIVE_SUSPEND_ENABLED
flag in the WakeUpFlags member of the NDIS_PM_PARAMETERS structure.
In this case, NDIS sets other members in the NDIS_PM_PARAMETERS
structure for wake-up events not related to NDIS selective suspend.

Guidelines for the Call to
NdisMIdleNotificationConfirm

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

Note NDIS sets the ForceIdle parameter to TRUE only when a system that is
compliant with the Always On Always Connected (AOAC) technology is
transitioning to a Connected Standby state.

The driver completes the OID request with NDIS_STATUS_SUCCESS.

Note If NDIS sets the NDIS_PM_SELECTIVE_SUSPEND_ENABLED flag in the
WakeUpFlags member of NDIS_PM_PARAMETERS structure, it issues the OID
set request of OID_PM_PARAMETERS directly to the miniport driver. This
allows NDIS to bypass the processing by filter drivers in the networking driver
stack.

3. After the OID set request of OID_PM_PARAMETERS is completed successfully, NDIS
issues an OID set request OID_PNP_SET_POWER to the miniport driver.

When it handles this OID set request, the driver prepares the network adapter to
transition to the low-power state that is specified in the OID request. The driver
must complete all pending operations in the following way:

The miniport driver waits for all previously indicated receive packets to be
returned through calls to MiniportReturnNetBufferLists.

The miniport driver waits for send requests processed by the hardware to
finish. After the requests are completed, the miniport driver must call
NdisMSendNetBufferListsComplete.

The miniport driver completes all pending send requests by calling
NdisMSendNetBufferListsComplete.

The miniport driver must cancel all pending NDIS timers and work items.
After these are canceled, the driver must wait for the completion of these
timers and work items.

The miniport driver must put the network adapter in a quiescent state. For
example, the driver must cancel all hardware timers.

The miniport driver configures the underlying network adapter to enable the
specified wake-up events that were previously specified in the OID set request of
OID_PM_PARAMETERS. After the network adapter is prepared for the low-power
transition, the miniport driver completes the OID set request of
OID_PNP_SET_POWER with NDIS_STATUS_SUCCESS.

4. NDIS issues an IRP_MN_SET_POWER to the underlying bus driver. This IRP
requests that the network adapter be transitioned to a low-power state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power

Note During a selective suspend operation, the network adapter will be
transitioned to the device power state that was specified in the call to
NdisMIdleNotificationConfirm. The miniport driver specifies this device power
state in the IdlePowerState parameter of this function.

After the IRP is completed, NDIS returns from the call to NdisMIdleNotificationConfirm.

After the idle notification is issued, it can be canceled and completed in the following
ways:

NDIS can cancel the outstanding idle notification if the following conditions are
true:

An overlying protocol or filter driver issues either a send packet request or an
OID request to the miniport driver.

The underlying adapter signals a wake-up event, such as receiving a packet that
matches a wake-on-LAN (WOL) pattern or detecting a change in its media
connection status.

NDIS cancels the idle notification by calling MiniportCancelIdleNotification. When
this handler function is called, the miniport driver cancels any bus-specific IRPs that
it may have previously issued for the idle notification. Finally, the miniport driver
calls NdisMIdleNotificationComplete to complete the idle notification.

For more information about how NDIS cancels the idle notification, see Canceling
the NDIS Selective Suspend Idle Notification.

After the network adapter is in a low-power state, the miniport driver can complete
the idle notification itself to resume the adapter to a full-power state. The reasons
for doing this are specific to the design and requirements of the driver and
adapter. The miniport driver completes the idle notification by calling
NdisMIdleNotificationComplete.

For more information about how the miniport driver completes the idle
notification, see Completing the NDIS Selective Suspend Idle Notification.

Canceling and Completing an NDIS Selective
Suspend Idle Notification

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete

Canceling the NDIS Selective Suspend
Idle Notification
Article • 03/14/2023

If the network adapter becomes inactive for an idle time-out period, NDIS starts the
selective suspend operation. Through this operation, the network adapter is transitioned
to a low-power state. NDIS begins this operation by issuing an idle notification to the
miniport driver. For more information about this operation, see Handling the NDIS
Selective Suspend Idle Notification.

NDIS calls the MiniportIdleNotification handler function to notify the driver that the
underlying network adapter seems to be idle. After the idle notification is issued, NDIS
cancels a pending idle notification if one or more of the following conditions are true:

An overlying protocol or filter driver issues either a send packet request or an
object identifier (OID) request to the miniport driver.

For more information about how NDIS cancels the idle notification for this
scenario, see Canceling the Idle Notification because of Overlying Driver Activity.

The underlying adapter signals a wake-up event, such as receiving a packet or
detecting a change in its media connection status.

For more information about how NDIS cancels the idle notification for this
scenario, see Canceling the Idle Notification because of Wake-up Events.

NDIS cancels the idle notification by calling the MiniportCancelIdleNotification handler
function of the underlying miniport driver. When this function is called, the miniport
driver must complete the idle notification to resume the adapter to a full-power state.
For guidelines on this process, see Completing the NDIS Selective Suspend Idle
Notification.

For more information about how to implement the MiniportCancelIdleNotification
handler function, see Implementing a MiniportCancelIdleNotification Handler Function.

NDIS monitors send requests and OID requests that are issued to a miniport driver
whose network adapter has been suspended and is in a low-power state. When this

Canceling the Idle Notification Because of
Overlying Driver Activity

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification

happens, NDIS cancels the outstanding idle notification so that the network adapter can
resume to a full-power state.

NDIS and the miniport driver follow these steps when an idle notification is canceled:

1. NDIS calls the MiniportCancelIdleNotification handler function to cancel an
outstanding idle notification. When this handler function is called, the miniport
driver must cancel any bus-specific I/O request packets (IRPs) that it may have
previously issued for the idle notification.

For example, when MiniportCancelIdleNotification is called, the miniport for a USB
network adapter performs the following steps:

a. The miniport driver cancels the pending USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) IRP. The miniport driver
previously issued this IRP to the underlying USB bus driver when NDIS called
the driver's MiniportIdleNotification function. The miniport driver cancels this IRP
by calling IoCancelIrp.

b. When the bus driver cancels the USB idle request IRP, it calls the miniport
driver's completion routine for the IRP. This call notifies the driver that the IRP is
completed and the network adapter can transition to a full-power state. From
the context of the completion routine, the driver calls
NdisMIdleNotificationComplete to notify NDIS that the network adapter can
be transitioned to a full-power state.

Note Depending on the dependencies for canceling bus-specific idle requests, the
miniport driver calls NdisMIdleNotificationComplete either synchronously in the
context of the call to MiniportCancelIdleNotification or asynchronously after
MiniportCancelIdleNotification returns.

For more information about how to implement a USB idle request IRP completion
routine, see Implementing a USB Idle Request IRP Completion Routine.

2. After the miniport driver cancels any bus-specific IRPs for the idle notification, it
calls NdisMIdleNotificationComplete. This call notifies NDIS that the idle
notification has been completed. NDIS then completes the selective suspend
operation by transitioning the network adapter to a full-power state.

When NdisMIdleNotificationComplete is called, NDIS performs the following
steps:

a. NDIS issues IRP_MN_SET_POWER to the underlying bus driver. This IRP
requests the bus driver to set the power state of the network adapter to

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocancelirp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power

PowerDeviceD0.

b. NDIS issues an OID set request of OID_PNP_SET_POWER to the miniport driver.
In this OID request, NDIS specifies that the network adapter is now transitioning
to a full-power state of NdisDeviceStateD0.

When it handles this OID set request, the driver prepares the adapter for full-
power operation. This includes restoring the receive and send engines to the
same state they were in before the transition to the low-power state. The driver
then completes the OID request with NDIS_STATUS_SUCCESS.

The following figure shows the steps that are involved when NDIS cancels an idle
notification that was issued to a miniport driver for a USB network adapter.

Before the network adapter is transitioned to a low-power state, NDIS issues an OID set
request of OID_PM_PARAMETERS to the network adapter. This OID request specifies the
types of wake-up events that the adapter can signal to resume to a full-power state. For
NDIS selective suspend, the adapter is configured to signal any of the following wake-
up events:

The reception of a packet that matches a filter that was previously configured
through an OID set request of OID_PM_ADD_WOL_PATTERN or
OID_GEN_CURRENT_PACKET_FILTER.

A change in the media connection status on the adapter.

NDIS and the miniport driver follow these steps when NDIS cancels an idle notification
because of a wake-up signal generated by the network adapter:

1. The bus driver completes the IRP_MN_WAIT_WAKE that was issued by NDIS
before transitioning the adapter to a low-power state. By completing the IRP, the
bus driver notifies NDIS that the network adapter has generated a wake-up signal.

Canceling the Idle Notification Because of
Wake-up Events

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake

2. NDIS calls the MiniportCancelIdleNotification handler function to start the
operation of canceling the idle notification. The steps that are involved in this
operation are the same as described in Canceling the Idle Notification because of
Overlying Driver Activity.

For example, the following figure shows the steps that are involved when NDIS cancels
an idle notification because of a wake-up event signaled by a USB network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification

Completing the NDIS Selective Suspend
Idle Notification
Article • 03/14/2023

NDIS calls the MiniportIdleNotification handler function to notify the driver that the
underlying network adapter seems to be idle. For more information about this
operation, see Handling the NDIS Selective Suspend Idle Notification.

After the idle notification is issued, the miniport driver completes the NDIS selective
suspend idle notification under the following conditions:

NDIS cancels the idle notification by calling the MiniportCancelIdleNotification
handler function of the underlying miniport driver.

The miniport driver completes the idle notification itself. The reasons for doing this
are specific to the design and requirements of the driver and adapter. For example,
the driver could complete the idle notification if it detects receive activity on the
network adapter.

Note The miniport driver cannot explicitly cancel the idle notification. When NDIS
cancels the idle notification, the miniport driver must complete the notification as
described in this topic. For more information, see Canceling the NDIS Selective Suspend
Idle Notification.

In either case, the miniport driver must complete the idle notification to resume the
adapter to a full-power state. To complete the idle notification, the miniport driver must
cancel any bus-specific I/O request packets (IRPs) that it may have previously issued for
the idle notification. Finally, the driver calls NdisMIdleNotificationComplete to notify
NDIS that the network adapter can be transitioned to a full-power state.

For example, the miniport driver for a USB network adapter completes an idle
notification by following these steps:

1. The miniport driver cancels the pending USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) IRP. The miniport driver
previously issued this IRP to the underlying USB bus driver when NDIS called the
driver's MiniportIdleNotification function. The miniport driver cancels this IRP by
calling IoCancelIrp.

2. When the bus driver cancels the USB idle request IRP, it calls the miniport driver's
completion routine for the IRP. This call notifies the driver that the IRP is
completed and the network adapter can transition to a full-power state. From the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocancelirp

context of the completion routine, the driver calls NdisMIdleNotificationComplete
to notify NDIS that the network adapter can be transitioned to a full-power state.

For more information about how to implement a USB idle request IRP completion
routine, see Implementing a USB Idle Request IRP Completion Routine.

Note Depending on the dependencies for canceling bus-specific idle requests, the
miniport driver calls NdisMIdleNotificationComplete either synchronously in the
context of the call to MiniportCancelIdleNotification or asynchronously after
MiniportCancelIdleNotification returns.

After the miniport driver cancels any bus-specific IRPs for the idle notification, it calls
NdisMIdleNotificationComplete. This call notifies NDIS that the idle notification has
been completed. NDIS then completes the selective suspend operation by transitioning
the network adapter to a full-power state.

When NdisMIdleNotificationComplete is called, NDIS performs the following steps:

1. NDIS issues IRP_MN_SET_POWER to the underlying bus driver. This IRP requests
the bus driver to set the power state of the network adapter to PowerDeviceD0.

2. NDIS issues an object identifier (OID) set request of OID_PNP_SET_POWER to the
miniport driver. In this OID request, NDIS specifies that the network adapter is now
transitioning to a full-power state of NdisDeviceStateD0.

When it handles this OID set request, the driver prepares the adapter for full-
power operation. This includes restoring the receive and send engines to the same
state they were in before the transition to the low-power state. The driver then
completes the OID request with NDIS_STATUS_SUCCESS.

The following figure shows the steps that are involved when the miniport driver
completes an idle notification for a USB network adapter.

Note When the miniport driver completes an idle notification, it must not call
NdisMIdleNotificationConfirm for an idle notification that was previously completed
through a call to NdisMIdleNotificationComplete.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete

Standardized INF Keywords for NDIS
Selective Suspend
Article • 03/14/2023

The following standardized INF keywords are defined to enable, disable, and configure
parameters for NDIS selective suspend on a miniport driver:

*SelectiveSuspend INF Keyword

*SSIdleTimeout INF Keyword

*SSIdleTimeoutScreenOff INF Keyword

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

The INF file for the miniport driver that supports NDIS selective suspend must specify
the *SelectiveSuspend standardized INF keyword. After the driver is installed,
administrators can update the *SelectiveSuspend keyword value in the Advanced
property page for the network adapter. For more information about advanced
properties, see Specifying Configuration Parameters for the Advanced Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

The *SelectiveSuspend INF keyword is an enumeration keyword. The following table
describes the possible INF entries for the *SelectiveSuspend INF keyword. The columns
in this table describe the following attributes for an enumeration keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

７ Note

Selective Suspend related keywords are for traditional NDIS miniport driver use
only. They are deprecated in Network Adapter WDF Class Extension
(NetAdapterCx) and must not be used by its client drivers.

*SelectiveSuspend INF Keyword

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/

ParamDesc
The display text that is associated with SubkeyName.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Value
The enumeration integer value that is associated with each SubkeyName in the list.

EnumDesc
The display text that is associated with each value that appears in the Advanced
property page.

SubkeyName ParamDesc Value EnumDesc

*SelectiveSuspend Selective suspend 0 Disabled

1 (Default) Enabled

The miniport driver must check the *SelectiveSuspend keyword value in the registry
before it advertises its support for NDIS selective suspend. If the *SelectiveSuspend
keyword has a value of zero, the miniport must not advertise support for any selective
suspend capabilities. For more information, see Reporting NDIS Selective Suspend
Capabilities.

The INF file for the miniport driver that supports NDIS selective suspend should specify
the optional *SSIdleTimeout standardized INF keyword. This keyword specifies the idle
time-out period in units of seconds. If NDIS does not detect any activity on the network
adapter for a period that exceeds the *SSIdleTimeout value, NDIS starts a selective
suspend operation by calling the miniport driver's MiniportIdleNotification handler
function.

After the driver is installed, administrators can update the *SSIdleTimeout keyword
value in the Advanced property page for the network adapter. For more information
about advanced properties, see Specifying Configuration Parameters for the Advanced
Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
advanced property page for the adapter.

The *SSIdleTimeout INF keyword is a numeric (Int) keyword. The following table
describes the possible INF entries for the *SSIdleTimeout INF keyword. The columns in

*SSIdleTimeout INF Keyword

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification

the table describe the following attributes for an Int keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

ParamDesc
The display text that is associated with SubkeyName.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Default value
The default value for the integer.

Minimum value
The minimum value that is allowed for an integer.

Maximum value
The maximum value that is allowed for an integer.

SubkeyName ParamDesc Default value Minimum value Maximum value

*SSIdleTimeout Selective
suspend idle
time-out in units
of seconds

5 1 60

Note NDIS reads the value of the *SSIdleTimeout standardized INF keyword for every
instance of the network adapter whose driver supports NDIS selective suspend. Miniport
drivers should not read this keyword.

NDIS measures the idle time-out by using timers that are precise to within 30 percent of
the *SSIdleTimeout value. For example, if the *SSIdleTimeout value is 10, the adapter is
suspended between 10 to 13 seconds after NDIS first detects the adapter is idle.

The INF file for the miniport driver that supports NDIS selective suspend should specify
the optional *SSIdleTimeoutScreenOff standardized INF keyword. This keyword
specifies the idle time-out period in units of seconds and is only applicable when the
screen is off. If NDIS does not detect any activity on the network adapter for a period
that exceeds the *SSIdleTimeoutScreenOff value after the screen is off, NDIS starts a

*SSIdleTimeoutScreenOff INF Keyword

selective suspend operation by calling the miniport driver's MiniportIdleNotification
handler function.

After the driver is installed, administrators can update the *SSIdleTimeoutScreenOff
keyword value in the Advanced property page for the network adapter. For more
information about advanced properties, see Specifying Configuration Parameters for the
Advanced Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
advanced property page for the adapter.

The *SSIdleTimeoutScreenOff INF keyword is a numeric (Int) keyword. The following
table describes the possible INF entries for the *SSIdleTimeoutScreenOff INF keyword.
The columns in the table describe the following attributes for an Int keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

ParamDesc
The display text that is associated with SubkeyName.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Default value
The default value for the integer.

Minimum value
The minimum value that is allowed for an integer.

Maximum value
The maximum value that is allowed for an integer.

SubkeyName ParamDesc Default value Minimum
value

Maximum
value

*SSIdleTimeoutScreenOff Selective
suspend idle
time-out in
units of
seconds

3 1 60

Note NDIS reads the value of the *SSIdleTimeoutScreenOff standardized INF keyword
for every instance of the network adapter whose driver supports NDIS selective suspend.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification

Miniport drivers should not read this keyword.

Note The maximum value is only for testing purposes. The HLK certification test will
explicitly check and fail if the value is more than 5.

NDIS measures the idle time-out by using timers that are precise to within 30 percent of
the *SSIdleTimeoutScreenOff value. For example, if the *SSIdleTimeoutScreenOff value
is 5, the adapter is suspended between 5 to 6.5 seconds after NDIS first detects the
adapter is idle.

Managing IRP Resources for NDIS
Selective Suspend
Article • 03/14/2023

If a miniport driver supports and enables NDIS selective suspend, NDIS calls
MiniportIdleNotification to issue an idle notification to the driver if the network adapter
becomes inactive. When the miniport driver handles this notification, it may need to
issue I/O request packets (IRPs) to the underlying bus driver. These IRPs notify the bus
driver about the adapter's idle state and request confirmation that the adapter can
transition to a low-power state.

IRPs that are issued by the miniport driver are bus-specific. For example, when NDIS
calls MiniportIdleNotification, the USB miniport issues an USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) IRP to the underlying USB bus
driver.

NDIS may issue the idle notification to the miniport driver many times after the driver
has been initialized. Therefore, we recommend that the driver allocate the resources for
the USB idle request IRP in the context of the call to the driver's MiniportInitializeEx
function.

The following example shows how the miniport driver allocates the IRP resources.

C++

//
// MiniportInitializeEx()
//
// In the miniport's initialization routine, the miniport should allocate
// an IRP. It can also set up the USB_IDLE_CALLBACK_INFO structure that
// will be used with each successive USB idle request.
//
NDIS_STATUS MiniportInitializeEx(
 In NDIS_HANDLE MiniportAdapterHandle,
 In NDIS_HANDLE MiniportDriverContext,
 In PNDIS_MINIPORT_INIT_PARAMETERS MiniportInitParameters
)
 {
 PIRP UsbSsIrp;
 USB_IDLE_CALLBACK_INFO UsbSsCallback;
 ...

 UsbSsIrp = IoAllocateIrp(Adapter->Fdo->StackSize, FALSE);
 if (!UsbSsIrp)
 {
 // Handle failure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

If the miniport driver allocates the IRP resources during the call to MiniportInitializeEx,
the driver must free those resources during the call to MiniportHaltEx.

The following example shows how the miniport driver frees the IRP resources.

C++

 return NDIS_STATUS_RESOURCES;
 }

 UsbSsCallback.IdleCallback = MiniportUsbIdleRequestCallback;
 UsbSsCallback.IdleContext = Adapter;

 // Save these in the adapter structure for later use
 Adapter->UsbSsIrp = UsbSsIrp;
 Adapter->UsbSsCallback = UsbSsCallback;
 ...
 }

//
// MiniportHaltEx
//
// During halt (or when the miniport performs its cleanup from
// MiniportInitializeEx) the miniport should free the IRP allocated
// earlier.
//
VOID MiniportHaltEx(
 In NDIS_HANDLE MiniportAdapterContext,
 In NDIS_HALT_ACTION HaltAction
)
 {
 ...
 if (Adapter->UsbSsIrp)
 {
 IoFreeIrp(Adapter->UsbSsIrp);
 Adapter->UsbSsIrp = NULL;
 }
 ...
 }

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Implementing a
MiniportIdleNotification Handler
Function
Article • 12/15/2021

NDIS calls the miniport driver's MiniportIdleNotification handler function in order to
selectively suspend the network adapter. The adapter is suspended when NDIS
transitions the adapter to a low-power state.

The miniport driver can veto the idle notification if the network adapter is still being
used. The driver does this by returning NDIS_STATUS_BUSY from the
MiniportIdleNotification handler function.

Note The miniport driver cannot veto the idle notification if the ForceIdle parameter of
the MiniportIdleNotification handler function is set to TRUE.

If the miniport driver does not veto the idle notification, it may have to issue bus-
specific I/O request packets (IRPs) to the underlying bus driver. These IRPs notify the bus
driver about the adapter's idle state and request confirmation that the adapter can
transition to a low-power state.

For example, when MiniportIdleNotification is called, the USB miniport driver prepares an
I/O request packet (IRP) for a USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION). When the miniport driver
prepares the IRP, it must specify a callback function. The driver must also call either
IoSetCompletionRoutine or IoSetCompletionRoutineEx to specify a completion routine
for the IRP. The miniport driver then calls IoCallDriver to issue the IRP to the USB bus
driver.

Note The USB bus driver does not immediately complete the IRP. The IRP is left in a
pending state through the low-power transition. The bus driver completes the IRP only
when it is canceled by the miniport driver or a hardware event occurs, such as the
surprise removal of the network adapter from the USB hub.

The following is an example of a MiniportIdleNotification handler function for a USB
miniport driver. This example shows the steps that are involved with issuing a USB idle
request IRP to the underlying USB driver. This example also shows how the IRP
resources, which were previously allocated in MiniportInitializeEx, can be reused for the
IRP.

C++

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

For guidelines on implementing a callback routine for a USB idle request IRP, see
Implementing a USB Idle Request IRP Callback Routine.

//
// MiniportIdleNotification()
//
// This routine is invoked by NDIS when it has detected that the miniport
// is idle. The miniport must prepare to issue its selective suspend IRP
// to the USB stack. The driver can return NDIS_STATUS_BUSY if it is
// unwilling to become idle at this moment; NDIS will then retry later.
// Otherwise, the miniport should return NDIS_STATUS_PENDING.
//
NDIS_STATUS MiniportIdleNotification(
 In NDIS_HANDLE MiniportAdapterContext,
 In BOOLEAN ForceIdle
)
{
 PIO_STACK_LOCATION IoSp;

 IoReuseIrp(Adapter->UsbSsIrp, STATUS_NOT_SUPPORTED);

 IoSp = IoGetNextIrpStackLocation(Adapter->UsbSsIrp);
 IoSp->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;
 IoSp->Parameters.DeviceIoControl.IoControlCode
 = IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION;
 IoSp->Parameters.DeviceIoControl.InputBufferLength
 = sizeof(Adapter->UsbSsCallback);
 IoSp->Parameters.DeviceIoControl.Type3InputBuffer
 = Adapter->UsbSsCallback;

 IoSetCompletionRoutine(
 Adapter->UsbSsIrp,
 MiniportUsbIdleRequestCompletion,
 Adapter,
 TRUE,
 TRUE,
 TRUE);

 NtStatus = IoCallDriver(Adapter->Fdo, Adapter->UsbSsIrp);
 if (!NT_SUCCESS(NtStatus))
 {
 return NDIS_STATUS_FAILURE;
 }

 return NDIS_STATUS_PENDING;
}

Implementing a USB Idle Request IRP
Callback Routine
Article • 12/15/2021

When MiniportIdleNotification is called, the USB miniport driver calls IoCallDriver to
issue an I/O request packet (IRP) for a USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the underlying USB bus
driver. The miniport driver issues this IRP to inform the USB bus driver that the network
adapter is idle and must be suspended.

The USB miniport driver must provide an IRP callback routine for the USB idle request
IRP. The USB bus driver calls this routine when it determines that the network adapter
can be suspended and transitioned to a low-power state.

Note After the USB bus driver handles the USB idle request IRP, it calls the callback
routine either synchronously in the context of the call to IoCallDriver or asynchronously
after MiniportIdleNotification returns.

The callback routine only has to call NdisMIdleNotificationConfirm in order to notify
NDIS that it can continue with the low-power state transition of the network adapter.
When the driver calls NdisMIdleNotificationConfirm, it must also specify the lowest
device power state that the network adapter can transition to.

Within the context of the call to NdisMIdleNotificationConfirm, NDIS performs the
steps that are required to transition the network adapter to a low-power state. For more
information, see Handling the NDIS Selective Suspend Idle Notification.

The following is an example of a callback routine for a USB idle request IRP.

C++

//
// MiniportUsbIdleRequestCallback()
//
// This is the USB selective suspend idle notification. All that is
// needed is to inform NDIS that the USB stack is ready to go to a
// low-power state. Be aware that USB devices will always be requested
// to transition to a power state of NdisDeviceStateD2.
//
VOID MiniportUsbIdleRequestCallback(PVOID AdapterContext)
{
 NdisMIdleNotificationConfirm(
 AdapterContext->MiniportAdapterHandle,
 NdisDeviceStateD2
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm

For more information about the USB idle request callback routine, see USB Idle Request
IRP Callback Routine.

 return;
}

Implementing a
MiniportCancelIdleNotification Handler
Function
Article • 12/15/2021

NDIS calls the miniport driver's MiniportCancelIdleNotification handler function in order
to cancel the idle notification process and transition the network adapter to a full-power
state. When this function is called, the miniport driver must follow these steps:

1. The miniport driver must cancel any bus-specific IRPs that it may have previously
issued for the idle notification.

2. The miniport driver calls NdisMIdleNotificationComplete. This call notifies NDIS
that the idle notification has been completed. NDIS then comples the selective
suspend operation by transitioning the network adapter to a full-power state.

For example, when MiniportCancelIdleNotification is called, the USB miniport driver calls
IoCancelIrp to cancel the I/O request packet (IRP) for a USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION). The USB miniport driver
previously issued this IRP in its MiniportIdleNotification handler function. As soon as the
USB bus driver has canceled the IRP, it calls the IRP's completion routine. When the USB
bus driver calls the completion routine, it confirms that the IRP is canceled and the
device can resume to a full-power state. In the context of the completion routine, the
miniport driver calls NdisMIdleNotificationComplete.

Note The USB bus driver can call the completion routine either synchronously in the
context of the call to IoCancelIrp or asynchronously after MiniportCancelIdleNotification
returns.

The following is an example of a MiniportCancelIdleNotification handler function for a
USB miniport driver. This example shows the steps that are involved with canceling a
USB idle request IRP.

C++

//
// MiniportCancelIdleNotification()
//
// This routine is called if NDIS has to cancel an idle notification.
// All that is needed is to cancel the selective suspend IRP.
//
VOID MiniportCancelIdleNotification(

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocancelirp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocancelirp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification

For guidelines on implementing a completion routine for a USB idle request IRP, see
Implementing a USB Idle Request IRP Completion Routine.

 In NDIS_HANDLE MiniportAdapterContext
)
{
 IoCancelIrp(Adapter->UsbSsIrp);
}

Implementing a USB Idle Request IRP
Completion Routine
Article • 12/15/2021

When MiniportIdleNotification is called, the USB miniport driver calls IoCallDriver to
issue an I/O request packet (IRP) for a USB idle request
(IOCTL_INTERNAL_USB_SUBMIT_IDLE_NOTIFICATION) to the underlying USB bus
driver. The miniport driver issues this IRP to inform the USB bus driver that the network
adapter is idle and must be suspended.

The USB miniport driver must also call IoSetCompletionRoutineEx in order to register a
completion routine for the USB idle request IRP. The USB bus driver calls the completion
routine when it completes the IRP after it is canceled by the USB miniport driver. The
USB miniport driver cancels the IRP when NDIS cancels the idle notification by calling
MiniportCancelIdleNotification.

The completion routine only has to call NdisMIdleNotificationComplete in order to
notify NDIS that it can continue with the full-power state transition of the network
adapter.

Note The completion routine must return STATUS_MORE_PROCESSING_REQUIRED if
the USB miniport driver will reuse the IRP resources during another idle notification from
NDIS.

The following is an example of a completion routine for the USB idle request IRP.

C++

//
// MiniportUsbIdleRequestCompletion()
//
// This is the IO_COMPLETION_ROUTINE for the selective suspend IOCTL.
// All that is needed is to inform NDIS that the IdleNotification
// operation is complete.
//
VOID MiniportUsbIdleRequestCompletion(PVOID AdapterContext)
{
 NdisMIdleNotificationComplete(Adapter->MiniportAdapterHandle);

 // We will be reusing the IRP later, so do not let the IO manager delete
it.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocalldriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/usbioctl/ni-usbioctl-ioctl_internal_usb_submit_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutineex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismidlenotificationconfirm

For more information about the USB idle request callback routine, see USB Idle Request
IRP Completion Routine.

Overview of NDIS Wake Reason Status
Indications
Article • 03/14/2023

Starting with NDIS 6.30, miniport drivers issue an NDIS wake reason status indication
(NDIS_STATUS_PM_WAKE_REASON) to notify NDIS and overlying drivers about the
reason for a system wake-up event. If the network adapter generates a wake-up event,
the miniport driver immediately issues an NDIS status indication of
NDIS_STATUS_PM_WAKE_REASON when the network adapter resumes to a full-power
state.

Note Support for NDIS wake reason status indications is optional for Mobile Broadband
(MB) miniport drivers.

The miniport driver is configured with power management (PM) parameters through an
object identifier (OID) set request of OID_PM_PARAMETERS. This OID request specifies
the PM parameters through an NDIS_PM_PARAMETERS structure.

The NDIS_PM_PARAMETERS structure specifies the parameters for the following types
of wake-up events.

Received Packet Wake-up Events
The network adapter generates a wake-up event if it receives a packet that matched a
wake-on-LAN (WOL) pattern. WOL patterns include the following:

Media-independent WOL patterns, such as magic packets or TCP/IP data patterns
within the packet payload. For example, the NDIS_PM_PARAMETERS structure
could specify a WOL pattern for a TCP SYN frame.

Media-specific WOL patterns, such as an EAPOL request identifier packet or mobile
broadband (MB) Short Message Service (SMS) message.

Wildcard patterns that match a receive filter specified through an OID set request
of OID_GEN_CURRENT_PACKET_FILTER.

Note For this type of wake reason status indication, the network adapter must be able
to save the received packet. The driver must return the received packet within the status
indication.

WOL patterns are specified through the EnabledWoLPacketPatterns member of the
NDIS_PM_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

Media-Specific Wake-up Events
The network adapter generates a wake-up event because of a media-specific reason,
such as a disassociation from an 802.11 access point (AP) or the receipt of a mobile
broadband (MB) Short Message Service (SMS) message.

Wake-up events of this type are specified through the MediaSpecificWakeUpEvents
member of the NDIS_PM_PARAMETERS structure.

Media-Independent Wake-up Events
The network adapter generates a wake-up event because of a media-independent
reason, such as media connection or disconnection.

Wake-up events of this type are specified through the WakeUpFlags member of the
NDIS_PM_PARAMETERS structure.

The miniport driver must follow these guidelines for NDIS wake reason status
indications:

If the miniport driver supports the ability to issue wake packet indications, it must
report this ability when NDIS calls the driver's MiniportInitializeEx function. For
more information, see Reporting Wake Reason Status Indication Capabilities.

Note The miniport driver does not have to report its ability to issue NDIS wake
reason status indications for events that are not related to the receipt of a WOL
packet.

When the miniport driver issues a wake packet indication for a WOL packet, it must
include the packet that caused the wake-up event. For more information, see
Issuing NDIS Wake Reason Status Indications.

If the network adapter generated a wake-up signal, the miniport driver must issue
an NDIS_STATUS_PM_WAKE_REASON status indication. The driver does this while
it is handling the OID set request of OID_PNP_SET_POWER for the transition to a
full-power state.

The miniport driver must issue an NDIS_STATUS_PM_WAKE_REASON status
indication before it issues a status indication that is related to the wake-up event.
For example, if the wake-up event was due to a change in the media connectivity
state, the miniport driver must issue an NDIS_STATUS_LINK_STATE status
indication after it has issued the NDIS_STATUS_PM_WAKE_REASON status
indication.

The miniport driver must ssue an NDIS_STATUS_PM_WAKE_REASON status
indication only for power management events that were previously enabled

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

through an OID set request of OID_PM_PARAMETERS.

The miniport driver must issue an NDIS_STATUS_PM_WAKE_REASON status
indication only for wake-up events that were generated by the underlying network
adapter.

Reporting Wake Reason Status
Indication Capabilities
Article • 12/15/2021

Starting with NDIS 6.30, the miniport driver must report whether it can issue an NDIS
wake reason status indication (NDIS_STATUS_PM_WAKE_REASON) to report wake-up
events caused by one of the following:

The network adapter received a packet that matched a wake-on-LAN (WOL)
pattern. This includes the receipt of a packet that matches a receive filter specified
through an object identifier (OID) set request of
OID_GEN_CURRENT_PACKET_FILTER.

Note For this type of wake reason status indication, the network adapter must be
able to save the received packet. The driver must return the received packet within
the status indication.

The network adapter detected a media-specific event, such as a disassociation
from an 802.11 access point (AP) or the receipt of a mobile broadband (MB) Short
Message Service (SMS) message.

The network adapter detected another enabled event that is not specific to a WOL
pattern or media type (media-independent event). For example, the miniport driver
issues the NDIS_STATUS_PM_WAKE_REASON status indication if it enabled the
network adapter to detect media connection or disconnection.

Note Support for NDIS wake reason status indications is optional for Mobile Broadband
(MB) miniport drivers.

When NDIS calls the driver's MiniportInitializeEx function, the miniport driver reports its
wake reason status indication capabilities by following these steps:

1. The miniport driver initializes an NDIS_PM_CAPABILITIES structure with the power
management capabilities of the underlying hardware.

To enable the support for wake reason status indications, the miniport driver must
set the members of the NDIS_PM_CAPABILITIES structure as follows:

The miniport driver must specify NDIS_PM_CAPABILITIES_REVISION_2 and
NDIS_SIZEOF_NDIS_PM_CAPABILITIES_REVISION_2 for the revision and length
of the NDIS_PM_CAPABILITIES structure within the structure's Header
member.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

If the network adapter can store the received packet that caused a system
wake-up event, the miniport driver sets the
NDIS_PM_WAKE_PACKET_INDICATION_SUPPORTED flag within the Flags
member of this structure.

If this flag is set, the network adapter must be able to save the received
packet that caused the adapter to generate a wake-up event. In addition, the
miniport driver must be able to do the following with this packet after the
network adapter transitions to a full-power state:

The miniport driver must be able to indicate the packet by calling
NdisMIndicateReceiveNetBufferLists.

The miniport driver must be able to issue an
NDIS_STATUS_PM_WAKE_REASON status indication and must pass the
packet with indication.

The miniport driver sets the MaxWoLPacketSaveBuffer member to the
maximum size, in units of bytes, of the buffer that contains the WOL packet
that caused a system wake-up event.

The value of the MaxWoLPacketSaveBuffer member must be less than or
equal to the size, in bytes, of the maximum transmission unit (MTU) and
media access control (MAC) header for the network media. The driver reports
the MTU size through OID query requests of
OID_GEN_MAXIMUM_FRAME_SIZE.

The miniport driver sets the SupportedWakeUpEvents to the media-
independent wake-up events that the network adapter supports, such as
generating a wake-up event when the adapter becomes connected to the
networking interface.

The miniport driver sets the MediaSpecificWakeUpEvents to the media-
specific wake-up events that the network adapter supports. These events
include generating a wake-up event when the 802.11 adapter becomes
disassociated with the AP.

2. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure and sets
thePowerManagementCapabilitiesEx member to the address of the initialized
NDIS_PM_CAPABILITIES structure.

3. The miniport driver calls the NdisMSetMiniportAttributes function to register its
power management capabilities. When the miniport driver calls this function, it

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

sets the MiniportAttributes parameter to the address of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure.

The method that is used by miniport drivers to report the wake reason status indication
capabilities is based on the NDIS 6.20 method for reporting power management
capabilities. For more information about this method, see Reporting Power
Management Capabilities.

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

For more information about how to report power management capabilities, see
Reporting Power Management Capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes

Issuing NDIS Wake Reason Status
Indications
Article • 03/14/2023

If a miniport driver supports NDIS wake reason status indications
(NDIS_STATUS_PM_WAKE_REASON), it must generate this status indication immediately
after the network adapter generates a wake-up event and the adapter resumes to a full-
power state.

Note Support for NDIS wake reason status indications is optional for Mobile Broadband
(MB) miniport drivers.

The miniport driver is configured with power management (PM) parameters through an
object identifier (OID) set request of OID_PM_PARAMETERS. This OID request specifies
the PM parameters through an NDIS_PM_PARAMETERS structure.

The NDIS_PM_PARAMETERS structure specifies the parameters for the following types
of wake-up events.

Received Packet Wake-up Events
The network adapter generates a wake-up event if it receives a packet that matched a
wake-on-LAN (WOL) pattern. WOL patterns include the following:

Media-independent WOL patterns, such as magic packets or TCP/IP data patterns
within the packet payload. For example, the NDIS_PM_PARAMETERS structure
could specify a WOL pattern for a TCP SYN frame.

Media-specific WOL patterns, such as an EAPOL request identifier packet or mobile
broadband (MB) Short Message Service (SMS) message.

Wildcard patterns that match a receive filter specified through an OID set request
of OID_GEN_CURRENT_PACKET_FILTER.

Note For this type of wake reason status indication, the network adapter must be able
to save the received packet. The driver must return the received packet within the status
indication.

WOL patterns are specified through the EnabledWoLPacketPatterns member of the
NDIS_PM_PARAMETERS structure.

Media-Specific Wake-up Events
The network adapter generates a wake-up event because of a media-specific reason,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

such as a disassociation from an 802.11 access point (AP) or the receipt of a mobile
broadband (MB) Short Message Service (SMS) message.

Wake-up events of this type are specified through the MediaSpecificWakeUpEvents
member of the NDIS_PM_PARAMETERS structure.

Media-Independent Wake-up Events
The network adapter generates a wake-up event because of a media-independent
reason, such as media connection or disconnection.

Wake-up events of this type are specified through the WakeUpFlags member of the
NDIS_PM_PARAMETERS structure.

If the network adapter generated a wake-up signal, the miniport driver must issue an
NDIS_STATUS_PM_WAKE_REASON status indication. The driver does this while it is
handling the OID set request of OID_PNP_SET_POWER for the transition of the adapter
to a full-power state.

Note The miniport driver must issue an NDIS_STATUS_PM_WAKE_REASON status
indication before it issues a status indication that is related to the wake-up event. For
example, if the wake-up event was due to a change in the media connectivity state, the
miniport driver must issue an NDIS_STATUS_LINK_STATE status indication after it has
issued the NDIS_STATUS_PM_WAKE_REASON status indication.

When the miniport driver issues the NDIS_STATUS_PM_WAKE_REASON status
indication, it must follow these steps:

1. The miniport driver must allocate a buffer that is large enough to contain the
following:

An NDIS_PM_WAKE_REASON structure.

An NDIS_PM_WAKE_PACKET structure along with the received packet (wake
packet) that caused the network adapter to generate the wake-up event.

Note The miniport driver does not need to allocate this buffer space if it
indicates media-specific or media-independent wake-up events.

2. The miniport driver initializes an NDIS_PM_WAKE_REASON structure at the start of
the buffer. The driver sets the WakeReason member to an
NDIS_PM_WAKE_REASON_TYPE enumeration value that defines the type of the
wake-up event.

For example, if the miniport driver is indicating a received packet wake-up event, it
must set the WakeReason member to NdisWakeReasonPacket. Otherwise, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_pm_wake_reason_type

driver sets the WakeReason member to the enumeration value that best describes
the media-specific or media-independent wake-up event.

3. If the miniportdriver is issuing an NDIS_STATUS_PM_WAKE_REASON status
indication for a received packet wake-up event, it must follow these steps:

a. The miniport driver sets the InfoBufferOffset member to the offset of an
NDIS_PM_WAKE_PACKET structure that follows the NDIS_PM_WAKE_REASON
structure in the buffer.

Note The miniport driver must align the start of the NDIS_PM_WAKE_PACKET
structure on a 64-bit boundary.

b. The miniport driver sets the InfoBufferSize member to the size of the
NDIS_PM_WAKE_PACKET structure plus the size of the packet that caused the
wake-up event.

c. The miniport driver initializes an NDIS_PM_WAKE_PACKET structure following
the NDIS_PM_WAKE_REASON structure in the buffer.

The miniport driver sets the members of the NDIS_PM_WAKE_PACKET structure
as follows:

The PatternId member is set to the identifier of the WOL pattern that
matches the wake packet. This identifier is specified by the PatternId
member of the NDIS_PM_WOL_PATTERN structure that is passed to the
driver during an OID set request of OID_PM_ADD_WOL_PATTERN.

The PatternFriendlyName member is set to the user-readable description
of the wake pattern that is specified by the PatternId member. This value
is specified by the FriendlyName member of the
NDIS_PM_WOL_PATTERN structure.

Note The miniport driver does not need to initialize this member. NDIS
sets the PatternFriendlyName member to the correct value before it
passes the NDIS_PM_WAKE_PACKET structure to overlying drivers.

The OriginalPacketSize member is set to the length of the packet as
received by the network adapter.

The SavedPacketSize member must be set to the length of the packet that
is being reported through the NDIS_STATUS_PM_WAKE_REASON status
indication.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet

Note The value of this member must not be greater than the value that
the miniport driver set in the MaxWoLPacketSaveBuffer member of the
NDIS_PM_CAPABILITIES structure. The driver returns this structure when it
reports its wake packet indication capabilities. For more information, see
Reporting Wake Reason Status Indication Capabilities.

The SavedPacketOffset member must be set to the offset, in units of
bytes, to the wake packet that follows the NDIS_PM_WAKE_PACKET
structure.

Note The miniport driver must align the start of the wake packet on a 64-
bit boundary in the buffer.

d. The miniport copies the wake packet into the buffer at the offset specified by
the SavedPacketOffset member.

4. If the miniport driver is issuing an NDIS_STATUS_PM_WAKE_REASON status
indication for a media-specific or media-independent wake-up event, it sets the
InfoBufferOffset and InfoBufferSize members of the NDIS_PM_WAKE_REASON
structure to zero.

5. The miniport driver initializes an NDIS_STATUS_INDICATION structure. The driver
sets the StatusCode member to NDIS_STATUS_PM_WAKE_REASON. The driver also
sets the StatusBuffer member to point to the buffer, and sets the
StatusBufferLength to the length, in bytes, of the buffer.

6. The miniport driver calls NdisMIndicateStatusEx and passes a pointer to the
NDIS_STATUS_INDICATION structure in the StatusIndication parameter.

Note After the miniport driver issues the NDIS_STATUS_PM_WAKE_REASON status
indication for a received packet wake-up event, it must indicate this received packet by
calling NdisMIndicateReceiveNetBufferLists.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

NDIS Power Management Overview
Article • 03/14/2023

This section provides an overview of the features that are provided with the power
management interface that is introduced in Windows 7 for NDIS 6.20 drivers.

Miniport drivers and protocol drivers that support NDIS 6.20 and later versions of NDIS
must support the NDIS 6.20 power management interface. However, NDIS provides
translation to the previous interface for older network adapters and NDIS 6.1 or earlier
miniport drivers that do not support the NDIS 6.20 power management features. For
more information about NDIS 6.20 backward compatibility issues, see NDIS 6.20
Backward Compatibility.

The NDIS 6.20 power management interface supports:

Wake-on-LAN (WOL) patterns that are based on the packet type in addition to the
NDIS 6.1 and earlier methods. Therefore, NDIS 6.20 WOL patterns can be more
specific to avoid unnecessary wake-up events. For example, a network adapter can
identify TCP synchronize (SYN) packets. For more information about WOL
methods, see WOL Methods in NDIS 6.20.

Protocol offloads to network adapters for some of the most common protocols.
Because the protocols are offloaded to the network adapter, it can respond on
behalf of the computer to avoid unwanted wake-up events. For example, a
network adapter can handle IPv4 Address Resolution Protocol (ARP) and IPv6
Neighbor Solicitation (NS) protocol packets without waking the computer. For
more information about power management protocol offloads, see Protocol
Offloads for NDIS Power Management.

For information about the WOL event sequences that NDIS uses to set a low-power
state and restore full power, see Low Power for Wake on LAN.

The NDIS 6.20 power management also supports:

NDIS 6.20 can return the network adapter to a full-power state when the media
connects. The operating system puts the network adapter in a low-power state
when the media is disconnected. For more information about setting a low-power
state when media disconnects, see Low Power on Media Disconnect.

This section includes the following topics:

WOL Methods in NDIS 6.20

WOL Patterns for NDIS Power Management

Protocol Offloads for NDIS Power Management

WOL Methods in NDIS 6.20
Article • 03/14/2023

The power management capabilities that are supported in NDIS 6.20 and later versions
of NDIS consist of the following wake-on-LAN (WOL) methods:

Wake on magic packet

Wake on pattern match

Wake device on media connect

For more information about the power management capabilities in previous versions of
Windows, see Power Management (NDIS 6.0 and Later).

The wake on magic packet method wakes the computer when the network adapter
receives a magic packet. A magic packet contains 16 contiguous copies of the receiving
network adapter's Ethernet address.

The wake on magic packet method is separate from the wake on pattern match method.
WOL patterns include other packet types or a bitmap. For more information about WOL
patterns, see WOL Patterns for NDIS Power Management.

Although some network adapters report support for the wake device on media connect
method, previous versions of Windows did not. Windows 7 fully supports the wake
device on media connect method if an NDIS 6.20 miniport driver reports support. NDIS
sets the network adapter to a low power state if the media is disconnected.

For more information about the wake device on media connect method, see Low Power
on Media Disconnect.

WOL Patterns for NDIS Power
Management
Article • 03/14/2023

Starting with NDIS 6.20, Wake-on-LAN (WOL) patterns are supported for the wake on
pattern match method. This WOL method minimizes spurious wake-up events and
ensures that the computer is brought back to running state when expected. The
interface for WOL patterns identifies specific patterns that are based on the packet type
(for example, TCP SYN packets on IPv4). Specific patterns provide reliable pattern
matches.

There are two types of WOL patterns:

WOL packet
A packet in which the wake-up pattern defines a specific packet type (such as TCP SYN
on IPv4).

WOL bitmap
A WOL pattern that is specified with an offset and bitmap.

Note NDIS 6.20 and later versions of NDIS also support the wake on magic packet
method. This method is separate from the wake on pattern match method.

Starting with NDIS 6.20, multiple protocol drivers can set WOL patterns on a network
adapter. To ensure that the correct set of WOL patterns is set when the number of
requested WOL patterns is higher than the number that the network adapter can
support, protocol drivers assign a priority to each WOL pattern. When NDIS cannot add
a new high-priority WOL pattern because the network adapter is out of resources, NDIS
can delete the lower priority patterns.

For more information about managing WOL patterns, see Adding and Deleting Wake on
LAN Patterns.

For more information about WOL methods supported in NDIS 6.20 and later versions,
see WOL Methods in NDIS 6.20.

Protocol Offloads for NDIS Power
Management
Article • 03/14/2023

NDIS 6.20 and later versions of NDIS support protocol offloads for NDIS power
management. For example, NDIS can offload the handling of Address Resolution
Protocol (ARP) requests to a network adapter. Some applications use periodic ARP
request packets to discover and ensure the presence of a host on the network. These
applications send the ARP requests even when there is no current need to send data to
the host. Such ARP requests wake up the host and waste power when there is nothing
for the host to do.

Note In Windows 7, the power management offload functionality is enabled only when
all protocol and filter drivers that are bound to the miniport adapter support NDIS 6.20
and later versions. In Windows 8, the power management offload functionality is
enabled if the miniport adapter supports it, regardless of the protocol and filter driver
versions.

Note If an incoming packet matches both an offloaded protocol and a pattern (for
example, because of a configuration error), the network adapter responds to the packet
and wakes up the computer.

To minimize spurious wake ups, NDIS protocol drivers attempt to offload the response
to commonly used network requests to the hardware. Some network protocols require
the host to periodically advertise certain information. When a network adapter responds
to ARP requests, or takes over protocol specific periodic advertisements without waking
up the system for processing these requests, many spurious wake-up events can be
avoided.

There are three types of low power protocol offloads:

IPv4 ARP

IPv6 Neighbor Solicitation (NS)

IEEE 802.11 robust secure network (RSN) 4-way and 2-way handshake

NDIS allows multiple protocol drivers to offload different protocols to a network
adapter. To ensure that the correct set of protocols is offloaded when the number of
requested protocol offloads is higher than the number that the network adapter can
support, protocol drivers assign a priority to each protocol offload. When NDIS cannot

add a new high-priority protocol offload because the network adapter is out of
resources, NDIS might delete the lower priority offloads.

For more information about managing protocol offloads, see Adding and Deleting Low
Power Protocol Offloads.

Standardized INF Keywords for Power
Management
Article • 12/15/2021

The power management standardized keywords are defined in the device driver INF file.
The operating system reads these standardized keywords and adjusts the current power
management capabilities of the device.

Both Network Adapter WDF Class Extension (NetAdapterCx) client drivers and traditional
NDIS miniport device drivers use these power management keywords. However, some
keywords are used exclusively by NetAdapterCx drivers while others are used exclusively
by NDIS drivers as the following sections describe:

Power management keywords for NetAdapterCx and NDIS

Power management keywords exclusive to NetAdapterCx

Power management keywords exclusive to NDIS

The traditional NDIS miniport device driver should always indicate the device's hardware
power management capabilities to NDIS in the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure.

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

The following standardized INF keywords are defined to enable or disable support for
power management features of network adapters. They are used by both NetAdapterCx
client drivers and traditional NDIS miniport device drivers.

*WakeOnPattern
A value that describes whether the device should be enabled to wake the computer
when a network packet matches a specified pattern.

*WakeOnMagicPacket
A value that describes whether the device should be enabled to wake the computer
when the device receives a magic packet. (A magic packet is a packet that contains 16
contiguous copies of the receiving network adapter's Ethernet address)

Power management keywords for
NetAdapterCx and NDIS

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes

*PMARPOffload
A value that describes whether the device should be enabled to offload the Address
Resolution Protocol (ARP) when the system enters a sleep state.

*PMNSOffload
A value that describes whether the device should be enabled to offload neighbor
solicitation (NS) when the system enters a sleep state.

*PMWiFiRekeyOffload
A value that describes whether the device should be enabled to offload group temporal
key (GTK) rekeying for wake-on-wireless-LAN (WOL) when the computer enters a sleep
state.

*EEE
A value that describes whether the device should enable IEEE 802.3az Energy-Efficient
Ethernet.

The columns in the table at the end of this topic describe the following attributes for
enumeration keywords:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value
is stored in NDI\params\SubkeyName\Value.

EnumDesc
The display text that is associated with each value that appears in the menu.

The following table describes the possible INF entries for the power management
keywords used by NDIS and NetAdapterCx drivers.

SubkeyName ParamDesc Value EnumDesc

*WakeOnPattern Wake on pattern match 0 Disabled

1 (Default) Enabled

*WakeOnMagicPacket Wake on magic packet 0 Disabled

1 (Default) Enabled

SubkeyName ParamDesc Value EnumDesc

*PMARPOffload ARP offload 0 Disabled

1 (Default) Enabled

*PMNSOffload NS offload 0 Disabled

1 (Default) Enabled

*PMWiFiRekeyOffload WiFi rekeying offload 0 Disabled

1 (Default) Enabled

*EEE Energy-Efficient Ethernet 0 Disabled

1 (Default) Enabled

The following power management keywords are for NetAdapterCx client driver use only.

In addition to the standard WDF process for giving user control over the device idle and
wake behavior as described in User Control of Device Idle and Wake Behavior,
NetAdapterCx also defines a network device specific standardized INF keyword for
allowing more control.

*IdleRestriction
If a network device has both idle power down and wake on packet filter capabilities, this
setting allows the user to decide when the device idle power down can happen.

*IdleRestriction is an enumeration standardized INF keyword and has the following
attributes:

The following table describes the possible INF entries for the *IdleRestriction keyword.

SubkeyName ParamDesc Value EnumDesc

*IdleRestriction idle power down restriction 0 (Default) No Restriction

1 Only idle when user is not present

Power management keywords exclusive to
NetAdapterCx

https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/user-control-of-device-idle-and-wake-behavior

The following power management keywords are for traditional NDIS miniport driver use
only. They must not be used by NetAdapterCx client drivers.

*ModernStandbyWoLMagicPacket
A value that describes whether the device should be enabled to wake the computer
when the device receives a magic paket and the system is in the S0ix power state. This
does not apply when the system is in the S4 power state.

*DeviceSleepOnDisconnect
A value that describes whether the device should be enabled to put the device into a
low-power state (sleep state) when media is disconnected and return to a full-power
state (wake state) when media is connected again.

The following table describes the possible INF entries for the power management
keywords used by NDIS miniport drivers.

SubkeyName ParamDesc Value EnumDesc

*ModernStandbyWoLMagicPacket Wake on magic packet when
system is in the S0ix power state

0
(Default)

Disabled

1 Enabled

*DeviceSleepOnDisconnect Device sleep on disconnect 0 Disabled

1
(Default)

Enabled

Power management keywords exclusive to
NDIS

７ Note

*ModernStandbyWoLMagicPacket is supported in NDIS 6.60 and later, or
Windows 10, version 1607 and later.

Reporting Power Management
Capabilities
Article • 12/15/2021

Miniport drivers that support NDIS 6.20 and later versions of NDIS report their hardware
power management capabilities during initialization. NDIS reports the current
capabilities to overlying NDIS protocol drivers during the bind operation. However,
NDIS can hide some capabilities from the protocol driver. For example, NDIS might
report different capabilities when a user disables some or all of the power management
capabilities.

Note that the current power management capabilities that NDIS reports to a protocol
driver are not necessarily the same as the hardware capabilities that the miniport driver
reported to NDIS.

If an NDIS 6.1 or earlier miniport driver is bound to an NDIS 6.20 protocol driver, NDIS
translates the power management capabilities to a format that is supported by the NDIS
6.20 protocol driver. NDIS also translates power management capabilities that an NDIS
6.20 miniport driver reports into a format that is supported by the NDIS 6.1 and earlier
overlying drivers.

The hardware capabilities that a miniport driver reports can be enabled or disabled in
INF file settings. For more information about power management INF file settings, see
Standardized INF Keywords for Power Management.

During miniport initialization, a miniport driver initializes an NDIS_PM_CAPABILITIES
structure with the power management capabilities of the underlying hardware. The
miniport driver sets the PowerManagementCapabilitiesEx member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure to point to the
NDIS_PM_CAPABILITIES structure.

The NDIS_PM_CAPABILITIES structure includes the following information:

Flags
For NDIS 6.20, this member is reserved for NDIS.

Starting with NDIS 6.30, the following flags are defined:

NDIS_PM_WAKE_PACKET_INDICATION_SUPPORTED
If this flag is set, the network adapter can save the received packet that caused the
adapter to generate a wake-up event.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

For more information about this power management capability, see NDIS Wake Reason
Status Indications.

NDIS_PM_SELECTIVE_SUSPEND_SUPPORTED
If this flag is set, the miniport driver supports NDIS selective suspend for network
adapters.

For more information about this power management capability, see NDIS Selective
Suspend.

SupportedWoLPacketPatterns
Contains flags that specify the wake-on-LAN (WOL) packet patterns that a network
adapter supports. For example, the network adapter can generate a wake-up event
when it receives a bitmap, a WOL magic packet, or an EAP over LAN (EAPOL) request
identifier message. For a complete list of the patterns that are supported in the current
operating system, see the NDIS_PM_CAPABILITIES reference page.

NumTotalWoLPatterns
A ULONG value that contains the total number of WOL patterns that a network adapter
supports. This is the sum of "number of supported WOL protocol patterns" and "number
of supported WOL bitmap patterns."

For example, if your driver supports 8 flexible bitmap patterns, IPv4 TCP SYN (via preset
filter), and magic packet, then you would report 9 in NumTotalWoLPatterns. (8 bitmaps
+ 1 IPv4 TCP SYN = 9)

Note The total number of WOL patterns does not include the magic packet wake-up
pattern.

For more information about WOL protocol patterns, see NDIS_PM_WOL_PATTERN.

MaxWoLPatternSize
Contains the maximum number of bytes that can be compared with a pattern.

MaxWoLPatternOffset
Contains the number of bytes in a packet that can be examined, which starts from the
beginning of the MAC header.

MaxWoLPacketSaveBuffer
Contains the number of bytes of a WOL protocol pattern that a miniport driver can save
to a buffer and indicate up the driver stack.

SupportedProtocolOffloads
Contains flags that specify the power management protocol offload features that a
network adapter supports. Miniport drivers use these flags to report the low power

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

protocol offload capabilities of a network adapter. For example, the network adapter can
support IPv4 ARP offload, IPv6 Neighbor Solicitation (NS), or IEEE 802.11 robust secure
network (RSN) 4-way and 2-way handshake. For a complete list of the protocol offloads
that are supported in the current operating system, see the NDIS_PM_CAPABILITIES
reference page.

NumArpOffloadIPv4Addresses
Contains the number of ARP offload IPv4 addresses.

NumNSOffloadIPv6Addresses
Contains the number of network solicitation (NS) offload IPv6 requests that the network
adapter supports.

MinMagicPacketWakeUp
Specifies the lowest device power state from which a network adapter can signal a
wake-up event on receipt of a magic packet. (A magic packet is a packet that contains 16
contiguous copies of the receiving network adapter's Ethernet address.)

MinPatternWakeUp
Specifies the lowest device power state from which a network adapter can signal a
wake-up event on receipt of a network frame that contains a pattern that is specified by
the protocol driver.

MinLinkChangeWakeUp
Specifies the lowest device power state from which a network adapter can signal a
wake-up event when there is a link change (media connect or disconnect).

SupportedWakeUpEvents
Specifies the media-independent wake-up events that a network adapter supports.
These events are not specific to media type. For example, these wake-up events include
link change events.

MediaSpecificWakeUpEvents
Specifies the media-specific wake-up events that a network adapter supports. For
example, these events include following:

The 802.11 network adapter disassociates with the access point (AP).

The mobile broadband (MB) network adapter detects a change in its registration
state to the MB Service.

If a miniport driver supports offloading protocols to a network adapter in a low power
state, it must support the same low power state for the protocol offload that it supports

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

for a pattern match WOL event; that is, the value that is specified in the
MinPatternWakeUp or MinMagicPacketWakeUp member.

NDIS initializes an NDIS_PM_CAPABILITIES structure with the currently available power
management capabilities of the underlying network adapter and passes it the protocol
overlying protocol drivers during the bind operation. NDIS sets the
PowerManagementCapabilitiesEx member of the NDIS_BIND_PARAMETERS structure
to point to the NDIS_PM_CAPABILITIES structure.

Overlying drivers can use the OID_PM_HARDWARE_CAPABILITIES OID query to obtain
the hardware power management capabilities of the network adapter. NDIS handles this
OID request on behalf of the miniport driver. NDIS miniport drivers are not required to
support the OID_PM_HARDWARE_CAPABILITIES OID request.

Overlying drivers can use the OID_PM_CURRENT_CAPABILITIES OID to query the
currently available power management capabilities of a network adapter. NDIS handles
this OID request on behalf of the miniport driver. NDIS miniport drivers are not required
to support the OID_PM_CURRENT_CAPABILITIES OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

Obtaining and Updating Power
Management Parameters
Article • 12/15/2021

Protocol drivers can use the OID_PM_PARAMETERS OID to query the hardware
capabilities of a network adapter that is currently enabled. After a successful return from
the query, the InformationBuffer member of the NDIS_OID_REQUEST structure contains
a pointer to an NDIS_PM_PARAMETERS structure.

Protocol drivers can also use OID_PM_PARAMETERS as a set request to enable or disable
the current hardware capabilities of a network adapter. The protocol driver provides a
pointer to an NDIS_PM_PARAMETERS structure in the InformationBuffer member of the
NDIS_OID_REQUEST structure.

Note Protocol drives cannot disable capabilities that were enabled by other protocol
drivers. If none of the protocol drivers enable a capability, that capability is unused.

Note NDIS enables magic packet and low power on disconnect capabilities based on
the user settings, and these capabilities cannot be disabled by protocol drivers.

NDIS_PM_PARAMETERS includes the following information:

EnabledWoLPacketPatterns
Contains flags that correspond to capabilities that the miniport driver reported in the
SupportedWoLPacketPatterns member of the NDIS_PM_CAPABILITIES structure. For
example, the network adapter is enabled to generate a wake-up event when it receives a
bitmap, a WOL magic packet, or an EAP over LAN (EAPOL) request identifier message.
For a complete list of the patterns that are possible in the current operating system, see
the NDIS_PM_PARAMETERS reference page.

EnabledProtocolOffloads
Contains flags that correspond to capabilities that the miniport driver reported in the
SupportedProtocolOffloads member of the NDIS_PM_CAPABILITIES structure. NDIS
uses these flags to enable or disable the low power protocol offload capabilities on a
network adapter. For example, the network adapter offload for IPv4 ARP, IPv6 Neighbor
Solicitation (NS), or IEEE 802.11 robust secure network (RSN) 4-way and 2-way
handshake is enabled. For a complete list of the protocol offloads that are supported in
the current operating system, see the NDIS_PM_PARAMETERS reference page.

WakeUpFlags
Contains flags that NDIS uses to enable or disable wake-up capabilities on a network

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

adapter.

For NDIS 6.20, the NDIS_PM_WAKE_ON_LINK_CHANGE_ENABLED flag enables the
capability to wake on a link change (media connect). For more information about this
flag, see Low Power on Media Disconnect.

Starting with NDIS 6.30, the NDIS_PM_SELECTIVE_SUSPEND_ENABLED flag enables the
support for NDIS selective suspend on underlying USB network adapters. For more
information, see NDIS Selective Suspend.

When a driver sets the OID_PM_PARAMETERS OID, NDIS completes the request without
forwarding it to the miniport driver. NDIS stores the requested settings and combines
them with the settings from other such requests.

Before NDIS transitions the network adapter to the low power state, NDIS sends a set
request to the miniport driver that contains the combined settings from all of the
requests that NDIS stored. For more information about setting a low power state, see
Low Power for Wake on LAN.

The capabilities that are currently enabled can be a subset of the capabilities that the
hardware supports. For more information about the capabilities that the hardware
supports, see Reporting Power Management Capabilities.

Adding and Deleting Wake on LAN
Patterns
Article • 12/15/2021

To add a wake-on-LAN (WOL) pattern, NDIS protocol drivers issue an OID set request of
OID_PM_ADD_WOL_PATTERN. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an NDIS_PM_WOL_PATTERN
structure. Protocol drivers should specify a WOL packet if that WOL packet is supported
by a network adapter. When the network adapter does not support the WOL packet, the
protocol driver should use the WOL bitmap wake method.

NDIS_PM_WOL_PATTERN includes the following information:

Priority
Contains the priority of the WOL pattern. If an overlying driver adds a higher priority
WOL pattern when there are no resources available for more WOL patterns, NDIS might
remove a lower priority WOL pattern to free resources. Miniport drivers should ignore
this member. A protocol driver can specify any priority that is within the pre-defined
range from NDIS_PM_WOL_PRIORITY_LOWEST to NDIS_PM_WOL_PRIORITY_HIGHEST.

WoLPacketType
Contains an NDIS_PM_WOL_PACKET enumeration value that specifies the type of the
WOL packet.

FriendlyName
Contains an NDIS_PM_COUNTED_STRING structure that contains the user-readable
description of the WOL packet.

PatternId
Contains an NDIS-provided value that identifies the WOL pattern. Before NDIS sends the
OID_PM_ADD_WOL_PATTERN OID request down to the underlying NDIS drivers or
completes the request to the overlying driver, NDIS sets PatternId to a value that is
unique among the WOL patterns on a network adapter.

NextWoLPatternOffset
Contains the offset (from the beginning of the OID request InformationBuffer) of one
NDIS_PM_WOL_PATTERN structure to the next NDIS_PM_WOL_PATTERN structure in a
list for the OID_PM_WOL_PATTERN_LIST OID. For more information about
OID_PM_WOL_PATTERN_LIST, see Obtaining the Current Settings of WOL Patterns.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_pm_wol_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_counted_string
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

WoLPattern
Contains one of the IPv4TcpSynParameters, IPv6TcpSynParameters,
EapolRequestIdMessageParameters, or WoLBitMapPattern structures in a union.

IPv4TcpSynParameters
Contains IPv4 TCP synchronize (SYN) information.

IPv6TcpSynParameters
Contains IPv6 TCP SYN information.

EapolRequestIdMessageParameters
Contains 802.1X EAP over LAN (EAPOL) request identity message parameters.

WoLBitMapPattern
Contains a WOL bitmap pattern specification.

NDIS assigns an identifier that is unique for network adapter to every WOL pattern. The
pattern identifier is a unique value for each of the patterns that are set on a network
adapter. However, the pattern identifier is not globally unique across all network
adapters. NDIS passes the identifier to the underlying network adapter when NDIS
sends the OID_PM_ADD_WOL_PATTERN OID request to the miniport driver. If adding the
WOL pattern is successful, NDIS returns the identifier to the overlying driver that added
the WOL pattern. The overlying driver uses the identifier to remove a previously added
WOL pattern. The pattern identifier is also used in status indications to the overlying
drivers when a WOL pattern is removed from a network adapter.

Protocol drivers must issue the OID set request of OID_PM_REMOVE_WOL_PATTERN to
remove all of the patterns that they added to a network adapter before they close a
binding to that network adapter. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a pattern identifier.

User-mode applications use the GUID_PM_REMOVE_WOL_PATTERN WMI GUID to
remove a previously added WOL pattern from a network adapter. NDIS translates this
WMI request to the OID set request of OID_PM_REMOVE_WOL_PATTERN for the
network adapter. NDIS deletes all of the WOL patterns that an application added from
the network adapter before it halts the network adapter.

NDIS allows multiple NDIS protocol drivers to add WOL patterns to the same network
adapter. To ensure that the right set of WOL patterns have been set when the number of
requested WOL patterns is higher than what a network adapter can support, protocol
drivers assign a priority to each requested WOL pattern in the Priority member of the
NDIS_PM_WOL_PATTERN structure. When NDIS cannot add a new high priority WOL

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

pattern because the network adapter is out of resources, NDIS deletes one of the lower
priority patterns (if any) and attempts to add the high priority pattern again.

Note A miniport driver should fail a pattern add request and return the
STATUS_NDIS_PM_WOL_PATTERN_LIST_FULL status code to allow NDIS to re-prioritize
the patterns.

If NDIS deletes one of the lower priority patterns, it notifies the overlying driver that set
the deleted pattern with an NDIS_STATUS_PM_WOL_PATTERN_REJECTED status
indication. The StatusBuffer member of the NDIS_STATUS_INDICATION structure
contains a ULONG for the WOL pattern identifier of the rejected WOL pattern. NDIS
provided the WOL pattern identifier in the PatternId member of the
NDIS_PM_WOL_PATTERN structure.

For wireless network adapter's that might use an infrastructure element to offload the
patterns as it roams across the infrastructure, a new infrastructure element might not
support the same capabilities and the miniport driver can send an
NDIS_STATUS_PM_WOL_PATTERN_REJECTED status indication with an appropriate
status code.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

Obtaining the Current Settings of WOL
Patterns
Article • 12/15/2021

Overlying drivers can use the OID_PM_WOL_PATTERN_LIST OID query request to
enumerate the wake-on-LAN (WOL) patterns that are set on an underlying network
adapter. After a successful return from the query, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a list of NDIS_PM_WOL_PATTERN
structures that describe the currently added WOL patterns. For information about the
contents of the NDIS_PM_WOL_PATTERN structure, see Adding and Deleting Wake on
LAN Patterns.

NDIS handles OID_PM_WOL_PATTERN_LIST OID requests on behalf of the miniport
driver. Therefore, NDIS miniport drivers are not required to support
OID_PM_WOL_PATTERN_LIST OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

Adding and Deleting Low Power
Protocol Offloads
Article • 12/15/2021

To add a low power protocol offload, NDIS protocol drivers issue an OID set request of
OID_PM_ADD_PROTOCOL_OFFLOAD. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an NDIS_PM_PROTOCOL_OFFLOAD
structure.

Note If an incoming packet matches both an offloaded protocol and a pattern (for
example, because of a configuration error), the network adapter should respond to the
packet and wake up the computer.

The NDIS_PM_PROTOCOL_OFFLOAD structure includes the following information:

Member Description

Priority Contains the priority of the protocol offload. If an
overlying driver adds a higher priority protocol
offload when there are no resources available for
more protocol offloads, NDIS might remove a lower
priority protocol offload to free resources. Miniport
drivers should ignore this member. Protocol drivers
can provide any value within the predefined range
from
NDIS_PM_PROTOCOL_OFFLOAD_PRIORITY_LOWEST
to
NDIS_PM_PROTOCOL_OFFLOAD_PRIORITY_HIGHEST.

ProtocolOffloadType Contains an NDIS_PM_PROTOCOL_OFFLOAD_TYPE
value that specifies the type of protocol offload.

FriendlyName Contains an NDIS_PM_COUNTED_STRING structure
that contains the user-readable description of the
low power protocol offload.

ProtocolOffloadId Contains an NDIS-provided value that identifies the
offloaded protocol. Before NDIS sends the OID
request of OID_PM_ADD_PROTOCOL_OFFLOAD
down to the underlying NDIS drivers or completes
the request to the overlying driver, NDIS sets
ProtocolOffloadId to a value that is unique among
the protocol offloads on a network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_pm_protocol_offload_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_pm_protocol_offload_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_counted_string

Member Description

NextProtocolOffloadOffset Contains the offset, the beginning of the OID
request InformationBuffer, to the next
NDIS_PM_PROTOCOL_OFFLOAD structure in a list
for the OID_PM_PROTOCOL_OFFLOAD_LIST OID. For
more information about
OID_PM_PROTOCOL_OFFLOAD_LIST, see Obtaining
the Current Parameter Settings of Low Power
Protocol Offloads.

ProtocolOffloadParameters Contains one of the IPv4ARPParameters,
IPv6NSParameters, or Dot11RSNRekeyParameters
structures in a union.

Term Description

IPv4ARPParameters Contains IPv4 ARP
parameters.

IPv6NSParameters Contains IPv6
Neighbor
Solicitation (NS)
parameters.

Dot11RSNRekeyParameters Contains IEEE
802.11 robust
secure network
(RSN) handshake
parameters

NDIS assigns an identifier that is unique for a network adapter to every offloaded
protocol. The protocol offload identifier is a unique value for each of the protocols that
are offloaded on a network adapter. However, the protocol offload identifier is not
globally unique across all network adapters. NDIS passes this identifier to the underlying
miniport driver when NDIS sends the OID_PM_ADD_PROTOCOL_OFFLOAD OID request
to the miniport driver. If offloading the protocol is successful, NDIS returns the identifier
to the overlying driver that offloaded the protocol. The overlying driver uses the
identifier to remove a previously offloaded protocol. The protocol offload identifier is
also used in status indications to the upper layer drivers when an offloaded protocol is
removed from a network adapter.

Protocol drivers must remove all of the offloaded protocols from a network adapter
before closing the binding to that network adapter. To remove a low power protocol
offload, a protocol driver sends an OID set request of

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

OID_PM_REMOVE_PROTOCOL_OFFLOAD. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a protocol offload identifier.

NDIS allows multiple NDIS protocol drivers to add protocol offloads to the same
network adapter. To ensure that the right set of protocols have been offloaded to a
network adapter when the number of requested offloaded protocols is higher than what
a network adapter can support, protocol drivers assign a priority to each offloaded
protocol. When NDIS cannot offload a new high priority protocol because the network
adapter is out of resources, NDIS deletes one of the lower priority offloaded protocols (if
any) and attempts to offload the high priority protocol again.

Note A miniport driver should fail a low power protocol offload add request and return
the STATUS_NDIS_PM_PROTOCOL_OFFLOAD_LIST_FULL status code to allow NDIS to re-
prioritize the protocol offloads.

If as a result of offloading a high priority protocol, one of the lower priority offloaded
protocols is deleted, NDIS sends an NDIS_STATUS_PM_OFFLOAD_REJECTED status
indication to notify the overlying driver that set the deleted protocol offload. The
StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a protocol
offload identifier of the rejected protocol offload. NDIS provided the protocol offload
identifier in the ProtocolOffloadId member of the NDIS_PM_PROTOCOL_OFFLOAD
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

Implementing IPv6 NS Offload
Article • 12/15/2021

An NDIS protocol driver sends an IPv6 neighbor solicitation (NS) offload request as an
OID_PM_ADD_PROTOCOL_OFFLOAD OID request. To support these NS offload requests,
miniports should do the following.

A miniport driver sets the NumNSOffloadIPv6Addresses member of the
NDIS_PM_CAPABILITIES structure to indicate how many NS offload requests the
miniport adapter supports.

Note Despite its name, the NumNSOffloadIPv6Addresses member contains the
number of supported requests, not the number of addresses.

Note Some Windows Hardware Certification requirements, such as
Device.Network.LAN.PM.PowMgmtNDIS and
Device.Network.WLAN.WoWLAN.ImplementWakeOnWLAN, specify that the miniport
adapter must support at least 2 NS offload requests. (In other words, to meet these
requirements, the value of NumNSOffloadIPv6Addresses must be at least 2.) For more
information, see the Windows 8 Hardware Certification Requirements.

Each NS offload request can contain 1 or 2 target addresses.

In addition, there are 2 types of NS messages: unicast and multicast. Miniport drivers
must be prepared to match both types of NS message for each target address.

If a miniport driver sets the NDIS_PM_CAPABILITIES member of the
NumNSOffloadIPv6Addresses structure to 3, then NDIS may send up to 3
OID_PM_ADD_PROTOCOL_OFFLOAD requests of type NdisPMProtocolOffloadIdIPv6NS.
Each OID_PM_ADD_PROTOCOL_OFFLOAD request may have exactly 1 or 2 addresses in
the TargetIPv6Addresses member of the NDIS_PM_PROTOCOL_OFFLOAD structure.
Therefore, the miniport must support a 3 x 2 = 6 target addresses.

Because the miniport must match both unicast and multicast NS messages for each
target address, the miniport should be able to match a total of 6 x 2 = 12 NS message
patterns.

Indicating How Many Offload Requests the
Miniport Adapter Supports

Example

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/cert-program/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

The NS message format is specified in RFC 4861 section 4.3, "Neighbor Solicitation
Message Format". The miniport should match the fields in the following table.

Field Match value Notes

Ethernet.EtherType 0x86dd (IPv6) Adjust as needed for non-
Ethernet media types.

IPv6.Version 6

IPv6.NextHeader 58 (ICMPv6)

IPv6.HopLimit 255

IPv6.Destination OID.TargetIPv6Addresses[x] or
OID.SolicitedNodeIPv6Address

The miniport must match both
options for this field:
OID.TargetIPv6Addresses[x]
and
OID.SolicitedNodeIPv6Address.

If this field is
OID.TargetIPv6Addresses[x],
the NS message is a unicast
message.

If this field is
OID.SolicitedNodeIPv6Address,
the NS message is a multicast
message.

OID.TargetIPv6Addresses is an
array that can contain 1 or 2
addresses. If it contains 2
addresses, the miniport must
match both of them. If the
second address is "0::0", it must
be ignored, and a second
match pattern must not be
created.

IPv6.ICMPv6.Type 135 (NS)

IPv6.ICMPv6.Code 0

IPv6.ICMPv6.TargetAddress OID.TargetIPv6Addresses[x] OID.TargetIPv6Addresses[x] is
an array that can contain 1 or 2
addresses.

Matching the NS Message

https://go.microsoft.com/fwlink/p/?linkid=268370

Field Match value Notes

IPv6.Source OID.RemoteIPv6Address If OID.RemoteIPv6Address is
"0::0", this field should be
ignored.

Upon receiving the NS message, device firmware should perform the validation steps
called out in RFC 4861 section 7.1, "Message Validation", including validating
checksums. If the incoming NS message passes all validation, then an NA message must
be generated and sent as a reply. Its format is specified in RFC 4861 section 4.4,
"Neighbor Advertisement Message Format". The miniport should set the fields in the
following table.

Field Value Notes

Ethernet.Destination Ethernet.Source Copy this value
from the NS frame.
Adjust as needed
for non-Ethernet
media types.

Ethernet.Source The miniport’s current MAC
address

IPv6.HopLimit 255

IPv6.Source IPv6.ICMPv6.TargetAddress Copy this value
from the NS frame.

IPv6.Destination IPv6.Source Copy this value
from the NS frame,
unless the value of
IPv6.Source was
"0::0". If the value
of IPv6.Source was
"0::0" set this field
to "FF02::1".

IPv6.ICMPv6.Type 136 (NA)

IPv6.ICMPv6.Code 0

IPv6.ICMPv6.RouterFlag 0

Sending the NA Message

https://go.microsoft.com/fwlink/p/?linkid=268370
https://go.microsoft.com/fwlink/p/?linkid=268370

Field Value Notes

IPv6.ICMPv6.SolicitedFlag 0 If the value of
IPv6.Source in the
NS frame was
"0::0", set this field
to 1.

IPv6.ICMPv6.OverrideFlag 1

IPv6.ICMPv6.TargetAddress IPv6.ICMPv6.TargetAddress Copy this value
from the NS frame.

IPv6.ICMPv6.TLLAOption.Type 2 (Target Link-layer Address)

IPv6.ICMPv6.TLLAOption.Length 1

IPv6.ICMPv6.TLLAOption.LinkLayerAddress OID.MacAddress

Obtaining the Current Parameter
Settings of Low Power Protocol Offloads
Article • 12/15/2021

A protocol driver can use OID_PM_PROTOCOL_OFFLOAD_LIST OID query to get a list of
all the protocols that have been offloaded by that protocol on a network adapter. After
a successful return from the query, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a list of
NDIS_PM_PROTOCOL_OFFLOAD structures that describe the currently active protocol
offloads. For information about the contents of the NDIS_PM_PROTOCOL_OFFLOAD
structure, see Adding and Deleting Low Power Protocol Offloads.

NDIS handles OID_PM_PROTOCOL_OFFLOAD_LIST OID and
GUID_PM_PROTOCOL_OFFLOAD_LIST WMI requests on behalf of the miniport driver.
Therefore, NDIS miniport drivers are not required to support
OID_PM_PROTOCOL_OFFLOAD_LIST OID request.

Overlying drivers can use the OID_PM_GET_PROTOCOL_OFFLOAD method OID to get
parameter settings for a low power protocol offload from a miniport driver. The
InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to a protocol offload identifier. After a successful return from the method
request, the InformationBuffer member of the NDIS_OID_REQUEST structure contains a
pointer to an NDIS_PM_PROTOCOL_OFFLOAD structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

Low Power for Wake on LAN
Article • 12/15/2021

The wake on LAN (WOL) feature wakes the computer from a low power state when a
network adapter detects a WOL event.

A miniport driver reports network adapter WOL capabilities during initialization. For
more information about reporting WOL capabilities, see Reporting Power Management
Capabilities.

Note that the lower power on the media disconnect (D3 on disconnect) feature is
canceled when the computer enters a sleep state in order to prevent waking the
computer when the link state is externally cycled; that is, when a switch is turned off and
on. For more information about D3 on disconnect, see Low Power on Media Disconnect.

The following figure illustrates the sequence of events that occurs to set a network
adapter to a low power state.

When NDIS puts a network adapter in a low power state, the following sequence occurs:

1. NDIS uses OID_PM_PARAMETERS to enable wake on LAN and to disable wake on
media connect. NDIS_PM_WAKE_ON_LINK_CHANGE_ENABLED is cleared in the
WakeUpFlags member.

2. NDIS uses OID_PNP_SET_POWER to notify the miniport driver of the new power
state (D3).

3. The miniport driver may indicate an unknown media connect state using the
NDIS_STATUS_LINK_STATE status indication. The MediaConnectStateUnknown
value is set in the MediaConnectState member of the NDIS_LINK_STATE structure.
For more information, see the NDIS_STATUS_LINK_STATE documentation.

4. NDIS sends the PCI Express (PCIe) bus an IRP_MN_WAIT_WAKE IRP to wait for a
WOL event.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake

5. NDIS sends the PCIe bus an IRP_MN_SET_POWER IRP to set the bus to the D3
state.

The following figure illustrates the sequence of events that occurs to restore full power
to a network adapter after a WOL event.

When the network adapter is waking the computer the following sequence occurs:

1. The network adapter wakes the system by asserting WAKE# on the PCIe bus or
PME# on the PCI bus.

2. The bus completes the pending IRP_MN_WAIT_WAKE IRP. The IRP is pending
completion from the last step in the power down sequence.

3. NDIS sets the bus to full power (D0) with the IRP_MN_SET_POWER IRP.

4. NDIS notifies the miniport driver that the network adapter is at full power (D0) with
the OID set request of OID_PNP_SET_POWER.

5. The network adapter notifies NDIS of a media connect event with the
NDIS_STATUS_LINK_STATE status indication. The MediaConnectStateConnected
value is set in the MediaConnectState member of the NDIS_LINK_STATE structure.

Starting with NDIS 6.30, if the miniport driver supports
NDIS_STATUS_PM_WAKE_REASON status indications, it must issue this status
notification if the network adapter wakes the system. The driver issues this status
notification while it is handling the OID set request of OID_PNP_SET_POWER for the
transition to a full-power (D0) state.

For more information, see NDIS Wake Reason Status Indications.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

Low Power on Media Disconnect
Article • 12/15/2021

The low power on media disconnect (D3 on disconnect) feature saves power by placing
a network adapter in a low-power state (D3) when the media is disconnected. When the
media is reconnected, the network adapter is brought back up to the full-power state
(D0).

NDIS uses the D3 on disconnect feature under these conditions:

The network adapter hardware must be able to generate a wake event on media
connect.

The miniport driver must report the wake event capability of the network adapter
in the MinLinkChangeWakeUp member of the NDIS_PM_CAPABILITIES structure.

The value of MinLinkChangeWakeUp must correspond to the value of the
DeviceWake member of the DEVICE_CAPABILITIES structure that is reported by
the IRP_MN_QUERY_CAPABILITIES IRP.

The miniport driver must register as an NDIS 6.20 driver or later version.

The network adapter must be an Ethernet PCI adapter.

The wake event capability must be enabled by the *DeviceSleepOnDisconnect
standard INF file keyword.

The computer chipset must be able to correctly propagate the wake event while
the computer is fully powered. NDIS validates this by querying the
DEVPKEY_PciDevice_S0WakeupSupported PCI property.

Note that D3 on disconnect is only available while the computer is fully powered in the
working state (S0). This feature is canceled when the computer enters a sleep state to
prevent waking the computer when the link state is externally cycled; that is, when a
switch is turned off and on. For more information about the setting the low-power state
when a computer enters a sleep state, see Low Power for Wake on LAN.

A miniport driver reports D3 on disconnect capabilities during initialization. For more
information about reporting D3 on disconnect capabilities, see Reporting Power
Management Capabilities.

The *DeviceSleepOnDisconnect standard INF file keyword specifies whether the device
has enabled or disabled support for D3 on disconnect. For more information about this
INF keyword, see Standardized INF Keywords for Power Management.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-capabilities

During initialization, a miniport drivers that supports D3 on disconnect must report the
lowest power level where it can support the ability to notify the operating system of
media connect event. The miniport driver reports the power level in the
MinLinkChangeWakeUp member of the NDIS_PM_CAPABILITIES structure. For
example, the miniport driver can report NdisDeviceStateD3.

The following figure illustrates the sequence of events to set a network adapter to a
low-power state after a media disconnect event.

When the adapter detects a media disconnect, the following sequence occurs:

1. The network adapter hardware detects a media disconnect event and passes the
information to the miniport driver.

2. The miniport driver notifies NDIS of a media disconnect event using the
NDIS_STATUS_LINK_STATE status indication. The StatusBuffer member of the
NDIS_STATUS_INDICATION structure contains an NDIS_LINK_STATE structure. The
MediaConnectStateDisconnected value is set in the MediaConnectState member
of the NDIS_LINK_STATE structure.

3. NDIS uses OID_PM_PARAMETERS to disable Wake-on-LAN and to enable wake on
media connect (NDIS_PM_WAKE_ON_LINK_CHANGE_ENABLED is set in the
WakeUpFlags member).

4. NDIS uses the OID_PNP_SET_POWER OID to notify the miniport driver of the new
power state (D3).

5. NDIS sends the PCIe bus an IRP_MN_WAIT_WAKE IRP to wait for a reconnect
event.

6. NDIS sets the PCIe bus to the D3 state with the IRP_MN_SET_POWER IRP.

The following figure illustrates the sequence of events to restore full power to a network
adapter after a media connect event.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power

When the media is reconnected the following sequence occurs:

1. The network adapter wakes the system by asserting WAKE# on the PCIe bus or
PME# on the PCI bus.

2. The bus completes the pending IRP_MN_WAIT_WAKE IRP. The IRP is pending
completion from the last step in the disconnect sequence.

3. NDIS sets the bus to full power (D0) with the IRP_MN_SET_POWER IRP.

4. NDIS notifies the miniport driver that the network adapter is in the full power (D0)
state with the OID set request of OID_PNP_SET_POWER.

5. The network adapter notifies NDIS of a media connect event with the
NDIS_STATUS_LINK_STATE status indication. The MediaConnectStateConnected
value is set in the MediaConnectState member of the NDIS_LINK_STATE structure.

Starting with NDIS 6.30, if the miniport driver supports
NDIS_STATUS_PM_WAKE_REASON status indications, it must issue this status
notification if the network adapter wakes the system. The driver issues this status
notification while it is handling the OID set request of OID_PNP_SET_POWER for the
transition to a full-power (D0) state.

For more information, see NDIS Wake Reason Status Indications.

Note If the miniport driver issues an NDIS_STATUS_PM_WAKE_REASON status
indication, it must do this before it issues the NDIS_STATUS_LINK_STATE status
indication.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-wait-wake
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-set-power
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

NDIS_STATUS_PM_CAPABILITIES_CHAN
GE
Article • 03/14/2023

The NDIS_STATUS_PM_CAPABILITIES_CHANGE status indicates a change in the power
management capabilities of a network adapter to overlying drivers.

NDIS generates an NDIS_STATUS_PM_CAPABILITIES_CHANGE status indication when an
update to the previously reported power management capabilities is required.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a
pointer to an NDIS_PM_CAPABILITIES structure with the updated power management
capabilities.

Version Supported in NDIS 6.20 and later.

Header Ndis.h (include Ndis.h)

NDIS_PM_CAPABILITIES

NDIS_STATUS_INDICATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_PM_HARDWARE_CAPABIL
ITIES
Article • 03/14/2023

The NDIS_STATUS_PM_HARDWARE_CAPABILITIES status indicates to overlying drivers
that a change in the power management (PM) hardware capabilities of a network
adapter has occurred.

The miniport driver generates an NDIS_STATUS_PM_HARDWARE_CAPABILITIES status
indication when an update to the previously reported power management capabilities is
required.

The miniport driver for an 802.11 network adapter can generate this status indication.

A MUX intermediate driver that provides load balancing failover (LBFO) support can also
generate this status indication. The MUX driver aggregates the PM capabilities of the
underlying network adapters that are part of the LBFO team. If the PM capabilities
change because an adapter has been either added or removed from the team, the MUX
driver must generate this status indication. For more information on LBFO MUX
intermediate drivers, see NDIS MUX Intermediate Drivers.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a
pointer to an NDIS_PM_CAPABILITIES structure with the updated power management
capabilities.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NDIS_PM_CAPABILITIES

NDIS_STATUS_INDICATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_PM_OFFLOAD_REJECTED
Article • 03/14/2023

The NDIS_STATUS_PM_OFFLOAD_REJECTED status indicates to overlying drivers that a
power management protocol offload was rejected.

NDIS or miniport drivers can generate the NDIS_STATUS_PM_OFFLOAD_REJECTED status
indication when either of them removes an offloaded protocol. The StatusBuffer
member of the NDIS_STATUS_INDICATION structure contains a ULONG for the protocol
offload identifier of the rejected protocol offload. NDIS provided the protocol offload
identifier in the ProtocolOffloadId member of the NDIS_PM_PROTOCOL_OFFLOAD
structure.

NDIS generates an NDIS_STATUS_PM_OFFLOAD_REJECTED status indication when it has
to remove a previously offloaded protocol from a network adapter. For example, NDIS
might remove the protocol offload to free resources for a higher priority protocol
offload. NDIS sends the status indication to the binding that offloaded the rejected
protocol offload, but does not send it to other bindings.

Miniport drivers report this status indication to reject a previously accepted protocol
offload. For example, for a WiFi WOL case, the miniport driver must make an
NDIS_STATUS_PM_OFFLOAD_REJECTED status indication when PTK/GTK rotation is not
required to support WOL (due to vendor specific infrastructure support).

For wireless network adapters that use infrastructure elements to offload protocols and
roam across the infrastructure, it is possible that a new infrastructure element might not
support the same capabilities as the previous one. In this case, the miniport driver can
issue a status indication to NDIS, and NDIS will issue
NDIS_STATUS_PM_OFFLOAD_REJECTED with a specific error code.

A WiFi driver might cache protocol offload requests locally. When the driver processes
an OID for adding or deleting a protocol offload, the driver can choose to only update
its local cache. The driver can defer the update of the infrastructure until it receives the
OID_PM_PARAMETERS OID.

The infrastructure might not have enough resources to accommodate all of the protocol
offloads. In this case, the infrastructure can accept a partial list of the protocol offloads.
When the miniport driver completes the OID_PM_PARAMETERS set request, the miniport

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

driver must make NDIS_STATUS_PM_OFFLOAD_REJECTED status indications for each of
the protocol offloads that the AP rejects.

For example, a network adapter can use the AP's proxy ARP to support ARP offload.

Version Supported in NDIS 6.20 and later.

Header Ndis.h (include Ndis.h)

NDIS_PM_PROTOCOL_OFFLOAD

NDIS_STATUS_INDICATION

OID_PM_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_PM_WOL_PATTERN_REJE
CTED
Article • 03/14/2023

The NDIS_STATUS_PM_WOL_PATTERN_REJECTED status indicates to overlying drivers
that a power management wake on LAN (WOL) pattern was rejected.

NDIS or miniport drivers can generate the NDIS_STATUS_PM_WOL_PATTERN_REJECTED
status indication when either of them removes a WOL pattern. The StatusBuffer
member of the NDIS_STATUS_INDICATION structure contains a ULONG for the WOL
pattern identifier of the rejected WOL pattern. NDIS provided the WOL pattern identifier
in the PatternId member of the NDIS_PM_WOL_PATTERN structure.

NDIS generates an NDIS_STATUS_PM_WOL_PATTERN_REJECTED status indication when
it must remove a previously added WOL pattern from a network adapter. For example,
NDIS might remove the WOL pattern to free resources for a higher priority WOL pattern.
The notification event will only be sent to the binding that added the removed pattern.

For wireless network adapters that use infrastructure elements to offload the patterns
and roam across the infrastructure, it is possible that a new infrastructure element might
not support the same capabilities as the previous one. In this case, the miniport driver
can issue a status indication to NDIS, and NDIS will issue
NDIS_STATUS_PM_WOL_PATTERN_REJECTED with a specific error code.

A WiFi driver might cache wake-up patterns locally. When the driver processes an OID
for adding or deleting a wake-up pattern, the driver can choose to only update its local
cache. The driver can defer the update of the infrastructure until it receives the
OID_PM_PARAMETERS OID.

The infrastructure might not have enough resources to accommodate all of the wake-up
patterns. In this case, the infrastructure can accept a partial list of the wake-up patterns.
When the miniport driver completes the OID_PM_PARAMETERS set request, the driver
must make NDIS_STATUS_PM_WOL_PATTERN_REJECTED status indications for each of
the WOL patterns that the access point (AP) rejects.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

Version Supported in NDIS 6.20 and later.

Header Ndis.h (include Ndis.h)

NDIS_PM_WOL_PATTERN

NDIS_STATUS_INDICATION

OID_PM_PARAMETERS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Required and Optional OIDs for Power
Management
Article • 12/15/2021

For a miniport driver, supporting power management involves supporting power
management object identifiers (OIDs). For a detailed description of how miniport drivers
process queries and sets to OIDs, see Obtaining and SettingMiniport Driver Information
and NDIS Support for WMI.

There are two levels of power management support for miniport drivers:

1. A miniport driver can support a network adapter making a transition between
power states. This support is the minimum level of power management support.
For a description of device power states for network adapters, see Device Power
States for Network Adapters.

2. A miniport driver can also support one or more network wake-up events.

Miniport drivers report power management capabilities during initialization. For more
information about power management capabilities that are reported during
initialization, see NDIS_MINIPORT_ADAPTER_ATTRIBUTES and the related attributes
structures.

A miniport driver must support the following OIDs directly or in attributes for a network
adapter to make a transition between power states:

OID_PNP_CAPABILITIES

Intermediate drivers must respond to this OID query. NDIS responds to
OID_PNP_CAPABILITIES requests on behalf of physical network adapters. For more
information about responding to this OID in an intermediate driver, see Handling
PnP Events and Power Management Events in an Intermediate Driver.

OID_PNP_QUERY_POWER

This OID specifies a device power state to which the network adapter should
prepare to transition. A miniport driver must always return NDIS_STATUS_SUCCESS
in response to a query of OID_PNP_QUERY_POWER. By returning
NDIS_STATUS_SUCCESS in response to this OID request, the miniport driver
guarantees that it will transition the network adapter to the specified device power
state on receipt of a subsequent OID_PNP_SET_POWER request. The miniport
driver, in this case, must do nothing to jeopardize the transition.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_attributes

OID_PNP_SET_POWER

This OID indicates that the network adapter must transition to the indicated device
power state. A miniport driver must set the network adapter to the specified state
before the driver returns NDIS_STATUS_SUCCESS. A miniport driver must always
return NDIS_STATUS_SUCCESS in response to this OID. If OID_PNP_SET_POWER
sets a network adapter to working power state and the miniport driver fails this
OID, NDIS assumes that the device is in a unrecoverable state.

To support network wake-up events, a miniport driver must also support the
OID_PNP_ENABLE_WAKE_UP OID. Both protocol drivers and NDIS use this OID to enable
a network adapter's wake-up capabilities. For more information, see Enabling Wake-Up
Events.

To support network wake-up frames (see Network Wake-Up Events), a miniport driver
must also support the following OIDs that are related to wake-up events:

OID_PNP_ADD_WAKE_UP_PATTERN

A protocol driver uses this OID to add a wake-up pattern to a list that either the
network adapter or miniport driver or both maintain.

OID_PNP_REMOVE_WAKE_UP_PATTERN

A protocol driver uses this OID to delete a wake-up pattern that it previously
specified with OID_PNP_ADD_WAKE_UP_PATTERN.

NDIS miniport drivers that support network wake-up events can optionally support the
following statistical OIDs that are related to wake-up events:

OID_PNP_WAKE_UP_ERROR

Protocol drivers query this OID to determine the number of false wake-ups
signaled by the miniport driver's network adapter.

OID_PNP_WAKE_UP_OK

Protocol drivers query this OID to determine the number of valid wake-ups that
are signaled by the miniport driver's network adapter.

Device Power States for Network
Adapters
Article • 12/15/2021

A device power state for a network adapter describes a network adapter's level of power
consumption and computing activity.

There are four device power states: D0, D1, D2, and D3. D0 is the highest-powered state.
D1, D2, and D3 are the sleeping states. D3 is subdivided into D3hot and D3cold.

The state number is inversely related to power consumption: higher-numbered states
use less power. Power might be fully removed from the network adapter in the D3 state.

For a thorough description of device states, see the following topics:

Device Power States
Device Working State D0
Device Low-Power States
Required Support for Device Power States

Note NDIS processes power management IRPs, but NDIS drivers do not.

The device power states for network adapters are defined as follows:

This power state is described for all devices in Device Working State D0. For network
adapters and miniport drivers:

Power consumption
The network adapter is fully powered and delivering full functionality and performance.

Device context
The hardware device context is maintained by either the network adapter or miniport
driver or both.

Miniport driver and network adapter behavior
The network adapter is fully compliant with the requirements of the attached network.
The operation of the miniport driver and network adapter is not restricted because of
low-power requirements.

Device Working State D0

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-power-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-working-state-d0
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-sleeping-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/required-support-for-device-power-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-working-state-d0

Restore time
Not applicable.

This power state is described for all devices in Device Low-Power States. For network
adapters and miniport drivers:

Power consumption
This state is the highest-powered sleeping state. Power consumption is less than that in
the D0 state and greater than or equal to that in the D2 state.

Device context
The miniport driver should preserve any hardware device context that might be lost. The
miniport driver should restore such context when the device returns to the D0 state.

Miniport driver and network adapter behavior
The miniport driver does not receive transmission requests from protocol drivers. NDIS
either notifies a bound protocol driver of the network adapter's transition to the
sleeping state or, if the protocol driver is an old driver that is not power management-
aware, NDIS disables transmission requests from the protocol driver. However, the
miniport driver should be able to handle the case in which it does receive transmission
requests when it is in this low-power state. In this case, the miniport driver should fail all
transmission requests.

The miniport driver does not indicate up any packets that the network adapter might
receive while it is in this state.

The network adapter does not generate interrupts. However, the miniport driver must
be able to handle interrupts, because a shared interrupt could be generated on the bus.

Restore time
The time to restore the network adapter to the D0 state is less than that required when
the network adapter is in the D2 state.

This power state is described for all devices in Device Low-Power States. For network
adapters and miniport drivers:

Power consumption
An intermediate sleeping state. Power consumption is less than that in the D1 state and
greater than or equal to that in the D3 state.

Device Power State D1

Device Power State D2

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-sleeping-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-sleeping-states

Device context
Same as for D1.

Miniport driver and network adapter behavior
Same as for D1.

Restore time
The time to restore the network adapter to the D0 state is greater than that required
when the network adapter is in the D1 state and less than that required when the
network adapter is in the D3 state.

This power state is described for all devices in Device Low-Power States. For network
adapters and miniport drivers:

Power consumption
The sleeping state with the least amount of power. The amount of power may be
nonzero (D3hot) or it may be exactly zero (D3cold). For more information about D3hot
and D3cold, see Device Low-Power States.

Device context
Same as for D1.

Miniport driver and network adapter behavior
Same as for D1.

Restore time
The time to restore the network adapter to the D0 state is greater than that required
when the network adapter is in the D2 state.

Before a network adapter can transition to a sleeping state, its miniport driver must
disable everything under the miniport driver's control: interrupts must be disabled,
timers must be canceled, and so on. A miniport driver cannot access the network
adapter hardware after the bus driver sets the network adapter to the D3 state.

The only transitions allowed between device power states are from the highest-powered
state (D0) to a sleeping state (D1, D2, D3), or from a sleeping state to the highest-
powered state. NDIS never commands a network adapter to transition directly from one
sleeping state to another.

Device Power State D3

Transitions Allowed Between Device Power States

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-sleeping-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/device-sleeping-states

About Network Wake-Up Events
Article • 08/23/2022

A network wake-up event is an external event that causes a network adapter to wake the
system. A network adapter wakes the system by asserting a bus-specific wake-up signal
that eventually results in the system making a transition from a sleeping state to the
working state.

NDIS defines the following two network wake-up events:

Receipt of a network wake-up frame that contains a pattern that was specified by a
bound protocol driver.

Receipt of a Magic Packet.

A network adapter can support any combination of network wake-up events, including
none at all. NDIS treats the miniport driver as not power management-aware if the
miniport driver sets the PowerManagementCapabilities member of
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES to NULL.

Depending on the capabilities of the network adapter, a network wake-up event can
occur from any device power state, including the highest-powered state (D0).

If, during initialization, a miniport driver indicates that a network adapter can signal a
wake-up on the receipt of a packet that contains a specified pattern, a bound protocol
can enable the pattern-based wake up method on the network adapter and specify
wake-up patterns. To enable this type of wake-up, a protocol driver sets the
NDIS_PNP_WAKE_UP_PATTERN_MATCH flag in OID_PNP_ENABLE_WAKE_UP.

A protocol driver uses OID_PNP_ADD_WAKE_UP_PATTERN to specify a wake-up pattern,
along with a mask that indicates which bytes of an incoming packet should be
compared with the pattern. A protocol driver can remove a wake-up pattern with
OID_PNP_REMOVE_WAKE_UP_PATTERN.

A Magic Packet is a packet that contains 16 contiguous copies of the receiving network
adapter's MAC address.

This section includes:

Network Wake-Up Frames

Magic-Packet Wake-Up

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes

Enabling Wake-Up Events

Handling Wake-Up Events

Enabling Wake-Up Events
Article • 12/15/2021

A protocol driver can send an OID_PNP_ENABLE_WAKE_UP request to enable one or
more of the network adapter's wake-up capabilities. NDIS does not immediately enable
these wake-up capabilities. Instead, NDIS keeps track of the wake-up capabilities that
are enabled by the protocol driver and, just before the miniport driver transitions to a
sleeping state, sends an OID_PNP_ENABLE_WAKE_UP to the miniport driver to enable
the appropriate wake-up events. After the miniport driver initializes the network
adapter, or when it resumes from a low-power state, the miniport driver must disable
any wake up methods that are set on the network adapter.

Before the miniport driver transitions to a low-power state (that is, before NDIS sends
the miniport driver an OID_PNP_SET_POWER request), NDIS sends the miniport driver an
OID_PNP_ENABLE_WAKE_UP request to enable the network adapter's wake-up
capabilities.

Handling Wake-Up Events
Article • 12/15/2021

A miniport driver does not handle a wake-up event detected by a NIC. When a NIC
detects an enabled wake-up event, it asserts a bus-specific wake-up line. The power
manager then sends a power IRP to NDIS, which, in response, sends the miniport driver
an OID_PNP_SET_POWER OID that requests the miniport driver to put a NIC in the
highest-powered (D0) state.

Handling an OID_PNP_QUERY_POWER
OID
Article • 12/15/2021

The OID_PNP_QUERY_POWER OID requests a miniport driver to indicate whether it can
transition a network adapter to a low-power state. A miniport driver must always return
NDIS_STATUS_SUCCESS in response to a query of OID_PNP_QUERY_POWER. By
returning NDIS_STATUS_SUCCESS to this OID request, the miniport driver guarantees
that it will transition the network adapter to the specified device power state on receipt
of a subsequent OID_PNP_SET_POWER request. The miniport driver, in this case, must
do nothing to jeopardize the transition.

An OID_PNP_QUERY_POWER request is always followed by an OID_PNP_SET_POWER
request. The OID_PNP_SET_POWER request can immediately follow the
OID_PNP_QUERY_POWER request or can arrive at an unspecified interval after the
OID_PNP_QUERY_POWER request. A device state of D0, which is specified in the
OID_PNP_SET_POWER request, effectively cancels a preceding OID_PNP_QUERY_POWER
request.

Transitioning to a Sleeping State
Article • 12/15/2021

If a miniport driver supports wake-up events, NDIS sends the driver an
OID_PNP_ENABLE_WAKE_UP request before sending an OID_PNP_SET_POWER request.
For more information, see Enabling Wake-Up Events. A miniport driver must not fail an
OID_PNP_SET_POWER request.

Before returning NDIS_STATUS_SUCCESS in response to an OID_PNP_SET_POWER
request, the miniport driver must:

Perform the device-dependent operations that are needed to prepare the network
adapter for the sleeping state.

Save any packet filters, multicast addresses, the current MAC address, wake-up
patterns, and any other hardware context that the network adapter cannot
preserve in a sleeping state.

Disable interrupts and the network adapter's DMA engine. A miniport driver
cannot access the network adapter hardware after the network adapter has been
set to the D3 state by the bus driver.

Transitioning to the Working State
Article • 12/15/2021

NDIS initiates the transition to the working power state (D0) by sending the miniport
driver an OID_PNP_SET_POWER request that specifies state D0. The miniport driver must
then perform any device-dependent operations needed to restore the network adapter
to a working state. The miniport driver must also restore any hardware context--packet
filters, multicast addresses, the current media access control (MAC) address, or wake-up
patterns--that the network adapter might have lost.

Note Starting with NDIS 6.30, the miniport driver that support NDIS packet coalescing
must clear its coalesced packet counter. The driver must also configure the network
adapter to flush any packets that it coalesced before the low-power transition. For more
information, see Handling Packet Coalescing Receive Filters.

Before the miniport driver returns NDIS_STATUS_SUCCESS in response to the
OID_PNP_SET_POWER request, the miniport driver and a network adapter must be ready
for normal operation.

Power Management Considerations for
Gigabit Ethernet Network Adapters
Article • 12/15/2021

When a gigabit Ethernet network adapter is operating at 1000 megabits per second
(Mbps), it draws a lot of electrical power. Before such a network adapter transitions to a
low-power state, its link speed is typically reduced so that the network adapter draws
less power. The reduced link speed enables the network adapter to transition to a low-
power state. While changing link speeds during the transition to a low-power state, the
network adapter typically loses network connectivity for a short time.

Conversely, when a gigabit Ethernet network adapter transitions to the fully-on state
from a low-power state, the network adapter's link speed is increased to its fully
operational rate. During this transition, the network adapter might also lose connectivity
for a short time.

While a miniport driver's underlying network adapter is transitioning to or from a low-
power state, the miniport must not indicate either a change in link speed or a change in
connection status. For more information about indicating a change in link speed, see
NDIS_STATUS_LINK_STATE. For more information about indicating a change in
connection status, see Indicating Connection Status.

Power Management for Old Miniport
Drivers
Article • 12/15/2021

NDIS treats a miniport driver as an old miniport driver that is not power management-
aware if:

During initialization, the bus driver indicates that the system or the NIC is not
power management-aware.

The miniport driver returns NDIS_STATUS_UNSUPPORTED in response to the
OID_PNP_CAPABILITIES query. Only NDIS 5.1 and earlier miniport drivers or
intermediate drivers receive this OID query.

The user disables power management in the user interface.

NDIS supports only two device power states for old miniport drivers that do not support
power manegement: the highest-powered (D0) state and the D3 state.

During initialization, an old miniport driver can indicate that NDIS should not halt it
before the system transitions to the sleeping (D3) state. A miniport driver makes such an
indication by setting the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag in the
AttributeFlags parameter that the miniport driver passes to the
NdisMSetMiniportAttributes function. An old miniport driver should set this flag only if
it can:

Save all hardware context that it might require.

Put a NIC in an appropriate state for the sleeping state (D3).

Reactivate the NIC to the highest-powered state (D0).

If NDIS determines from the bus driver that the NIC is not power management-aware
and if the miniport driver did not set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag,
NDIS will not query the miniport driver's power management capabilities. However, if
the miniport driver set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag, NDIS issues
an OID_PNP_CAPABILITIES request to the miniport driver. In this case, the miniport
driver should succeed the OID_PNP_CAPABILITIES request with NDIS_STATUS_SUCCESS.
In the NDIS_PM_WAKE_UP_CAPABILITIES structure that the miniport driver returns in
response to this request, the miniport driver must also specify a device power state of
NdisDeviceStateUnspecified for each wake-up capability.

NDIS provides the following power management support for old miniport drivers:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

NDIS succeeds all IRP_MN_QUERY_POWER requests that the system power
manager sends to the device object that represents the NIC. That is, NDIS
guarantees that the miniport driver's NIC will transition to the D3 state in response
to any IRP_MN_QUERY_POWER request from the system.

If the miniport driver did not set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND
flag during initialization, NDIS calls the miniport driver's MiniportHaltEx function
before the miniport driver's NIC transitions to state D3. The miniport driver's NIC
loses all hardware context information.

If the miniport driver set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag during
initialization, NDIS does not halt the miniport driver before the system transitions
to state D3. Instead, NDIS issues the miniport driver an OID_PNP_SET_POWER
request to D3 state. The miniport driver must save any hardware context that it
uses and put a NIC in a state appropriate for the D3 state.

While the system is transitioning to the S0 system power states, NDIS calls the
miniport driver's MiniportInitializeEx function if NDIS halted the miniport driver. If
NDIS did not halt the miniport driver, NDIS issues the miniport driver an
OID_PNP_SET_POWER request to D0 state. The miniport driver must put a NIC in a
state appropriate for the D0 state.

If the miniport driver was halted and reinitialized, NDIS restores all the appropriate
miniport driver settings, such as packet filters and multicast address lists, by issuing
OID requests. If the miniport driver was not halted and then reinitialized, the
miniport driver must restore such settings.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-power
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/system-power-states
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

How NDIS Sets the Power Policy for a
Network Adapter
Article • 03/14/2023

NDIS serves as the device power policy owner for each network device. As such, NDIS
sets and administers the power policy for each network device. For more information
about managing device power policy, see Managing Device Power Policy.

NDIS uses the following information to set the power policy for a NIC:

The DEVICE_CAPABILITIES structure that the bus driver returns in response to an
IRP_MN_QUERY_CAPABILITIES request that NDIS issued.

The miniport driver's response to an OID_PNP_CAPABILITIES request issued by
NDIS.

User input from the user interface (UI).

When a NIC is enumerated, NDIS queries the NIC's capabilities by issuing, in addition to
other requests, an IRP_MN_QUERY_CAPABILITIES request. In response to this request,
the bus driver returns a DEVICE_CAPABILITIES structure. NDIS copies this structure and
uses the following information from this structure when setting the power policy for the
NIC.

Member Description

DeviceD1 and DeviceD2 TRUE if the device supports the D1 power state.

DeviceD1 and DeviceD2 TRUE if the device supports the D2 power state.

WakeFromD0, WakeFromD1, WakeFromD2, and
WakeFromD3

TRUE if the device can respond to an external
wake signal while in the D0 power state.

WakeFromD0, WakeFromD1, WakeFromD2, and
WakeFromD3

TRUE if the device can respond to an external
wake signal while in the D1 power state.

WakeFromD0, WakeFromD1, WakeFromD2, and
WakeFromD3

TRUE if the device can respond to an external
wake signal while in the D2 power state.

WakeFromD0, WakeFromD1, WakeFromD2, and
WakeFromD3

TRUE if the device can respond to an external
wake signal while in the D3 power state.

Using the DEVICE_CAPABILITIES Structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/managing-device-power-policy
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mn-query-capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/deviced1-and-deviced2
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/deviced1-and-deviced2
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/wakefromd0--wakefromd1--wakefromd2--and-wakefromd3
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/wakefromd0--wakefromd1--wakefromd2--and-wakefromd3
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/wakefromd0--wakefromd1--wakefromd2--and-wakefromd3
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/wakefromd0--wakefromd1--wakefromd2--and-wakefromd3

Member Description

DeviceState[PowerSystemMaximum] Specifies the highest-powered device state that
this device can maintain for each system power
state, from PowerSystemUnspecified to
PowerSystemShutdown.

SystemWake Specifies lowest-powered system power state
(S0 through S4) from which the device can
signal a wake event.

DeviceWake Specifies lowest-powered device power state
(D0 through D3) from which the device can
signal a wake event.

NDIS uses the DEVICE_CAPABILITIES information to determine if:

Both the system and the NIC support power management, and if so, which device
power states the NIC can be in for each system power state.

Both the system and the NIC support wake-on-LAN, and if so, from which device
power states the NIC can wake the system.

WakeFromD0 through WakeFromD3 indicate the device power states from which the
NIC can wake the system.

The DeviceState array indicates, for each system power state, the highest-powered
device power state in which the NIC can be and still support that system power state.
For example, consider the following array values.

C++

As indicated by the preceding array of sample values, when the system is in system
power state S1, the NIC can be in device power state D1, D2, or D3. When the system is
in system power state S2 or S3, the NIC can be in device power state D2 or D3.

To determine whether both the system and NIC support wake-on-LAN, NDIS examines
both the SystemWake and DeviceWake members. If both SystemWake and
DeviceWake are set to PowerSystemUnspecified, NDIS treats the NIC as capable of
power management. In this case, or if the miniport driver set the

DeviceState[PowerSystemWorking] PowerDeviceD0
DeviceState[PowerSystemSleeping1] PowerDeviceD1
DeviceState[PowerSystemSleeping2] PowerDeviceD2
DeviceState[PowerSystemSleeping3] PowerDeviceD2
DeviceState[PowerSystemHibernate] PowerDeviceD3
DeviceState[PowerSystemShutdown] PowerDeviceD3

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/devicestate
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/systemwake
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/devicewake

NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag during initialization, NDIS subsequently
issues the miniport driver an OID_PNP_CAPABILITIES request to obtain more information
about the NIC's wake-up capabilities.

After a miniport driver successfully returns from its MiniportInitializeEx function, NDIS
sends an OID_PNP_CAPABILITIES request to the driver if either of the following is true:

Both the SystemWake and DeviceWake members of the DEVICE_CAPABILITIES
structure that is returned by the bus driver are not set to PowerSystemUnspecified.

The miniport driver set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag when it
called NdisMSetMiniportAttributes during initialization.

Note that NDIS issues an OID_PNP_CAPABILITIES request regardless of whether the user
has enabled wake-on-LAN in the user interface.

If the miniport driver returns NDIS_STATUS_SUCCESS in response to a query of
OID_PNP_CAPABILITIES, NDIS treats the miniport driver as power management-capable.
If the miniport driver returns NDIS_STATUS_NOT_SUPPORTED, NDIS treats the miniport
driver as an old miniport driver that is not power management-capable. For more
information about power management for such drivers, see Power Management for Old
Miniport Drivers.

A miniport driver that succeeds an OID_PNP_CAPABILITIES request returns the following
information to NDIS in response to the request:

The lowest device power state from which the NIC can wake the system on receipt
of a Magic Packet.

The lowest device power state from which the NIC can wake the system on receipt
of a network frame that contains a pattern that the protocol driver specifies.

As soon as NDIS gets this information, it determines, for each system power state, the
device power states to which it can set the NIC if wake-on-LAN is enabled by the user in
the UI. If there are no allowable low-power device states from which the NIC can
generate a wake-up signal (that is, if all the low-power device power states specified in
the DeviceState array of DEVICE_CAPABILITIES structures are lower than lowest device
power states from which the NIC can wake the system), NDIS makes the Allow the
device to bring the computer out of standby option in the Power Management tab
unavailable for the NIC. Then, the user cannot enable wake-on-LAN.

Using OID_PNP_CAPABILITIES

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Note Wake-on-LAN is possible only if both the NIC and the system are power
management-capable. If the system is not power management-capable, NDIS will not
query a NIC's power management capabilities.

For a power management-capable NIC, Microsoft Windows 2000 and later versions
provide the following options in the Power Management tab of a NIC's Properties
dialog box:

Allow the computer to turn off this device to save power

Allow the device to bring the computer out of standby

The first option is selected by default to enable power management for the NIC. If the
user clears the option, NDIS treats the NIC as an old NIC with regard to power
management. For more information, see Power Management for Old Miniport Drivers.

The second option is clear by default. If NDIS determines that there is no allowable low-
power state from which the NIC can generate a wake-up signal, NDIS makes the second
option unavailable. For example, if the DeviceState array member of the
DEVICE_CAPABILITIES structure indicates that the NIC must be in D3 for all low-power
system states, and if DeviceWake indicates that the lowest-powered device state from
which the NIC can wake the system is D2, then NDIS shades makes the second check
box unavailable.

In addition to the preceding two options, Windows XP and Windows Vista provide a
third option in the Power Management tab for a NIC:

Only allow management stations to bring the computer out of standby

This option, which is subordinate to the second option that is described earlier, is
available only if:

The user selected the second option to enable wake-on-LAN.

The miniport driver, in responding to the OID_PNP_CAPABILITIES, indicated that
the NIC could wake the system on receipt of a Magic Packet.

The Only allow management stations to bring the computer out of standby option is
clear by default. The user can select this option to specify that only the receipt of a
Magic Packet will cause the NIC to generate a wake-up signal to the system.

Whenever a user selects or clears a power management option for a NIC, the system
notifies NDIS of the change. NDIS writes the new setting to the registry so that the

Using User Input

changed setting persists across restarts.

Avoiding NDIS Power Management
Problems
Article • 03/14/2023

The following rules will help you avoid power-management problems with your network
adapter:

A network adapter must always report its power management capabilities to the
bus driver.

Do not try to enable or disable power management for a network adapter based
on registry settings. NDIS obtains power management information about the
network adapter from the bus driver before the network adapter's miniport driver
is initialized. If the information obtained from the bus driver indicates that the
network adapter is not power management-capable, NDIS treats the network
adapter as an old network adapter and does not issue an OID_PNP_CAPABILITIES
request to the network adapter's miniport driver.

Do not attempt to provide custom power-management controls in the user
interface.

Introduction to NDIS QoS for Data
Center Bridging
Article • 03/14/2023

This section describes NDIS Quality of Service (QoS) for the IEEE 802.1 Data Center
Bridging (DCB) interface. Miniport drivers use NDIS QoS for traffic prioritization of
transmit, or egress, packets over a DCB-compliant network adapter.

NDIS QoS for DCB was introduced with NDIS 6.30 in Windows Server 2012.

This section includes the following topics:

Overview of Data Center Bridging

Overview of NDIS QoS for Data Center Bridging

Managing NDIS QoS Capabilities

Managing NDIS QoS Parameters

Standardized INF Keywords for NDIS QoS

Overview of Data Center Bridging
Article • 05/31/2022

IEEE 802.1 Data Center Bridging (DCB) is a collection of standards that defines a unified
802.3 Ethernet media interface, or fabric, for local area network (LAN) and storage area
network (SAN) technologies. DCB extends the current 802.1 bridging specification to
support the coexistence of LAN-based and SAN-based applications over the same
networking fabric within a data center. DCB also supports technologies, such as Fibre
Channel over Ethernet (FCoE) and iSCSI, by defining link-level policies that prevent
packet loss.

DCB consists of the following 802.1 draft standards that specify how networking devices
can interoperate within a unified data center fabric:

PFC is specified in the IEEE 802.1Qbb draft standard. This standard is part of the
framework for the DCB interface.

PFC supports the reliable delivery of data by substantially reducing packet loss due to
congestion. This allows loss-sensitive protocols, such as FCoE, to coexist with traditional
loss-insensitive protocols over the same unified fabric.

PFC specifies a link-level flow control mechanism between directly connected peers. PFC
is similar to IEEE 802.3 PAUSE frames but operates on individual 802.1p priority levels
instead. This allows a receiver to pause a transmitter on any priority level.

For more information on PFC, see Priority-based Flow Control (PFC).

ETS is a transmission selection algorithm (TSA) that is specified in the IEEE 802.1Qaz
draft standard. This standard is part of the framework for the DCB interface.

ETS allocates bandwidth between traffic classes that are assigned to different IEEE
802.1p priority levels. Each traffic class is allocated a percentage of available bandwidth
on the data link between directlyconnected peers. If a traffic class doesn't use its
allocated bandwidth, ETS allows other traffic classes to use the available bandwidth that
the traffic class is not using.

For more information on ETS, see Enhanced Transmission Selection (ETS) Algorithm.

Priority-based Flow Control (PFC)

Enhanced Transmission Selection (ETS)

The Data Center Bridging Exchange (DCBX) protocol is also specified in the IEEE
802.1Qaz draft standard. DCBX allows DCB configuration parameters to be exchanged
between two directlyconnected peers. This allows these peers to adapt and tune Quality
of Service (QoS) parameters to optimize data transfer over the connection.

DCBX is also used to detect conflicting QoS parameter settings between the network
adapter (local peer) and the remote peer. Based on the local and remote QoS parameter
settings, the miniport driver resolves the conflicts and derives a set of operational QoS
parameters. The network adapter uses these operational parameters for the prioritized
transmission of packets to the remote peer. For more information about how the driver
resolves its operational NDIS QoS parameter settings, see Resolving Operational NDIS
QoS Parameters.

DCBX consists of DCB type-length-value (TLV) settings that are carried over the Link
Layer Discovery Protocol (LLDP) packets. LLDP is specified in the IEEE 802.1AB-2005
standard.

Each ETS traffic class and PFC configuration setting is associated with an IEEE 802.1p
priority level. The priority level is specified as a 3-bit value within a packet's 802.1Q tag.
For NDIS packets, the 802.1p priority level is specified by the UserPriority member of
the NDIS_NET_BUFFER_LIST_8021Q_INFO structure that is associated with a packet's
NET_BUFFER_LIST structure.

For more information about priority levels, see IEEE 802.1p Priority Levels.

Data Center Bridging Exchange (DCBX) Protocol

７ Note

DCBX specifies that the local peer maintain configuration parameters from only one
remote peer at any given time. As a result, the network adapter maintains only one
set of local, remote, and operational NDIS QoS parameters.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

NDIS QoS Architecture for Data Center
Bridging
Article • 03/14/2023

This section describes the various components that are part of the NDIS Quality of
Service (QoS) architecture for IEEE 802.1 Data Center Bridging (DCB). These components
are shown in the following diagram.

The unshaded boxes in the diagram represent components that the Windows operating
system provides, including components that support DCB. For more information about
these components, see System-Provided DCB Components.

The shaded boxes in the diagram represent DCB components that independent
hardware vendors (IHVs) and original equipment manufacturers (OEMs) provide. For
more information about these components, see Vendor-Provided DCB Components.

System-Provided DCB Components
Article • 12/15/2021

This section describes the various components that are part of the NDIS Quality of
Service (QoS) architecture for IEEE 802.1 Data Center Bridging (DCB). These components
are shown in the following diagram.

The unshaded boxes in the diagram represent modules that the Windows operating
system provides. In particular, the operating system provides the following modules that
support DCB:

Network QoS Policy WMI Provider
This module provides an interface for Windows Management Instrumentation (WMI)
clients to query and set QoS-based network policies within the operating system’s
network stack. These policies allow specific types of network traffic to be assigned to
DCB traffic classes for transmit, or egress, management and prioritized delivery.

A network policy defines a set of conditions and actions. An egress packet that matches
a condition, such as a TCP or UDP port number, is assigned the action related to the
condition. Starting with NDIS 6.30, policy actions specify an 802.1p priority level to
which a DCB traffic class has been assigned.

Network QoS policies are a superset of NDIS QoS classifications. A policy defined by
using the Network Policy WMI Provider may be automatically migrated to NDIS QoS as
long as the policy conditions and actions match the restrictions of an NDIS QoS
classification element. For more information about these elements, see NDIS QoS Traffic
Classifications.

This WMI provider saves the network policies within a separate store in the system
registry.

DCB WMI Provider
This component provides an interface for WMI clients to query and set NDIS QoS
parameters on the underlying miniport driver. Through WMI-based PowerShell cmdlets
and WMI methods, clients can configure DCB functionality, such as Priority-based Flow
Control (PFC) and Enhanced Transmission Selection (ETS), on the miniport driver that
supports DCB.

DCB
The DCB component (Msdcb.sys) configures the DCB-capable miniport driver with DCB
parameter settings. The DCB component obtains these settings from the following
sources:

Persistent settings from the DCB policy store in the system registry.

Dynamic settings from the DCB WMI user-mode provider. These settings are
delivered over a private I/O control (IOCTL) interface between the DCB WMI
provider and the DCB module.

The DCB component also relays QOS classification settings from the QIM component to
miniport drivers that support NDIS QoS.

QoS Inspection Module (QIM)
The QIM component is part of the packet inspection layer in the core TCP/IP network
stack (Tcpip.sys). Starting with Windows Server 2012, this component performs QoS-
based packet classification for traffic prioritization.

The QIM component exposes a private Network Programming Interface (NPI). When the
DCB component sets QoS parameters on the underlying miniport driver, it relays those
settings to the QIM component over this NPI interface. This allows DCB to create QoS
policies in QIM that are based on DCB application priority settings. For more
information about the NPI interface, see Network Programming Interface.

The QIM component also processes networking QoS policies from the policy store in the
registry. If those policies are compatible with NDIS QoS classification elements, the QIM

component migrates the policies and issues them to the DCB component over the NPI
interface.

Note The policies that are created by the QIM component go into the active store and
do not persist through a system restart.

Note Starting with Windows Server 2012, the DCB and DCB WMI provider components
are not installed by default. These components are installed and enabled through the
installation of the Microsoft DCB server feature. This feature is installed by using the Add
Roles and Features wizard of the Server Manager.

Vendor-Provided DCB Components
Article • 12/15/2021

This section describes the various components that are part of the NDIS Quality of
Service (QoS) architecture for IEEE 802.1 Data Center Bridging (DCB). These components
are shown in the following diagram.

The shaded boxes in the diagram represent DCB components that independent
hardware vendors (IHVs) and original equipment manufacturers (OEMs) provide. The
following list describes these components:

Link Layer Discovery Protocol (LLDP) Agent
Starting with Windows Server 2012, vendors that support the IEEE 802.1Qaz DCB
Exchange (DCBX) protocol can provide support for the IEEE 802.1Qab LLDP protocol
over which DCBX is carried. This LLDP support can be provided through either the
miniport driver or an LLDP agent.

Typically, the LLDP agent and the DCB-capable miniport driver communicate over a
private control path, such as a private I/O control (IOCTL) interface.

If the vendor provides an LLDP agent, we highly recommend that the agent reside in
user mode to mitigate the general stability risks associated with processing network
packets.

Fibre Channel over Ethernet (FCoE) Initiator
The Windows operating system does not natively support FCoE. To support FCoE, the
vendor must provide an FCoE initiator stack that is used to connect to remote storage
devices.

DCB-Capable Miniport Driver and Network Adapter
To support NDIS QoS for DCB, the miniport driver and network adapter must support
the requirements described in NDIS QoS Requirements for Data Center Bridging.

NDIS QoS Requirements for Data Center
Bridging
Article • 03/14/2023

To support NDIS Quality of Service (QoS) for IEEE 802.1 Data Center Bridging (DCB), the
miniport driver and network adapter must support the following:

The miniport driver and network adapter must support Priority-based Flow Control
(PFC) as specified by the IEEE 802.1Qbb draft standard.

The miniport driver and network adapter must support the Enhanced Transmission
Selection (ETS) algorithm as specified by the IEEE 802.1Qaz draft standard.

The miniport driver and network adapter must support a minimum of three NDIS
QoS traffic classes, and must support a minimum of two ETS-based traffic classes.
Of these two, at least one ETS-based traffic class must support PFC.

For more information about traffic classes, see NDIS QoS Traffic Classes.

The miniport driver and network adapter must support the strict priority algorithm
for transmission selection as specified by the IEEE 802.1Q-2005 standard.

For NDIS QoS, the miniport driver and network adapter can optionally support the Data
Center Bridging Exchange (DCBX) protocol as specified by the IEEE 802.1Qaz draft
standard. To support DCBX, the miniport driver and adapter must also support the Link
Layer Discovery Protocol (LLDP) protocol as specified in the IEEE 802.1AB-2005 standard.

In addition, the miniport driver itself must support the following for NDIS QoS:

The miniport driver must support NDIS 6.30 or later versions of NDIS.

The miniport driver must support object identifier (OID) method requests of
OID_QOS_PARAMETERS for setting NDIS QoS parameters. For more information,
see Setting Local NDIS QoS Parameters.

Note NDIS handles most of the NDIS QoS OID requests for the miniport driver
with the exception of OID_QOS_PARAMETERS.

The miniport driver must be able to resolve conflicting NDIS QoS parameter
settings that were received over a DCBX frame that was sent from the remote peer.
The driver resolves conflicts between its local and remote NDIS QoS parameters to
determine its operational NDIS QoS parameters that the network adapter uses for

prioritized packet transmission. For more information about this process, see
Resolving Operational NDIS QoS Parameters.

The miniport driver must be able to issue NDIS status indications when its
operational NDIS QoS parameters change. For more information about this
process, see Indicating Changes to the Operational NDIS QoS Parameters.

The miniport driver must be able to issue NDIS status indications when it detects a
change in the NDIS QoS parameters on the remote peer. For more information
about this process, see Indicating Changes to the Remote NDIS QoS Parameters.

NDIS QoS Traffic Classes
Article • 03/14/2023

NDIS Quality of Service (QoS) traffic classes specify a set of policies that determine how
the network adapter handles transmit, or egress, packets for prioritized delivery. Each
traffic class specifies the following policies that are applied to egress packets:

Priority Level and Flow Control
This policy defines the IEEE 802.1p priority level and optional flow control algorithms for
the egress traffic.

For more information, see Priority Levels and Flow Control.

Traffic Selection Algorithms (TSAs)
This policy specifies how the network adapter selects egress traffic for delivery from its
transmit queues. For example, the adapter could select egress packets based on IEEE
802.1p priority or the percentage of the egress bandwidth that is allocated to each
traffic class.

For more information, see Transmission Selection Algorithms (TSAs).

Note Bandwidth allocation is only supported for the Enhanced Transmission Selection
(ETS) TSA. For more information, see Enhanced Transmission Selection (ETS) Algorithm.

Traffic classes are specified through object identifier (OID) method requests of
OID_QOS_PARAMETERS. This OID request contains an NDIS_QOS_PARAMETERS
structure that specifies the following NDIS QoS parameters:

The number of traffic classes to be configured on the network adapter. Each traffic
class is identified by a value in the range from zero to (NumTrafficClasses–1),
where NumTrafficClasses is a member of the NDIS_QOS_PARAMETERS structure.

Note Starting with NDIS 6.30, NDIS QoS supports a maximum of
NDIS_QOS_MAXIMUM_TRAFFIC_CLASSES (8) traffic classes. The network adapter
must support a minimum of three traffic classes.

The 802.1p priority level associated with the traffic class.

The TSA associated with the traffic class.

The transmit bandwidth allocated to each traffic class that uses the ETS TSA.

OID method requests of OID_QOS_PARAMETERS also specify traffic classifications. These
classifications define the relationship between egress packets and IEEE 802.1p priority

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

levels. For more information, see NDIS QoS Traffic Classifications.

IEEE 802.1p Priority Levels
Article • 12/15/2021

IEEE 802.1p was specified by an IEEE 802.1 Task Group to address traffic prioritization for
Quality of Service (QoS). 802.1p is not a separate IEEE 802.1 standard, but is defined in
Annex G of the IEEE 802.1Q-2005 standard.

IEEE 802.1p defines a 3-bit field called the Priority Code Point (PCP) within an IEEE
802.1Q tag. For NDIS packets, the 802.1p PCP value is specified by the UserPriority
member of the NDIS_NET_BUFFER_LIST_8021Q_INFO structure that is associated with a
packet's NET_BUFFER_LIST structure.

The PCP value defines 8 priority levels, with 7 the highest priority and 1 the lowest
priority. The priority level of 0 is the default. Each priority level defines a class of service
that identifies separate traffic classes of transmitted packets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Priority-based Flow Control (PFC)
Article • 12/15/2021

Priority-based Flow Control (PFC) is specified in the IEEE 802.1Qbb draft standard. This
standard is part of the framework for the IEEE 802.1 Data Center Bridging (DCB)
interface.

PFC enables flow control over a unified 802.3 Ethernet media interface, or fabric, for
local area network (LAN) and storage area network (SAN) technologies. PFC is intended
to eliminate packet loss due to congestion on a network link. This allows loss-sensitive
protocols, such as Fibre Channel over Ethernet (FCoE), to coexist with traditional loss-
insensitive protocols over the same unified fabric.

PFC specifies a link-layer flow control mechanism between directly connected peers. PFC
is similar to IEEE 802.3 PAUSE frames but operates on individual 802.1p priority levels
instead. This allows a receiver to pause a transmitter on any 802.1p priority level.

PFC uses the 802.3 PAUSE frame, and extends it with the following PFC fields:

An 8-bit mask that specifies which 802.1p priority levels should be paused.

A timer value for each priority specifying how long the traffic for that priority level
should be paused.

When the receiver sends an 802.3 PAUSE frame with PFC data, the switch blocks the
transmit of frames with the specified priority level to the port on which the receiver is
connected. When the timer value expires, the switch resumes the transmit of paused
frames on the port.

NDIS Quality of Service (QoS) parameters are specified through the
NDIS_QOS_PARAMETERS structure. The PfcEnable member contains a bitmap, in which
each bit specifies whether PFC is enabled for a 802.1p priority level.

For more information about priority levels, see IEEE 802.1p Priority Levels.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Transmission Selection Algorithms
(TSAs)
Article • 12/15/2021

This section provides an overview of the traffic selection algorithms (TSAs) that are used
by NDIS Quality of Service (QoS) for the IEEE 802.1 Data Center Bridging (DCB) interface.

This section includes the following topics:

Strict Priority Algorithm

Enhanced Transmission Selection (ETS) Algorithm

Strict Priority Algorithm
Article • 12/15/2021

Strict priority is a transmission selection algorithm (TSA) that is specified in the IEEE
802.1Q-2005 standard. This standard is part of the framework for the IEEE 802.1 Data
Center Bridging (DCB) interface.

When the network adapter employs the strict priority TSA, it selects packets for
transmission based solely on the packet's specified IEEE 802.1p priority level. As a result,
packets with higher priority levels are always transmitted before packets with lower
priority levels.

The miniport driver specifies its support for the strict priority TSA by setting
NDIS_QOS_CAPABILITIES_STRICT_TSA_SUPPORTED in the Flags member of the
NDIS_QOS_CAPABILITIES structure. The driver uses this structure to register its NDIS
QoS and DCB capabilities in the call to NdisMSetMiniportAttributes.

For more information about priority levels, see IEEE 802.1p Priority Levels.

Note Starting with NDIS 6.30, the miniport driver that supports NDIS Quality of Service
(QoS) for the DCB interface must advertise support for the strict priority TSA.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Enhanced Transmission Selection (ETS)
Algorithm
Article • 12/15/2021

Enhanced Transmission Selection (ETS) is a transmission selection algorithm (TSA) that is
specified by the IEEE 802.1Qaz draft standard. This standard is part of the framework for
the IEEE 802.1 Data Center Bridging (DCB) interface.

Transmission selection based solely on IEEE 802.1p priority levels can lead to situations
in which higher-priority traffic blocks lower-priority traffic. ETS ensures fairness by
allowing a minimum amount of bandwidth to be allocated to traffic classes that are
assigned to different 802.1p priority levels.

Each traffic class is allocated a percentage of the available bandwidth on the data link
between directly connected peers. If a traffic class doesn't use its allocated bandwidth,
ETS allows other traffic classes to use the available bandwidth that the traffic class is not
using.

NDIS Quality of Service (QoS) traffic classes are defined through OID method requests
of OID_QOS_PARAMETERS. This OID request contains an NDIS_QOS_PARAMETERS
structure which specifies the following traffic class attributes:

The number of traffic classes that is specified by the NumTrafficClasses member.

The TSA used by the traffic class. This is specified by the TsaAssignmentTable
member. If the table element for the traffic class is set to NDIS_QOS_TSA_ETS, the
traffic class uses the ETS TSA.

The 802.1p priority that is assigned to the traffic class. A traffic class can be
assigned to one or more priority levels. However, each priority level can only be
assigned to one traffic class.

For more information, see Traffic Class Priority Assignment.

The bandwidth allocated for the traffic class. This is specified by the
TcBandwidthAssignmentTable member. This table is only valid for traffic classes
that use the ETS TSA.

For more information about ETS bandwidth allocation, see Bandwidth Allocation.

For more information about priority levels, see IEEE 802.1p Priority Levels.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Traffic Class Priority Assignment
Article • 12/15/2021

The Enhanced Transmission Selection (ETS) algorithm specifies a method by which a
traffic class is assigned an 802.1p priority level. ETS is specified in the IEEE 802.1Qaz draft
standard. This standard is part of the framework for the IEEE 802.1 Data Center Bridging
(DCB) interface.

NDIS Quality of Service (QoS) traffic classes specify a set of policies that determine how
the network adapter handles transmit, or egress, packets. Under ETS, each traffic class is
assigned an IEEE 802.1p priority level in which to transmit packets. A traffic class can be
assigned to one or more IEEE 802.1p priority levels. However, each IEEE 802.1p priority
level can only be assigned to one traffic class.

NDIS QoS parameters are specified through the NDIS_QOS_PARAMETERS structure. The
PriorityAssignmentTable member contains an array that specifies the priority
assignments for each traffic class.

For more information about priority levels, see IEEE 802.1p Priority Levels.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Bandwidth Allocation
Article • 12/15/2021

Bandwidth allocation is a component of the Enhanced Transmission Selection (ETS)
algorithm. ETS is specified in the IEEE 802.1Qaz draft standard. This standard is part of
the framework for the IEEE 802.1 Data Center Bridging (DCB) interface.

Under ETS, each traffic class is assigned a percentage of the bandwidth that is available
to transmit packets between two directly connected peers. If the bandwidth allocated to
a traffic class is not completely used, ETS allows the unused bandwidth to be shared by
traffic classes that have different IEEE 802.1p priority levels.

NDIS Quality of Service (QoS) parameters are specified through the
NDIS_QOS_PARAMETERS structure. The TcBandwidthAssignmentTable member
contains an array that specifies the bandwidth allocation for traffic classes that use the
ETS algorithm.

For more information about priority levels, see IEEE 802.1p Priority Levels.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS QoS Traffic Classifications
Article • 03/14/2023

NDIS Quality of Service (QoS) classifies transmit, or egress, packets for prioritized
delivery by the network adapter. Each traffic classification specifies the following:

A classification condition that is based on a data pattern within the egress packet
data.

Starting with NDIS 6.30, classification conditions are based on a 16-bit value, such
as a UDP or TCP destination port or a media access control (MAC) EtherType.

A classification action that defines the traffic class to be used to handle the egress
packet.

Starting with NDIS 6.30, classification actions specify an 802.1p priority level.

Note Traffic classifications are also known as "application priorities" in the IEEE 802.1
specifications.

NDIS QoS traffic classifications are intended for the following types of egress packet
traffic:

Packets based on traffic that is offloaded to the miniport driver, such as Fibre
Channel over Ethernet (FCoE) or iSCSI packets.

Packets based on connections that are managed and enforced by the miniport
driver, such as RDMA.

Because NDIS QoS traffic classifications are not intended for TCP/IP traffic generated by
the operating system, the miniport driver does not need to perform packet inspection.
Instead, if a classification condition matches a packet type that has been offloaded or
managed by the driver, it can simply apply the classification action to all packets that
belong to that type. For example, if the miniport driver is enabled for FCoE offloads and
the classification condition specifies the iSCSI TCP port number (860 or 3260), the driver
prioritizes all egress iSCSI packets with the priority level defined for the classification
action.

The DCB component (Msdcb.sys) specifies traffic classifications through OID method
requests of OID_QOS_PARAMETERS. This OID request contains an
NDIS_QOS_PARAMETERS structure that specifies an array of
NDIS_QOS_CLASSIFICATION_ELEMENT structures. Each of these structures defines a
traffic classification.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element

The DCB component specifies a default traffic classification that is applied to all egress
packets that do not match other classification conditions. In this case, the network
adapter assigns the IEEE 802.1p priority level that is associated with the default
classification to these egress packets. The default traffic classification has the following
attributes:

It has a traffic classification condition of type NDIS_QOS_CONDITION_DEFAULT.

It is the first traffic classification defined in the array of
NDIS_QOS_CLASSIFICATION_ELEMENT structures.

For more information on the DCB component, see NDIS QoS Architecture for Data
Center Bridging.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element

Registering NDIS QoS Capabilities
Article • 03/14/2023

Miniport drivers regsiter the following Quality of Service (QoS) capabilities with NDIS
during network adapter initialization:

The NDIS QoS hardware capabilities that the network adapter supports.

Note Starting with NDIS 6.30, the miniport driver must register the NDIS QoS
hardware capabilities that the adapter supports only if the*QOS INF keyword
setting is present in the registry. In this case, the driver must register its NDIS QoS
hardware capabilities regardless of whether those capabilities are enabled or
disabled on the adapter.

The NDIS QoS hardware capabilities that are currently enabled on the network
adapter.

Note A miniport driver's NDIS QoS hardware capabilities can be enabled or
disabled through the *QOS INF keyword setting in the registry. This setting is
displayed on the Advanced property page for the network adapter.

For more information about the NDIS QoS INF keyword settings, see Standardized INF
Keywords for NDIS QoS.

The miniport driver reports the hardware NDIS QoS capabilities of the underlying
network adapter through an NDIS_QOS_CAPABILITIES structure that is initialized in the
following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_QOS_CAPABILITIES.

Starting with NDIS 6.30, the miniport driver sets the Revision member of Header to
NDIS_QOS_CAPABILITIES_REVISION_1 and the Size member to
NDIS_SIZEOF_QOS_CAPABILITIES_REVISION_1.

2. If the network adapter supports the strict priority transmission selection algorithm
(TSA), the miniport driver sets the
NDIS_QOS_CAPABILITIES_STRICT_TSA_SUPPORTED flag in the Flags member. For
more information on this algorithm, see Strict Priority Algorithm.

Note Starting with NDIS 6.30, the miniport driver and network adapter that
support NDIS QoS for IEEE Data Center Bridging (DCB) must support the strict
priority TSA.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

3. If the network adapter supports the ability to bypass media access control security
(MACsec) processing, the miniport driver sets the
NDIS_QOS_CAPABILITIES_MACSEC_BYPASS_SUPPORTED flag in the Flags member.
For more information about MACsec, refer to the IEEE 802.1AE-2006 standard.

Note Starting with NDIS 6.30, the network adapter does not need to support the
bypass of MACsec processing.

4. The miniport driver sets the MaxNumTrafficClasses member to the maximum
number of NDIS QoS traffic classes that the network adapter supports. A traffic
class defines the transmit, or egress policies for QoS, such as IEEE 802.1p priority
level and bandwidth allocation. For more information about traffic classes, see
NDIS QoS Traffic Classes.

Note Starting with NDIS 6.30, the network adapter must support a minimum of
three traffic classes.

5. The miniport driver sets the MaxNumEtsCapableTrafficClasses member to the
maximum number of NDIS QoS traffic classes that the network adapter can use
with the Enhanced Transmission Selection (ETS) algorithm. This value must be less
than or equal to the value of the MaxNumTrafficClasses member.

For more information on ETS, see Enhanced Transmission Selection (ETS)
Algorithm.

Note For the network adapter to support NDIS QoS, it must support a minimum
of two ETS-capable traffic classes.

6. The miniport driver sets the MaxNumPfcEnabledTrafficClasses member to the
maximum number of NDIS QoS traffic classes that the network adapter can use
with the Priority-based Flow Control (PFC) algorithm. This value must be less than
or equal to the value of the MaxNumTrafficClasses member.

For more information on PFC, see Priority-based Flow Control (PFC).

Note For the network adapter to support NDIS QoS, it must support at least one
PFC-capable traffic class.

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver registers
the NDIS QoS attributes of the network adapter by following these steps:

1. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

The miniport driver sets the HardwareQOSCapabilities member to a pointer to the
previouslyinitialized NDIS_QOS_CAPABILITIES structure.

If the registry setting for the *QOS INF keyword has a value of one, the NDIS QoS
capabilities are enabled on the network adapter. The miniport driver sets the
CurrentQOSCapabilities members to a pointer to the same
NDIS_QOS_CAPABILITIES structure.

If the registry setting for the *QOS INF keyword has a value of zero, the NDIS QoS
capabilities are disabled on the network adapter. The miniport driver must set the
CurrentQOSCapabilities member to NULL.

2. The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

Querying NDIS QoS Capabilities
Article • 03/14/2023

Overlying protocol and filter drivers can query the NDIS Quality of Service (QoS)
capabilities of a network adapter in the following way:

The overlying driver can query the hardware NDIS QoS capabilities supported by
the network adapter through an object identifier (OID) query request of
OID_QOS_HARDWARE_CAPABILITIES.

The overlying driver can query the hardware NDIS QoS capabilities that are
currently enabled on the network adapter through an OID query request of
OID_QOS_CURRENT_CAPABILITIES.

NDIS handles these OID requests for the miniport driver. When the miniport driver
registers the hardware and currently enabled NDIS QoS capabilities for the network
adapter during network adapter initialization, NDIS caches this information. NDIS then
returns this data when it handles the OID requests from an overlying driver.

For more information about how the miniport driver registers the NDIS QoS capabilities,
see Registering NDIS QoS Capabilities.

Overview of NDIS QoS Parameters
Article • 03/14/2023

NDIS Quality of Service (QoS) parameters specify the policies and settings of traffic
classes that the network adapter uses for transmit, or egress, packet delivery. NDIS QoS
parameters contain the following settings:

Priority level and flow control settings. These settings define the IEEE 802.1p
priority level and optional flow control algorithms for the transmit, or egress, traffic.

For more information, see Priority Levels and Flow Control.

Traffic selection algorithm (TSA) settings. These settings define how the network
adapter selects egress traffic from its transmit queues. For example, the adapter
could use the strict priority TSA and select egress packets based only on IEEE
802.1p priority. The adapter could also use the Enhanced Transmission Selection
(ETS) TSA that moderates egress traffic among traffic classes based on their
bandwidth allocation.

For more information, see Transmission Selection Algorithms (TSAs).

Traffic classifications that specify the assignment of IEEE 802.1p priority levels to
packets that contain data that matches a classification condition, such as an
EtherType or destination TCP port. For more information, see NDIS QoS Traffic
Classifications.

Note Traffic classifications are also known as "application priorities" in the IEEE
802.1 specifications.

NDIS QoS defines the following types of parameters:

Local NDIS QoS Parameters
Local NDIS QoS parameters specify the core QoS settings for a miniport driver and its
network adapter. These parameters persist in the system registry, and are administered
locally to the miniport driver in the following way:

Through an NDIS object identifier (OID) method request of
OID_QOS_PARAMETERS that is issued by the DCB component. This OID request
contains an NDIS_QOS_PARAMETERS structure that specifies the local NDIS QoS
parameters.

For more information on the DCB component, see NDIS QoS Architecture for Data
Center Bridging.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Through proprietary registry settings for the network adapter. The miniport driver
reads these settings when its MiniportInitializeEx function is called by NDIS.

Through settings issued to the miniport driver through a management application
developed by the independent hardware vendor (IHV).

For more information about how the miniport driver obtains its local NDIS QoS
parameters, see Setting Local NDIS QoS Parameters.

Remote NDIS QoS Parameters
Remote NDIS QoS parameters are those that are configured on a remote peer that the
network adapter is connected to over the data link. The miniport driver discovers these
parameters through the Data Center Bridging Exchange (DCBX) protocol that is
specified by the IEEE 802.1Qaz draft standard.

DCBX requires that the miniport driver maintain only one set of remote QoS parameters
that were received from a single data-link peer. The miniport driver must issue an NDIS
status indication when its remote QoS parameters are either received from a peer for
the first time or change later. For example, the driver may change its remote NDIS QoS
parameters because it received a different set of QoS parameters from its remote peer.
For more information on this process, see Indicating Changes to the Remote NDIS QoS
Parameters.

For more information about how the miniport driver obtains its remote NDIS QoS
parameters, see Receiving Remote NDIS QoS Parameters.

Operational NDIS QoS Parameters
Operational NDIS QoS parameters are those that the miniport driver resolves for traffic
prioritization over the data-link connection to a remote peer. The miniport driver
resolves its operational NDIS QoS parameters from its local or remote NDIS QoS
parameters.

The miniport driver must issue an NDIS status indication when its operational QoS
parameters are either resolved for the first time or change later. For example, the driver
may change its operational NDIS QoS parameters because it received a different set of
QoS parameters from its remote peer. For more information on how to generate this
status indication, see Indicating Changes to the Operational NDIS QoS Parameters.

For more information about how the miniport driver resolves its operational NDIS QoS
parameters, see Resolving Operational NDIS QoS Parameters.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Managing the Local DCBX Willing State
Article • 12/15/2021

The IEEE 802.1Qaz draft standard defines the Data Center Bridging Exchange (DCBX)
protocol. This protocol allows DCB configuration parameters to be exchanged between
the network adapter (local peer) and a directly connected remote peer. This allows these
peers to adapt and tune Quality of Service (QoS) parameters to optimize data transfer
over the connection.

Based on the local and remote QoS parameter settings, the miniport driver resolves the
conflicts and derives a set of operational QoS parameters. The network adapter uses
these operational parameters for the prioritized transmission of packets to the remote
peer. For more information about how the driver resolves its operational NDIS QoS
parameter settings, see Resolving Operational NDIS QoS Parameters.

DCBX consists of DCB type-length-value (TLV) settings that are carried over Link Layer
Discovery Protocol (LLDP) packets. A separate TLV is defined for the following types of
QoS parameters:

Enhanced Transmission Selection (ETS)

Priority-based Flow Control (PFC)

The TLVs for ETS and PFC define a bit known as the Willing bit. If the network adapter
sends its TLV settings to the remote peer with the Willing bit set to one, it indicates that
the adapter is willing to accept QoS parameters from the remote peer.

The ability to set individual Willing bits in these TLVs depends on the local DCBX Willing
state that is managed by the miniport driver. The miniport driver must follow these
guidelines for managing the local DCBX Willing state:

If the local DCBX Willing state is disabled, the local Willing bit must be set to zero
in the DCBX TLVs. In this case, the operational QoS parameters are always resolved
from the local QoS parameters. For more information on these parameters, see
Setting Local NDIS QoS Parameters.

If the local DCBX Willing state is enabled, the local Willing bit must be set to one in
the DCBX TLVs. In this case, the operational QoS parameters must be resolved from
the remote QoS parameters. For more information on these parameters, see
Receiving Remote NDIS QoS Parameters.

Note If local DCBX Willing state is enabled, the miniport driver can also resolve its
operational QoS parameters based on any proprietary QoS settings that are

defined by the independent hardware vendor (IHV). The driver can only do this for
QoS parameters that are not configured remotely by the peer or locally by the
operating system.

The miniport driver manages the local DCBX Willing state in the following way:

When the miniport driver is initialized through a call to its MiniportInitializeEx
function, it should enable the local DCBX Willing state based on proprietary QoS
settings that are defined by the IHV.

The DCB component (Msdcb.sys) issues an object identifier (OID) method request
of OID_QOS_PARAMETERS to configure the local QoS parameters on a network
adapter. The InformationBuffer member of the NDIS_OID_REQUEST structure for
this OID request contains a pointer to an NDIS_QOS_PARAMETERS structure.

If the NDIS_QOS_PARAMETERS_WILLING flag is set in the Flags member of this
structure, the miniport driver enables the DCBX Willing state. If this bit is not set,
the miniport driver disabled the DCBX Willing state.

For more information about LLDP, refer to the IEEE 802.1AB-2005 standard.

For more information about the local DCBX Willing bits and TLVs, refer to the IEEE
802.1Qaz draft standard.

Note Starting with Windows Server 2012, the DCB component can be configured
through a PowerShell cmdlet to set or clear the NDIS_QOS_PARAMETERS_WILLING flag
when it issues an OID_QOS_PARAMETERS request. This causes the miniport driver to
respectively enable or disable the local DCBX Willing state.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Setting Local NDIS QoS Parameters
Article • 03/14/2023

Local NDIS Quality of Service (QoS) parameters specify the locally provisioned QoS
settings for a miniport driver and its network adapter. Miniport drivers obtain the local
NDIS QoS parameters in the following ways:

Through an object identifier (OID) method request of OID_QOS_PARAMETERS that
is issued by the Data Center Bridging (DCB) component (Msdcb.sys). This OID
request contains an NDIS_QOS_PARAMETERS structure that specifies the local
NDIS QoS parameters.

For more information on the DCB component, see NDIS QoS Architecture for Data
Center Bridging.

Note Starting with Windows Server 2012, the DCB component is installed and
enabled with the Microsoft Data Center Bridging (DCB) server feature. This feature
is not installed by default.

Through proprietary settings that are stored in the system registry and defined by
the independent hardware vendor (IHV) for the network adapter. The miniport
driver reads these settings when its MiniportInitializeEx function is called by NDIS.

Through proprietary settings issued to the miniport driver through a management
application developed by the IHV.

When the DCB component issues an OID method request of OID_QOS_PARAMETERS,
the NDIS_QOS_PARAMETERS_WILLING flag of the NDIS_QOS_PARAMETERS.Flags
member specifies how the miniport driver resolves its operational QoS parameters from
the local NDIS QoS parameters. Based on this flag, the driver resolves the local QoS
parameters in the following ways:

If the NDIS_QOS_PARAMETERS_WILLING flag is set, the miniport driver must
enable the local DCB Exchange (DCBX) Willing state. This allows the driver to be
remotely configured with QoS parameters. In this case, the driver resolves its
operational QoS parameters based on the remote QoS parameters.

The miniport driver can also resolve its operational QoS parameters based on any
proprietary QoS settings that are defined by the IHV. The driver can only do this
for QoS parameters that are not configured remotely by the peer or locally by the
operating system.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

For more information about this procedure, see Receiving Remote NDIS QoS
Parameters.

If the NDIS_QOS_PARAMETERS_WILLING flag is not set, the miniport driver must
disable the local DCBX Willing state. This allows the driver to resolve its operational
QoS parameters from its local QoS parameters instead of remote QoS parameters.

Note If the local DCBX Willing state is disabled, the miniport driver can still accept
the remote QoS parameters but cannot use them to resolve its operational QoS
parameters.

If the local DCBX Willing state is disabled, the miniport driver must follow these
guidelines when it manages its local QoS parameters:

The miniport driver must disable or override any local QoS parameter for which the
related NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flag is not set in the
NDIS_QOS_PARAMETERS.Flags member.

For example, the miniport driver can override an unconfigured local QoS
parameter with its proprietary settings for the QoS parameter that are defined by
the IHV. If there are no proprietary settings for local QoS parameters that are not
specified with an NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flag, the driver
must disable the use of these QoS parameters on the network adapter.

Note NDIS guarantees that both the NDIS_QOS_PARAMETERS_ETS_CONFIGURED
and NDIS_QOS_PARAMETERS_PFC_CONFIGURED flags are set or cleared together.

The miniport driver should apply the local QoS parameters that are contained in
the NDIS_QOS_PARAMETERS structure when it resolves its operational NDIS QoS
parameters. If the driver applies these local QoS parameters, it must not use any
remote QoS parameters that it received from the remote peer.

For more information on this procedure, see Resolving Operational NDIS QoS
Parameters.

For more information about the local DCBX Willing state, see Managing the Local DCBX
Willing State.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Receiving Remote NDIS QoS Parameters
Article • 03/14/2023

Remote NDIS Quality of Service (QoS) parameters are those that are received from a
remote peer that the network adapter is connected to over the data link. The miniport
driver discovers these parameters through the Data Center Bridging Exchange (DCBX)
protocol that is specified by the IEEE 802.1Qaz draft standard.

The driver must follow these guidelines for managing remote QoS parameters:

The miniport driver must issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication when its
remote NDIS QoS parameters are either received from a peer for the first time or
change later. For more information on this procedure, see Indicating Changes to
the Remote NDIS QoS Parameters.

The miniport driver can use the remote NDIS QoS parameters to resolve its
operational NDIS QoS parameters only if the local Data Center Bridging Exchange
(DCBX) Willing state is enabled on the network adapter. The miniport driver can
also resolve its operational QoS parameters based on any proprietary QoS settings
that are defined by the independent hardware vendor (IHV).

For more information about this procedure, see Resolving Operational NDIS QoS
Parameters.

For more information about the local DCBX Willing state, see Managing the Local
DCBX Willing State.

For more information about NDIS QoS parameters, see Overview of NDIS QoS
Parameters.

Resolving Operational NDIS QoS
Parameters
Article • 03/14/2023

Operational NDIS Quality of Service (QoS) parameters are those that the miniport driver
uses for traffic prioritization over the data-link connection to a remote peer. The
miniport driver derives, or resolves, its operational NDIS QoS parameters from one of the
following:

The local NDIS QoS parameters that are administered locally on the miniport
driver. For more information about how the miniport driver obtains its local QoS
parameters, see Setting Local NDIS QoS Parameters.

The remote NDIS QoS parameters that the miniport driver receives from a remote
peer on the data link. For more information about how the miniport driver obtains
its remote QoS parameters, see Receiving Remote NDIS QoS Parameters.

Local, remote, and operational NDIS QoS parameters consist of the following types of
data:

Priority level and flow control settings. These settings define the IEEE 802.1p
priority level and optional flow control algorithms for the transmit, or egress, traffic.

For more information, see Priority Levels and Flow Control.

Traffic selection algorithm (TSA) settings. These settings define how the network
adapter selects egress traffic from its transmit queues.

For example, the adapter could use the strict priority TSA and select egress packets
based only on IEEE 802.1p priority. The adapter could also use the Enhanced
Transmission Selection (ETS) TSA that moderates egress traffic among traffic
classes based on their bandwidth allocation.

For more information, see Transmission Selection Algorithms (TSAs).

Traffic classifications that specify the assignment of IEEE 802.1p priority levels to
packets that contain data which matches a classification condition, such as an
EtherType or destination TCP port. For more information, see NDIS QoS Traffic
Classifications.

Note Traffic classifications are also known as "application priorities" in the IEEE
802.1 specifications.

The miniport driver resolves its operational settings from its local or remote NDIS QoS
parameters by following these guidelines:

If the local Data Center Bridging Exchange (DCBX) Willing state is enabled, the
miniport driver must resolve its operational QoS parameters from its remote QoS
parameters.

For more information about how the miniport driver handles remote NDIS QoS
parameters, see Receiving Remote NDIS QoS Parameters.

If the local DCBX Willing state is disabled, the miniport driver must resolve its
operational QoS parameters from its local QoS parameters.

For more information about how the miniport driver handles local NDIS QoS
parameters, see Setting Local NDIS QoS Parameters.

The miniport driver can also resolve its operational QoS parameters based on any
proprietary QoS settings that are defined by the independent hardware vendor
(IHV). The driver can only do this for QoS parameters that are not configured
remotely by the peer or locally by the operating system.

The miniport driver must issue an NDIS status indication when its operational QoS
parameters are either resolved for the first time or change later. For example, the
driver may change its operational NDIS QoS parameters because it received a
different set of QoS parameters from its remote peer. For more information on
how to generate this status indication, see Indicating Changes to the Operational
NDIS QoS Parameters.

For more information about the local DCBX Willing state, see Managing the Local DCBX
Willing State.

For more information on the methods used to resolve QoS operational parameters, refer
to the IEEE 802.1Qaz draft standard.

Querying NDIS QoS Parameters
Article • 03/14/2023

Overlying protocol and filter drivers can query the NDIS Quality of Service (QoS)
parameters of a network adapter in the following ways:

The overlying driver can query the operational NDIS QoS parameters through an
object identifier (OID) query request of OID_QOS_OPERATIONAL_PARAMETERS.

The overlying driver can query the remote NDIS QoS parameters through an OID
query request of OID_QOS_REMOTE_PARAMETERS.

Note Overlying drivers cannot query the local NDIS QoS parameters.

For more information about local, remote, and operational NDIS QoS parameters, see
Overview of NDIS QoS Parameters.

NDIS handles these OID requests for the miniport driver and returns the requested QoS
parameters within an NDIS_QOS_PARAMETERS structure. NDIS handles these OID
requests in the following ways:

When NDIS handles the OID query request of
OID_QOS_OPERATIONAL_PARAMETERS, it returns the operational NDIS QoS
parameters that it had cached from the previous
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication that
was issued by the miniport driver. The driver issues this status indication when its
operational QoS parameters are either resolved for the first time or change later.

If the overlying driver issues the OID query request before the miniport driver
issues the NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status
indication, NDIS returns an NDIS_QOS_PARAMETERS structure with all the
members (with the exception of the Header member) set to zero.

Note NDIS also returns this structure if the miniport driver issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication with
an NDIS_QOS_PARAMETERS structure whose members (with the exception of the
Header member) are set to zero.

When NDIS handles the OID query request of OID_QOS_REMOTE_PARAMETERS, it
returns the remote NDIS QoS parameters that it had cached from the previous
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication that was
issued by the miniport driver. The driver issues this status indication when its
remote QoS parameters are either resolved for the first time or change later.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

If the overlying driver issues the OID query request before the miniport driver
issues the NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication,
NDIS returns an NDIS_QOS_PARAMETERS structure with all the members (with the
exception of the Header member) set to zero.

Note NDIS also returns this structure if the miniport driver issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication with
an NDIS_QOS_PARAMETERS structure whose members (with the exception of the
Header member) are set to zero.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Indicating NDIS QoS Parameter Status
Article • 03/14/2023

A miniport driver that supports NDIS Quality of Service (QoS) for the IEEE 802.1 Data
Center Bridging (DCB) interface must issue NDIS status indications whenever one of the
following events occurs:

The driver's operational NDIS QoS parameters are either resolved for the first time
or change later.

For more information about how to issue this type of NDIS status indication, see
Indicating Changes to the Operational NDIS QoS Parameters.

The driver's remote NDIS QoS parameters are either received from a data-link peer
for the first time or change later.

For more information about how to issue this type of NDIS status indication, see
Indicating Changes to the Remote NDIS QoS Parameters.

For more information about operational and remote NDIS QoS parameters, see
Overview of NDIS QoS Parameters.

Indicating Changes to the Operational NDIS
QoS Parameters
Article • 03/14/2023

The miniport driver that supports NDIS Quality of Service (QoS) issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication when the driver's
operational NDIS QoS parameters are resolved for the first time or when they change later. The
miniport driver configures the network adapter with these operational parameters to perform QoS
packet transmission.

The miniport driver must follow these guidelines for issuing an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication:

The miniport driver must issue an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
status indication after it has resolved its operational NDIS QoS parameters and configured the
network adapter with them.

Note If the miniport driver is provisioned with proprietary local NDIS QoS parameters in the
registry, the driver must issue an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
status indication during or immediately after the call to MiniportInitializeEx. In this case, the
driver initializes an NDIS_QOS_PARAMETERS structure with its proprietary local NDIS QoS
parameter settings.

For more information about how the driver resolves its operational NDIS QoS parameter
settings, see Resolving Operational NDIS QoS Parameters.

After this initial status indication, the miniport driver should issue an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication when its
operational NDIS QoS parameters are changed. For example, the operational NDIS QoS
parameters could change under the following conditions:

The operational NDIS QoS parameters change because of changes to the local NDIS QoS
parameters. These parameters could change through an OID method request of
OID_QOS_PARAMETERS or through a management application developed by the
independent hardware vendor (IHV).

The operational NDIS QoS parameters change because of conflicts with the QoS settings from
the remote peer.

The miniport driver uses the IEEE 802.1Qaz Data Center Bridging Exchange (DCBX) protocol to
discover the QoS parameters for a remote peer. If the DCBX Willing state is enabled, the
driver must resolve the differences between its QoS parameters and the remote peer's QoS
parameters by following the procedures that are defined for the DCBX state engine. For more
information about this state engine, refer to the IEEE 802.1Qaz draft standard.

For more information about the local DCBX Willing state, see Managing the Local DCBX
Willing State.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Note When the miniport driver receives local or remote NDIS QoS parameters, it should not
issue an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication if there
have been no changes to the operational NDIS QoS parameters. If the driver makes this
unnecessary status indication, NDIS may not pass the indication to overlying drivers.

The miniport driver should issue an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
status indication when it needs to override the local NDIS QoS parameters that were used to
resolve the operational NDIS QoS parameters.

The miniport driver notifies NDIS and the overlying driver that it has overridden the local NDIS
QoS parameters by issuing an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
status indication. For this type of indication, the driver must set the appropriate
NDIS_QOS_PARAMETERS_Xxx_CHANGED flags in the Flags member of the
NDIS_QOS_PARAMETERS structure to specify the reason for overriding the local NDIS QoS
parameters.

For more information on how the miniport driver manages the local QoS parameters, see Setting
Local NDIS QoS Parameters.

For more information on how the miniport driver resolves its operational QoS parameters, see
Resolving Operational NDIS QoS Parameters.

Note The miniport driver must issue NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
status indications if its NDIS QoS capabilities are currently enabled through the *QOS keyword
standardized INF keyword. For more information, see Standardized INF Keywords for NDIS QoS.

The miniport driver follows these steps when it issues the
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication:

1. The miniport driver allocates a buffer that is large enough to contain the following:

An NDIS_QOS_PARAMETERS structure that contains the NDIS QoS configuration settings
as well as global operational parameters for the NDIS QoS traffic classes.

An array of NDIS_QOS_CLASSIFICATION_ELEMENT structures. Each of these structures
specifies a traffic classification as defined by a packet data pattern (condition) and
associated IEEE 802.1p priority level (action). If the network adapter finds a pattern in the
transmit, or egress, packet that matches a condition, it assigns the associated priority level
to the packet. The adapter also applies the other NDIS QoS policies to the packet based on
the priority level.

2. The miniport initializes the NDIS_QOS_PARAMETERS structure with the operational NDIS QoS
parameters. The driver must provide the complete set of operational parameters, including those
parameters that may not be configured on the network adapter.

Guidelines for Issuing the
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
Status Indication

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

When the miniport driver initializes the Header member, it sets the Type member of Header to
NDIS_OBJECT_TYPE_QOS_PARAMETERS. The miniport driver sets the Revision member of
Header to NDIS_QOS_PARAMETERS_REVISION_1 and the Size member to
NDIS_SIZEOF_QOS_PARAMETERS_REVISION_1.

The miniport driver sets the appropriate NDIS_QOS_PARAMETERS_Xxx_CHANGED flags in the
Flags member if the corresponding members contain data that has changed since the miniport
driverissued an NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication.

Note Setting the NDIS_QOS_PARAMETERS_Xxx_CHANGED flags is optional. NDIS always
assumes that the members of the NDIS_QOS_PARAMETERS are current even if they have not
changed from the previous NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status
indication.

For more information on how to set the Flags member, see Guidelines for Setting the Flags
Member.

3. The miniport driver initializes an NDIS_QOS_CLASSIFICATION_ELEMENT structure for each
traffic classification from the operational NDIS QoS parameters. The driver adds these elements
at the end of the NDIS_QOS_PARAMETERS structure in the buffer.

Note The miniport driver must not set the
NDIS_QOS_CLASSIFICATION_ENFORCED_BY_MINIPORT flag in the Flags member of any
NDIS_QOS_CLASSIFICATION_ELEMENT structures.

The driver sets the NumClassificationElements member of the NDIS_QOS_PARAMETERS
structure to the number of classification elements in the array. The driver sets the
FirstClassificationElementOffset member to the byte offset of the first element from the start of
the buffer. The driver also sets the ClassificationElementSize member to the length, in bytes, of
each element in the array.

Note Starting with NDIS 6.30, the miniport driver must set the ClassificationElementSize
member to sizeof(NDIS_QOS_CLASSIFICATION_ELEMENT).

4. The miniport driver initializes an NDIS_STATUS_INDICATION structure for the status indication in
the following way:

The StatusCode member must be set to
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE.

The StatusBuffer member must be set to the pointer to the buffer that contains the
operational NDIS QoS parameters.

The StatusBufferSize member must be set to the length, in bytes, of the buffer.

5. The miniport driver issues the status indication by calling NdisMIndicateStatusEx. The driver
must pass a pointer to the NDIS_STATUS_INDICATION structure to the StatusIndication
parameter.

Guidelines for Setting the Flags Member

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

The miniport driver sets the following flags in the Flags member of the NDIS_QOS_PARAMETERS
structure to specify which operational NDIS QoS parameters have been configured or changed on the
network adapter:

NDIS_QOS_PARAMETERS_ETS_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the ETS parameters
contained in the following members:

NumTrafficClasses

PriorityAssignmentTable

TcBandwidthAssignmentTable

TsaAssignmentTable

Note The miniport driver must support ETS in order to support NDIS QoS for DCB. However, the
setting of this flag does not specify whether the network adapter supports ETS. Instead, the setting of
this flag specifies only whether ETS parameters are configured on the network adapter.

NDIS_QOS_PARAMETERS_ETS_CHANGED
If this flag is set, one or more ETS parameters have changed in the following members:

NumTrafficClasses

PriorityAssignmentTable

TcBandwidthAssignmentTable

TsaAssignmentTable

NDIS_QOS_PARAMETERS_PFC_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the PFC settings
contained in the PfcEnable member.

Note The miniport driver must support PFC in order to support NDIS QoS for DCB. The setting of this
flag does not specify whether the network adapter supports PFC. Instead, the setting of this flag
specifies only whether PFC parameters are enabled on the network adapter.

NDIS_QOS_PARAMETERS_PFC_CHANGED
If this flag is set, one or more PFC settings have changed in the PfcEnable member.

NDIS_QOS_PARAMETERS_CLASSIFICATION_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the QoS traffic
classifications parameters specified in the following members:

NumClassificationElements

ClassificationElementSize

FirstClassificationElementOffset

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS_QOS_PARAMETERS_CLASSIFICATION_CHANGED
If this flag is set, one or more QoS traffic classification parameters have changed in the following
members:

NumClassificationElements

ClassificationElementSize

FirstClassificationElementOffset

Note The NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flags must be set if the
NDIS_QOS_PARAMETERS structure contains NDIS QoS parameter settings. The miniport driver must
set these flags regardless of whether the settings have changed. However, the driver must set the
NDIS_QOS_PARAMETERS_Xxx_CHANGED flags only for those settings that have changed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

Indicating Changes to the Remote NDIS
QoS Parameters
Article • 03/14/2023

The miniport driver that supports NDIS Quality of Service (QoS) issues an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication when its remote
NDIS QoS parameters are either received from a peer for the first time or change later. The
miniport driver receives these QoS parameters from a remote peer through the IEEE
802.1Qaz Data Center Bridging Exchange (DCBX) protocol.

The miniport driver must follow these guidelines for issuing an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication:

If the miniport driver has not received a DCBX frame from a remote peer, it must not
issue an NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication.

The miniport driver must issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication after it has
first received the QoS settings from a remote peer.

Note The miniport driver must issue this status indication if the network adapter
receives remote QoS parameter settings from a peer before the driver's local QoS
parameters are set. For more information, see Setting Local NDIS QoS Parameters.

After this initial status indication, the miniport driver should only issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication when it
determines a change in the QoS settings on the remote peer.

Note Miniport drivers should not issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication if there have
been no changes to the remote NDIS QoS parameters. If the driver does make this
type of status indication, NDIS may not pass the indication to overlying drivers.

Note The miniport driver must issue
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indications if its NDIS QoS
capabilities are currently enabled. Starting with Windows Server 2012, these indications
allow system administrators to view NDIS QoS and Data Center Bridging (DCB) settings
regardless of whether the Microsoft DCB server feature is installed.

Guidelines for Issuing the
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE

The miniport driver follows these steps when it issues the
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication:

1. The miniport driver allocates a buffer that is large enough to contain the following:

An NDIS_QOS_PARAMETERS structure that contains the NDIS QoS
configuration settings as well as global operational parameters for the NDIS
QoS traffic classes.

An array of NDIS_QOS_CLASSIFICATION_ELEMENT structures. Each of these
structures specifies a traffic classification as defined by a packet data pattern
(condition) and associated IEEE 802.1p priority level (action). If the network
adapter finds a pattern in the transmit, or egress, packet that matches a
condition, it assigns the associated priority level to the packet. The adapter also
applies the other NDIS QoS policies to the packet based on the priority level.

2. The miniport initializes the NDIS_QOS_PARAMETERS structure with the remote NDIS
QoS parameters. The driver must provide the complete set of remote parameters that
were received from the DCBX frame sent by the remote peer.

When the miniport driver initializes the Header member, it sets the Type member of
Header to NDIS_OBJECT_TYPE_QOS_PARAMETERS. The miniport driver sets the
Revision member of Header to NDIS_QOS_PARAMETERS_REVISION_1 and the Size
member to NDIS_SIZEOF_QOS_PARAMETERS_REVISION_1.

The miniport driver sets the appropriate NDIS_QOS_PARAMETERS_Xxx_CHANGED
flags if the corresponding members contain data that has changed since the miniport
driver previously issued an NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE
status indication.

Note Setting these NDIS_QOS_PARAMETERS_Xxx_CHANGED flags is optional. NDIS
always assumes that the members of the NDIS_QOS_PARAMETERS are specified
even if they have not changed from the previous
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication.

The miniport driver sets the Flags member to specify status information for the data
that is contained in the NDIS_QOS_PARAMETERS structure members.

For example, the miniport driver sets the appropriate
NDIS_QOS_PARAMETERS_Xxx_CHANGED flags in the Flags member for those
members which contain data that has changed since the miniport driver previously
issued an NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication.

Status Indication

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

For more information on how to set the Flags member, see Guidelines for Setting the
Flags Member.

3. The miniport driver initializes an NDIS_QOS_CLASSIFICATION_ELEMENT structure for
each traffic classification from the remote NDIS QoS parameters. The driver adds
these elements past the end of the NDIS_QOS_PARAMETERS structure in the buffer.

Note The miniport driver must not set the
NDIS_QOS_CLASSIFICATION_ENFORCED_BY_MINIPORT flag in the Flags member of
any NDIS_QOS_CLASSIFICATION_ELEMENT structures.

The driver sets the NumClassificationElements member of the
NDIS_QOS_PARAMETERS structure to the number of classification elements in the
array. The driver sets the FirstClassificationElementOffset member to the byte offset
of the first element from the start of the buffer. The driver also sets the
ClassificationElementSize member to the length, in bytes, of each element in the
array.

Note Starting with NDIS 6.30, the miniport driver must set the
ClassificationElementSize member to sizeof(NDIS_QOS_CLASSIFICATION_ELEMENT).

4. The miniport driver initializes an NDIS_STATUS_INDICATION structure for the status
indication in the following way:

The StatusCode member must be set to
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE.

The StatusBuffer member must be set to the pointer to the buffer that contains
the remote NDIS QoS parameters.

The StatusBufferSize member must be set to the length, in bytes, of the buffer.

5. The miniport driver issues the status indication by calling NdisMIndicateStatusEx.
The driver must pass a pointer to the NDIS_STATUS_INDICATION structure to the
StatusIndication parameter.

The miniport driver sets the following flags in the Flags member of the
NDIS_QOS_PARAMETERS structure to specify which operational NDIS QoS parameters
have been configured or changed on the network adapter:

NDIS_QOS_PARAMETERS_ETS_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the ETS
parameters contained in the following members:

Guidelines for Setting the Flags Member

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_classification_element
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NumTrafficClasses

PriorityAssignmentTable

TcBandwidthAssignmentTable

TsaAssignmentTable

Note The miniport driver must support ETS in order to support NDIS QoS for DCB.
However, the setting of this flag does not specify whether the network adapter supports
ETS. Instead, the setting of this flag specifies only whether ETS parameters are configured
on the network adapter.

NDIS_QOS_PARAMETERS_ETS_CHANGED
If this flag is set, one or more ETS parameters have changed in the following members:

NumTrafficClasses

PriorityAssignmentTable

TcBandwidthAssignmentTable

TsaAssignmentTable

NDIS_QOS_PARAMETERS_PFC_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the PFC
settings contained in the PfcEnable member.

Note The miniport driver must support PFC in order to support NDIS QoS for DCB. The
setting of this flag does not specify whether the network adapter supports PFC. Instead,
the setting of this flag specifies only whether PFC parameters are enabled on the network
adapter.

NDIS_QOS_PARAMETERS_PFC_CHANGED
If this flag is set, one or more PFC settings have changed in the PfcEnable member.

NDIS_QOS_PARAMETERS_CLASSIFICATION_CONFIGURED
If this flag is set, the miniport driver has configured the network adapter with the QoS
traffic classifications parameters specified in the following members:

NumClassificationElements

ClassificationElementSize

FirstClassificationElementOffset

NDIS_QOS_PARAMETERS_CLASSIFICATION_CHANGED
If this flag is set, one or more QoS traffic classification parameters have changed in the

following members:

NumClassificationElements

ClassificationElementSize

FirstClassificationElementOffset

Note The NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flags must be set if the
NDIS_QOS_PARAMETERS structure contains NDIS QoS parameter settings. The miniport
driver must set these flags regardless of whether the settings have changed. However, the
driver must only set the NDIS_QOS_PARAMETERS_Xxx_CHANGED flags for those settings
that have changed.

The miniport driver must invalidate its remote QoS parameters if the following conditions
are true:

The time-to-live (TTL) value expires for the remote QoS parameters.

Note DCBX is carried over the Link Layer Discovery Protocol (LLDP) protocol as
specified in the IEEE 802.1AB-2005 standard. LLDP frames always contain a TTL field.

Another data-link peer sends a DCBX frame before the TTL value expires. This
scenario is known as a multi-peer condition. DCBX requires that the miniport driver
maintain only one set of remote QoS parameters that were received from a single
data-link peer.

When a multi-peer condition occurs, the miniport driver must invalidate all of the
remote QoS parameters until the TTL value expires for all of the received DCBX
frames.

When the miniport driver invalidates its remote NDIS QoS parameters, it must follow these
steps when it issues the NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status
indication:

1. Because the miniport driver is not reporting any valid remote NDIS QoS parameters,
it must first fill an NDIS_QOS_PARAMETERS structure with zeros.

When the miniport driver initializes the Header member of this structure, it sets the
Type member of Header to NDIS_OBJECT_TYPE_QOS_PARAMETERS. The miniport
driver sets the Revision member of Header to NDIS_QOS_PARAMETERS_REVISION_1
and the Size member to NDIS_SIZEOF_QOS_PARAMETERS_REVISION_1.

Guidelines for Indicating Invalid Remote NDIS
QoS Parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

The miniport driver sets the appropriate NDIS_QOS_PARAMETERS_Xxx_CHANGED
flags in the Flags member.

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure for the status
indication in the following way:

The StatusCode member must be set to
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE.

The StatusBuffer member must be set to the address of the
NDIS_QOS_PARAMETERS structure.

The StatusBufferSize member must be set to sizeof(NDIS_QOS_PARAMETERS) .

3. The miniport driver issues the status indication by calling NdisMIndicateStatusEx.
The driver must pass a pointer to the NDIS_STATUS_INDICATION structure to the
StatusIndication parameter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Standardized INF Keywords for NDIS
QoS
Article • 03/14/2023

A standardized INF keyword is defined to enable or disable support for NDIS Quality of
Service (QoS) on a miniport driver.

The INF file for the miniport driver of an adapter that supports NDIS QoS must specify
the *QOS standardized INF keyword. After the driver is installed, administrators can
update the *QOS keyword value in the Advanced property page for the adapter. For
more information about advanced properties, see Specifying Configuration Parameters
for the Advanced Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

The *QOS INF keyword is an enumeration keyword. The following table describes the
possible INF entries for the *QOS INF keyword. The columns in this table describe the
following attributes for an enumeration keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

ParamDesc
The display text that is associated with SubkeyName.

Note The independent hardware vendor (IHV) can define any descriptive text for
SubkeyName.

Value
The enumeration integer value that is associated with each SubkeyName in the list.

EnumDesc
The display text that is associated with each value that appears in the menu.

SubkeyName ParamDesc Value EnumDesc

*QOS NDIS QoS 0 QoS Disabled

1 (Default) QoS Enabled

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver must do
the following:

The miniport driver must register the NDIS QoS hardware capabilities that the
network adapter supports.

The miniport driver must also read the *QOS keyword value in the registry to
register the current status of the adapter's NDIS QoS hardware capabilities.

The miniport driver must follow these guidelines when it registers the current status of
the NDIS QoS hardware capabilities:

If the *QOS keyword has a value of one, the miniport driver must register all NDIS
QoS hardware capabilities as currently enabled. The driver must enable its NDIS
QoS hardware capabilities regardless of the following:

Whether the Microsoft Data Center Bridging (DCB) server feature is installed or
enabled on Windows Server 2012 and later versions of Windows Server. For
more information about this server feature and related components, see NDIS
QoS Architecture for Data Center Bridging.

Whether the local Data Center Bridging Exchange (DCBX) Willing state is
enabled on the network adapter. When this state is enabled, the network
adapter and miniport driver can resolve its operational NDIS QoS parameters
from remote NDIS QoS parameters that were received from the remote peer.
For more information, see Managing the Local DCBX Willing State.

For more information on how to register QoS hardware and current capabilities,
see Registering NDIS QoS Capabilities.

Note The miniport driver must always issue
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE and
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indications if its NDIS
QoS hardware capabilities are currently enabled. Starting with Windows
Server 2012, these status indications report on the current operational and remote
QoS parameter settings, respectively. These indications allow system
administrators to view NDIS QoS and DCB settings regardless of whether the
Microsoft DCB server feature is installed. For more information, see Indicating
NDIS QoS Parameter Status.

If the *QOS keyword has a value of zero, the miniport driver must report all NDIS
QoS hardware capabilities as currently disabled. In this case, the operating system
will not configure the driver with NDIS QoS capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Note The driver must disable DCB and DCBX on the network adapter if the *QOS
keyword has a value of zero.

If the *QOS keyword is not present in the registry, the miniport driver must not
report any NDIS QoS hardware capabilities. In this case, the operating system will
not configure the driver with NDIS QoS capabilities.

Note The driver must disable DCB and DCBX on the network adapter if the *QOS
keyword is not present in the registry.

In addition to the *QOS keyword, the miniport driver must read the *PriorityVLANTag
keyword. This keyword specifies whether the network adapter is enabled to insert the
802.1Q tags for packet priority and virtual LANs (VLANs).

The following table summarizes the relationship between the *QOS and
*PriorityVLANTag keyword values.

QOS keyword setting PriorityVLANTag keyword
setting

*PriorityVLANTag setting
description

0 or not present 0 Packet priority & VLAN
disabled

0 or not present 1 Packet priority enabled

0 or not present 2 VLAN Enabled

0 or not present 3 (Default) Packet priority and VLAN
enabled

1 0 Packet priority enabled

1 1 Packet priority enabled

1 2 Packet priority and VLAN
enabled

1 3 (Default) Packet priority and VLAN
enabled

For more information about the *PriorityVLANTag keyword, see Enumeration Keywords.

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

For more information on how to register NDIS QoS capabilities, see Registering NDIS
QoS Capabilities.

Initializing NDIS Timers
Article • 03/14/2023

The NDIS_TIMER_CHARACTERISTICS structure defines characteristics of a one-shot or
periodic timer. Any NDIS driver can have more than one timer. Each timer object is
associated with a different NetTimerCallback function that is specified in the
TimerFunction member. NDIS calls the associated NetTimerCallback function when the
timer expires.

To allocate and initialize a timer, your driver should call the NdisAllocateTimerObject
function and provide a driver-allocated NDIS_TIMER_CHARACTERISTICS structure. The
timer does not start until the driver calls the NdisSetTimerObject function.

To free a timer object, your driver should call the NdisFreeTimerObject function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_timer_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_timer_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatetimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissettimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreetimerobject

Setting and Clearing Timers
Article • 12/15/2021

After allocating and initializing a timer with the NdisAllocateTimerObject function, an
NDIS 6.0 driver calls the NdisSetTimerObject function to set a timer object to fire after a
specified interval or periodically.

The DueTime parameter of NdisSetTimerObject specifies the interval to elapse before a
timer fires and NDIS calls the associated NetTimerCallback function. The expiration time
is expressed in system time units (100-nanosecond intervals).

If the MillisecondsPeriod parameter of NdisSetTimerObject is not zero, the timer fires
periodically and MillisecondsPeriod specifies the periodic time interval, in milliseconds,
that elapses between each time a periodic timer fires and the next call to the
NetTimerCallback function.

Your driver can call the NdisCancelTimerObject function to cancel a timer that is
associated with a previous call to the NdisSetTimerObject function. NDIS might still call
NetTimerCallback if the timeout has already expired before the call to
NdisCancelTimerObject.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatetimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissettimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_timer_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceltimerobject

Servicing Timers
Article • 12/15/2021

NDIS calls the NetTimerCallback function when an NDIS 6.0 timer fires. The
FunctionContext parameter of this function contains a pointer to a driver-supplied
context area. The default value for FunctionContext is specified in an
NDIS_TIMER_CHARACTERISTICS structure. The driver passed the structure to the
NdisAllocateTimerObject function to allocate and initialize the associated timer object.

If the driver specified a non-NULL value in the FunctionContext parameter that is passed
to the NdisSetTimerObject function, NDIS passes that value to the FunctionContext
parameter of the NetTimerCallback function. Otherwise, NDIS passes the default value
that is specified in the NDIS_TIMER_CHARACTERISTICS structure.

Any NDIS driver can have more than one NetTimerCallback function. Each such
NetTimerCallback function must be associated with a different driver-allocated and
initialized timer object.

A call to the NdisSetTimerObject function causes the NetTimerCallback function that is
associated with the timer object to be run after a specified interval or periodically.

To stop calls to a NetTimerCallback function, call the NdisCancelTimerObject function.
NDIS might still call NetTimerCallback if the timeout has already expired before the call
to NdisCancelTimerObject.

If a NetTimerCallback function shares resources with other driver functions, the driver
should synchronize access to those resources with a spin lock.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_timer_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_timer_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatetimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissettimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissettimerobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscanceltimerobject

NDIS Configuration Functions
Article • 03/14/2023

NDIS includes the following functions to simplify driver configuration:

NdisOpenConfigurationEx

NdisMGetBusData

NdisMSetBusData

To obtain configuration information for an adapter, an NDIS miniport driver calls
NdisOpenConfigurationEx and NdisReadConfiguration. The driver can call
NdisMGetBusData to obtain bus-specific information. The driver can call
NdisMSetBusData to set bus-specific information.

A protocol driver uses a registry path to an adapter name to read configuration
parameters that are specific to the binding between the driver and the underlying
adapter. NDIS provides the registry path in the call to the ProtocolBindAdapterEx
function. The driver can pass this registry path to the NdisOpenProtocolConfiguration
function or to direct registry calls. As an alternative, the driver can pass a BindParameters
structure to the NdisOpenConfigurationEx function to read the same parameters.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenconfigurationex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenprotocolconfiguration

NDIS Objects
Article • 03/14/2023

Components that do not have an NDIS handle use the NdisAllocateGenericObject
function to allocate a generic NDIS object. A component must call the
NdisFreeGenericObject function to free a generic object that was created with
NdisAllocateGenericObject.

For information about using generic objects, see Obtaining Pool Handles.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocategenericobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreegenericobject

NDIS I/O Work Items
Article • 03/14/2023

Drivers can queue I/O work item callback functions for later execution. NDIS calls the
driver-specified callback function at IRQL = PASSIVE_LEVEL. This improves system
performance by allowing the current function to return immediately and the driver to do
work later at a lower IRQL.

NDIS 6.0 and later provide wrapper functions for the kernel I/O work item routines
IoAllocateWorkItem, IoFreeWorkItem, and IoQueueWorkItem. Instead of the private
IO_WORKITEM structure, NDIS uses the private NDIS_IO_WORKITEM structure.

NDIS 6.0 drivers call the NdisAllocateIoWorkItem function to allocate a work item. NDIS
miniport drivers pass NdisAllocateIoWorkItem the adapter handle that NDIS passed to
the MiniportInitializeEx function. NdisAllocateIoWorkItem gets the device object
associated with the handle and passes the device object to the IoAllocateWorkItem
routine. Filter drivers pass in a filter handle.

Note Protocol drivers cannot use NdisAllocateIoWorkItem because NDIS does not
associate protocol drivers with device objects.

NDIS drivers call the NdisQueueIoWorkItem function to queue work items. NDIS work
items use the CriticalWorkQueue queue type.

NDIS drivers must call the NdisFreeIoWorkItem function to free the resources
associated with a work item that NdisAllocateIoWorkItem allocated.

System Worker Threads

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioallocateworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iofreeworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioqueueworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/eprocess
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocateioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioallocateworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocateioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisqueueioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreeioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocateioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/system-worker-threads

Components and Files Used for Network
Component Installation
Article • 05/30/2023

The following components and files are used to install network drivers:

One or more information (INF) files

A required class installer and optional co-installer for miniport drivers

INetCfg for protocol and filter drivers

An optional notify object

In addition to one or more of the above components, a vendor also optionally supplies
the following files:

One or more device driver image (.sys) files and driver library (.dll) files

A driver catalog file

A text-mode setup information file (txtsetup.oem)

Each network component must have an information (INF) file that the network class
installer uses to install the component. Network INF files are based on the common INF
file format. For more information about the INF file format, see INF File Sections and
Directives.

For detailed information about creating INF files for network components, see Creating
Network INF Files.

Starting with Windows OS build version 25319, you can create a network driver package
that can be executed from the Driver Store. An INF that is using 'run from Driver Store'
means that the INF uses DIRID 13 to specify the location for driver package files on
install.

You can't install a driver package through the network configuration interfaces and use
the driver store feature on older Windows versions. To successfully install the driver
package in this scenario, you need to have a minimum OS build number of 25319. For
more information, see Manufacturer Section in a Network INF File.

INF files

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/run-from-driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/using-dirids
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages

Currently, NDIS protocol and filter drivers are installed by calling into the INetCfg family
of Network Configuration Interfaces. For example, to install or remove network
components, a driver writer calls into the INetCfgClassSetup interface.

Driver writers can either call into this interface programmatically or they can use
netcfg.exe, which calls INetCfg on their behalf.

For more information about protocol driver installation, see NDIS protocol driver
installation.

For more information about filter driver installation, see NDIS Filter Driver Installation.

A software component, such as a network protocol, client, or service, can have a notify
object. A notify object can display a user interface, notify the component of binding
events so that the component can exercise some control over the binding process, and
conditionally install or remove software components. On older versions of Windows you
can't create a driver package with a notify object that is executed from the Driver Store.
To successfully install a driver package in this scenario, you need to have a minimum OS
build number of 25341. For more information about notify objects, see Notify Objects
for Network Components.

A network adapter can't have a notify object. It can have co-installers. For more
information about co-installers, see Writing a Co-installer.

A vendor supplies one or more drivers for the device, which typically consists of a driver
image (.sys) file and a driver library (.dll) file. A vendor may also supply an optional driver
catalog file. A vendor gets a digital signature by submitting its driver package to the
Windows Hardware Quality Lab (WHQL) for testing and signing. WHQL returns the
package with a catalog (.cat) file. The vendor must list the catalog file in the INF file for
the device.

An optional text-mode setup information file (txtsetup.oem) may also be supplied by
the vendor. If a network device is required to boot the machine, the driver or drivers for
the device must be included in the operating system kit or the vendor of such a device

INetCfg

Notify object

Vendor-supplied files

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559080(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547709(v=vs.85)
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/netcfg
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/writing-a-co-installer

must provide a txtsetup.oem file. The txtsetup.oem file contains information that is used
by the system setup components to install the device during text-mode setup.

Creating Network INF Files
Article • 12/15/2021

A network INF file is based on the standard INF file format but also includes network-
specific items, such as network-specific sections, directives, section entries, and values.
The following description of network INF files assumes an understanding of base INF
files. Read the description of base INF files before attempting to create a network INF
file. For more information about base INF files, see INF File Sections and Directives.

A single INF file can be used to install a network component on various Windows
platforms. For more information, see INF File Sections and Directives.

The INF file requirements vary by type of network component. For more information
about the INF file requirements for each type of network component, see Summary of
Installation Requirements for Network Components.

This section includes:

Sections in a Network INF File
Installation Requirements for Network Components

In this section

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/

Version Section in a Network INF File
Article • 12/15/2021

The Version section in a network INF file is based on the generic INF Version section.

The Version section in a network INF file has the following network-specific entries:

Class
ClassGuid
Signature and Operating System Entries
PnpLockDown
CatalogFile
Version Section Example

The Version section should contain a Class entry which identifies the class of network
component that is installed by the file.

There are four network classes:

Net
Specifies a physical or virtual network adapter. NDIS intermediate drivers, which export
virtual network adapters, are included in the Net class.

NetTrans
Specifies a network protocol, such as TCP/IP, IPX, a connection-oriented client, or a
connection-oriented call manager.

NetClient
Specifies a network client, such as the Microsoft Client for Networks or the NetWare
Client. A NetClient component is considered to be a network provider and, if it provides
print services over the network, it is also considered to be a print provider.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

NetService
Specifies a network service, such as a file service or a print service.

Note Infrared Data Association (IrDA) compliant devices are not categorized as any of
the previous four network classes, even though they are installed by the network class

Class

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-version-section

installer. An INF file that is used to install an IrDA device should have a Class value of
Infrared. This class includes both Serial-IR and Fast-IR devices.

Note Support for IrDA miniport drivers has been removed from NDIS 6.30 (Windows 8)
and later.

The Version section must contain a ClassGuid entry. The network class installer uses the
ClassGuid entry to determine the class of network component being installed.

There are four network ClassGuid values, each of which corresponds to a network class:

Network class ClassGuid

Net {4D36E972-E325-11CE-BFC1-08002BE10318}

NetTrans {4D36E975-E325-11CE-BFC1-08002BE10318}

NetClient {4D36E973-E325-11CE-BFC1-08002BE10318}

NetService {4D36E974-E325-11CE-BFC1-08002BE10318}

An INF file for an IrDA device should have a ClassGuid value of

{6bdd1fc5-81d0-bec7-08002be2092f}.

The Signature entry must be $Windows NT$.

The PnpLockDown entry should be set to 1 to prevent applications from directly
modifying the files that your driver package's INF file specifies. For more information
about this entry, see INF Version Section.

The CatalogFile entry is used to declare an optional driver-supplied .cat file. For more
information, see the Vendor-supplied files section of Components and Files Used for
Network Component Installation.

ClassGuid

Signature and Operating System Entries

PnpLockDown

CatalogFile

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-version-section

The following is an example of a Version section for an INF file that installs a network
adapter:

INF

Note The Provider entry indicates the developer of the INF file, not the developer of
the component that is installed by the INF file.

Version Section Example

[Version]
Signature = $Windows NT$
Class=Net
ClassGuid = {4D36E972-E325-11CE-BFC1-08002BE10318}
Provider = %Msft%
DriverVer=06/22/2010,6.1.7065.0
PnpLockDown = 1
CatalogFile = netvmini630.cat

Manufacturer Section in a Network INF
File
Article • 05/30/2023

The Manufacturer section in a network INF file is based on the generic INF
Manufacturer section.

Starting with Windows OS build version 25319, you can create a network driver package
that can be executed from the Driver Store. An INF that is using 'run from Driver Store'
means that the INF uses DIRID 13 to specify the location for driver package files on
install.

You can't install a driver package through the network configuration interfaces and use
the driver store feature on older Windows versions. To successfully install the driver
package in this scenario, you need to have a minimum OS build number of 25319.

To use DIRID 13 for installation in newer builds, it's useful to create an INF Manufacturer
section that includes multiple models-section-name entries that specify target operating
system versions. Different INF Models sections can be specified for different versions of
the operating system. The models-section-name entries indicate operating system
versions with which the INF Models sections are used.

The following example shows how to create an OS-specific INF Manufacturer section
using two models-section-name entries. OS builds 25319 and later will use
MyMfg.NT$ARCH$.10.0...25319 . All other builds will use MyMfg.NT$ARCH$. This example
uses build 25319 because it's the first build that allows for installation using DIRID 13.

INF

[Manufacturer]
%ManufacturerName%=Standard,NT$ARCH$,NT$ARCH$.10.0...25319

[Standard.NT$ARCH$.10.0...25319]
%NDISPROT_Desc%=InstallA, MS_NDISPROT

[Standard.NT$ARCH$]
%NDISPROT_Desc%=InstallB, MS_NDISPROT

[InstallA] ; OS build numbers 25319 and higher
AddReg=Inst_Ndi
Characteristics=0x0 ;
CopyFiles=CpyFiles_Sys_A

[InstallB] ; OS build numbers lower than 25319
AddReg=Inst_Ndi

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/run-from-driver-store
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/using-dirids
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-models-section

For an example of how an OS-specific Manufacturer section can allow for installation
using DIRID 13 for new builds and DIRID 12 for older builds, see the Sample NDIS
Protocol Driver .

Characteristics=0x0 ;
CopyFiles=CpyFiles_Sys_B

https://github.com/microsoft/Windows-driver-samples/blob/10a103a40e75f4b98092c99e6f1b9ff9c3b20504/network/ndis/ndisprot/6x/sys/630/ndisprot630.inf

Models Section in a Network INF File
Article • 12/15/2021

The Models section in a network INF file is based on the generic INF Models section.

The Models section in an INF file contains an entry of the following format for each type
of component installed by the INF file:

[device-description= install-section.name, hw-id[, compatible-id...]

For a detailed description of this entry, see Creating an INF File.

The hw-id (also known as the device, hardware, or component ID) for a network adapter
must match the hardware ID supplied by the adapter to the PnP manager.

The hw-id for a network software component should consist of a provider name,
followed by an underscore, and a manufacturer name or the product name, for example:

MS_DLC

MS_IBMDLC

A provider name identifies the provider of the INF file. A manufacturer name identifies
the manufacturer of the software component. The product name identifies the software
component.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-models-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files

DDInstall Section in a Network INF File
Article • 12/15/2021

A DDInstall section in a network INF file is based on the generic INF DDInstall section.

A DDInstall section in a network INF file has the following network-specific entries:

Characteristics
BusType
Port1DeviceNumber and Port1FunctionNumber

Each DDInstall section in a network INF file must have a Characteristics entry. The
Characteristics entry specifies certain characteristics of the network component being
installed and may limit the user's actions regarding that component. For example, the
Characteristics entry can specify whether the component supports a user interface,
whether it can be removed, or whether it is hidden from the user.

The Characteristics entry can have one or more of the following values (multiple values
are summed together):

Hex value Name Description

0x1 NCF_VIRTUAL Component is a virtual
adapter. The device is not on a
physical bus, such as the PCI
bus or USB, but is on the root
bus. This flag is only
applicable to drivers which use
the Net device setup class.

0x2 NCF_SOFTWARE_ENUMERATED Component is a software-
enumerated adapter. This flag
is only applicable to drivers
which use the Net device
setup class.

Characteristics

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-ddinstall-section

Hex value Name Description

0x4 NCF_PHYSICAL Component is a physical
adapter that the driver
communicates with directly
(for example, through the PCI
bus) or indirectly (for example,
through USB).

Select this option if the driver
supports a physical network
interface.¹ This flag is only
applicable to drivers which use
the Net device setup class.

0x8 NCF_HIDDEN Component should not be
shown in any user interface.

0x10 NCF_NO_SERVICE Component does not have an
associated service (device
driver).

0x20 NCF_NOT_USER_

REMOVABLE

Component cannot be
removed by the user (for
example, through Control
Panel or Device Manager).

0x80 NCF_HAS_UI Component supports a user
interface (for example, the
Advanced Page or a custom
properties sheet).

0x400 NCF_FILTER Component is a Filter
Intermediate driver. Filter
Intermediate drivers are not
supported in Windows 10 or
later.

0x4000 NCF_NDIS_PROTOCOL Component requires the
unload event that is provided
by the binding engine to the
NetTrans device setup class
(typically used by filter
Intermediate drivers which use
the NetService device setup
class).

Hex value Name Description

0x40000 NCF_LW_FILTER Component is a lightweight
filter driver. This flag is only
applicable to drivers which use
the NetService device setup
class.

¹When using Windows Server 2012 R2, at least one network interface on the system
must be marked with NCF_PHYSICAL in order to be eligible for DHCPv6 client.

The following combinations of Characteristics values are not allowed:

NCF_VIRTUAL, NCF_SOFTWARE_ENUMERATED, and NCF_PHYSICAL are mutually
exclusive.

NCF_NO_SERVICE cannot be used with NCF_VIRTUAL,
NCF_SOFTWARE_ENUMERATED, or NCF_PHYSICAL. A virtual, software-enumerated,
or physical adapter must always have an associated service (device driver).

The following is an example of a Characteristics entry for a physical adapter that
supports a user interface:

INF

A DDInstall section for a physical network adapter must contain a BusType entry that
specifies the type of bus (such as PCI or ISA) on which the adapter can function. The
possible values for the BusType entry are specified by the INTERFACE_TYPE enumeration
in the NDIS header file (ndis.h) as follows:

BusType Entry Value

ISA 1

EISA 2

MicroChannel 3

TurboChannel 4

PCIBus 5

Characteristics = 0x84; NCF_PHYSICAL, NCF_HAS_UI

BusType

BusType Entry Value

VMEbus 6

NuBus 7

PCMCIABus 8

Cbus 9

MPIBus 10

MPSABus 11

PNPISABus 14

PNPBus 15

Note If an adapter can function on more than one type of bus, the INF file that installs
that adapter should contain a DDInstall section for each bus type.

For example, if an adapter can function on both the ISA bus and the PnPISA bus, the INF
file for that adapter should contain a DDInstall section for ISA and a DDInstall section
for PnPISA. The BusType entry in each such DDInstall section should specify the
appropriate bus type for that section as follows:

INF

The DDInstall section of an INF file that installs a multiport network adapter must
include either a Port1DeviceNumber entry or a Port1FunctionNumber entry. Specifying
such an entry causes the adapter's port information to be displayed in the Connection
Properties dialog box (which is accessed through the Network and Dial-Up
Connections folder) when you select the adapter name or icon.

If an adapter's port numbers map sequentially to PCI device numbers, use the
Port1DeviceNumber entry. Set Port1DeviceNumber to the first PCI device number
in the sequence. For example, if PCI device number 4 maps to port 1, PCI device

[a1.isa]
BusType=1

[a1.pnpisa]
BusType=14

Port1DeviceNumber and Port1FunctionNumber

number 5 maps to port 2, PCI device number 6 maps to port 3, and so forth, use
the following entry:

INF

If an adapter's port numbers map sequentially to PCI function numbers, use the
Port1FunctionNumber entry. Set Port1FunctionNumber to the first PCI function
number in the sequence. For example, if PCI function number 2 maps to port 1, PCI
function number 3 maps to port 2, PCI function number 4 maps to port 3, and so
forth, use the following entry:

INF

Note It is assumed that the mapping of PCI device numbers or PCI functions to port
numbers is static. It is also assumed that the adapter's ports are numbered sequentially.

The Port1DeviceNumber and Port1FunctionNumber entries are mutually exclusive. If
both entries are present in a given DDInstall Section, only the Port1DeviceNumber entry
is used.

Port1DeviceNumber = 4

Port1FunctionNumber = 2

Remove Section in a Network INF File
Article • 12/15/2021

Remove sections are supported for NetClient, NetTrans, and NetService components
but not for Net components (adapters).

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

The network class installer does not keep track of adapter instances. A Remove section
that removes files that are shared by other adapters or by multiple instances of an
adapter could render those adapters or adapter instances inoperative. If it is necessary
to remove a driver file that is used by a Net component, use a co-installer that keeps
track of all drivers that are using the file. Such a co-installer should also track multiple
instances of the same device, as well as drivers for multiple devices. For more
information about co-installers, see Creating an INF File.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files

ControlFlags Section in a Network INF
File
Article • 12/15/2021

A ControlFlags section in a network INF file is based on the generic INF ControlFlags
section.

The ControlFlags section in a network INF file typically has one or more
ExcludeFromSelect entries. Each ExcludeFromSelect entry specifies a network
component that will not be displayed to the end user as an option during a manual
installation.

The ControlFlags section in a network INF file must contain an ExcludeFromSelect entry
for each Plug and Play adapter that it installs, and for any software component that
should be added programmatically rather than manually by the user.

Adapters that are not compatible with Plug and Play must be added manually by the
user and therefore should not be listed in the ControlFlags section. For example, non-
PnP ISA adapters and EISA adapters must be manually added by the user. Note that
Windows XP and later operating systems do not support non-PnP ISA adapters and EISA
adapters.

Note An ExcludeFromSelect entry performs a different function than does the
NCF_HIDDEN value of the Characteristics entry in the DDInstall section. For more
information, see DDInstall Section.

An ExcludeFromSelect entry prevents an adapter or software component from being
listed in the Select Component for Installation dialog box. The adapter or component,
however, can still be listed in the Connections dialog box. The NCF_HIDDEN value
prevents the adapter or component from being displayed in any part of the user
interface, including the Connections dialog box.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-controlflags-section

Add-registry-sections in a Network INF
File
Article • 12/15/2021

An INF file contains one or more add-registry-sections for each component that it
installs. An add-registry-section adds keys and values to the registry. The DDInstall
section of an INF file contains an AddReg directive that references one or more add-
registry-sections. For more information about the add-registry-section and the AddReg
directive, see INF AddReg Directive.

One or more add-registry-sections can add keys and values to the instance key for a
component to accomplish any of the following:

Set static parameters for a component -- that is, configuration parameters that
cannot be modified through a user interface. For more information, see Setting
Static Parameters.

Specify the number of endpoints (also known as channels, circuits or bearer
channels) for a WAN adapter. For more information, see Specifying WAN
Endpoints for a WAN Adapter.

Specify keys and values for an ISDN adapter. For more information, see Specifying
ISDN Keys and Values for an ISDN Adapter.

Require the installation of another network component. For more information, see
Requiring the Installation of Another Network Component.

Specify values that support a custom properties sheet for a network adapter. For
more information, see Specifying Custom Property Pages for Network Adapters.

An add-registry-section in an INF file for a NetClient component must add a
NetworkProvider key to the service key for that component. The NetworkProvider key
has two values: a Name that specifies the name of the network provider, and a
ProviderPath that specifies the full path to the network provider DLL. For more
information, see Specifying the Name and Provider Path for a NetClient Component.

Adding Keys and Values to Instance Keys

Adding Keys and Values to a NetClient Component

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

Each network INF file must contain at least one add-registry-section that adds an Ndi
key for the component installed by the file. The Ndi key is a network-specific key that is
added to the instance key for the component. The keys and values that are added to the
Ndi key vary according to the type of network component being installed and its
capabilities. The Ndi key specifies the following:

HelpText value for a NetTrans, NetClient, or NetService component. For more
information, see Adding a HelpText Value.

Values for a notify object. For more information, see Adding Registry Values for a
Notify Object.

Service-related values. For more information, see Adding Service-Related Values to
the Ndi Key.

Binding interfaces. For more information, see Specifying Binding Interfaces.

Adapter configuration parameters for the Advanced page. For more information,
see Specifying Configuration Parameters for the Advanced Properties Page.

Bundle membership. For more information, see Specifying Bundle Membership.

For a list of Ndi registry keys and values that are available in Windows 95/98/Me but not
used in Windows 2000 and later versions, see Ndi Values and Keys Not Used in Windows
2000 and Later Versions.

Creating the Ndi Key

Setting Static Parameters
Article • 12/15/2021

An INF file sets a static parameter only once. This parameter cannot be reconfigured
through a properties page in the user interface.

An add-registry-section adds a static parameter as a REG_SZ value to a component's
instance key as shown in the following example:

INF

An add-registry-section can add any vendor-defined static parameter to a component's
instance key.

[a1.staticparams.reg]
HKR,, MediaType, 0, "1"
HKR,, InternalId, 0, "232"

Specifying WAN Endpoints for a WAN
Adapter
Article • 12/15/2021

A INF file for a WAN adapter must add a WanEndpoints value to the instance key for
the adapter. WanEndpoints is a REG_DWORD value that specifies the number of
endpoints (also known as channels, circuits or bearer channels) that are supported by
the WAN adapter. For example, the WanEndpoints value for a basic rate interface (BRI)
ISDN adapter is 2, whereas the WanEndpoints value for a primary rate interface (PRI)
ISDN adapter is typically 23.

Note ISDN drivers are deprecated in Windows 8.1, Windows Server 2012 R2, and later.

The following is an example of an add-registry-section that adds a WanEndpoints value
of 2 for a BRI ISDN adapter:

INF

[a1.reg]
HKR,, WanEndpoints, 0x00010001, 2

Specifying ISDN Keys and Values for an
ISDN Adapter
Article • 12/15/2021

In addition to a WanEndpoints value, an INF file for an ISDN adapter must add (through
an add-registry-section) the following keys and values to the instance key for the
adapter. For more information, see Specifying WAN Endpoints for a WAN Adapter.

Note ISDN drivers are deprecated in Windows 8.1, Windows Server 2012 R2, and later.

IsdnNumDChannels

Specifies the number of D-channels that are supported by the ISDN adapter.

IsdnAutoSwitchDetect (Optional)

Specifies whether the ISDN adapter supports automatic switch detection. A value
of 1 indicates that the adapter supports automatic switch detection. A value of
zero indicates that the adapter does not support automatic switch detection.

IsdnSwitchTypes

Specifies the switch types that are supported by the ISDN adapter.

Switch Description

ISDN_SWITCH_AUTO Auto Detect (North America only)

ISDN_SWITCH_ATT ESS5 (AT&T, North America)

ISDN_SWITCH_NI1 National ISDN 1 (NI-1)

ISDN_SWITCH_NI2 National ISDN 2 (NI-2)

ISDN_SWITCH_NT1 Northern Telecom DMS 100 (NT-1)

ISDN_SWITCH_INS64 NTT INS64 (Japan)

ISDN_SWITCH_1TR6 German National (1TR6). This switch type is
rarely used.

ISDN_SWITCH_VN3 French National (VN3). This switch type is
rarely used.

ISDN_SWITCH_NET3 European ISDN (DSS1)

ISDN_SWITCH_DSS1 European ISDN (DSS1)

Switch Description

ISDN_SWITCH_AUS Australian National. This switch type is rarely
used.

ISDN_SWITCH_BEL Belgium National. This switch type is rarely
used.

ISDN_SWITCH_VN4 French National (VN4)

ISDN_SWITCH_SWE Swedish National

ISDN_SWITCH_ITA Italian National

ISDN_SWITCH_TWN Taiwanese

To specify multiple switch types, simply add the individual switch type values together.

The ISDN Wizard, which runs automatically during the installation of an ISDN
component, allows the user to select one of the switch types specified by
IsdnSwitchTypes. The selected switch type determines which other ISDN parameters the
ISDN Wizard subsequently displays for configuration. These ISDN parameters include
the phone number, the SPID (service profile identifier), the subaddress, and the
multisubscriber number.

An IsdnNumBChannels value and a D-channel key for each D-channel

The D-channel key is an zero-based index from 0 through 9 that identifies the D-
channel. IsdnNumBChannels is a REG_DWORD value added to the D-channel key.
IsdnNumBChannels specifies the number of B-channels supported by the D-
channel.

The following is an example of an add-registry-section that adds ISDN keys and values to
the instance key of an ISDN adapter. Two D-channels are specified for the adapter, and
two B-channels are specified for each D-channel.

INF

[ISDNadapter.reg]
HKR,, WanEndPoints, 0x00010001, 4
HKR,, IsdnNumDChannels, 0x00010001, 2
HKR,, IsdnAutoSwitchDetect, 0x00010001, 1
HKR,, IsdnSwitchTypes, 0x00010001, 0x00000004 ;NI1

HKR, 0, IsdnNumBChannels, 0x00010001, 2

HKR, 1, IsdnNumBChannels, 0x00010001, 2

The ISDN Wizard itself also adds ISDN keys and values to the instance key for an ISDN
adapter, based on the parameter values specified by the user. The ISDN Wizard adds the
following keys and values:

IsdnSwitchType

A REG_DWORD that indicates the switch type that was selected by the user for the
ISDN adapter.

IsdnMultiSubscriberNumbers value for each D-channel

A REG_MULTI_SZ value that indicates the multisubscriber numbers that were
specified by the user for the D-channel.

A B-channel key and an IsdnSpid, IsdnPhoneNumber, and/or an IsdnSubaddress
value for each B-channel:

Key or Value Description

B-channel key A zero-based index that identifies the B-
channel. The maximum value for a B-channel
key is one less than the IsdnNumBchannels
value assigned to the D-channel to which the
B-channel belongs.

IsdnSpid A REG_SZ value that indicates the SPID, if any,
specified by the user for the B-channel.

IsdnPhoneNumber The phone number, if any, specified by the user
for the B-channel.

IsdnSubaddress The subaddress, if any, specified by the user for
the B-channel.

The following example is an ISDN adapter's registry section layout . Each registry key is
enclosed in square brackets, for example: [KeyName]. The ISDN keys and values that
were added by the INF file for the ISDN adapter are highlighted in boldface text; the
ISDN keys and values that were added by the ISDN Wizard appear in normal
(nonboldface) text.

INF

[...Enum\emumeratorID\device-instance-id] ;ISDN adapter instance key
WanEndpoints=4
IsdnNumDChannels=2
IsdnAutoSwitchDetect=1
IsdnSwitchType=0x4 ;National ISDN 1

[...Enum\emumeratorID\device-instance-id\0] ;D-channel 0
IsdnNumBChannels=2
IsdnMultiSubscriberNumbers=1234567 2345678 3456789

[...Enum\emumeratorID\device-instance-id\0\0] ;B-channel 0 for D-channel 0
IsdnSpid=00555121200
IsdnPhoneNumber=5551212
IsdnSubaddress=

[...Enum\emumeratorID\device-instance-id\0\1] ;B-channel 1 key for D-
channel 0
IsdnSpid=00555121300
IsdnPhoneNumber=5551213
IsdnSubaddress=

[...Enum\emumeratorID\device-instance-id\1] ;D-channel 1 key
IsdnNumBChannels=2
IsdnMultiSubscriberNumbers=8675309 2390125 7658156

[...Enum\emumeratorID\device-instance-id\1\0] ;B-channel 0 for D-channel 1
IsdnSpid=00555987600
IsdnPhoneNumber=5559876
IsdnSubaddress=

[...Enum\emumeratorID\device-instance-id\1\0] ;B-channel 1 for D-channel 1
IsdnSpid=00555876500
IsdnPhoneNumber=5558765
IsdnSubaddress=

Installing a Multiprotocol WAN NIC
Article • 12/15/2021

A multiprotocol WAN NIC provides more than one WAN protocol. For example, such a
NIC might allow the user to select ISDN, Frame Relay, or channelized T1. The user selects
the WAN protocol during installation of the NIC or when configuring the NIC.

A vendor of a multiprotocol WAN NIC must provide a co-installer that installs a wizard
page. (For more information about co-installers, see Writing a Co-installer). The wizard
page prompts the user to select a WAN protocol:

If the user selects ISDN, the ISDN Wizard is displayed. The ISDN Wizard prompts
the user for the ISDN switch type and, depending on the selected switch type,
other ISDN parameter values. For more information, see Specifying ISDN Keys and
Values for an ISDN Adapter.

If the user selects a WAN protocol other than ISDN, the Wizard adds the
ShowIsdnPages registry value to the WAN NIC's instance key. The Wizard, in this
case, sets ShowIsdnPages to zero to suppress the display of the ISDN Wizard. As
long as ShowIsdnPages is zero, the ISDN Wizard is suppressed.

After the WAN NIC has been installed, the user can reconfigure the NIC, using the NIC's
property page:

If the user changes the protocol from ISDN to another WAN protocol, the property
page adds the ShowIsdnPages registry value to the WAN NIC's instance key, if
necessary. The property page sets ShowIsdnPages to zero to suppress the display
of the ISDN Wizard.

If the user changes the protocol to ISDN, the property page for the WAN NIC
displays a dialog box that prompts the user to apply the change. When the user
applies the change, the property page sets ShowIsdnPages to 1. When the user
again opens the NIC's property page, the ISDN Wizard is displayed.

Note that the LowerRange binding interface for a multiprotocol WAN NIC that supports
ISDN must be set to isdn. For more information, see Specifying Binding Interfaces. If the
ShowIsdnPages registry value is not present and if the NIC's LowerRange is set to isdn,
the ISDN Wizard is displayed during installation and configuration of the NIC. If

７ Note

ISDN capabilities have been deprecated in Windows 10 and later.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/writing-a-co-installer

ShowIsdnPages is set to zero, the ISDN Wizard is not displayed. If ShowIsdnPages is set
to 1, the ISDN Wizard is displayed during configuration of the NIC.

Requiring the Installation of Another
Network Component
Article • 12/15/2021

A network component may require the installation of one or more other network
components in order to function properly. A network INF file specifies each such
dependency with a RequiredAll value. The RequiredAll value is added (through an add-
registry-section) to the Ndi key of the network component that requires the installation
of another network component.

The following example shows a RequiredAll entry in an add-registry-section:

INF

The component ID is the hw-id of the required network component. For more
information, see INF Models Section. If a network component requires the installation
of more than one other network component, use one RequiredAll entry for each
network component that must be installed, as shown in the following example:

INF

Note The RequiredAll value should only be used to install hidden network components
that cannot be installed by the user. Such components should not support a user
interface. Any network components specified by RequiredAll cannot be removed until
the network component that required their installation through RequiredAll is itself
removed.

For example, if the INF file for component A specifies, through RequiredAll, a
dependency on component B, component B cannot be removed until component A is
removed. RequiredAll should therefore install only network components that are
absolutely required for the operation of another network component. For example, if an
INF file for a Net component (an adapter) uses RequiredAll to specify that TCP/IP must
be installed, the user will not be able to remove TCP/IP until that adapter is removed.
Since the adapter does not require TCP/IP to operate, the INF for the adapter should not
use RequiredAll to specify a dependency on TCP/IP.

[ndi.reg]
HKR, Ndi, RequiredAll, 0, "component id"

HKR, Ndi, RequiredAll, 0, "component1 id, component2 id"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-models-section

The INF file that specifies a RequiredAll dependency must ensure that the INF file for
the required network component is present in the inf directory. Typically, this is
accomplished with a CopyINF directive. For more information about the CopyINF
directive, see INF CopyINF Directive. For more information about copying INF files, see
Copying INFs.

If the installation of a network component specified by a RequiredAll entry fails, the
installation of the network component that requires the specified component fails as
well.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-copyinf-directive
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/copying-inf-files

Specifying the Name and Provider Path
for a NetClient Component
Article • 12/15/2021

An INF file that installs a NetClient component must add a NetworkProvider key to the
service key for the component. The INF file adds the NetworkProvider key through an
add-registry-section that is referenced by an AddReg directive in the service-install
section for the component.

The NetworkProvider key has two values: a Name that specifies the name of the
network provider, and a ProviderPath that specifies the full path to the network provider
DLL.

The following is an example of an add-registry-section that adds the NetworkProvider
key to the instance key for a component:

INF

Note An INF file that installs a NetClient component does not have to update the
ProviderOrder value under the component's ... Control\Network\Provider\Order key.
This is done automatically by the network class installer.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

[NWCWorkstation.AddReg]
HKR, NetworkProvider, Name, 0, "NetWare or Compatible Network"
HKR, NetworkProvider, ProviderPath, 0x20000, "%11%\nwprovau.dll"

Adding a HelpText Value
Article • 12/15/2021

The INF file for a NetTrans, NetClient, or NetService network component that is visible
in a user interface should add a HelpText value (REG_SZ) to the component's Ndi key.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

The HelpText value is a localizable string that explains how the component benefits the
user. For example, the HelpText value for a NetClient component should not simply
identify the client but indicate what the client allows the user to connect to. The
HelpText value is displayed at the bottom of the General page of the Connection
Properties dialog box when a component on the page is selected.

Note Net components (adapters) and IrDA components do not support a HelpText
value.

The following is an example of an add-registry-section that adds a HelpText value to the
Ndi key:

INF

The HelpText value is a % strkey% token that is defined in the Strings section of the INF
file. For more information about the Strings section, see the INF Strings Section.

Note For Multilingual User Interface (MUI) support, the HelpText value can be an
indirect string in the form @filename,resource . For example:
"@%SystemRoot%\System32\drivers\mydriver.sys,-1000". The target string is located in
the specified file. The resource value identifies the specific string within the file. If the
resource value is zero or greater, the number is used as an index of the string in a binary
file. If the resource value is negative, it is used as a resource identifier in a resource file.

[MS_Protocol.ndi_reg]
HKR, Ndi, HelpText, 0, %MyTransport_Help%

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Adding Registry Values for a Notify
Object
Article • 12/15/2021

A NetTrans, NetClient, or NetService component can have a notify object that performs
one or more of the following actions:

Displays a user interface for the component

Notifies the component of binding events so that the component can exercise
some control over the binding process

Conditionally installs or removes software components

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

For more information about notify objects, see Notify Objects for Network Components.

Note Net components (adapters) do not support notify objects; therefore, these
components should use a co-installer.

For more information about co-installers, see Writing a Co-installer.

If a component has a notify object, the INF file for that component must add (through
an add-registry-section) the following values to the component's Ndi key:

ClsID
A REG_SZ value that specifies the GUID (globally unique identifier) for the notify object.
Obtain this GUID by running the uuidgen.exe utility. For more information about this
utility, see the Microsoft Windows SDK.

ComponentDll
A REG_SZ value that specifies the path to the notify object DLL. The ComponentDll must
specify the complete path to the DLL if the DLL is not in the Windows\System32
directory.

The following is an example of an add-registry-section that adds ClsID and
ComponentDll values to the Ndi key:

INF

[MS_Protocol.ndi.reg]
HKR, Ndi, ClsID, 0, "GUID"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/writing-a-co-installer

The DDInstall section for a component that has a notify object must also contain a
CopyFiles directive which references a file-list-section that copies the notify object DLL
to the destination directory specified by the DestinationDirs section. For more
information about the CopyFiles directive and DestinationDirs sections, see INF File
Sections and Directives.

HKR, Ndi, ComponentDll, 0, "notifyobject.dll"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/

Adding Service-Related Values to the
Ndi Key
Article • 12/15/2021

If a component has an associated service (device driver), the add-registry-section
referenced by the DDInstall section for that component must add a Service value to the
Ndi key. The Service value is a REG_SZ value that specifies the primary service
associated with the component. The Service value must match the ServiceName
parameter of the AddService directive that references the service-install-section for the
primary service. For more information, see INF DDInstall.Services Section.

If a component has one or more associated services, the add-registry-section referenced
by the DDInstall section for that component must add a CoServices value to the Ndi
key. The CoServices value is a MULTI_SZ value that specifies all the services that the
component installs, including the primary service specified by the Service value. The
CoServices value is required for all NetTrans, NetClient, and NetService components.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

Note Net components (adapters) should not have a CoServices value, because only
one service can be associated with an adapter.

Except for shutting down services, all service-related actions are performed on the
CoServices in the order that they are listed. For example, services are started in the
order that they are listed. Services are stopped, however, in reverse order. Service-
related actions for a component are performed on a service only if that service is listed
in CoServices.

Specifying Binding Interfaces
Article • 05/16/2022

For each network component that it installs, a network INF file must specify the upper
and lower binding interfaces for the component by adding the Interfaces key to the Ndi
key.

The Interfaces key has at least two values:

UpperRange
A REG_SZ value that defines the interfaces to which the component can bind at its top
edge.

LowerRange
A REG_SZ value that defines the interfaces to which the component can bind at its lower
edge. For physical adapters, this interface should always be the network media, such as
Ethernet, to which the adapter connects.

The following table lists the Microsoft-supplied UpperRange values:

Value Description

netbios NetBIOS

ipx IPX

tdi TDI interface to TCP/IP

ndis5 NDIS 5.x (ndis2, ndis3, and ndis4 should no
longer be used). This value should be specified
for any non-ATM network component, such as
a non-ATM adapter, that interfaces with NDIS
at its upper edge.

Ndisatm NDIS 5.x with ATM support. Specified value for
any ATM network component, such as an ATM
adapter, whose upper edge interfaces with
NDIS

７ Note

The DefUpper and DefLower values in Windows 95/98/Me network INF files,
however, are not supported for INF files that will be used on Windows 2000 and
later versions of the operating system.

Value Description

ndiswan Upper edge for a WAN adapter. When
specified, this value causes the operating
system to automatically enable the WAN
adapter for use with RAS

Ndiscowan Upper edge for a WAN adapter over which
connection-oriented NDIS runs

noupper Upper edge for any component that does not
expose an upper edge for binding; such a
component typically has a private interface at
its upper edge

winsock The Windows socket interface

ndis5_atalk Upper edge for an NDIS 5.x Net component
(adapter) that binds only to an AppleTalk
interface at its upper edge

ndis5_dlc Upper edge for an NDIS 5.x Net component
(adapter) that binds only to a DLC interface at
its upper edge

ndis5_ip Upper edge for an NDIS 5.x Net component
(adapter) that binds only to a TCP/IP interface
at its upper edge

ndis5_ipx Upper edge for an NDIS 5.x Net component
(adapter) that binds only to an IPX interface at
its upper edge

ndis5_nbf Upper edge for an NDIS 5.x Net component
(adapter) that binds only to a NetBEUI interface
at its upper edge

ndis5_streams Upper edge for an NDIS 5.x Net component
(adapter) that binds only to a streams interface
at its upper edge. This value is obsolete for
Windows XP and later operating systems.

flpp4 A mobile broadband (MB) device that supports
IPv4.

flpp6 A mobile broadband (MB) device that supports
IPv6.

The following table lists the Microsoft-supplied LowerRange values:

Value DescriptionValue Description

ethernet Lower edge for an Ethernet adapter

atm Lower edge for an ATM adapter

tokenring Lower edge for a token ring adapter

serial Lower edge for a serial adapter

fddi Lower edge for an FDDI adapter

baseband Lower edge for a baseband adapter

broadband Lower edge for a broadband adapter

bluetooth Lower edge for a Bluetooth adapter

arcnet Lower edge for an Arcnet adapter

isdn Lower edge for an ISDN adapter

localtalk Lower edge for a LocalTalk adapter

wan Lower edge for a WAN adapter

nolower Lower edge for any component that does not
expose a lower edge for binding

ndis5 NDIS 5.x. (ndis2, ndis3, and ndis4 should no
longer be used.) For any network component
whose lower edge interfaces through NDIS with
non-ATM components

Ndisatm Ndis 5.x with ATM support. For any network
component whose lower edge interfaces
through NDIS with ATM components

Wlan Lower edge for a native 802.11 wireless LAN
adapter.

ppip Lower edge for a mobile broadband (MB)
adapter

vwifi Lower edge for a virtual wifi interface

The UpperRange and LowerRange values specify the types of interfaces -- not the
actual components -- to which a component can bind. The binding engine binds a
network component to all components that provide the specified interface at the
appropriate (upper or lower) edge. For example, a protocol with a LowerRange of ndis5

binds to all components that have an UpperRange of ndis5, such as physical or virtual
adapters.

If an NDIS 5.x Net component (adapter) works only with one or more specific protocols,
then its UpperRange should be assigned one or more protocol-specific values, such as
ndis5_atalk, ndis5_dlc, ndis5_ip, ndis5_ipx, ndis5_nbf, or ndis5_streams. Such a net class
component should not be assigned an UpperRange value of ndis5, because this would
cause that component to bind to all protocols that provide an ndis5 lower edge.

An INF-file-writer can define and use vendor-specific UpperRange and LowerRange
values for private binding interfaces. For example, if a vendor wants to bind its adapter
only to its own proprietary protocol driver, the INF-file-writer could specify XXX for the
UpperRange of the adapter and XXX for the LowerRange of the proprietary protocol.
The Windows 2000 binding engine will bind all components that have an UpperRange
of XXX (in this case, the adapter) with all components that have a LowerRange of XXX
(in this case, the proprietary protocol).

The following is an example of an add-registry-section that adds UpperRange and
LowerRange values for an ATM adapter:

INF

７ Note

NDIS LWF drivers can't attach to adapters that have nolower in their LowerRange
of their INF file. NDIS LWF drivers aren't allowed to have nolower in their
FilterMediaTypes.

[addreg-section]
HKR, Ndi\Interfaces, UpperRange, 0, "ndisATM"
HKR, Ndi\Interfaces, LowerRange, 0, "atm"

Specifying Configuration Parameters for
the Advanced Properties Page
Article • 12/15/2021

An INF file that installs a Net component (adapter) can specify adapter configuration
parameters for display in the Advanced properties page for the component.
Configuration values specified by the user in the Advanced properties page are written
to the root instance key for the component.

Note that if an adapter supports an Advanced properties page, the Characteristics entry
in the DDInstall section for the adapter must include the NCF_HAS_UI value.

A network INF file specifies configuration parameters for display in the Advanced page
through an add-registry-section that is referenced by the DDInstall section for the
component. Such an add-registry-section adds one or more configuration subkeys to the
Ndi\params key. The format for a configuration parameter subkey is
Ndi\params\SubKeyName, where SubKeyName is a REG_SZ value that specifies a
vendor-specific parameter name. For example, the key for a parameter that specifies a
transceiver type could be named Ndi\params\TransceiverType.

The following keywords are reserved and cannot be used as an
Ndi\params\SubKeyName: BundleId, BusType, Characteristics, ComponentId,
Description, DeviceInstanceId, DriverDate, DriverDesc, DriverVersion, InfPath,
InfSection, InfSectionExt,** IfType* InstallTimeStamp, Manufacturer,** MediaType,
**NetCfgInstanceId, NetLuidIndex, PhysicalMediaType, **Provider, and **ProviderName.

For each parameter subkey that is added to Ndi\params, the add-registry-section must
add ParamDesc(parameter description) and Type values. The add-registry-section can
also add Default and Optional values for the parameter and, if the parameter is
numeric, Min, Max, and Step values. The following table describes the values that can be
added to each Ndi\params key.

Name Value Description

７ Note

Prior to Windows 10, version 1703, driver upgrades and Windows updates could
result in changes to INF values that the driver had previously defined in the
Advanced properties page. Starting in Windows 10, version 1703, advanced
properties that a driver specifies in its INF file persist through these updates.

Name Value Description

ParamDesc String Name displayed for the
parameter on the Advanced
page

Type int, long, Word, dword, edit,
or enum

Type of parameter: int, long,
Word, and dword specify a
numeric parameter; edit and
enum specify a text parameter.

Default default value Default value for the
parameter: for a numeric
parameter, must be a numeric
value (int, long, Word, or
dword) that matches the
specified parameter type; for a
text parameter, must be a
string. Default values must be
specified for required
parameters. Default values can
also be specified for optional
parameters. When a user
selects the option to enter a
value for an optional
parameter, the default value, if
specified, appears in the edit
box for that parameter.

Optional 0 or 1 0 required. Specify a value for
the parameter or use the
default value. 1 optional. Can
be marked Not Present on the
Advanced page.

Min numeric value Minimum value for a numeric
parameter.

Max numeric value Maximum value for a numeric
parameter.

Step numeric value Step (interval) between valid
values for a numeric
parameter. The minimum
value is the starting point.

The range of values for an enum parameter are specified with a subkey that has the
following format:

Ndi\params\SubKeyName\enum

Each enumerated value must have a subkey. Each enum subkey specifies a numeric
value (starting with zero for the first enumerated value) and a description for that value.

The following is an example of an add-registry-section that adds a configuration
parameter named TransType.

INF

[a1.params.reg]
HKR, Ndi\params\TransType, ParamDesc, 0, "Transceiver Type"
HKR, Ndi\params\TransType, Type, 0, "enum"
HKR, Ndi\params\TransType, Default, 0, "0"
HKR, Ndi\params\TransType, Optional, 0, "0"
HKR, Ndi\params\TransType\enum, "0", 0, "Auto-Connector"
HKR, Ndi\params\TransType\enum, "1", 0, "Thick Net(AUI/DIX)"
HKR, Ndi\params\TransType\enum, "2", 0, "Thin Net (BNC/COAX)"
HKR, Ndi\params\TransType\enum, "3", 0, "Twisted-Pair (TPE)"

Specifying Custom Property Pages for
Network Adapters
Article • 12/15/2021

If the Advanced property page is not suitable for displaying the configuration choices
for a Net component (adapter), you can create one or more custom property pages.

To create a custom property page

1. Create a Microsoft Win32 property page. Then create a property sheet extension
DLL that provides AddPropSheetPageProc and ExtensionPropSheetPageProc callback
functions. For more information, see the Windows 2000 Platform SDK.

2. Use the add-registry-section that is referenced by the DDInstall section for the
adapter to add the EnumPropPages32 key to the instance key for the adapter. The
EnumPropPages32 key has two REG_SZ values: the name of the DLL that exports
the ExtensionPropSheetPageProc function and the name of the
ExtensionPropSheetPageProc function. The following is an example of an add-
registry-section that adds the EnumPropPages32 key:

INF

3. In the INF file for the adapter, include a CopyFiles section that copies the property
sheet extension DLL to the Windows\System32 directory. For more information
about the CopyFiles section, see INF File Sections and Directives.

4. In the DDInstall section for the adapter, specify NCF_HAS_UI as one of the
Characteristics values to indicate that the adapter supports a user interface. For
more information, see DDInstall Section.

5. After the user applies changes to a property page, the property sheet extension
DLL must:

Call SetupDiGetDeviceInstallParams

Set the DI_FLAGSEX_PROPCHANGE_PENDING flag in the
SP_DEVINSTALL_PARAMS structure supplied by
SetupDiGetDeviceInstallParams

HKR, EnumPropPages32, 0, "DLL name, ExtensionPropSheetPageProc function
name"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/

Pass the updated SP_DEVINSTALL_PARAMS structure to
SetupDiSetDeviceInstallParams.

This reloads the driver so that it can read the changed parameter values.

Specifying Bundle Membership
Article • 12/15/2021

An INF file that installs Net components (physical or virtual network adapters) can
specify that those network adapters belong to the same bundle of adapters. Note that
NDIS intermediate drivers and filter drivers, which export virtual network adapters, are
included in the Net class. An NDIS driver can use adapters that it installed to balance its
workload by distributing the workload over the bundle of adapters. For more
information about load balancing, see Load Balancing and Failover.

To specify that an adapter belongs to a particular bundle of adapters, the INF file for the
driver that installs the adapter must contain the BundleId keyword and a case-
insensitive string value (REG_SZ). This string value identifies the driver's bundle of
adapters. The registry is configured using the bundle-identifier information.

The following is an example of an add-registry-section in a driver's INF file that adds the
BundleId subkey to the Ndi\params key and gives the ParamDesc (parameter
description) for BundleId a string value of "Bundle1".

INF

７ Note

Bundle membership has been deprecated in Windows Vista and later.

[a1.params.reg]
HKR, Ndi\params\BundleId, ParamDesc, 0, "Bundle1"

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549197(v=vs.85)

Deprecated Ndi Values and Keys
Article • 12/15/2021

Important The following Ndi registry keys and values are no longer used in the
Windows operating system. If you are migrating network drivers from Windows
95/98/Me to later versions of the operating system, do not use these values.

DeviceVxD

DevLoader

DriverDesc

InfFile

InfSelection

Ndi\CardType

Ndi\Compability

Ndi\DeviceID

Ndi\filename\...

Ndi\Install

Ndi\InstallInf

Ndi\Interfaces\DefLower

Ndi\Interfaces\DefUpper

Ndi\Interfaces\ExcludeAny

Ndi\Interfaces\RequireAny

Ndi\NdiInstaller

Ndi\param-key-name\resc

Ndi\Params\param-key-name\flag

Ndi\Params\param-key-name\location

Ndi\Remove

NDIS\...

StaticVxD

Because Windows does not support Ndi\param-key-name\resc and Ndi\Params\param-
key-name\flag values, a user cannot specify adapter resources through the Advanced
properties page.

DDInstall.Services Section in a Network
INF File
Article • 12/15/2021

A DDInstall.Services section in a network INF file is based on the generic INF
DDInstall.Services section.

A DDInstall.Services section contains one or more AddService directives, each of which
references an INF-writer-defined service-install- section that specifies how and when the
services of particular component drivers are loaded.

A DDInstall.Services section is required in an INF file that installs a Net component
(adapter); it is optional in an INF file that installs a NetTrans, NetClient, or NetService
component.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

An AddService directive in a DDInstall.Services section can also reference an error-log-
install-section that installs an error log for a component. An error log is optional for all
network components.

For more information, see INF AddService Directive.

The following is an example of a DDInstall.Services section, a service-install-section, an
error-log-install-section, and an add-registry-section that is referenced by an AddReg
directive in the error-log-install-section:

C++

[a1.ndi.NT.Services]
AddService = a1, 2, a1.AddService, a1.AddEventLog

[a1.AddService]
DisplayName = %Adapter1.DispName%
ServiceType = 1 ;SERVICE_KERNEL_DRIVER
StartType = 2 ;SERVICE_AUTO_START
ErrorControl = 1 ;SERVICE_ERROR_NORMAL
ServiceBinary = %13%\a1.sys
LoadOrderGroup = NDIS

[a1.AddEventLog]
AddReg = a1.AddEventLog.reg

[a1.AddEventLog.reg]

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-ddinstall-services-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addservice-directive

The ServiceName parameter of the AddService directive, which in the above example is
a1(the first AddService parameter), must match the component's Ndi\Service value. For
more information, see Adding Service-Related Values to the Ndi Key.

HKR,,EventMessageFile,0x00020000,"%%SystemRoot%%\System32\netevent.dll"
HKR,,TypesSupported,0x00010001,7

NetworkProvider and PrintProvider
Sections in a Network INF File
Article • 12/15/2021

NetClient components are considered to be network providers because they provide
network services to user applications. The Microsoft Client for Networks and the
NetWare Client are examples of NetClient components.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

In addition to being a network provider, a NetClient component can also be a print
provider. A print provider provides print services to user applications over a network.

A NetClient component is always installed as a network provider. An INF file that installs
a NetClient component does not require a NetworkProvider section for that component
unless at least one of the following is true:

An alternative device name is specified for the component.

A short name for the component is specified for use with the net view command.
For more information, see Including a NetworkProvider Section.

An INF that installs a NetClient component that is a print provider must contain a
PrintProvider section for that component. For more information, see Including a
PrintProvider Section.

An INF file that installs a NetClient component must also contain an add-registry-section
(referenced by a AddReg directive in the service-install-section for a component) that
adds a NetworkProvider key to the component's service key. For more information, see
Specifying the Name and Provider Path for a NetClient Component.

Including a NetworkProvider Section
Article • 12/15/2021

A NetworkProvider section specifies either a substitute device name for a NetClient
component or a short name for use with the NetWare net view command, or both.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

To create a NetworkProvider section, add the NetworkProvider extension to the
DDInstall section for the component, as shown in the following example:

INF

The network class installer usually creates the device name for a network provider by
copying the Ndi\Service value for the component to the NetworkProvider key under the
component's Service key. For more information, see Adding Service-Related Values to
the Ndi Key. To specify a different device name for the component, include a
DeviceName entry in the NetworkProvider section for the component, as shown in the
following example:

INF

The DeviceName is optional and should be specified only if the Ndi\Service value for
the component is inadequate as a device name for the network provider.

To specify a short name for a network provider for use with the NetWare net view
command, include a ShortName entry in the NetworkProvider section for the
component, as shown in the following example:

INF

[DDInstall] ; Install section
[DDInstall.NetworkProvider] ; NetworkProvider section

Specifying a Device Name

[DDInstall-section.NetworkProvider]
DeviceName = "nwrdr"

Specifying a Short Name

The following is an example of a short name used with the net view command:

INF

The ShortName is easier to remember and type than the entire name of the network
provider.

The ShortName is optional and should only be specified if needed.

[DDInstall-section.NetworkProvider]
ShortName = "nw"

net view /n:nw

Including a PrintProvider Section
Article • 12/15/2021

An INF file that installs a NetClient component that is a print provider must contain a
PrintProvider section for that component.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

To create a PrintProvider section, add the PrintProvider extension to the DDInstall
section for the component, as shown in the following example:

C++

The PrintProvider section must include the following entries:

PrintProviderName
A nonlocalized string that specifies the name of the print provider.

PrintProviderDll
The file name of the print provider DLL.

DisplayName
A localizable string that specifies the name of the print provider. The DisplayName can
differ from the PrintProviderName.

The PrintProviderName and PrintProviderDll entries supply information that is used as
input (in a PROVIDOR_INFO_1 structure) to the AddPrintProvidor function. The
AddPrintProvidor function adds the print provider component as a print provider. For
more information about the AddPrintProvidor function, see the Microsoft Windows
SDK.

The following is an example of a PrintProvider section:

C++

[DDInstall-section] ; Install section
[DDInstall-section.PrintProvider] ; PrintProvider section

[DDnstall-section.PrintProvider]
PrintProviderName = "NetWare or Compatible Network"
PrintProviderDll = "nwprovau.dll"
DisplayName = "%NWC_Network_Display_Name%"

Winsock Sections in a Network INF File
Article • 12/06/2022

An INF file for a NetTrans component that provides a Winsock interface must specify
this Winsock dependency. Such an INF file must contain a Winsock-install section. To
create a Winsockinstall section, add the .Winsock extension to the DDInstall section
name for the protocol. For example, if the DDInstall section for a protocol is named Ipx,
the Winsock-install section for that protocol must be named Ipx.Winsock.

A Winsock-install section must contain an AddSock directive. The AddSock directive
specifies a vendor-named section that contains values to be added to the component's
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\TransportDriverName\P
arams\Winsock key.

The vendor-named section referenced by the AddSock directive must contain the
following required values:

Value Name Description

TransportService A REG_SZ value that specifies the service name
of the protocol. This must be the same as the
Ndi\Service value for the protocol. For more
information, see Adding Service-Related Values
to the Ndi Key.

HelperDllName A REG_EXPAND_SZ value that specifies the path
to the Windows Sockets helper (WSH) DLL for
the protocol. For more information, see WSH
DLL Function Summary.

MaxSockAddrLength A REG_DWORD value that specifies the largest
valid SOCKADDR size, in bytes, for the WSH
DLL

MinSockAddrLength A REG_DWORD value that specifies the smallest
valid SOCKADDR size, in bytes, for the WSH
DLL

If an optional ProviderId for a namespace provider is specified, the following values
must also be specified:

７ Note

Winsock dependency has been deprecated in Windows 8 and later.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566260(v=vs.85)

Value Name Description

ProviderId A REG_SZ value that specifies the Globally
Unique Identifier (GUID) that identifies the
namespace provider. The GUID is used as a key
to all subsequent references to the namespace
provider. Obtain the GUID by running the
uuidgen.exe utility. For more information about
this utility, see the Microsoft Windows SDK.

LibraryPath A REG_EXPAND_SZ value that specifies the
complete path to the namespace provider DLL.

DisplayString A localizable string that specifies the name
displayed for the namespace provider in the
user interface.

SupportedNameSpace A REG_DWORD value which specifies the
namespace that is supported by the namespace
provider.

Version An optional REG_DWORD value that specifies
the version number of the namespace provider.
If this value is not specified, the default value
(1) is used for the version number.

The following namespace values can be assigned to SupportedNameSpace and are
defined in Winsock2.h:

Namespace Value

NS_ALL 0

NS_SAP 1

NS_NDS 2

NS_PEER_BROWSE 3

NS_TCPIP_LOCAL 10

NS_TCPIP_HOSTS 11

NS_DNS 12

NS_NETBT 13

NS_WINS 14

NS_NBP 20

Namespace Value

NS_MS 30

NS_STDA 31

NS_CAIRO 32

NS_X500 40

NS_NIS 41

NS_WRQ 50

For more information about namespace providers, see the Windows SDK
documentation.

The following example shows Winsock sections for an IPX protocol:

INF

An INF file can remove a Winsock dependency for a protocol by including a Winsock-
remove section. To create a Winsock-remove section, add the .Winsock extension to the
Remove section name for the protocol. For example, if the Remove section for a protocol
is named Ipx.Remove, the Winsock-remove section for the protocol must be named
Ipx.Remove.Winsock.

The Winsock-remove section contains a DelSock directive that specifies an INF-writer-
named section. The INF-writer-named section must specify the transport service to
remove. If a ProviderId was previously registered for the protocol, the vendor-named
section must also specify the ProviderId to remove.

The following example shows two sections that remove the Winsock dependency for an
IPX protocol:

[Ipx.Winsock]
AddSock = Install.IpxWinsock

[Install.IpxWinsock]
TransportService = nwlinkipx
HelperDllName = "%%SystemRoot%%\System32\wshisn.dll"
MaxSockAddrLength = 0x10
MinSockAddrLength = 0xe
ProviderId = "GUID"
LibraryPath = "%SystemRoot%\\System32\\nwprovau.dll"
DisplayString = %NwlnkIpx_Desc%
SupportedNameSpace = 1
Version = 2

https://learn.microsoft.com/en-us/windows/win32/winsock/name-space-service-providers-2

INF

[Ipx.Remove.Winsock]
DelSock = Remove.IpxWinsock

[Remove.IpxWinsock]
TransportService = nwlinkipx
ProviderId = "GUID"

Installation Requirements for Network
Adapters
Article • 12/15/2021

This topic summarizes the installation requirements for network adapters.

Note NDIS 6.0 and later drivers support a set of standardized INF keywords for network
devices.

INF File Section Status Comments

Version Section Required Class= Net

ClassGuid= {4D36E972-E325-11CE-
BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not distributed
with Windows 2000. If the INF file is
distributed with Windows 2000, a
LayoutFile entry must be specified in
the Version section, and the
SourceDisksNames and
SourceDisksFiles sections are not used.

No network-specific requirements.

INF DestinationDirs
Section

Required No network-specific requirements.

ControlFlags Section Required Must contain an ExcludeFromSelect
entry for each Plug and Play (PnP)
adapter installed by the INF file.

Non-PnP adapters, such as non-PnP ISA
and EISA adapters, should not be listed.
Note that Windows XP and later
operating systems do not support non-
PnP ISA adapters and EISA adapters.

INF Manufacturer Section Required No network-specific requirements.

Models Section Required The hw-id must match the hardware ID
supplied by the adapter to the PnP
manager.

General Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

DDInstall Section Required Characteristics entry

Allowable values:

NCF_VIRTUAL,

NCF_SOFTWARE_ENUMERATED,
NCF_PHYSICAL,
NCF_MULTIPORT_INSTANCED_ADAPTER,
NCF_HAS_UI, NCF_HIDDEN,
NCF_NOT_USER_REMOVABLE

NCF_VIRTUAL,
NCF_SOFTWARE_ENUMERATED, and
NCF_PHYSICAL are mutually exclusive.

The BusType entry is required for a
physical adapter.

The EisaCompressedId entry is required
for an EISA adapter. This entry specifies
both an EISA Compressed ID and an
adapter mask for the adapter. Windows
XP and later operating systems do not
support EISA adapters.

A Port1DeviceNumber or
Port1FunctionNumber entry is required
for a multiport network adapter.

DDInstall.Services Section Required No network-specific requirements.

INF File Section Status Comments

Add-registry-sections Required Creating the Ndi Key

Specifying service-related values

Specifying Bundle Membership(only for
LBFO miniport drivers)

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange:

ndis5, ndisatm, ndiswan, ndiscowan,
noupper, ndis5_atalk, ndis5_dlc,
ndis5_ip, ndis5_ipx, ndis5_nbf,
ndis5_streams

LowerRange:

ethernet, atm, tokenring, serial, fddi,
baseband, broadband, arcnet, isdn,
localtalk, wan

Optional Setting static parameters for the
component

Requiring the Installation of Another
Network Component

Specifying Configuration Parameters for
the Advanced Properties Page

Specifying Custom Property Pages for
Network Adapters

INF Strings Section Required No network-specific requirements.

WAN adapters have additional installation requirements that are described in the
following topics:

Specifying WAN Endpoints for a WAN Adapter

Specifying ISDN Keys and Values for an ISDN Adapter

Installing a Multiprotocol WAN NIC

Additional Requirements for WAN Adapters

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Note The Remove Section and Notify Objects for Network Components are not
supported.

Installation Requirements for Network
Protocols
Article • 12/15/2021

This topic summarizes the installation requirements for network protocols.

INF File Section Status Comments

Version Section Required Class= NetTrans

ClassGuid= {4D36E975-E325-
11CE-BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not
distributed with Windows
2000. If the INF file is
distributed with Windows
2000, a LayoutFile entry must
be specified in the Version
section, and the
SourceDisksNames and
SourceDisksFiles sections are
not used.

No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name, for example:
MS_DLC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

DDInstall Section Required Characteristics entry

Allowable values:

NCF_HIDDEN

NCF_NO_SERVICE

NCF_NOT_USER_REMOVABLE

NCF_HAS_UI

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Required:

Creating the Ndi Key

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange:

netbios, ipx, tdi, winsock,
noupper

LowerRange:

ndis5, ndisatm, nolower

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Specifying service-related
values

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

INF File Section Status Comments

Winsock Sections Optional For a protocol that provides a
Winsock interface, a Winsock-
install section is required and
a Winsock-remove section is
optional.

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Installation Requirements for Network
Filter Drivers
Article • 12/15/2021

This topic summarizes the INF file requirements for network filter drivers. Filter drivers
are supported in NDIS 6.0 and later versions. For more information about how to install
filter drivers, see NDIS Filter Driver Installation.

INF File Section Status Comments

Version Section Required Class= NetService ClassGuid=
{4D36E974-E325-11CE-BFC1-
08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Optional No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name (for example,
MS_DLC).

DDInstall Section Required Characteristics entry:

NCF_LW_FILTER (0x40000) is
set. Filter drivers must not set
the NCF_FILTER (0x400) flag.
The values of the NCF_Xxx
flags are defined in Netcfgx.h.
For more information about
NCF_Xxx flags, see DDInstall
Section in a Network INF File.

Set the NetCfgInstanceId
entry.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Creating the Ndi Key

The ServiceBinary entry in the
service-install section of the
INF file specifies the path to
the binary for the filter driver.

Set the FilterType and
FilterRunType . See Types of
Filter Drivers.

Set the UpperRange,
LowerRange, and
FilterMediaTypes entries. See
Specifying Filter Driver Binding
Relationships.

Specify the primary service
name of the filter for the
CoServices attribute.

Specify the FilterClass to
determine the order in a stack
of modifying filters. See
Configuring an INF File for a
Modifying Filter Driver.

See also Configuring an INF
File for a Monitoring Filter
Driver, Adding Service-Related
Values to the Ndi Key, and
DDInstall.Services Section in a
Network INF File.

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

INF File Section Status Comments

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Installation Requirements for Network
MUX Intermediate Drivers
Article • 12/15/2021

This topic summarizes the installation requirements for network MUX intermediate
drivers. For more information about installation requirements for MUX intermediate
drivers, see Installing an Intermediate Driver.

Two INF files are required to install a network MUX intermediate driver :

Driver protocol (Class= NetTrans)

Driver device (Class= Net)

INF File Section Status Comments

Version Section Required Class= NetTrans

ClassGuid= {4D36E975-E325-
11CE-BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not
distributed with Windows
2000. If the INF file is
distributed with Windows
2000, a LayoutFile entry must
be specified in the Version
section, and the
SourceDisksNames and
SourceDisksFiles sections are
not used.

No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

INF Manufacturer Section Required No network-specific
requirements.

Protocol INF File for a Network MUX Intermediate Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

DDInstall Section Required Characteristics entry:

NCF_HAS_UI is required.

The device INF must be copied
to the system INF directory,
see Copying INFs.

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Creating the Ndi Key

Specifying Binding Interfaces

UpperRange:

noupper

LowerRange:

ethernet, atm, tokenring, serial,
fddi, baseband, broadband,
arcnet, isdn, localtalk, wan

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Specifying service-related
values

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/copying-inf-files
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

INF File Section Status Comments

Version Section Required Class= Net

ClassGuid= {4D36E972-E325-
11CE-BFC1-08002BE10318}

ControlFlags Section Required This section must contain an
ExcludeFromSelect entry for
the device.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

DDInstall Section Required Characteristics entry:

NCF_VIRTUAL is required.
NCF_HIDDEN and
NCF_NOT_USER_REMOVABLE
are optional.

DDInstall.Services Section Required No network-specific
requirements.

Device INF File for a Network MUX Intermediate Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

Add-registry-sections Required Creating the Ndi Key

Specifying service-related
values

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange:

ndis5, ndisatm, ndiswan,
ndiscowan, noupper,
ndis5_atalk, ndis5_dlc,
ndis5_ip, ndis5_ipx, ndis5_nbf,
ndis5_streams

LowerRange:

nolower

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Installation Requirements for Network
Filter Intermediate Drivers
Article • 12/15/2021

Note Filter intermediate drivers are not supported in NDIS 6.0 and later. You should use
the NDIS filter driver interface instead. For more information about NDIS filter drivers,
see NDIS Filter Drivers.

This topic summarizes the INF file requirements for NDIS 5.x network filter intermediate
drivers.

Two INF files are required to install a network filter intermediate driver:

Driver service (Class= NetService)

Driver device (Class= Net)

INF File Section Status Comments

Version Section Required Class= NetService

ClassGuid= {4D36E974-E325-
11CE-BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not
distributed with Windows
2000. If the INF file is
distributed with Windows
2000, a LayoutFile entry must
be specified in the Version
section, and the
SourceDisksNames and
SourceDisksFiles sections are
not used.

No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

Service INF File for a Network Filter Intermediate Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section

INF File Section Status Comments

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

DDInstall Section Required Characteristics entry:

NCF_FILTER is required.
NCF_HAS_UI and
NCF_NO_SERVICE are optional.

The device INF must be copied
to the system INF directory,
see Copying INFs.

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Creating the Ndi Key

FilterClass, FilterDeviceInfId,
FilterMediaTypes

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange: noupper

LowerRange: nolower

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/copying-inf-files
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

INF File Section Status Comments

Version Section Required Class= Net

ClassGuid= {4D36E972-E325-
11CE-BFC1-08002BE10318}

ControlFlags Section Required This section must contain an
ExcludeFromSelect entry for
the device.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

DDInstall Section Required Characteristics entry:

NCF_VIRTUAL is required.
NCF_HIDDEN and
NCF_NOT_USER_REMOVABLE
are optional.

DDInstall.Services Section Required The ServiceName value of the
AddService directive must
match the filter component's
Service value under the Ndi
key.

Add-registry-sections Required Creating the Ndi Key

Specifying service-related
values

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

INF Strings Section Required No network-specific
requirements.

Device INF File for a Network Filter Intermediate Driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Installation Requirements for Network
Clients
Article • 12/15/2021

This topic summarizes the installation requirements for network clients.

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

INF File Section Status Comments

Version Section Required Class= NetClient

ClassGuid= {4D36E973-E325-
11CE-BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not
distributed with Windows
2000. If the INF file is
distributed with Windows
2000, a LayoutFile entry must
be specified in the Version
section, and the
SourceDisksNames and
SourceDisksFiles sections are
not used.

No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

DDInstall Section Required Characteristics entry

Allowable values:

NCF_HIDDEN

NCF_NO_SERVICE

NCF_NOT_USER_REMOVABLE

NCF_HAS_UI

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Creating the Ndi Key

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange: noupper

LowerRange: ipx, tdi, winsock,
netbios, nolower

Add-registry-sections Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Specifying service-related
values

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

NetworkProvider and
PrintProvider Sections

Required if ... Required if an alternative
device name is specified for
the network client or a short
name for the component is
specified for use with the net
view command.

NetworkProvider and
PrintProvider Sections

Required if ... Required if the network client
is a print provider.

INF File Section Status Comments

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Installation Requirements for Network
Services
Article • 12/15/2021

This topic summarizes the installation requirements for network services.

INF File Section Status Comments

Version Section Required Class = NetService

ClassGuid = {4D36E974-E324-
11CE-BFC1-08002BE10318}

INF SourceDisksNames
Section and INF
SourceDisksFiles Section

Required if ... Required if the INF file is not
distributed with Windows
2000. If the INF file is
distributed with Windows
2000, a LayoutFile entry must
be specified in the Version
section, and the
SourceDisksNames and
SourceDisksFiles sections are
not used.

No network-specific
requirements.

INF DestinationDirs Section Required No network-specific
requirements.

ControlFlags Section Optional No network-specific
requirements.

INF Manufacturer Section Required No network-specific
requirements.

Models Section Required The hw-id should consist of a
provider name followed by an
underscore and a
manufacturer name or the
product name--for example:
MS_DLC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-manufacturer-section

INF File Section Status Comments

DDInstall Section Required Characteristics entry--
allowable values:

NCF_HIDDEN

NCF_NO_SERVICE

NCF_NOT_USER_REMOVABLE

NCF_HAS_UI

DDInstall.Services Section Optional No network-specific
requirements.

Add-registry-sections Required Creating the Ndi Key

Specifying Binding Interfaces

Allowable binding interfaces:

UpperRange: noupper

LowerRange: ipx, tdi, winsock,
netbios, nolower

Optional Setting static parameters for
the component

Requiring the Installation of
Another Network Component

Specifying service-related
values

Adding a HelpText Value

Adding Registry Values for a
Notify Object

Remove Section Optional

INF Strings Section Required No network-specific
requirements.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

Notify Objects for Network Components
Article • 12/15/2021

A notify object processes notifications that are sent by the network configuration
subsystem to the object on behalf of a specific network component. A notify object is
served up by a dynamic-link library (DLL). A notify object is used to display Property
pages for a network component and to give that component programmatic control over
the network configuration.

Note A network component does not generally require a notify object if both of the
following conditions are true:

A network component can be installed and removed through its information (INF)
file

Reacting to changes in network configuration is not a requirement

The following sections describe notify objects and explain how to develop them:

About Notify Objects

Creating a Notify Object

For reference information for the interface methods that support notify objects, see
Notify Objects.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559161(v=vs.85)

About Notify Objects
Article • 12/15/2021

A notify object processes notifications that the network configuration subsystem sends
to the object on behalf of a specific network component. This network component owns
the notify object. Network components that can own a notify object are:

Transports such as a protocol driver

Services such as an intermediate driver

Clients such as a Client for Microsoft Networks

Note Network cards do not support and cannot own notify objects. Physical or virtual
network cards that participate in either configuring the network or installing and
uninstalling must use INF files or the device co-installer mechanism. For more
information, see Writing a Co-installer.

A notify object performs the following actions:

Exposes interface methods to the network configuration subsystem so that the
network configuration subsystem can inform the notify object about the
occurrence of events on which the notify object requested notification.

Calls methods of the network configuration subsystem's public interfaces to
perform actions that include but are not limited to installing and removing
network devices. For more information, see Network Configuration Interfaces.

To request and receive notifications and to communicate with each other, the notify
object and the network configuration subsystem implement Component Object Model
(COM) interfaces.

Notify objects are COM objects that reside within dynamic-link libraries (DLLs). These
DLLs are COM component servers. Each type of network component is associated with a
class installer which installs specific types of network components and registers COM
class objects that are owned by these network components. After the main install phase
for network components is complete, the objects are registered. To register a COM class
object, the class installer calls the object's DLL entry-point function.

Whenever the operating system installs, upgrades, or removes networking functionality,
or whenever applications configure the network, the operating system or those
applications must start the network configuration subsystem. After the network

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/writing-a-co-installer
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559080(v=vs.85)

configuration subsystem starts, it creates an instance of a notify object, and the notify
object performs particular operations.

The following topics describe the types of notifications that notify objects receive and
the operations that notify objects perform:

Notify Object Diagram

Processing Notifications

Installing Network Components

Removing Network Components

Upgrading Network Components

Displaying and Changing Properties

Configuring the Network

Notify Object Diagram
Article • 12/15/2021

The following diagram shows how client applications that install or control networking
call the network configuration subsystem. This subsystem calls network class installers to
install network components and to register notify objects for those components. Notify
objects call back to the subsystem to configure the network on behalf of those
components that own the objects.

Processing Notifications
Article • 12/15/2021

The network configuration subsystem sends notifications to notify objects at the
following intervals:

During networking setup--including operating system installation, installing
networking capability on an operating system that did not previously support
networking, upgrading the operating system, or uninstalling networking features

During network configuration--including adding, removing, enabling, and
disabling network components, changing network components, and changing how
the network configuration subsystem binds network components together

After an application directs the subsystem to display the properties of network
components that own notify objects

To process notifications, a notify object performs the following general sequence of
operations:

1. When the notify object is loaded, it reads the system registry to form a model of
the current network configuration in its internal data structures.

2. After the network configuration subsystem sends notifications to the notify object
about networking changes that the notify object previously requested, the notify
object modifies its internal data structures to keep track of those changes.

3. When the network configuration subsystem is done sending notifications to the
notify object, the subsystem calls the notify object's
INetCfgComponentControl::ApplyRegistryChanges method to commit the
changes to the system registry.

Note The notifications mentioned in the preceding sequence can also include a call to
the notify object's INetCfgComponentControl::CancelChanges method in which case
the notify object should revert back to the original network configuration. Before
modifying the original network configuration, the notify object should make two copies
of the configuration. The notify object can modify one copy to include changes and
leave the other copy in the original condition. The notify object can use the unmodified
copy when reverting back to the original network configuration.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547728(v=vs.85)

Installing Network Components
Article • 05/30/2023

Network components are installed by the network configuration subsystem.

To create a driver package with a notify object that is executed from the Driver Store,
you must have a minimum OS build number of 25341. You can't successfully install a
driver package in this scenario on older versions of Windows.

To install a network component

1. The network configuration subsystem calls the class installer for the particular
component type. The class installer then calls the Setup API to retrieve information
from the component's INF file and to install the component.

If the component owns a notify object, the class installer retrieves the name of the
DLL that houses the notify object. This DLL appears in the component's INF file as
follows:

INF

The class installer calls the DLL's entry-point function to register the notify object.
The network configuration subsystem creates an instance of the notify object and
calls the object's INetCfgComponentControl::Initialize method. This method
initializes the object and provides access to the component and all aspects of
network configuration.

2. To perform operations required to install the component, the network
configuration subsystem calls the notify object's INetCfgComponentSetup::Install
method.

If installation of the component is unattended, the network configuration
subsystem calls the notify object's INetCfgComponentSetup::ReadAnswerFile
method. This method opens and retrieves the component's parameters from a file
for unattended setup that is known as an answer file.

3. After the network configuration subsystem creates an instance of and initializes the
notify object, the subsystem calls the notify object's
INetCfgComponentNotifyGlobal::GetSupportedNotifications method to retrieve
the types of notifications required by the object. The subsystem uses this
information to send required notifications to the object. The object can use these

HKR, Ndi, ComponentDll, 0, "notifyobject.dll"

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-store
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547762(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547765(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547734(v=vs.85)

notifications to control aspects of networking setup and configuration that might
affect the component that owns the object. For example, if the subsystem calls the
INetCfgComponentNotifyGlobal::SysNotifyComponent method to notify the
object that the subsystem installed or removed another network component, the
object has the opportunity to perform operations related to the change.

After the network configuration subsystem creates an instance of and initializes the
notify object, the subsystem also calls any of the methods of the notify object's
INetCfgComponentNotifyBinding interface to notify the object about changes to
the way the subsystem binds other network components to the component that
owns the notify object.

4. When the network configuration subsystem is ready to apply the component's
properties to the operating system, it calls the notify object's
INetCfgComponentControl::ApplyRegistryChanges method to assign the
component's parameters under the component's registry key. The notify object
calls its component's INetCfgComponent::OpenParamKey method to open and
retrieve the component's registry key.

5. To configure the component's driver, the network configuration subsystem calls
the notify object's INetCfgComponentControl::ApplyPnpChanges method and
passes the INetCfgPnpReconfigCallback interface. The notify object calls the
INetCfgPnpReconfigCallback::SendPnpReconfig method to send configuration
information to its component's driver.

For more information about the Setup API and on files for unattended setup, see the
Microsoft Windows SDK.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547736(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547730(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547890(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547726(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547935(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547943(v=vs.85)

Removing Network Components
Article • 12/15/2021

Network components are removed by the network configuration subsystem.

To remove a network component

1. The network configuration subsystem creates an instance of the notify object and
calls the object's INetCfgComponentControl::Initialize method. This method
initializes the object and provides access to the component and all aspects of
network configuration.

2. The subsystem calls the notify object's INetCfgComponentSetup::Removing
method to perform operations required to remove the component. The Removing
method performs cleanup operations to prepare for the component's removal.

3. The subsystem calls the notify object's
INetCfgComponentControl::ApplyRegistryChanges method to remove
information about the network component from the registry.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547769(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)

Upgrading Network Components
Article • 12/15/2021

Network components are upgraded by the network configuration subsystem.

To upgrade a network component

1. The network configuration subsystem creates an instance of the notify object and
calls the object's INetCfgComponentControl::Initialize method. This method
initializes the object and provides access to the component and all aspects of
network configuration.

2. When the operating system is installed or upgraded to a different version, the
network configuration subsystem calls the notify object's
INetCfgComponentSetup::Upgrade method.

3. The subsystem calls the notify object's
INetCfgComponentControl::ApplyRegistryChanges method to modify
information about the network component in the registry and then calls the notify
object's INetCfgComponentControl::ApplyPnpChanges method and passes the
INetCfgPnpReconfigCallback interface to configure the component's driver with
the upgraded information.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547783(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547726(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547935(v=vs.85)

Displaying and Changing Properties
Article • 12/15/2021

The network configuration subsystem displays Property pages for a network component
and changes the component's parameters.

A component's properties can be displayed and modified from Control Panel. When you
click the Network icon, you start the network configuration subsystem, which creates an
instance of the notify object and calls the object's INetCfgComponentControl::Initialize
method. This method initializes the object and provides access to the component and all
aspects of network configuration.

The application calls the component's INetCfgComponent::RaisePropertyUi method to
display the component's properties. The RaisePropertyUi method then calls the
following notify object methods:

INetCfgComponentPropertyUi::QueryPropertyUi method to determine if a
specific context is appropriate to display properties for the component.

INetCfgComponentPropertyUi::SetContext method to direct the component's
notify object to display the component's properties in the specified context.

INetCfgComponentPropertyUi::MergePropPages method to create and merge
custom pages for the component's property sheet into the default set.

If the user changes one of the component's parameters on one of the custom pages,
RaisePropertyUi calls the notify object's
INetCfgComponentPropertyUi::ApplyProperties method to store the change in
memory.

To apply the change, the network configuration subsystem calls the notify object's
INetCfgComponentControl::ApplyRegistryChanges method to modify information
about the network component in the registry. To configure the component's driver with
the modified information, the network configuration subsystem calls the notify object's
INetCfgComponentControl::ApplyPnpChanges method and passes the
INetCfgPnpReconfigCallback interface.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547895(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547752(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547746(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547741(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547726(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547935(v=vs.85)

Configuring the Network
Article • 12/15/2021

A notify object can provide the network component that owns it with programmatic
control over network configuration.

A network component's properties can be configured from the Network Control Panel
application. When you click the Network icon, you start the network configuration
subsystem, which creates an instance of the notify object and calls the object's
INetCfgComponentControl::Initialize method. This method initializes the object and
provides access to the component and all aspects of network configuration.

After the network configuration subsystem creates an instance of and initializes the
notify object, the subsystem calls the notify object's
INetCfgComponentNotifyGlobal::GetSupportedNotifications method to retrieve the
types of notifications required by the object. Using this information, the subsystem can
send required notifications to the object. The object can use these notifications to
control aspects of networking setup and configuration that might affect the component
that owns the object. For example, if the subsystem calls the notify object's
INetCfgComponentNotifyGlobal::SysQueryBindingPath method to notify the object
that the subsystem is about to add a binding path to which other network components
belong, the object has the opportunity to request that the subsystem disable that
binding path. In addition, the subsystem calls any of the methods of the notify object's
INetCfgComponentNotifyBinding interface. These methods notify the object about
changes to the way the subsystem binds other network components to the component
that owns the notify object.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547734(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547737(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547730(v=vs.85)

Creating a Notify Object
Article • 12/15/2021

A notify object should be created for a network component if the network component
requires some control over networking setup and configuration and the ability to
display custom property pages that users can use to modify the component's
properties.

The following topics describe how to create a notify object:

Loading the Notify Object DLL and Class Object

Defining a Notify Class

Creating and Initializing an Instance of a Notify Object

Installing, Upgrading, and Removing the Component

Creating Property Pages for the Component

Setting Context to Display Properties

Evaluating Changes to Network Configuration

Applying Component Changes to the Registry

Configuring the Component's Driver

Retrieving Network Configuration Interface Pointers

Loading the Notify Object DLL and Class
Object
Article • 12/15/2021

Notify objects for network components should be implemented as Component Object
Model (COM) objects. These COM objects reside in DLLs that are COM component
servers. For more information about developing DLL COM servers, see the Microsoft
Windows SDK.

The DLL for a particular notify object should be implemented to export a set of entry-
point functions:

A DllMain function to let the network configuration subsystem load the DLL into
the virtual address space for the subsystem.

DllRegisterServer and DllUnregisterServer functions to put information into the
operating system registry for the DLL's class objects. The network configuration
subsystem uses this registry information to locate and load a network component's
notify object.

A DllCanUnloadNow function to let the network configuration subsystem
determine whether the DLL is in use. If the DLL is not in use, the subsystem can
safely unload the DLL from memory.

In order for a notify object DLL to be a COM server, it must expose a class factory for the
notify object the server supports. This class factory lets the network configuration
subsystem create an instance of the notify object. The class factory should inherit from
the IClassFactory interface. For more information about implementing classes that
inherit from IClassFactory, see the Windows SDK.

Defining a Notify Class
Article • 12/15/2021

Notify classes must be implemented so that they inherit from the
INetCfgComponentControl interface. However, if notify objects perform certain
operations their notify classes must also be implemented to inherit from the following
interfaces:

If a notify object performs operations related to installing, upgrading, and
removing the component that owns the object, the associated notify class must
inherit from the INetCfgComponentSetup interface.

If a notify object displays custom property pages for the component that owns the
object, the associated notify class must inherit from the
INetCfgComponentPropertyUi interface.

If a notify object evaluates changes to the way the network configuration
subsystem binds the component that owns the object to other network
components, the associated notify class must inherit from the
INetCfgComponentNotifyBinding interface.

If a notify object evaluates changes to network configuration that might affect the
component that owns the object, the associated notify class must inherit from the
INetCfgComponentNotifyGlobal interface.

Certain data members within notify classes should be defined as common to all notify
objects. Certain data members should be defined as specific to their component. Data
members that all notify objects should define include:

A pointer to an instance of the network component that owns the object of type
INetCfgComponent interface. An instance of a notify object uses this pointer to
access and control the component that owns the object.

A pointer to an instance of the network configuration object of type INetCfg
interface. An instance of a notify object uses this pointer to access all aspects of
network configuration.

Variables to store parameter information for the component that owns the notify
object

A variable that specifies the action that a notify object previously performed.
Define constants to indicate the different actions that notify objects might
perform. When the network configuration subsystem calls the notify object's

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547725(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547758(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547738(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547730(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547733(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547715(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547694(v=vs.85)

INetCfgComponentControl::ApplyRegistryChanges method to apply
configuration changes to the registry, ApplyRegistryChanges uses this variable to
determine how to make registry changes. For example, if a notify object previously
performed operations relating to installing the component that owns the object in
its INetCfgComponentSetup::Install method, Install should set this variable to
indicate the action as install.

A registry key of type HKEY. A notify object calls the
INetCfgComponent::OpenParamKey method of the component that owns the
object to open and retrieve the registry key that contains parameters for the
component. The notify object then sets the HKEY member to that key.

Define a constructor and a destructor for your notify class. Also consider defining private
methods that only the notify class can use.

All the IUnknown interface methods should be implemented for a notify class. If a notify
class inherits from any of the optional interfaces noted in the preceding list, all the
methods of those interfaces must be implemented. Note that E_NOTIMPL is not a valid
return type for any of the methods of the notify object interfaces. If a notify object does
not require an implementation for a particular method, simply implement the method to
return S_OK.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547762(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547890(v=vs.85)

Creating and Initializing an Instance of a
Notify Object
Article • 12/15/2021

The network configuration subsystem must create an instance of the notify object and
initialize the object before the subsystem can inform a notify object about changes to
network configuration and display custom property pages for the component that owns
the object.

The subsystem creates an instance of the notify object from the DLL's class factory. The
class factory then calls the constructor for the notify class.

The class constructor should first assign initial values to class data members. Values that
the constructor should initially assign include the following:

The constructor should set the interface pointer to an instance of a network
component, INetCfgComponent, to a NULL value.

The constructor should set the interface pointer to an instance of the network
configuration object, INetCfg, to a NULL value.

The constructor should set the variable that specifies the action that the notify
object previously performed to a constant that identifies an unknown action. For
more information about this variable, see Defining a Notify Class.

After the network configuration subsystem creates an instance of the notify object, the
subsystem calls the object's INetCfgComponentControl::Initialize method to initialize
the object instance. In this call, the subsystem passes an INetCfgComponent interface
pointer. This INetCfgComponent provides the notify object with an instance of the
object's component that the object can use to access and control the component. In this
call, the subsystem also passes an INetCfg interface pointer to provide the notify object
with an instance of the network configuration object that the notify object uses to
access all aspects of network configuration.

The Initialize method should assign the INetCfgComponent and INetCfg interface
pointers provided by the network configuration subsystem to data members of the
notify class. Initialize should then call:

the INetCfg::AddRef method to increment the reference count of the network
configuration object

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547715(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547694(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547729(v=vs.85)

the INetCfgComponent::AddRef method to increment the reference count of the
component that owns the notify object

No other notify object interface methods are called until Initialize returns.

Installing, Upgrading, and Removing the
Component
Article • 12/15/2021

When the network configuration subsystem installs, upgrades, or removes a network
component, the subsystem also calls the component's notify object to complete the
installation, upgrade, and removal. The component's notify object can be implemented
to perform operations that the component might require. For example:

A notify object for a multiplexer for a virtual LAN can be implemented so that
when the subsystem installs the multiplexer, the notify object will install virtual
adapters that the multiplexer protocol binds to.

To install a virtual adapter, the notify object calls the network configuration's
INetCfgClassSetup::Install method. In this call, the notify object passes the
identifier of the virtual adapter to install. The notify object can call
INetCfgClassSetup::Install, for example, from its
INetCfgComponentNotifyBinding::NotifyBindingPath or
INetCfgComponentPropertyUi::ApplyProperties method.

To complete the installation of the virtual adapter, the operating system requires
the INF file for the virtual adapter. To ensure that this INF file can be located, it
must be copied to the operating system when the multipexer is installed. For more
information, see Copying INFs. This topic indicates that the CopyINF directive or a
call to the SetupCopyOEMInf function by a co-installer or setup application can be
used to copy INF files to the target system's INF directory. However, if the INF file
for the multiplexer (original INF) is copied using SetupCopyOEMInf, then the INF
file for the virtual adapter must also be copied using SetupCopyOEMInf because
the operating system only handles a CopyINF directive if the original INF is not yet
in the INF directory.

The multiplexer's notify object can be implemented so that when the subsystem
removes the multiplexer, the notify object will remove all virtual adapters. To
remove a virtual adapter, the notify object calls the network configuration's
INetCfgClassSetup::DeInstall method. In this call, the notify object passes the
pointer to the INetCfgComponent interface of the virtual adapter. The notify
object can call INetCfgClassSetup::DeInstall, for example, from its
INetCfgComponentNotifyBinding::NotifyBindingPath or
INetCfgComponentPropertyUi::ApplyProperties method.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547711(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547731(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547741(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/copying-inf-files
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547710(v=vs.85)

The component's notify object can be implemented so that when the subsystem
upgrades the component, the notify object will change the order of the
component's binding path. To change this order, a notify object's
INetCfgComponentSetup::Upgrade method calls either the
INetCfgComponentBindings::MoveBefore or the
INetCfgComponentBindings::MoveAfter methods.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547783(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547722(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547721(v=vs.85)

Creating Property Pages for the
Component
Article • 12/06/2022

A notify object creates custom property pages after the network configuration
subsystem calls the notify object's INetCfgComponentPropertyUi::MergePropPages
method. Custom property pages can be merged into the default set of pages on the
component's property sheet using the MergePropPages method. MergePropPages will
return the appropriate number of default pages into which the custom pages can be
merged.

To create custom property pages, MergePropPages calls the COM CoTaskMemAlloc
function to allocate memory for handles to PROPSHEETPAGE structures. Each of these
handles represents a property page to create. If CoTaskMemAlloc successfully allocates
the memory for the handles, MergePropPages will declare and fill PROPSHEETPAGE
structures for each property page. After MergePropPages fills these structures, it calls
the Win32 CreatePropertySheetPage function for each property page. In this call,
MergePropPages passes the address of the PROPSHEETPAGE structure to create.

A dialog-box callback function should also be implemented for each property page that
MergePropPages creates. A dialog-box callback function processes messages that the
operating system sends to the property page that is associated with that dialog-box
function. To associate a property page with a dialog-box function, MergePropPages
should point the pfnDlgProc member of each PROPSHEETPAGE structure for each page
to the dialog-box function for the page.

A dialog-box function processes the following messages:

The WM_INITDIALOG message, which is sent to the dialog-box function
immediately before the operating system displays its associated property page.
Dialog-box functions typically use this message to initialize the property page and
to perform tasks that affect the appearance of the property page.

The WM_NOTIFY message, which is sent to the dialog-box function after an event
occurs in the property page. Other information sent with this message identifies
what event has occurred. This event information is contained in a pointer to a
NMHDR structure. Information that NMHDR can contain for a property sheet
includes, for example:

The PSN_APPLY event, which indicates that a user clicks OK, Close, or Apply on
the property page. If the user clicks OK, Close, or Apply, the dialog-box function

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547746(v=vs.85)

can call the PropSheet_Changed macro to inform the property sheet that
information in the page has changed. In this call, the dialog-box function passes
handles to the property sheet and the page. The dialog-box function can call
the Win32 GetParent function and pass the handle to the page to retrieve the
handle to the property sheet.

After the dialog-box function notifies the property sheet about the change, the
network configuration subsystem calls the
INetCfgComponentPropertyUi::ValidateProperties method to check the
validity of all changes. If all changes are valid, the subsystem calls the notify
object's INetCfgComponentPropertyUi::ApplyProperties method to cause all
changes to take effect. The network configuration subsystem calls
ApplyProperties before the operating system closes the dialog box.

The ApplyProperties method can be implemented to retrieve information that
the user enters and to set the information to the notify object's data members.

The PSN_RESET event, which indicates that the operating system is about to
destroy a property page. A user might click Cancel on the property page to
initiate this action. If the user clicks Cancel, the network configuration
subsystem calls the INetCfgComponentPropertyUi::CancelProperties method
to cause all changes to be disregarded. The network configuration subsystem
calls CancelProperties before the dialog box is closed.

The PSN_KILLACTIVE event, which indicates that a property page is about to
become inactive. This event occurs when a user activates another page or clicks
OK.

Property-page callback functions can also be implemented for each property page that
MergePropPages creates. A property-page callback function performs initialization and
cleanup operations for the page. To associate a property page with a property-page
callback function, MergePropPages should point the pfnCallback member of each
PROPSHEETPAGE structure for each page to the property-page callback function for that
page.

See the Microsoft Windows SDK documentation for more information about:

creating property pages and structures, functions, and notifications for property
pages

dialog-box callback procedures, messages, and structures

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547755(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547741(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547742(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/com/controls-and-property-pages

Setting Context to Display Properties
Article • 12/15/2021

A notify object can set the context in which to display properties for the network
component that owns the object. The notify object sets the display context after the
network configuration subsystem calls the object's
INetCfgComponentPropertyUi::SetContext method but before the subsystem calls the
object's INetCfgComponentPropertyUi::MergePropPages method.

When the network configuration subsystem calls SetContext, it passes an IUnknown
interface. SetContext calls the QueryInterface method on this IUnknown interface to
determine the interface of the specific object that the subsystem supplied.

For example, the network configuration subsystem can supply the
INetLanConnectionUiInfo interface when it calls SetContext. SetContext can use the
GetDeviceGuid method of INetLanConnectionUiInfo to retrieve the GUID of a LAN
device. The notify object can subsequently display properties for its network component
in the context of this LAN device. For example, the notify object for the TCP/IP protocol
can display an IP address that is associated with a particular LAN adapter in the context
of that adapter. Doing so enables users to specify an IP address for that adapter.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547752(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547746(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff548005(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff548012(v=vs.85)

Evaluating Changes to Network
Configuration
Article • 12/15/2021

After the network configuration subsystem calls the methods of a notify object's
INetCfgComponentNotifyGlobal and INetCfgComponentNotifyBinding interfaces, the
notify object should evaluate the proposed change in network configuration that the
subsystem sends and should perform operations related to the change. The methods of
a notify object's INetCfgComponentNotifyGlobal and
INetCfgComponentNotifyBinding interfaces should be implemented to process only
the changes that affect the component that owns the object.

The following topics describe examples of how a notify object processes changes to
network configuration:

Adding a Component

Changing Bindings for a Component

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547733(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547730(v=vs.85)

Adding a Component
Article • 12/15/2021

The network configuration subsystem can inform a notify object when the subsystem
adds network components. After initializing a notify object, the subsystem calls the
notify object's INetCfgComponentNotifyGlobal::GetSupportedNotifications method to
retrieve the types of notifications required by the object. If the notify object specified
that it required notification when network components are added, the subsystem calls
the notify object's INetCfgComponentNotifyGlobal::SysNotifyComponent method and
passes NCN_ADD to inform the notify object that the subsystem installed a network
component. If the component that owns the notify object should bind to the specified
component, the notify object should perform operations to facilitate the binding. For
example, the following code shows how the notify object can bind its component to the
specified component if the specified component is a required physical network card.

C++

HRESULT CSample::SysNotifyComponent(DWORD dwChangeFlag,
 INetCfgComponent* pnccItem)
{
 HRESULT hr = S_OK;
 INetCfgComponentBindings *pncfgcompbind;
 // Retrieve bindings for the notify object's component (m_pncc)
 hr = m_pncc->QueryInterface(IID_INetCfgComponentBindings,
 (LPVOID*)&pncfgcompbind);
 // Determine if notification is about adding a component
 if (SUCCEEDED(hr) && (NCN_ADD & dwChangeFlag)) {
 // Retrieve the characteristics of the added component
 DWORD dwcc;
 hr = pnccItem->GetCharacteristics(&dwcc);
 // Determine if the added component is a physical adapter
 if (SUCCEEDED(hr) && (dwcc & NCF_PHYSICAL)) {
 // Determine the component's ID
 LPWSTR pszwInfId;
 hr = pnccItem->GetId(&pszwInfId);
 if (SUCCEEDED(hr)) {
 // Compare the component's ID to the required ID
 // and if they are the same perform the binding.
 static const TCHAR c_szCompId[] = TEXT("BINDTO_NIC");
 if (!_tcsicmp(pszwInfId, c_szCompId)) {
 hr = pncfgcompbind->BindTo(pnccItem);
 }
 }
 }
 }
 return hr;
}

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547734(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547736(v=vs.85)

Changing Bindings for a Component
Article • 12/15/2021

The network configuration subsystem always informs a notify object about changes in
binding that affect the notify object's network component. The subsystem calls the
notify object's INetCfgComponentNotifyBinding::NotifyBindingPath method and
passes a value that specifies the change along with a pointer to the INetCfgBindingPath
interface of the binding path involved in the change. If the subsystem passes
NCN_DISABLE to disable the binding path that the notify object's network component
shares with a specific network card, the notify object can activate the binding with
another network card as shown in the following code.

C++

HRESULT CSample::NotifyBindingPath(DWORD dwChangeFlag,
 INetCfgBindingPath* pncbp1)
{
 INetCfgComponent *pnccLow;
 INetCfgComponentBindings *pncbind;
 IEnumNetCfgBindingPath *penumncbp;
 INetCfgBindingPath *pncbp2;
 IEnumNetCfgBindingInterface *penumncbi;
 INetCfgBindingInterface *pncbi;
 DWORD dwFlags = EBP_BELOW;
 ULONG celt = 1; // Request one enumeration element.
 HRESULT hr = S_OK;
 // Retrieve bindings for the notify object's component (m_pncc)
 hr = m_pncc->QueryInterface(IID_INetCfgComponentBindings,
 (LPVOID*)&pncbind);
 // Determine if notification is about disabling a binding path.
 if (SUCCEEDED(hr) && (NCN_DISABLE & dwChangeFlag)) {
 // Retrieve enumerator for binding paths for the component.
 hr = pncbind->EnumBindingPaths(dwFlags, &penumncbp);
 // Reset the sequence and retrieve a binding path.
 hr = penumncbp->Reset();
 hr = penumncbp->Next(celt, &pncbp2, NULL);
 // Ensure the binding path is different.
 do {
 if (pncbp1 != pncbp2) break;
 hr = penumncbp->Skip(celt); // skip one element
 hr = penumncbp->Next(celt, &pncbp2, NULL);
 } while (SUCCEEDED(hr));
 if (SUCCEEDED(hr)) {
 // Retrieve enumerator for interfaces of the binding path.
 hr = pncbp2->EnumBindingInterfaces(&penumncbi);
 // Retrieve a binding interface for the binding path.
 hr = penumncbi->Next(celt, &pncbi, NULL);
 // Retrieve the lower network component.
 hr = pncbi->GetLowerComponent(&pnccLow);

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547731(v=vs.85)

 // If the component is a physical network card and binding
 // is currently disabled, enable binding.
 DWORD dwcc;
 hr = pnccLow->GetCharacteristics(&dwcc);
 if (SUCCEEDED(hr) && (dwcc & NCF_PHYSICAL)) {
 hr = pncbp2->IsEnabled(); // S_FALSE for disabled
 if (hr == S_FALSE) hr = pncbp2->Enable(TRUE);
 }
 }
 else return hr;
 }
 return hr;
}

Applying Component Changes to the
Registry
Article • 12/15/2021

After the network configuration subsystem calls a notify object's
INetCfgComponentControl::ApplyRegistryChanges method, the notify object should
set, modify, or delete information from the registry depending on the action previously
performed by the notify object. After the notify object performs specific actions related
to installing, removing, or modifying parameters of the component that owns the
object, the notify object should set a data member that indicates the action performed.
After the subsystem calls ApplyRegistryChanges to apply configuration changes to the
registry, ApplyRegistryChanges should use this data member to determine how to
make registry changes. For example:

If a notify object previously performed operations related to installing the
component that owns the object, the notify object should have set the data
member that indicates the action as "install". After the subsystem calls
ApplyRegistryChanges to apply configuration changes to the registry,
ApplyRegistryChanges should set information about the component in the
registry.

If a notify object previously performed operations related to removing the
component that owns the object, the notify object should have set the data
member that indicates the action as "remove". After the subsystem calls
ApplyRegistryChanges to apply configuration changes to the registry,
ApplyRegistryChanges should remove information about the component from the
registry.

If a user displays one of a component's custom property pages and modifies one
of the component's parameters, the component's notify object should have set the
data member that indicates the action as "modify parameter". After the subsystem
calls ApplyRegistryChanges to apply configuration changes to the registry,
ApplyRegistryChanges should change information about the component's
parameter in the registry.

To open and retrieve a component's registry key to modify information about the
component, the ApplyRegistryChanges method should be implemented to call the
component's INetCfgComponent::OpenParamKey method. To set values in the registry
under the component's registry key, implement ApplyRegistryChanges to write registry
data using Win32 functions. For example, ApplyRegistryChanges can call the

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547890(v=vs.85)

RegCreateKeyEx function to create a subkey to hold values, and the RegSetValueEx
function to create and set those values.

For more information about the registry, writing data to it, and retrieving data from it,
see the Microsoft Windows SDK.

Configuring the Component's Driver
Article • 12/15/2021

After the network configuration subsystem calls a notify object's
INetCfgComponentControl::ApplyPnpChanges method, the notify object should send
configuration information to the driver of the network component that owns the notify
object. The network configuration subsystem calls ApplyPnpChanges after it calls the
INetCfgComponentControl::ApplyRegistryChanges method and after drivers and
services for the particular network component have started. In the ApplyPnpChanges
call, the network configuration subsystem passes the INetCfgPnpReconfigCallback
interface. The component's notify object can use the INetCfgPnpReconfigCallback
interface to send configuration information to the component's driver. This driver must
be either a TDI provider or an NDIS miniport driver.

The notify object can call INetCfgPnpReconfigCallback::SendPnpReconfig within its
ApplyPnpChanges implementation to send configuration information to its
component's driver. SendPnpReconfig passes configuration information to the driver.

Alternatively, the notify object can call the Win32 CreateFile function to open a
connection to its component's driver. The notify object can call the Win32
DeviceIoControl function to send a control code along with input data directly to its
component's driver.

The notify object is not required to use INetCfgPnpReconfigCallback. But, if the notify
object uses INetCfgPnpReconfigCallback, a user will not be required to reboot the
operating system to cause configuration changes to take effect in the driver.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547726(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547727(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547935(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547943(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol

Retrieving Network Configuration
Interface Pointers
Article • 12/15/2021

When the network configuration subsystem initializes an instance of the notify object as
described in Creating and Initializing an Instance of a Notify Object, the object receives
INetCfgComponent and INetCfg interface pointers. INetCfgComponent points to the
notify object's component interface that the object can use to access and control the
component. INetCfg points to the root network configuration interface that the notify
object can use to access all aspects of network configuration. The following code uses
these INetCfgComponent and INetCfg interface pointers to retrieve other network
configuration interfaces that the notify object might require.

C++

// Using the notify object's component interface that the notify
// object received:
INetCfgComponent *pncfgcompThis, *pncfgcompUp, *pncfgcompLow;
INetCfgComponentBindings *pncfgcompbind;
IEnumNetCfgBindingPath *penumncfgbindpath;
INetCfgBindingPath *pncfgbindpath;
IEnumNetCfgBindingInterface *penumncfgbindintrfc;
INetCfgBindingInterface *pncfgbindintrfc;
HRESULT hr;
DWORD dwFlags; // EBP_ABOVE or EBP_BELOW
ULONG celt, celtFetched; // Number of requested and returned elements

// Retrieve a pointer to INetCfgComponentBindings to control and
// retrieve information about bindings for the component.
hr = pncfgcompThis->QueryInterface(IID_INetCfgComponentBindings,
 (LPVOID*)&pncfgcompbind);
// Retrieve a pointer to IEnumNetCfgBindingPath to enumerate binding
// paths for the component.
hr = pncfgcompbind->EnumBindingPaths(dwFlags, &penumncfgbindpath);
// Retrieve a pointer to INetCfgBindingPath that points to one or more
// binding paths for the component.
hr = penumncfgbindpath->Next(celt, &pncfgbindpath, &celtFetched);
// Retrieve a pointer to IEnumNetCfgBindingInterface to enumerate
// the collection of binding interfaces for the binding path.
hr = pncfgbindpath->EnumBindingInterfaces(&penumncfgbindintrfc);
// Retrieve a pointer to INetCfgBindingInterface that points to one or
// more binding interfaces for the binding path.
hr = penumncfgbindintrfc->Next(celt, &pncfgbindintrfc, &celtFetched);
// Retrieve pointers to INetCfgComponent for network components
// above and below the binding interface.
hr = pcfgbindintrfc->GetUpperComponent(&pncfgcompUp);
hr = pcfgbindintrfc->GetLowerComponent(&pncfgcompLow);

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547715(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff547694(v=vs.85)

// Using the root network configuration interface that the notify
// object received:
INetCfg *pnetcfg;
INetCfgLock *pncfglock;
INetCfgClass *pncfgclass;
INetCfgComponent *pncfgcompOther, *pncfgcompInstall;
INetCfgClassSetup *pncfgclsSetup
GUID *pguidClass; // For example, set to GUID_DEVCLASS_NETTRANS
IEnumNetCfgComponent *penumncfgcomp;
HWND hwndParent; // Handle to Window for selecting.
OBO_TOKEN *pOboToken; // Another component or the user installs.
DWORD dwSetupFlags, dwUpgradeFromBuildNo;

// Retrieve a pointer to INetCfgLock to obtain a lock on network
// configuration.
hr = pnetcfg->QueryInterface(IID_INetCfgLock, (LPVOID*)&pncfglock);
// Retrieve a pointer to INetCfgComponent for a specific component.
hr = pnetcfg->FindComponent(TEXT("MS_TCPIP"), &pncfgcompOther);
// Retrieve a pointer to IEnumNetCfgComponent to enumerate
// the collection of a particular type of component.
hr = pnetcfg->EnumComponents(pguidClass, &penumncfgcomp);
// Retrieve a pointer to INetCfgClass for a specific class of
// component.
hr = pnetcfg->QueryNetCfgClass(pguidClass, IID_INetCfgClass,
 (LPVOID*)&pncfgclass);
// Retrieve a pointer to INetCfgComponent for a specific component.
hr = pncfgclass->FindComponent(TEXT("MS_TCPIP"), &pncfgcompOther);
// Retrieve a pointer to IEnumNetCfgComponent to enumerate
// the collection of a particular type of component.
hr = pncfgclass->EnumComponents(&penumncfgcomp);
// Retrieve a pointer to INetCfgComponent that points to one or
// more components for the particular type of component.
hr = penumncfgcomp->Next(celt, &pncfgcompOther, &celtFetched);
// Retrieve a pointer to INetCfgClassSetup that enables installation
// or removal of a particular type of component.
hr = pncfgclass->QueryInterface(IID_INetCfgClassSetup,
 (LPVOID*)&pncfgclsSetup);
// Retrieve a pointer to INetCfgComponent for an installed component.
hr = pncfgclsSetup->SelectAndInstall(hwndParent, pOboToken,
 &pncfgcompInstall);
// Retrieve a pointer to INetCfgComponent for an installed component.
hr = pncfgclsSetup->Install(TEXT("MS_TCPIP"), pOboToken, dwSetupFlags,
 dwUpgradeFromBuildNo, TEXT("AnswerFile"),
 TEXT("AnswerFileSections"), &pncfgcompInstall);

Process for upgrading network
components
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(Service Pack 1 [SP1] and later), Microsoft Windows Server 2003, and later operating
systems.

The network upgrade process migrates parameter values for network components
during an operating system upgrade. The network upgrade process thus eliminates the
need to reconfigure upgraded network components after the new operating system is
installed.

The network upgrade process upgrades network components from Microsoft Windows
NT 3.51 or Windows NT 4.0 to Microsoft Windows 2000 or later versions of the
operating system. The network upgrade process does not upgrade network components
from Windows 2000 to later versions of the operating system.

Vendors whose network components are not released as part of Windows 2000 or later
should provide upgrade support for these components by supplying the following:

A network migration DLL that migrates the preupgrade parameter values for one
or more network components.

A netmap.inf file that maps the preupgrade device, hardware, or compatible ID of
one or more network components, to the corresponding ID in the new operating
system.

Optional custom Help message files that provide information about upgrading
network components.

The network upgrade process is described in the following topics:

Customizing the Network Upgrade Process

The Network Upgrade Process

Writing a Network Migration DLL

Creating a Netmap.inf File

There are two major steps involved in testing the upgrade of network components.
These are described in the following topics:

Setting Up the Test System

Running the Upgrade Test and Examining the Results

Network components whose drivers are released as part of Windows 2000 or later
operating systems are automatically upgraded when the operating system is installed.
No additional upgrade support is required for such components.

Customizing the Network Upgrade
Process
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

System administrators can customize the network upgrade process.

To customize the network upgrade process

1. Create a directory on the system for each network component to be upgraded.

2. Copy the vendor-supplied upgrade files for each network component to the
appropriate directory that you created in Step 1. These files must include a
netmap.inf file. NetSetup uses the netmap.inf file to identify which network
components to upgrade.

3. Create a netupg.inf file that contains an OemNetUpgradeDirs section and place it
a directory of your choice. Each line in the OemNetUpgradeDirs section of the
netupg.inf file specifies a path to a directory created in Step 1. Each directory
specified in the netupg.inf file must contain the vendor-supplied upgrade files for
the network component, including a netmap.inf file.

4. Set the NET_UPGRD_INIT_FILE_DIR environment variable to the directory that
contains the netupg.inf file.

During the Winnt32 phase of the network upgrade, NetSetup locates the netupg.inf file
in the directory specified by the NETUPGRD_INIT_FILE_DIR environment variable. In each
directory specified in the netupg.inf file, NetSetup then locates the netmap.inf file and
other vendor files for the network component to be upgraded. NetSetup processes
these files to upgrade the component. For more information, see The Network Upgrade
Process.

Creating a Netupg.inf File
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

The netupg.inf file contains a single section called OemNetUpgradeDirs. Each entry in
this section specifies the complete path to a directory that contains the vendor-supplied
upgrade files for a non-Microsoft-supported network component. Every network
component being upgraded must have a corresponding entry in the
OemNetUpgradeDirs section.

The following is an example of a netupg.inf file:

INF

Each directory specified in the OemNetUpgradeDirs section must contain a netmap.inf
file. This file, which is provided by the vendor of the network component, maps the
preupgrade device, hardware or compatible ID of a network component to the
corresponding ID in the upgraded operating system.

[OemNetUpgradeDirs]
c:\temp\adapter1
c:\temp\adapter2
c:\temp\protocol1
c:\temp\netclient1
c:\temp\netservice1

The Network Upgrade Process
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

The network upgrade process is divided into three distinct phases, which can be briefly
summarized as follows:

Winnt32 phase

Winnt32.exe calls NetSetup. NetSetup writes network component-specific
information to the AnswerFile and calls any vendor-supplied network migration
DLLs. The DLLs write component-specific information to the AnswerFile.
Winnt32.exe copies the Microsoft Windows 2000 or later files to the system being
upgraded and prepares the boot sector on the system. The system then boots into
text mode.

Text mode phase

Installation messages are displayed on a blue, text-based screen. Setup performs
the basic Windows 2000 or later installation. The system then boots into GUI
mode.

GUI mode phase

NetSetup processes the winnt.sif file, which is also known as the AnswerFile, and
installs the network components. Network migration DLLs can display a user
interface in which a user or system administrator can specify parameter values for
network components. Either NetSetup or a network migration DLL writes a
network component's preupgrade parameter values to the Windows 2000 or later
registry.

The phases of the network upgrade process are described in more detail in the
following topics:

Winnt32 Phase of the Network Upgrade Process

Text Mode Phase of the Network Upgrade Process

GUI Mode Phase of the Network Upgrade Process

Winnt32 Phase of the Network Upgrade
Process
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

The user or system administrator starts the upgrade process by taking either of the
following actions:

Selecting the component upgrade in the user interface that is displayed after the
Windows 2000 or later CD-ROM spins up

Selecting and running \i386\winnt32.exe on the CD-ROM

If the user or system administrator has set the NETUPGRD_INIT_FILE_DIR environment
variable on the system being upgraded, NetSetup searches for a netupg.inf file in the
directory specified by that variable. The netupg.inf file contains only one section:
OemNetUpgradeDirs. Each entry in this section specifies the complete path to a
directory that contains the vendor-supplied upgrade files, including a netmap.inf file, for
a network component. If the NETUPGRD_INIT_FILE_DIR environment variable is not set,
NetSetup (netupgrd.dll) looks for netmap.inf files in its own directory.

NetSetup reads the netmap.inf files to identify the network components that do not
have built-in upgrade support. If NetSetup is running in unattended mode, it displays a
wizard; however, the user or system administrator cannot use the wizard. If NetSetup is
not running in unattended mode, the wizard displays a list of the network components
that do not have built-in upgrade support.

Using the wizard, a user or system administrator can:

Click Cancel to abort the installation of the operating system.

Click Next to install the operating system without upgrading the listed network
components.

Specify the drive and directory location of vendor-supplied upgrade files for listed
network components.

NetSetup reads the netmap.inf file at the specified location and copies the vendor-
supplied upgrade files at that location to a temporary directory on the system's
hard disk. This temporary directory becomes the working directory for the vendor-

supplied network migration DLL. NetSetup also removes any component that has a
netmap.inf file from the component list in the wizard.

NetSetup generates the winnt.sif file (also known as the AnswerFile) in the Win_nt.~bt
directory, which is usually located on the C: drive.

NetSetup generates the AnswerFile as follows:

1. NetSetup reads the registry of the preupgraded system to enumerate each
network component. For each network component that has built-in upgrade
support, NetSetup writes the information that is read from the registry to the
AnswerFile.

2. For each network component that does not have built-in upgrade support,
NetSetup reads the component's netmap.inf file. The netmap.inf file maps the
preupgrade device, hardware, or compatible ID of a network component to the
corresponding ID in the upgraded operating system. If NetSetup matches the
preupgrade ID of the network component that it read from the registry with a
preupgrade ID in the OemNetAdapters, OemNetProtocols, OemNetServices, or
OemAsyncAdapters section of the netmap.inf file, NetSetup writes vendor-
provided information for the component to the AnswerFile.

3. Using the component's operating system device, hardware, or compatible ID,
NetSetup reads the OemUpgradeSupport section of the netmap.inf file to
determine which network migration DLL to load. NetSetup then loads the network
migration DLL, and calls the DLL's PreUpgradeInitialize function. The
PreUpgradeInitialize function supplies information that the DLL uses to initialize
itself.

4. NetSetup calls the DLL's DoPreUpgradeProcessing function once for each network
component supported by the network migration DLL. DoPreUpgradeProcessing
reads a network component's preupgrade parameter values from the registry and
calls the NetUpgradeAddSection and NetUpgradeAddLineToSection functions to
write these parameters, along with other component-specific information, to the
AnswerFile. DoPreUpgradeProcessing can also migrate binary data associated with
the preupgraded component by making appropriate entries in the AnswerFile.

5. After the AnswerFile is completely generated, NetSetup copies the vendor-
supplied upgrade files to the appropriate directories and then boots into the text
mode phase of the upgrade process.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562439(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545634(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559063(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559059(v=vs.85)

Text Mode Phase of the Network
Upgrade Process
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

Setup strips all comments from the AnswerFile and writes the AnswerFile to the
System32 directory under the name $Winnt$.inf. Then the system boots into GUI mode
setup. No network-specific processing occurs during the text mode phase.

GUI Mode Phase of the Network
Upgrade Process
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

Before the Windows 2000 or later operating system is installed on the system, NetSetup
reads the network-specific information that was written to the AnswerFile during the
Winnt32 phase.

If a network migration DLL wrote the InfToRunBeforeInstall key to a component's OEM
section in the AnswerFile, NetSetup finds the INF file and section specified by the key
and processes the INF directives in this section. This section usually contains the
AddReg, DelReg, AddService, or DelService directives.

After the Windows 2000 or later operating system is installed, NetSetup installs each
network component detected in the system, using the default parameter values
specified for the component in the component's Windows 2000 or later INF file.
NetSetup then installs network components listed in the AnswerFile.

If a network component's OEM section in the AnswerFile contains an OemDllToLoad key,
NetSetup loads the network migration DLL if the DLL is not already loaded and then
calls the DLL's PostUpgradeInitialize function. The PostUpgradeInitialize function
supplies the DLL with information that the DLL uses to initialize itself. NetSetup then
calls the DLL's DoPostUpgradeProcessing function once for each network component
to be upgraded by the DLL. DoPostUpgradeProcessing can display a user interface that
allows a user to specify parameter values for a component. DoPostUpgradeProcessing
writes any user-specified parameter values to the registry.

If the miniport driver for a network adapter required the adapter's instance ID before the
upgrade, it will probably require the adapter's instance ID after the upgrade. A network
migration DLL can call HrGetInstanceGuidOfPreNT5NetCardInstance from its
DoPostUpgradeProcessing function to obtain the Windows 2000 or later instance GUID
for a network adapter.

NetSetup starts the installed network protocols, clients, and services.

NetSetup processes the entries in the Identification section of the AnswerFile and tries
to connect the system to the workgroup or domain specified in that section.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559059(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562410(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545629(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546613(v=vs.85)

If the system being upgraded contains any Async adapters, Setup calls the Async class
installer, which upgrades each Async adapter as follows:

The Async class installer locates the OEM section for the Async adapter in the
AnswerFile.

From the Async adapter's OEM section, the Async class installer reads the
preupgrade parameter values for the adapter. These parameter values were written
by the network migration DLL for the adapter during the Winnt32 phase of the
upgrade.

The Async class installer writes the adapter's preupgrade parameter values to the
Windows 2000 or later registry.

Writing a Network Migration DLL
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

A network migration DLL migrates the parameter values for one or more network
components from Microsoft Windows NT 3.51 or Windows NT 4.0 to Windows 2000 or
later.

A network migration DLL must:

Load under the preupgrade operating system (Windows NT 3.51 or Windows
4.0)

The DLL cannot call any functions specific to Windows 2000 or later or use any
features specific to Windows 2000 or later. If the DLL runs in the postupgrade (GUI
mode) phase, it must also load under Windows 2000 and later operating systems.

Export the PreUpgradeInitializeandDoPreUpgradeProcessingfunctions

If the DLL runs in the GUI mode phase, it must export the PostUpgradeInitialize
and DoPostUpgradeProcessing functions, as well.

Make no irreversible changes during the Winnt32 phase

The DLL must not make any irreversible changes, such as deleting files or
modifying registry keys, during this phase because a user can cancel the upgrade
of a network component or the operating system. The DLL can, however, modify
files in its temporary working directory, which is specified by NetSetup in the call
to PreUpgradeInitialize.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562439(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545634(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562410(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545629(v=vs.85)

Creating a Netmap.inf File
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

The netmap.inf file is a vendor-supplied file that resides either in a directory specified by
an entry in the OemNetUpgradeDirs section of a netupg.inf file or in the directory that
contains netupgrd.dll. The netmap.inf file:

Maps a network component's preupgrade device ID to the component's Microsoft
Windows 2000 or later device ID

Specifies the network migration DLL that NetSetup loads

Optionally specifies an alternative Help message file

A network component that has built-in upgrade support in Windows 2000 or later
operating systems does not require a vendor-supplied netmap.inf file because these
components are automatically upgraded during the installation of Windows 2000 and
later operating systems.

This section includes the following topics:

Mapping IDs in a Netmap.inf File
Specifying the Upgrade DLL in a Netmap.inf File
Specifying Alternative Help Message Files in a Netmap.inf File

Mapping IDs in a Netmap.inf File
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

A netmap.inf file contains one or more of the following top-level sections. Each section
contains ID mappings for the components listed in the Map column.

Section Map

OemNetAdapters Network adapters, excluding Async adapters

OemAsyncAdapters Async network adapters

OemNetProtocols Network protocol drivers

OemNetServices Network services

OemNetClients Network clients

Each entry in a section maps a network component's preupgrade device, hardware, or
compatible ID to its corresponding Windows 2000 or later ID. Each entry specifies either
one-to-one ID mapping or one-to-many ID mapping. These mapping strategies are
described following.

Network clients are not defined as such in Windows NT 3.51 and Windows NT 4.0;
therefore, if an earlier network service becomes a network client under Windows 2000 or
later, its device ID mapping must be listed in the OemNetClients section, not in the
OemNetServices section.

One-to-One ID Mapping
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

An entry in an OemXxx section of a netmap.inf file that specifies one-to-one ID
mapping has the following format:

preupgrade-ID = postupgrade-ID

For example:

C++

A one-to-one ID mapping must be used for network protocols, services, and clients.
Either one-to-one ID mapping or one-to-many ID mapping can be used for network
adapters.

netservice=netservice_2000

One-to-Many ID Mapping
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

A one-to-many ID mapping maps a single preupgrade ID that represents more than one
network adapter. The only way to differentiate the adapters associated with a single
preupgrade ID is to inspect the values under the registry key that contains the
parameter values for the network adapter instance.

An entry in an OemAdapters or OemAsyncAdapters section that specifies a one-to-
many ID mapping has the following format:

preupgrade-ID = mapping-method-number, section-name

where:

mapping-method-number must be 0

section-name specifies a section in the netmap.inf file that contains the mapping
information

The netmap.inf file section specified by section-name contains the following entries:

ValueName = "Name"

Specifies the value that NetSetup reads under the registry key that contains the
parameter values for the network adapter instance. Name identifies a particular network
adapter.

ValueType = Type

Specifies the registry value type for ValueName. Type is an integer that corresponds to a
specific registry type.

ValueName= postupgrade-ID

ValueName is the value that NetSetup reads under the registry key that contains the
parameter values for the network adapter instance. postupgrade-ID is the Windows 2000
or later device ID for the adapter. One ValueName entry should be provided for each
adapter type that will be upgraded. If ValueName is set to the keyword ValueNotPresent
and if NetSetup finds no parameters values for the adapter instance, NetSetup uses the
postuprgrade-ID associated with ValueNotPresent for the adapter.

The following example shows a one-to-many device ID mapping:

C++

The OemAdapters section in the above example contains a single entry that identifies
the preupgrade device ID of the network adapter as DATAFIREU and specifies that the
DATAFIREU section of the netmap.inf file contains the mapping information for this
adapter.

The DATAFIREU section contains the following information:

The ValueName entry directs NetSetup to look for the BoardType value under the
Parameters key of the network adapter instance.

The ValueType entry, which is set to 1, specifies that the BoardType value is a
DWORD.

Each remaining value specifies a preupgrade device ID and a corresponding
Windows 2000 or later ID. For example, the ID for the DataFireIsaU board type is
DATAFIRE - ISA1U. The ValueNotPresent keyword can be specified instead of a
preupgrade ID.

NetSetup performs a one-to-many ID mapping as follows:

1. NetSetup reads the specified ValueName under the registry key that contains the
parameter values for the network adapter instance.

2. NetSetup attempts to match the ValueName with one of the ValueNames listed in
the specified section of the netmap.inf file. If no ValueName is listed under the
registry key, NetSetup attempts to find the ValueNotPresent keyword in the
specified section of the netmap.inf file.

3. If NetSetup finds a match, it installs the network adapter, using the INF file that has
the same name as the mapped Windows 2000 or later ID.

[OemAdapters]
DATAFIREU=0, DATAFIREU

[DATAFIREU]
ValueName = "BoardType"
ValueType = 1
DataFireIsaU = "DATAFIRE - ISA1U"
DataFireIsa1ST= "DATAFIRE - ISA1ST"
DataFireIsa4ST= "DATAFIRE - ISA4ST"
DataFireIsaGeneric = "ValueNotPresent"

If the registry keys or values for an adapter instance are identical for different adapter
types, it is not possible to map a single preupgrade device ID to more than one
Windows 2000 or later device ID without first modifying these registry keys or values.

The most effective way of handling this situation is as follows:

1. The network migration DLL's PreUpgradeInitialize function modifies the registry so
that the registry contains unique values for each instance of the network adapter.
These unique values should indicate the adapter type.

2. The PreUpgradeInitialize function sets the NUA_REQUEST_ABORT_UPGRADE flag,
which causes NetSetup to display a message that prompts the user to restart
winnt32.exe and abort the upgrade.

3. The user aborts the upgrade and then restarts winnt32.exe. The network migration
DLL can now use the unique values to map the single preupgrade device ID to
more than one Windows 2000 or later device ID.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562439(v=vs.85)

Specifying the Upgrade DLL in a
Netmap.inf File
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

A netmap.inf file must have an OemUpgradeSupport section. For each network
component to be upgraded, the OemUpgradeSupport section must contain an entry
that has the following format:

postupgrade-ID = network-migration-DLL[, Inf-file-name]

where:

postupgrade-ID is the network component's Windows 2000 or later device ID, which was
obtained by NetSetup, as described in Winnt32 Phase of the Network Upgrade Process.

network-migration-DLL is the name of the network migration DLL that NetSetup must
load to upgrade the network component. Only one migration DLL can be specified in a
netmap.inf file. If the netmap.inf file contains device ID mappings for more than one
component, then all such components must be upgraded by the same migration DLL.

Inf-file-name is the name of the INF file that installs the network component.

Specifying Alternative Help Message
Files in a Netmap.inf File
Article • 05/05/2023

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

If NetSetup fails to find the device ID mapping for a network component in any of the
netmap.inf files, it lists this component on the Compatibility Report page in the wizard.
Associated with each such component is a Help message file.

By default, NetSetup displays a Help message contained in the \winntupg\unsupmsg.txt
file or, if an HTML browser is installed on the system, in the \winntupg\unsupmsg.htm
file. You can optionally supply a custom message file that overrides the unsupmsg.txt
and unsupmsg.txt message files. For example, if a vendor provides upgrade support for
only some of its network components, the vendor could supply a custom Help message
file that indicates that upgrade support is not provided for certain components.

An optional OemUpgradeHelpFiles section in a netmap.inf file specifies one or more
custom Help message files. Each entry in this section has the following format:

postupgrade-ID = text-name, htm-file

where:

postupgrade-ID is the Windows 2000 or later device ID of network component

text-name is the path and name of the text version of the custom Help message file

htm-file is the path and name of the HTML version of the custom Help message file.

If a full path name is not specified in text-name or htm-file, the specified path is
appended to the i386 directory--for example: \i386\mydirectory\myfile.txt.

The following example of a netmap.inf file contains an OemUpgradeHelpFiles section.

INF

[Version]
signature="$Windows NT$

[OemNetProtocols]
Protocol1=Protoco1_2000
Protocol2=Protocol2_2000

Even though this sample netmap.inf file does not provide upgrade support for
Protocol1, it provides a device ID mapping for Protocol1 in the OemNetProtocols
section. This mapping specifies a Windows 2000 device ID for Protocol1. The Windows
2000 device ID is required to associate custom Help message files with a network
component.

Notice that the keyword NotSupported is assigned to Protocol1 in the
OemUpgradeHelpFiles section. This keyword indicates that there is no need to load a
migration DLL to upgrade Protocol1.

In the OemUpgradeHelpFiles section of the previous example, the
Protoco11=helpmsg.txt, helpmsg.htm entry specifies two custom Help message files for
Protocol1. The custom Help message contained in these files could indicate, for
example, that the vendor does not support the upgrade of Protocol1 and that the user
must separately upgrade Protocol1 to Protocol2 before attempting to upgrade the
system to Windows 2000 or later.

[OemUpgradeSupport]
Protocol1=NotSupported
Protocol2=abc_upgrade.dll, abc.inf

[OemUpgradeHelpFiles]
Protoco11=helpmsg.txt, helpmsg.htm

Setting Up the Test System
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

Before you upgrade network components, make sure that the network components to
be upgraded are correctly installed and configured.

To set up the test system

1. Create one partition for the preupgrade operating system and another partition for
the Microsoft Windows 2000 or later operating system. Note Do not install the
preupgrade operating system and the upgrade operating system in the same
partition. If the preupgrade operating system and Windows 2000 or later are
installed in the same partition, they will share the same Program Files directory.

2. On the test system, boot an operating system build other than the one to be
upgraded. Then copy the entire partition to be upgraded, except for the
pagefile.sys file, into a back-up directory. There is no need to copy the pagefile.sys
file, since it is created on the start-up of Windows 2000 or later.

This method of creating a back-up installation is preferable to creating a disk-
image program, because it allows you to use xcopy, which takes less time to copy
files than a disk-image program. You can repeat an upgrade test by simply copying
the contents of the back-up partition into a new partition to be upgraded; it is not
necessary to reinstall the preupgrade operating system.

3. Create a test directory for storing the network migration DLL and the netmap.inf
file, and then copy these files to the test directory.

4. Create another directory for storing the Windows 2000 or later files required for
the Winnt32 upgrade phase.

5. Insert the Windows 2000 or later Driver Development Kit (DDK) CD-ROM that
contains the checked build of Windows 2000 or later. From the \i386 directory on
the CD-ROM, copy the following files to the back-up directory (Step 2):

winnt32.exe
winnt32u.dll
pidgen.dll
wetuplog.*

6. Create an upgrade directory named winntupg. Copy the files in the \i386\winntupg
directory on the CD-ROM to the winntupg directory on the test system.

7. Enable the debugger on the text system or start debugmon.exe, which is included
with the Resource Kit for Windows 2000 or later operating systems. Then copy a
netcfg.ini file to %windir%. The netcfg.ini file enables debug tracing.

The following is a sample netcfg.ini file:

INI

[DebugFlags]
BreakOnAddLegacy=0
BreakOnAlloc=0
BreakonDoUnattend=0
BreakonDwrefProblem=0
BreakOnError=0
BreakOnHr=0
BreakOnHrInteraction=0
BreakOnIteration=0
BreakOnNetInstall=0
BreakOnWizard=0
DisableTray=0
DumpLeaks=0
DumpNetCfgTree=0
NetShellBreakOnInit=0
ShowIngnoreErrors=0
ShowProcessAndThreadIds=0
SkipLanEnum=0
TracingTimeStamps=0

[Default]
OutputToDebug=1

[EsLocks]
OutputToDebug=0

[ShellViewMsgs]
OutputToDebug=0

[OptErrors]
OutputToDebug=0

Running the Upgrade Test and
Examining the Results
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

Before you upgrade the system to Windows 2000 or later, note the parameter values in
the registry for each network component to be upgraded.

To run the upgrade test

1. Make sure that the CD-ROM that contains the checked build of Windows 2000 or
later is in the CD-ROM drive.

2. Run winnt32.exe on the test system. For example, use the following command to
run winnt32.exe on an Intel-based system with the CD-ROM in drive O:

CMD

3. After Windows 2000 or later is installed, verify that the upgraded network
component's parameters have been correctly migrated to the new operating
system.

winnt32.exe /s:o\i386

Examining the AnswerFile
Article • 12/15/2021

Note Vendor-supplied network upgrades are not supported in Microsoft Windows XP
(SP1 and later), Microsoft Windows Server 2003, and later operating systems.

Immediately before the "Setup is Copying Files" progress bar is displayed on a system
being upgraded, the AnswerFile is created. NetSetup and vendor-supplied network
migration DLLs create sections in the AnswerFile and then write entries to these sections
during the Winnt32 upgrade phase.

You can examine the AnswerFile by copying c:\win_nt.~bt\winnt.sif to %TEMP%. After
the AnswerFile has been copied, you can click Cancel to cancel file copying. You do not
have to wait until file copying is finished.

The following table lists the top-level sections in the AnswerFile and the corresponding
entries that each section contains that pertain to network components:

Section Entries Contained

NetAdapters Network adapters, including ISDN adapters

AsyncAdapters Async adapters

NetProtocols Network protocols

NetServices Network services

NetClients Network clients

Note NetClient components are deprecated in Windows 8.1, Windows Server 2012 R2,
and later.

For each network component that it finds during the Winnt32 phase, NetSetup writes an
entry to the appropriate top-level section of the AnswerFile. Each entry has the following
format:

params.postupgrade-ID

The postupgrade-ID entry is the Windows 2000 or later device ID that NetSetup
obtained from the netmap.inf file for the component.

Each entry specifies the name of the parameters section for that component in the
AnswerFile. For example, if a component's Windows 2000 or later device ID is
netadapter2, its entry in the NetAdapters section is params.netadapter2. The top-level

sections and the parameter sections in an AnswerFile are not visible to a network
migration DLL.

To the parameters section name for a component, NetSetup adds the extension
OemSection to create the OEM-section name for the component. For example, if the
parameters section for a component is params.netadapter2, the OEM-section name for
the component is params.netadapter2.OemSection. NetSetup passes the OEM-section
name as the szSectionName parameter to the DoPreUpgradeProcessing function
supplied by the network migration DLL for the component. The
DoPreUpgradeProcessing function calls the NetUpgradeAddSection function to create
the OEM-section for a component in the AnswerFile. The DoPreUpgradeProcessing
function then calls the NetUpgradeAddLineToSection to add component-specific
information to the OEM-section.

The following portion of an AnswerFile shows the sections and entries for a network
adapter whose Windows 2000 or later device ID is adapter2:

INF

During the GUI mode phase, NetSetup detects the InfToRunAfterInstall key written by
the migration DLL to the params.adapter2.OemSection of the example AnswerFile. As
directed by this key, NetSetup processes the adapter2.SectionToRun.AddReg section.
The adapter2.SectionToRun.AddReg section directs NetSetup to add parameter values
to adapater2's instance key in the Windows 2000 or later registry. These parameter
values should match the preupgrade parameter values that the migration DLL read from
adapter2's the registry during the Winnt32 phase of the upgrade.

[NetAdapter] ;top-level adapters section
adapter2=params.adapter2 ;entry for adapter2
[params.adapter2] ;parameters section for adapter2
InfID=adapter2 ;Windows 2000 or later device ID
OemSection=params.adapter2.OemSection ;Identifies the OemSection

[params.adapter2.OemSection] ;OemSection created by migration DLL
InfToRunAfterInstall="", adapter2.SectionToRun ;Written by DLL

[adapter2.SectionToRun] ;Section created by migration DLL
AddReg=adapter2.SectionToRun.AddReg ;AddReg directive

[adapter2.SectionToRun.AddReg] ;AddReg section created by DLL
HKR,0\0,IsdnPhoneNumber,0,"111-1111" ;AddReg entries written by DLL
HKR,0\1,IsdnPhoneNumber,0,"222-2222"
HKR,0\0,IsdnSpid,0,"111"
HKR,0\1,IsdnSpid,0,"222"
HKR,0,IsdnSwitchType,0x00010001,1

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545634(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559063(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559059(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559059(v=vs.85)

If a network migration DLL is to be loaded during the GUI mode phase, its
DoPreUpgradeProcessing function sets the NUA_LOAD_POST_UPGRADE flag. This flag
causes NetSetup to write the OemDllToLoad entry to the component's parameters
section in the AnswerFile. The OemDllToLoad entry causes NetSetup to load the
migration DLL for the component during the GUI mode phase.

The following example shows the AnswerFile sections and entries for a component
whose network migration DLL is loaded during the GUI mode phase:

INF

Note the OemDllToLoad entry in the params.adapter2 section. Also note that the
migration DLL did not create a params.adapter2.OemSection. When the migration DLL
is to be loaded during the GUI mode phase, it typically does not write an
InfToRunAfterInstall key to the AnswerFile. The DLL performs the postinstallation
upgrade; therefore, it does not need to create an Oem-Section name that contains
directives for NetSetup to perform during the GUI mode phase.

[NetAdapter] ;top-level adapters section
adapter2=params.adapter2 ;entry for adapter2
[params.adapter2] ;parameters section for adapter2
InfID=adapter2 ;postupgrade device ID
OemSection=params.adapter2.OemSection;Identifies the OemSection
OemDllToLoad=c:\temp\oem0001\migration.dll

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545634(v=vs.85)

NDIS general statistics OIDs
Article • 02/06/2024

A driver should respond to a query of a statistics OID with complete information so that
the driver can supply the operating system and applications with information that they
need to monitor network status, respond to security issues, and diagnose problems. If
statistics counters are in hardware, the driver should read the appropriate statistics value
from hardware each time that a statistics OID is queried.

Note: General statistics OIDs count all traffic through the network adapter including
Network Direct Kernel (NDK) traffic. NDK statistics may be counted separately with
OID_NDK_STATISTICS.

All one-Gbps and faster miniport drivers must support 64-bit counters for the following
statistics OIDs. In addition, Microsoft recommends that all 100Mbps and faster miniport
drivers support 64-bit counters for the following statistics OIDs:

OID_GEN_STATISTICS
OID_GEN_BYTES_RCV
OID_GEN_BYTES_XMIT
OID_GEN_RCV_DISCARDS
OID_GEN_XMIT_DISCARDS
OID_GEN_XMIT_OK
OID_GEN_RCV_OK
OID_GEN_XMIT_ERROR
OID_GEN_RCV_ERROR
OID_GEN_RCV_NO_BUFFER
OID_GEN_DIRECTED_BYTES_XMIT
OID_GEN_DIRECTED_FRAMES_XMIT
OID_GEN_MULTICAST_BYTES_XMIT
OID_GEN_MULTICAST_FRAMES_XMIT
OID_GEN_BROADCAST_BYTES_XMIT
OID_GEN_BROADCAST_FRAMES_XMIT
OID_GEN_DIRECTED_BYTES_RCV
OID_GEN_DIRECTED_FRAMES_RCV
OID_GEN_MULTICAST_BYTES_RCV
OID_GEN_MULTICAST_FRAMES_RCV
OID_GEN_BROADCAST_BYTES_RCV

Miniport driver support for 64-bit counters

OID_GEN_BROADCAST_FRAMES_RCV
OID_GEN_RCV_CRC_ERROR
OID_GEN_TRANSMIT_QUEUE_LENGTH
OID_GEN_INIT_TIME_MS
OID_GEN_RESET_COUNTS
OID_GEN_MEDIA_SENSE_COUNTS

Miniport drivers can also support 64-bit counters for other statistics OIDs, such as OIDs
that indicate transmit or receive errors.

System support for 64-bit counters is available in Windows XP and later operating
systems.

Note: If an NDIS MUX driver exposes multiple miniport instances, querying the following
general statistics OIDs should return data specific to that miniport instance. For example,
if a MUX driver implements virtual local area network (VLAN) filtering and exposes one
miniport per VLAN, the statistics values returned from the following OIDs are expected
to be per VLAN.

OID_GEN_STATISTICS
OID_GEN_RCV_OK
OID_GEN_XMIT_OK

NDIS network interface OIDs
Article • 03/14/2023

NDIS network interface object identifiers (OIDs) provide information about network
interfaces to support the MIB (RFC 2863).

NDIS interface providers must support these OIDs. Drivers that are not registered
interface providers should not support the OIDs in this section.

NDIS calls the ProviderQueryObject function to make a query request for information
from the interface provider. The ObjectId parameter of this function contains the object
identifier. The interface provider registered ProviderQueryObject when it called the
NdisIfRegisterProvider function to register as an interface provider.

The handle at the ProviderIfContext parameter of the ProviderQueryObject function
identifies the network interface. This handle was provided to NDIS when the interface
provider called the NdisIfRegisterInterface function to register the interface. The
pOutputBuffer parameter of the ProviderQueryObject function contains the result of the
OID request.

For more information about NDIS network interface OIDs, see NDIS 6.0 Network
Interfaces.

This section describes the following NDIS network interface OIDs:

OID_GEN_ALIAS
OID_GEN_ADMIN_STATUS
OID_GEN_OPERATIONAL_STATUS
OID_GEN_PROMISCUOUS_MODE
OID_GEN_XMIT_LINK_SPEED
OID_GEN_RCV_LINK_SPEED
OID_GEN_UNKNOWN_PROTOS
OID_GEN_DISCONTINUITY_TIME
OID_GEN_LAST_CHANGE
OID_GEN_INTERFACE_INFO
OID_GEN_MEDIA_CONNECT_STATUS_EX
OID_GEN_LINK_SPEED_EX
OID_GEN_MEDIA_DUPLEX_STATE
OID_TUNNEL_INTERFACE_RELEASE_OID
OID_TUNNEL_INTERFACE_SET_OID

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-if_query_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisifregisterinterface

Mandatory OIDs for miniport drivers
Article • 12/15/2021

The following table lists the OIDs that are mandatory for all miniport drivers. Your
miniport driver will be required to support additional OIDs, depending on its NDIS
version and the services that it supports, such as:

Connection-Oriented Objects
CoNDIS
Ethernet statistics OIDs
Header-Data Split OIDs
Hyper-V Extensible Switch OIDs
IPsec Offload Version 2 OIDs
MB OIDs
Native 802.11 Wireless LAN OIDs
NDIS TCP/IP Offload OIDs
NDKPI OIDs
Operational Power Management OIDs
Overview of Receive Filter OIDs
Receive Filter OIDs
Receive Side Scaling OIDs
Remote NDIS OIDs
Required and Optional OIDs for Power Management
SR-IOV OIDs
Statistical Power Management OIDs
Task Offload Objects
VMQ OIDs

In the "O/M" columns in the table:

"M" means "mandatory" and "O" means "optional."
"N/A" in the "O/M for Query" column means that NDIS handles the OID query
request and does not send it to the miniport driver, so the miniport driver only
needs to support the OID set request.
If there is no entry in the "O/M for Query" column, this OID is a set-only OID.
If there is no entry in the "O/M for Set" column, this OID is a query-only OID.

OID O/M
for
Query

O/M
for
Set

Comments

OID O/M
for
Query

O/M
for
Set

Comments

OID_GEN_CURRENT_LOOKAHEAD N/A M NDIS handles query and unsuccessful Set
requests for the miniport driver. NDIS
sends valid Set requests to the miniport
driver. You can obtain the same
information with
OID_GEN_RECEIVE_BLOCK_SIZE.

OID_GEN_CURRENT_PACKET_FILTER N/A M Query is not mandatory. Set is
mandatory.

OID_GEN_INTERRUPT_MODERATION M M

OID_GEN_LINK_PARAMETERS M

OID_GEN_MAXIMUM_TOTAL_SIZE M There is no other way to get this
information.

OID_GEN_RCV_OK M NDIS does not handle this OID for
miniport drivers and
OID_GEN_STATISTICS does not include
this information. Note: Statistics OIDs are
mandatory unless NDIS handles them.

OID_GEN_RECEIVE_BLOCK_SIZE M NDIS does not handle this OID for
miniport drivers.

OID_GEN_RECEIVE_BUFFER_SPACE M There is no other way to get this
information.

OID_GEN_STATISTICS M

OID_GEN_TRANSMIT_BLOCK_SIZE M There is no other way to get this
information.

OID_GEN_TRANSMIT_BUFFER_SPACE M There is no other way to get this
information.

OID_GEN_VENDOR_DESCRIPTION M There is no other way to get this
information.

OID_GEN_VENDOR_DRIVER_VERSION M There is no other way to get this
information.

OID_GEN_VENDOR_ID M There is no other way to get this
information. Independent hardware
vendor's filter drivers or intermediate
drivers might query this OID.

OID O/M
for
Query

O/M
for
Set

Comments

OID_GEN_XMIT_OK M NDIS does not handle this OID and
OID_GEN_STATISTICS does not include
this information. Note: Statistics OIDs are
mandatory unless NDIS handles them.

Ethernet statistics OIDs
Article • 12/15/2021

The following table summarizes the OIDs used to get Ethernet statistics for Network
Interface Controllers (NICs).

Length Query Set Name

4 O OID_802_3_RCV_OVERRUN

4 O OID_802_3_XMIT_DEFERRED

4 O OID_802_3_XMIT_HEARTBEAT_FAILURE

4 O OID_802_3_XMIT_LATE_COLLISIONS

4 O OID_802_3_XMIT_MAX_COLLISIONS

4 O OID_802_3_XMIT_TIMES_CRS_LOST

4 O OID_802_3_XMIT_UNDERRUN

７ Note

The following OIDs are obsolete in NDIS 6.0 and later:

OID_802_3_RCV_ERROR_ALIGNMENT

OID_802_3_XMIT_MORE_COLLISIONS

OID_802_3_XMIT_ONE_COLLISION

General operational OIDs for
connection-oriented miniport drivers
Article • 12/15/2021

The following table summarizes the OIDs used to get or set the general operational
characteristics of connection-oriented miniport drivers and/or their NICs.

In this table, M indicates an OID is mandatory, while O indicates it is optional.

Length Query Set Name

2 M OID_GEN_CO_DRIVER_VERSION

8 O OID_GEN_CO_GET_NETCARD_TIME

8 O OID_GEN_CO_GET_TIME_CAPS

4 M OID_GEN_CO_HARDWARE_STATUS

4 M OID_GEN_CO_LINK_SPEED

4 M OID_GEN_CO_MAC_OPTIONS

4 M OID_GEN_CO_MEDIA_CONNECT_STATUS

Arr(4) M OID_GEN_CO_MEDIA_IN_USE

Arr(4) M OID_GEN_CO_MEDIA_SUPPORTED

4 M OID_GEN_CO_MINIMUM_LINK_SPEED

4 M OID_GEN_CO_PROTOCOL_OPTIONS

Arr O OID_GEN_CO_SUPPORTED_GUIDS

Arr(4) M OID_GEN_CO_SUPPORTED_LIST

Var. M OID_GEN_CO_VENDOR_DESCRIPTION

4 M OID_GEN_CO_VENDOR_DRIVER_VERSION

4 M OID_GEN_CO_VENDOR_ID

 Tip

A connection-oriented miniport driver handles such requests in its
MiniportCoOidRequest callback function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

General statistics OIDs for connection-
oriented miniport drivers
Article • 05/20/2024

The following table summarizes the OIDs used to get or set the general statistics
characteristics of connection-oriented miniport drivers and/or their NICs.

In this table, M indicates an OID is mandatory, while O indicates it is optional.

Length Query Set Name

4 or 8 O OID_GEN_CO_BYTES_RCV

4 or 8 O OID_GEN_CO_BYTES_XMIT

4 or 8 O OID_GEN_CO_BYTES_XMIT_OUTSTANDING

4 or 8 O OID_GEN_CO_NETCARD_LOAD

4 or 8 O OID_GEN_CO_RCV_CRC_ERROR

4 or 8 M OID_GEN_CO_RCV_PDUS_ERROR

4 or 8 M OID_GEN_CO_RCV_PDUS_NO_BUFFER

4 or 8 M OID_GEN_CO_RCV_PDUS_OK

4 or 8 O OID_GEN_CO_TRANSMIT_QUEUE_LENGTH

4 or 8 M OID_GEN_CO_XMIT_PDUS_ERROR

4 or 8 M OID_GEN_CO_XMIT_PDUS_OK

All one-Gbps and faster connection-oriented miniport drivers must support 64-bit
counters for the following statistics OIDs. In addition, Microsoft recommends that all

 Tip

A connection-oriented miniport driver handles such requests in its
MiniportCoOidRequest callback function.

ﾉ Expand table

Miniport driver support for 64-bit counters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_oid_request

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

100Mbps and faster connection-oriented miniport drivers support 64-bit counters for
the following statistics OIDs:

OID_GEN_CO_XMIT_PDUS_OK

OID_GEN_CO_RCV_PDUS_OK

OID_GEN_CO_BYTES_XMIT

OID_GEN_CO_BYTES_RCV

Such miniport drivers can also support 64-bit counters for other statistics OIDs, such as
OIDs that indicate transmit or receive errors.

System support for 64-bit counters is available in Windows XP and later versions.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

OIDs for connection-oriented call
managers and clients
Article • 12/15/2021

The following table summarizes the OIDs that connection-oriented clients can send to
call managers or MCM drivers and that call managers or MCM drivers can send to
connection-oriented clients.

In this table, M indicates an OID is mandatory, while O indicates it is optional.

Length Query Set Name

Varies O OID_CO_ADD_ADDRESS

Varies O OID_CO_ADD_PVC

0 O OID_CO_ADDRESS_CHANGE

0 M OID_CO_AF_CLOSE

Varies O OID_CO_DELETE_ADDRESS

Varies O OID_CO_DELETE_PVC

Varies O OID_CO_GET_ADDRESSES

OID_CO_GET_CALL_INFORMATION

0 O OID_CO_SIGNALING_DISABLED

0 O OID_CO_SIGNALING_ENABLED

TAPI extension OIDs for connection-
oriented NDIS
Article • 03/14/2023

The following table summarizes OIDs that allow TAPI calls to be made over connection-
oriented media. Connection-oriented clients send these OIDs to call managers or
integrated miniport call manager (MCM) drivers.

In this table, M indicates an OID is mandatory, while O indicates it is optional.

Length Query Set Name

Varies O OID_CO_TAPI_ADDRESS_CAPS

Sizeof(CO_TAPI_CM_CAPS) O OID_CO_TAPI_CM_CAPS

Varies O OID_CO_TAPI_GET_CALL_DIAGNOSTICS

Varies O OID_CO_TAPI_LINE_CAPS

Varies O OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS

Varies O OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS

Varies O OID_CO_TAPI_TRANSLATE_TAPI_SAP

In its call to NdisCoRequest, the client that queries any of the TAPI extension OIDs must
specify an NdisAfHandle that identifies the address family to which the request applies.
The client can specify an NdisVcHandle that identifies the virtual connection (VC) to
which the request applies. From this VC handle, the call manager or MCM driver may be
able to derive the particular line and perhaps the address to which the request applies.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff551877(v=vs.85)

NDIS_STATUS_MEDIA_CONNECT
Article • 03/14/2023

The NDIS_STATUS_MEDIA_CONNECT status indicates that the status of a device's
network connection has changed from disconnected to connected. For example, a
device connects when it comes within range of an access point (for a wireless device) or
when the user connects the device's network cable.

NDIS translates NDIS_STATUS_MEDIA_CONNECT status indications to
NDIS_STATUS_LINK_STATE status indications for overlying NDIS 6.0 drivers.

NDIS 5.x and earlier miniport drivers indicate an NDIS_STATUS_MEDIA_DISCONNECT
status when a miniport driver determines that the network connection has been lost.
When the connection is restored, the driver indicates an
NDIS_STATUS_MEDIA_CONNECT status.

For more information about NDIS_STATUS_MEDIA_CONNECT, see Indicating Connection
Status (NDIS 5.1) and Media Status Indications for 802.11 Networks.

Version Not supported in NDIS 6.0 and later (use
NDIS_STATUS_LINK_STATE instead). Supported
only for NDIS 5.1 drivers in Windows Vista and
Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_LINK_STATE

NDIS_STATUS_MEDIA_DISCONNECT

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546856(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549301(v=vs.85)

NDIS_STATUS_MEDIA_DISCONNECT
Article • 03/14/2023

The NDIS_STATUS_MEDIA_DISCONNECT status indicates that the status of a network
connection has changed from connected to disconnected. For example, the network
device loses the connection because it is out of range (for a wireless device), or the user
unplugs the device's network cable.

NDIS translates NDIS_STATUS_MEDIA_DISCONNECT status indications to
NDIS_STATUS_LINK_STATE status indications for overlying NDIS 6.0 drivers.

NDIS 5.x and earlier miniport drivers indicate an NDIS_STATUS_MEDIA_CONNECT status
when the connection is restored.

For more information about NDIS_STATUS_MEDIA_DISCONNECT, see Indicating
Connection Status (NDIS 5.1) and Media Status Indications for 802.11 Networks.

Version Not supported in NDIS 6.0 and later (use
NDIS_STATUS_LINK_STATE instead). Supported
only for NDIS 5.1 drivers in Windows Vista and
Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_LINK_STATE

NDIS_STATUS_MEDIA_CONNECT

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546856(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549301(v=vs.85)

NDIS_STATUS_RESET_START
Article • 03/14/2023

The NDIS_STATUS_RESET_START status indicates that a miniport adapter is being reset.

Miniport drivers should not call the NdisMIndicateStatusEx function to signal the start
and finish of each reset operation because NDIS notifies overlying drivers when a reset
operation begins and ends.

A miniport driver resets a miniport adapter when NDIS calls the miniport driver's
MiniportResetEx function. NDIS calls the ProtocolStatusEx function of each bound
protocol and intermediate driver and the FilterStatus function of the overlying filter
modules with a status of NDIS_STATUS_RESET_START. When the miniport driver
completes the reset, NDIS notifies the overlying drivers with a status of
NDIS_STATUS_RESET_END.

When a protocol driver receives an NDIS_STATUS_RESET_START status indication, it
should:

Hold any data that is ready to transmit until its ProtocolStatusEx function receives
an NDIS_STATUS_RESET_END status indication.

Not make any NDIS calls that are directed to the underlying miniport driver, except
calls to return resources such as received data buffers with the
NdisReturnNetBufferLists function.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ndis.h (include Ndis.h)

FilterStatus

MiniportResetEx

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

NDIS_STATUS_RESET_END

NdisMIndicateStatusEx

NdisReturnNetBufferLists

ProtocolStatusEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_status_ex

NDIS_STATUS_RESET_END
Article • 03/14/2023

The NDIS_STATUS_RESET_END status indicates that a miniport adapter reset operation is
complete.

Miniport drivers should not call the NdisMIndicateStatusEx function to signal the start
and finish of each reset operation because NDIS notifies overlying drivers when a reset
operation begins and ends.

When a miniport driver starts a reset operation, NDIS notifies the overlying drivers with
an NDIS_STATUS_RESET_START status indication.

After a bound protocol driver receives an NDIS_STATUS_RESET_END status indication,
the protocol driver can resume sending data and making OID requests.

After an overlying filter or intermediate driver receives an NDIS_STATUS_RESET_END
status indication, the driver can resume sending data and making OID requests to
overlying drivers.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_RESET_START

NdisMIndicateStatusEx

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

NDIS_STATUS_MEDIA_BUSY
Article • 03/14/2023

The NDIS_STATUS_MEDIA_BUSY status indicates that the IRDA media is busy.

For more information about NDIS_STATUS_MEDIA_BUSY, see OID_IRDA_MEDIA_BUSY.

Version Not supported in NDIS 6.0 and later. Supported
only for NDIS 5.1 drivers in Windows Vista and
Windows XP.

Header Ndis.h (include Ndis.h)

OID_IRDA_MEDIA_BUSY

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560284(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560284(v=vs.85)

NDIS_STATUS_MEDIA_SPECIFIC_INDICAT
ION
Article • 03/14/2023

The NDIS_STATUS_MEDIA_SPECIFIC_INDICATION status indicates a media-specific
status.

Miniport drivers make media-specific status indications by calling the
NdisMIndicateStatusEx function with the StatusCode member of the
NDIS_STATUS_INDICATION structure set to
NDIS_STATUS_MEDIA_SPECIFIC_INDICATION. The StatusBuffer member of this structure
points to a driver-allocated buffer. The buffer contains data in a format that is specific to
the status indication that is identified in the StatusCode member.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NdisMIndicateStatusEx

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

NDIS_STATUS_LINK_SPEED_CHANGE
Article • 03/14/2023

The NDIS_STATUS_LINK_SPEED_CHANGE status indicates a link speed change.

NDIS translates NDIS_STATUS_LINK_SPEED_CHANGE status indications to
NDIS_STATUS_LINK_STATE status indications for overlying NDIS 6.0 drivers. When NDIS
receives an NDIS_STATUS_LINK_SPEED_CHANGE status, NDIS issues an OID query
request of OID_GEN_LINK_SPEED. NDIS uses the results of the OID_GEN_LINK_SPEED
query to issue an NDIS_STATUS_LINK_STATE status to overlying NDIS 6.0 drivers.

The NDIS 5.x or earlier miniport driver supplies a DWORD-type value at the StatusBuffer
parameter of the NdisMIndicateStatus function. For more information about
NDIS_STATUS_LINK_SPEED_CHANGE, see OID_IRDA_RATE_SNIFF.

Version Not supported in NDIS 6.0 and later (use
NDIS_STATUS_LINK_STATE instead). Supported
only for NDIS 5.1 drivers in Windows Vista and
Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_LINK_STATE

NdisMIndicateStatus

OID_GEN_LINK_SPEED

OID_IRDA_RATE_SNIFF

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560287(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560287(v=vs.85)

NDIS_STATUS_LINK_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_LINK_STATE status indication to notify NDIS and
overlying drivers that there has been a change in the physical characteristics of a
medium.

Overlying drivers should not use the OID_GEN_LINK_STATE OID to determine the link
state. Instead, use the NDIS_STATUS_LINK_STATE status indication for link state updates.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains the
NDIS_LINK_STATE structure. This structure specifies the physical state of the medium.

Miniport drivers should avoid sending the NDIS_STATUS_LINK_STATE status indication if
there have been no changes in the physical state of the medium. However, avoiding this
status indication is not a requirement.

If a miniport adapter transitions to a low power state, NDIS 6.0 and later miniport drivers
should indicate a connection status of MediaConnectStateUnknown. When the
miniport adapter transitions back to the working power state, the miniport driver should
indicate a status of MediaConnectStateConnected after the link has been re-
established. NDIS 6.30 miniport drivers should indicate MediaConnectStateUnknown
during a low power transition only when a wake on link change and selective suspend
are disabled. In other words, a miniport driver must indicate a connection state of
MediaConnectStateUnknown during a low power transition, if it is impossible to detect
and wake on a connection state change from a low power state.

NDIS might not pass a status indication to overlying drivers if there are no changes in
the link state as specified in the previously indicated link state. However, this behavior is
not guaranteed. Overlying drivers that receive this status indication must determine
which characteristics of the medium, if any, have changed.

If an overlying driver is an NDIS 5.x or earlier protocol driver, NDIS translates the
NDIS_STATUS_LINK_STATE status indication to appropriate NDIS 5.1 status indications.
NDIS indicates link speed changes with the NDIS_STATUS_LINK_SPEED_CHANGE status
indication. NDIS indicates changes in the connection state with
NDIS_STATUS_MEDIA_CONNECT and NDIS_STATUS_MEDIA_DISCONNECT status
indications.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

NDIS also translates the NDIS 5.x miniport driver status for overlying NDIS 6.0 and later
drivers. NDIS uses status indications or media state changes that NDIS identified in an
NDIS 5.x OID query to create NDIS_STATUS_LINK_STATE status indications. NDIS
performs the following translations:

The NDIS_STATUS_MEDIA_CONNECT status indication is translated to
MediaConnectStateConnected in the NDIS_LINK_STATE structure.

The NDIS_STATUS_MEDIA_DISCONNECT status indication is translated to
MediaConnectStateDisconnected in the NDIS_LINK_STATE structure.

The NDIS_STATUS_LINK_SPEED_CHANGE status indication and the
OID_GEN_LINK_SPEED OID are used to generate the link speed status.

For more information about link status, see OID_GEN_LINK_STATE.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_LINK_STATE

NDIS_STATUS_INDICATION

NDIS_STATUS_LINK_SPEED_CHANGE

NDIS_STATUS_MEDIA_CONNECT

NDIS_STATUS_MEDIA_DISCONNECT

OID_GEN_LINK_SPEED

OID_GEN_LINK_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_PORT_STATE
Article • 03/14/2023

Miniport drivers that support NDIS ports use the NDIS_STATUS_PORT_STATE status
indication to indicate changes in the state of an NDIS port.

Miniport drivers must set the port number in the PortNumber member of the
NDIS_STATUS_INDICATION structure. The StatusBuffer member of this structure
contains a pointer to an NDIS_PORT_STATE structure.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_PORT_STATE

NDIS_STATUS_INDICATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_OPER_STATUS
Article • 03/14/2023

The NDIS_STATUS_OPER_STATUS status indicates the current operational state of an
NDIS network interface to overlying drivers.

NDIS generates this status indication; NDIS miniport drivers should not generate this
status indication.

NDIS supplies an NDIS_OPER_STATE structure in the StatusBuffer member of the
NDIS_STATUS_INDICATION structure.

The StatusBufferSize member of the NDIS_STATUS_INDICATION structure is set to
sizeof(NDIS_OPER_STATE).

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_OPER_STATE

NDIS_STATUS_INDICATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_oper_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_oper_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_NETWORK_CHANGE
Article • 03/14/2023

The NDIS_STATUS_NETWORK_CHANGE status indicates a network change to allow
overlying drivers to initiate renegotiation of network addresses.

NDIS miniport drivers can generate this status indication to request the overlying
protocol drivers to renegotiate layer three addresses.

NDIS generates NDIS_STATUS_NETWORK_CHANGE status indications for the older
802.1X wireless miniport drivers that emulate 802.3. These miniport drivers report a
media type of NdisMedium802_3 and a physical media type of
NdisPhysicalMediumWirelessLan. When such a miniport driver generates an
NDIS_STATUS_MEDIA_CONNECT status indication and the associated miniport adapter
is in a connected state, NDIS generates an NDIS_STATUS_NETWORK_CHANGE status
indication for the miniport adapter.

NDIS 6.0 and later miniport drivers should generate the
NDIS_STATUS_NETWORK_CHANGE status indication only after they are ready to handle
network data. For example, in native 802.11, this status indication is generated after
authentication is completed successfully and full layer two connectivity is achieved.

Note Although the media-connected state is not precisely defined, this state can be
loosely defined as - the state in which the miniport adapter is able to transmit and
receive network data. Media-connected is not directly related to link authentication
status. The native WiFi 802.3 interface is unable to send or receive packets until after the
link is authenticated. In this case, the media-connected state is coincident with the link-
authenticated state in native 802.11.

NDIS supplies one of the following NDIS_NETWORK_CHANGE_TYPE values in the
StatusBuffer member of the NDIS_STATUS_INDICATION structure:

NdisPossibleNetworkChange
The miniport driver detected that there might be a network change. In this case, the
overlying protocols must detect the network change, if any, and renegotiate the
addresses if necessary.

NDIS also uses this value when it generates NDIS_STATUS_NETWORK_CHANGE status
indications for older 802.1X wireless miniport drivers that emulate 802.3. However, NDIS

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

uses NdisNetworkChangeFromMediaConnect instead of NdisPossibleNetworkChange
when it translates the same event for Windows Management Instrumentation (WMI).

NdisDefinitelyNetworkChange
The miniport driver detected that there is a network change, so the overlying protocols
must renegotiate the addresses.

NdisNetworkChangeFromMediaConnect
An older 802.1X wireless miniport driver that emulates 802.3 generated an
NDIS_STATUS_MEDIA_CONNECT status indication when it was in a connected state.
This value is used in the WMI event notification for
GUID_NDIS_STATUS_NETWORK_CHANGE. NdisNetworkChangeFromMediaConnect is
not used in the NDIS_STATUS_NETWORK_CHANGE status indication.

The StatusBufferSize member of the NDIS_STATUS_INDICATION structure is set to
sizeof(NDIS_NETWORK_CHANGE_TYPE).

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_STATUS_MEDIA_CONNECT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_PACKET_FILTER
Article • 03/14/2023

The NDIS_STATUS_PACKET_FILTER status indicates a packet filter change to overlying
drivers. NDIS generates this status indications for a miniport adapter to notify overlying
drivers that there might be a change in the miniport adapter's packet filter setting.

NDIS does not guarantee that the packet filter has changed when NDIS generates the
NDIS_STATUS_PACKET_FILTER status indication.

NDIS filter drivers can also generate the NDIS_STATUS_PACKET_FILTER status indication.

NDIS supplies a bitwise OR of the filter type flags in the StatusBuffer member of the
NDIS_STATUS_INDICATION structure. For a list of the filter type flags, see the
OID_GEN_CURRENT_PACKET_FILTER OID. For additional information about packet filters,
see OID_GEN_SUPPORTED_PACKET_FILTERS.

The StatusBufferSize member of the NDIS_STATUS_INDICATION structure is set to
sizeof(ULONG).

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

OID_GEN_CURRENT_PACKET_FILTER

OID_GEN_SUPPORTED_PACKET_FILTERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/oid-gen-supported-packet-filters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/oid-gen-supported-packet-filters

NDIS_STATUS_RECEIVE_FILTER_CURREN
T_CAPABILITIES
Article • 03/14/2023

The miniport driver issues an NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES
status indication when its currently enabled receive filtering capabilities change.

Note This status indication should only be made by miniport drivers that support NDIS
receive filters.

When the miniport driver makes this status indication, it sets the StatusBuffer member
of the NDIS_STATUS_INDICATION structure to a pointer to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure. The driver initializes this structure with
its currently enabled receive filter capabilities.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

The miniport driver issues the NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES
status indication when one of the following conditions is true:

The currently enabled receive filter capabilities change on a single network
adapter. For example, receive filters can be enabled or disabled through a
management application developed by the independent hardware vendor (IHV).

The currently enabled receive filter capabilities change for one or more network
adapters that belong to a load balancing failover (LBFO) team managed by a MUX
intermediate driver. For more information, see NDIS MUX Intermediate Drivers.

The miniport driver follows these steps when it issues the
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES status indication:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

1. The miniport initializes the NDIS_RECEIVE_FILTER_CAPABILITIES structure with the
receive filter capabilities that are currently enabled on the network adapter.

When the miniport driver initializes the Header member, it sets the Type member
of Header to NDIS_OBJECT_TYPE_DEFAULT. The miniport driver sets the Revision
member of Header to NDIS_RECEIVE_FILTER_CAPABILITIES_REVISION_2 and the
Size member to NDIS_SIZEOF_RECEIVE_FILTER_CAPABILITIES_REVISION_2.

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure for the
status indication in the following way:

The StatusCode member must be set to
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES.

The StatusBuffer member must be set to the address of the
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

The StatusBufferSize member must be set to
sizeof(NDIS_RECEIVE_FILTER_CAPABILITIES) .

3. The miniport driver issues the status indication by calling NdisMIndicateStatusEx.
The driver must pass a pointer to the NDIS_STATUS_INDICATION structure to the
StatusIndication parameter.

Note Overlying drivers can use the
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES status indication to determine
the currently enabled receive filter capabilities of the network adapter. Alternatively,
these drivers can also issue OID query requests of
OID_RECEIVE_FILTER_CURRENT_CAPABILITIES to obtain the currently enabled receive
filter capabilities at any time.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NdisMIndicateStatusEx

NDIS_STATUS_INDICATION

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_RECEIVE_FILTER_CAPABILITIES

OID_RECEIVE_FILTER_CURRENT_CAPABILITIES

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

NDIS_STATUS_RECEIVE_FILTER_HARDW
ARE_CAPABILITIES
Article • 03/14/2023

The miniport driver issues an NDIS_STATUS_RECEIVE_FILTER_HARDWARE_CAPABILITIES
status indication when its hardware receive filtering capabilities change. These
capabilities include the hardware capabilities that are currently disabled by INF file
settings or through the Advanced properties page.

Note This status indication should only be made by miniport drivers that support NDIS
receive filters.

When the miniport driver makes this status indication, it sets the StatusBuffer member
of the NDIS_STATUS_INDICATION structure to a pointer to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure. The driver initializes this structure with
its currently enabled receive filter capabilities.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

The miniport driver issues the
NDIS_STATUS_RECEIVE_FILTER_HARDWARE_CAPABILITIES status indication when one
of the following conditions is true:

The hardware receive filter capabilities change on a single network adapter. For
example, receive filters can be enabled or disabled through a management
application developed by the independent hardware vendor (IHV).

The hardware receive filter capabilities change for the load balancing failover
(LBFO) team of network adapters that are managed by a MUX intermediate driver.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

For example, the hardware receive filter capabilities could change when an adapter
is added to or removed from the team.

For more information, see NDIS MUX Intermediate Drivers.

The miniport driver follows these steps when it issues the
NDIS_STATUS_RECEIVE_FILTER_HARDWARE_CAPABILITIES status indication:

1. The miniport initializes the NDIS_RECEIVE_FILTER_CAPABILITIES structure with the
receive filter capabilities that are currently enabled on the network adapter.

When the miniport driver initializes the Header member, it sets the Type member
of Header to NDIS_OBJECT_TYPE_DEFAULT. The miniport driver sets the Revision
member of Header to NDIS_RECEIVE_FILTER_CAPABILITIES_REVISION_2 and the
Size member to NDIS_SIZEOF_RECEIVE_FILTER_CAPABILITIES_REVISION_2.

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure for the
status indication in the following way:

The StatusCode member must be set to
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES.

The StatusBuffer member must be set to the address of the
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

The StatusBufferSize member must be set to
sizeof(NDIS_RECEIVE_FILTER_CAPABILITIES) .

3. The miniport driver issues the status indication by calling NdisMIndicateStatusEx.
The driver must pass a pointer to the NDIS_STATUS_INDICATION structure to the
StatusIndication parameter.

Note Overlying drivers can use the
NDIS_STATUS_RECEIVE_FILTER_HARDWARE_CAPABILITIES status indication to
determine the currently enabled receive filter capabilities of the network adapter.
Alternatively, these drivers can also issue OID query requests of
OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES to obtain the hardware receive filter
capabilities at any time.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NdisMIndicateStatusEx

NDIS_STATUS_INDICATION

NDIS_RECEIVE_FILTER_CAPABILITIES

OID_RECEIVE_FILTER_CURRENT_CAPABILITIES

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

NDIS_STATUS_QOS_OPERATIONAL_PAR
AMETERS_CHANGE
Article • 03/14/2023

The miniport driver that supports NDIS Quality of Service (QoS) issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication when its
operational NDIS QoS parameters are either resolved for the first time or changed later.
The miniport driver configures the network adapter with these operational parameters
to perform QoS packet transmission.

When the miniport driver makes this status indication, it sets the StatusBuffer member
of the NDIS_STATUS_INDICATION structure to a pointer to an NDIS_QOS_PARAMETERS
structure. The driver initializes this structure with its operational NDIS QoS parameters.

Note This NDIS status indication is valid only for miniport drivers that support the IEEE
802.1 Data Center Bridging (DCB) interface.

The miniport driver issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication under the
following conditions:

The miniport driver must issue an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication after
it has initially resolved its operational NDIS QoS parameters and configured the
network adapter with them.

After this initial status indication, the miniport driver must issue an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication
when its operational NDIS QoS parameters are changed. This can happen when
either the local or remote NDIS QoS parameters are changed.

Miniport drivers obtain the local NDIS QoS parameters from the Windows
operating system when the Data Center Bridging (DCB) component (Msdcb.sys)
issues an object identifier (OID) method request of OID_QOS_PARAMETERS. This
OID request contains an NDIS_QOS_PARAMETERS structure that specifies the local
NDIS QoS parameters.

There may be situations when the miniport driver has to override the local NDIS
QoS parameters when it resolves its operational NDIS QoS parameters. This is

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

especially true if the local QoS parameters compromise the operational QoS
parameters that are being used by any underlying protocols or technologies that
are currently enabled on the network adapter. For example, the driver can override
the local QoS parameters if the network adapter is enabled for remote boot
through the Fibre Channel over Ethernet (FCoE) protocol.

The miniport driver notifies NDIS and overlying drivers of its intention to override
the local NDIS QoS parameters by issuing an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication.

For more information, see Managing NDIS QoS Parameters.

Note Overlying drivers can use the
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication to
determine the operational NDIS QoS parameters. Alternatively, these drivers can also
issue OID query requests of OID_QOS_OPERATIONAL_PARAMETERS to obtain the
operational NDIS QoS parameters at any time.

For information on how the miniport driver issues an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication, see
Indicating Changes to the Operational NDIS QoS Parameters.

For more information about the various types of NDIS QoS parameters, see Overview of
NDIS QoS Parameters.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_QOS_PARAMETERS

OID_QOS_OPERATIONAL_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS_STATUS_QOS_REMOTE_PARAMETE
RS_CHANGE
Article • 03/14/2023

The miniport driver that supports NDIS Quality of Service (QoS) issues an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication when its remote
NDIS QoS parameters are either received from a peer for the first time or change later.
The miniport driver receives these QoS parameters from a remote peer through the IEEE
802.1Qaz Data Center Bridging Exchange (DCBX) protocol.

When the miniport driver makes this status indication, it sets the StatusBuffer member
of the NDIS_STATUS_INDICATION structure to a pointer to an NDIS_QOS_PARAMETERS
structure. The driver initializes this structure with its remote NDIS QoS parameters.

Note This NDIS status indication is valid only for miniport drivers that support the IEEE
802.1 Data Center Bridging (DCB) interface.

The miniport driver uses the DCBX protocol to receive the QoS parameters for a remote
peer. The miniport driver resolves its operational NDIS QoS parameters based on its
local and remote QoS settings. Once the operational parameters are resolved, the
miniport driver configures the network adapter with these parameters for QoS packet
transmission.

For more information about how the driver resolves its operational NDIS QoS parameter
settings, see Resolving Operational NDIS QoS Parameters.

The miniport driver must follow these guidelines for issuing an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication:

If the miniport driver has not received a DCBX frame from a remote peer, it must
not issue an NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status
indication.

The miniport driver must issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication after it has
first received the QoS settings from a remote peer.

Note The miniport driver must issue this status indication if the network adapter
receives remote QoS parameter settings from a peer before the driver's local QoS

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

parameters are set. For more information, see Setting Local NDIS QoS Parameters.

After this initial status indication, the miniport driver must only issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication when it
determines a change in the QoS settings on the remote peer.

Note Miniport drivers must not issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication if there
have been no changes to the remote NDIS QoS parameters. If the driver does
make this type of status indication, NDIS may not pass the indication to overlying
drivers.

Note Overlying drivers can use the
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication to determine
the remote NDIS QoS parameters. Alternatively, these drivers can also issue OID query
requests of OID_QOS_REMOTE_PARAMETERS to obtain the remote NDIS QoS
parameters at any time.

For more information on how the miniport driver issues an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication, see Indicating
Changes to the Remote NDIS QoS Parameters.

For more information about the remote NDIS QoS parameters, see Overview of NDIS
QoS Parameters.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_QOS_PARAMETERS

OID_QOS_REMOTE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS_STATUS_PM_WAKE_REASON
Article • 03/14/2023

The NDIS_STATUS_PM_WAKE_REASON status indication provides information about the
wake-up event that was generated by a network adapter.

Starting with NDIS 6.30, the miniport driver issues an NDIS status indication of
NDIS_STATUS_PM_WAKE_REASON. This status indication notifies NDIS and overlying
drivers about the reason for a wake-up event generated by the network adapter.

If the miniport driver supports this type of status indication, the miniport driver must
issue an NDIS_STATUS_PM_WAKE_REASON status indication if the network adapter
generated a wake-up signal. The driver does this while it is handling the OID set request
of OID_PNP_SET_POWER for the transition of the adapter to a full-power state.

When the miniport driver makes this status indication, it sets the StatusBuffer member
of the NDIS_STATUS_INDICATION structure to a pointer to an
NDIS_PM_WAKE_REASON structure.

For more information about how to issue an NDIS_STATUS_PM_WAKE_REASON
indication, see Issuing NDIS Wake Reason Status Indications.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NDIS_PM_WAKE_REASON

NDIS_STATUS_INDICATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wake_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_WAN_LINE_UP
Article • 03/14/2023

The NDIS_STATUS_WAN_LINE_UP status indicates that a WAN-capable miniport driver
has established a connection with a remote node.

NDIS 4.x and earlier NDIS WAN miniport drivers use this status indication. NDIS 5.0 and
later WAN miniport drivers must use the CoNDIS WAN interface. For more information
about the CoNDIS WAN interface, see Implementing CoNDIS WAN Miniport Drivers
(NDIS 5.1).

The StatusBuffer parameter of the NdisMIndicateStatus function contains a pointer to
an NDIS_MAC_LINE_UP structure.

For more information about NDIS_STATUS_WAN_LINE_UP, see Line-Up Indication (NDIS
5.1) and Indicating NDIS WAN Miniport Driver Status (NDIS 5.1).

Version Not supported for NDIS 6.0 drivers or NDIS 5.1
drivers in Windows Vista or Windows XP.
Supported for NDIS 4.x drivers.

Header Ndis.h (include Ndis.h)

NDIS_MAC_LINE_UP

NdisMIndicateStatus

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546752(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557058(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549189(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546867(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557058(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus

NDIS_STATUS_WAN_LINE_DOWN
Article • 03/14/2023

The NDIS_STATUS_WAN_LINE_DOWN status indicates that a WAN-capable miniport
driver has lost an established connection with a remote node.

NDIS 4.x and earlier NDIS WAN miniport drivers use this status indication. NDIS 5.0 and
later WAN miniport drivers must use the CoNDIS WAN interface. For more information
about the CoNDIS WAN interface, see Implementing CoNDIS WAN Miniport Drivers
(NDIS 5.1).

The StatusBuffer parameter of the NdisMIndicateStatus function contains a pointer to
an NDIS_MAC_LINE_DOWN structure. The NdisLinkContext member of
NDIS_MAC_LINE_DOWN identifies the link that is no longer valid.

For more information about NDIS_STATUS_WAN_LINE_DOWN, see Indicating NDIS WAN
Miniport Driver Status (NDIS 5.1).

Version Not supported for NDIS 6.0 drivers or NDIS 5.1
drivers in Windows Vista or Windows XP.
Supported for NDIS 4.x drivers.

Header Ndis.h (include Ndis.h)

NDIS_MAC_LINE_DOWN

NdisMIndicateStatus

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546752(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557057(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546867(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557057(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus

NDIS_STATUS_WAN_FRAGMENT
Article • 03/14/2023

The NDIS_STATUS_WAN_FRAGMENT status indicates that a WAN-capable miniport
driver has received a partial packet from a remote node.

NDIS 4.x and earlier NDIS WAN miniport drivers use this status indication. NDIS 5.0 and
later miniport drivers should use the CoNDIS WAN interface. For more information
about NDIS_STATUS_WAN_FRAGMENT, see NDIS_STATUS_WAN_CO_FRAGMENT.

The StatusBuffer parameter of the NdisMIndicateStatus function contains a pointer to
an NDIS_MAC_FRAGMENT structure. NDIS_MAC_FRAGMENT identifies a particular link
and describes the reason that the partial packet was received.

For more information about NDIS_STATUS_WAN_FRAGMENT, see Indicating NDIS WAN
Miniport Driver Status (NDIS 5.1).

Version Not supported for NDIS 6.0 drivers or NDIS 5.1
drivers in Windows Vista or Windows XP.
Supported for NDIS 4.x drivers.

Header Ndis.h (include Ndis.h)

NDIS_MAC_FRAGMENT

NDIS_STATUS_WAN_CO_FRAGMENT

NdisMIndicateStatus

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557055(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546867(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff557055(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus

NDIS_STATUS_TAPI_INDICATION
Article • 03/14/2023

The NDIS_STATUS_TAPI_INDICATION status indicates that a TAPI event occurred. A
WAN-capable miniport driver can indicate TAPI status.

NDIS 4.x and earlier NDIS WAN miniport drivers use this status indication. NDIS 5.0 and
later WAN miniport drivers must use the CoNDIS WAN interface. For more information
about the CoNDIS WAN interface, see Implementing CoNDIS WAN Miniport Drivers
(NDIS 5.1).

The StatusBuffer parameter of the NdisMIndicateStatus function contains a pointer to
an NDIS_TAPI_EVENT structure.The NDIS_TAPI_EVENT structure describes the TAPI line
or call event that occurs (for example, changes in line and call states, the arrival of an
incoming call, and the closing by a remote node or by the miniport driver of an existing
call or line).

For more information about NDIS_STATUS_TAPI_INDICATION, see Indicating NDIS WAN
Miniport Driver Status (NDIS 5.1).

Version Not supported for NDIS 6.0 drivers or NDIS 5.1
drivers in Windows Vista or Windows XP.
Supported for NDIS 4.x drivers.

Header Ndis.h (include Ndis.h)

NDIS_TAPI_EVENT

NdisMIndicateStatus

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546752(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff558986(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546867(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff558986(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus

NDIS_STATUS_RING_STATUS
Article • 03/14/2023

The NDIS_STATUS_RING_STATUS status indicates the ring status of a line. A WAN-
capable miniport driver can use this status to report a ring failure.

NDIS 4.x and earlier NDIS WAN miniport drivers use this status indication. NDIS 5.0 and
later WAN miniport drivers must use the CoNDIS WAN interface. For more information
about the CoNDIS WAN interface, see Implementing CoNDIS WAN Miniport Drivers
(NDIS 5.1).

The StatusBuffer parameter of the NdisMIndicateStatus function contains a ULONG
value with one of the following status values:

NDIS_RING_LOBE_WIRE_FAULT

NDIS_RING_HARD_ERROR

NDIS_RING_SIGNAL_LOSS

These values specify ring conditions that are the reason for the status indication. For
more information about NDIS_STATUS_RING_STATUS, see Reporting Hardware Status
(NDIS 5.1).

Version Not supported for NDIS 6.0 drivers or NDIS 5.1
drivers in Windows Vista or Windows XP.
Supported for NDIS 4.x drivers.

Header Ndis.h (include Ndis.h)

NdisMIndicateStatus

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff546752(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff564044(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatus

NDIS_STATUS_WW_INDICATION
Article • 03/14/2023

The NDIS_STATUS_WW_INDICATION status is the same as the
NDIS_STATUS_MEDIA_SPECIFIC_INDICATION status.

For more information about NDIS_STATUS_WW_INDICATION, see
OID_WW_GEN_INDICATION_REQUEST.

Version Not supported in NDIS 6.0 and later. Supported
only for NDIS 5.1 drivers in Windows Vista and
Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_MEDIA_SPECIFIC_INDICATION

OID_WW_GEN_INDICATION_REQUEST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561411(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561411(v=vs.85)

NDIS_STATUS_WAN_CO_FRAGMENT
Article • 03/14/2023

The NDIS_STATUS_WAN_CO_FRAGMENT status indicates that a CoNDIS WAN miniport
driver has received a partial packet from the endpoint of a VC.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a
pointer to an NDIS_WAN_CO_FRAGMENT structure. The NDIS_WAN_CO_FRAGMENT
structure describes the reason that the partial packet was received.

For more information about NDIS_STATUS_WAN_CO_FRAGMENT, see Indicating CoNDIS
WAN Miniport Driver Status. For more information about the CoNDIS WAN interface,
see Implementing CoNDIS WAN Miniport Drivers.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_WAN_CO_FRAGMENT

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559030(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559030(v=vs.85)

NDIS_STATUS_WAN_CO_LINKPARAMS
Article • 03/14/2023

The NDIS_STATUS_WAN_CO_FRAGMENT status indicates that parameters for a particular
VC that is active on a CoNDIS miniport adapter have changed.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a
pointer to a WAN_CO_LINKPARAMS structure. The WAN_CO_LINKPARAMS structure
describes new parameters for the VC.

For more information about NDIS_STATUS_WAN_CO_LINKPARAMS, see Indicating
CoNDIS WAN Miniport Driver Status. For more information about the CoNDIS WAN
interface, see Implementing CoNDIS WAN Miniport Drivers.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

WAN_CO_LINKPARAMS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)

NDIS_STATUS_WAN_CO_MTULINKPARA
MS
Article • 03/14/2023

The NDIS_STATUS_WAN_CO_MTULINKPARAMS status indicates that the link speed and
send window parameters have changed for a particular VC that is active on a CoNDIS
miniport adapter.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains a
pointer to a WAN_CO_MTULINKPARAMS structure. The WAN_CO_MTULINKPARAMS
structure describes new parameters for the VC.

For more information about NDIS_STATUS_WAN_CO_MTULINKPARAMS, see Indicating
CoNDIS WAN Miniport Driver Status. For more information about the CoNDIS WAN
interface, see Implementing CoNDIS WAN Miniport Drivers.

Version Supported in NDIS 6.20 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

WAN_CO_MTULINKPARAMS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565821(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565821(v=vs.85)

Introduction to Header-Data Split
Article • 12/15/2021

This section describes header-data split services that are available in NDIS 6.1 and later
versions. Header-data split improves network performance by splitting the header and
data in received Ethernet frames into separate buffers. Separating the headers and the
data enables the headers to be collected together into smaller regions of memory. As a
result, more headers will fit into a single memory page and more headers will fit into the
system caches, so the overhead for memory accesses in the driver stack is reduced.

This section includes:

Header Data Split Overview

Initializing a Header-Data Split Provider

Splitting Ethernet Frames

Receive Indications with Header-Data Split

Header-Data Split Administration and Configuration

Supporting Header-Data Split in Protocol Driver and Filter Drivers

Header-Data Split Architecture
Article • 12/15/2021

A header-data split provider improves network performance by splitting the headers
and data in received Ethernet frames into separate buffers. A header-data split provider
includes a network interface card (NIC) and an NDIS 6.1 or later miniport driver that
services the NIC.

The following figure shows the header-data split architecture.

The miniport driver receives configuration information from NDIS to set up the NIC for
header-data split receive operations. Also, the miniport driver exposes the NIC's services
to NDIS for run-time operations such as send and receive operations.

A NIC that is capable of header-data split operations receives Ethernet frames and splits
the headers and data into separate receive buffers.

The miniport driver uses the normal NDIS receive functions to indicate the received data
to NDIS. Also, the driver must assign exactly one NET_BUFFER structure to a
NET_BUFFER_LIST structure when indicating received data. For more information, see
Indicating Received Ethernet Frames.

For header-data split, the NET_BUFFER structures in the receive indications split the
received Ethernet frame by using separate memory descriptor lists (MDLs) for the
header and the data. Also, the NET_BUFFER_LIST structure contains header-data split
information in the NET_BUFFER_LIST information.

The following figure shows the received frame, the split buffers, and the memory layout
of the header buffers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

The header buffers should all be in a contiguous block of storage.

An upper-layer protocol is an IP transport protocol such as TCP, UDP, or ICMP.

Note IPsec is not considered an upper-layer protocol for the purposes of defining
header-data split requirements. For more information about splitting IPsec frames, see
Splitting IPsec Frames.

Where to Split Header and Data
Article • 12/15/2021

The following are the only valid places where a header-data split provider can split an
Ethernet frame:

Beginning of upper-layer-protocol header.

Beginning of UDP payload.

Beginning of TCP payload.

Note These requirements apply only to header-data split providers. For more
information about splitting frames in cases where header-data split is not used, see
Cases Where Header-Data Split Is Not Used.

The following figure shows the major parts of the Ethernet frame and the valid split
locations.

Cases Where Header-Data Split Is Not
Used
Article • 12/15/2021

This topic provides an overview of the cases where a header-data split provider must
not split Ethernet frames. For a listing of the minimum requirements that a provider
must meet to support header-data split, see Minimum Requirements for Supporting
Header-Data Split.

Note There are cases where a received frame can be split outside of the header-data
split provider requirements. That is, the header-data split requirements only apply to
header-data split providers. In these cases, never split Ethernet frames in the middle of
the IP header, IPv4 options, IPsec headers, IPv6 extension headers, or upper-layer-
protocol headers, unless the first MDL contains at least as many bytes as NDIS specified
for lookahead size.

All Ethernet frames that are not split must follow the general NDIS rules and
requirements. For example, the first MDL in the chain of MDLs in a received
NET_BUFFER structure must contain either the lookahead part of the frame or the entire
Ethernet frame (whichever is smaller) in a virtually contiguous buffer. NDIS sets the size
of lookahead with the OID_GEN_CURRENT_LOOKAHEAD OID.

Header-data split providers:

Do not split non-IP frames.

Do not split frames if they cannot be split in one of these locations: at the
beginning of the upper-layer-protocol header, the beginning of the TCP payload,
or the beginning of the UDP payload.

Do not split frames that would exceed the maximum configured header size unless
the header can be split at the beginning of the upper-layer-protocol header. For
more information about the maximum header size, see Allocating the Header
Buffer.

Do not split frames that contain IPv4 options that the NIC does not recognize.

Do not split frames that contain IPv6 extension headers that the NIC does not
recognize.

Do not split frames that contain TCP options that the NIC does not recognize
unless they can be split at the beginning of the TCP header.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Minimum Requirements for Supporting
Header-Data Split
Article • 12/15/2021

This topic summarizes the minimum requirements that a provider must meet to support
header-data split. For a complete listing of the rules that apply to splitting Ethernet
frames, see Splitting Ethernet Frames.

The following list contains the minimum requirements for header-data split support:

Providers must not split frames that the Cases Where Header-Data Split Is Not
Used topic describes.

Providers must move virtual LAN (VLAN) tags to the NET_BUFFER_LIST structure
OOB data. For more information about VLAN requirements, see Receive
Indications with Header-Data Split.

Providers must support splitting IPv4 frames without options. For more
information about splitting IPv4 frames, see Splitting IPv4 Frames.

Providers must support splitting IPv6 frames without extension headers. For more
information about splitting IPv6 frames, see Splitting IPv6 Frames.

Providers must support splitting TCP frames at the TCP payload with no TCP
options and with only the timestamp option. For more information about splitting
TCP frames, see Splitting Frames at the TCP Payload.

Providers must support splitting UDP frames at the UDP payload. For more
information about splitting UDP frames, see Splitting Frames at the UDP Payload.

Providers must support the header-data split initialization attributes. For more
information about these attributes, see Initializing a Header-Data Split Provider.

Providers must support the header-data split receive indication requirements,
including setting the header-data split flags in the NblFlags member of the
NET_BUFFER_LIST structures, header size requirements, and data backfill
requirements. For more information about receive requirements, see Receive
Indications with Header-Data Split.

Providers must support the OID_GEN_HD_SPLIT_PARAMETERS OID, the
OID_GEN_HD_SPLIT_CURRENT_CONFIG OID, the
NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status indication, and registry

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

settings. For more information about header-data split parameters and settings,
see Header-Data Split Administration and Configuration.

For more information about header-data split requirements for protocol drivers and
filter drivers, see Supporting Header-Data Split in Protocol Driver and Filter Drivers.

NDIS_STATUS_HD_SPLIT_CURRENT_CON
FIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status indication to
notify NDIS and overlying drivers that there has been a change in the header-data split
configuration of a miniport adapter.

When a miniport driver receives an OID_GEN_HD_SPLIT_PARAMETERS set request, the
driver must use the contents of the NDIS_HD_SPLIT_PARAMETERS structure to update
the current configuration of the miniport adapter. After the update, the miniport driver
must report the changes with the NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status
indication. The status indication ensures that all of the overlying drivers are updated
with the new information.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains an
NDIS_HD_SPLIT_CURRENT_CONFIG structure. This structure specifies the current
header-data split configuration of a miniport adapter.

Version Supported in NDIS 6.1 and later.

Header Ndis.h (include Ndis.h)

NDIS_HD_SPLIT_CURRENT_CONFIG

NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG

NDIS_STATUS_INDICATION

OID_GEN_HD_SPLIT_PARAMETERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Initializing a Header-Data Split Provider
Article • 12/15/2021

To support header-data split, a miniport driver must register as an NDIS 6.1 or later
driver. The sources file for the miniport driver must specify DNDIS61_MINIPORT=1
instead of DNDIS60_MINIPORT=1. The miniport driver must also specify NDIS 6.1 or a
later version in the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure.

To register its header-data split attributes, an NDIS 6.1 miniport driver calls the
NdisMSetMiniportAttributes function from its MiniportInitializeEx function and passes
NdisMSetMiniportAttributes an initialized
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure contains the
following information:

The HDSplitAttributes member of
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES contains a pointer to
an NDIS_HD_SPLIT_ATTRIBUTES structure that specifies the header-data split
capabilities that a miniport adapter provides.

The HardwareCapabilities member of NDIS_HD_SPLIT_ATTRIBUTES contains the
header-data split capabilities that the miniport adapter supports. These capabilities
can include capabilities that are currently disabled by INF file settings or through
the Advanced properties page.

The CurrentCapabilities member of NDIS_HD_SPLIT_ATTRIBUTES contains the
current header-data split capabilities that the miniport adapter supports. If header-
data split is enabled through the *HeaderDataSplit standardized INF keyword, the
miniport driver uses the same flags as the HardwareCapabilities member to
indicate the current header-data split configuration. For more information about
*HeaderDataSplit, see Standardized INF Keywords for Header-Data Split.

The HDSplitFlags member of NDIS_HD_SPLIT_ATTRIBUTES contains header-data
split configuration flags. The miniport driver should set this member to zero before
calling NdisMSetMiniportAttributes. NDIS sets this member with a bitwise OR of
the configuration flags. After NdisMSetMiniportAttributes successfully returns, the
miniport driver must check the flag settings in HDSplitFlags and configure the
hardware accordingly.

NDIS uses the NDIS_HD_SPLIT_ENABLE_HEADER_DATA_SPLIT flag to enable header-data
split for the miniport adapter. NDIS will not set

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

NDIS_HD_SPLIT_ENABLE_HEADER_DATA_SPLIT if the miniport driver did not set the
NDIS_HD_SPLIT_CAPS_SUPPORTS_HEADER_DATA_SPLIT flag in the CurrentCapabilities
member of the NDIS_HD_SPLIT_ATTRIBUTES structure. The miniport driver should
enable header-data split in the NIC if NDIS sets the
NDIS_HD_SPLIT_ENABLE_HEADER_DATA_SPLIT flag.

The miniport driver should set the BackfillSize member of the
NDIS_HD_SPLIT_ATTRIBUTES structure to zero before calling
NdisMSetMiniportAttributes. NDIS sets the BackfillSize member if the miniport driver
must pre-allocate backfill storage in the data buffer of the split frames. After
NdisMSetMiniportAttributes successfully returns, the miniport driver must use the
BackfillSize value that NDIS specified and pre-allocate the data buffers. For more
information about the data buffer backfill size, see Allocating Backfill for the Data Buffer.

The miniport driver should set the MaxHeaderSize member of the
NDIS_HD_SPLIT_ATTRIBUTES structure to zero before calling
NdisMSetMiniportAttributes. NDIS sets this member to the maximum size that is
allowed for the header buffer of the split frames. After NdisMSetMiniportAttributes
successfully returns, the miniport driver must use the MaxHeaderSize value that NDIS
specified. For more information about the maximum header size, see Allocating the
Header Buffer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes

Splitting Ethernet Frames Overview
Article • 12/15/2021

This section describes the specific header-data split requirements that apply to header-
data split providers, depending on the type of Ethernet frame that the provider is
splitting.

Note After you read the general requirements in this topic, you can use the subsequent
topics to understand the specific requirements for each type of Ethernet frame. The later
topics build on the requirements in the earlier topics. For example, if a frame contains
IPv4 and UDP information, you should read the Splitting IPv4 Frames and Splitting
Frames at the UDP Payload topics.

If the header-data split provider splits a frame in compliance with the header-data split
requirements, the indicated NET_BUFFER_LIST structures must have the
NDIS_NBL_FLAGS_HD_SPLIT flag set in the NblFlags member. If the header-data split
provider does not split a frame, the frame must be indicated with the following flags
cleared in NblFlags :

NDIS_NBL_FLAGS_HD_SPLIT

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_HEADER

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD

For more information about setting header-data split NET_BUFFER_LIST flags and other
receive indication requirements, see Receive Indications with Header-Data Split.

There are cases where a header-data split provider can split a received frame outside of
the header-data split provider requirements. In these cases, the provider should never
split Ethernet frames in the middle of the IP header, IPv4 options, IPsec headers, IPv6
extension headers, or upper-layer-protocol headers, unless the first MDL contains at
least as many bytes as NDIS specified for the lookahead size. For more information
about the lookahead size, see OID_GEN_CURRENT_LOOKAHEAD.

This section includes:

Splitting IPv4 Frames

Splitting IPv6 Frames

Splitting Fragmented IP Frames

Splitting Frames at the Beginning of the Upper-Layer-Protocol Headers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting Frames at the TCP Payload

Splitting Frames at the UDP Payload

Splitting Frames Other Than TCP and UDP

Splitting IPv4 Frames
Article • 12/15/2021

To support header-data split, a NIC must support splitting IPv4 Ethernet frames that
have no IPv4 options. The NIC must be able to split such frames at the beginning of
upper-layer-protocol header.

Support for IPv4 Ethernet frames with IPv4 options is optional. The NIC can support
some IPv4 options and not the others. The NIC must not split IPv4 frames that contain
IPv4 options that it does not recognize. The header portion of a split frame must contain
the entire IPv4 header and all of the IPv4 options that are present.

The NIC can also support header-data split for fragmented IPv4 frames. For more
information about fragmented IPv4 frames, see Splitting Fragmented IP Frames.

Note Supporting an IPv4 option, an IPv6 extension header or a TCP option, for the
purposes of header-data requirements, implies the ability of the NIC to recognize the
element, determine its length, include it in the header MDL and locate its end and the
beginning of the next element in the frame.

If the header-data split provider splits an IPv4 frame, the indicated NET_BUFFER_LIST
structures must have the NDIS_NBL_FLAGS_IS_IPV4 flag set in the NblFlags member. For
complete information about setting header-data split flags in the NET_BUFFER_LIST
structure, see Setting NET_BUFFER_LIST Information.

Additional Ethernet frame characteristics determine how to split IPv4 frames. If the IP
frame is fragmented, see Splitting Fragmented IP Frames. If the frame contains TCP
information, see Splitting Frames at the TCP Payload. If the frame contains UDP
information, see Splitting Frames at the UDP Payload. For all other cases, see Splitting
Frames Other Than TCP and UDP.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting IPv6 Frames
Article • 12/15/2021

To support header-data split, a NIC must support splitting IPv6 Ethernet frames without
any IPv6 extension headers. The NIC must be able to split such frames at the beginning
of upper-layer-protocol header.

Support for IPv6 Ethernet frames with IPv6 extension headers is optional. A NIC can
support some IPv6 options and not support others. The NIC must not split IPv6 frames
that contain IPv6 extension headers that is does not support. The header portion of a
split frame must contain the entire IPv6 header and all of the IPv6 extension headers
that are present.

The NIC can also support header-data split for fragmented IPv6 frames. For more
information about fragmented IPv4 frames, see Splitting Fragmented IP Frames.

Note Supporting an IPv4 option, an IPv6 extension header or a TCP option, for the
purposes of header-data requirements, implies the ability of the NIC to recognize the
element, determine its length, include it in the header MDL and locate its end and the
beginning of the next element in the frame.

If the header-data split provider splits an IPv6 frame, the indicated NET_BUFFER_LIST
structures must have the NDIS_NBL_FLAGS_IS_IPV6 flag set in the NblFlags member. For
complete information about setting header-data split flags in the NET_BUFFER_LIST
structure, see Setting NET_BUFFER_LIST Information.

Additional Ethernet frame characteristics determine how to split IPv6 frames. If the
frame is fragmented, see Splitting Fragmented IP Frames. If the frame contains TCP
information, see Splitting Frames at the TCP Payload. If the frame contains UDP
information, see Splitting Frames at the UDP Payload. For all other cases, see Splitting
Frames Other Than TCP and UDP.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting Fragmented IP Frames
Article • 12/15/2021

If a fragmented IP frame contains the upper-layer-protocol header, a NIC must split the
frame at the beginning of upper-layer-protocol header or must not split the frame. That
is, the NIC must not split fragmented IP frames at the beginning of the TCP or UDP
payload.

If a fragmented IPv4 frame does not contain the upper-layer-protocol header, the NIC
must split the frame at the beginning of the UDP or TCP payload or must not split the
frame.

If a fragmented IPv6 frame does not contain the upper-layer-protocol header, the NIC
must not split the frame.

For more information about splitting frames at the beginning of the upper-layer-
protocol header, see Splitting Frames at the Beginning of the Upper-Layer-Protocol
Headers.

Splitting Frames at the Beginning of the
Upper Layer-Protocol Headers
Article • 12/15/2021

An upper-layer protocol is an IP transport protocol such as TCP, UDP, or ICMP.

Note IPsec is not considered an upper-layer-protocol in the header-data split
requirements. For more information about splitting IPsec frames, see Splitting IPsec
Frames.

If a NIC splits an Ethernet frame at the beginning of the upper-layer-protocol header,
the indicated NET_BUFFER must contain exactly two MDLs. The buffer that the first MDL
describes must begin with the first byte of the Ethernet frame (MAC header) and the
buffer that the second MDL describes must start with the first byte of the upper-layer-
protocol header.

Note The NIC can split TCP and UDP frames at the TCP or UDP payload. For more
information, see Splitting Frames at the TCP Payload and Splitting Frames at the UDP
Payload.

If the header-data split provider splits the frame at the beginning of the upper-layer-
protocol header, the indicated NET_BUFFER_LIST structures must have the
NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_HEADER flag set in the NblFlags
member. For more information about setting header-data split NET_BUFFER_LIST flags,
see Setting NET_BUFFER_LIST Information.

The NIC must not split a frame if the resulting header buffer has a greater length than
the maximum header size. For more information about splitting frames when the
maximum header size is exceeded, see Allocating the Header Buffer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting Frames at the TCP Payload
Article • 12/15/2021

NDIS miniport adapters that support header-data split must support splitting frames at
the upper-layer-protocol header for TCP frames. However, if the TCP header does not
contain any TCP options, the NIC should split the frame at the beginning of the TCP
payload.

The NIC might not be able to split a TCP frame if the resulting header buffer has a
greater length than the maximum header size. For more information about splitting
frames when the maximum header size is exceeded, see Allocating the Header Buffer.

NICs must also support splitting TCP headers with only the timestamp option. That is,
the timestamp option is the only TCP option that is mandatory. Otherwise, support for
TCP headers with TCP options is optional. If the TCP header of a frame contains an
unrecognized TCP option, the NIC must either split the frame at the beginning of TCP
header (that is, at the upper-layer-protocol header) or not split the frame.

Note Supporting an IPv4 option, an IPv6 extension header or a TCP option, for the
purposes of header-data requirements, implies the ability of the NIC to recognize the
element, determine its length, include it in the header MDL and locate its end and the
beginning of the next element in the frame.

For more information about splitting frames at the beginning of the upper-layer-
protocol header, see Splitting Frames at the Beginning of the Upper-Layer-Protocol
Headers.

If the header-data split provider splits the frame at the TCP payload, the indicated
NET_BUFFER_LIST structures must have the NDIS_NBL_FLAGS_IS_TCP and
NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD flags set in the
NblFlags member. For more information about setting header-data split
NET_BUFFER_LIST flags, see Setting NET_BUFFER_LIST Information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting Frames at the UDP Payload
Article • 12/15/2021

NDIS miniport adapters that support header-data split must support splitting frames at
the upper-layer-protocol header for UDP frames. However, the NIC must first try to split
the frame at the beginning of UDP payload.

The NIC might not be able to split a UDP frame if the resulting header buffer has a
greater length than the maximum header size. For more information about splitting
frames when the maximum header size is exceeded, see Allocating the Header Buffer.

If the NIC cannot split the frame at the UDP payload, the NIC should split the frame at
the beginning of the upper-layer-protocol header or should not split the frame. For
more information about splitting frames at the beginning of the upper-layer-protocol
header, see Splitting Frames at the Beginning of the Upper-Layer-Protocol Headers.

If the header-data split provider splits the frame at the UDP payload, the indicated
NET_BUFFER_LIST structures must have the NDIS_NBL_FLAGS_IS_UDP and
NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD flags set in the
NblFlags member. For more information about setting header-data split
NET_BUFFER_LIST flags, see Setting NET_BUFFER_LIST Information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Splitting ICMP Frames and Other Upper-
Layer-Protocol Frames
Article • 12/15/2021

A NIC must split IP frames with upper-layer-protocols other than TCP or UDP (for
example, ICMP frames) at the beginning of upper-layer-protocol header or must not
split such frames.

For more information about splitting at the upper-layer-protocol header, see Splitting
Frames at the Beginning of the Upper-Layer-Protocol Headers.

Splitting IPsec Frames
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

A NIC can split IPsec frames at the beginning of the upper-layer-protocol header, the
beginning of the TCP payload, or the beginning of the UDP payload. The NIC should
treat the IPsec information the same as an IPv4 option or IPv6 extension header.

The NIC might not be able to split the frame if the resulting header buffer has a greater
length than the maximum header size. For more information about the maximum
header size, see Allocating the Header Buffer.

Receive Indications with Header-Data
Split
Article • 12/15/2021

A miniport driver that supports header-data split must indicate received data in the
format that header-data split requires. For example, the header buffers should all be in a
contiguous block of storage and the data buffers must include backfill space.

The header information in split frames must never include virtual LAN (VLAN) tags.
Header-data split requires support for VLAN in hardware and requires removing VLAN
tags from the incoming frames and placing them in the Ieee8021QNetBufferListInfo
OOB information in the NET_BUFFER_LIST structure. The miniport driver must specify
support for VLAN in the MacOptions member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure and in response to the
OID_GEN_MAC_OPTIONS OID query.

NDIS and overlying drivers or user-mode applications use the
OID_GEN_HD_SPLIT_PARAMETERS OID to set the current header-data split settings of a
miniport adapter. If the NDIS_HD_SPLIT_COMBINE_ALL_HEADERS flag in the
HDSplitCombineFlags member of the NDIS_HD_SPLIT_PARAMETERS structure is set,
the miniport adapter must combine all split frames. If header-data split is enabled in the
hardware, the miniport driver must combine the header and data before indicating the
frame to NDIS. For more information about OID_GEN_HD_SPLIT_PARAMETERS and other
administrative and configuration issues, see Header-Data Split Administration and
Configuration.

This section includes:

Allocating the Header Buffer

Allocating Backfill for the Data Buffer

Setting NET_BUFFER_LIST Information

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters

Allocating the Header Buffer
Article • 12/15/2021

NDIS specifies the maximum header size that a miniport driver should allocate in the
MaxHeaderSize member of the NDIS_HD_SPLIT_ATTRIBUTES structure. For more
information about setting header-data split attributes, see Initializing a Header-Data
Split Provider.

When a NIC splits the header and data in a received Ethernet frame, the size of the
header portion of the indicated Ethernet frame must not exceed the MaxHeaderSize
value.

If an IP header contains IPv4 options, IPsec headers, or IPv6 extension headers, and if
the header exceeds the MaxHeaderSize value, the NIC must not split the frame.

If a header that includes the UDP header, TCP header, or TCP options exceeds the
MaxHeaderSize value, the NIC must either split the frame at the beginning of the
upper-layer-protocol header or must not split the frame.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes

Allocating Backfill for the Data Buffer
Article • 12/15/2021

NDIS specifies the amount of data backfill space that the miniport driver should allocate
in the BackfillSize member of the NDIS_HD_SPLIT_ATTRIBUTES structure. For more
information about setting header-data split attributes, see Initializing a Header-Data
Split Provider.

When a NIC splits the header and data in a received Ethernet frame, the miniport driver
must pre-allocate backfill storage of at least the number of bytes that BackfillSize
specifies before the starting address of data portion of the frame. The backfill storage
must not cross a page boundary.

The driver stack can use the pre-allocated backfill storage to copy the header portion of
the frame and create a virtually contiguous frame for network drivers that cannot handle
split Ethernet frames.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes

Setting NET_BUFFER_LIST Information
Article • 12/15/2021

A header-data split provider must set the header-data split flags in the NblFlags
member of the NET_BUFFER_LIST structures for receive indications. For split frames, a
NIC must also provide the physical address of the data portion of the received frame in
the DataPhysicalAddress member of each NET_BUFFER structure.

Note A miniport driver can set the DataPhysicalAddress member of the NET_BUFFER
structure, even if the NET_BUFFER is not associated with a split frame. In this case,
DataPhysicalAddress contains the physical address of the header MDL.

The header-data split provider combines the flags in the NblFlags member with a
bitwise OR operation.

The header-data split provider can set the following flags even if it does not split a
frame:

NDIS_NBL_FLAGS_IS_IPV4
All of the frames in the NET_BUFFER_LIST are IPv4 frames. If this flag is set, the
NDIS_NBL_FLAGS_IS_IPV6 flag must not be set.

NDIS_NBL_FLAGS_IS_IPV6
All of the frames in the NET_BUFFER_LIST are IPv6 frames. If this flag is set, the
NDIS_NBL_FLAGS_IS_IPV4 flag must not be set.

NDIS_NBL_FLAGS_IS_TCP
All of the frames in the NET_BUFFER_LIST are TCP frames. If this flag is set,
NDIS_NBL_FLAGS_IS_UDP must not be set. And either NDIS_NBL_FLAGS_IS_IPV4 or
NDIS_NBL_FLAGS_IS_IPV6 must be set.

NDIS_NBL_FLAGS_IS_UDP
All of the frames in the NET_BUFFER_LIST are UDP frames. If this flag is set,
NDIS_NBL_FLAGS_IS_TCP must not be set. And either NDIS_NBL_FLAGS_IS_IPV4 or
NDIS_NBL_FLAGS_IS_IPV6 must be set.

Any NDIS driver can set the preceding flags for debugging, testing, or other purposes. If
a driver sets these flags, the values must accurately describe the contents of the
received frame. Setting these flags is recommended.

The header-data split provider can set the following header-data split flags:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

NDIS_NBL_FLAGS_HD_SPLIT
The header and data are split in all of the Ethernet frames that are associated with the
NET_BUFFER_LIST structure.

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_HEADER
All of the frames in the NET_BUFFER_LIST structure are split at the beginning of the
upper-layer-protocol header. If this flag is set, either NDIS_NBL_FLAGS_IS_IPV4 or
NDIS_NBL_FLAGS_IS_IPV6 must be set. Also, either NDIS_NBL_FLAGS_IS_TCP or
NDIS_NBL_FLAGS_IS_UDP can be set. And
NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD must not be set.

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD
All of the frames in a NET_BUFFER_LIST structure are split at the beginning of the TCP
payload or beginning of the UDP payload. If this flag is set, either
NDIS_NBL_FLAGS_IS_IPV4 or NDIS_NBL_FLAGS_IS_IPV6 must be set. Either
NDIS_NBL_FLAGS_IS_TCP or NDIS_NBL_FLAGS_IS_UDP must be set. Also,
NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_HEADER must not be set.

If the header-data split provider does not split a frame, the frame must be indicated with
the following flags cleared in NblFlags :

NDIS_NBL_FLAGS_HD_SPLIT

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_HEADER

NDIS_NBL_FLAGS_SPLIT_AT_UPPER_LAYER_PROTOCOL_PAYLOAD

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Setting the Current Header-Data Split
Configuration
Article • 12/15/2021

NDIS and overlying drivers or user-mode applications use the
OID_GEN_HD_SPLIT_PARAMETERS OID to set the current header-data split settings of a
miniport adapter. NDIS 6.1 and later miniport drivers that provide header-data split
services must support this OID. Otherwise, this OID is optional.

A system administrator can use the GUID that is associated with this OID through the
WMI interface. For more information about header-data split WMI GUIDs, see WMI
Support for Header-Data Split.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_HD_SPLIT_PARAMETERS structure.

If the NDIS_HD_SPLIT_COMBINE_ALL_HEADERS flag in the HDSplitCombineFlags
member of NDIS_HD_SPLIT_PARAMETERS is set, the miniport adapter must combine all
split frames. If header-data split is enabled in the hardware, the miniport driver must
combine the header and data before the driver indicates the frame to NDIS.

For example, NDIS might use the OID_GEN_HD_SPLIT_PARAMETERS OID to set the
NDIS_HD_SPLIT_COMBINE_ALL_HEADERS flag when an NDIS 5.x protocol driver binds to
an NDIS 6.1 miniport adapter. NDIS processes this OID before it passes the OID to the
miniport driver and updates the miniport adapter's *HeaderDataSplit standardized
keyword, if required. If header-data split is disabled, NDIS does not send this OID to the
miniport adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters

Getting the Current Header-Data Split
Configuration
Article • 12/15/2021

To get the current header-data split settings of a miniport adapter, overlying drivers or
user-mode applications can query the OID_GEN_HD_SPLIT_CURRENT_CONFIG OID.
However, overlying drivers should use the information that NDIS provides to them
during initialization and with status indications.

A system administrator can use the GUID that is associated with the
OID_GEN_HD_SPLIT_CURRENT_CONFIG OID through the WMI interface. For more
information about header-data split WMI GUIDs, see WMI Support for Header-Data
Split.

NDIS handles OID_GEN_HD_SPLIT_CURRENT_CONFIG on behalf of the miniport driver.
NDIS maintains the current header-data split configuration information based on the
miniport driver initialization attributes and the
NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status indication.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_HD_SPLIT_CURRENT_CONFIG structure. NDIS also provides the
NDIS_HD_SPLIT_CURRENT_CONFIG structure to overlying drivers during initialization
and with the status indication.

When a miniport driver receives an OID_GEN_HD_SPLIT_PARAMETERS set request, the
driver must use the contents of the NDIS_HD_SPLIT_PARAMETERS structure to update
the current configuration of the miniport adapter. After the update, the miniport driver
must report the changes with the NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status
indication. The status indication ensures that all of the overlying drivers are updated
with the new information.

When NDIS calls the ProtocolBindAdapterEx function of NDIS 6.1 or later protocol
drivers, NDIS provides an NDIS_BIND_PARAMETERS structure with a pointer to an
NDIS_HD_SPLIT_CURRENT_CONFIG structure.

When NDIS calls the FilterAttach function of NDIS 6.1 or later filter drivers, NDIS
provides an NDIS_FILTER_ATTACH_PARAMETERS structure with a pointer to an
NDIS_HD_SPLIT_CURRENT_CONFIG structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters

Standardized INF Keywords for Header-
Data Split
Article • 12/15/2021

A standardized keyword is defined to enable or disable support for header-data split for
a miniport adapters.

The following table describes the possible INF entries for the header-data split keyword.

SubkeyName ParamDesc Value EnumDesc

*HeaderDataSplit Header Data Split 0 (Default) Disabled

1 Enabled

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

WMI Support for Header-Data Split
Article • 12/15/2021

NDIS 6.1 and later supports header-data split GUIDs for WMI applications to query and
set the header-data split configuration and to provide notification of changes.

The following GUIDs support header-data split:

GUID_NDIS_HD_SPLIT_CURRENT_CONFIG

GUID_NDIS_HD_SPLIT_PARAMETERS

GUID_NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG

Supporting Header-Data Split in
Protocol Drivers and Filter Drivers
Article • 12/15/2021

NDIS 6.0 and later protocol drivers and filter drivers must support receive indications
with the header and data in non-contiguous buffers.

You must not assume that there is only a single MDL in a NET_BUFFER structure.
Protocol drivers and filter drivers are not required to do anything specific to support
header-data split registration. But, the driver receive handling code must handle more
than one MDL in the MDL chain and must use the following NDIS MDL macros to access
the MDL chain:

NET_BUFFER_FIRST_MDL

NET_BUFFER_CURRENT_MDL

NET_BUFFER_CURRENT_MDL_OFFSET

With split buffers, the data length that is associated with the NET_BUFFER structure (in
the DataLength member of the NET_BUFFER_DATA structure) is split across multiple
MDLs. For example, if a protocol driver tried to access the entire data buffer in the first
MDL, the driver could access invalid data.

Note After the receive indication call returns to a miniport driver, the miniport driver
can reclaim the header MDLs. The overlying drivers or their clients must not access the
header MDLs after the receive indication call returns to the miniport driver. This
restriction also applies even when the miniport driver is not indicating the received data
with a status of NDIS_RECEIVE_FLAGS_RESOURCES.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_first_mdl
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_current_mdl
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_current_mdl_offset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_data

Overview of Network Direct Kernel
Provider Interface (NDKPI)
Article • 12/15/2021

The Network Direct Kernel Provider Interface (NDKPI) is an extension to NDIS that allows
IHVs to provide kernel-mode Remote Direct Memory Access (RDMA) support in a
network adapter (also called an RNIC). To expose the adapter's RDMA functionality, the
IHV must implement the NDKPI interface as defined in the NDKPI Reference.

NDKPI and RDMA
The NDK provider
The NDK consumer

A NIC vendor implements RDMA as a combination of software, firmware, and hardware.
The hardware and firmware portion is a network adapter that provides NDK/RDMA
functionality. This type of adapter is also called an RDMA-enabled NIC (RNIC). The
software portion is an NDK-capable miniport driver, which implements the NDKPI
interface.

The Windows implementation of RDMA is called Network Direct (ND). The kernel
portion is called Network Direct Kernel (NDK).

NDK providers must support Network Direct connectivity via both IPv4 and IPv6
addresses assigned to NDK-capable miniport adapters.

For more information about RDMA, see Background Reading on RDMA.

An NDK provider is a miniport driver that implements the NDKPI interface.

The NDK provider is loaded and initialized by the PnP Manager. For more information,
see Initializing an NDK-Capable Miniport Driver and Initializing an NDK Miniport
Adapter.

Once the NDK provider is loaded and initialized, it is ready to handle requests from the
NDK consumer. These requests arrive as calls to provider functions.

NDKPI and RDMA

The NDK provider

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

When handling requests from an NDK consumer, the provider can call the consumer's
NDK callback functions. These are documented in NDKPI Consumer Callback Functions.

NDK providers must implement all elements of the NDKPI interface that are
documented in the NDKPI Reference, except for the NDKPI Consumer Callback
Functions.

NDK consumers are kernel-mode Windows components, such as SMB server and client.

Note This documentation does not discuss how to implement an NDK consumer. The
NDKPI consumer device driver interface (DDI) is a proprietary Windows-internal
interface.

An NDK consumer calls the provider's NdkOpenAdapter
(OPEN_NDK_ADAPTER_HANDLER) callback function to create an adapter object and
NdkCloseAdapter (NDK_FN_CLOSE_OBJECT) to close it. Once the provider has created
the adapter object, the consumer calls other provider callback functions to create
additional NDK objects.

NDK consumers implement the NDKPI Consumer Callback Functions, which are called
by NDK providers.

The NDK consumer

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/nc-ndisndk-open_ndk_adapter_handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_close_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

NDKPI Terminology
Article • 12/15/2021

The NDKPI documentation uses the following terms to describe NDK providers and
consumers.

provider function
consumer callback
completion callback
event callback
parent object
child object
antecedent object
successor object
endpoint
Related topics

An NDKPI function in the function dispatch table of an NDK object. Provider functions
are implemented by NDK providers and called by NDK consumers. All provider functions
have as the first parameter a pointer to the object on which they operate. This pointer is
similar to the "this" pointer in C++. This pointer is always passed explicitly by the
consumer to the provider function.

An NDKPI function implemented by NDK consumers and called by NDK providers. There
are 2 types of consumer callbacks: completion callbacks and event callbacks.

A consumer callback that is called by the NDK provider to signal the completion of an
asynchronous provider function. In NDKPI 1.1 and 1.2, there are 3 completion callbacks:

NdkCloseCompletion (NDK_FN_CLOSE_COMPLETION)
NdkCreateCompletion (NDK_FN_CREATE_COMPLETION)
NdkRequestCompletion (NDK_FN_REQUEST_COMPLETION)

provider function

consumer callback

completion callback

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_close_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_request_completion

A consumer callback that can be called by the NDK provider to indicate certain events
on an NDK object asynchronously without being triggered by an asynchronous provider
function. In NDKPI 1.1 and 1.2, there are 4 event callbacks:

NdkCqNotificationCallback (NDK_FN_CQ_NOTIFICATION_CALLBACK)
NdkConnectEventCallback (NDK_FN_CONNECT_EVENT_CALLBACK)
NdkDisconnectEventCallback (NDK_FN_DISCONNECT_EVENT_CALLBACK)
NdkSrqNotificationCallback (NDK_FN_SRQ_NOTIFICATION_CALLBACK)

An NDK object whose function dispatch table contains one or more NdkCreateXxx**
provider functions to create other objects. in NDKPI versions 1.1 and 1.2, there are 2
parent objects:

The NDK adapter object (NDK_ADAPTER) is the parent of:

NDK_CONNECTOR
NDK_CQ
NDK_LISTENER
NDK_LOGICAL_ADDRESS_MAPPING
NDK_PD
NDK_SHARED_ENDPOINT

The NDK protection domain (PD) object (NDK_PD) is the parent of:

NDK_MR
NDK_MW
NDK_QP
NDK_SRQ

An NDK object which is created by calling one of the NdkCreateXxx** provider functions
in a parent object's dispatch table.

event callback

parent object

child object

antecedent object

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_cq_notification_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_event_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_disconnect_event_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_srq_notification_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_listener
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_logical_address_mapping
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_pd
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_pd
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_srq

An NDK object that another object relies on in order to provide functionality. The
antecedent object must be created before the successor object. Note that all parent
objects are antecedent objects, but the reverse is not true.

An NDK object that relies on an antecedent object. The antecedent object must be
created before the successor object. Note that all child objects are successor objects but
the reverse is not true. Note that an antecedent/successor relationship may be required,
optional, and/or deferred to a point after the successor creation in some cases.

The following antecedent/successor relationships are defined by NDKPI versions 1.1 and
1.2 (in addition to the parent/child relationships, which are antecedent/successor
relationships by definition):

Antecedent Successor

NDK_CQ NDK_QP

NDK_MR NDK_MW (See NdkBind (NDK_FN_BIND).)

NDK_SRQ NDK_QP

NDK_QP NDK_CONNECTOR (See NdkConnect
(NDK_FN_CONNECT), NdkAccept
(NDK_FN_ACCEPT), and
NdkConnectWithSharedEndpoint
(NDK_FN_CONNECT_WITH_SHARED_ENDPOINT).)

NDK_SHARED_ENDPOINT NDK_CONNECTOR (See
NdkConnectWithSharedEndpoint
(NDK_FN_CONNECT_WITH_SHARED_ENDPOINT).)

NDK_LISTENER NDK_CONNECTOR (See
NdkConnectEventCallback
(NDK_FN_CONNECT_EVENT_CALLBACK).)

An implicit or explicit representation of a local address and NetworkDirect port number
that identify the local point over which connections can be initiated or accepted, for
example, 10.1.1.1:445:

An NDK_LISTENER has an implicit endpoint (which the consumer specifies when
calling NdkListen (NDK_FN_LISTEN)).

successor object

endpoint

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_bind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_accept
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_with_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_with_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_listener
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_event_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_listener
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_listen

An NDK_CONNECTOR that is connected by calling NdkConnect
(NDK_FN_CONNECT) also has an implicit endpoint.
An NDK_SHARED_ENDPOINT represents an explicit endpoint. The NDK consumer
directly creates the endpoint and uses it explicitly to initiate one or more
connections by calling NdkConnectWithSharedEndpoint
(NDK_FN_CONNECT_WITH_SHARED_ENDPOINT).

Note An NDK endpoint is not the same as the NDSPI version 1 INDEndpoint interface
or the NDSPI version 2 INDQueuePair interface.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_with_shared_endpoint
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/cc904370(v=vs.85)

Background Reading on RDMA
Article • 12/15/2021

RDMA is a networking technology that provides high-throughput, low-latency
communication that minimizes CPU usage. NDK currently supports the following RDMA
technologies:

Infiniband (IB)
Internet Wide Area RDMA Protocol (iWARP)
RDMA over Converged Ethernet (RoCE)

For more information about RDMA, Infiniband, iWARP, and RoCE, see the following
resources:

RFC 5040: A Remote Direct Memory Access Protocol Specification
RFC 5041: Direct Data Placement over Reliable Transports
RFC 5042: Direct Data Placement Protocol (DDP) / Remote Direct Memory Access
Protocol (RDMAP) Security
RFC 5043: Stream Control Transmission Protocol (SCTP) Direct Data Placement
(DDP) Adaptation
RFC 5044: Marker PDU Aligned Framing for TCP Specification
RDMA Consortium
Internet Draft: RDMA Protocol Verbs Specification
Infiniband Trade Association (for downloadable specifications for Infiniband and
RoCE)

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5041
https://tools.ietf.org/html/rfc5042
https://tools.ietf.org/html/rfc5043
https://tools.ietf.org/html/rfc5044
http://www.rdmaconsortium.org/
https://tools.ietf.org/html/draft-hilland-rddp-verbs-00
https://www.infinibandta.org/

Initializing an NDK-Capable Miniport
Driver
Article • 12/15/2021

A miniport driver that supports Network Direct kernel (NDK) is initialized in the same
way as other miniport drivers. However, it must also register additional NDKPI entry
points.

DriverEntry function
MiniportSetOptions function
Related topics

Every miniport driver's DriverEntry function initializes an
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure and passes it to
NdisMRegisterMiniportDriver as described in the following pages:

Initializing a Miniport Driver
DriverEntry of NDIS Miniport Drivers function

The NDK-capable miniport driver must do the following when initializing the
NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure:

In the OidRequestHandler member, the miniport driver must register a
MiniportOidRequest function that supports:

All NDKPI OIDs.

Any OIDs that are mandatory for NDIS miniport drivers in general.

Note For a list of these mandatory OIDs, see Mandatory OIDs for Miniport
Drivers.

In the SetOptionsHandler member, the miniport driver must register a
MiniportSetOptions function as described in Configuring Optional Miniport Driver
Services and the following MiniportSetOptions function section.

DriverEntry function

MiniportSetOptions function

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options

NDIS calls the MiniportSetOptions function immediately after the miniport driver's
DriverEntry function returns. The MiniportSetOptions function is called in the context of
the miniport driver's call to NdisMRegisterMiniportDriver.

In its MiniportSetOptions function, the NDK-capable miniport driver registers its NDK
capability and registers the following required NDKPI function entry points as described
in Configuring Optional Miniport Driver Services:

OpenNDKAdapterHandler (OPEN_NDK_ADAPTER_HANDLER)

CloseNDKAdapterHandler (CLOSE_NDK_ADAPTER_HANDLER)

To register NDKPI entry points for these functions, the miniport driver's
MiniportSetOptions function must do the following:

1. Initialize an NDIS_NDK_PROVIDER_CHARACTERISTICS structure.

Note Pay particular attention to the Header member description. The miniport
driver must set this member correctly to identify itself as an NDK-capable miniport
driver.

2. Store the function entry points in the OpenNDKAdapterHandler and
CloseNDKAdapterHandler members of the structure.

3. Call the NdisSetOptionalHandlers function, passing the structure in the
OptionalHandlers parameter.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/nc-ndisndk-open_ndk_adapter_handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/nc-ndisndk-close_ndk_adapter_handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/ns-ndisndk-_ndis_ndk_provider_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers

Initializing an NDK Miniport Adapter
Article • 12/15/2021

A Network Direct kernel (NDK) miniport adapter is initialized in the same way as other
miniport adapters: NDIS calls the miniport adapter's MiniportInitializeEx function as
described in Initializing a Miniport Adapter. This topic describes the NDK-specific
requirements for the miniport adapter's MiniportInitializeEx function.

In its MiniportInitializeEx function, the miniport driver must do the following:

1. Populate an NDIS_MINIPORT_ADAPTER_NDK_ATTRIBUTES structure for the
adapter as follows:

The miniport driver sets the Header member as described in the member
description to identify the adapter as an NDK-capable miniport adapter.

The miniport driver sets the Enabled member to TRUE if its NDK functionality
is enabled, or FALSE otherwise.

In the NdkCapabilities member, the miniport driver stores a pointer to an
NDIS_NDK_CAPABILITIES structure that specifies the capabilities of the
adapter.

2. Call NdisMSetMiniportAttributes to set these attributes for the adapter.

Network Direct Kernel Provider Interface (NDKPI)

７ Note

For more information about querying and setting the current state of
the miniport driver's NDK functionality, see Enabling and Disabling NDK
Functionality.

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_ndk_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Implementing NDKPI Functions
Article • 12/15/2021

An NDK-capable miniport driver must register entry points for all NDK_FN_XXX callback
functions. All of the NDKPI provider callback functions are mandatory; none are optional.

To register support for these functions, the miniport driver stores their entry points in the
structures listed in the "Object's Dispatch Table" column of the following table:

Object Type Created By This Function Object's Dispatch Table

NDK_ADAPTER OPEN_NDK_ADAPTER_HANDLER NDK_ADAPTER_DISPATCH

NDK_CONNECTOR NDK_FN_CREATE_CONNECTOR NDK_CONNECTOR_DISPATCH

NDK_CQ NDK_FN_CREATE_CQ NDK_CQ_DISPATCH

NDK_LISTENER NDK_FN_CREATE_LISTENER NDK_LISTENER_DISPATCH

NDK_MR NDK_FN_CREATE_MR NDK_MR_DISPATCH

NDK_MW NDK_FN_CREATE_MW NDK_MW_DISPATCH

NDK_PD NDK_FN_CREATE_PD NDK_PD_DISPATCH

NDK_QP NDK_FN_CREATE_QP or
NDK_FN_CREATE_QP_WITH_SRQ

NDK_QP_DISPATCH

NDK_SHARED_ENDPOINT NDK_FN_CREATE_SHARED_ENDPOINT NDK_SHARED_ENDPOINT_DISPATCH

NDK_SRQ NDK_FN_CREATE_SRQ or
NDK_FN_CREATE_QP_WITH_SRQ

NDK_SRQ_DISPATCH

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndisndk/nc-ndisndk-open_ndk_adapter_handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_cq_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_listener
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_listener
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_listener_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_mr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mr_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_mw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_mw_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_pd
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_pd
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_pd_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_qp_with_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_shared_endpoint_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_qp_with_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_srq_dispatch

INF Requirements for NDKPI
Article • 06/02/2023

The INF file for a miniport driver that supports Network Direct kernel (NDK) must meet
the following requirements.

The miniport driver's INF file must specify an NDIS upper range value of "ndis5" in order
for Windows components to discover and use the NDK-capable miniport adapters that
are serviced by the driver. This value is specified as follows:

INF

The INF file must specify the *NetworkDirect keyword value as follows:

Once the driver is installed, administrators can update the *NetworkDirect
keyword value in the Advanced property page for the adapter.

Note: The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

INF

The INF file must specify the *NetworkDirectTechnology keyword value as follows:

Once the driver is installed, administrators can update the
*NetworkDirectTechnology keyword value in the Advanced property page for the

NDIS upper range value

HKR, Ndi\Interfaces, UpperRange, 0, "ndis5"

*NetworkDirect INF keyword

HKR, Ndi\Params*NetworkDirect, ParamDesc, 0, "NetworkDirect
Functionality"
HKR, Ndi\Params*NetworkDirect, Type, 0, "enum"
HKR, Ndi\Params*NetworkDirect, Default, 0, "1"
HKR, Ndi\Params*NetworkDirect\enum, "0", 0, "Disabled"
HKR, Ndi\Params*NetworkDirect\enum, "1", 0, "Enabled"

*NetworkDirectTechnology INF keyword

adapter. The enumerations are mutually exclusive, meaning the selection of a
NetworkDirectTechnology value excludes all others. This allows for the Platform to
define strict device behavior.
A device must express only the supported transports. The transport values are
identifiers which map to WDK NDK_RDMA_TECHNOLOGY. A redefinition of the
identifiers is prohibited.
The behavior of devices with multiple concurrent transports is undefined. The
device must specify a transport type.

Note: The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

INF

The INF file for a miniport driver that supports *NetworkDirectRoCEFrameSize must
meet the following requirements:

The *NetworkDirectRoCEFrameSize keyword specifies the administrator requested
maximum transmission unit for NetworkDirect communications. Adapters
supporting the *NetworkDirect keyword with RoCE or RoCEv2 must additionally
support this keyword.

The acceptable registry values for *NetworkDirectRoCEFrameSize are 256, 512,
1024, 2048, and 4096. The value of 1024 is required.

The adapter must use the largest supported size for
*NetworkDirectRoCEFrameSize that doesn't exceed *JumboPacket.

If the configured value of *NetworkDirectRoCEFrameSize differs from the
operational (active) RoCE MTU, the driver must log an event in the system event
log indicating operational (active) RoCE MTU.

HKR, Ndi\Params*NetworkDirectTechnology, ParamDesc, 0,
"NetworkDirect Technology"
HKR, Ndi\Params*NetworkDirectTechnology, Default, 0, "1"
HKR, Ndi\Params*NetworkDirectTechnology, Type, 0, "enum"
HKR, Ndi\Params*NetworkDirectTechnology\enum, 1, 0, "iWARP"
HKR, Ndi\Params*NetworkDirectTechnology\enum, 2, 0,
"InfiniBand"
HKR, Ndi\Params*NetworkDirectTechnology\enum, 3, 0, "RoCE"
HKR, Ndi\Params*NetworkDirectTechnology\enum, 4, 0, "RoCEv2"
HKR, Ndi\Params*NetworkDirectTechnology, Optional, 0, "0"

*NetworkDirectRoCEFrameSize INF keyword

Note: The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter unless the change can be made effective
without the restart.

The following table describes the *NetworkDirectRoCEFrameSize keyword and values
that can be edited. The min and max values define the required limits for supported
values. An individual adapter can support a lower minimum value or higher maximum
value but must support at least these values.

SubkeyName ParamDesc Type Default
value

Min Max

*NetworkDirectRoCEFrameSize Network Direct Maximum
Transmission Unit

enum 1024 256 4096

For more information about advanced properties, see Specifying Configuration
Parameters for the Advanced Properties Page.

For more information about using standardized INF keywords, see Standardized INF
Keywords for Network Devices.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

Enabling and Disabling NDK
Functionality
Article • 12/15/2021

To enable or disable NDK functionality, NDIS issues an OID_NDK_SET_STATE OID
request. An NDK-capable miniport driver must register support for this OID in its
MiniportOidRequest function.

The *NetworkDirect keyword determines whether the miniport driver's NDK
functionality can be enabled.

If this keyword value is set to 1 ("Enabled"), NDK functionality can be enabled.

If it is set to 0 ("Disabled"), NDK functionality cannot be enabled.

When the miniport driver is installed, its INF file sets this keyword value to 1 ("Enabled")
by default. For more information, see INF Requirements for NDKPI.

After the miniport driver is installed, administrators can update the *NetworkDirect
keyword value by setting a new value in the Advanced property page for the adapter.
For more information about advanced properties, see Specifying Configuration
Parameters for the Advanced Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

This state change can be triggered by an OID_NDK_SET_STATE OID request, or by a
success or failure in the adapter itself.

To enable or disable its NDK functionality, the miniport driver must send a
NetEventNDKEnable or NetEventNDKDisable Plug and Play (PnP) event to NDIS.

Determining whether NDK functionality can be
enabled

When to enable or disable NDK functionality

Enabling or disabling NDK functionality

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

To send the PnP event, the miniport driver calls the NdisMNetPnPEvent function, setting
the NetPnPEvent member of the NET_PNP_EVENT_NOTIFICATION structure that the
NetPnPEvent parameter points to as follows:

NetEventNDKEnable if NDK functionality is to be enabled.

NetEventNDKDisable if NDK functionality is to be disabled.

The NetEventNDKDisable PnP event triggers NDIS and upper layer drivers to start
closing their opened NDK_ADAPTER instances over the adapter where the NDK
functionality is being disabled. The PnP event will remain pending until all of the opened
NDK_ADAPTER instances over the adapter are closed.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_net_pnp_event_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter

NDKPI Object Lifetime Requirements
Article • 10/05/2022

An NDK consumer initiates a create request for an NDK object by calling the NDK
provider's create function for that object.

When the consumer calls a create function, it passes an NdkCreateCompletion
(NDK_FN_CREATE_COMPLETION) as a parameter.

The consumer initiates various requests by calling provider functions in the object's
dispatch table, passing an NdkRequestCompletion (NDK_FN_REQUEST_COMPLETION)
completion callback as a parameter.

When an object is no longer needed, the consumer calls the provider's NdkCloseObject
(NDK_FN_CLOSE_OBJECT) function to initiate a close request for the object, passing an
NdkCloseCompletion (NDK_FN_CLOSE_COMPLETION) callback as a parameter.

The provider calls the consumer's callback function to complete the request
asynchronously. This call indicates to the consumer that the provider has completed the
operation (for example, closing the object) and is returning control to the consumer. If
the provider completes the close request synchronously, either successfully or in error, it
won’t call the consumer’s callback function.

When a provider has created an object at the request of a consumer, the provider calls
the consumer's NdkCreateCompletion callback to indicate that the object is ready for
use.

The consumer can call other provider functions for the same object without waiting for
the first callback to return.

The consumer will not call the NdkCloseObject function for an object until all provider
functions for that object have returned.

However, if the provider function initiates a completion request, the consumer is free to
call NdkCloseObject from inside that completion callback, even if the provider function
hasn't returned.

How NDK Objects Are Created, Used, and
Closed

The Rules for Completion Callbacks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_create_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_request_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_close_object
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_close_completion

A provider function can initiate a completion request before returning from a callback
by doing one of the following:

Calling the completion callback directly
Queuing the completion request to another thread

By initiating a completion request, the provider effectively returns control to the
consumer. The provider must assume that the object can be closed at any time after the
provider initiates the completion request.

Note To prevent deadlock after initiating a completion request, the provider must
either:

Not perform other operations on the object until the completion callback returns.
Take the necessary measures to keep the object intact, if the provider absolutely
must touch the object.

Consider the following scenario:

1. The consumer creates a connector (NDK_CONNECTOR) and then calls NdkConnect
(NDK_FN_CONNECT).

2. The provider processes the connect request, hits a failure, and calls the consumer's
completion callback in the context of the NdkConnect call (as opposed to returning
inline failure due to an internal implementation choice).

3. The consumer calls NdkCloseObject in the context of this completion callback, even
though the NdkConnect call has not yet returned to the consumer.

To avoid deadlock, the provider must not touch the connector object after step 2 (the
point when it initiated the completion callback inside the NdkConnect call).

The provider must be prepared for the consumer to call the NdkCloseObject function to
close an antecedent object before the consumer calls NdkCloseObject for successor
objects. If the consumer does this, here's what the provider must do:

The provider must not close the antecedent object until all the successor objects
are closed, i.e., provider must return STATUS_PENDING from the close request and
complete it (by calling the registered NdkCloseCompletion function for the close
request) once all successor objects are closed.

Example: Consumer-Provider Interaction

Closing Antecedent and Successor Objects

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect

The consumer will not use the antecedent object after calling NdkCloseObject on it,
so the provider does not have to add any handling for failing further provider
functions on the antecedent object (but it may if it chooses to).
The provider may treat the close request like a simple dereference which has no
other side-effect until the last successor object is closed, unless otherwise required
(see the NDK listener close case below which has a required side-effect).

The provider must not complete the close request on an antecedent object (including
the NDK_ADAPTER close request) before any in-progress close completion callback on
any successor object returns to the provider. This is to allow NDK consumers to unload
safely.

An NDK consumer will not call NdkCloseObject for an NDK_ADAPTER object (which is a
blocking call) from inside a consumer callback function.

Consider the following scenario:

1. The consumer calls NdkCloseObject on a completion queue (CQ) object.
2. The provider returns STATUS_PENDING, and later calls the consumer's completion

callback.
3. Inside this completion callback, the consumer signals an event that it's now OK to

close the NDK_ADAPTER.
4. Another thread wakes up upon this signal, and closes the NDK_ADAPTER and

proceeds to unload.
5. However, the thread in which the consumer's CQ close completion callback was

called might still be inside the consumer's callback function (for example, the
function epilog), so it's not safe for the consumer driver to unload.

6. Because the completion callback context is the only context the consumer can
signal the event, the consumer driver can't solve the safe-unload issue itself.

There must be a point at which the consumer can be assured that all of its callbacks
have returned control. In NDKPI, this point is when the close request on a
NDK_ADAPTER returns control. Note that NDK_ADAPTER close request is a blocking
call. When an NDK_ADAPTER close request returns, it's guaranteed that all callbacks on
all objects that descend from that NDK_ADAPTER object have returned control to the
provider.

Closing Adapter Objects

Completing Close Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter
https://learn.microsoft.com/en-us/cpp/build/prolog-and-epilog
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter

The provider must not complete a close request on an object until:

All pending asynchronous requests on the object have been completed (in other
words, their completion callbacks have returned to the provider).
All of the consumer's event callbacks (for example, NdkCqNotificationCallback
(NDK_FN_CQ_NOTIFICATION_CALLBACK) on a CQ, NdkConnectEventCallback
(NDK_FN_CONNECT_EVENT_CALLBACK) on a Listener) have returned to the
provider.

The provider must guarantee that no more callbacks will happen after the close
completion callback is called or after the close request returns STATUS_SUCCESS. Note
that a close request must also initiate any needed flushing or cancellation of pending
asynchronous requests.

Note It logically follows from the above that an NDK consumer must not call
NdkCloseObject for an NDK_ADAPTER object (which is a blocking call) from inside a
consumer callback function.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_cq_notification_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_event_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter

NDKPI Listeners, Connectors, and
Endpoints
Article • 12/15/2021

An NDK consumer connects an NDK connector by calling the NdkConnect
(NDK_FN_CONNECT) or NdkConnectWithSharedEndpoint
(NDK_FN_CONNECT_WITH_SHARED_ENDPOINT) function.

Each connector that is in a connected state also has an underlying endpoint that
represents the local end of the established NDK connection:

A connector that is established by accepting an incoming connection over an NDK
listener automatically inherits the listener's implicit endpoint as its local implicit
endpoint.
A connector that is connected via the NdkConnect function has its own dedicated
implicit local endpoint.
A connector that is connected via the NdkConnectWithSharedEndpoint function has
an explicit local endpoint that can be shared with other connectors that are also
connected via the NdkConnectWithSharedEndpoint function.

The NDK provider must keep some sort of reference count for each implicit or explicit
endpoint, and release the endpoint (i.e., mark the address/port as available to be used
again) when the reference count reaches zero:

When the consumer calls the NdkListen (NDK_FN_LISTEN) function, the provider creates
an implicit endpoint. For this implicit endpoint, the provider must maintain a reference
count as follows:

Add a reference for the listener itself to the endpoint's reference count.

Add a reference for each connector that is accepted over that listener.

Remove a reference when a connector that was previously accepted over the
listener is closed.

Remove a reference when the listener itself is closed. Note You can't close the
listener until all the connectors are closed.

Release the endpoint when its reference count returns to zero. (This is the case
only when the listener and all the connectors accepted over the listener have been

Reference Counting for (Non-Shared) Endpoints

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_connect_with_shared_endpoint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_listen

closed.)

Simply closing the listener does not release the endpoint as long as there are
previously accepted connectors that are not yet closed. This means that new
NdkListen, NdkConnect, and NdkConnectWithSharedEndpoint requests for the same
local address and port will fail until all such connections are closed. Note that the
close request on the listener will also remain pending until all such connections are
closed (due to the antecedent/successor rules outlined in NDKPI Object Lifetime
Requirements). The provider must reject further incoming connections on the
listener as soon as a close request is issued (so that no new connections are
accepted while the close request is pending).

When the consumer calls NdkConnect, the provider creates and implicit endpoint. For
this implicit endpoint, the provider must:

Add a reference by the connector. There is only one connector, hence only one
reference.
Remove the connector's reference to the endpoint when the connector is closed.
Release the endpoint when that reference is gone.

When the consumer calls NdkConnectWithSharedEndpoint, the provider creates an
explicit shared endpoint. For this explicit shared endpoint, the provider must:

Add a reference for the shared endpoint itself to the shared endpoint's reference
count.
Add a reference for each connector that is connected over that shared endpoint.
Remove a reference when a connector that was previously connected over the
shared endpoint is closed.
Release the endpoint the reference count returns to zero. (This is the case when
the shared endpoint and all the connectors connected over the shared endpoint
have been closed.)
Simply closing the shared endpoint does not release the endpoint as long as there
are previously connected connectors that are not yet closed. This means that new
NdkListen, NdkConnect, and NdkConnectWithSharedEndpoint requests for the same
local address and port will fail until all such connections are closed. Note that the
close request on the shared endpoint will also remain pending until all such

Reference Counting for Connectors

Reference Counting for Shared Endpoints

connections are closed (due to the antecedent/successor rules outlined in NDKPI
Object Lifetime Requirements).

Network Direct Kernel Provider Interface (NDKPI)

Related topics

NDKPI Completion Handling
Requirements
Article • 12/15/2021

NDK consumers and NDK providers must follow these requirements for NDKPI
completion handling.

The consumer will always serialize its calls to these provider functions on the same
completion queue (CQ) object (NDK_CQ):

NdkGetCqResults (NDK_FN_GET_CQ_RESULTS)
NdkGetCqResultsEx (NDK_FN_GET_CQ_RESULTS_EX)
NdkArmCq (NDK_FN_ARM_CQ)

This means not only that the consumer will never call the same provider function
multiple times concurrently, but also that it will never call any combination of these
functions concurrently on the same CQ from multiple threads.

An NdkOperationTypeReceiveAndInvalidate completion that occurs as a result of a
remote NdkSendAndInvalidate (NDK_FN_SEND_AND_INVALIDATE) call must still be
retrievable using NdkGetCqResults (not NdkGetCqResultsExn). Doing so must still
invalidate the specified token on the receiver, but will not notify the receiving consumer
of this invalidation (the consumer must use NdkGetCqResultsEx to get this information).
A later NdkInvalidate (NDK_FN_INVALIDATE) for the same token will fail, as usual.

The provider must call the NdkCqNotificationCallback
(NDK_FN_CQ_NOTIFICATION_CALLBACK) callback only once, and only after the
consumer has armed the NdkCqNotificationCallback callback by calling NdkArmCq. That
is, the provider must clear the arm and call the NdkCqNotificationCallback callback when
the conditions for calling the NdkCqNotificationCallback callback occur (in other words,
when request completions are queued in the CQ).

If there are completions already present in the CQ when the consumer calls NdkArmCq,
the provider will behave as follows:

The Rules for NdkGetCqResults,
NdkGetCqResultsEx, and NdkArmCq Functions

The Rules for Notification Callbacks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_get_cq_results
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_get_cq_results_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_arm_cq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send_and_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_cq_notification_callback

If at least one of the completions was newly placed into the CQ since the last
NdkCqNotificationCallback callback was called, the provider must satisfy the arm
request immediately (see below for serialization requirements).
However, if all completions in the CQ were present also when the last
NdkCqNotificationCallback callback was called (in other words, the consumer
called NdkArmCq without removing all the completions and no new completions
got placed into the CQ), then the provider may satisfy the arm request
immediately.

When the provider needs to call the NdkCqNotificationCallback callback, if there's
already a NdkCqNotificationCallback callback in progress, then the provider must defer
the invocation of the NdkCqNotificationCallback callback until after the existing call to
the NdkCqNotificationCallback callback returns control to the provider. In other words,
the provider is responsible for serializing the NdkCqNotificationCallback callbacks.

The following table shows the resulting arm type if NdkArmCq is called a second time
before a previous NdkArmCq request is satisfied:

2nd arm ANY 2nd arm ERRORS 2nd arm SOLICITED

1st arm ANY ANY ANY ANY

1st arm ERRORS ANY ERRORS SOLICITED

1st arm SOLICITED ANY SOLICITED SOLICITED

Network Direct Kernel Provider Interface (NDKPI)

Related topics

NDKPI Work Request Posting
Requirements
Article • 12/15/2021

The NDK consumer will post the following types of work requests on the initiator queue:

NdkBind (NDK_FN_BIND)
NdkFastRegister (NDK_FN_FAST_REGISTER)
NdkInvalidate (NDK_FN_INVALIDATE)
NdkRead (NDK_FN_READ)
NdkSend (NDK_FN_SEND)
NdkSendAndInvalidate (NDK_FN_SEND_AND_INVALIDATE)
NdkWrite (NDK_FN_WRITE)

The consumer will post NdkReceive (NDK_FN_RECEIVE) requests on the receive queue.

The consumer will post all of these requests to the same individual queue on an
NDK_QP or NDK_SRQ in a serialized fashion. In other words, the consumer will never
have two concurrent calls to any work request functions on the same individual queue
belonging to an NDK_QP or NDK_SRQ.

This means, for example, that concurrent NdkReceive calls won't be issued, concurrent
NdkSend and NdkWrite calls won't be issued, but concurrent NdkReceive and NdkWrite
calls may be issued on the same NDK_QP.

The provider should not have any redundant locks inside the above work request
functions, because they are guaranteed to be serialized by the consumer.

The provider must be able to handle NdkFlush (NDK_FN_FLUSH) calls that may be called
concurrently with a work request call on the same NDK_QP.

The provider must be able to handle an NdkCloseConnector call (on the successor
NDK_CONNECTOR object for the NDK_QP) that may be called concurrently with a work
request call on the same NDK_QP.

Work Request Posting Rules for the Consumer

Work Request Posting Rules for the Provider

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_bind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_fast_register
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_read
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send_and_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_write
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_receive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_srq
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_flush
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_connector
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_qp

Network Direct Kernel Provider Interface (NDKPI)

Related topics

NetworkDirect Disconnect Scheme
Article • 12/15/2021

The scheme described here applies to both NDSPI version 2 and NDKPI. The following
terms are used:

ND is used to refer to NDSPI or NDK.
NdDisconnect is used to refer to the function call that an ND consumer makes in
order to initiate a graceful disconnect. For NDSPI, this is
INDConnector::Disconnect. For NDKPI, it is NdkDisconnect
(NDK_FN_DISCONNECT).
NdDisconnectIndication is used to refer to the indication delivered by an ND
provider to an ND consumer when the ND provider receives a graceful disconnect
from the peer or detects that the connection was aborted due to any reason (other
than the local NDK consumer's own initiation such as issuing NdDisconnect or
NdCloseConnector).

Below, A and B refer to the two sides of an ND connection. Consumer A refers to the ND
consumer on side A, provider A refers to the ND provider on side A, and similarly
Consumer B/Provider B refers to those same entities on side B. When consumer A calls
NdDisconnect, provider A must send a graceful disconnect notification to side B and
complete consumer A's NdDisconnect request only when both of the following
conditions occur:

Either:
A graceful disconnect notification is received from B (which leads to successful
completion of consumer A's NdDisconnect), or
An error such as connection abortion or time-out occurred (which leads to
consumer A's NdDisconnect to be completed with a failure).

All DMA activity on the QP is finished (including DMA activity for work requests
that were posted with silent-success flag).

When provider B receives a graceful disconnect notification from A or detects that the
connection is aborted, provider B must deliver NdDisconnectIndication to consumer B if
consumer B has not called NdDisconnect to provider B already. Since an incoming
graceful disconnect notification or an abort event can race with the local consumer
initiating NdDisconnect, local consumer must be prepared to handle an
NdDisconnectIndication arriving after local consumer calls NdDisconnect. Note that an
NdDisconnectIndication does not provide any guarantees in terms of work request
completions.

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/cc904391(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/cc904364(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_disconnect

A disconnected QP or connector cannot be reused by the consumer.

NetworkDirect does not have any notion of half-closed connections. Once NdDisconnect
is completed (with success or failure), the connection is fully closed.

A consumer should typically call NdDisconnect only after it gets completions for all work
requests it posted to the initiator queue. Otherwise, the NdDisconnect may not lead to a
true graceful disconnect. Providers are not required to support graceful disconnect in
the case where a consumer leaves such work requests outstanding.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

NDKPI Deferred Processing Scheme
Article • 12/15/2021

There are many cases where an NDK consumer will post a chain of initiator requests to
the queue pair (QP). For example, a consumer could post a number of fast register
requests followed by a send request. The performance for such request patterns may be
improved if the chain of requests is queued to the QP and then indicated to the
hardware for processing as a batch, rather than indicating each request in the chain to
the hardware, one by one.

The NDK_OP_FLAG_DEFER flag value can be used for this purpose with the following
request types:

NdkBind (NDK_FN_BIND)
NdkFastRegister (NDK_FN_FAST_REGISTER)
NdkInvalidate (NDK_FN_INVALIDATE)
NdkRead (NDK_FN_READ)
NdkSend (NDK_FN_SEND)
NdkSendAndInvalidate (NDK_FN_SEND_AND_INVALIDATE)
NdkWrite (NDK_FN_WRITE)

The presence of the flag is a hint to the NDK provider that it may defer indicating the
request to hardware for processing, but the provider may process the new request at
any time.

The presence of the NDK_OP_FLAG_DEFER flag on an initiator request does not change
the NDK provider's existing responsibilities with respect to generating completions. A
call to the initiator request that returns a failure status must not result in a completion
being queued to the CQ for the failed request. Conversely, a call that returns a success
status must eventually result in a completion being queued to the CQ as long as the
consumer follows the additional requirements listed below.

In addition to all the existing NDK requirements, two additional requirements (one for
the provider and one for the consumer) must be observed to prevent a situation in
which requests are successfully posted to the QP with the NDK_OP_FLAG_DEFER flag,
but are never indicated to the hardware for processing:

When returning a failure status from a call to an initiator request, the provider
must guarantee that all requests that were previously submitted with the
NDK_OP_FLAG_DEFER flag are indicated to the hardware for processing.
The consumer guarantees that, in the absence of an inline failure, all initiator
request chains will be terminated by an initiator request that does not set the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_bind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_fast_register
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_read
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_send_and_invalidate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/nc-ndkpi-ndk_fn_write

NDK_OP_FLAG_DEFER flag.

For example, consider a case where a consumer has a chain of two fast register requests
and a send that it needs to post to the QP:

1. The consumer posts the first fast register with the NDK_OP_FLAG_DEFER flag and
NdkFastRegister returns STATUS_SUCCESS.

2. Again, the second fast register is posted with the NDK_OP_FLAG_DEFER flag set
but now NdkFastRegister returns a failure status. In this case, the consumer will not
post the send request.

3. When returning the inline failure for the second call to NdkFastRegister, the NDK
provider makes sure that all previously unindicated requests (the first fast register
in this case) are indicated to the hardware for processing.

4. Because the first call to NdkFastRegister succeeded, a completion must be
generated to the CQ.

5. Because the second call to NdkFastRegister failed inline, a completion must not be
generated to the CQ.

Network Direct Kernel Provider Interface (NDKPI)

Related topics

About Network Virtualization using
Generic Routing Encapsulation (NVGRE)
Article • 06/15/2023

Hyper-V Network Virtualization supports Network Virtualization using Generic Routing
Encapsulation (NVGRE) as the mechanism to virtualize IP addresses. In NVGRE, the
virtual machine's packet is encapsulated inside another packet. The header of this new,
NVGRE-formatted packet has the appropriate source and destination provider area (PA)
IP addresses. In addition, it has a 24-bit Virtual Subnet ID (VSID), which is stored in the
GRE header of the new packet.

The following figure shows a GRE-encapsulated packet. On the wire, NVGRE-
encapsulated packets look like IP-over-Ethernet packets, except that the payload of the
outer IP header is a GRE-encapsulated IP packet (including the Ethernet header).

NDIS 6.30 (available in Windows Server 2012 and later) introduces NVGRE Task Offload,
which makes it possible to use NVGRE-formatted packets with:

Large Send Offload (LSO)
Virtual Machine Queue (VMQ)
Transmit (Tx) checksum offload (IPv4, TCP, UDP)
Receive (Rx) checksum offload (IPv4, TCP, UDP)

NDIS 6.85 introduces support for NVGRE with UDP segmentation offload (USO).

Note: It is possible for a protocol driver to offload "mixed mode" packets, which means
packets in which the inner and outer IP header versions are different. For example, a
packet could have outer IP header as IPv6 and the inner IP header as IPv4.

Note: It is also possible for a protocol driver to offload an NVGRE-formatted packet that
has no inner TCP or UDP header. For example, an IP packet could have an inner payload
that is an Internet Control Message Protocol (ICMP) packet.

For more information about NVGRE, see the following Internet Draft:

NVGRE: Network Virtualization using Generic Routing Encapsulation

NVGRE is based on Generic Routing Encapsulation (GRE). For more information about
GRE, see the following resources:

RFC 2784: Generic Routing Encapsulation (GRE)
RFC 2890: Key and Sequence Number Extensions to GRE

This section includes:

Overview of Network Virtualization using Generic Routing Encapsulation (NVGRE)
Task Offload
Supporting NVGRE in Large Send Offload (LSO)
Supporting NVGRE in UDP Segmentation Offload (USO)
Supporting NVGRE in Checksum Offload
Supporting NVGRE in RSS and VMQ Receive Task Offloads
Locating the Transport Header for Encapsulated Packets in the Receive Path
Determining the NVGRE Task Offload Capabilities of a Network Adapter
Querying and Changing NVGRE Task Offload State
Standardized INF Keywords for NVGRE Task Offload

Offloading Checksum Tasks

Offloading the Segmentation of Large TCP Packets

TCP/IP Task Offload

Related topics

https://tools.ietf.org/html/rfc7637
https://tools.ietf.org/html/rfc2784
https://tools.ietf.org/html/rfc2890

Overview of Network Virtualization
using Generic Routing Encapsulation
(NVGRE) Task Offload
Article • 06/15/2023

In this case, a protocol or filter driver will generate the (non-LSO) packets, including the
GRE encapsulation, and send the packets on the wire. On the receive side, these (non-
RSS, VMQ) packets are passed to the protocol driver without any modifications. Note
that the NVGRE Task Offload feature does not specify the offloading of the
encapsulation and decapsulation operations.

On the send path, the following task offloads need to account for encapsulation:

Checksum computation of IPv4 and TCP or UDP payload
Large Send Offload version 1 (LSO_v1) and Large Send Offload version 2 (LSO_v2)
UDP Segmentation Offload (USO)

For send-side offloads, the miniport must perform corresponding operations on the
tunnel (outer) IP header, the transport (inner) IP header, and the TCP header.

On the receive path, the following task offloads need to account for encapsulation:

Checksum validation of IPv4 and TCP or UDP payload
Receive side scaling (RSS)
VMQ

For receive-side offloads, the NIC must parse the encapsulation protocol headers. For
example, for GRE encapsulation, the NIC must parse the GRE header and perform task
offloads on the transport (inner) and/or tunnel (outer) IP headers.

NVGRE Encapsulation Packet Format

Send and Receive Offloads

Supporting NVGRE in Large Send Offload
(LSO)
Article • 12/15/2021

NDIS 6.30 (Windows Server 2012) introduces Network Virtualization using Generic Routing
Encapsulation (NVGRE). NDIS miniport, protocol, and filter drivers and NICs that perform
large send offload (LSO) version 2 (LSOV2) should do so in a way that supports NVGRE.

Note This page assumes that you are familiar with the information in Offloading the
Segmentation of Large TCP Packets.

If
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.IsEncapsulatedPack
et is TRUE and the TcpIpChecksumNetBufferListInfo out-of-band (OOB) information is
valid, this indicates that NVGRE support is required and the NIC must perform LSOV2
offload on the NVGRE-formatted packet, with the following conditions:

Only the values in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV2Transmit structure
are valid. The NIC and miniport driver must not refer to the values in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV1Transmit structure.
The
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV2Transmit.TcpHeaderOffset
member does not have the correct offset value and must not be used by the NIC or
miniport driver.

To support NVGRE in LSOV2, protocol and filter drivers must make the following changes:

Reduce the MSS value in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV2Transmit structure
to account for the new GRE header.
Send down a TCP payload length that may not be an exact multiple of the reduced
MSS value.
Adjust the InnerFrameOffset, TransportIpHeaderRelativeOffset, and
TcpHeaderRelativeOffset values in the
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO structure to
account for the GRE header.

NICs and miniport drivers may use the InnerFrameOffset, TransportIpHeaderRelativeOffset,
and TcpHeaderRelativeOffset values provided in the
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO structure. The NIC
or miniport driver may perform any needed header checks on the tunnel (outer) IP header
or subsequent headers to validate these offsets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info

Miniport drivers must handle the case where
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.InnerFrameOffset
may be in a different scatter-gather list than the beginning of the packet. The protocol
driver will guarantee that all the prepended encapsulation headers (ETH, IP, GRE) will be
physically contiguous and will be in the first MDL of the packet.

Protocol and filter drivers do not ensure that the total TCP payload length is an exact
multiple of the reduced MSS value. For this reason, miniport drivers and NICs must update
the tunnel (outer) IP header. NICs must generate as many full-sized segments as possible
based on the reduced MSS value in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV2Transmit OOB
information. Only one sub-MSS segment may be generated per LSOv2 send.

Miniport drivers must do the following:

Compute the checksum for the tunnel (outer) IP header.
Increment the IP identification (IP ID) value of the tunnel (outer) IP header for every
packet. The first packet must use the IP ID in the original tunnel (outer) IP header.
Increment the IP ID of the transport (inner) IP header for every packet. The first packet
must use the IP ID in the original transport (inner) IP header.
Compute the checksum for the TCP header and the transport (inner) IP header.
Ensure that the complete headers, including the encapsulation tunnel (outer) headers
are added to every generated packet.

Offloading the Segmentation of Large TCP Packets

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info

Supporting NVGRE in UDP Segmentation
Offload (USO)
Article • 06/15/2023

NDIS 6.85 introduces Network Virtualization using Generic Routing Encapsulation (NVGRE)
with UDP segmentation offload (USO). NDIS miniport, protocol, and filter drivers, as well as
NICs that perform USO, should support NVGRE and VXLAN encapsulations.

Note: This article presumes you're familiar with the information in UDP Segmentation
Offload (USO).

If
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.IsEncapsulatedPac
ket is TRUE and the UdpSegmentationOffloadInfo out-of-band (OOB) information is valid,
NVGRE and VXLAN support is required. The NIC must perform USO offload on the
NVGRE/VXLAN-encapsulated packet with the following condition:

The
NDIS_UDP_SEGMENTATION_OFFLOAD_NET_BUFFER_LIST_INFO.Transmit.UdpHeaderOffset
member doesn't have the correct offset value and must not be used by the NIC or
miniport driver.

To support NVGRE in USO, protocol and filter drivers must:

Adjust the InnerFrameOffset, TransportIpHeaderRelativeOffset, and
TcpHeaderRelativeOffset values in the
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO structure to
account for the encapsulation header. The TcpHeaderRelativeOffset refers to the
UDP header.

NICs and miniport drivers may use the InnerFrameOffset,
TransportIpHeaderRelativeOffset, and TcpHeaderRelativeOffset values provided in the
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO structure. The NIC
or miniport driver may perform any needed header checks on the tunnel (outer) IP header
or subsequent headers to validate these offsets.

Miniport drivers must handle the case where
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.InnerFrameOffset
may be in a different scatter-gather list than the beginning of the packet. The protocol
driver will guarantee that all the prepended encapsulation headers (ETH, IP, GRE/VXLAN)
will be physically contiguous and will be in the first MDL of the packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbluso/ns-nbluso-ndis_udp_segmentation_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info

Protocol and filter drivers don't ensure that the total UDP payload length is an exact
multiple of the reduced MSS value when
UdpSegmentation.SubMssFinalSegmentSupported is set in the NDIS_OFFLOAD
capabilities. For this reason, miniport drivers and NICs with
SubMssFinalSegmentSupported must update the tunnel (outer) IP header. NICs must
generate as many full-sized segments as possible based on the reduced MSS value in the
NDIS_UDP_SEGMENTATION_OFFLOAD_NET_BUFFER_LIST_INFO.Transmit OOB
information. Only one sub-MSS segment may be generated per LSOv2 send.

Miniport drivers must:

Compute the checksum for the tunnel (outer) IP header.
Increment the IP identification (IP ID) value of the tunnel (outer) IP header for every
packet. The first packet must use the IP ID in the original tunnel (outer) IP header.
Increment the IP ID of the transport (inner) IP header for every packet. The first
packet must use the IP ID in the original transport (inner) IP header.
Compute the checksum for the UDP header and the transport (inner) IP header.
Ensure that the complete headers, including the encapsulation tunnel (outer) headers
are added to every generated packet.

UDP Segmentation Offload (USO)

Related articles

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbluso/ns-nbluso-ndis_udp_segmentation_offload_net_buffer_list_info

Supporting NVGRE in Checksum Offload
Article • 12/15/2021

NDIS 6.30 (Windows Server 2012) introduces Network Virtualization using Generic
Routing Encapsulation (NVGRE). NDIS miniport, protocol, and filter drivers and NICs that
offload checksum tasks should do so in a way that supports NVGRE.

Note This page assumes that you are familiar with the information in Offloading
Checksum Tasks.

If
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.IsEncapsulated
Packet is TRUE and the TcpIpChecksumNetBufferListInfo out-of-band (OOB)
information is valid, this indicates that NVGRE support is required and the NIC must
compute the checksum for the tunnel (outer) IP header, the transport (inner) IP header,
and the TCP or UDP header.

The IsIPv4 and IsIPv6 flags in the NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO
structure indicate the IP header version of the tunnel (outer) IP header. The NIC must
parse the transport (inner) IP header to determine that header's IP version. Because
mixed-mode packets are allowed (see NDIS_ENCAPSULATED_PACKET_TASK_OFFLOAD),
the NIC must not assume that the inner and outer IP headers will have the same IP
header version.

NICs and miniport drivers may use the InnerFrameOffset,
TransportIpHeaderRelativeOffset, and TcpHeaderRelativeOffset values provided in the
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO structure. The
NIC or miniport driver may perform any needed header checks on the tunnel (outer) IP
header or subsequent headers to validate these offsets.

Note that when
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.IsEncapsulated
Packet is TRUE, the existing header offset fields,
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.LsoV2Transmit.TcpHeader
Offset and
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO.Transmit.TcpHeaderOffset, will not
have correct values and must not be used by the NIC or driver.

Miniport drivers must handle the case where
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.InnerFrameOffs
et may be in a different scatter-gather list than the beginning of the packet. The

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_encapsulated_packet_task_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info

protocol driver will guarantee that all the prepended encapsulation headers (ETH, IP,
GRE) will be physically contiguous and will be in the first MDL of the packet.

Checksum validation for NVGRE is largely the same as it would be otherwise.

If a miniport receives an OID_TCP_OFFLOAD_PARAMETERS OID request and succeeds it
for NDIS_ENCAPSULATION_TYPE_GRE_MAC (see NDIS_OFFLOAD_PARAMETERS), the
NIC must perform checksum validation on the tunnel (outer) IP header, transport (inner)
IP header, and TCP or UDP header.

For encapsulated packets that have an IPv4 tunnel (outer) header and an IPv4 transport
(inner) header, a miniport driver should set the IpChecksumSucceeded flag in the
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure only if both IP header
checksum validations succeeded. For encapsulated packets that have both a tunnel
(outer) IPv4 header and a transport (inner) IPv4 header, the miniport driver should set
the IpChecksumFailed flag if either of the IP header checksum validations failed.

Checksum Validation

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info

Supporting NVGRE in RSS and VMQ
Receive Task Offloads
Article • 07/07/2022

NDIS 6.30 (Windows Server 2012) introduces Network Virtualization using Generic
Routing Encapsulation (NVGRE). NDIS miniport drivers and NICs that perform Receive
Side Scaling (RSS) and Virtual Machine Queue (VMQ) receive task offloads should do so
in a way that supports NVGRE.

Note This page assumes that you are familiar with the information in Offloading the
Segmentation of Large TCP Packets.

If the miniport driver supports RSS and VMQ for encapsulated packets, it must advertise
those capabilities in the RssSupported and VmqSupported members of the
NDIS_ENCAPSULATED_PACKET_TASK_OFFLOAD structure. If the miniport advertised
these capabilities, received an OID_TCP_OFFLOAD_PARAMETERS OID request, and
succeeded the OID, the NIC must perform RSS and VMQ on the advertised encapsulated
packet types.

For supported encapsulated packets that it is able to parse, the NIC must perform RSS
on the TCP or UDP header in the payload of the transport (inner) IP header and VMQ on
the inner MAC header.

For performing RSS and VMQ, the NIC must get to the transport (inner) IP header of the
encapsulated packet as described in Locating the Transport Header for Encapsulated
Packets in the Receive Path and check the protocol number. If the NIC receives a packet
that uses a protocol that the NIC can parse, the NIC should:

Perform RSS by doing a 4-tuple hash on the transport (inner) IP header and the
TCP or UDP header.

For encapsulated packets whose protocol the miniport cannot parse, the NIC
should perform a 2-tuple hash on the source and destination address fields in
the tunnel (outer) IP header.
For encapsulated packets that do not contain a TCP or UDP header immediately
following the transport (inner) IP header, the NIC should perform a 2-tuple hash
on the source and destination address fields in the tunnel (outer) IP header.

Perform VMQ by using the Ethernet header in the encapsulated packet. For
encapsulated packets that do not contain an Ethernet header (within the
encapsulated packet), VMQ should be performed using the outermost Ethernet
header.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_encapsulated_packet_task_offload

Locating the Transport Header for
Encapsulated Packets in the Receive
Path
Article • 12/15/2021

On receiving a packet, a NIC that supports Network Virtualization using Generic Routing
Encapsulation (NVGRE) must first determine whether the packet is encapsulated and, if
so, the type of encapsulation.

Note In the send path, a packet is encapsulated if
NDIS_TCP_SEND_OFFLOADS_SUPPLEMENTAL_NET_BUFFER_LIST_INFO.IsEncapsulated
Packet is TRUE.

In the receive path, the NIC must determine whether the packet is encapsulated by
checking the protocol number in the Protocol field of the IPv4 tunnel (outer) header or
the NextHeader field of the IPv6 tunnel (outer) header. The list of assigned protocol
numbers can be found at https://www.iana.org/assignments/protocol-
numbers/protocol-numbers.xml .

Once a packet is determined to be an encapsulated packet, the NIC must determine the
offset to the transport (inner) IP header by parsing the encapsulated packet's protocol.

For NDIS 6.30 (Windows Server 2012) and later, only GRE IP encapsulation is supported.
So the NIC should be able to parse the following, depending on the advertised
capabilities:

GRE (RFC 2784: Generic Routing Encapsulation (GRE)) headers
RFC 2890: Key and Sequence Number Extensions to GRE
IPv4 (RFC 791: Internet Protocol) headers
IPv6 (RFC 2460: Internet Protocol, Version 6 (IPv6)) headers

If the NIC finds an unknown or unsupported encapsulation protocol, it must pass the
packet unchanged to the host stack.

Thus, on the receive path, the miniport must parse the transport (inner) IP header to
determine the IP version as well as to get to the TCP or UDP header. This is a new
requirement for NDIS 6.30 (Windows Server 2012) and later.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_tcp_send_offloads_supplemental_net_buffer_list_info
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml
https://tools.ietf.org/html/rfc2784
https://tools.ietf.org/html/rfc2890
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc2460

Determining the NVGRE Task Offload
Capabilities of a Network Adapter
Article • 12/15/2021

A miniport driver that supports Network Virtualization using Generic Routing
Encapsulation (NVGRE) Task Offload reports this capability by means of the
NDIS_OFFLOAD structure that its MiniportInitializeEx function passes to
NdisMSetMiniportAttributes.

In the NDIS_OFFLOAD structure, the Header member must be set as follows:

The Revision member must be set to NDIS_OFFLOAD_REVISION_3.
The Size member must be set to NDIS_SIZEOF_NDIS_OFFLOAD_REVISION_3.

To report its support for NVGRE task offload, a miniport driver sets the following
members in the NDIS_ENCAPSULATED_PACKET_TASK_OFFLOAD structure, which is
stored in the EncapsulatedPacketTaskOffloadGre member of the NDIS_OFFLOAD
structure that the miniport driver's MiniportInitializeEx function passes to
NdisMSetMiniportAttributes:

Set the MaxHeaderSizeSupported member to the maximum header size from the
beginning of the packet to the beginning of the inner TCP or UDP payload (the last
byte of TCP or UDP inner header) that the NIC must support for all of these task
offloads. The protocol driver is expected to not offload processing of a packet
whose combined encapsulation headers exceed this size.

Note 256 bytes is a good default value that should cover all possible cases.

Set the other members to indicate which types of task offload the miniport driver
supports for encapsulated packets. For a list of the flags that can be set for these
members, see the Remarks section of
NDIS_ENCAPSULATED_PACKET_TASK_OFFLOAD.

To determine whether a miniport driver supports NVGRE task offload, protocol and filter
drivers can issue the OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID request, which
returns the NDIS_OFFLOAD structure.

Reporting NVGRE Task Offload Capability

Querying NVGRE Task Offload Capability

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_encapsulated_packet_task_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_encapsulated_packet_task_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

Note To determine whether the miniport driver's NVGRE capability is currently enabled,
use the OID_TCP_OFFLOAD_CURRENT_CONFIG OID request as described in Querying
and Changing NVGRE Task Offload State.

Note To enable or disable the miniport driver's NVGRE capability, use the
OID_TCP_OFFLOAD_PARAMETERS OID request as described in Querying and Changing
NVGRE Task Offload State.

Querying and Changing NVGRE Task
Offload State
Article • 12/15/2021

This section describes how to query or change the current Network Virtualization using
Generic Routing Encapsulation (NVGRE) Task Offload state of an NVGRE-capable
miniport driver. NVGRE task offload can be enabled by default, but it must not be
operationally active by default. A NIC should not begin performing task offloads on
encapsulated packets until this feature is enabled explicitly by an NDIS protocol or filter
driver.

To query a miniport driver's current NVGRE task offload state, an NDIS protocol or filter
driver uses the OID_TCP_OFFLOAD_CURRENT_CONFIG OID request. This will return an
NDIS_OFFLOAD structure whose EncapsulatedPacketTaskOffloadGre member is an
NDIS_ENCAPSULATED_PACKET_TASK_OFFLOAD structure that contains
NDIS_OFFLOAD_SUPPORTED if those offloads are currently enabled for GRE-
encapsulated packets and NDIS_OFFLOAD_NOT_SUPPORTED otherwise. NDIS handles
this OID and does not pass it down to the miniport.

Note To determine whether a miniport driver supports NVGRE task offload, use the
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID request as described in Determining
the NVGRE Task Offload Capabilities of a Network Adapter.

An NDIS protocol or filter driver can enable or disable NVGRE task offload by issuing the
OID_TCP_OFFLOAD_PARAMETERS OID request. This OID uses an
NDIS_OFFLOAD_PARAMETERS structure. In this structure, the
EncapsulatedPacketTaskOffload member can have the following values:

Term Description

NDIS_OFFLOAD_SET_NO_CHANGE The NVGRE task offload state is unchanged.

NDIS_OFFLOAD_SET_ON Specify this flag to enable NVGRE task offload.

NDIS_OFFLOAD_SET_OFF Specify this flag to disable NVGRE task offload.

Querying NVGRE Task Offload State

Changing NVGRE Task Offload State

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_offload_handle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_encapsulated_packet_task_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

After the miniport driver processes the OID_TCP_OFFLOAD_PARAMETERS OID request, it
must issue an NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication with
the updated offload state.

When a miniport driver receives a OID_TCP_OFFLOAD_PARAMETERS OID request in
which the NDIS_OFFLOAD_SET_OFF flag is specified, the driver should indicate any
existing encapsulated packets that are partially processed for task offloads up the stack
before completing the OID request.

Base task offloads for normal packets are enabled by existing OIDs such as
OID_OFFLOAD_ENCAPSULATION and OID_RECEIVE_FILTER_ALLOCATE_QUEUE. The
EncapsulatedPacketTaskOffload member setting supplements these OIDs and instructs
the NIC to also do these offloads for encapsulated packets.

Standardized INF Keywords for NVGRE
Task Offload
Article • 12/15/2021

The *EncapsulatedPacketTaskOffload standardized enumeration keyword is defined to
enable or disable support for Network Virtualization using Generic Routing
Encapsulation (NVGRE) Task Offload in miniport adapters.

The following table describes the possible INF entries for this keyword.

SubkeyName ParamDesc Value EnumDesc

*EncapsulatedPacketTaskOffload Encapsulated Task
Offload

0 Disabled

1
(Default)

Enabled

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

Overview of Receive Segment
Coalescing
Article • 01/12/2023

When receiving data, the miniport driver, NDIS, and TCP/IP must all look at each PDU's
header information separately. When large amounts of data are being received, this
creates a large amount of overhead. Receive segment coalescing (RSC) reduces this
overhead by coalescing a sequence of received segments and passing them to the host
TCP/IP stack in one operation, so that NDIS and TCP/IP need only look at one header for
the entire sequence.

RSC is intended to support coalescing in a way that:

Doesn't interfere with the normal operation of TCP's congestion and flow control
mechanisms.

Coalesces packets without discarding information that is used by the TCP stack.

RSC-capable miniport drivers for network cards must:

Follow a standard set of rules when coalescing segments.

Provide certain out-of-band information to the host TCP/IP stack.

The following sections provide an overview of RSC.

Rules for Coalescing TCP/IP Segments
Updating the IP Headers for Coalesced Segments
Examples of Receive Segment Coalescing
Indicating Coalesced Segments
Exception Conditions that Terminate Coalescing

Rules for Coalescing TCP/IP Segments
Article • 12/15/2021

This section defines the rules that specify when a receive segment coalescing (RSC)-
capable miniport driver must coalesce a segment for a given TCP connection. If any of
the rules are violated, an exception is generated, and the miniport driver must abort the
coalescing of the segment.

The miniport driver must update the IP and TCP headers for the single coalesced unit
(SCU). The miniport driver must recompute the TCP and IPv4 checksums over the SCU
and chain the TCP payload.

The first of the following two flowcharts describes the rules for coalescing segments and
updating the TCP headers. This flowchart refers to mechanisms for distinguishing valid
duplicate ACKs and window updates. The second flowchart describes these mechanisms.

These flowcharts are provided as a reference for understanding the RSC rules. A
hardware implementation can optimize the flowchart, as long as correctness is
maintained.

The following terms are used in the flowcharts:

Term Description

SEG.SEQ Sequence number of the incoming segment.

H.SEQ Sequence number of the currently tracked SCU.

SEG.ACK Acknowledgment number of the incoming segment.

H.ACK Acknowledgment number of the currently tracked SCU.

SEG.WND The window that is advertised by the incoming segment.

H.WND The window that is advertised by the currently tracked SCU.

SEG.LEN TCP payload length of the incoming segment.

H.LEN TCP payload length of the currently tracked SCU.

SEG.NXT The sum of SEG.SEQ and SEG.LEN.

H.NXT The sum of H.SEQ and H.LEN.

H.DupAckCount The number of duplicate ACKs that have been coalesced into the SCU. This
number should be zero.

Term Description

SEG.Tsval The Timestamp value in the currently received segment. The format for this
value is defined in RFC 1323 .

H.Tsval The Timestamp value in the currently tracked SCU.

SEG.TSecr The Timestamp Echo Reply in the currently received segment.

H.TSecr The Timestamp Echo Reply in the currently tracked SCU.

https://www.ietf.org/rfc/rfc1323.txt

The flowcharts show that the miniport driver may coalesce segments with different ACK
numbers. However, the miniport driver must obey the following rules regarding ACK
numbers, as shown in the first flowchart above:

After performing the sequence number check, an incoming pure ACK may be
coalesced into the currently tracked SCU if it meets one or both of the following
conditions:

H.ACK == SEG.ACK.

The duplicate-ACK count in the coalesced segment that is being tracked is zero.
In other words, H.DupAckCount == 0.

In other words, any pure ACK that is not a duplicate ACK or a window update
triggers an exception and must not be coalesced. All such pure ACKs must be
indicated as individual segments. This rule ensures that RSC does not affect the
behavior or performance of the Windows TCP congestion control algorithms.

An incoming data segment (SEG.ACK == H.ACK) or an incoming piggy-backed
ACK (SEG.ACK > H.ACK) may be coalesced into the currently tracked SCU if both
of the following conditions are met:

The segment is contiguous to the SCU in the sequence space. In other words,
SEG.SEQ == H.NXT.
The duplicate-ACK count in the coalesced segment that is being tracked is zero.
In other words, H.DupAckCount == 0.

The miniport driver should treat a duplicate ACK segment equivalent to a pure ACK and
not coalesce it. In this case, it must finalize the current SCU (if any) for indication and
indicate the duplicate ACK segment as an individual segment. Because Windows clients
use selective acknowledgments (SACK) by default, a duplicate ACK segment will likely
generate an exception. See Examples of Receive Segment Coalescing for an example. If a
segment with DupAckCount > 0 is indicated, NDIS will disable RSC on the interface.

When tracking an SCU with H.LEN > 0 (in other words, a coalesced segment that
contains data), if a duplicate ACK arrives next, then the tracking SCU should be finalized
as follows:

1. A new SCU should be tracked, starting with the duplicate ACK.

2. The DupAckCount for the new SCU should be set to zero.

3. The DupAckCount should be incremented if additional duplicate ACKs are
received.

In this case, DupAckCount will be 1 less than the number of duplicate ACKs. The host
stack will handle the counting correctly.

When tracking an SCU that consists of a single pure cumulative ACK (rules forbid
coalescing multiple pure ACKs), if a duplicate ACK arrives next, then the DupAckCount
for the tracking SCU should be incremented. It should also be incremented if additional
duplicate ACKs are received. In this case, DupAckCount will be equal to the number of
duplicate ACKs that are coalesced.

Additional notes on Duplicate ACK coalescing

Duplicate ACK Behavior

Handling Duplicate ACK when tracking a SCU consisting
of data segments

Handling Duplicate ACK when tracking a SCU consisting
of a pure cumulative ACK

In this case, the NIC cannot determine whether the received segment is a duplicate ACK,
because it does not maintain any state. So the segment should be treated as a pure ACK
instead as follows:

1. A new SCU should be tracked, starting with this segment.

2. The DupAckCount for the new SCU should be set to zero.

3. The DupAckCount should be incremented by 1 for each additional duplicate ACK
that is received.

In this case, DupAckCount will be equal to 1 less than the actual number of duplicate
ACKs. The host stack will handle the counting correctly.

The miniport driver may treat a duplicate ACK segment equivalent to a pure ACK and
not coalesce it. In this case, it must finalize the current SCU (if any) for indication and
indicate the duplicate ACK segment as an individual segment. Because Windows clients
use SACK by default, a duplicate ACK segment will likely generate an exception. For an
example, see Examples of Receive Segment Coalescing. This exemption does not apply
to window update segments.

The TCP timestamp option is the only option that may be legally coalesced. Coalescing
segments with this option is left as an implementation-specific decision. If the miniport
driver coalesces segments with the timestamp option, then it must follow the rules
outlined in the following flowchart:

When the first segment that is received in a DPC is a
duplicate ACK

Duplicate ACK Exemption

Coalescing Segments with the Timestamp
Option

When indicating a coalesced segment, the following out-of-band information must be
indicated as follows by setting the NetBufferListInfo member of the NET_BUFFER_LIST
structure that describes the coalesced segment:

The number of segments that were coalesced must be stored into the
NetBufferListInfo[TcpRecvSegCoalesceInfo].CoalescedSegCount member. This
number only represents data segments that were coalesced. Pure ACK coalescing

７ Note

The check SEG.TSval >= H.TSval must be performed using modulo-232 arithmetic
similar to that used for TCP sequence numbers. See RFC 793 , section 3.3.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://www.ietf.org/rfc/rfc793.txt

is forbidden and window update segments must not be counted as part of this
field.

The duplicate ACK count must be stored into the
NetBufferListInfo[TcpRecvSegCoalesceInfo].DupAckCount member. The first
flowchart above explains how this value is calculated.

When segments with the TCP timestamp option are coalesced,
NetBufferListInfo[RscTcpTimestampDelta] must be filled with the absolute delta
between the earliest and the latest TCP timestamp value seen in the sequence of
coalesced segments comprising the SCU. The SCU itself should contain the latest
TCP timestamp value seen in the sequence of coalesced segments.

The DupAckCount and RscTcpTimestampDelta members are interpreted if and only if
the CoalescedSegCount member is greater than zero. If the CoalescedSegCount is zero,
the segment is treated as a non-coalesced non-RSC segment.

For information about the contents of the NetBufferListInfo member, see
NDIS_NET_BUFFER_LIST_INFO and NDIS_RSC_NBL_INFO.

The PSH bit should be ORed for all coalesced segments. In other words, if the PSH bit
was set in any of the individual segments, the miniport driver should set the PSH bit in
the SCU.

Finalizing an SCU involves:

Recomputing the TCP and, if applicable, the IPv4 checksum.

Updating the IP headers as described in Updating the IP Headers for Coalesced
Segments.

Setting the ECN bits and ECN fields in the TCP and IP headers to the same values
that were set in the individual segments.

A network card may report both RSC and IPsec task offload capabilities. (See
Determining the RSC Capabilities of a Network Adapter.) However, if it supports IPsec
task offload, it must not attempt to coalesce segments that are protected by IPsec.

Handling TCP/IP IPsec segments

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblinfo/ne-nblinfo-ndis_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblrsc/ns-nblrsc-ndis_rsc_nbl_info

Updating the IP Headers for Coalesced
Segments
Article • 12/15/2021

When finalizing a single coalescing unit (SCU), a receive segment coalescing (RSC)-
capable miniport driver updates the fields in the IP headers as described in the following
tables.

Updating IPv4 header fields for coalesced segments
Updating IPv6 header fields for coalesced segments

Field Description

Version The value of this field must be the same for all
coalesced segments.

Header Length The length of a basic IPv4 header without any
IP options.

Differentiated Services The value of this field must be the same for all
coalesced segments.

ECN bits See Exception 8 in Exception Conditions that
Terminate Coalescing. Datagrams should be
coalesced if they all have the same values for
the ECN bits.

Total Length The value of this field must be recomputed
every time a new segment with non-zero TCP
payload length is coalesced into an existing
SCU. See Exception Conditions that Terminate
Coalescing for special cases that arise from the
value in this field.

Identification Must be set to the IP ID of the first coalesced
segment.

Updating IPv4 header fields for coalesced
segments

Field Description

Flags Datagrams may be coalesced as long as
they have the same value for the DF
(Don’t Fragment) bit: either all set or all
clear.
Segments with the MF (More Fragments)
bit set must not be coalesced.

Fragment Offset Not applicable. Fragmented IP datagrams are
not coalesced.

Time To Live Must be set to the minimum time to live (TTL)
value of the coalesced segments.

Protocol Always set to 6, for TCP.

Header Checksum The value of this field must be recomputed by
the miniport driver.

Source Address The value of this field must be the same for all
coalesced segments.

Destination Address The value of this field must be the same for all
coalesced segments.

Field Description

Version The value of this field must be the same for all
coalesced segments.

Traffic Class The value of this field must be the same for all
coalesced segments.

Flow Label The value of this field must be the same for all
coalesced segments.

Payload Length The value of this field must be recomputed
whenever a new segment with nonzero TCP
payload length is coalesced into an existing
segment.

Next Header Always set to 6, for TCP.

Updating IPv6 header fields for coalesced
segments

Field Description

Hop Limit Must be set to the minimum Hop Limit value of
the coalesced segments.

Source Address The value of this field must be the same for all
coalesced segments.

Destination Address The value of this field must be the same for all
coalesced segments.

Examples of Receive Segment
Coalescing
Article • 12/15/2021

This section illustrates the coalescing algorithm by using examples of segments that are
received in order and processed in a single deferred procedure call (DPC).

This page uses X and X’ for labeling successive segments. All other segment and single
coalesced unit (SCU) fields are as described in Rules for Coalescing TCP/IP Segments.

10 successive segments belonging to the same TCP connection are processed. All of the
following conditions are true for each:

X’.SEQ == X.NXT

X’SEQ > X.SEQ

X’.ACK == X.ACK

None of these segments generates an exception.

A single SCU is formed out of the 10 segments. This is indicated as a single NET_BUFFER
in a single NET_BUFFER_LIST.

5 successive segments belonging to the same TCP connection are processed. All of the
following conditions are true for each:

X’.SEQ == X.NXT

Example 1: Data segments

Segment Description

Result

Example 2: Data segments, followed by an
exception, followed by data segments

Segment Description

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

X’SEQ > X.SEQ

X’.ACK == X.ACK

None of these segments generates an exception. The 6th segment is a duplicate ACK
segment with a TCP SACK option and generates an exception based on rule number 3 in
Rules for Coalescing TCP/IP Segments.

Note In this case, the exception rule for handling a TCP option takes precedence and
thus overrides the coalescing rule.

2 successive segments belonging to the same TCP connection are processed. All of the
following conditions are true for each:

X’.SEQ == X.NXT

X’SEQ > X.SEQ

X’.ACK == X.ACK

None of these segments generates an exception.

A single SCU is formed out of the first 5 segments. The 6th segment does not form an
SCU.

The 7th and 8th segments form an SCU together.

A NET_BUFFER_LIST chain is indicated with three NET_BUFFER_LIST structures each
having a single NET_BUFFER. The ordering of received segments is maintained.

5 successive segments belonging to the same TCP connection are processed. All of the
following conditions are true for each:

X’.SEQ == X.NXT

X’SEQ > X.SEQ

Result

Example 3: Data segments, followed by
multiple window updates

Segment Description

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

X’.ACK == X.ACK

None of these segments generates an exception. The 6th segment is a pure ACK that is
a window update with SEG.WND = 65535 as shown in the following flowchart.

The 7th segment is a pure ACK that is a window update with SEG.WND = 131070 as
shown in the same flowchart.

A single SCU is formed out of the 7 segments. This is indicated as a single NET_BUFFER
in a single NET_BUFFER_LIST.

The SCU.WND = 131070, and the checksum is updated based on this value.

Result

Example 4: Piggybacked ACKs mixed with data
segments

Segment Description

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

3 successive segments belonging to the same TCP connection are processed. All of the
following conditions are true for each:

X’.SEQ == X.NXT

X’SEQ > X.SEQ

X’.ACK == X.ACK

None of these segments generates an exception. 2 successive segments belonging to
the same TCP connection are processed. All of the following conditions are true for
each:

X’.SEQ == X.NXT

X’SEQ > X.SEQ

X’.ACK == X.ACK

None of these segments generates an exception.

A single SCU is formed out of the 5 segments. This is indicated as a single NET_BUFFER
in a single NET_BUFFER_LIST. The SCU.ACK is set to the last SEG.ACK.

Result

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Indicating Coalesced Segments
Article • 12/15/2021

A single coalesced unit (SCU) is a sequence of TCP segments that are coalesced into a
single TCP segment according to the rules defined in Rules for Coalescing TCP/IP
Segments. This section describes how to indicate the resulting coalesced segments.

An SCU must:

Be indicated by calling NdisMIndicateReceiveNetBufferLists.

Look like a normal TCP segment that is received over the wire.

Be no larger than the maximum legal IP datagram length, as defined in section 3.1
of RFC 791 .

Note Because segments with IPv6 extension headers cannot be coalesced (see
Exception Conditions that Terminate Coalescing), the size of the SCU for IPv6
datagrams is also limited by the maximum legal datagram length.

The NIC or miniport driver should recompute the TCP and IPv4 checksums, if applicable,
before indicating the coalesced segment. If the NIC or miniport driver validates the TCP
and IPv4 checksums but does not recompute them for the coalesced segment, it must
set the TcpChecksumValueInvalid and IpChecksumValueInvalid flags in the
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure. Additionally, in this case
the NIC or miniport driver may optionally zero out the TCP and IPv4 header checksum
values in the segment.

The NIC and miniport driver must always set the IpChecksumSucceeded and
TcpChecksumSucceeded flags in the
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure before indicating the
coalesced segment.

For more information about coalescing rules, see Rules for Coalescing TCP/IP Segments.

For more information about exceptions, see Exception Conditions that Terminate
Coalescing.

Coalescing is expected to be performed on a best-effort basis. The hardware might not
be able to coalesce in some cases, for example due to lack of resources. The
requirements stated here are primarily to specify when not to coalesce and how to
coalesce.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
http://www.ietf.org/rfc/rfc791.txt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info

At a high level, the NIC and miniport driver must handle the receipt of a TCP segment
over the wire as follows:

Check the incoming segment for an exception as follows:

1. If no exception was encountered, check whether the segment can be
coalesced with the last segment that was received for the same TCP
connection per the rules.

2. If the segment triggered an exception, or if coalescing it with the previously
received segment is not possible, then indicate the segment individually.

The NIC and miniport driver must not indicate coalesced segments until the
protocol driver enables RSC as described in Querying and Changing RSC State.

For a given TCP connection, a data indication from the miniport adapter to the
host TCP/IP stack may consist of one or more coalesced segments, separated by
one or more individual segments that could not be coalesced.

The NIC and miniport driver must not delay the indication of TCP segments,
whether coalesced or not. Specifically, the NIC and miniport driver must not delay
the indication of segments from one deferred procedure call (DPC) to the next in
order to attempt to coalesce the segments.

The NIC and miniport driver may use timers to determine the end of coalescing.
However, the handling of latency sensitive workloads must be as effective as the
DPC boundary requirement.

Exception Conditions that Terminate
Coalescing
Article • 12/15/2021

This section defines the checks that a receive segment coalescing (RSC)-capable
miniport driver must perform on a segment before it can be coalesced.

A segment must pass both of the following types of checks before it can be coalesced:

Checks for presence of a certain condition in the segment. For example, the
presence of a SYN flag in the TCP header would trigger an exception and the
segment would not be coalesced. These types of checks are defined below.

Checks that depend on inspecting and correlating information from previously
coalesced segments and the currently examined segments. For example, checking
if the received segment is a duplicate acknowledgment falls in this category of
checks. These types of checks are defined in Rules for Coalescing TCP/IP Segments.

If a check fails, an exception is triggered, and the miniport driver must terminate
coalescing for that TCP connection and treat segments as follows:

TCP segments that were coalesced before the exception was detected should be
indicated as a single unit.

TCP segments that are coalesced after the exception is detected should be
indicated as a separate unit.

Note For exceptions 7 and 8 below, the miniport driver should resume coalescing
starting with the segment that triggered the exception.

Receiving a segment that meets any of the following criteria must trigger an exception:

1. The hardware resource constraints in the NIC prevent coalescing.

2. The segment has an invalid TCP or IP checksum.

3. The segment contains any of the SYN, URG, RST, FIN in its TCP header, as defined
in section 3.1 of RFC 793 . More broadly, if the segment contains any flag other
than PSH or ACK, it should trigger an exception. For ECN flags, see exception 8
below.

4. The segment contains one or more TCP options other than the TCP timestamp
option. See RFC 1323 for a discussion of the TCP timestamp option.

https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc1323.txt

5. The segment contains IPv4 options or IPv6 extension headers.

6. The segment is an IPv4 fragment.

7. Coalescing the currently received segment will cause the single coalesced unit to
exceed the maximum legal IP Datagram length. This exception requires special
handling. For more information, see:

The first flowchart in Rules for Coalescing TCP/IP Packets

"Responding to Queries for RSC Statistics" in Programming Considerations
for RSC Drivers.

8. The segment contains ECN flags, as defined in RFC 3168 , that meet one or both
of the following criteria:

a. The segment contains a different value for the ECN field (ECT, CE) in the IP
header than the previous segment.

b. The segment has a different value for the ECN flags (ECE and CWR) in the TCP
header than the previous segment.

https://www.ietf.org/rfc/rfc3168.txt

Determining the RSC Capabilities of a
Network Adapter
Article • 12/15/2021

A receive segment coalescing (RSC)-capable miniport driver reports its RSC capability by
means of the NDIS_OFFLOAD structure that it passes to NdisMSetMiniportAttributes.

In the NDIS_OFFLOAD structure, the Header member must be set as follows:

The Revision member must be set to NDIS_OFFLOAD_REVISION_3.
The Size member must be set to NDIS_SIZEOF_NDIS_OFFLOAD_REVISION_3.

To report its support for RSC, a miniport driver can set the following members in the
NDIS_TCP_RECV_SEG_COALESCE_OFFLOAD structure, which is stored in the Rsc
member of the NDIS_OFFLOAD structure:

Set the IPv4.Enabled member to TRUE to indicate support for RSC for IPv4.

Set the IPv6.Enabled member to TRUE to indicate support for RSC for IPv6.

The miniport driver must support RSC for at least IEEE 802.3 encapsulation. In addition,
it can support RSC for any other encapsulations. If it does not support RSC for some
encapsulation, and it receives packets of that encapsulation, the driver must indicate the
packets up the stack normally.

To determine whether a miniport driver supports RSC, protocol drivers and other drivers
can issue the OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID request, which will
return an NDIS_OFFLOAD structure.

Reporting RSC Capability

Querying RSC Capability

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_recv_seg_coalesce_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

Querying and Changing RSC State
Article • 12/15/2021

This section describes how to query or change the current receive segment coalescing
(RSC) state of an RSC-capable miniport driver.

The current RSC state can be queried by issuing the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID request. NDIS handles this OID and does
not pass it down to the miniport.

RSC can be enabled or disabled by issuing the OID_TCP_OFFLOAD_PARAMETERS OID
request. This OID uses an NDIS_OFFLOAD_PARAMETERS structure. In this structure, the
RscIPv4 and RscIPv6 members can have the following values:

Term Description

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE The RSC state is unchanged.

NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED Specify this flag to disable RSC.

NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED Specify this flag to enable RSC.

After the miniport driver processes the OID_TCP_OFFLOAD_PARAMETERS OID request, it
must give an NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication with
the updated offload state.

When a miniport driver receives a OID_TCP_OFFLOAD_CURRENT_CONFIG OID request in
which the NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED flag is specified, the driver
must indicate any existing coalesced segments up the stack before completing the OID
request.

Querying RSC State

Changing RSC State

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

Standardized INF Keywords for RSC
Article • 12/15/2021

In Windows 8, Windows Server 2012, and later, the receive segment coalescing (RSC)
interface supports standardized INF keywords that appear in the registry and are
specified in INF files.

The following list shows the enumeration standardized INF keywords for RSC:

*RscIPv4
Enable or disable support for RSC for the IPv4 datagram version.

*RscIPv6
Enable or disable support for RSC for the IPv6 datagram version.

Enumeration standardized INF keywords have the following attributes:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value
is stored in NDI\params\ SubkeyName\Value.

EnumDesc
The display text that is associated with each value that appears in the menu.

Default
The default value for the menu.

The following table describes the possible INF entries for the RSC enumeration
keywords.

SubkeyName ParamDesc Value EnumDesc

*RscIPv4 Recv Segment Coalescing (IPv4) 0 Disabled

1 (Default) Enabled

*RscIPv6 Recv Segment Coalescing (IPv6) 0 Disabled

SubkeyName ParamDesc Value EnumDesc

1 (Default) Enabled

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

For more information about using enumeration keywords, see Enumeration Keywords.

Programming Considerations for RSC
Drivers
Article • 12/15/2021

The following sections describe issues to consider when implementing a receive-
segment coalescing (RSC)-capable miniport driver.

Responding to Queries for RSC Statistics
Forwarded TCP Packets
RSC Support for Lightweight Filters and MUX Intermediate Drivers
Windows Filtering Platform (WFP) Inspection and Callout Drivers

NDIS, overlying drivers, and user-mode applications use the OID_TCP_RSC_STATISTICS
OID to get the RSC statistics of a miniport adapter. RSC-capable miniport drivers must
support this OID.

The miniport driver shouldn't perform RSC on segments in TCP packets that aren't
intended for the host but are being forwarded out on another interface.

The host TCP/IP stack will disable RSC on any interface that has forwarding enabled.
Weak host forwarding does not affect RSC.

All NDIS 6.30 lightweight filter drivers must support receive packets that are larger than
the link maximum transmission unit (MTU). For more information about segment size
limits, see Indicating Coalesced Segments.

NDIS will disable RSC on an interface if any lightweight filter driver or MUX intermediate
driver in the host stack is NDIS 6.20 or lower.

A MUX intermediate driver may disable RSC on an interface, even if the interface's NDIS
version is 6.30 or higher.

Responding to Queries for RSC Statistics

Forwarded TCP Packets

RSC Support for Lightweight Filters and MUX
Intermediate Drivers

WFP callout drivers provide additional filtering functionality by adding custom callout
functions to the filter engine at one or more of the kernel-mode filtering layers. Callouts
support deep inspection and packet as well as stream modification.

WFP callout drivers may support handling of support receive packets that are larger
than the link MTU. (For more information about packet size limits, see Tracking and
Indicating Coalesced Segments.) Such WFP callout drivers should do the following:

Opt in during registration to handle large packets.

Set the callout driver flag as specified in the reference page for the
FWPS_CALLOUT2 structure.

Whenever a callout driver that has not opted in to handle large packets is registered,
WFP will notify TCP/IP in the context of the registration. As part of handling this
notification, TCP/IP will disable RSC on the interface.

If there is active TCP traffic during callout registration, TCP/IP will notify WFP. WFP will
delay calling the registered filters until RSC is disabled. This will protect callout drivers
from large packets.

Windows Filtering Platform (WFP) Inspection
and Callout Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout2_

UDP Receive Segment Coalescing
Offload (URO)
Article • 05/22/2024

Starting in Windows 11, version 24H2, UDP Receive Segment Coalescing Offload (URO)
enables network interface cards (NICs) to coalesce UDP receive segments. NICs can
combine UDP datagrams from the same flow that match a set of rules into a logically
contiguous buffer. These combined datagrams are then indicated to the Windows
networking stack as a single large packet.

Coalescing UDP datagrams reduces the CPU cost to process packets in high-bandwidth
flows, resulting in higher throughput and fewer cycles per byte.

The following sections describe the rules for coalescing UDP packets and how to write a
URO miniport driver.

Rules for coalescing UDP packets
Write a URO miniport driver
Programming considerations for URO drivers

URO coalescing can only be attempted on packets that meet all the following criteria:

IpHeader.Version is identical for all packets.
IpHeader.SourceAddress and IpHeader.DestinationAddress are identical for all
packets.
UdpHeader.SourcePort and UdpHeader.DestinationPort are identical for all
packets.
UdpHeader.Length is identical for all packets, except the last packet, which may be
less.
UdpHeader.Length must be nonzero.
UdpHeader.Checksum, if non-zero, must be correct on all packets. This means that
receive checksum offload must validate the packet.
Layer 2 headers must be identical for all packets.

If the packets are IPv4, they must also meet the following criteria:

IPv4Header.Protocol == 17 (UDP) for all packets.
EthernetHeader.EtherType == 0x0800 for all packets.

Rules for coalescing UDP packets

The IPv4Header.HeaderChecksum on received packets must be correct. This
means that receive checksum offload must validate the header.
IPv4Header.HeaderLength == 5 (no IPv4 Option Headers) for all packets.
IPv4Header.ToS is identical for all packets.
IPv4Header.ECN is identical for all packets.
IPv4Header.DontFragment is identical for all packets.
IPv4Header.TTL is identical for all packets.
IPv4Header.TotalLength == UdpHeader.Length + length(IPv4Header) for all
packets.

If the packets are IPv6, they must also meet the following criteria:

IPv6Header.NextHeader == 17 (UDP) for all packets (no extension headers).
EthernetHeader.EtherType == 0x86dd (IPv6) for all packets.
IPv6Header.TrafficClass and IPv6Header.ECN are identical for all packets.
IPv6Header.FlowLabel is identical for all packets.
IPv6Header.HopLimit is identical for all packets.
IPv6Header.PayloadLength == UdpHeader.Length for all packets.

The resulting Single Coalesced Unit (SCU) must have a single IP header and UDP header,
followed by the UDP payload for all coalesced datagrams concatenated together.

URO indications must set the IPv4Header.TotalLength field to the total length of the
SCU, or IPv6Header.PayloadLength field to the length of the UDP payload and
UdpHeader.Length field to the length of coalesced payloads.

If Layer 2 (L2) headers are present in coalesced datagrams, the SCU must contain a valid
L2 header. The L2 header in the SCU must resemble the L2 header of the coalesced
datagrams.

URO indications must set the IPv4Header.HeaderChecksum and UdpHeader.Checksum
fields to zero and fill out the checksum offload out-of-band information on the SCU
indicating IPv4 and UDP checksum success.

A packet that matches all conditions for being coalesced but fails checksum validation
must be indicated separately. Packets received after it must not be coalesced with
packets received before it.

URO packet structure

Checksum validation and indication

For example, suppose packets 1, 2, 3, 4, and 5 are received from the same flow, but
packet 3 fails checksum validation. Packets 1 and 2 can be coalesced together, and
packets 4 and 5 can be coalesced together, but packet 3 must not be coalesced with
either SCU. Packets 1 and 2 must not be coalesced together with packets 4 and 5. Packet
2 is the last packet in an SCU and packet 4 starts a new SCU. Additionally, the SCU
containing packets 1 and 2 must be indicated before packet 3 is indicated and packet 3
must be indicated before the SCU containing packets 4 and 5.

Packets from multiple flows may be coalesced in parallel, as hardware and memory
permit. Packets from different flows must not be coalesced together.

Packets from multiple receives interleaved may be separated and coalesced with their
respective flows. For example, given flows A, B, and C, if packets arrive in the order A, A,
B, C, B, A, the packets from the A flow may be coalesced into AAA, and the packets from
the B flow coalesced into BB, while the packet from the C flow may be indicated
normally or coalesced with a pending SCU from flow C.

The packets within a given flow must not be reordered with respect to each other. For
example, the packets from the A flow must be coalesced in the order received,
regardless of the packets from the B and C flows received in between.

The following keyword can be used to enable/disable URO with a registry key setting.

*UdpRsc

Enumeration standardized INF keywords have the following attributes:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the
registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value
is stored in NDI\params\ SubkeyName\Value.

Packet coalescing and flow separation

INF keyword for controlling URO

EnumDesc
The display text that is associated with each value that appears in the menu.

Default
The default value for the menu.

SubkeyName ParamDesc Value EnumDesc

*UdpRsc URO 0 Disabled

1 (Default) Enabled

For more information about using enumeration keywords, see Enumeration Keywords.

Starting in NDIS 6.89, the NDIS interface for URO facilitates communication between
TCP/IP and the NDIS miniport driver.

A miniport driver advertises support for URO in the UdpRsc member of the
NDIS_OFFLOAD structure, which it passes to the NdisMSetMiniportAttributes function.

To check if a miniport driver supports URO, NDIS drivers and other applications can
query the OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID, which returns the
NDIS_OFFLOAD structure.

To determine the current URO state, NDIS drivers and other applications can query the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID request. NDIS handles this OID and doesn't
pass it down to the miniport.

URO can be enabled or disabled by issuing the OID_TCP_OFFLOAD_PARAMETERS OID
request. This OID uses an NDIS_OFFLOAD_PARAMETERS structure. In this structure, the

ﾉ Expand table

Write a URO miniport driver

Report URO capability

Query URO capability

Query URO state

Change URO state

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

UdpRsc.Enabled member can have the following values:

Value Meaning

NDIS_OFFLOAD_PARAMETERS_UDP_RSC_NO_CHANGE
0

The miniport driver shouldn't change
the current setting.

NDIS_OFFLOAD_PARAMETERS_UDP_RSC_DISABLED
1

URO is disabled.

NDIS_OFFLOAD_PARAMETERS_UDP_RSC_ENABLED
2

URO is enabled.

When a driver processes a OID_TCP_OFFLOAD_PARAMETERS OID request with the
NDIS_OFFLOAD_PARAMETERS_UDP_RSC_DISABLED flag set, the NIC must wait to complete the
request until all existing coalesced segments and outstanding URO indications are
indicated. This ensures synchronization of URO enable/disable events across NDIS
components.

After the miniport driver processes the OID_TCP_OFFLOAD_PARAMETERS OID request,
the miniport driver must issue an NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG
status indication with the updated offload state.

The NDIS_OFFLOAD_PARAMETERS_SKIP_REGISTRY_UPDATE flag in
NDIS_OFFLOAD_PARAMETERS allows for runtime-only disabling of URO. Changes made
with this flag aren't saved to the registry.

Drivers targeting NDIS 6.89 and later should understand URO packets and handle them
gracefully. To opt-out of URO:

Lightweight filter (LWF) drivers set the NDIS_FILTER_DRIVER_UDP_RSC_NOT_SUPPORTED
flag in the NDIS_FILTER_DRIVER_CHARACTERISTICS structure.
Protocol drivers set the NDIS_PROTOCOL_DRIVER_UDP_RSC_NOT_SUPPORTED flag in the
NDIS_PROTOCOL_DRIVER_CHARACTERISTICS structure.

This approach ensures components that are unfamiliar with URO don't receive URO
NBLs. NDIS disables URO on the miniport during binding if an LWF or protocol driver
that doesn’t support URO is present.

ﾉ Expand table

Opt-out of URO in NDIS 6.89 and later

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_protocol_driver_characteristics

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Consider the following issues when implementing a URO-capable miniport driver.

For information on the Winsock URO API, see IPPROTO_UDP socket options. See the
information on UDP_RECV_MAX_COALESCED_SIZE and UDP_COALESCED_INFO.

The Microsoft TCP/IP transport enables URO at bind time with NDIS, unless
configuration prevents it from doing so.

WFP callouts can use FWP_CALLOUT_FLAG_ALLOW_URO in FWPS_CALLOUT2 to advertise their
support for URO. If an incompatible WFP callout is registered at a URO-sensitive layer,
then the OS will disable URO while the callout is registered.

If a socket opts-in to URO with a max coalesced size greater than or equal to the
hardware offload size, then the stack will deliver the NBLs from hardware unmodified to
the socket. If a socket opts-in to a smaller max coalesced size, the stack will break the
coalesced receive into the smaller size for the socket.

If a socket doesn't opt-in to URO, then the stack will resegment receives for that socket.
In the absence of hardware URO, the existing software URO feature will continue to be
available.

Programming considerations for URO drivers

Winsock URO API

Windows TCP/IP stack updates

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows/win32/winsock/ipproto-udp-socket-options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout2_

Introduction to Receive Side Scaling
Article • 09/27/2024

Receive side scaling (RSS) is a network driver technology that enables the efficient
distribution of network receive processing across multiple CPUs in multiprocessor
systems.

To process received data efficiently, a miniport driver's receive interrupt service function
schedules a deferred procedure call (DPC). Without RSS, a typical DPC indicates all
received data within the DPC call. Therefore, all of the receive processing that is
associated with the interrupt runs on the CPU where the receive interrupt occurs. For an
overview of non-RSS receive processing, see Non-RSS Receive Processing.

RSS allows the NIC and miniport driver to schedule receive DPCs on other processors.
The RSS design ensures that processing associated with a given connection stays on an
assigned CPU. The NIC implements a hash function, and the resulting hash value helps
select a CPU.

The following figure illustrates the RSS mechanism for determining a CPU.

７ Note

Because hyper-threaded CPUs on the same core processor share the same
execution engine, the effect is not the same as having multiple core processors. For
this reason, RSS does not use hyper-threaded processors.

A NIC uses a hashing function to compute a hash value over a defined area (hash type)
within the received network data. The defined area can be noncontiguous.

A number of least significant bits (LSBs) of the hash value are used to index an
indirection table. The values in the indirection table are used to assign the received data
to a CPU.

For more detailed information about specifying indirection tables, hash types, and
hashing functions, see RSS Configuration.

With message signaled interrupt (MSI) support, a NIC can also interrupt the associated
CPU. For more information about NDIS support for MSIs, see NDIS MSI-X.

The following figure illustrates the levels of hardware support for RSS.

There are three possible levels of hardware support for RSS:

Hash calculation with a single queue: The NIC calculates the hash value, and the
miniport driver assigns received packets to queues that are associated with CPUs.

Hash calculation with multiple receive queues: The NIC assigns the received data
buffers to queues associated with CPUs.

Message signaled interrupts (MSIs): The NIC interrupts the CPU that should handle
the received packets.

The NIC always passes on the 32-bit hash value.

Hardware support for RSS

RSS can improve network system performance by reducing:

Processing delays by distributing receive processing from a NIC across multiple
CPUs.

Distributing receive processing helps to ensure that no CPU is heavily loaded while
another CPU is idle.

Spin lock overhead by increasing the probability that software algorithms that
share data execute on the same CPU.

Spin lock overhead occurs, for example, when a function executing on CPU0
possesses a spin lock on data that a function running on CPU1 must access. CPU1
spins (waits) until CPU0 releases the lock.

Reloading of caches and other resources by increasing the probability that
software algorithms that share data execute on the same CPU.

Such reloading occurs, for example, when a function that is executing and
accessing shared data on CPU0, executes on CPU1 in a subsequent interrupt.

To achieve these performance improvements in a secure environment, RSS provides the
following mechanisms:

Distributed processing

RSS distributes the processing of receive indications from a given NIC in DPCs to
multiple CPUs.

In-order processing

RSS preserves the order of delivery of received data packets. For each network
connection, RSS processes receive indications on an associated CPU. For more
information about RSS receive processing, see Indicating RSS Receive Data.

Dynamic load balancing

RSS provides a means to rebalance the network processing load between CPUs as
host system load varies. To rebalance the load, overlying drivers can change the
indirection table. For more information about specifying indirection tables, hash
types, and hashing functions, see RSS Configuration.

Send-side scaling

How RSS improves system performance

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

RSS enables driver stacks to process send and receive-side data for a given
connection on the same CPU. Typically, an overlying driver (for example, TCP)
sends part of a data block and waits for an acknowledgment before sending the
balance of the data. The acknowledgment then triggers subsequent send requests.
The RSS indirection table identifies a particular CPU for the receive data
processing. By default, the send processing runs on the same CPU if it's triggered
by the receive acknowledgment. A driver can also specify the CPU (for example, if a
timer is used).

Secure hash

RSS includes a signature that provides added security. This signature protects the
system from malicious remote hosts that might attempt to force the system into
an unbalanced state.

MSI-X support

RSS, with support for MSI-X, runs the interrupt service routine (ISR) on the same
CPU that later executes the DPC. This reduces spin lock overhead and reloading of
caches.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Receive Side Scaling Version 2 (RSSv2)
Article • 12/15/2021

Receive Side Scaling improves the system performance related to handling of network
data on multiprocessor systems. NDIS 6.80 and later support RSS Version 2 (RSSv2),
which extends RSS by offering dynamic, per-VPort spreading of queues.

Compared to RSSv1, RSSv2 shortens the time between the measurement of CPU load
and updating the indirection table. This avoids slowdown during high-traffic situations.
To accomplish this, RSSv2 performs its actions at IRQL = DISPATCH_LEVEL, in the
processor context of handling the request, and only operates on a subset of indirection
table entries that point to the current processor. This means that RSSv2 can dynamically
spread receive queues over multiple processors much more responsively than RSSv1.

Two OIDs, OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 and
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES, have been introduced in RSSv2 for
miniport drivers to set proper RSS capabilities and control the indirection table
respectively. OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 is a Regular OID, while
OID_GEN_RSS_SET_INDIRECTION_ENTRIES is a Synchronous OID that cannot return
NDIS_STATUS_PENDING. For more info about these OIDs, see their individual reference
pages. For more info about Synchronous OIDs, see Synchronous OID request interface in
NDIS 6.80.

This topic uses the following terms:

Term Definition

RSSv1 The first generation receive side scaling mechanism. Uses
OID_GEN_RECEIVE_SCALE_PARAMETERS.

RSSv2 The second generation receive side scaling mechanism supported in Windows 10,
version 1803 and later, described in this topic.

Scaling
entity

The miniport adapter itself in Native RSS mode, or a VPort in RSSv2 mode.

Overview

RSSv2 terminology

Term Definition

ITE An indirection table entry (ITE) of a given scaling entity. The total number of ITEs per
VPort cannot exceed NumberOfIndirectionTableEntriesPerNonDefaultPFVPort or
NumberOfIndirectionTableEntriesForDefaultVPort in VMQ mode or 128 in the
Native RSS case. NumberOfIndirectionTableEntriesPerNonDefaultPFVPort and
NumberOfIndirectionTableEntriesForDefaultVPort are members of the
NDIS_NIC_SWITCH_CAPABILITIES structure.

Scaling
mode

The per-VPort vmswitch policy that controls how its ITEs are handled at runtime. This
can be static (no ITE moves due to load changes) or dyanmic (expansion and
coalescing depending on current traffic load).

Queue An underlying hardware object (queue) that backs an ITE. Depending on the
hardware and indirection table, the configuration queue may back multiple ITEs. The
total number of queues, including one that is used by the default queue, cannot
exceed the preconfigured limit typically set by an administrator.

Default
processor

A processor that receives packets for which the hash cannot be calculated. Each VPort
has a default processor.

Primary
processor

A processor specified as the ProcessorAffinity member of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure during VPort creation. This
processor can be updated at runtime and specifies where VMQ traffic is directed.

Source
CPU

The processor to which the ITE is currently mapped.

Target
CPU

The processor to which the ITE is being re-mapped (using RSSv2).

Actor
CPU

The processor on which RSSv2 requests are being made.

Miniport drivers advertise RSSv2 support by setting the CapabilitiesFlags member of the
NDIS_RECEIVE_SCALE_CAPABILITIES structure with the
NDIS_RSS_CAPS_SUPPORTS_INDEPENDENT_ENTRY_MOVE flag. This capability is required
to enable RSSv2's CPU load balancing feature, along with the
NDIS_RECEIVE_FILTER_DYNAMIC_PROCESSOR_AFFINITY_CHANGE_SUPPORTED flag that
enables RSSv1 dynamic balancing for non-default VPorts (VMQs).

Advertising RSSv2 capability in a miniport
driver

７ Note

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

If a miniport adapter does not advertise RSSv2 capability, all VMQ-enabled VPorts stay
in static spreading mode even if these VPorts are requested to perform dynamic
spreading. The RSSv1 OID for configuration of RSS parameters,
OID_GEN_RECEIVE_SCALE_PARAMETERS, is used for these VPorts that are still in static
spreading mode.

Miniport drivers only need to implement one RSS control mechanism - either RSSv1 or
RSSv2. If the driver advertises RSSv2 support, NDIS will convert RSSv1 OIDs to RSSv2
OIDs if necessary to configure per-VPort spreading. The miniport driver must support
the two new OIDs and modify the behavior of the RSSv1
OID_GEN_RECEIVE_SCALE_PARAMETERS OID as follows:

OID_GEN_RECEIVE_SCALE_PARAMETERS is used only for Query requests in RSSv2
and not for setting RSS parameters.
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 is a Query and a Set OID used for
configuring the scaling entity's parameters such as the number of queues, the
number of ITEs, RSS enablement/disablement, and hash key updates.
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES is a Method OID used to perform
modification of indirection table entries.

OID_GEN_RECEIVE_SCALE_PARAMETERS is only used to query the current RSS
parameters of a given scaling entity. In RSSv1, this OID is used to set parameters. For
RSSv2-capable miniport drivers, NDIS automatically performs this role conversion for
the driver and issues the following two OIDs to set parameters instead.

OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 is a Regular OID and is handled the same as
the OID_GEN_RECEIVE_SCALE_PARAMETERS OID was handled in RSSv1. This OID is not
visible to NDIS light-weight filter drivers (LWFs) prior to NDIS 6.80.

OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES, however, is a Synchronous OID that
cannot return NDIS_STATUS_PENDING. This OID must be executed and completed in the
processor context which originated the OID. Like
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2, it is also not visible to NDIS LWFs prior to
NDIS 6.80. LWFs in NDIS 6.80 and later are not permitted to delay this OID or move to
another processor. Its payload contains an array of simple "move ITE" actions, each of

Upper layer protocols assume that the primary processor of the default VPort can
be moved for RSSv2 miniport drivers.

Handling RSSv2 OIDs

which contains a command to move a single ITE for a scaling entity to a different target
CPU. Elements of the array can reference different scaling entities (VPorts).

Each type of NDIS driver, miniport, filter, and protocol, have entry points to support the
Synchronous OID request interface:

NDIS driver
type

Synchronous OID handler(s) Function to originate
Synchronous OIDs

Miniport MiniportSynchronousOidRequest N/A

Filter FilterSynchronousOidRequest
FilterSynchronousOidRequestComplete

NdisFSynchronousOidRequest

Protocol N/A NdisSynchronousOidRequest

In RSSv2, different parameters are used to steer traffic to the correct CPU depending on
the RSS state (enabled or disabled). When RSS is disabled, only the primary processor is
used for directing traffic. When RSS is enabled, both the default processor and all ITEs
are used for directing traffic. These steering parameters are labele as "active" or
"inactive", summarized in the following table:

Steering parameter RSS disabled RSS enabled

Primary processor Active Inactive

Default processor Inactive Active

ITE[0..N] Inactive Active

When a steering parameter is in the active state, it directs the traffic. From the moment
of an RSS state transition that makes a parameter inactive, miniport drivers must track
changes to the parameter until the reverse transition activates it again. This means that
a miniport driver needs to track all updates to the default processor and indirection
table entries while RSS is disabled for that scaling entity. When RSS is enabled, the
current tracked state for the default processor and indirection table should take effect.

RSS state transitions, ITE updates, and
primary/default processors

Steering parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-miniport_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-filter_synchronous_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsynchronousoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissynchronousoidrequest

For example, consider the scenario when software vRSS is already enabled. In this case,
the indirection table already exists in the upper layer protocol and is actively used by the
upper layer's software spreading code. If, during hardware RSS enablement, all entries
start pointing to the primary processor before the updates to move the indirection table
entries are issued to and executed by the hardware, the primary processor might
experience a short jam. If the miniport driver has tracked default processor and ITE
information, it can direct traffic to where it is already expected by the upper layer.

Note that while miniport drivers must track all updates to inactive steering parameters,
they should defer validation of those parameters until the RSS state change attempts to
make these parameters active. For example, in the case of software spreading while
hardware RSS is disabled, upper layer protocols can use any processor for spreading
(including outside the adapter's RSS set). The upper layers ensure that, at the moment
of RSS state transition, all inactive parameters are valid for the new RSS state. However,
the miniport dirver should still validate the parameters and fail the RSS state transition if
it discovers that any tracked inactive steering parameters are invalid.

The following table describes the initial state of the scaling entity after creation (for
example, after VPort creation), as well as how the parameters can be updated:

Parameter Description

Primary
processor

Initialized with the Affinity processor specified during VPort creation.
Can be updated using the OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
OID with the
NDIS_RSS_SET_INDIRECTION_ENTRY_FLAG_PRIMARY_PROCESSOR flag set.
Can be updated using the OID_NIC_SWITCH_VPORT_PARAMETERS OID with
the NDIS_NIC_SWITCH_VPORT_PARAMS_PROCESSOR_AFFINITY_CHANGED
flag set (this is the compatibility path for existing cmdlet's).
Can be read using the OID_NIC_SWITCH_VPORT_PARAMETERS OID with the
NDIS_NIC_SWITCH_VPORT_PARAMS_PROCESSOR_AFFINITY_CHANGED flag
(this is the compatibility path for existing cmdlet's).
Post-initialization moves of the primary processor do not affect the default
processor or the contents of the indirection table.

Default
processor

Initialized with the Affinity processor specified during VPort creation.
Can be updated using the OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
OID with the
NDIS_RSS_SET_INDIRECTION_ENTRY_FLAG_DEFAULT_PROCESSOR flag set.

Initial state and updates to steering parameters

Parameter Description

Indirection
table

NumberOfIndirectionTableEntries is set to 1.
The only entry is initialized with the Affinity processor specified during VPort
creation.
Can be updated using the OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
OID.

Updates to ITEs and the primary/default processors (using
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES) is invoked from the processor to
which the corresponding entry currently points. For a given VPort, the upper layer
ensures that no OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES OIDs to move ITEs or
set the primary/default processors will be issued in these circumstances:

1. While OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 is in progress.
2. After the VPort deletion sequence is initiated. For example, the upper layer issues

the set filter OID only after the last OID to move ITEs is completed.

During RSS disablement, the upper layer protocol might choose to either point all the
ITEs to the primary processor, then issue the OID to disable RSS, or it might choose to
leave the indirection table as-is and disable RSS. In either case, receive traffic should
target the primary processor.

RSSv2 maintains a requirement from RSSv1 that permits the upper layer protocol to
delete a VPort without first disabling RSS. The upper layer can set the receive filter on
the VPort to zero, thus ensuring that no receive traffic flows through the VPort, then
proceed with VPort deletion without disabling RSS. The upper layer guarantees that no
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES OIDs will be issued during or after
VPort deletion.

During both RSS disablement and VPort deletion, the miniport driver should take care of
any pending internal operations that might exist because of previous queue moves.

The upper layer protocol ensures that important invariants are not violated before
performing management functions or ITE moves. For example:

1. Before reducing the number of queues, the upper layer ensures that the
indirection table does not reference more processors than the new number of

RSS disablement

RSSv2 invariants

queues for a VPort.
2. The upper layer should not request an indirection table update that violates the

currently configured number of queues for a VPort. The miniport driver should
enforce this and return a failure.

3. Before changing the number of indirection table entries for VMMQ-RESTRICTED
adapters, the upper layer ensures that the contents of the indirection table are
normalized to the power of 2.

OID_GEN_RECEIVE_SCALE_PARAMETERS_V2

OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES

Synchronous OID request interface in NDIS 6.80

Related links

Non-RSS Receive Processing
Article • 12/15/2021

Miniport drivers that do not support RSS handle receive processing as described in this
topic.

The following figure illustrates non-RSS receive processing.

In the figure, the dashed paths represent an alternate path for the send and receive
processing. Because the system controls the scaling, the processing doesn't always
occur on the CPU that provides the best performance. Connections are processed on
the same CPU over successive interrupts only by chance.

The following process repeats for each non-RSS interrupt cycle:

1. The NIC uses DMA to fill a buffer with received data and interrupts the system.

The miniport driver allocated the receive buffers in shared memory during
initialization.

2. The NIC can continue to fill additional receive buffers at any time in this interrupt
cycle. However, the NIC does not interrupt again until the miniport driver enables
interrupts.

The received buffers that the system handles in one interrupt cycle can be
associated with many different network connections.

3. NDIS calls the miniport driver's MiniportInterrupt function (ISR) on a system-
determined CPU.

Ideally, the ISR should go to the least busy CPU. However, in some systems, the
system assigns the ISR to an available CPU or to a CPU that is associated with the
NIC.

4. The ISR disables the interrupts and requests NDIS to queue a deferred procedure
call (DPC) to process the received data.

5. NDIS calls the MiniportInterruptDPC function (the DPC) on the current CPU.

6. The DPC builds receive descriptors for all of the received buffers and indicates the
data up the driver stack. For more information, see Receiving Network Data.

There can be many buffers for many different connections and there is potentially
a lot of processing to complete. The received data associated with subsequent
interrupt cycles can be processed on other CPUs. The send processing for a given
network connection can also run on a different CPU.

7. The DPC enables the interrupts. This interrupt cycle is complete and the process
starts again.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc

RSS with a Single Hardware Receive
Queue
Article • 12/15/2021

Miniport drivers can support RSS for NICs that support RSS hash calculation and a single
receive descriptor queue.

The following figure illustrates RSS processing with a single receive descriptor queue.

In the figure, the dashed arrows represent an alternate path for the receive processing.
RSS cannot control the CPU that receives the initial ISR call.

Unlike the non-RSS receive processing, RSS-based receive processing is distributed over
multiple CPUs. Also, the processing for a given connection can be tied to a given CPU.

The following process repeats for each interrupt:

1. The NIC uses DMA to fill buffers with received data and interrupts the system.

The miniport driver allocated the receive buffers in shared memory during
initialization.

2. The NIC can fill additional receive buffers at any time but does not interrupt again
until the miniport driver enables the interrupts.

The received buffers that the system handles in one interrupt can be associated
with many different network connections.

3. NDIS calls the miniport driver's MiniportInterrupt function (ISR) on a system-
determined CPU.

4. The ISR disables the interrupts and requests NDIS to queue a deferred procedure
call (DPC) to process the received data.

5. NDIS calls the MiniportInterruptDPC function (DPC) on the current CPU. In the DPC:
a. The miniport driver uses the hash values that the NIC calculated for each

received buffer and reassigns each received buffer to a receive queue that is
associated with a CPU.

b. The current DPC requests NDIS to queue a DPC for each of the other CPUs that
are associated with a non-empty receive queue.

c. If the current DPC is running on a CPU that is associated with a non-empty
queue, the current DPC processes the associated receive buffers and indicates
the received data up the driver stack.

Assigning queues, and queuing additional DPCs requires additional processing
overhead. To achieve improved system performance, this overhead must be offset
by better utilization of available CPUs.

6. The DPC on a given CPU:
a. Processes the receive buffers that are associated with its receive queue and

indicates the data up the driver stack. For more information, see Indicating RSS
Receive Data.

b. Enables the interrupts, if it is the last DPC to complete. This interrupt is
complete and the process starts again. The driver must use an atomic operation
to identify the last DPC to complete. For example, the driver can use the
NdisInterlockedDecrement function to implement an atomic counter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinterlockeddecrement

RSS with Hardware Queuing
Article • 12/15/2021

RSS with hardware queuing improves system performance relative to RSS with a single
hardware receive queue solution. NICs that support hardware queuing assign received
data to multiple receive queues. The receive queues are associated with a CPU. The NIC
assigns received data to CPUs based on hash values and an indirection table.

The following figure illustrates RSS with NIC receive queuing.

In the figure, the dashed arrows represent an alternate path for the receive processing.
RSS cannot control the CPU that receives the initial ISR call. The driver does not have to
queue the data so it can immediately schedule the initial DPCs on the correct CPUs.

The following process repeats for each interrupt:

1. The NIC:

a. Uses DMA to fill buffers with received data.

The miniport driver allocated the receive buffers in shared memory during
initialization.

b. Computes a hash value.

c. Queues the buffer for a CPU and provides the queue assignments to the
miniport driver.

For example, the NIC could loop steps 1-3 and DMA a list of CPU assignments
after some number of packets are received. The specific mechanism is left to the
NIC design.

d. Interrupts the system.

The received buffers that the system handles in one interrupt are distributed
between the CPUs.

2. NDIS calls the miniport driver's MiniportInterrupt function (ISR) on a system-
determined CPU.

3. The miniport driver requests NDIS to queue deferred procedure calls (DPCs) for
each of the CPUs that have a non-empty queue.

Note that all the DPCs must complete before the driver enables interrupts. Also,
note that the ISR might be running on a CPU that has no buffers to process.

4. NDIS calls the MiniportInterruptDPC function for each queued DPC. The DPC on a
given CPU:

a. Builds receive descriptors for all of the received buffers in its queue and
indicates the data up the driver stack.

For more information, see Indicating RSS Receive Data.

b. Enables the interrupts, if it is the last DPC to complete. This interrupt is
complete and the process starts again. The driver must use an atomic operation
to identify the last DPC to complete. For example, the driver can use the
NdisInterlockedDecrement function to implement an atomic counter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisinterlockeddecrement

RSS with Message Signaled Interrupts
Article • 12/15/2021

Miniport drivers can support message signaled interrupts (MSIs) to improve RSS
performance. MSIs enable the NIC to request an interrupt on the CPU that will process
the received data. For more information about NDIS support for MSI, see NDIS MSI-X.

The following figure illustrates RSS with MSI-X.

In the figure, the dashed arrows represent processing on a different connection. RSS
with MSI-X allows the NIC to interrupt the correct CPU for a connection.

The following process repeats for each interrupt:

1. The NIC:

a. Uses DMA to fill buffers with received data.

The miniport driver allocated the receive buffers in shared memory during
initialization.

b. Computes a hash value.

c. Queues the buffer to a CPU and provides the queue assignments to the
miniport driver. For example, the NIC could loop steps 1-3 and DMA a list of

CPU assignments after some number of packets are received. The specific
mechanism is left to the NIC design.

d. Using MSI-X, interrupts the CPU that is associated with a non-empty queue.

2. The NIC can fill additional receive buffers and add them to the queue at any time
but does not interrupt that CPU again until the miniport driver enables the
interrupts for that CPU.

3. NDIS calls the miniport driver's ISR (MiniportInterrupt) on the current CPU.

4. The ISR disables interrupts on the current CPU and queues a DPC on the current
CPU.

Interrupts can still occur on the other CPUs while the DPC is running on the current
CPU.

5. NDIS calls the MiniportInterruptDPC function for each queued DPC. Each DPC:
a. Builds receive descriptors for all of the received buffers in its queue and

indicates the data up the driver stack. For more information, see Indicating RSS
Receive Data.

b. Enables interrupts for the current CPU. This interrupt is complete and the
process starts again. Note that no atomic operation is required to track the
progress of other DPCs.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_isr
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc

RSS Hashing Types
Article • 12/15/2021

The RSS hashing type specifies the portion of received network data that a NIC must use
to calculate an RSS hash value.

Overlying drivers set the hash type, function, and indirection table. The hash type that
the overlying driver sets can be a subset of the type that the miniport driver can
support. For more information, see RSS Configuration.

The hash type is an OR of valid combinations of the following flags:

NDIS_HASH_IPV4
NDIS_HASH_TCP_IPV4
NDIS_HASH_UDP_IPV4
NDIS_HASH_IPV6
NDIS_HASH_TCP_IPV6
NDIS_HASH_UDP_IPV6
NDIS_HASH_IPV6_EX
NDIS_HASH_TCP_IPV6_EX
NDIS_HASH_UDP_IPV6_EX

These are the sets of valid flag combinations:

IPv4 (combinations of NDIS_HASH_IPV4, NDIS_HASH_TCP_IPV4, and
NDIS_HASH_UDP_IPV4)
IPv6 (combinations of NDIS_HASH_IPV6, NDIS_HASH_TCP_IPV6, and
NDIS_HASH_UDP_IPV6)
IPv6 with extension headers (combinations of NDIS_HASH_IPV6_EX,
NDIS_HASH_TCP_IPV6_EX, and NDIS_HASH_UDP_IPV6_EX)

A NIC must support one of the combinations from the IPv4 set. The other sets and
combinations are optional. A NIC can support more than one set at a time. In this case,
the type of data received determines which hash type the NIC uses.

In general, if the NIC cannot interpret the received data correctly, it must not compute
the hash value. For example, if the NIC only supports IPv4 and it receives an IPv6 packet,
which it cannot interpret correctly, it must not compute the hash value. If the NIC
receives a packet for a transport type that it does not support, it must not compute the

Overview

hash value. For example, if the NIC receives a UDP packet when it is supposed to be
calculating hash values for TCP packets, it must not compute the hash value. In this case,
the packet is processed as in the non-RSS case. For more information about the non-
RSS receive processing, see Non-RSS Receive Processing.

The valid hash type combinations in the IPv4 set are:

NDIS_HASH_IPV4
NDIS_HASH_TCP_IPV4
NDIS_HASH_UDP_IPV4
NDIS_HASH_TCP_IPV4 | NDIS_HASH_IPV4
NDIS_HASH_UDP_IPV4 | NDIS_HASH_IPV4
NDIS_HASH_TCP_IPV4 | NDIS_HASH_UDP_IPV4 | NDIS_HASH_IPV4

If this flag alone is set, the NIC should compute the hash value over the following IPv4
header fields:

Source-IPv4-Address
Destination-IPv4-Address

If this flag alone is set, the NIC should parse the received data to identify an IPv4 packet
that contains a TCP segment.

The NIC must identify and skip over any IP options that are present. If the NIC cannot
skip over any IP options, it should not calculate a hash value.

The NIC should compute the hash value over the following fields:

IPv4 hash type combinations

NDIS_HASH_IPV4

７ Note

If a NIC receives a packet that has both IP and TCP headers, NDIS_HASH_TCP_IPV4
should not always be used. In the case of a fragmented IP packet, NDIS_HASH_IPV4
must be used. This includes the first fragment which contains both IP and TCP
headers.

NDIS_HASH_TCP_IPV4

Source-IPv4-Address
Destination-IPv4-Address
Source TCP Port
Destination TCP Port

If this flag alone is set, the NIC should parse the received data to identify an IPv4 packet
that contains a UDP datagram.

The NIC must identify and skip over any IP options that are present. If the NIC cannot
skip over any IP options, it should not calculate a hash value.

The NIC should compute the hash value over the following fields:

Source-IPv4-Address
Destination-IPv4-Address
Source UDP Port
Destination UDP Port

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_TCP_IPV4 case. However, if the packet does not contain a TCP
header, the NIC should compute the hash value as specified for the NDIS_HASH_IPV4
case.

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_UDP_IPV4 case. However, if the packet does not contain a UDP
header, the NIC should compute the hash value as specified for the NDIS_HASH_IPV4
case.

If this flag combination is set, the NIC should perform the hash calculation as specified
by the transport in the packet. However, if the packet does not contain a TCP or UDP
header, the NIC should compute the hash value as specified for the NDIS_HASH_IPV4
case.

NDIS_HASH_UDP_IPV4

NDIS_HASH_TCP_IPV4 | NDIS_HASH_IPV4

NDIS_HASH_UDP_IPV4 | NDIS_HASH_IPV4

NDIS_HASH_TCP_IPV4 | NDIS_HASH_UDP_IPV4 |
NDIS_HASH_IPV4

The valid hash type combinations in the IPv6 set are:

NDIS_HASH_IPV6
NDIS_HASH_TCP_IPV6
NDIS_HASH_UDP_IPV6
NDIS_HASH_TCP_IPV6 | NDIS_HASH_IPV6
NDIS_HASH_UDP_IPV6 | NDIS_HASH_IPV6
NDIS_HASH_TCP_IPV6 | NDIS_HASH_UDP_IPV6 | NDIS_HASH_IPV6

If this flag alone is set, the NIC should compute the hash over the following fields:

Source-IPv6-Address
Destination-IPv6-Address

If this flag alone is set, the NIC should parse the received data to identify an IPv6 packet
that contains a TCP segment. The NIC must identify and skip over any IPv6 extension
headers that are present in the packet. If the NIC cannot skip over any IPv6 extension
headers, it should not calculate a hash value.

The NIC should compute the hash value over the following fields:

Source-IPv6 -Address
Destination-IPv6 -Address
Source TCP Port
Destination TCP Port

If this flag alone is set, the NIC should parse the received data to identify an IPv6 packet
that contains a UDP datagram. The NIC must identify and skip over any IPv6 extension
headers that are present in the packet. If the NIC cannot skip over any IPv6 extension
headers, it should not calculate a hash value.

The NIC should compute the hash value over the following fields:

Source-IPv6-Address

IPv6 hash type combinations

NDIS_HASH_IPV6

NDIS_HASH_TCP_IPV6

NDIS_HASH_UDP_IPV6

Destination-IPv6-Address
Source UDP Port
Destination UDP Port

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_TCP_IPV6 case. However, if the packet does not contain a TCP
header, the NIC should compute the hash as specified for the NDIS_HASH_IPV6 case.

For example, if the packet is fragmented, then it may not contain the TCP header. In that
case, the NIC should compute the hash only over the IP header.

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_UDP_IPV6 case. However, if the packet does not contain a UDP
header, the NIC should compute the hash as specified for the NDIS_HASH_IPV6 case.

For example, if the packet is fragmented, then it may not contain the UDP header. In
that case, the NIC should compute the hash only over the IP header.

If this flag combination is set, the NIC should perform the hash calculation as specified
by the transport in the packet. However, if the packet does not contain a TCP or UDP
header, the NIC should compute the hash value as specified in the NDIS_HASH_IPV6
case.

For example, if the packet is fragmented, then it may not contain the TCP or UDP
header. In that case, the NIC should compute the hash only over the IP header.

The valid combinations in the IPv6 with extension headers set are:

NDIS_HASH_IPV6_EX
NDIS_HASH_TCP_IPV6_EX
NDIS_HASH_UDP_IPV6_EX

NDIS_HASH_TCP_IPV6 | NDIS_HASH_IPV6

NDIS_HASH_UDP_IPV6 | NDIS_HASH_IPV6

NDIS_HASH_TCP_IPV6 | NDIS_HASH_UDP_IPV6 |
NDIS_HASH_IPV6

IPv6 with extension headers hash type
combinations

NDIS_HASH_TCP_IPV6_EX | NDIS_HASH_IPV6_EX
NDIS_HASH_UDP_IPV6_EX | NDIS_HASH_IPV6_EX
NDIS_HASH_TCP_IPV6_EX | NDIS_HASH_UDP_IPV6_EX | NDIS_HASH_IPV6_EX

If this flag alone is set, the NIC should compute the hash over the following fields:

Home address from the home address option in the IPv6 destination options
header. If the extension header is not present, use the Source IPv6 Address.
IPv6 address that is contained in the Routing-Header-Type-2 from the associated
extension header. If the extension header is not present, use the Destination IPv6
Address.

If this flag alone is set, the NIC should compute the hash over the following fields:

Home address from the home address option in the IPv6 destination options
header. If the extension header is not present, use the Source IPv6 Address.
IPv6 address that is contained in the Routing-Header-Type-2 from the associated
extension header. If the extension header is not present, use the Destination IPv6
Address.
Source TCP Port
Destination TCP Port

If this flag alone is set, the NIC should compute the hash over the following fields:

Home address from the home address option in the IPv6 destination options
header. If the extension header is not present, use the Source IPv6 Address.
IPv6 address that is contained in the Routing-Header-Type-2 from the associated
extension header. If the extension header is not present, use the Destination IPv6
Address.
Source UDP Port
Destination UDP Port

NDIS_HASH_IPV6_EX

NDIS_HASH_TCP_IPV6_EX

NDIS_HASH_UDP_IPV6_EX

NDIS_HASH_TCP_IPV6_EX | NDIS_HASH_IPV6_EX

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_TCP_IPV6_EX case. However, if the packet does not contain a TCP
header, the NIC should compute the hash as specified for the NDIS_HASH_IPV6_EX case.

If this flag combination is set, the NIC should perform the hash calculations as specified
for the NDIS_HASH_UDP_IPV6_EX case. However, if the packet does not contain a UDP
header, the NIC should compute the hash as specified for the NDIS_HASH_IPV6_EX case.

If this flag combination is set, the NIC should perform the hash calculations as specified
by the packet transport. However, if the packet does not contain a TCP or UDP header,
the NIC should compute the hash as specified for the NDIS_HASH_IPV6_EX case.

A miniport driver sets the hash type in a NET_BUFFER_LIST structure before indicating
the received data. For more information, see Indicating RSS Receive Data.

NDIS_HASH_UDP_IPV6_EX | NDIS_HASH_IPV6_EX

NDIS_HASH_TCP_IPV6_EX | NDIS_HASH_UDP_IPV6_EX |
NDIS_HASH_IPV6_EX

７ Note

If a miniport driver reports NDIS_RSS_CAPS_HASH_TYPE_TCP_IPV6_EX and/or
NDIS_RSS_CAPS_HASH_TYPE_UDP_IPV6_EX capability for a NIC, the NIC must
calculate hash values (over fields in the IPv6 extension headers) in accordance with
the IPv6 extension hash types that the protocol driver set. The NIC can store either
the extension hash type or the regular hash type in the NET_BUFFER_LIST structure
of the IPv6 packet for which a hash value is computed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

RSS Hashing Functions
Article • 12/15/2021

A NIC or its miniport driver uses the RSS hashing function to calculate an RSS hash
value.

Overlying drivers set the hash type, function, and table to assign connections to CPUs.
For more information, see RSS Configuration.

The hashing function can be one of the following:

NdisHashFunctionToeplitz
NdisHashFunctionReserved1
NdisHashFunctionReserved2
NdisHashFunctionReserved3

A miniport driver should identify the hashing function and value that it uses in each
NET_BUFFER_LIST structure before the driver indicates received data. For more
information, see Indicating RSS Receive Data.

The following four pseudocode examples show how to calculate the
NdisHashFunctionToeplitz hash value. These examples represent the four possible hash
types that are available for NdisHashFunctionToeplitz. For more information about hash
types, see RSS Hashing Types.

To simplify the examples, a generalized algorithm that processes an input byte stream is
required. Specific formats for the byte streams are defined later in the four examples.

The overlying driver provides a secret key (K) to the miniport driver for use in the hash
calculation. The key is 40 bytes (320 bits) long. For more information about the key, see
RSS Configuration.

Overview

７ Note

Currently, NdisHashFunctionToeplitz is the only hashing function available to
miniport drivers. The other hashing functions are reserved for NDIS.

Examples

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Given an input array that contains n bytes, the byte stream is defined as follows:

c++

The left-most byte is input[0], and the most-significant bit of input[0] is the left-most bit.
The right-most byte is input[n-1], and the least-significant bit of input[n-1] is the right-
most bit.

Given the preceding definitions, the pseudocode for processing a general input byte
stream is defined as follows:

c++

The pseudocode contains entries of the form @n-m. These entries identify the byte
range of each element in the TCP packet.

Concatenate the SourceAddress, DestinationAddress, SourcePort, and DestinationPort
fields of the packet into a byte array, preserving the order in which they occurred in the
packet:

c++

Concatenate the SourceAddress and DestinationAddress fields of the packet into a byte
array.

input[0] input[1] input[2] ... input[n-1]

ComputeHash(input[], n)

result = 0
For each bit b in input[] from left to right
{
if (b == 1) result ^= (left-most 32 bits of K)
shift K left 1 bit position
}

return result

Example Hash Calculation for IPv4 with the TCP Header

Input[12] = @12-15, @16-19, @20-21, @22-23
Result = ComputeHash(Input, 12)

Example Hash Calculation for IPv4 Only

c++

Concatenate the SourceAddress, DestinationAddress, SourcePort, and DestinationPort
fields of the packet into a byte array, preserving the order in which they occurred in the
packet.

c++

Concatenate the SourceAddress and DestinationAddress fields of the packet into a byte
array.

c++

Input[8] = @12-15, @16-19
Result = ComputeHash(Input, 8)

Example Hash Calculation for IPv6 with the TCP Header

Input[36] = @8-23, @24-39, @40-41, @42-43
Result = ComputeHash(Input, 36)

Example Hash Calculation for IPv6 Only

Input[32] = @8-23, @24-39
Result = ComputeHash(Input, 32)

Verifying the RSS Hash Calculation
Article • 12/15/2021

You should verify your implementation of the RSS hash calculation. To verify your
calculations for the NdisHashFunctionToeplitz hash function, use the following secret
key data:

syntax

The following table provides verification data for the IPv4 versions of the
NdisHashFunctionToeplitz hash function. The destination and source columns contain
the input data and the IPv4 columns contain the resulting hash value.

Destination Address
:Port

Source Address :Port IPv4 only IPv4 with TCP

161.142.100.80 :1766 66.9.149.187 :2794 0x323e8fc2 0x51ccc178

65.69.140.83 :4739 199.92.111.2 :14230 0xd718262a 0xc626b0ea

12.22.207.184 :38024 24.19.198.95 :12898 0xd2d0a5de 0x5c2b394a

209.142.163.6 :2217 38.27.205.30 :48228 0x82989176 0xafc7327f

202.188.127.2 :1303 153.39.163.191 :44251 0x5d1809c5 0x10e828a2

The following table contains verification data for the IPv6 versions of the RSS hash
algorithm. The destination and source columns contain the input data and the IPv6
columns contain the resulting hash value. Note that the IPv6 addresses are provided for
verification of the algorithm only; they might not make sense as actual addresses.

Destination Address
(Port)

Source Address (Port) IPv6 only IPv6 with TCP

3ffe:2501:200:3::1
(1766)

3ffe:2501:200:1fff::7 (2794) 0x2cc18cd5 0x40207d3d

ff02::1 (4739) 3ffe:501:8::260:97ff:fe40:efab
(14230)

0x0f0c461c 0xdde51bbf

0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa

Destination Address
(Port)

Source Address (Port) IPv6 only IPv6 with TCP

fe80::200:f8ff:fe21:67cf
(38024)

3ffe:1900:4545:3:200:f8ff:fe21:67cf
(44251)

0x4b61e985 0x02d1feef

RSS Configuration
Article • 09/27/2024

To obtain RSS configuration information, an overlying driver can send an OID query of
OID_GEN_RECEIVE_SCALE_CAPABILITIES to a miniport driver. NDIS also provides the RSS
configuration information to overlying protocol drivers in the NDIS_BIND_PARAMETERS
structure during initialization.

The overlying driver chooses a hashing function, type, and indirection table. To set these
configuration options, the driver sends an OID set request of
OID_GEN_RECEIVE_SCALE_PARAMETERS to the miniport driver. Overlying drivers can
also query this OID to obtain the current RSS settings. The information buffer for the
OID_GEN_RECEIVE_SCALE_PARAMETERS OID contains a pointer to an
NDIS_RECEIVE_SCALE_PARAMETERS structure.

The overlying driver can disable RSS on the NIC. In this case, the driver sets the
NDIS_RSS_PARAM_FLAG_DISABLE_RSS flag in the Flags member of the
NDIS_RECEIVE_SCALE_PARAMETERS structure. When this flag is set, the miniport driver
should ignore all of the other flags and settings and disable RSS on the NIC.

NDIS processes OID_GEN_RECEIVE_SCALE_PARAMETERS before passing it to the
miniport driver and updates the miniport adapter's *RSS standardized keyword, if
required. For more information about the *RSS keyword, see Standardized INF Keywords
for RSS.

After receiving an OID_GEN_RECEIVE_SCALE_PARAMETERS set request with the
NDIS_RSS_PARAM_FLAG_DISABLE_RSS flag set, the miniport driver should set the RSS
state of the NIC to the initial state of the NIC after initialization. Therefore, if the
miniport driver receives a subsequent OID_GEN_RECEIVE_SCALE_PARAMETERS set
request with the NDIS_RSS_PARAM_FLAG_DISABLE_RSS flag cleared, all of the
parameters should have the same values that were set after the miniport driver received
the OID_GEN_RECEIVE_SCALE_PARAMETERS set request for the first time after the
miniport adapter was initialized.

An overlying driver can use the OID_GEN_RECEIVE_HASH OID to enable and configure
hash calculations on received frames without enabling RSS. Overlying drivers can also
query this OID to obtain the current receive hash settings.

The information buffer for the OID_GEN_RECEIVE_HASH OID contains a pointer to an
NDIS_RECEIVE_HASH_PARAMETERS structure. For a set request, the OID specifies the
hash parameters that the miniport adapter should use. For a query request, the OID

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_hash_parameters

returns the hash parameters that the miniport adapter is using. This OID is optional for
drivers that support RSS.

Note If receive hash calculation is enabled, NDIS disables receive hash calculation
before it enables RSS. If RSS is enabled, NDIS disables RSS before it enables receive hash
calculation.

All of the miniport adapters that the miniport driver supports must provide the same
hash configuration settings to all subsequent protocol bindings. This OID also includes
the secret key that the miniport driver or NIC must use for hash calculations. The key is
320 bits long (40 bytes) and can contain any data that the overlying driver chooses, for
example, a random stream of bytes.

To rebalance the processing load, the overlying driver can set the RSS parameters and
modify the indirection table. Normally, all the parameters are unchanged except for the
indirection table. However, after RSS is initialized, the overlying driver might change
other RSS initialization parameters. If necessary, the miniport driver can reset the NIC
hardware to change the hash function, hash secret key, hash type, base CPU number, or
the number of bits that are used to index the indirection table.

Note The overlying driver can set these parameters at any time. This can cause out of
order receive indications. Miniport drivers that support TCP are not required to purge
their receive queues in this instance.

The following figure provides example contents for two instances of the indirection
table.

The preceding figure assumes a four processor configuration, and the number of least
significant bits used from the hash value is 6 bits. Therefore, the indirection table
contains 64 entries.

In the figure, table A lists the values in the indirection table immediately after
initialization. Later, as normal traffic load varies, the processor load grows unbalanced.
The overlying driver detects the unbalanced condition and attempts to rebalance the
load by defining a new indirection table. Table B lists the new indirection table values. In
the table B, some of the load from CPU 2 is moved to CPUs 1 and 3.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Note When the indirection table is changed, for a short time (while the current receive
descriptor queues are being processed), packets can be processed on the wrong CPU.
This is a normal transient condition.

The size of the indirection table is typically two to eight times the number of processors
in the system.

When the miniport driver distributes packets to CPUs, if there are far too many CPUs,
the effort spent in distributing the load could become prohibitive. In this case, overlying
drivers should choose a subset of CPUs on which the processing of network data occurs.

In some cases, the number of available hardware receive queues might be less than the
number of CPUs on the system. The miniport driver must examine the indirection table
to determine the CPU numbers to associate with hardware queues. If the total number
of different CPU numbers that appear in the indirection table is more than the number
of hardware queues that the NIC supports, the miniport driver must pick a subset of the
CPU numbers from the indirection table. The subset is equal in number to the number
of hardware queues. The miniport driver obtained the IndirectionTableSize parameter
from OID_GEN_RECEIVE_SCALE_PARAMETERS. The miniport driver specified the
NumberOfReceiveQueues value in response to OID_GEN_RECEIVE_SCALE_CAPABILITIES.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Reserving Processors for Applications
Article • 09/27/2024

The receive side scaling (RSS) interface enables an administrator to reserve a set of
processors for applications to use. The administrator can reserve a set of processors
starting at logical CPU number 0 and ending at a specified CPU number. The RSS base
CPU number is the CPU number of the first CPU that RSS can use. RSS cannot use the
CPUs that are numbered below the base CPU number. For example, on a quad-core
system with hyper-threading turned off, if base CPU number is set to 1, processors 1, 2,
and 3 can be used for RSS.

NDIS uses the default value of 0 for base CPU number, but an administrator can change
this value. The RSS interface does not permit the administrator to reserve a non-
contiguous, arbitrary subset of CPUs for applications to use.

In Microsoft Windows Server 2003 with the Scalable Networking Pack, administrators
can set the base CPU number with the RssBaseCpu registry keyword in
HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters. The
RssBaseCpu value is a DWORD type and, if it is not present, NDIS uses the default value
of 0.

In Windows Server 2008, administrators can set the base CPU number with the
RssBaseCpu registry keyword in
HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\NDIS\Parameters. The
RssBaseCpu value is a DWORD type and, if it is not present, NDIS uses the default value
of 0. This registry keyword also applies to later versions of Windows Server.

Note Starting in Windows 8 and Windows Server 2012, administrators can control many
aspects of Network Adapters by using PowerShell cmdlets. Directly editing the registry is
now discouraged.

The PowerShell cmdlet for reserving RSS CPUs is Set-NetAdapterRss. The primary
difference between using Set-NetAdapterRss and using RssBaseCpu is that PowerShell
cmdlets operate on a per-Network Adapter basis while RssBaseCpu is global, meaning it
applies to all Network Adapters. Generally, working with each Network Adapter
separately is recommended because it offers more flexibility, granularity, and
understandability in giving each Network Adapter its own configuration. However,
administrators might still use the global RssBaseCpu key if they would like to apply a
configuration to all current and all future Network Adapters at the same time.

For a complete list of Network Adapter cmdlets, see Network Adapter Cmdlets in
Windows PowerShell.

https://learn.microsoft.com/en-us/powershell/module/netadapter/Set-NetAdapterRss
https://learn.microsoft.com/en-us/powershell/module/netadapter/
https://learn.microsoft.com/en-us/powershell/module/netadapter/

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Setting the Number of RSS Processors
Article • 06/28/2024

Administrators should set the number of receive side scaling (RSS) processors to help
the overall performance of a computer.

Concurrent deferred procedure calls (DPCs) that are running on multiple CPUs enable
distributed receive processing and remove the CPU bottleneck (for example, in high-
speed NICs). However, multiple DPCs do create additional overhead. The interrupt and
DPC processing overhead increases as more processors are used for RSS. Therefore,
when RSS is active, the total CPU utilization across all CPUs increases. An administrator
should select the number of CPUs that are used for RSS to avoid a situation where using
RSS leaves less processing power for applications to use and does not improve network
throughput.

The PowerShell cmdlet for setting the number of RSS CPUs is Set-NetAdapterRss.

The primary difference between using Set-NetAdapterRss and using the
MaxNumRssCpus registry keyword is that PowerShell cmdlets operate on a per-
Network Adapter basis while MaxNumRssCpus is global, meaning it applies to all
Network Adapters. Generally, working with each Network Adapter separately is
recommended because it offers more flexibility, granularity, and understandability in
giving each Network Adapter its own configuration. However, administrators might still
use the global MaxNumRssCpus key if they would like to apply a configuration to all
current and all future Network Adapters at the same time.

For a complete list of Network Adapter cmdlets, see Network Adapter Cmdlets in
Windows PowerShell.

In Microsoft Windows Server 2003 with the Scalable Networking Pack, administrators
can set the maximum number of RSS CPUs with the MaxNumRssCpus registry keyword
in HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters.
The MaxNumRssCpus value is a DWORD type and, if it is not present, NDIS uses the
default value of 4.

７ Note

Starting in Windows 8 and Windows Server 2012, administrators can control many
aspects of Network Adapters by using PowerShell cmdlets. Directly editing the
registry is now discouraged.

https://learn.microsoft.com/en-us/powershell/module/netadapter/Set-NetAdapterRss
https://learn.microsoft.com/en-us/powershell/module/netadapter/
https://learn.microsoft.com/en-us/powershell/module/netadapter/

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

In Windows Server 2008, administrators can set the maximum number of RSS CPUs with
the MaxNumRssCpus registry keyword in
HKEY_LOCAL_MACHINE\\SYSTEM\CurrentControlSet\Services\Ndis\Parameters. The
MaxNumRssCpus value is a DWORD type and, if it is not present, NDIS uses the default
value of 4. This registry keyword also applies to later versions of Windows Server.

To avoid complicated cases (and unrealistic cases that are not implemented in actual
hardware) where the number of available hardware receive queues is less than the
number of RSS CPUs, administrators must not set the MaxNumRssCpus value to a value
that is greater than 16.

The actual number of CPUs that are used for RSS is also limited by the total number of
core processors that remain after the RSS base CPU number has been configured. For
example, if the administrator sets the maximum number of RSS CPUs on a quad-core
computer system to 6, the networking driver stack uses, at most, 4 CPUs for RSS. If the
administrator also sets the RSS base CPU number to 1, the networking driver stack uses
at most 3 CPUs (CPU numbers 1, 2, and 3).

The number of CPUs that the computer uses for RSS is static and does not change at
run time. Therefore, any changes to the MaxNumRssCpus registry value require a restart
to take effect.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Standardized INF Keywords for RSS
Article • 09/27/2024

The RSS interface supports standardized INF keywords that appear in the registry and are specified
in INF files.

The following list shows the enumeration standardized INF keywords for RSS:

*RSS
Enable or disable support for RSS for miniport adapters.

*RSSProfile
The processor selection and load-balancing profile.

Note: Changes to the *RSSProfile setting require an adapter restart.

Note: If *RSSProfile is set to NdisRssProfileBalanced, you can't configure advanced keywords such
as *RssBaseProcNumber, *RssBaseProcGroup, *RssMaxProcNumber, *RssMaxProcGroup, or
*NumaNodeId. You can configure *MaxRssProcessors and *NumRSSQueues.

NDIS 6.30 added support for *RSSProfile.

Enumeration standardized INF keywords have the following attributes:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the registry.

ParamDesc
The display text that is associated with SubkeyName.

Value
The enumeration integer value that is associated with each option in the list. This value is stored in
NDI\params\ SubkeyName\Value. EnumDesc
The display text that is associated with each value that appears in the menu.

Default
The default value for the menu.

The following table describes the possible INF entries for the RSS enumeration keywords.

SubkeyName ParamDesc Value EnumDesc

*RSS Receive Side
Scaling

0 Disabled

1 (Default) Enabled

*RSSProfile RSS load
balancing

1 ClosestProcessor: Default behavior is consistent with
that of Windows Server 2008 R2.

ﾉ Expand table

SubkeyName ParamDesc Value EnumDesc

profile

2 ClosestProcessorStatic: No dynamic load-balancing -
Distribute but don't load-balance at runtime.

3 NUMAScaling: Assign RSS CPUs in a round robin
basis across every NUMA node to enable applications
that are running on NUMA servers to scale well.

4 (Default) NUMAScalingStatic: RSS processor selection is the
same as for NUMA scalability without dynamic load-
balancing.

5 ConservativeScaling: RSS uses as few processors as
possible to sustain the load. This option helps reduce
the number of interrupts.

6 (Default on
heterogeneous CPU
systems)

NdisRssProfileBalanced: RSS processor selection is
based on traffic workload. Only available in
NetAdapterCx, starting in WDK preview version
25197.

The following list shows the standardized INF keywords for RSS that can be edited:

*RssBaseProcGroup
The number of the processor group for the processor number that is specified in the
*RssBaseProcNumber keyword.

*NumaNodeId
The preferred NUMA node that is used for the memory allocations of the network adapter. Also, the
operating system attempts to use the CPUs from the preferred NUMA node first for RSS.

A driver for a PCI expansion card should not specify the NUMA node ID statically in its INF, since the
closest node depends on which PCI slot the card is plugged into. Only specify *NumaNodeId if the
network adapter is integrated into the system, the NUMA node is known in advance, and the node
cannot be determined at runtime by querying ACPI.

Note: If this keyword is present and its value is less than the number of NUMA nodes in the
computer, NDIS uses this value in the PreferredNumaNode member in the
NDIS_RSS_PROCESSOR_INFO structure.

Note: In Windows 8 the *NumaNodeId value is ignored if the NIC RSS profile is set to
NUMAScaling(2) or NUMAScalingStatic(3).

*RssBaseProcNumber
The number of the base RSS processor in the specified group.

*MaxRssProcessors
The maximum number of RSS processors.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/netadaptercx-receive-side-scaling-rss-
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_processor_info

*RssMaxProcNumber
The maximum processor number of the RSS interface. If *RssMaxProcNumber is specified, then
*RssMaxProcGroup should also be specified.

*NumRSSQueues
The number of RSS queues.

*RssMaxProcGroup The maximum processor group of the RSS interface.

*RssBaseProcGroup together with *RssBaseProcNumber form a PROCESSOR_NUMBER structure
that identifies the smallest processor number that can be used with RSS. *RssMaxProcGroup
together with *RssMaxProcNumber form a PROCESSOR_NUMBER structure that identifies the
maximum processor number that can be used with RSS.

For example, suppose *RssBaseProcGroup is set to 1, *RssBaseProcNumber is set to 16,
*RssMaxProcGroup is set to 3, and *RssMaxProcNumber is set to 8. Using <group>:<processor>
notation, the base processor is 1:16 and the max processor is 3:8. Then processors 0:0, 0:32, 1:0, and
1:15 will not be considered candidates for RSS, because they are below the base processor number.
Processors 1:16, 1:31, 2:0, 2:63, 3:0, and 3:8 will all be considered candidates for RSS, because they
fall in the range 1:16 through 3:8. Processors 3:9, 3:31, and 4:0 will not be considered candidates for
RSS, because they are beyond the maximum processor number.

NDIS 6.20 added support for the *RssBaseProcGroup, *NumaNodeId, *RssBaseProcNumber, and
*MaxRssProcessors keywords.

NDIS 6.30 added support for the *RssMaxProcNumber, and *NumRSSQueues keywords.

Standardized INF keywords that can be edited have the following attributes:

SubkeyName
The name of the keyword that you must specify in the INF file and that appears in the registry.

ParamDesc
The display text that is associated with SubkeyName.

Type
The type of value that can be edited. The value can be either numeric (Int) or text that can be edited
(Edit).

Default value
The default value for the integer or text. <IHV defined> indicates that the value is associated with
the particular independent hardware vendor (IHV) requirements.

Min
The minimum value that is allowed for an integer. <IHV defined> indicates that the minimum value
is associated with the particular IHV requirements.

Max
The maximum value that is allowed for an integer. <IHV defined> indicates that the minimum value
is associated with the particular IHV requirements.

Feedback

The following table describes all of the RSS keywords that can be edited.

SubkeyName ParamDesc Type Default value Min Max

*RssBaseProcGroup RSS Base
Processor
Group

Int 0 0 MAXIMUM_GROUPS-1

*NumaNodeId Preferred
NUMA
node

Int 65535 (Any node) 0 System specific - cannot
exceed 65535

*RssBaseProcNumber RSS Base
Processor
Number

Int 0 0 MAXIMUM_PROC_PER_GROUP-
1

*MaxRssProcessors Maximum
number of
RSS
Processors

Int 16 1 MAXIMUM_PROC_PER_SYSTEM

*RssMaxProcNumber Maximum
RSS
Processor
Number

Int MAXIMUM_PROC_PER_GROUP-
1 (Default)

0 MAXIMUM_PROC_PER_GROUP-
1

*NumRSSQueues Maximum
Number of
RSS
Queues

Int 16 1 Device-specific

*RSSMaxProcGroup RSS Max
Processor
Group

Int 0 0 MAXIMUM_GROUPS-1

Note: Although the valid range for *RssBaseProcGroup is zero to MAXIMUM_GROUPS-1, in
Windows 7 it must be zero. Otherwise, the TCP/IP protocol will not use any processors for RSS.

Note: The default value for *NumaNodeId (65535) means the network adapter is agnostic to NUMA
node, and NDIS should not attempt to prefer any node over another. If the *NumaNodeId keyword
is not present, then NDIS automatically selects the closest node based on hints from ACPI.

Note: The max value for *MaxRssProcessors may be set to the maximum number of processors that
the NIC can support. NDIS will automatically cap this value to be the maximum number of
processors on the current system.

For more information about standardized INF keywords, see Standardized INF Keywords for
Network Devices.

ﾉ Expand table

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Indicating RSS Receive Data
Article • 12/15/2021

A miniport driver indicates received data by calling the
NdisMIndicateReceiveNetBufferLists function from its MiniportInterruptDPC function.

After the NIC computes the RSS hash value successfully, the driver should store the hash
type, hashing function, and hash value in the NET_BUFFER_LIST structure with the
following macros:

NET_BUFFER_LIST_SET_HASH_TYPE

NET_BUFFER_LIST_SET_HASH_FUNCTION

NET_BUFFER_LIST_SET_HASH_VALUE

The hash type identifies the area of the received packet that the hash should be
calculated over. For more information about the hash type, see RSS Hashing Types. The
hashing function identifies the function that is used to calculate the hash value. For
more information about hashing functions, see RSS Hashing Functions. The protocol
driver selects the hash type and function at initialization. For more information, see RSS
Configuration.

If the NIC fails to identify the area of the packet that the hash type specifies, then it
should not do any hash computation or scaling. In this case, the miniport driver or NIC
should assign the received data to the default CPU.

If the NIC runs out of receive buffers, each buffer must be returned as soon as the
original receive DPC returns. The miniport driver can indicate the received data with a
status of NDIS_STATUS_RESOURCES. In this case, the overlying driver has to go through
a slow path of copying the buffer descriptors and relinquishing ownership of the original
one immediately.

For more information about receiving network data, see Receiving Network Data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_interrupt_dpc
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblhash/nf-nblhash-net_buffer_list_set_hash_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblhash/nf-nblhash-net_buffer_list_set_hash_function
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblhash/nf-nblhash-net_buffer_list_set_hash_value

Supporting RSS in Intermediate Drivers
or Filter Drivers
Article • 12/15/2021

All intermediate drivers and filter drivers should, at a minimum, pass on OID requests,
other requests, and status indications. Intermediate drivers or filter drivers should
provide additional driver-specific support for receive side scaling (RSS) if the driver does
any of the following:

Originates send requests.

Originates receive indications.

Queues send requests or receive indications for later processing.

Filter drivers that bypass send and receive processing do not have to do anything
additional to support RSS. For more information about bypassing send or receive
requests in a filter driver, see Data Bypass Mode.

A QoS scheduler is an example of a filter driver that should support RSS. Such a driver
queues send packets for sending at an appropriate time. The filter driver should use the
same CPU that the protocol driver uses for a given connection.

An intermediate driver or filter driver that does not support RSS can intercept the RSS
OID requests and disable RSS by reporting that RSS is not supported.

A filter driver or intermediate driver that supports RSS can use the information from the
RSS OIDs to assign connections to the same CPUs the protocol driver and miniport
driver are using.

For more information about the RSS OIDs, see RSS Configuration.

Overview of Virtual Machine Multiple
Queues (VMMQ)
Article • 03/14/2023

Virtual Machine Multiple Queues (VMMQ) is a NIC offload technology that extends
Native RSS (RSSv1) to a Hyper-V virtual environment.

VMMQ provides scalable network traffic processing for virtual ports (VPorts) in the
parent partition of a virtualized node. A VPort represents an internal port on the NIC
switch of a network adapter that supports single root I/O virtualization (SR-IOV). For an
overview of the SR-IOV interface and its components see SR-IOV Architecture.
Previously, RSS processing was not available for VPorts. VMMQ extends the native RSS
feature to VPorts that are associated with the physical function (PF) of a NIC, including
the default VPort.

VMMQ works by efficiently distributing network traffic within the NIC hardware. You can
assign multiple hardware queues from the NIC to a single PF VPort. The NIC distributes
network traffic across these queues using RSS hashing, placing packets directly onto the
assigned processor. Offloading traffic distribution to the NIC improves CPU performance
because the software doesn't have to complete this task.

You may want to enable the VMMQ feature to reduce the host CPU consumption and
enable higher throughput to the virtual system by spreading the CPU load across
multiple processors. You can add VMMQ support to new or existing NDIS 6.60 and later
drivers. If an adapter supports VMMQ, the driver is vendor-supplied, and the OS is
Windows Server 2019, then VMMQ is enabled by default. If the adapter doesn’t support
VMMQ, the driver is system-supplied, or the OS is Windows Server 2016, then VMMQ is
disabled by default or not available. If the OS is earlier than Windows Server 2016 then
VMMQ is not available.

VMMQ is available for the VPorts exposed in the parent partition regardless of whether
the NIC is operating in SR-IOV or Virtual Machine Queue (VMQ) mode.

Network Virtualization using Generic Routing Encapsulation (NVGRE) and Virtual
Extensive Local Area Network (VXLAN): The NIC will calculate the hash for
spreading receive queues based on the inner headers of the packets.

SR-IOV: The NIC can support VMMQ and SR-IOV simultaneously.

Expected feature interactions

https://learn.microsoft.com/en-us/windows-server/networking/sdn/technologies/hyper-v-network-virtualization/whats-new-hyperv-network-virtualization-windows-server#VXLAN

VMMQ send and receive processing

Advertising VMMQ capabilities

Standardized INF keywords for VMMQ

Allocating VPorts for VMMQ

Enabling, disabling, and updating VMMQ on a VPort

In this section

VMMQ send and receive processing
Article • 03/14/2023

Virtual Machine Multiple Queues (VMMQ) efficiently distributes the network traffic for
physical function virtual ports (PF VPorts) using RSS processing. For more information
on the single root I/O virtualization (SR-IOV) interface and its components, see SR-IOV
Architecture.

The following figure shows the network packet receive path within the VMMQ interface.

On the receive path, when a packet arrives at a NIC that supports VMMQ the NIC:

1. Matches the destination MAC address to find the target VPort.

2. Uses the RSS parameters of the VPort (the secret key, hash function, and hash
type) to calculate the RSS hash value of the packet.

3. Uses the hash value to index the indirection table associated with the VPort. The
values in the indirection table are used to assign the received data to a processor.

4. Interrupts the target processor and the received packet is indicated to the host
network stack.

When indicating a received NBL, the miniport adapter sets the VPort ID and RSS related
out-of-band (OOB) fields to the appropriate values.

On the transmit path, the NIC must use the RSS hash value in the packet (if present) as
an index into the RSS indirection table for the VPort. The NIC uses this indirection table
value to determine the processor that handles the transmit complete interrupts and
DPCs for the packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters

If the NIC cannot calculate the RSS hash value of a received packet or the RSS hash
value is not present in a transmit packet, it should use the default RSS processor of the
VPort as the target RSS processor. The default RSS processor for a VPort will be specified
in the RSS parameters for the VPort. For more information, see Enabling, disabling, and
updating VMMQ on a VPort.

The host networking stack can update the RSS parameters of a VPort dynamically at
runtime. The NIC should respond to the changes in the RSS parameters of a VPort with
minimal interruption in traffic to and from the VPort.

Advertising VMMQ capabilities
Article • 03/14/2023

Miniport drivers register the Virtual Machine Multiple Queues (VMMQ) capability of a
NIC during miniport adapter initialization.

During initialization, the miniport driver must examine the *RssOnHostVPorts INF
keyword in order to determine if it should enable the VMMQ feature on the NIC. For
more information on handling RSS keywords for VMMQ, see Standardized INF keywords
for VMMQ.

Additionally, the stack can only activate VMMQ on the NIC if the miniport adapter
supports creating a NIC switch. NDIS can create a NIC switch on the miniport adapter
when either the *SriovPreferred INF keyword is set to one or *SriovPreferred is set to
zero and *RssOrVmqPreference is set to one. For more information, see Standardized
INF Keywords for SR-IOV and Standardized INF Keywords for VMQ.

When the miniport driver configures the parameters for the NIC switch, it must set the
fields of the NDIS_NIC_SWITCH_PARAMETERS structure as follows:

1. Set the Revision member of Header to
NDIS_NIC_SWITCH_PARAMETERS_REVISION_2.

2. Set NumQueuePairsForDefaultVPort to the number of queue pairs assigned to a
default VPort.

Miniport drivers advertise the NIC's VMMQ capability through the
NDIS_NIC_SWITCH_CAPABILITIES structure. The miniport driver must initialize
NDIS_NIC_SWITCH_CAPABILITIES as follows:

1. Set the Revision member of Header to
NDIS_NIC_SWITCH_CAPABILITIES_REVISION_3.

2. Set the NicSwitchCapabilities flags as follows:

Set NDIS_NIC_SWITCH_CAPS_SINGLE_VPORT_POOL to one to indicate that
non-default VPorts can be created on the PF. This flag must be set.

７ Note

If the NIC supports VMMQ, the default VPort and at least one non-default VPort
must support VMMQ.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

Set
NDIS_NIC_SWITCH_CAPS_ASYMMETRIC_QUEUE_PAIRS_FOR_NONDEFAULT_V
PORT_SUPPORTED to indicate that NDIS can allocate an arbitrary number of
VMMQ queues on each VPort. Otherwise, all non-default VPorts have the
same maximum number of VMMQ queues as the
MaxNumQueuePairsPerNonDefaultVPort field defines.

Set NDIS_NIC_SWITCH_CAPS_RSS_ON_PF_VPORTS_SUPPORTED to one to
indicate that the NIC supports VMMQ for PF VPorts.

Set
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_INDIRECTION_TABLE_SUPPORTED
to one to indicate that the NIC is able to maintain per PF VPort indirection
tables. This flag must be set.

Set
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_FUNCTION_SUPPORTED
to one if the NIC supports setting a different hash function per PF VPort.

Set NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_TYPE_SUPPORTED
to one if the NIC supports setting a different hash type per PF VPort.

Set NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_KEY_SUPPORTED to
one if the NIC supports setting a different hash secret key per PF VPort.

７ Note

If any of the following four per PF VPort flags are not set, higher level drivers
will use the values that are specified when the RSS parameters of the PF
VPorts are set (including the default VPort). For more information see
Enabling, disabling, and updating VMMQ on a VPort.

７ Note

The following three flags
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_FUNCTION_SUPPORTED,
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_TYPE_SUPPORTED, and
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_HASH_KEY_SUPPORTED must
all be set to zero or all be set to one. If they're all set to zero, software will re-
calculate the hash.

Set
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_INDIRECTION_TABLE_SIZE_RES
TRICTED to one if the NIC has a limitation on indirection table size for PF
VPorts. This flag forces the issuer of an RSS OID to use a per-PF VPort
indirection table size equal to the number of VPort queues rounded up to the
next power of two. This flag can be combined with the
NDIS_NIC_SWITCH_CAPS_ASYMMETRIC_QUEUE_PAIRS_FOR_NONDEFAULT_V
PORT_SUPPORTED flag (different PF VPorts can have different numbers of
queues). This flag prevents VMMQ users from performing fine-grained queue
steering.

3. Set MaxNumVPorts to specify the maximum number of VPorts.

4. Set MaxNumQueuePairs to specify the maximum number of queue pairs that can
be assigned to all VPorts. This includes the default VPort that is attached to the PF.
This number should reflect the actual hardware capabilities.

5. Set MaxNumQueuePairsPerNonDefaultVPort to specify the maximum number of
queue pairs that can be assigned to a non-default VPort.

6. Set MaxNumRssCapableNonDefaultPFVPorts to specify the maximum number of
non-default PF VPorts that can support VMMQ.

7. Set NumberOfIndirectionTableEntriesForDefaultVPort to specify the number of
indirection table entries for the default VPort.

8. Set NumberOfIndirectionTableEntriesPerNonDefaultPFVPort to specify the
number of indirection table entries for each non-default PF VPort. The size of
indirection table should be the same for all non-default PF VPorts.

9. Set MaxNumQueuePairsForDefaultVPort to specify the maximum number of
queue pairs that can be assigned to a default VPort during NIC Switch creation.

After the VMMQ capabilities are advertised, NDIS is responsible for handling the
OID_GEN_RECEIVE_SCALE_CAPABILITIES OID when it is called on either the default VPort
or a non-default VPort. When the miniport driver returns the RSS capabilities in the
NDIS_RECEIVE_SCALE_CAPABILITIES structure, it should not constrain the
NumberOfInterruptMessages fields by any of the standard RSS keywords (such as
*MaxRssProcessors). The upper level driver will incorporate this number into the host
CPU allocation algorithm.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

Standardized INF keywords for VMMQ
Article • 05/29/2024

The *RssOnHostVPorts standardized INF keyword is defined to enable or disable
support for the network adapter Virtual Machine Multiple Queues (VMMQ) feature.

The *RssOnHostVPorts INF keyword is an enumeration keyword. Enumeration
standardized INF keywords have the following attributes:

SubkeyName: The name of the keyword that you must specify in the INF file.

ParamDesc: The display text that is associated with the SubkeyName.

Value: The enumeration integer value that is associated with each SubkeyName in the
list.

EnumDesc: The display text that is associated with each value that appears in the menu.

Default: The default value for the menu.

The following table describes the possible INF entries for the *RssOnHostVPorts INF
keyword.

SubkeyName ParamDesc Value EnumDesc

*RssOnHostVPorts Virtual Switch RSS 0 Disabled

1 (Default) Enabled

During miniport adapter initialization, the miniport driver must examine the
*RssOnHostVPorts keyword to determine if it should enable the VMMQ feature on the
NIC.

If a NIC supports VMMQ, all Standardized INF Keywords for RSS should also be
supported to provide future compatibility even if the OS does not currently use them all.
You should use the keywords as normal for RSS functionality except for:

*RSSProfile: The “ClosestProcessor” profile should be supported and used as a
policy for VMMQ.

ﾉ Expand table

Handling RSS INF keywords for VMMQ

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

*MaxRssProcessors: When VMMQ is active, this keyword should not restrict the
number of MSIx interrupt messages reported in
NDIS_RECEIVE_SCALE_CAPABILITIES.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

Allocating VPorts for VMMQ
Article • 03/14/2023

NDIS allocates VPorts when the Virtual Machine Multiple Queues (VMMQ) capability is
present in the following way.

NDIS creates a non-default VPort on the miniport adapter by issuing the
OID_NIC_SWITCH_CREATE_VPORT OID request. When creating an RSS physical function
(PF) VPort, NDIS will initialize the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure as
follows:

NDIS sets the AttachedFunctionId field to NDIS_PF_FUNCTION_ID.

If VMMQ is enabled, NDIS sets the NumQueuePairs field to the number of VMMQ
queue pairs that should be used for this VPort. This number includes the default
RSS processor for this VPort. It is guaranteed that total number of processors will
not exceed this number. If VMMQ is disabled, NDIS sets this value to one.

If VMMQ is enabled, the ProcessorAffinity field defines a bitmask of the potential
RSS processors that the miniport adapter must use for this VPort. The processors
that the network stack used to populate the indirection table entries for the VPort
are a subset of the processors that this bitmask identifies. The mask will be a
subset of the RSS processors returned from the call to
NdisGetRssProcessorInformation and the number of set bits might exceed the
number of RSS queues requested for the VPort. If VMMQ is disabled, the miniport
adapter must use the lowest processor number specified in this bitmask when
setting the affinity of the VPort queue.

NDIS sets the NDIS_NIC_SWITCH_VPORT_PARAMS_NUM_QUEUE_PAIRS_CHANGED
flag to indicate that the NumQueuePairs member has been updated after the
VPort has been created. When VMMQ is enabled, the number of queues for
default and non-default VPorts can be updated.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetrssprocessorinformation

Enabling, disabling, and updating
VMMQ on a VPort
Article • 03/14/2023

After creating a VPort, an upper layer driver can enable, disable, or update the RSS
parameters of the VPort.

The driver can update the RSS indirection table of the VPort in order to change the
number queues for a VPort. However the RSS hash type, hash function, and hash secret
key of a VPort are considered static parameters and are not changed by the overlying
drivers during the lifetime of a VPort. If an upper layer driver wishes to change any of
the RSS static parameters, it must delete and recreate the VPort.

The upper layer driver enables, disables, or changes the RSS parameters of a VPort by
issuing an OID_GEN_RECEIVE_SCALE_PARAMETERS OID request. The upper layer driver
sets the VPortId field in the NDIS_OID_REQUEST structure to the ID of the target VPort
of the new configuration.

The upper layer driver also sets the NDIS_RECEIVE_SCALE_PARAMETERS structure used
in the OID request as follows. Please note that based on the VMMQ capabilities
advertised by the underlying miniport adapter, some of the fields may be set to the
same value for all PF VPorts.

Set the Revision member of Header to
NDIS_RECEIVE_SCALE_PARAMETERS_REVISION_3.

Set the NDIS_RSS_PARAM_FLAG_DEFAULT_PROCESSOR_UNCHANGED flag to
specify that the DefaultProcessorNumber member has not changed.

Set BaseCpuNumber to zero.

Set DefaultProcessorNumber to specify the default RSS processor for this VPort.
The miniport can assume that default processor is part of RSS processor list, but it
cannot assume that the default RSS processor is in the current indirection table.

Set HashInformation to indicate the hash type and hash function that the NIC
should use to calculate the hash value of the packets received for this VPort. The
upper layer driver may set this field to a different value for each VPort.

Set IndirectionTableSize to specify the size of the indirection table in bytes. Set
this field to the same value for all PF VPorts. The upper layer driver must ensure
that the number of entries in the indirection table is a power of two.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters

Set IndirectionTableOffset to specify the offset of the indirection table from the
beginning of the NDIS_RECEIVE_SCALE_PARAMETERS structure.

Set HashSecretKeySize to specify the size of the hash secret key in bytes. The
upper layer driver may set a different secret key for each VPort if the miniport
adapter supports this. For more information, see Advertising VMMQ capabilities.

Set HashSecretKeyOffset to specify the offset of the hash secret key from the
beginning of the NDIS_RECEIVE_SCALE_PARAMETERS structure. The upper layer
driver may set a different secret key for each VPort if the miniport adapter
supports this. For more information, see Advertising VMMQ capabilities.

Set ProcessorMaskOffset, NumberOfProcessorMasks, and
ProcessorMasksEntrySize appropriately.

When a miniport driver receives an OID request to disable VMMQ for a VPort, it should
revert to indicating all packets received for that VPort on the processor specified by the
ProcessorAffinity field in the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure that
was used in the OID_NIC_SWITCH_CREATE_VPORT OID request.

The number of unique processors used in the indirection table of a VPort cannot exceed
the value of the NumQueuePairs field of the NDIS_NIC_SWITCH_VPORT_PARAMETERS
structure specified in the last issued OID_NIC_SWITCH_CREATE_VPORT OID request.
These processors will be a subset of the RSS processor set returned by a call to
NdisGetRssProcessorInformation. For more information, see Allocating VPorts for
VMMQ. However, the indirection tables on different VPorts could contain the same
processor.

To decrease the number of queues for a PF VPort an upper layer driver must:

1. Send an OID_GEN_RECEIVE_SCALE_PARAMETERS OID with the original indirection
table size. However, the indirection table at this step can only reference the
number of distinct processors up to the new number of queues. If the new
indirection table needs to be smaller than the original table due to the
NDIS_NIC_SWITCH_CAPS_RSS_PER_PF_VPORT_INDIRECTION_TABLE_SIZE_RESTRICT
ED flag of the NDIS_NIC_SWITCH_PARAMETERS structure, the issuer must
guarantee that the indirection table at this step will contain the new indirection
table replicated as many times as needed to satisfy the RESTRICTED flag
requirement for the original number of queues.

2. Send an OID_NIC_SWITCH_VPORT_PARAMETERS OID with new number of queues.

Changing the number of queues for a VPort

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetrssprocessorinformation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

3. Send an OID_GEN_RECEIVE_SCALE_PARAMETERS with the new indirection table
size if it has changed.

To increase the number of queues for a PF VPort an upper layer driver must:

1. The driver doesn't need to update the current indirection table before step 2
because the table only references the number of distinct processors up to the
current number of queues.

2. Send an OID_NIC_SWITCH_VPORT_PARAMETERS OID with new number of queues.
If the RESTRICTED flag is set, the miniport driver should internally replicate the
original indirection table as many times as needed to match the indirection table
size requirement for the new number of queues.

3. Send an OID_GEN_RECEIVE_SCALE_PARAMETERS OID with new indirection table
size if it has changed.

TCP/IP Offload Overview
Article • 12/15/2021

To increase its performance, the Microsoft TCP/IP transport can offload tasks or
connections to a NIC that has the appropriate TCP/IP-offload capabilities.

Beginning with Windows Vista, the Windows operating system supports the following
TCP/IP offload services:

Checksum tasks

Applications Internet protocol security (IPsec) offload version 1

IPsec offload version 2
[The IPsec Task Offload feature is deprecated and should not be used.]

Large send offload version 1

Large send offload version 2

Connection offload

Starting in Windows 10, version 2004, Windows also supports UDP Segmentation
Offload (USO).

The TCP/IP transport that is provided beginning with Windows Vista supports TCP/IP
offload services for both IPv4 and IPv6 packets.

NDIS 6.0 and later miniport drivers support TCP/IP offload services in a multiple-
protocol driver environment. Multiple NDIS 6.0 and later protocol drivers that are bound
to a TCP/IP offload-capable miniport adapter can configure TCP/IP offload services.

This section includes:

Accessing TCP/IP Offload NET_BUFFER_LIST Information
Using the TCP/IP Offload Administrator Interface
Security Guidelines for Offload-Capable Miniport Drivers
TCP/IP Task Offload
Connection Offload

Accessing TCP/IP Offload
NET_BUFFER_LIST Information
Article • 12/15/2021

NDIS versions 6.0 and later provide TCP/IP offload out-of-band (OOB) data in the
NetBufferListInfo member of the NET_BUFFER_LIST structure, which specifies a linked
list of NET_BUFFER structures. The NetBufferListInfo member is an array of values that
contain information that is common to all of the NET_BUFFER structures in the list.

Use the following identifiers with the NET_BUFFER_LIST_INFO macro to set and get the
TCP/IP offload OOB data in the NetBufferListInfo array:

TcpIpChecksumNetBufferListInfo
Specifies checksum information that is used in offloading checksum tasks from the
TCP/IP protocol to a miniport driver. When you specify
TcpIpChecksumNetBufferListInfo, NET_BUFFER_LIST_INFO returns an
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure (not a pointer to the
structure). This structure contains a union that enables the checksum information to be
accessed as a single PVOID value or as bit fields.

IPsecOffloadV1NetBufferListInfo
Specifies Internet protocol security (IPsec) offload information that is used in offloading
IPsec tasks from the TCP/IP protocol to a miniport driver. When you specify
IPsecOffloadV1NetBufferListInfo, NET_BUFFER_LIST_INFO returns an
NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure.

TcpLargeSendNetBufferListInfo
Specifies information that is used in offloading the segmentation of a large TCP packet
from the TCP/IP protocol to a miniport driver. When you specify
TcpLargeSendNetBufferListInfo, NET_BUFFER_LIST_INFO returns an
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structure (not a pointer to
the structure). This structure contains a union that enables the information to be
accessed as a single PVOID value or as bit fields.

Ieee8021QNetBufferListInfo
Specifies 802.1Q information about a packet. When you specify
Ieee8021QNetBufferListInfo, NET_BUFFER_LIST_INFO returns the Value member of an
NDIS_NET_BUFFER_LIST_8021Q_INFO structure. This structure can specify 802.1p
priority and virtual LAN (VLAN) identifier information. 802.1p priority information is used
to establish packet priority in shared-media 802 networks.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v1_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info

If a miniport driver reports support for the
NDIS_ENCAPSULATION_IEEE_802_3_P_AND_Q_IN_OOB encapsulation, it must insert the
Ieee8021QNetBufferListInfo data into large send offload version 1 (LSOV1) and large
send offload version 2 (LSOV2) Ethernet packets.

TcpOffloadBytesTransferred
Specifies the number of data bytes that were transferred in a TCP chimney offload send,
receive, or disconnect operation.

TcpReceiveNoPush
Specifies a Boolean value that represents the push mode of a TCP chimney offload
receive request. If TRUE, the receive request is in non-push mode. Otherwise, the receive
request is in push mode.

For LSOV1, LSOV2, checksum, and IPsec offload types, a miniport driver performs task
offload based on the type of OOB data and the offload capabilities that it reported. For
example, if a protocol driver requires LSOV1 services for an IPv4 packet, each send
request that the protocol driver provides includes the information from the
LsoV1Transmit member in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO OOB data. Note that the
protocol driver must verify that the miniport driver supports IPv4, with the specified
encapsulation type, before making the send request.

The NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structure contains the
maximum segment size (MSS). The TcpHeaderOffset member specifies the location of
the TCP header so that the miniport driver does not have to parse IP headers, IP options,
or IP extension headers.

An NDIS 6.0 and later miniport driver that supports LSOV2 and LSOV1 must check the
Type member of NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO to
determine whether the driver stack is using LSOV2 or LSOV1 and must perform the
appropriate offload.

For LSOv1, before a miniport driver completes the send of a large TCP packet that it has
segmented into smaller packets by using LSO, the driver writes the number of TCP
payload bytes that it sent in the segmented packets in the TcpPayload member of
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO.

If a miniport driver specifies the NDIS_ENCAPSULATION_IEEE_802_3_P_AND_Q flag in its
capabilities, the driver can perform task offload services for NET_BUFFER_LIST structures
that contain the VLAN header in the buffer data. In the case of received data, this flag
indicates that the miniport driver will perform the receive checksum calculation and put
the VLAN header in the Ethernet packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

If a miniport driver specifies the NDIS_ENCAPSULATION_IEEE_802_3_P_AND_Q_IN_OOB
flag in its capabilities, the driver can perform offload on NET_BUFFER_LIST structures
that contain the VLAN header in the Ieee8021QnetBufferListInfo OOB data. In the
receive checksum offload case, the miniport inserts the VLAN header into the
Ieee8021QnetBufferListInfo OOB data.

Using the TCP/IP Offload Administrator
Interface
Article • 12/15/2021

In NDIS 6.0 and later versions, user-mode applications (or overlying drivers) can enable
or disable TCP/IP offload capabilities. A system administrator can access the settings
through the Microsoft Windows Management Instrumentation (WMI) interface. There
might also be capabilities that are disabled through registry settings that can be
enabled if they are supported in the hardware.

In response to an OID_TCP_OFFLOAD_PARAMETERS object identifier (OID) set request, a
miniport driver uses the settings in the NDIS_OFFLOAD_PARAMETERS structure to set
the current offload or connection offload configuration of the miniport adapter.

NDIS retains the requested settings in the registry in the offload standardized keywords.
When NDIS restarts the miniport adapter, the miniport driver reads the offload
standardized keywords and uses them to set the default offload configuration of the
NIC. If the miniport driver also supports non-standard keywords, the miniport driver is
responsible for updating the registry when it changes the task offload settings. For more
information about the standardized keywords, see Standardized INF Keywords for
Network Devices.

The miniport drivers must use the contents of the NDIS_OFFLOAD_PARAMETERS
structure to update the currently reported offload configuration. The miniport driver
must report the current configuration with the task offload
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG or connection offload
NDIS_STATUS_OFFLOAD_RESUME status indication. (For information on
NDIS_STATUS_OFFLOAD_RESUME, see NDIS 6.0 TCP chimney offload documentation.)
The status indication ensures that all of the overlying protocol drivers are updated with
the new capabilities information.

Before user-mode applications (or overlying drivers) set
OID_TCP_OFFLOAD_PARAMETERS they can use the
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID or
OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES OID to determine what
capabilities a miniport adapter's hardware can support. Use the
OID_TCP_OFFLOAD_PARAMETERS OID to enable capabilities that the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID or
OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG OID reports as not currently
enabled.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

If the hardware capabilities change (for example, because a MUX intermediate driver
switches to a difference underlying miniport adapter), the intermediate driver must
report any changes in offload hardware capabilities with the
NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES or
NDIS_STATUS_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES status
indication.

NDIS and overlying drivers can use the OID_OFFLOAD_ENCAPSULATION OID to set or
query the task offload encapsulation settings of an underlying miniport adapter. The
InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_OFFLOAD_ENCAPSULATION structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation

Security Guidelines for Offload-Capable
Miniport Drivers Overview
Article • 12/15/2021

To increase its performance, the Microsoft TCP/IP transport can offload tasks or
connections to a network interface card (NIC) that has the appropriate TCP/IP-offload
capabilities. Offloaded TCP/IP network communication tasks are handled in the NIC
hardware. Miniport drivers advertise the various offload capabilities of the NIC hardware
to the operating system and confugure the NIC hardware. The NIC hardware performs
the advertised offload tasks on outgoing and incoming packets in the send and receive
dispatch handlers. The hardware performs operations such as computing IP header
checksum and so on.

To ensure a secure environment, the miniport driver should advertise only those offload
capabilities that the NIC hardware can provide and no others. The miniport driver should
configure the hardware to offload the advertised tasks on the packets that meet the
advertised criteria. On the send path, the operating system does not require a driver to
offload a task that the miniport driver did not advertise. On the receive path, the
miniport driver and NIC should not perform any tasks that are not included in the
capabilities of the NIC hardware that the miniport driver advertised.

If a miniport driver or NIC cannot perform an offload task on a received packet, the
miniport driver should indicate such a packet up the driver stack without taking any
action. In this case, the overlying drivers handle the packet as a normal packet.

The miniport driver should never advertise capabilities that the NIC hardware does not
support. The miniport driver should never use the send or receive dispatch handlers to
perform software emulation of the offload operations that the hardware cannot provide.
If the miniport driver provides such software emulation, the driver must inspect the
packet data in software. If the driver inspects the packet data in software, the computer
might be exposed to security attacks.

The following topics provide more information about security attacks and how to avoid
security problems in NDIS drivers:

Vulnerability to Security Attacks in NDIS Drivers

Performance Degradation and Denial of Service Attacks in NDIS Drivers

Added Costs for Testing Vulnerable NDIS Drivers

Security Checklist for NDIS Drivers

Vulnerability to Security Attacks in NDIS
Drivers
Article • 03/14/2023

If an NDIS driver parses and interprets packet data, the driver and the operating system
might be vulnerable to security attacks. Some of these attacks could be started remotely
and cause serious problems, including crashing the computer.

For example, consider a network interface card (NIC) that can support IPv4 checksum
offload but cannot support IPv6 checksum offload. However, the miniport driver
advertises that the NIC can provide IPv6 checksum offload. When the NIC receives IPv4
packets, the NIC hardware computes and verifies the checksum and puts the results in
the NET_BUFFER_LIST structure out-of-band (OOB) information. If the NIC receives an
IPv6 packet with IPv6 extension, the miniport driver computes and verifies the checksum
in the receive interrupt handler. In the IPv6 case, it appears to the operating system that
the NIC is performing IPv6 offload. However, the interrupt handler would have to parse
the received packet and would have to check for error conditions and guard against bad
information in the IP header fields in a manner at least as good as the hardware. Such a
software implementation must be very robust or it could crash the computer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Performance Degradation and Denial of
Service Attacks in NDIS Drivers
Article • 03/14/2023

If an NDIS driver interrupt handler parses received packets, the interrupt handler
implementation might lead to performance degradation and denial of service attacks.
For example, a malicious user can target the computer by sending many packets so that
the miniport driver is busy computing the checksum on bad packets in the interrupt
handler.

Even if you are careful in how your driver handles received packets, the driver would
perform receive operations at dispatch IRQL. Instead, you should let the driver stack
handle the received packets. In this case, the overlying driver stack might copy the
packet and operate on it later at passive IRQL.

Added Costs for Testing Vulnerable
NDIS Drivers
Article • 03/14/2023

We recommend that you remove any code that parses the packet payload, particularly
in handling offload verification, from your driver's packet handling dispatch routines. To
have confidence in such code, you would have to extensively test the drivers to make
sure that all potential error conditions are handled safely and correctly. This kind of
testing means increased testing costs.

Miniport drivers should avoid parsing the packet data. They should not try to handle
offload operations that the hardware cannot handle. In the receive side of the system,
be very careful about how your driver inspects packet payload information. The send
side of the driver could also be potentially affected with routed/bridged system
configurations.

Security Checklist for NDIS Drivers
Article • 03/14/2023

To make sure that your driver follows good security practices, do the following:

If it is possible, avoid code that parses the packet payload information for any
reason. We recommend that you remove any such code, particularly in handling
offload verification, from your driver's packet handling dispatch routines.

Check your driver's send and receive code paths and carefully verify any code that
parses the packet payload information for any reason.

Thoroughly review the driver code for security holes and test your driver before
you release the driver. Make sure that you verify all error paths as well as the
normal code paths.

Run random packet generation tests to make sure that your drivers can resist bad
packet information. In the future, such tests will be mandatory for device logo
certification.

TCP/IP Task Offload Overview
Article • 09/27/2024

To increase its performance, the Microsoft TCP/IP transport can offload tasks to a
network interface card (NIC) that has the appropriate task offload capabilities.

Beginning with Windows Vista, the Windows operating system supports the following
task offload services:

The TCP/IP transport can offload the calculation and validation of IP and TCP checksums.

The TCP/IP transport supports large send offload version 1 (LSOV1). With LSOV1, the
TCP/IP transport can offload the segmentation of large (up to 64 KB including the IP
header) TCP packets for IPv4.

The large send offload version 2 (LSOV2) interface is an enhanced version of LSOV1.
LSOV2 supports IPv6, IPv4, and segmentation for large TCP packets that are larger than
64K. For more information about offloading the segmentation of large packets, see
Offloading the Segmentation of Large TCP Packets.

Beginning with Windows 8 and Windows Server 2012, the Windows operating system
supports the following additional task overload services:

Receive segment coalescing (RSC) enables network card miniport drivers to coalesce
multiple TCP segments and indicate them as a single coalesced unit (SCU) to the
operating system's networking subsystem.

Network Virtualization using Generic Routing Encapsulation (NVGRE) Task Offload
makes it possible to use Generic Routing Encapsulation (GRE)-encapsulated packets

Checksum tasks

Large send offload version 1 (LSOV1)

Large send offload version 2 (LSOV2)

Receive Segment Coalescing (RSC)

Network Virtualization using Generic Routing
Encapsulation (NVGRE) Task Offload

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

with:

Large Send Offload (LSO)
Receive Side Scaling (RSS)
Virtual Machine Queue (VMQ)

Beginning with Windows 10, version 2004, Windows supports UDP Segmentation
Offload (USO). USO enables network cards to offload the segmentation of UDP
datagrams that are larger than the maximum transmission unit (MTU) size of the
network medium.

This section includes:

Determining Task Offload Capabilities
Enabling and Disabling Task Offload Services
Determining the Current Task Offload Settings
Combining Types of Task Offloads
Using Registry Values to Enable and Disable Task Offloading
Offloading Checksum Tasks
Offloading the Segmentation of Large TCP Packets
UDP Segmentation Offload (USO)

UDP Segmentation Offload (USO)

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Determining Task Offload Capabilities
Article • 12/15/2021

NDIS supports task offload services that are enhanced forms of the NDIS 5.1 and earlier
task offload services. For more information about how to determine connection offload
capabilities, see Determining Connection Offload Capabilities.

NDIS provides the offload hardware capabilities and the current configuration of the
underlying miniport adapter to protocol drivers in the NDIS_BIND_PARAMETERS
structure. NDIS provides the task offload hardware capabilities and current configuration
of the underlying miniport adapter to filter drivers in the
NDIS_FILTER_ATTACH_PARAMETERS structure.

Administrative applications use object identifier (OID) queries to obtain task offload
capabilities of a miniport adapter. However, overlying drivers should avoid using OID
queries. Protocol drivers must handle changes in the task offload capabilities that
underlying drivers report. Miniport drivers can report changes in task offload capabilities
in status indications. For a list of status indications, see NDIS 6.0 TCP/IP Offload Status
Indications.

Administrative applications (or overlying drivers) can determine the current task offload
configuration of a network interface card (NIC) by querying the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID.

The NDIS_OFFLOAD structure that is associated with
OID_TCP_OFFLOAD_CURRENT_CONFIG specifies the following:

The header information, which includes the task offload version that the TCP/IP
transport supports.

The checksum offload information, in an NDIS_TCP_IP_CHECKSUM_OFFLOAD
structure.

The large send offload version 1 (LSOV1) information, in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V1 structure.

The Internet protocol security (IPsec) information, in an NDIS_IPSEC_OFFLOAD_V1
structure.

The large send offload version 2 (LSOV2) information, in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V2 structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2

The Internet protocol security (IPsecvOV) information in an
NDIS_IPSEC_OFFLOAD_V2 structure.

The following topics contain specific information for each type of offload service:

Reporting a NIC's Checksum Capabilities
Reporting a NIC's LSOV1 TCP-Packet-Segmentation Capabilities
Reporting a NIC's LSOV2 TCP-Packet-Segmentation Capabilities
Reporting a NIC's IPsec Capabilities

[The IPsec Task Offload feature is deprecated and should not be used.]

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2

Reporting a NIC's Checksum Capabilities
Article • 12/15/2021

An NDIS miniport driver reports whether a NIC is currently configured to calculate and
validate IP, TCP, and UDP checksums in an NDIS_TCP_IP_CHECKSUM_OFFLOAD
structure. Miniport drivers must include the current checksum offload configuration in
the NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure. Miniport drivers call
the NdisMSetMiniportAttributes function from the MiniportInitializeEx function and
pass in the information in NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the current checksum offload configuration, if
any, in the NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication.

In response to a query of OID_TCP_OFFLOAD_CURRENT_CONFIG, NDIS includes the
NDIS_TCP_IP_CHECKSUM_OFFLOAD structure in the NDIS_OFFLOAD structure that NDIS
returns in the InformationBuffer member of the NDIS_OID_REQUEST structure. NDIS
uses the information that the miniport driver provided.

A miniport driver indicates the following checksum information for IPv4 and IPv6 send
and receive packets:

The types of checksums (IP, TCP, or UDP) that a NIC can calculate for send packets
and can validate for receive packets.

Encapsulation settings, in the Encapsulation member. For more information about
this member, see the Remarks section in NDIS_TCP_IP_CHECKSUM_OFFLOAD.

Whether the NIC can calculate or validate (or calculate and validate) checksums for
a packet whose IP headers contain IPv4 options.

Whether the NIC can calculate or validate (or calculate and validate) checksums for
an IPv6 packet whose IP headers contain IPv6 extension headers.

Whether the NIC can calculate or validate (or calculate and validate) checksums for
a packet whose TCP header contain TCP options.

Determining Task Offload Capabilities

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Reporting a NIC's LSOV1 TCP-Packet-
Segmentation Capabilities
Article • 12/15/2021

An NDIS miniport driver specifies the current large send offload version 1 (LSOV1)-TCP-
packet-segmentation configuration of a NIC in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V1 structure.Miniport drivers must include the
current LSOV1 offload configuration in the
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure. Miniport drivers call the
NdisMSetMiniportAttributes function from the MiniportInitializeEx function and pass in
the information in NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the LSOV1 configuration, if any, in the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication.

In response to a query of OID_TCP_OFFLOAD_CURRENT_CONFIG, NDIS includes the
NDIS_TCP_LARGE_SEND_OFFLOAD_V1 structure in the NDIS_OFFLOAD structure that
NDIS returns in the InformationBuffer member of the NDIS_OID_REQUEST structure.
NDIS uses the information that the miniport driver provided.

NDIS supports large send offload version 2 (LSOV2), which is an enhanced version of
LSO. For more information about LSOV2 capabilities, see Reporting a NIC's LSOV2 TCP-
Packet-Segmentation Capabilities.

The miniport driver must specify the following information in the
NDIS_TCP_LARGE_SEND_OFFLOAD_V1 structure:

Encapsulation settings, in the Encapsulation member. For more information about
this member, see the Remarks section in NDIS_TCP_LARGE_SEND_OFFLOAD_V1.

The maximum bytes of user data that the TCP/IP transport can pass to the miniport
driver in a large TCP packet, in the MaxOffLoadSize member. The maximum size
cannot exceed 64K bytes.

The minimum number of segments that a large TCP packet must be divisible by
before the TCP/IP transport can offload it to a NIC for segmentation, in the
MinSegmentCount member.

Whether a NIC can segment a large TCP packet that contains TCP options.

Whether a NIC can segment a large TCP packet that contains IPv4 options.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v1

Determining Task Offload Capabilities

Related topics

Reporting a NIC's LSOV2 TCP-Packet-
Segmentation Capabilities
Article • 12/15/2021

An NDIS miniport driver specifies the current large send offload version 2 (LSOV2) TCP-
packet-segmentation configuration of a NIC in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V2 structure.Miniport drivers must include the
current LSOV2 configuration in the NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES
structure. Miniport drivers call the NdisMSetMiniportAttributes function from the
MiniportInitializeEx function and pass in the information in
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the LSOV2 configuration, if any, in the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication.

In response to a query of OID_TCP_OFFLOAD_CURRENT_CONFIG, NDIS includes the
NDIS_TCP_LARGE_SEND_OFFLOAD_V2 structure in the NDIS_OFFLOAD structure that
NDIS returns in the InformationBuffer member of the NDIS_OID_REQUEST structure.
NDIS uses the information that the miniport driver provided.

We recommend that a miniport driver that supports LSOV2 hardware should also
support LSOV1. This support will enable the TCP/IP transport to use LSOV1 if an NDIS
5.x intermediate driver is installed over a miniport adapter. For more information about
LSOV1 capabilities, see Reporting a NIC's LSOV1 TCP-Packet-Segmentation Capabilities.

LSOV2 supports IPv4 and IPv6 packets. The miniport driver must specify the following
information for both IPv4 and IPv6 in the NDIS_TCP_LARGE_SEND_OFFLOAD_V2
structure:

Encapsulation settings, in the Encapsulation member. For more information about
this member, see the Remarks section in NDIS_TCP_LARGE_SEND_OFFLOAD_V2.

The maximum bytes of user data that the TCP/IP transport can pass to the miniport
driver in a large TCP packet, in the MaxOffLoadSize member.

The minimum number of segments that a large TCP packet must be divisible by
before the TCP/IP transport can offload it to a NIC for segmentation, in the
MinSegmentCount member.

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2

Determining Task Offload Capabilities

Reporting a NIC's IPsec Capabilities
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

An NDIS miniport driver specifies the current Internet protocol security (IPsec) offload
configuration of a NIC in an NDIS_IPSEC_OFFLOAD_V1 structure.Miniport drivers must
include the current IPsec offload configuration in the
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure. Miniport drivers call the
NdisMSetMiniportAttributes function from the MiniportInitializeEx function and pass in
the information in NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the IPsec offload capabilities, if any, in the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication.

In response to a query of OID_TCP_OFFLOAD_CURRENT_CONFIG, NDIS includes the
NDIS_IPSEC_OFFLOAD_V1 structure in the NDIS_OFFLOAD structure that NDIS returns in
the InformationBuffer member of the NDIS_OID_REQUEST structure. NDIS uses the
information that the miniport driver provided.

A miniport driver indicates the following information in the NDIS_IPSEC_OFFLOAD_V1
structure:

Encapsulation settings, in the Encapsulation member. For more information about
this member, see the Remarks section in NDIS_IPSEC_OFFLOAD_V1.

Whether a NIC can perform combined IPsec operations on a packet--that is,
whether the NIC can process a packet that contains both an authentication header
(AH) and an encapsulating security payload (ESP) in a packet with the following
format:

[IP][AH][ESP][rest of packet]

Whether a NIC can perform IP security processing on both the transport-mode
portion and the tunnel-mode portion of send and receive packets. The transport-
mode portion of a packet pertains to an end-to-end security association, and the
tunnel-mode portion of a packet pertains to a tunnel security association.

Whether a NIC can perform IP security operations on packets if the packet's IP
headers contain IP options.

A miniport driver specifies the following capabilities of a NIC to calculate or validate (or
calculate and validate) encrypted checksums for AH payloads and authentication

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1

information:

The integrity algorithms (MD5 or SHA 1) that the NIC can use

Whether the NIC can process AH security payloads for:
The transport-mode portion of a packet
The tunnel-mode portion of a packet
Send packets
Receive packets

A miniport driver specifies the following capabilities of a NIC to process ESP payloads:

The confidentiality algorithms (DES, triple DES, or both) that the NIC can use

Whether the NIC supports null encryption (that is, the ESP payload without
encryption but with authentication hashes)

Whether the NIC can do ESP processing for:
The transport-mode portion of a packet
The tunnel-mode portion of a packet
Send packets
Receive packets

Determining Task Offload Capabilities

Related topics

Enabling and Disabling Task Offload
Services
Article • 12/15/2021

A protocol driver can enable or disable task offload services for an underlying miniport
adapter by issuing an OID_OFFLOAD_ENCAPSULATION OID set request. This OID
request sets the required encapsulation type and tells the miniport driver to activate all
of the available task offload services.

Before issuing the OID_OFFLOAD_ENCAPSULATION OID set request, the protocol driver
should make sure that the underlying miniport adapter supports the required
encapsulation type. There are two ways to do this:

Check the NDIS_BIND_PARAMETERS structure that the protocol driver received in
its ProtocolBindAdapterEx function.
Issue an OID_TCP_OFFLOAD_CURRENT_CONFIG query request.

If the miniport driver supports any task offload type that supports the requested
encapsulation type, the miniport driver must return NDIS_STATUS_SUCCESS in response
to the OID_OFFLOAD_ENCAPSULATION set request. Otherwise, the miniport driver
should return NDIS_STATUS_INVALID_PARAMETER.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

Determining the Current Task Offload
Settings
Article • 12/15/2021

A protocol driver can determine the current task offload encapsulation settings of an
underlying miniport adapter by issuing an OID_OFFLOAD_ENCAPSULATION OID query
request.

For more information about issuing an OID request, see Generating OID Requests from
an NDIS Protocol Driver.

Combining Types of Task Offloads
Article • 12/15/2021

The following restrictions determine which combinations of NDIS 6.0 and later task
offload services can be active on the system:

A task offload-capable miniport adapter can support checksum offload alone.

A large send offload version 1 (LSOV1)-capable network interface card (NIC) must
support V4 TCP and IPv4 checksum transmit offload services. If an LSOV1-capable
miniport adapter also supports Internet protocol security (IPsec) offload, NDIS will
configure the adapter to offload either IPsec or LSOV1, but not both.

A large send offload version 2 (LSOV2)-capable miniport adapter must support TCP
and IP Checksum transmit offload. If a LSOV2-capable miniport adapter also
supports IPsec offload, NDIS will configure it to offload IPsec or LSOV2, but not
both.

Miniport drivers are not required to support both IPv4 and IPv6. All NDIS 6.0 and later
miniport drivers must support Ethernet 802.3 encapsulations with the ability to support
Ethernet 802.1Q tags. The following table describes the hardware requirements when
the miniport driver reports support for various offload capabilities.

Type of offload IPv4 IpV6

Checksum Offload

UDP Checksum Optional Optional

TCP Checksum Optional Optional

TCP Options Optional Required (for TCP Checksum)

IP Checksum Optional Not Applicable

IP Options Required (for TCP checksum) Not Applicable

IP Extension Header Not Applicable Required (128 bytes)

Large Send Offload version 1
(LSOv1)

Max Offload Size <= 64K Not Applicable

TCP Options Required Not Applicable

IP Options Required Not Applicable

Type of offload IPv4 IpV6

Large Send Offload version 2
(LSOv2)

Max Offload Size Unlimited Unlimited

IP Options Required Required (128 bytes)

IP ID Support 0x0000 to 0xffff 0x0000 to 0x7fff reserved for
segmentation offload

Using Registry Values to Enable and
Disable Task Offloading
Article • 09/27/2024

When you debug a driver's task offload functionality, you might find it useful to enable
or disable task offload services with a registry key setting. There are standardized
keywords that you can define in INF files and in the registry. For more information about
standardized keywords, see Standardized INF Keywords for Network Devices.

Task offload keywords belong to one of two groups: granular keywords or grouped
keywords. Granular keywords provide keywords per offload capability--Transport Layer
differentiation, IP protocol differentiation. Grouped keywords provide combined
keywords capability at the transport layer.

The granular keywords are defined as follows:

Keyword Description

*IPChecksumOffloadIPv4 Describes whether the device enabled or disabled the calculation
of IPv4 checksums.

*TCPChecksumOffloadIPv4 Describes whether the device enabled or disabled the calculation
of TCP Checksum over IPv4 packets.

*TCPChecksumOffloadIPv6 Describes whether the device enabled or disabled the calculation
of TCP checksum over IPv6 packets.

*UDPChecksumOffloadIPv4 Describes whether the device enabled or disabled the calculation
of UDP Checksum over IPv4 packets.

*UDPChecksumOffloadIPv6 Describes whether the device enabled or disabled the calculation
of UDP Checksum over IPv6 packets.

*LsoV1IPv4 Describes whether the device enabled or disabled the
segmentation of large TCP packets over IPv4 for large send offload
version 1 (LSOv1).

*LsoV2IPv4 Describes whether the device enabled or disabled the
segmentation of large TCP packets over IPv4 for large send offload
version 2 (LSOv2).

Granular keywords

ﾉ Expand table

Keyword Description

*LsoV2IPv6 Describes whether the device enabled or disabled the
segmentation of large TCP packets over IPv6 for large send offload
version 2 (LSOv2).

*IPsecOffloadV1IPv4 Describes whether the device enabled or disabled the calculation
of IPsec headers over IPv4.

*IPsecOffloadV2 Describes whether the device enabled or disabled IPsec offload
version 2 (IPsecOV2). IPsecOV2 provides support for additional
crypto-algorithms, IPv6, and co-existence with large send offload
version 2 (LSOv2).

*IPsecOffloadV2IPv4 Describes whether the device enabled or disabled IPsecOV2 for
IPv4 only.

The following table describes the granular keywords that you can use to configure
offload services.

SubkeyName ParamDesc Value EnumDesc

IPChecksumOffloadIPv4 IPv4 Checksum Offload 0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Rx & Tx Enabled

TCPChecksumOffloadIPv4 TCP Checksum Offload (IPv4) 0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Rx & Tx Enabled

TCPChecksumOffloadIPv6 TCP Checksum Offload (IPv6) 0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Rx & Tx Enabled

ﾉ Expand table

SubkeyName ParamDesc Value EnumDesc

UDPChecksumOffloadIPv4 UDP Checksum Offload
(IPv4)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Rx & Tx Enabled

UDPChecksumOffloadIPv6 UDP Checksum Offload
(IPv6)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Rx & Tx Enabled

LsoV1IPv4 Large Send Offload Version 1
(IPv4)

0 Disabled

1
(Default)

Enabled

LsoV2IPv4 Large Send Offload V2 (IPv4) 0 Disabled

1
(Default)

Enabled

LsoV2IPv6 Large Send Offload V2 (IPv6) 0 Disabled

1
(Default)

Enabled

IPsecOffloadV1IPv4 IPsec Offload Version 1 (IPv4) 0 Disabled

1 Auth Header Enabled

2 ESP Enabled

3
(Default)

Auth Header & ESP
Enabled

IPsecOffloadV2 IPsec Offload 0 Disabled

1 Auth Header Enabled

2 ESP Enabled

SubkeyName ParamDesc Value EnumDesc

3
(Default)

Auth Header & ESP
Enabled

*IPsecOffloadV2IPv4 IPsec Offload (IPv4 only) 0 Disabled

1 Auth Header Enabled

2 ESP Enabled

3
(Default)

Auth Header & ESP
Enabled

The grouped keywords are defined as follows:

Keyword Description

*TCPUDPChecksumOffloadIPv4 Describes whether the device enabled or disabled the
calculation of IP, TCP, and UDP checksum over IPv4.

*TCPUDPChecksumOffloadIPv6 Describes whether the device enabled or disabled the
calculation of TCP and UDP checksum over IPv6.

The following table describes the grouped keywords that you can use to configure
offload services.

SubkeyName ParamDesc Value EnumDesc

TCPUDPChecksumOffloadIPv4 TCP/UDP Checksum Offload
(IPv4)

0 Disabled

７ Note

The INF file can support granular keywords that are displayed in the Advanced
Property page of the UI. The miniport driver must read all of the granular settings
from the registry at initialization, including settings that are not displayed, to
register NDIS offload capabilities.

Grouped keywords

ﾉ Expand table

ﾉ Expand table

Feedback

Was this page helpful?

SubkeyName ParamDesc Value EnumDesc

1 Tx Enabled

2 Rx Enabled

3
(Default)

Tx & Rx
Enabled

TCPUDPChecksumOffloadIPv6 TCP/UDP Checksum Offload
(IPv6)

0 Disabled

1 Tx Enabled

2 Rx Enabled

3
(Default)

Tx & Rx
Enabled

There are restrictions on the combinations of offloads that can be enabled. For example,
if a miniport adapter supports LSOV1 or LSOV2, the miniport adapter also calculates the
IP and TCP checksums. For more information about valid combinations of offloads, see
Combining Types of Task Offloads.

If task offload services are disabled with a registry key setting, protocol drivers must not
issue the OID_OFFLOAD_ENCAPSULATION object identifier (OID).

You can use the following registry values to enable or disable task offloading for the
TCP/IP protocol:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TCPIP\Parameters\Disabl
eTaskOffload
Setting this value to one disables all of the task offloads from the TCP/IP transport.
Setting this value to zero enables all of the task offloads.

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Ipsec\EnabledOffload
Setting this value to zero disables Internet protocol security (IPsec) offloads from the
TCP/IP transport. The offloading of TCP/IP checksum tasks, large send offload version 1
(LSOV1), and large send offload version 2 (LSOV2) are not affected. Setting this value to
one enables IPsec offloads.

 Yes No

Provide product feedback | Get help at Microsoft Q&A

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Offloading Checksum Tasks
Article • 12/15/2021

NDIS supports offloading TCP/IP checksum tasks at run time.

Before passing to the miniport driver a NET_BUFFER_LIST structure for a packet on which
the miniport driver will perform checksum tasks, the TCP/IP transport specifies the
checksum information that is associated with the NET_BUFFER_LIST structure. This
information is specified by an NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO
structure, which is part of the NET_BUFFER_LIST information (out-of-band data) that is
associated with the NET_BUFFER_LIST structure.

Before offloading the checksum calculation for a TCP packet, the TCP/IP transport
calculates the one's complement sum for the TCP pseudoheader. The TCP/IP transport
calculates the one's complement sum across all fields in the pseudoheader, including
Source IP Address, Destination IP Address, Protocol, and the TCP length for TCP packets.
The TCP/IP transport enters the one's complement sum for the pseudoheader in the
Checksum field of the TCP header.

The one's complement sum for the pseudoheader provided by the TCP/IP transport
gives the NIC an early start in calculating the real TCP checksum for the send packet. To
calculate the actual TCP checksum, the NIC calculates the variable part of the TCP
checksum (for the TCP header and payload), adds this checksum to the one's
complement sum for the pseudoheader calculated by the TCP/IP transport, and
calculates the 16-bit one's complement for the checksum. For more information about
calculating such checksums, see RFC 793 and RFC 1122.

７ Note

 Checksum offload out-of-band (OOB) data is stored in the NET_BUFFER_LIST
information array. For more information about OOB data, see Accessing TCP/IP
Offload NET_BUFFER_LIST Information.

７ Note

The TCP/IP transport computes the one's complement sum for the pseudoheader
of a UDP packet using the same steps as it does for a TCP packet, and stores the
value in the Checksum field of the UDP header.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Note that the TCP/IP transport always ensures that the checksum field in the IP header
of a packet is set to zero before passing the packet to an underlying miniport driver. The
miniport driver should ignore the checksum field in an IP header. The miniport driver
does not need to verify that the checksum field is set to zero and does not need to set
this field to zero.

After it receives the NET_BUFFER_LIST structure in its MiniportSendNetBufferLists or
MiniportCoSendNetBufferLists function, a miniport driver typically does the following
checksum processing:

1. The miniport driver calls the NET_BUFFER_LIST_INFO macro with an _Id of
TcpIpChecksumNetBufferListInfo to obtain an
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure.

2. The miniport driver tests the IsIPv4 and IsIPv6 flags in the
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure. If both the IsIPv4 and
IsIPv6 flags are not set, the NIC should not perform any checksum operations on
the packet.

3. If the IsIPv4 or IsIPv6 flag is set, the miniport driver tests the TcpChecksum,
UdpChecksum, and IpHeaderChecksum flags to determine which checksums the
NIC should calculate for the packet.

4. The miniport driver passes the packet to the NIC, which calculates the appropriate
checksums for the packet. If a packet has both a tunnel IP header and a transport
IP header, a NIC that supports IP checksum offloads performs IP checksum tasks
only on the tunnel header. The TCP/IP transport performs IP checksum tasks on the
transport IP header.

Before indicating a NET_BUFFER_LIST structure for a receive packet on which it performs
checksum tasks, the miniport driver validates the appropriate checksums and sets the
appropriate XxxChecksumFailed or XxxChecksumSucceeded flags in the
NDIS_TCP_IP_CHECKSUM_NET_BUFFER_LIST_INFO structure.

Turning off Address Checksum Offloads when Large Send Offload (LSO) is enabled does
not prevent the miniport driver from computing and inserting checksums in the packets
generated by the LSO feature. To disable Address Checksum Offloads in this case the
user must also disable LSO.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblchecksum/ns-nblchecksum-ndis_tcp_ip_checksum_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Background Reading on IPsec
Article • 01/29/2022

[The IPsec Task Offload feature is deprecated and should not be used.]

To comprehend this section, you must understand Internet protocol security (IPsec) as
specified in the following RFCs and drafts published by the IP Security Working Group of
the Internet Engineering Task Force (IETF):

Security Architecture for the Internet Protocol (RFC 2401)

Authentication header (AH):

IP Authentication Header (RFC 2402)

The Use of HMAC-MD5-96 within ESP and AH (RFC 2403)

The Use of HMAC-SHA-1-96 within ESP and AH (RFC 2404)

HMAC-MD5 IP Authentication with Replay Prevention (RFC 2085)

Encapsulating security payload (ESP):

IP Encapsulating Security Payload (ESP) (RFC 2406)

The ESP CBC-Mode Cipher Algorithms (RFC 2451)

The ESP DES-CBC Cipher Algorithm with Explicit IV (RFC 2405)

The NULL Encryption Algorithm and Its Use with IPsec (RFC 2410)

https://www.rfc-editor.org/rfc/rfc2401.txt
https://www.rfc-editor.org/rfc/rfc2402.txt
https://www.rfc-editor.org/rfc/rfc2403.txt
https://www.rfc-editor.org/rfc/rfc2404.txt
https://www.rfc-editor.org/rfc/rfc2085.txt
https://www.rfc-editor.org/rfc/rfc2406.txt
https://www.rfc-editor.org/rfc/rfc2451.txt
https://www.rfc-editor.org/rfc/rfc2405.txt
https://www.rfc-editor.org/rfc/rfc2410.txt

Requirements and Restrictions That
Apply to IPsec Offloads
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

The following requirements and restrictions apply to Internet protocol security (IPsec)
offloads:

The NIC must maintain the security association (SA) tables. This improves
performance by eliminating the need to include keys or other information that is
required for AH and ESP processing in send packets.

A NIC might be able to process both AH and ESP payloads for a single packet. In
this case, the NIC must support the following possible combinations of integrity
(authentication) algorithms for AH and ESP:

AH ESP

MD5 MD5

SHA 1 SHA 1

MD5 SHA 1

SHA 1 MD5

MD5 Null (only if the NIC supports null
encryption)

SHA 1 Null (only if the NIC supports null
encryption)

A NIC that supports DES algorithms must generate the initialization vector (IV) that
these algorithms require.

The only IPsec tasks that a NIC performs are processing encrypted AH checksums
or ESP checksums (or both) and encrypting and decrypting ESP payloads. For send
packets, the TCP/IP transport creates all headers, padding, and replay numbers and
chooses SPI values that are unique to destination address/IPsec protocol pairs. For
receive packets, the TCP/IP transport performs inbound policy checks, handles
replay detection and prevention, and handles audit events.

For a send packet, the TCP/IP transport does not provide explicit offsets (such as
indicating the start of encrypted data) because the offload driver can easily
determine this information from the particular security association (SA) that it uses
to process the packet.

A packet with IPsec protocols must have authentication information in an
authentication header (AH) or the encapsulating security payload (ESP) header (or
both). It is not permissible for a IPsec packet to have no authentication.

IPsec tasks are not offloaded for send packets that require IP fragmentation or for
receive packets that require reassembly from IP fragmentation.

IPsec tasks are not offloaded for send and receive packets that pass through a
load-balancing miniport driver. For more information about load balancing, see
Load Balancing and Failover.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549197(v=vs.85)

Adding a Security Association to a NIC
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

After the TCP/IP transport determines that a NIC can perform Internet protocol security
(IPsec) operations (see Reporting a NIC's IPsec Capabilities), the transport must request
the NIC's miniport driver to add one or more inbound and outbound security
associations (SAs) to the NIC before the transport can offload IPsec tasks to the NIC. To
request that a miniport driver add one or more SAs to the NIC, the TCP/IP transport sets
OID_TCP_TASK_IPSEC_ADD_SA.

Deleting a Security Association from a
NIC
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

If necessary, the TCP/IP transport can set OID_TCP_TASK_IPSEC_DELETE_SA to request
that the miniport driver delete a security association (SA) from the NIC.

To create space for another SA on the NIC, the miniport driver can set the SaDeleteReq
flag in the NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure for a receive
packet. The TCP/IP transport subsequently issues OID_TCP_TASK_IPSEC_DELETE_SA one
time to delete the inbound security association (SA) over which the packet was received
and another time to delete the outbound SA that corresponds to the deleted inbound
SA. A NIC must not remove either of these SAs before it receives the corresponding
OID_TCP_TASK_IPSEC_DELETE_SA request. The miniport driver can set SaDeleteReq
independently of the CryptoDone flag.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v1_net_buffer_list_info

Offloading IPsec Tasks in the Send Path
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

Before the TCP/IP transport passes to the miniport driver a NET_BUFFER_LIST structure
for a packet on which a NIC will perform Internet protocol security (IPsec) tasks, it
updates the IPsec information that is associated with the NET_BUFFER_LIST structure.
The TCP/IP transport specifies this information in an
NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure, which is part of the
NET_BUFFER_LIST information (out-of-band data) that is associated with the
NET_BUFFER_LIST structure.

The TCP/IP transport supplies OffloadHandle, which specifies the handle to the
outbound SA for the transport (end-to-end connection) portion of the send packet. If
the packet will be transmitted through a tunnel, the TCP/IP transport also supplies
NextOffloadHandle, which specifies the handle to the outbound SA for the tunnel
portion of the send packet.

After a miniport driver receives the NET_BUFFER_LIST structure in its
MiniportSendNetBufferLists or MiniportCoSendNetBufferLists function, it can call the
NET_BUFFER_LIST_INFO macro with an _Id of IPsecOffloadV1NetBufferListInfo to
obtain the NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure that is
associated with the NET_BUFFER_LIST structure.

When the NIC performs IPsec processing on a send packet, it calculates the AH or ESP
encryption checksums (or both) for the packet and, if the packet contains an ESP
payload, encrypts the packet. The TCP/IP transport has already framed the packet,
padded it (if necessary), and assigned it a sequence number and SPI.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v1_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info

Offloading IPsec Tasks in the Receive
Path
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

When a NIC performs Internet protocol security (IPsec) processing on a receive packet, it
decrypts the packet if the packet contains an ESP payload and calculates the AH or ESP
encryption checksums (or both) for the packet. Before indicating the NET_BUFFER_LIST
structure for the packet up to the TCP/IP transport, the miniport driver calls the
NET_BUFFER_LIST_INFO macro with an _Id of IPsecOffloadV1NetBufferListInfo to
obtain the NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure that is
associated with a packet.

The miniport driver sets the CryptoDone flag in the
NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure to indicate that the NIC
performed IPsec checking on at least one IPsec payload in the receive packet. If a NIC
performed IPsec checking on both the tunnel and transport portions of a receive packet,
the miniport driver also sets the NextCryptoDone flag in the
NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure. The miniport driver sets
NextCryptoDone only if a packet has both tunnel and transport IPsec payloads.
Otherwise, the miniport driver sets NextCryptoDone to zero. To indicate the results of
the IPsec checks, the miniport driver must also supply a value for the CryptoStatus
member in the NDIS_IPSEC_OFFLOAD_V1_NET_BUFFER_LIST_INFO structure. If the NIC
detects a checksum failure or a decryption failure, the miniport driver must indicate a
NET_BUFFER_LIST structure for the receive packet in whatever form it is and specify the
appropriate CryptoStatus value.

Note that, if the miniport driver is not decrypting an incoming packet, it clears both the
CryptoDone and the NextCryptoDone flags. The miniport driver does this for all receive
packets that it does not decrypt, regardless of whether the packet is AH-protected or
ESP-protected. The miniport driver sets CryptoStatus to CRYPTO_SUCCESS for all
packets that it does not decrypt.

After the miniport driver indicates the NET_BUFFER_LIST structure to the TCP/IP
transport, the transport examines the results of the IPsec checks that the NIC performed,
checks the sequence numbers for the packet, and determines what to do with a packet
that fails the checksum or sequencing tests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v1_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Impact of Network Interface Changes
on IPsec Offloads
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

The following events in the network interface affect the offloading of Internet protocol
security (IPsec) tasks:

A NIC is removed.

Before a NIC to which tasks are being offloaded is removed from the system, its
miniport driver should delete all security associations (SAs) from the NIC. The
miniport driver does not have to request that the TCP/IP transport delete the SAs.

A routing interface is changed.

When network traffic is routed through a new interface, the TCP/IP stack
temporarily performs IPsec tasks until it has added the appropriate SAs to the NIC
that is used in the new interface. The TCP/IP stack adds an SA to a NIC by issuing
OID_TCP_TASK_IPSEC_ADD_SA. After the SAs on the NIC that is used for the old
interface expire, the TCP/IP transport issues OID_TCP_TASK_IPSEC_DELETE_SA as
many times as necessary to request that the NIC's miniport driver delete the SAs
from the NIC.

Traversing NATs and NAPTs with UDP-
Encapsulated ESP Packets
Article • 09/06/2024

[The IPsec Task Offload feature is deprecated and should not be used.]

Network address translators (NATs) and network address port translators (NAPTs)
convert multiple private network addresses into one routeable IP public address and
vice versa, thereby allowing many systems to share a single IP address. In this way, NATs
and NAPTs help to alleviate the shortage of routeable IPv4 addresses.

However, NATs and NAPTs can cause problems with Internet protocol security (IPsec).
Because NATs and NAPTs modify the IP header of a packet, they cause AH-protected
packets to fail checksum validation. NAPTs, which modify TCP and UDP ports, cannot
modify the ports in the encrypted TCP header of an ESP-protected packet.

UDP encapsulation solves this problem. In practice, UDP encapsulation is used only on
ESP packets. A NAT or NAPT can modify the unencrypted IP and UDP headers of a UDP-
encapsulated ESP packet without breaking ESP authentication and without being
stymied by ESP encryption.

Microsoft supports UDP encapsulation of ESP packets on port 4500. After IKE peers
initiate negotiation on port 500, detect support for NAT-traversal, and detect a NAT or
NAPT along the path, they can negotiate to "float" IKE and UDP-ESP traffic to port 4500.

Floating to port 4500 for NAT traversal provides the following benefits:

It bypasses "IPsec-aware" NATs or NAPTs that break UDP-ESP encapsulation on
port 500.

It improves performance. The UDP encapsulation of ESP data packets is more
efficient on port 4500 than on port 500. For more information, see UDP-ESP
Encapsulation Types.

To support UDP-ESP encapsulation, a miniport driver or the NIC (or both) must:

Be able to process ESP packets in the receive path, as described in Offloading IPsec
Tasks in the Receive Path.

Maintain a list of parser entries. A parser entry contains information that a NIC
requires to parse incoming UDP-ESP packets on one or more security associations
(SAs). For more information about parser entries, see UDP-ESP SAs and Parser
Entries.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Maintain a list of SAs that the transport has offloaded to the NIC.

Support the following OIDs:
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

UDP-ESP Encapsulation Types
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

The following figure shows the UDP encapsulation of Internet Key Exchange (IKE)
packets and ESP-protected data packets that are received on port 4500.

Note the four bytes of zeros that follow the UDP header in IKE packets. This field of
zeros differentiates IKE packets from UDP-encapsulated ESP packets on port 4500.
Instead of zeros, ESP headers have a nonzero ESP header at this location in the packet.

ESP packets on port 4500 can be formatted according to one of the following UDP-ESP
encapsulation subtypes:

UDP-encapsulated transport.

An ESP-encapsulated transport-mode packet is encapsulated by UDP.

UDP-encapsulated tunnel.

The tunnel-mode portion of a packet is UDP-encapsulated. The transport-mode
portion of the packet is not UDP-encapsulated and is not ESP-protected.

Transport over UDP-encapsulated tunnel.

The tunnel-mode portion of a packet is UDP-encapsulated. The transport-mode
portion of a packet is not UDP-encapsulated, but is ESP-protected.

UDP-encapsulated transport over tunnel.

UDP-ESP Encapsulation Subtypes

The tunnel-mode portion of a packet is not UDP-encapsulated. The transport-
mode portion of a packet is UDP-encapsulated and ESP-protected.

Note that a UDP-encapsulated transport over a UDP-encapsulated tunnel is not a
supported encapsulation subtype.

The following figure shows the UDP-ESP encapsulation subtypes for port 4500.

Reporting, Enabling, and Disabling a
NIC's Ability to Parse UDP-ESP Packets
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

A miniport driver specifies a NIC's Internet protocol security (IPsec) capabilities in an
NDIS_IPSEC_OFFLOAD_V1 structure. For more information, see Reporting a NIC's IPsec
Capabilities.

The miniport reports the NIC's ability to parse incoming UDP-encapsulated ESP packets
by setting one or more flags in the Supported . Reserved member of the
NDIS_IPSEC_OFFLOAD_V1 structure. The miniport driver can specify any or all of the four
UDP-ESP encapsulation subtypes that are described in UDP-ESP Encapsulation Types.

For information about enabling and disableing UDP ESP parsing capabilities, see
Enabling and Disabling TCP/IP Offload Services.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1

UDP-ESP SAs and Parser Entries
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

A miniport driver that supports UDP-ESP encapsulation must maintain a list of parser
entries. A parser entry contains information that a NIC requires to parse incoming UDP-
ESP packets on offloaded security associations (SAs).

A parser entry contains the following information:

The UDP-ESP encapsulation type.

Currently, only one encapsulation type is supported. For a description of the basic
UDP-ESP encapsulation types, see UDP-ESP Encapsulation Types.

The destination encapsulation port.

The NIC should look for the destination port in the UDP header of inbound UDP-
encapsulated packets that it processes on the offloaded SAs. Currently, UDP
encapsulation of ESP packets is supported only on port 4500.

The TCP/IP transport maintains its own list of parser entries that it has offloaded to the
miniport driver. When adding or deleting a UDP-ESP SA, the transport and miniport
driver use a handle to identify a particular parser entry.

Note that parser entries allow UDP-ESP functionality to be extended, if necessary, to
accommodate different encapsulation types and more than one port for each
encapsulation type.

The TCP/IP transport requests a miniport driver to add one or more UDP-ESP SAs, and
the parser entry for these SAs, by issuing an OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
request. The EncapTypeEntry member of the OFFLOAD_IPSEC_ADD_UDPESP_SA
structure contains the parser entry information.

Before issuing an OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request, the TCP/IP transport
determines whether the parser entry for the SAs that is being offloaded is in its parser
entry list for the specified IP interface.

If the parser entry is not in the transport's list, the transport creates its own copy of
the entry and sets the EncapTypeEntryOffloadHandle member of the

Adding a UDP-ESP SA and Parser Entry

OFFLOAD_IPSEC_ADD_UDPESP_SA structure to NULL. The transport then issues the
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request. After receiving the request, the
miniport driver determines whether the parser entry that the EncapTypeEntry
specified is in the NIC's parser entry list.

If the specified parser entry is not in the NIC's parser entry list, the miniport
driver creates the parser entry by using the encapsulation type and destination
port specified in EncapTypeEntry and adds the parser entry to the NIC's parser
entry list. The miniport driver then offloads the SAs specified in the
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request. After successfully completing
the OID request, the miniport driver returns a handle in
EncapTypeEntryOffloadHandle that identifies the newly created parser entry.
The miniport driver also returns a handle that identifies the offloaded SAs in the
OffloadHandle member of the OFFLOAD_IPSEC_ADD_UDPESP_SA structure.
If the specified parser entry is already in the NIC's parser entry list, the miniport
driver simply returns the handle in EncapTypeEntryOffloadHandle for the
existing parser entry. The miniport driver also returns a handle that identifies the
offloaded SAs in the OffloadHandle member of the
OFFLOAD_IPSEC_ADD_UDPESP_SA structure.

If the miniport driver completes the OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
request successfully, the transport adds its copy of the new parser entry to its own
parser entry list for the given IP interface. In addition, the transport increments the
reference count for the parser entry by one. The transport uses this reference
count to enumerate how many offloaded UDP-ESP SAs are associated with the
parser entry.

If the miniport driver fails the OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request, the
transport discards its copy of the parser entry. If the miniport driver fails such a
request, it must ensure that it has not, in fact, added the parser entry and
offloaded the SAs.

If the parser entry is already in the transport's parser entry list, the miniport driver
has already added the parser entry in response to a previous
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request. In this case, the transport
increments the reference count for the parser entry by one and sets the
EncapTypeEntryOffloadHandle to the value that the miniport driver previously
returned. The transport then issues an OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
request This requests the miniport driver to use an existing parser entry for the
additional SAs that are being offloaded. In this case, the miniport driver should
simply return an OffloadHandle that identifies the offloaded SAs. If the
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA request fails, the transport decrements the
reference count for the parser entry.

The TCP/IP transport requests a miniport driver to delete one or more SAs and possibly
the parser entry for these SAs by issuing an OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA
request.

Before issuing this request, the TCP/IP transport decrements the reference count for the
parser entry that is associated with the SAs to be deleted. The transport then tests
whether the reference count is zero.

If the reference count is not zero, the parser entry is associated with one or more
other SAs that are currently offloaded to the NIC. In this case, the transport sets
the EncapTypeEntryOffldHandle member of the
OFFLOAD_IPSEC_DELETE_UDPESP_SA structure to NULL. After it receives the
OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA request, the miniport driver simply
deletes the SAs that are specified in the OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA
request.

If the reference count is zero, the parser entry is not associated with any other SAs
that have been offloaded to the NIC. In this case, the transport sets the
EncapTypeEntryOffldHandle member to the value of the parser entry handle that
the miniport driver previously returned. The miniport driver deletes both the
specified parser entry and the specified SAs.

If the miniport driver fails the OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA request, it
should mark the specified SAs and, if appropriate, the specified parser entry for deletion
and perform the deletion later. To process incoming packets, the miniport driver must
not use a parser entry or SA that is marked for deletion.

Note that a transport could request a miniport driver to delete an SA or a parser entry
(or both) before the miniport driver completes adding that SA or parser entry (or both).
The miniport driver must therefore serialize the deletion operation with the addition
operation.

Deleting a UDP-ESP SA and Parser Entry

Processing UDP-Encapsulated ESP
Packets
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

When a NIC receives a UDP-encapsulated packet on port 4500, it checks whether the
packet is an IKE (control) packet or an ESP (data) packet. For a description of the UDP
encapsulation types for IKE and ESP packets, see UDP-ESP Encapsulation Types.

If the packet is an IKE packet, the NIC passes the packet to the miniport driver
without further IPsec-related processing.

If the packet is an ESP packet, the NIC checks whether the packet's inbound SA (or
SAs in the case of a transport-over-tunnel packet) is currently offloaded to the NIC.

If the inbound SAs are not currently offloaded to the NIC, the NIC passes the
packet to the miniport driver without further IPsec-related processing.
If the inbound SAs are currently offloaded to the NIC, the NIC parses the packet
by using the encapsulation type specified by the parser entry that is associated
with the SAs. The NIC then processes the ESP payloads in the packet, as
described in Offloading IPsec Tasks in the Receive Path.

If the incoming ESP packet is a UDP-encapsulated transport-over-tunnel packet, as
described in UDP-ESP Encapsulation Types, the NIC first decrypts the ESP payload of
tunnel-mode portion of the packet, which is not UDP-encapsulated. Then the NIC
processes the UDP-encapsulated tunnel-mode portion of the packet.

Introduction to IPsec Offload Version 2
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

IPsec offload version 2 (IPsecOV2) extends services that are provided in IPsec offload
version 1 (IPsecOV1). For more information about IPsecOV1 offload and IPsec, see IPsec
Offload Version 1.

An NDIS 6.1 and later miniport driver reports the IPsecOV2 offload capabilities of a
miniport adapter to NDIS. To report IPsec capabilities:

During initialization, a miniport driver reports the task offload default configuration
and the hardware capabilities of a miniport adapter in the
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure.

If the configured capabilities change, the miniport driver reports the current
configuration with the NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status
indication. The configuration can change if the OID_TCP_OFFLOAD_PARAMETERS
OID sets the current task offload configuration of a miniport adapter. Also, if the
hardware configuration under a MUX intermediate driver changes, the MUX
intermediate driver must report the hardware configuration changes with the
NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES status indication.

NDIS reports the default configuration of the offload capabilities of a miniport adapter
to overlying protocol drivers in the NDIS_BIND_PARAMETERS structure. Overlying
protocol drivers can choose IPsecOV2 task offload services from the services that are
supported in the current configuration. The
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication ensures that all of
the overlying protocol drivers are updated with the new capabilities information.

When reporting hardware capabilities during initialization, the miniport driver must read
the standardized keywords from the registry. For more information about IPsecOV2
offload capabilities, see Reporting a NIC's IPsec Offload Version 2 Capabilities.

Note NDIS provides a direct OID request interface for NDIS 6.1 and later drivers. The
direct OID request path supports OID requests that are queried or set frequently.

IPsecOV2 provides the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA,
OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA, and
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA direct OID requests to enable protocol
drivers to add, update, and delete security associations (SAs). For more information
about SAs, see Managing Security Associations in IPsec Offload Version 2.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

A NIC can perform IPsec offload tasks on the send and receive paths. NDIS drivers use
the NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO,
NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO, and
NDIS_IPSEC_OFFLOAD_V2_TUNNEL_NET_BUFFER_LIST_INFO structures to access the
IPsec out-of-band (OOB) information.

On the send path, the overlying drivers set the handle to the outbound SA and IPsec
header information in OOB information in the NET_BUFFER_LIST structure to specify
that the NIC should perform IPsecOV2 offload tasks.

On the receive path, after the SA is offloaded, the NIC must perform the IPsec
processing on all the received packets that match the capabilities that the miniport
driver reported to NDIS. The miniport driver sets the appropriate flags in OOB
information in the NET_BUFFER_LIST structure to specify specific offload tasks that the
NIC performed and the result of those operations.

For more information about send and receive processing in IPsecOV2, see Sending
Network Data with IPsec Offload Version 2 and Receiving Network Data with IPsec
Offload Version 2.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_tunnel_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Reporting a NIC's IPsec Offload Version
2 Capabilities
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

To specify IPsec offload version 2 (IPsecOV2) capabilities, an NDIS 6.1 and later miniport
driver specifies the current or default configuration of a NIC in an
NDIS_IPSEC_OFFLOAD_V2 structure. Miniport drivers must include the default IPsecOV2
configuration in the NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure.
Miniport drivers call the NdisMSetMiniportAttributes function from the
MiniportInitializeEx function and pass in the information in
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the IPsecOV2 capabilities, if any, in the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication.

Note NDIS provides a direct OID request interface for NDIS 6.1 and later drivers. The
direct OID request path supports OID requests that are queried or set frequently.

In response to a query of OID_TCP_OFFLOAD_CURRENT_CONFIG, NDIS includes the
NDIS_IPSEC_OFFLOAD_V2 structure in the NDIS_OFFLOAD structure that NDIS returns in
the InformationBuffer member of the NDIS_OID_REQUEST structure. NDIS uses the
information that the miniport driver provided.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Accessing NET_BUFFER_LIST
Information in IPsec Offload Version 2
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

NDIS provides out-of-band (OOB) data in the NetBufferListInfo member of the
NET_BUFFER_LIST structure, which specifies a linked list of NET_BUFFER structures. The
NetBufferListInfo member is an array of values that contain information that is common
to all of the NET_BUFFER structures in the list.

Use the following identifiers with the NET_BUFFER_LIST_INFO macro to set and get the
IPsec offload version 2 (IPsecOV2) OOB data in the NetBufferListInfo array:

IPsecOffloadV2NetBufferListInfo
Specifies IPsecOV2 information that is used in offloading IPsec tasks from the TCP/IP
protocol to a NIC. When you specify IPsecOffloadV2NetBufferListInfo,
NET_BUFFER_LIST_INFO returns an NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO
structure.

IPsecOffloadV2TunnelNetBufferListInfo
Specifies IPsecOV2 tunnel information that is used in offloading IPsec tasks from the
TCP/IP protocol to a NIC. When you specify IPsecOffloadV2TunnelNetBufferListInfo,
NET_BUFFER_LIST_INFO returns an
NDIS_IPSEC_OFFLOAD_V2_TUNNEL_NET_BUFFER_LIST_INFO structure.

IPsecOffloadV2HeaderNetBufferListInfo
Specifies the header offsets for IPsec headers in the NET_BUFFER_LIST and the values
for the next header and pad length. When you specify
IPsecOffloadV2HeaderNetBufferListInfo, NET_BUFFER_LIST_INFO returns an
NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_tunnel_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info

Managing Security Associations in IPsec
Offload Version 2
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

After the TCP/IP transport determines that a NIC can perform IPsec offload version 2
(IPsecOV2) operations (see Reporting a NIC's IPsec Offload Version 2 Capabilities), the
transport requests that the NIC's miniport driver add one or more security associations
(SAs) to the NIC before the transport can offload IPsec tasks to the NIC. After adding
SAs, the TCP/IP transport can also delete or update them. The IPsecOV2 interface
requires the NDIS direct OID interface for add, delete, and update OIDs.

Note NDIS provides a direct OID request interface for NDIS 6.1 and later drivers. The
direct OID request path supports OID requests that are queried or set frequently.

To request that a miniport driver add one or more SAs to a NIC, the TCP/IP transport
sets the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID. The miniport driver receives
an IPSEC_OFFLOAD_V2_ADD_SA structure and configures the NIC for IPsecOV2
processing on an SA. With a successful set to
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA, the miniport driver initializes a handle that
identifies the offloaded SA in the IPSEC_OFFLOAD_V2_ADD_SA structure. The transport
uses this handle in subsequent requests to the miniport driver (that is, on the send path
or in the calls to modify or delete the SA). For more information about using the SA
handle in the send path, see Sending Network Data with IPsec Offload Version 2.

The miniport driver reports the number of SAs that a NIC can support in the
SaOffloadCapacity member of the NDIS_IPSEC_OFFLOAD_V2 structure.

The miniport driver can set the SaDeleteReq flag in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure for a receive packet. The
TCP/IP transport subsequently issues OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA
one time to delete the inbound SA that the packet was received over and one time
again to delete the outbound SA that corresponds to the deleted inbound SA.

The TCP/IP transport issues OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA to delete an
inbound SAs over which a packet was received and to delete the outbound SAs that
correspond to the deleted inbound SAs. A NIC must not remove these SAs before it
receives the corresponding OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info

The TCP/IP transport sets the OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA OID to
request that a miniport driver update a NIC with the higher order bits for an SA with
extended sequence numbers (ESN). For NICs that support ESN, when the miniport driver
receives this request, the driver should update the sequence number of the specified SA
in the NIC in accordance with the IPSEC_OFFLOAD_V2_OPERATION enumeration value
that is specified in the Operation member of the IPSEC_OFFLOAD_V2_UPDATE_SA
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ne-ndis-_ipsec_offload_v2_operation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_update_sa

Sending Network Data with IPsec
Offload Version 2
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

The TCP/IP transport provides IPsec Offload Version 2 (IPsecOV2) information for one or
more SAs with the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID. Before the
miniport driver returns a successful result for
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA, the miniport driver initializes an offload
handle. The TCP/IP transport requests the miniport driver to offload the processing of a
NET_BUFFER_LIST structure by specifying IPsecOV2 information in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO and
NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO structures, which are part
of the NET_BUFFER_LIST out-of-band (OOB) information.

The TCP/IP transport supplies an offload handle in the OffloadHandle member of
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO that specifies the handle to the
outbound security association (SA) for the transport (end-to-end connection) portion of
the send packet.

The TCP/IP transport supplies the following header information in the
NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO structure:

Header offsets for an AH header, ESP header, or both.

The next protocol value (identical to the one that is contained in the ESP trailer).

The pad length that is used for a combined large send offload (LSO) and IPsec
offload.

Also, if the send packet will be transmitted through a tunnel, the TCP/IP transport
supplies an NDIS_IPSEC_OFFLOAD_V2_TUNNEL_NET_BUFFER_LIST_INFO structure. This
structure specifies the offload handle to the outbound SA for the tunnel portion of the
send packet. For more information about accessing OOB information, see Accessing
NET_BUFFER_LIST Information in IPsec Offload Version 2.

The miniport driver provided the offload handles in response to an OID set request of
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA. For more information about SAs, see
Managing Security Associations in IPsec Offload Version 2.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_tunnel_net_buffer_list_info

When a miniport driver handles a send request in the MiniportSendNetBufferLists
function, the miniport driver:

Verifies that the hardware is configured to handle IPsec offload services. If the
hardware is not configured to handle IPsec offload services, the miniport driver
should handle the send request without providing the offload services.

Verifies the handles in the NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO and
NDIS_IPSEC_OFFLOAD_V2_TUNNEL_NET_BUFFER_LIST_INFO structures to
determine if IPsec cryptographic processing is required. An offload handle value of
zero indicates that no IPsec task offload should be performed for the
NET_BUFFER_LIST. If the miniport driver cannot find the offloaded SA that
corresponds to the specified offload handle, the send packet should fail with an
NDIS_STATUS_FAILURE value.

Verifies the handles in the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structures to
determine if segmentation offload should be performed for the NET_BUFFER_LIST.

Completes the required AH and ESP processing for all of the send packets in the
NET_BUFFER_LIST. When the NIC performs IPsec processing on a send packet, it
performs the cryptographic operations on the packet data. The TCP/IP transport
has already framed the packet, padded it (if necessary), and assigned it a sequence
number and security parameters index (SPI). For a combined LSO and IPsec
offload, the NET_BUFFER might have padding that will be discarded while the NIC
segments the large packet. The amount of padding is specified in the PadLength
member of the NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO
structure. Segmented packets might require padding to support IPsec operations.

When a protocol driver transmits a packet that requests both LSO and IPsecOV2, it will
not frame the ESP trailer. This is because the information in the ESP trailer, such as the
padding length, will not be accurate for the last segment that was generated by the NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_tunnel_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info

Receiving Network Data with IPsec
Offload Version 2
Article • 12/15/2021

[The IPsec Task Offload feature is deprecated and should not be used.]

A NIC performs IPsec offload version 2 (IPsecOV2) processing on a receive packet as
specified in a security association (SA) that was offloaded from the transport.

The miniport driver sets the IPsecOV2 out-of-band (OOB) information before indicating
the received data to overlying drivers. For more information about accessing OOB
information, see Accessing NET_BUFFER_LIST Information in IPsec Offload Version 2.

Note A miniport driver should indicate all received packets to overlying drivers even if
an error occurs while processing the IPsec data in the NIC. The driver must indicate
packets with errors to enable the driver stack to monitor and troubleshoot the network
traffic.

Before the miniport driver indicates the received data packet up the driver stack, the
miniport driver:

Verifies that the hardware is configured to handle IPsec offload tasks. If not, the
miniport driver does a receive indication with no additional IPsec offload
processing.

Looks at the security parameters index (SPI) to determine if a matching offloaded
SA exists. The miniport driver confirms the destination address on the packet is
same as the one specified in offloaded SA. If there is no matching SA, the NIC
indicates the received data without setting the IPsecOV2 OOB information.

Verifies that it can process the packet based on the capabilities that the miniport
driver reported to the transport or it makes a receive indication without further
IPsec processing. For example, the packet might have IP options where the NIC
does not support IPsec offload processing for such packets and the miniport driver
does the IPsec processing.

Sets the CryptoDone flag in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure to indicate that a
NIC performed IPsec checking on at least one IPsec payload in the received packet.

Sets the NextCryptoDone flag in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure to indicate that a NIC

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info

performed IPsec checking on both the tunnel and transport portions of a receive
packet. The miniport driver sets this flag only if a packet has both tunnel and
transport payloads; otherwise, this flag should be zero.

Sets the correct CryptoStatus value of the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure to indicate the results
of the IPsec checks.

If the NIC did not perform offload processing on an incoming packet, the miniport
driver clears both the CryptoDone and the NextCryptoDone flags. The miniport driver
clears these flags for all receive packets where a NIC does not decrypt, regardless of
whether the packet is AH-protected or ESP-protected.

A miniport driver can set SaDeleteReq, in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure for a receive
NET_BUFFER_LIST. The TCP/IP transport subsequently issues
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA once to delete the inbound SA that the
packet was received over and once again to delete the outbound SA that corresponds
to the deleted inbound SA. For more information about adding and deleting SAs, see
Managing Security Associations in IPsec Offload Version 2.

After the miniport driver indicates the NET_BUFFER_LIST structure to the TCP/IP
transport, the TCP/IP transport examines the results of the IPsec checks that the NIC
performed on the packet, checks the sequence numbers for the packet, and determines
what to do with a packet that fails the checksum or sequencing tests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Offloading the Segmentation of Large
TCP Packets
Article • 12/15/2021

NDIS miniport drivers can offload the segmentation of large TCP packets that are larger
than the maximum transmission unit (MTU) of the network medium. A NIC that supports
the segmentation of large TCP packets must also be able to:

Calculate IP checksums for send packets that contain IP options.

Calculate TCP checksums for send packets that contain TCP options.

NDIS versions 6.0 and later support large send offload version 1 (LSOv1), which is similar
to large send offload (LSO) in NDIS 5.x. NDIS versions 6.0 and later also support large
send offload version 2 (LSOv2), which provides enhanced large packet segmentation
services, including support for IPv6.

A miniport driver that supports LSOv2 and LSOv1 must determine the offload type from
the NET_BUFFER_LIST structure OOB information. The driver can use the Type member
of the NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structure to
determine whether the driver stack is using LSOv2 or LSOv1 and perform the
appropriate offload services. Any NET_BUFFER_LIST structure that contains the LSOv1 or
LSOv2 OOB data also contains a single NET_BUFFER structure. For more information
about NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO, see Accessing TCP/IP
Offload NET_BUFFER_LIST Information.

However, in a case where the miniport has received OID_TCP_OFFLOAD_PARAMETERS
to turn off LSO feature on the miniport and after the miniport has completed the OID
successfully, the miniport shall drop all NET_BUFFER_LIST which contain any non-zero
LSOv1 or LSOv2 OOB
data(NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO).

The TCP/IP transport offloads only those large TCP packets that meet the following
criteria:

The packet is a TCP packet. The TCP/IP transport does not offload large UDP
packets for segmentation.

The packet must be divisible by at least the minimum number of segments
specified by the miniport driver. For more information, see Reporting a NIC's
LSOv1 TCP-Packet-Segmentation Capabilities and Reporting a NIC's LSOv2 TCP-
Packet-Segmentation Capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info

The packet is not a loopback packet.

The packet will not be sent through a tunnel.

Before offloading a large TCP packet for segmentation, the TCP/IP transport:

Updates the large-packet segmentation information that is associated with the
NET_BUFFER_LIST structure. This information is an
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structure that is part
of the NET_BUFFER_LIST information that is associated with the NET_BUFFER_LIST
structure. For more information about NET_BUFFER_LIST information, see
Accessing TCP/IP Offload NET_BUFFER_LIST Information. The TCP/IP transport sets
the MSS value to the maximum segment size (MSS).

For LSOv1, writes the total length of the large TCP packet to the Total Length field
of the packet's IP header. The total length includes the length of the IP header, the
length of the IP options if they are present, the length of the TCP header, the
length of the TCP options if they are present, and the length of the TCP payload.
For LSOv2, sets the Total Length field of the packet's IP header to 0. Miniport
drivers should determine the length of the packet from the length of the first
NET_BUFFER structure in the NET_BUFFER_LIST structure.

Calculates a one's complement sum for the TCP pseudoheader and writes this sum
to the Checksum field of the TCP header. The TCP/IP transport calculates the one's
complement sum over the following fields in the pseudoheader: Source IP Address,
Destination IP Address, and Protocol. The one's complement sum for the
pseudoheader provided by the TCP/IP transport gives the NIC an early start in
calculating the real TCP checksum for each packet that the NIC derives from the
large TCP packet without having to examine the IP header. Note that RFC 793
stipulates that the pseudo-header checksum is calculated over the Source IP
Address, Destination IP Address, Protocol, and TCP Length. (The TCP Length is the
length of the TCP header plus the length of the TCP payload. The TCP Length does
not include the length of the pseudo-header.) However, because the underlying
miniport driver and NIC generate TCP segments from the large packet that is
passed down by the TCP/IP transport, the transport does not know the size of the
TCP payload for each TCP segment and therefore cannot include the TCP Length in
the pseudo-header. Instead, as described below, the NIC extends the pseudo-
header checksum that was supplied by the TCP/IP transport to cover the TCP
Length of each generated TCP segment.

Writes the correct sequence number to the Sequence Number field of the TCP
header. The sequence number identifies the first byte of the TCP payload.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info

After the miniport driver obtains the NET_BUFFER_LIST structure in its
MiniportSendNetBufferLists or MiniportCoSendNetBufferLists function, it can call the
NET_BUFFER_LIST_INFO macro with an _Id of TcpLargeSendNetBufferListInfo to obtain
the MSS value written by the TCP/IP transport.

The miniport driver obtains the total length of the large packet from the packet's IP
header and uses the MSS value to divide the large TCP packet into smaller packets. Each
of the smaller packets contains MSS or less user data bytes. Note that only the last
packet that was created from the segmented large packet should contain less than MSS
user data bytes. All other packets that were created from the segmented packet should
contain MSS user data bytes. If you do not follow this rule, the creation and transmission
of unnecessary extra packets could degrade performance.

The miniport driver affixes MAC, IP, and TCP headers to each segment that is derived
from the large packet. The miniport driver must calculate the IP and TCP checksums for
these derived packets. To calculate the TCP checksum for each packet that was derived
from the large TCP packet, the NIC calculates the variable part of the TCP checksum (for
the TCP header and TCP payload), adds this checksum to the one's complement sum for
the pseudoheader calculated by the TCP/IP transport, and then calculates the 16-bit
one's complement for the checksum. For more information about calculating such
checksums, see RFC 793 and RFC 1122.

The following figure shows the segmentation of a large packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_co_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info

The length of the TCP user data in the large TCP packet should be equal to or less than
the value that the miniport driver assigns to the MaxOffLoadSize value. For more
information about the MaxOffLoadSize value, see Reporting a NIC's LSOv1 TCP-Packet-
Segmentation Capabilities and Reporting a NIC's LSOv2 TCP-Packet-Segmentation
Capabilities.

After a driver issues a status indication to indicate a change to the MaxOffLoadSize
value, the driver must not crash if it receives an LSO send request that uses the previous
MaxOffLoadSize value. Instead, the driver can fail the send request.

An intermediate driver that independently issues status indications that report a change
in the MaxOffLoadSize value must ensure that the underlying miniport adapter that has
not issued a status indication does not get any packets that are larger in size than the
MaxOffLoadSize value that the miniport adapter reported.

A miniport-intermediate driver that responds to OID_TCP_OFFLOAD_PARAMETERS to
turn off LSO services must be prepared for a small window of time where LSO send
requests could still reach the miniport driver.

The length of the TCP user data in a segment packet must be less than or equal to the
MSS. The MSS is the ULONG value that the TCP transport passes down by using the LSO

NET_BUFFER_LIST information that is associated with the NET_BUFFER_LIST structure.
Note that only the last packet that was created from the segmented large packet should
contain less than MSS user data bytes. All other packets that were created from the
segmented packet should contain MSS user data bytes. If you do not follow this rule,
the creation and transmission of unnecessary extra packets could degrade performance.

The number of segment packets that were derived from the large TCP packet must be
equal to or greater than the MinSegmentCount value that is specified by the miniport
driver. For more information about the MinSegmentCount value, see Reporting a NIC's
LSOv1 TCP-Packet-Segmentation Capabilities and Reporting a NIC's LSOv2 TCP-Packet-
Segmentation Capabilities.

The following assumptions and restrictions apply to processing IP and TCP headers for
any LSO-capable miniport driver regardless of version:

The MF bit in the IP header of the large TCP packet that the TCP/IP transport
offloaded will not be set, and the Fragment Offset in the IP header will be zero.

The URG, RST, and SYN flags in the TCP header of the large TCP packet will not be
set, and the urgent offset (pointer) in the TCP header will be zero.

If the FIN bit in the TCP header of the large packet is set, the miniport driver must
set this bit in the TCP header of the last packet that it creates from the large TCP
packet.

If the PSH bit in the TCP header of the large TCP packet is set, the miniport driver
must set this bit in the TCP header of the last packet that it creates from the large
TCP packet.

If the CWR bit in the TCP header of the large TCP packet is set, the miniport driver
must set this bit in the TCP header of the first packet that it creates from the large
TCP packet. The miniport driver may choose to set this bit in the TCP header of the
last packet that it creates from the large TCP packet, although this is less desirable.

If the large TCP packet contains IP options or TCP options (or both), the miniport
driver copies these options, unaltered, to each packet that it derived from the large
TCP packet. Specifically, the NIC will not increment the Time Stamp option.

All packet headers (Ethernet, IP, TCP) will be in the first MDL of the packet. The
headers will not be split across multiple MDLs.

 Tip

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

The miniport driver must send the packets in NET_BUFFER_LIST structures in the order
that it receives the NET_BUFFER_LIST structures from the TCP/IP transport.

When processing a large TCP packet, the miniport adapter is responsible only for
segmenting the packet and affixing MAC, IP, and TCP headers to the packets that are
derived from the large TCP packet. The TCP/IP transport performs all other tasks (such as
adjusting the send window size based on the remote host's receive window size).

Before completing the send operation for the large packet (such as with
NdisMSendNetBufferListsComplete or NdisMCoSendNetBufferListsComplete), the
miniport driver writes the NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO
value (NET_BUFFER_LIST information for large-send offloads) with the total number of
TCP user data bytes that are sent successfully in all packets that were created from the
large TCP packet.

In addition to the previous LSO requirements, LSOv2-capable miniport drivers must also:

Support IPv4 or IPv6 or both IPv4 and IPv6.

Support replication of the IPv4 options, from the large packet, in each segment
packet that the network interface card (NIC) generates.

Support replication of the IPv6 extension header, from the large TCP packet, in
each TCP segment packet.

Support replication of TCP options in each TCP segment packet that the miniport
driver generates.

Use the IP and TCP header in the NET_BUFFER_LIST structure as a template to
generate TCP/IP headers for each segment packet.

Use IP identification (IP ID) values in the range from 0x0000 to 0x7FFF. (The range
from 0x8000 to 0xFFFF is reserved for TCP chimney offload-capable devices.) For
example, if the template IP header starts with an Identification field value of
0x7FFE, the first TCP segment packet must have an IP ID value of 0x7FFE, followed
by 0x7FFF, 0x0000, 0x0001, and so on.

Use the byte offset in the TcpHeaderOffset member of
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO to determine the
location of the TCP header, starting from the first byte of the packet.

This assumption is valid when LSO is enabled. Otherwise, when LSO is not
enabled, miniport drivers cannot assume that IP headers are in the same MDL
as Ethernet headers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcosendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info

Limit the number of NET_BUFFER structures that are associated with each LSOv2
NET_BUFFER_LIST structure to one.

Determine the total length of the packet from the length of the first NET_BUFFER
structure in the NET_BUFFER_LIST structure. This is different from the method
drivers use for LSOv1.

Support TCP options, IP options, and IP extension headers.

When a send operation is complete, the miniport driver must set the
LsoV2TransmitComplete.Reserved member of the
NDIS_TCP_LARGE_SEND_OFFLOAD_NET_BUFFER_LIST_INFO structure to zero and
the LsoV2TransmitComplete.Type member to
NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE.

７ Note

This is a new requirement for LSOv2-capable miniport drivers. This rule is not
enforced for LSOv1 miniport drivers explicitly, although it is recommended.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbllso/ns-nbllso-ndis_tcp_large_send_offload_net_buffer_list_info

UDP Segmentation Offload (USO)
Article • 12/15/2021

UDP Segmentation Offload (USO), supported in Windows 10, version 2004 and later, is a
feature that enables network interface cards (NICs) to offload the segmentation of UDP
datagrams that are larger than the maximum transmission unit (MTU) of the network
medium. By doing so, Windows reduces CPU utilization associated with per-packet
TCP/IP processing. Requirements for USO are similar to LSOv2, which is for the TCP
transport protocol.

This section refers primarily to NDIS protocol and miniport drivers. NDIS lightweight
filter drivers (LWFs) must follow protocol driver requirements when modifying or
sending packets, and can also assume that any packets provided to its
FilterSendNetBufferLists handler meet the protocol driver requirements.

Miniport drivers can offload the segmentation of large UDP packets that are larger than
the MTU of the network medium. A NIC that supports the segmentation of large UDP
packets must also be able to do the following:

Calculate IP checksums for sent packets that contain IPv4 options
Calculate UDP checksums for sent packets

A miniport driver that supports USO must determine the offload type from the
NET_BUFFER_LIST structure's out of band (OOB) information. If the value of the
NDIS_UDP_SEGMENTATION_OFFLOAD_NET_BUFFER_LIST_INFO structure is non-zero,
then the miniport driver must perform USO. Any NET_BUFFER_LIST that contains USO
OOB data also contains a single NET_BUFFER structure. However, in the case where the
miniport driver has received OID_TCP_OFFLOAD_PARAMETERS to turn off USO, after the
miniport driver has completed the OID successfully it should reject and return any
NET_BUFFER_LIST that has the USO OOB field set.

The TCP/IP transport offloads only those UDP packets that meet the following criteria:

The packet is a UDP packet.
The packet length must be greater than maximum segment size (MSS) *
(MinSegmentCount - 1).
If the miniport driver does not set the SubMssFinalSegmentSupported capability,
then each large UDP packet offloaded by the transport must have Length % MSS
== 0. That is, the large packet is divisible into N packets with each packet segment

Requirements for USO

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbluso/ns-nbluso-ndis_udp_segmentation_offload_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer

containing exactly MSS user bytes. If the miniport driver sets the
SubMssFinalSegmentSupported capability, then this packet length divisibility
condition on the transport does not apply. In other words, the final segment can
be less than MSS.
The packet is not a loopback packet.
The MF bit in the IP header of the large UDP packet that the TCP/IP transport
offloaded will not be set, and the Fragment Offset in the IP header will be zero.
The application has specified UDP_SEND_MSG_SIZE/WSASetUdpSendMessageSize.

Before offloading a large UDP packet for segmentation, the TCP/IP transport does the
following:

Updates the large packet segmentation information that is associated with the
NET_BUFFER_LIST structure. This information is an
NDIS_UDP_SEGMENTATION_OFFLOAD_NET_BUFFER_LIST_INFO structure that is
part of the NET_BUFFER_LIST structure's OOB information. The TCP/IP transport
sets the MSS value to the desired MSS.
Calculates a one's complement sum for the UDP pseudoheader and writes this sum
to the Checksum field of the UDP header. The TCP/IP transport calculates the one's
complements sum over the following fields in the pseudoheader: Source IP
Address, Destination IP Address, and Protocol.

The one's complement sum for the pseudoheader provided by the TCP/IP transport
gives the NIC an early start in calculating the real UDP checksum for each packet that
the NIC derives from the large UDP packet, without having to examine the IP header.

Note that RFC 768 and RFC 2460 stipulate that the pseudoheader is calculated over
the Source IP Address, the Destination IP Address, Protocol, and UDP Length (the length
of the UDP header plus the length of the UDP payload, not including the length of the
pseudoheader). However, because the underlying miniport driver and NIC generate UDP
datagrams from the large packet that is passed down by the TCP/IP transport, the
transport does not know the size of the UDP payload for each UDP datagram and thus
cannot include the UDP Length in the pseudoheader calculation. Instead, as described in
the following section, the NIC extends the pseudoheader checksum that was supplied
by the TCP/IP transport to cover the UDP Length of each generated UDP datagram.

） Important

If the UDP header checksum field provided by the TCP/IP transport is zero, the NIC
should not perform UDP checksum calculation.

https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-wsasetudpsendmessagesize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbluso/ns-nbluso-ndis_udp_segmentation_offload_net_buffer_list_info
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc2460

After the miniport driver obtains the NET_BUFFER_LIST in its MiniportSendNetBufferLists
callback function, it can call the NET_BUFFER_LIST_INFO macro with an _Id of
UdpSegmentationOffloadInfo to obtain the MSS value and IP protocol.

The miniport driver obtains the total length of the large packet from the length of the
first NET_BUFFER structure and uses the MSS value to divide the large UDP packet into
smaller UDP packets. Each of the smaller packets contains MSS or fewer user data bytes.
Note that only the last packet that was created from the segmented large packet should
contain less than MSS user data bytes. All other packets that were created from the
segmented packet must contain MSS user data bytes. If a miniport driver does not
adhere to this rule, the UDP datagrams will be incorrectly delivered. If the miniport
driver does not set the SubMssFinalSegmentSupported capability, then the packet
length divides by MSS and each of the segmented packets contains MSS user bytes.

The miniport driver affixes MAC, IP, and UDP headers to each segment that is derived
from the large packet. The miniport driver must calculate the IP and UDP checksums for
these derived packets. To calculate the UDP checksum for each packet that was derived
from the large UDP packet, the NIC calculates the variable part of the UDP checksum
(for the UDP header and UDP payload), adds this checksum to the one's complement
sum for the pseudoheader that was calculated by the TCP/IP transport, then calculates
the 16-bit one's complement for the checksum. For more information about calculating
such checksums, see RFC 768 and RFC 2460 .

The length of the UDP user data in the large UDP packet must be less than or equal to
the value that the miniport driver assigns to the MaxOffLoadSize value.

After a driver issues a status indication to indicate a change to the MaxOffLoadSize
value, the driver must not cause a bug check if it receives an LSO send request that uses
the previous MaxOffLoadSize value. Instead, the driver must fail the send request.
Drivers must fail any send request they can't perform, for any reason (including size,
minimum segment count, IP options, etc.). Drivers must send a status indication as soon
as possible if their capabilities change.

An intermediate driver that independently issues status indications that report a change
in the MaxOffLoadSize value must ensure that the underlying miniport adapter that has
not issued a status indication does not get any packets that are larger than the
MaxOffLoadSize value that the miniport adapter reported.

A miniport-intermediate driver that responds to OID_TCP_OFFLOAD_PARAMETERS to
turn off USO services must be prepared for a small window of time where USO requests
could still reach the miniport driver.

Sending packets with USO

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc2460

The number of segmentation packets that were dervied from the large UDP packet must
be equal to or greater than the MinSegmentCount value that is specified by the
miniport driver.

When processing a large UDP packet, the miniport driver is responsible only for
segmenting the packet and affixing MAC, IP, and UDP headers to the packets that are
derived from the large UDP packet. If the miniport fails to send at least one segmented
packet, the NBL must eventually be completed with a failure status. The miniport can
continue sending subsequent packets but is not required to do so. The NBL cannot be
completed back to NDIS until all segmented packets have transmitted or failed.

USO-capable miniport drivers must also do the following:

Support both IPv4 and IPv6.
Support replication of IPv4 options from the large packet in each segmented
packet that the NIC generates.
Use the IP and UDP header in the NET_BUFFER_LIST structure as a template to
generate UDP and IP headers for each segmented packet.
Use IP identification (IP ID) values in the range from 0x0000 to 0xFFFF. For
example, if the template IP header starts with an Identification field value of
0xFFFE, the first UDP datagram packet must have a value of 0xFFFE, followed by
0xFFFF, 0x0000, 0x0001, and so on.
If the large UDP packet contains IP options, the miniport driver copies these
options, unaltered, to each packet that is derived from the large UDP packet.
Use the byte offset in the UdpHeaderOffset member of
NDIS_UDP_SEGMENTATION_OFFLOAD_NET_BUFFER_LIST_INFO to determine the
location of the UDP header, starting from the first byte of the packet.
Increment transmit statistics based on the segmented packets. For example,
include the count of Ethernet, IP, and UDP header bytes for each packet segment,
and the packet count is the number of MSS-sized segments, not 1.
Set the UDP total length and IP length fields based on each segmented datagram
size.

This section describes the changes in NDIS 6.83 that enable the host TCP/IP driver stack
to harness the USO capabilities exposed by miniport drivers.

NDIS and the miniport driver perform the following:

Advertise that the NIC supports USO capability
Enable or disable USO

NDIS interface changes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/nbluso/ns-nbluso-ndis_udp_segmentation_offload_net_buffer_list_info

Get the current USO functionality state

Miniport drivers advertise USO capability by filling in the UdpSegmentation field of the
NDIS_OFFLOAD structure, which is passed in the parameters of
NdisMSetMiniportAttributes. The Header.Revision field in the NDIS_OFFLOAD
structure must be set to NDIS_OFFLOAD_REVISION_6 and the Header.Size field must be
set to NDIS_SIZEOF_NDIS_OFFLOAD_REVISION_6.

The current USO state can be queried with OID_TCP_OFFLOAD_CURRENT_CONFIG. NDIS
handles this OID and does not pass it down to the miniport driver.

USO can be enabled or disabled using OID_TCP_OFFLOAD_PARAMETERS. After the
miniport driver processes the OID, it must send an
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication with the updated
offload state.

The USO enumeration keywords are as follows:

*UsoIPv4
*UsoIPv6

These values describe whether USO is enabled or disabled for that particular IP protocol.
The USO settings are not dependent on the NDIS_TCP_IP_CHECKSUM_OFFLOAD
configuration. For example, disabling *UDPChecksumOffloadIPv4 does not implicitly
disable *UsoIPv4.

Subkey name Parameter description Value Enum description

*UsoIPv4 UDP Segmentation Offload (IPv4) 0 Disabled

1 Enabled

*UsoIPv6 UDP Segmentation Offload (IPV6) 0 Disabled

1 Enabled

Advertising USO capability

Querying USO state

Changing USO state

USO keywords

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Connection Offload Overview
Article • 12/15/2021

To increase its performance, the Microsoft TCP/IP transport can offload connections to a
NIC that has the appropriate TCP/IP-connection offload capabilities.

The NDIS connection offload interface provides hooks to enable configuration of
connection offload services such as TCP chimney offload. For more information about
connection offload services in NDIS, see Offloading TCP/IP Connections.

TCP chimney offload services are supported in NDIS 6.0 and later.

This section includes:

Determining Connection Offload Capabilities
Reporting a NIC's Connection Offload Capabilities
Enabling and Disabling Connection Offload Services
Determining the Current Connection Offload Settings
Using Registry Values to Enable and Disable Connection Offloading
Offloading TCP/IP Connections

Determining Connection Offload
Capabilities
Article • 12/15/2021

NDIS supports two categories of offload services: TCP/IP offload services that are
enhanced forms of the NDIS 5.1 and earlier task offload services and connection offload
services.

NDIS provides the offload hardware capabilities and the current configuration of the
underlying miniport adapter to protocol drivers in the NDIS_BIND_PARAMETERS
structure. NDIS provides the task offload hardware capabilities and current configuration
of the underlying miniport adapter to filter drivers in the
NDIS_FILTER_ATTACH_PARAMETERS structure.

Administrative applications use object identifier (OID) queries to obtain TCP/IP offload
capabilities of a miniport adapter. However, overlying drivers should avoid using OID
queries. Protocol drivers must handle changes in the TCP/IP offload capabilities that
underlying drivers report. Miniport drivers can report changes in task offload capabilities
in status indications. For a list of status indications, see NDIS TCP/IP Offload Status
Indications.

Administrative applications (or overlying drivers) can determine the current connection
offload configuration of a NIC by querying the
OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG OID. The
NDIS_TCP_CONNECTION_OFFLOAD structure that is associated with
OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG specifies the miniport adapter's
current connection-offload configuration.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload

Reporting a NIC's Connection Offload
Capabilities
Article • 12/15/2021

An NDIS miniport driver specifies the current connection offload configuration of a NIC
in an NDIS_TCP_CONNECTION_OFFLOAD structure. Miniport drivers must include the
current connection offload configuration in the
NDIS_MINIPORT_ADAPTER_OFFLOAD_ATTRIBUTES structure. Miniport drivers call the
NdisMSetMiniportAttributes function from the MiniportInitializeEx function and pass in
the information in NDIS_MINIPORT_TCP_CONNECTION_OFFLOAD_ATTRIBUTES.

Miniport drivers must report changes in the connection offload capabilities. The drivers
request the stack to pause and upload all of the connections by issuing an status
indication. (For information on NDIS_STATUS_OFFLOAD_PAUSE, see Full TCP Offload.)
After any configuration changes are complete, the drivers request the stack to restart
and re-query the miniport adapter's offload capabilities by issuing an status indication.
(For information on NDIS_STATUS_OFFLOAD_RESUME, see Full TCP Offload.)

In response to a query of OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG, NDIS
returns the NDIS_TCP_CONNECTION_OFFLOAD structure in the InformationBuffer
member of the NDIS_OID_REQUEST structure. NDIS uses the information that the
miniport driver provided.

For more information about specifying connection offload capabilities, see Initializing an
Offload Target in the NDIS 6.0 TCP chimney offload documentation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_offload_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Enabling and Disabling Connection
Offload Services
Article • 12/15/2021

Protocol drivers enable connection offload services with an object identifier (OID)
request.

Note Enabling or disabling task offload services is different than enabling or disabling
connection offload services. Miniport drivers activate all of the available task offload
services after a protocol driver specifies an encapsulation type.

The TCP/IP transport enables or disables the connection offload capabilities of a
network interface card (NIC) by setting the
OID_TCP_CONNECTION_OFFLOAD_PARAMETERS OID. In this set operation, the TCP/IP
transport passes the NDIS_TCP_CONNECTION_OFFLOAD_PARAMETERS structure in the
InformationBuffer member of the NDIS_OID_REQUEST structure. (For information on
NDIS_TCP_CONNECTION_OFFLOAD_PARAMETERS, see NDIS 6.0 TCP chimney offload
documentation.)

For more information about configuring connection offload services, see Initializing an
Offload Target in the NDIS 6.0 TCP chimney offload documentation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Determining the Current Connection
Offload Settings
Article • 12/15/2021

Protocol drivers can obtain the connection offload services with an object identifier
(OID) request.

To obtain the current connection offload settings of a network interface card (NIC),
protocol drivers can query the OID_TCP_CONNECTION_OFFLOAD_PARAMETERS OID.

Using Registry Values to Enable and
Disable Connection Offloading
Article • 12/15/2021

When you debug a driver's connection offload functionality, you might find it useful to
enable or disable connection offload services with a registry key setting. There are
standardized keywords that you can define in INF files and in the registry. For more
information about standardized keywords, see Standardized INF Keywords for Network
Devices.

The connection offload keywords are defined as follows:

*TCPConnectionOffloadIPv4
Describes whether the device enabled or disabled the offload of TCP connections over
IPv4.

*TCPConnectionOffloadIPv6
Describes whether the device enabled or disabled the offload of TCP connections over
IPv6.

The following table describes the grouped keywords that you can use to configure
offload services.

SubkeyName ParamDesc Value EnumDesc

TCPConnectionOffloadIPv4 TCP Connection
Offload (IPv4)

0 Disabled

1 (Default) Enabled

TCPConnectionOffloadIPv6 TCP Connection
Offload (IPv6)

0 Disabled

1 (Default) Enabled

Offloading TCP/IP Connections
Article • 12/15/2021

Offloading TCP/IP connections is supported in NDIS 6.0 and later.

The NDIS TCP/IP connection offload interface enables services such as TCP chimney
offload.

For more information about offloading TCP/IP connections, see Overview of TCP
Chimney Offload in the Full TCP Offload.

Task offload OIDs
Article • 12/15/2021

The following table summarizes the OIDs that support TCP/IP task offload operations.
For more info about such operations, see TCP/IP Task Offload.-ndis-status-dot11-wfd-
group-operating-channel.md

In this table, M indicates an OID is mandatory, while O indicates it is optional.

Length Query Set Name

Arr M OID_TCP_TASK_IPSEC_ADD_SA

Arr M OID_TCP_TASK_IPSEC_ADD_UDPESP_SA

4 M OID_TCP_TASK_IPSEC_DELETE_SA

4 M OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA

Arr M M OID_TCP_TASK_OFFLOAD

NDIS_STATUS_TASK_OFFLOAD_CURREN
T_CONFIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status
indication to notify NDIS and overlying drivers that there has been a change in the task
offload configuration of a NIC.

Miniport drivers must report the current capabilities with the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication when current
capabilities change. This status indication ensures that all of the overlying protocol
drivers are updated with the new capabilities information. Miniport drivers are required
to issue this status indication in the following cases:

1. When a miniport driver receives an OID_TCP_OFFLOAD_PARAMETERS set request,
it must use the contents of the NDIS_OFFLOAD_PARAMETERS structure to update
the currently-enabled task offload capabilities.

2. When a miniport driver receives an OID_OFFLOAD_ENCAPSULATION set request, it
must use the contents of the NDIS_OFFLOAD_ENCAPSULATION structure to
update the currently-enabled task offload capabilities.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains an
NDIS_OFFLOAD structure. When issuing the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication, a miniport driver
must use the NDIS_OFFLOAD structure to report the current task offload configuration
of the NIC.

Note The contents of the NDIS_OFFLOAD structure reflect only the NIC's current task
offload configuration, not its actual hardware capabilities.

For more information about the current task offload configuration, see
OID_TCP_OFFLOAD_CURRENT_CONFIG.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload

NDIS_OFFLOAD

NDIS_OFFLOAD_ENCAPSULATION

NDIS_OFFLOAD_PARAMETERS

NDIS_STATUS_INDICATION

NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES

OID_OFFLOAD_ENCAPSULATION

OID_TCP_OFFLOAD_CURRENT_CONFIG

OID_TCP_OFFLOAD_PARAMETERS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_TASK_OFFLOAD_HARDW
ARE_CAPABILITIES
Article • 03/14/2023

NDIS miniport drivers and MUX intermediate drivers use the
NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES status indication to notify
NDIS and overlying drivers that there has been change in the task offload hardware
capabilities of the underlying NIC.

If an underlying NIC is added or deleted, the overall set of hardware capabilities that is
associated with a miniport driver or MUX intermediate driver can change. For example, if
a miniport driver issues the NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES
status indication, specifying that it cannot support Large Send Offload (LSO), the NIC
can no longer be configured to support LSO.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains an
NDIS_OFFLOAD structure. This structure specifies the task offload hardware capabilities.

For more information about task offload hardware capabilities, see
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_OFFLOAD

NDIS_STATUS_INDICATION

NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG

OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_OFFLOAD_ENCASPULATI
ON_CHANGE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_OFFLOAD_ENCASPULATION_CHANGE status
indication to notify NDIS and overlying drivers that there has been change in the
encapsulation settings.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains an
NDIS_OFFLOAD_ENCAPSULATION structure. NDIS_OFFLOAD_ENCAPSULATION
specifies the encapsulation settings.

For more information about encapsulation settings, see
OID_OFFLOAD_ENCAPSULATION.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_OFFLOAD_ENCAPSULATION

NDIS_STATUS_INDICATION

OID_OFFLOAD_ENCAPSULATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_TCP_CONNECTION_OFFL
OAD_HARDWARE_CAPABILITIES
Article • 03/14/2023

MUX intermediate drivers use the
NDIS_STATUS_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES CAPABILITIES
status indication to notify NDIS and overlying drivers that there has been change in the
connection offload characteristics of the underlying hardware.

If an underlying NIC is added or deleted, the overall set of hardware capabilities that is
associated with a MUX intermediate driver can change.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure contains an
NDIS_TCP_CONNECTION_OFFLOAD structure. NDIS_TCP_CONNECTION_OFFLOAD
specifies the task offload hardware capabilities.

For more information about task offload hardware capabilities, see
OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES.

Version Supported in NDIS 6.0 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_TCP_CONNECTION_OFFLOAD

OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload

NDIS_STATUS_PD_CURRENT_CONFIG
Article • 03/14/2023

This status indication is a notification that the NDIS_PD_CONFIG structure has changed.

A PacketDirect-capable miniport driver must make an
NDIS_STATUS_PD_CURRENT_CONFIG status indication after an
OID_PD_CLOSE_PROVIDER or OID_PD_OPEN_PROVIDER request.

The miniport driver calls NdisMIndicateStatusEx to make the status indication, and must
pass a pointer to an NDIS_STATUS_INDICATION structure through the StatusIndication
parameter. When making this indication, the miniport driver must set the following
members of the NDIS_STATUS_INDICATION structure:

SourceHandle must be set to the handle that the miniport received in the
MiniportAdapterHandle parameter of the MiniportInitializeEx function.

StatusCode must be set to NDIS_STATUS_PD_CURRENT_CONFIG.

StatusBuffer must be set to the address of a ULONG variable, which stores the
appropriate NDIS_STATUS_xxxx code for the result of the scan operation.

StatusBufferSize must be set to sizeof(ULONG).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NdisMIndicateStatusEx

OID_PD_CLOSE_PROVIDER

OID_PD_OPEN_PROVIDER

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pd_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

Virtualized Networking Topics
Article • 07/07/2022

Virtualized networking refers to the NDIS technologies for packet transfer and
management within a Hyper-V virtual environment.

This section describes the following components of virtualized networking:

Virtualized Networking Concepts and Terms

Overview of Virtualized Networking

Single Root I/O Virtualization (SR-IOV)

Virtual Machine Queue (VMQ)

Hyper-V Extensible Switch

Virtualized Networking Concepts and
Terms
Article • 07/07/2022

The following list gives definitions of key concepts and terms that are used in the
Virtualized Networking section. We recommend that you become familiar with these
terms before you read the other topics in this section:

Child Partition
In Hyper-V, the child partition is a software-based virtual machine (VM) that has
unprivileged access to the physical resources of the host computer.

Each child partition is created through the parent partition. There can be one or more
child partitions that run under Hyper-V on the host computer. Each child partition hosts
a guest operating system.

In general, child partitions do not have direct access to the physical hardware resources
and are presented a virtual view of the resources as virtual devices. Requests to the
virtual devices are redirected, either through the VM bus (VMBus) or the hypervisor, to
the parent partition where these requests are handled. In addition, child partitions
cannot create other partitions.

Note Starting with Windows Server 2012, child partitions do have direct access to the
resources of a physical network adapter that supports single root I/O virtualization (SR-
IOV).

Emulated Network Adapter
A Hyper-V extensible switch Ethernet adapter that is exposed in the guest operating
system that runs in a Hyper-V child partition. An emulated network adapter is a type of
VM network adapter. The emulated network adapter mimics an Intel network adapter
and uses hardware emulation to forward packets to and from the extensible switch port.

This adapter is exposed in a guest operating system that is Windows XP, Windows Vista,
or later versions of Windows. This adapter is also exposed in a guest operating system
that is a non-Windows operating system.

External Extensible Switch

A virtual Ethernet switch over which packets are routed between the Hyper-V parent
partition, one or more Hyper-V child partitions, and the physical networking interface of
the host. This type of switch allows packets to be sent or received between all Hyper-V
partitions and the physical network interface on the host.

Also, applications and drivers that run in the management operating system can send or
receive packets through this type of switch.

External Network Adapter
A Hyper-V extensible switch Ethernet adapter that is exposed in the management
operating system that runs in the Hyper-V parent partition. The external network
adapter is bound to one or more physical network adapters on the host.

The external network adapter routes packets between the Hyper-V partitions and the
physical network interface on the host.

Note Each instance of an extensible switch supports no more than one external network
adapter.

Extensible Switch Team
This is a configuration in which the extensible switch external network adapter is bound
to the virtual miniport edge of an NDIS multiplexer (MUX) intermediate driver. The MUX
intermediate driver is bound to a team of one or more physical networks on the host.

In this configuration, the extensible switch extensions are exposed to every network
adapter in the team. This allows the forwarding extension in the extensible switch driver
stack to manage the configuration and use of individual network adapters in the team.
For example, the extension can provide support for a load balancing failover (LBFO)
solution over the team by forwarding outgoing packets to individual adapters. Such an
extension is known as a teaming provider.

For more information, see NDIS MUX Intermediate Drivers.

Guest Operating System
The operating system that runs in a Hyper-V child partition. Each child partition can host
only one operating system. However, many different operating systems can be hosted in
child partitions. This includes different versions of Windows and Linux.

Hypervisor
In Hyper-V, the hypervisor is a layer of software that runs between the physical
hardware and one or more operating systems that run in Hyper-V partitions.

The hypervisor's main purpose is to provide isolated execution environments called
partitions. The hypervisor provides each partition with a set of hardware resources, such
memory, devices, and CPU cycles. The hypervisor controls and arbitrates access from
each partition to the underlying hardware.

Hyper-V Extensible Switch
A virtual Ethernet switch that runs in the management operating system. Each instance

of the extensible switch routes packets between ports that are connected to the Hyper-
V extensible switch network adapters.

For more information, see Hyper-V Extensible Switch.

Note The Hyper-V extensible switch is supported in NDIS 6.30 and later versions of
NDIS.

Hyper-V Extensible Switch Extension
A Hyper-V extensible switch extension is an NDIS filter driver that attaches to the
extensible switch driver stack. Once attached, the extension can capture, filter, or
forward network packets and NDIS OIDs. Packets and OIDs can be forwarded to network
adapters that are connected to extensible switch ports.

Hyper-V extensible switch extensions are supported in NDIS 6.30 and later versions of
NDIS.

Note The Windows Filtering Platform (WFP) provides an in-box extensible switch
filtering extension (Wfplwfs.sys). This extension allows WFP filters or callout drivers to
intercept packets along the Hyper-V extensible switch data path. This allows the filters
or callout drivers to perform packet inspection or modification by using the WFP
management and system functions. For an overview of WFP, see Windows Filtering
Platform.

Hyper-V Extensible Switch Network Adapter
A network adapter that is managed by the Hyper-V extensible switch. These network
adapters connect to ports on the extensible switch, and consist of the following adapter
types:

The external and internal network adapters that are exposed in the management
operating system that runs in the Hyper-V parent partition.

The synthetic or emulated VM network adapters that are exposed in the guest
operating system that runs in a Hyper-V child partition.

Internal Extensible Switch
A virtual Ethernet switch over which packets are routed between the Hyper-V parent
partition and one or more Hyper-V child partitions. This type of switch excludes packet
traffic from the physical network interface on the host.

Also, applications and drivers that run in the management operating system can send or
receive packets through this type of switch.

Internal Network Adapter
A Hyper-V extensible switch Ethernet adapter that is exposed in the management

operating system that runs in the Hyper-V parent partition. The internal network adapter
sends or receives packets between all Hyper-V partitions. However, the internal network
adapter is not bound to a physical networking interface of the host.

I/O Memory Management Unit (IOMMU)
An IOMMU is used to remap physical memory addresses to the addresses that are used
by the child partitions. The IOMMU operates independently of the memory
management hardware that is used by the processor.

Load Balancing Failover (LBFO) Team
This is a configuration in which the extensible switch external network adapter is bound
to the virtual miniport edge of an LBFO provider. The LBFO provider itself can bind to a
team of one or more physical network adapters.

In this configuration, the extensible switch extensions are exposed to only the
underlying virtual miniport edge as a network adapter. This allows the provider to
support an LBFO solution by binding to multiple physical network adapters. These
adapters are not managed by a forwarding extension that runs in the extensible switch
driver stack.

Management Operating System
The operating system that runs in the Hyper-V parent partition. The parent partition
runs the operating system that is running on the host computer. For Hyper-V, the host
computer must run x64 versions of Windows Server 2008 or later versions of Windows
Server.

Network Virtual Service Client (NetVSC) Driver
An NDIS driver that runs in the guest operating system of a Hyper-V child partition. The
NetVSC exposes a virtualized network adapter that is known as a VM network adapter.

The NetVSC accesses the Hyper-V extensible switch to forward packets over the network
interface managed by the switch. The NetVSC does this by passing messages over the
VMBus to the associated NetVSP driver. This driver runs in the management operating
system of the Hyper-V parent partition.

In most cases, the NetVSC sends and receives packets by connecting to a port on the
Hyper-V extensible switch. However, the NetVSC could be configured to connect to a
Virtual Function (VF) of a physical network adapter that supports the SR-IOV interface. In
this case, the NetVSC sends and receives packets directly over the underlying physical
adapter.

Network Virtual Service Producer (NetVSP) Driver
An NDIS driver that runs in the management operating system of the Hyper-V parent

partition. This driver provides services to support networking access by the Hyper-V
child partitions.

NIC Switch
The NIC switch is a hardware component of a network adapter that supports single root
I/O virtualization (SR-IOV). This switch bridges network traffic between the adapter's
physical network interface and the Physical Function (PF) and one or more VFs on the
adapter.

Partition
A partition is managed by the hypervisor. Each partition represents a logical unit of
isolated processor and memory resources. This allows multiple isolated operating
systems to share a single hardware platform.

The hypervisor also manages policies for memory and device access on the host
computer. These policies are different for parent and child partitions.

Parent Partition
In Hyper-V, the parent partition is the first partition on the host computer. This partition
has privileged access to the physical resources of the host computer, such as access to
memory and devices. In addition, the parent partition is responsible for starting the
hypervisor and creating child partitions.

There is only one parent partition that runs under Hyper-V on the host computer. The
parent partition hosts the management operating system.

Note The parent partition is also known as the root partition.

Physical Function (PF)
A PCI Express (PCIe) function that supports the single root I/O virtualization (SR-IOV)
interface. SR-IOV extends the PCIe interface to enable multiple VMs to share the same
PCIe physical hardware resources. The PF contains the PCIe SR-IOV Extended Capability
structure in its PCI configuration space.

PF/VF Backchannel
A private software-based communication interface between the miniport drivers of a
PCIe Virtual Function (VF) and the PCIe Physical Function (PF). Each VF miniport driver
can issue requests over the backchannel to the PF miniport driver. The PF miniport
driver can issue status notifications over the backchannel to individual VF miniport
drivers.

Data exchanged between the PF and VF miniport drivers over the backchannel interface
involves the use of a VF configuration block. Each VF configuration block is similar in
concept to an interprocess communication (IPC) message, in which each block has a

proprietary format, length, and block identifier. The independent hardware vendor (IHV)
can define one or more VF configuration blocks for the PF and VF miniport drivers.

Private Extensible Switch
A virtual Ethernet switch over which packets are routed between one or more Hyper-V
child partitions. This type of switch excludes packet traffic from the Hyper-V parent
partition and the physical network interface on the host.

Note Applications and drivers that run in the management operating system cannot
send or receive packets through this type of switch.

Single Root I/O Virtualization (SR-IOV)
SR-IOV is a method by which a PCIe network adapter can be partitioned into one
Physical Function (PF) and one or more virtual functions (VF). Each function on the
adapter is assigned a unique PCIe requester ID. This enables the adapter to apply
memory and interrupt translations so that different network traffic streams can be
delivered directly to the appropriate PF or VF. By avoiding the routing of network traffic
through the Hyper-V extensible switch component, SR-IOV reduces the I/O overhead in
the virtualized networking environment.

For more information, see Single Root I/O Virtualization (SR-IOV).

Note SR-IOV is supported in NDIS 6.30 and later versions of NDIS.

Synthetic Data Path
The networking data path between a VM network adapter exposed in a guest operating
system and the Hyper-V extensible switch component in the management operating
system.

Synthetic Network Adapter
A Hyper-V extensible switch Ethernet adapter that is exposed in the guest operating
system that runs in a Hyper-V child partition. A synthetic network adapter is a type of
VM network adapter. The network virtual service client (NetVSC) that runs in the VM
exposes this synthetic network adapter. NetVSC forwards packets to and from the
extensible switch port over the VM bus (VMBus) to the associated NetVSP driver.

This network adapter is exposed in a guest operating system that is Windows Vista or a
later version of Windows.

Virtual Function (VF)
A PCIe function that is associated with a PF on a network adapter that supports SR-IOV.
A VF shares one or more physical resources on the adapter, such as the physical
Ethernet port, with the PF and other VFs that are associated with the same PF.

VF Data Path
The networking data path between a VM network adapter exposed in a guest operating
system and the VF on an SR-IOV network adapter. In this data path, the VM network
adapter is teamed with the VF network adapter in the guest operating system. The VF
miniport driver forwards packets to or from the VM network adapter to the VF. The NIC
switch on the SR-IOV network adapter then forwards packets to or from the VF to the
physical network interface on the adapter.

VF Network Adapter
The virtual network adapter that is exposed in the guest operating system for the VF.
When resources are allocated for the VF and it becomes attached to a child partition,
the VPCI bus driver in the guest operating system of that partition exposes the VF
network adapter. The VPCI bus driver also loads the VF miniport driver for this adapter.

Virtual Machine (VM)
A virtual guest computer that is implemented in software and is hosted within a physical
host computer. A virtual machine emulates a complete hardware system, from processor
to network adapter, in a self-contained, isolated software environment. This enables
concurrent operation of otherwise incompatible operating systems.

Each guest operating system runs in its own isolated software virtual machine.

Note In Hyper-V, a child partition is also known as a VM.

Virtual Machine Bus (VMBus)
A virtual communications bus that passes control and data messages between the
Hyper-V parent and child partitions. Access to the physical resources on the host
computer by child partitions is made through messages that are passed over the VMBus
between Virtual Service Client (VSC) and Virtual Service Provider (VSP) components.

Virtual Machine (VM) Network Adapter
A Hyper-V extensible switch virtual network adapter that is exposed in the guest
operating system of a Hyper-V child partition.

The VM network adapter supports the following virtualization types:

The VM network adapter could be a synthetic virtualization of a network adapter
(synthetic network adapter). In this case, the network virtual service client (NetVSC)
that runs in the VM exposes this virtual network adapter. NetVSC forwards packets
to and from the extensible switch port over the VM bus (VMBus).

The VM network adapter could be an emulated virtualization of a physical network
adapter (emulated network adapter). In this case, the VM network adapter mimics

an Intel network adapter and uses hardware emulation to forward packets to and
from the extensible switch port.

A VM network adapter can be configured to access either the Hyper-V external, internal,
or private network interfaces.

Virtual Machine Queue (VMQ)
A VMQ-capable network adapter uses DMA to transfer all incoming frames directly to
VM memory. VMQ also improves network throughput by distributing the processing of
network traffic for multiple VMs among multiple processors.

For more information, see Virtual Machine Queue (VMQ).

Note VMQ is supported in NDIS 6.20 and later versions of NDIS.

Virtual PCI (VPCI) Driver
The PCI bus driver that runs in the guest operating system of a Hyper-V child partition.
This driver exposes the VF as a virtual network adapter in the guest operating system.

The VPCI driver is a Hyper-V VSC and communicates with the VPCI VSP that runs in the
management operating system in the Hyper-V parent partition. Communication
between the VPCI VSP and VSC components occurs over VMBUS.

For more information about the VPCI interface, see
GUID_PCI_VIRTUALIZATION_INTERFACE.

Virtualization Stack
A collection of software components that manages the creation and execution of child
partitions under Hyper-V. The virtualization stack manages the access by child partitions
to the hardware resources on the host computer. The virtualization stack runs in the
Hyper-V parent partition.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh406642(v=vs.85)

Overview of Hyper-V
Article • 12/15/2021

Hyper-V is a hypervisor-based virtualization technology for x64 versions of Windows
Server 2008 and later versions of Windows Server. The hypervisor is the processor-
specific virtualization platform that allows multiple isolated operating systems to share a
single hardware platform.

Hyper-V supports isolation through separate partitions. A partition is a logical unit of
isolation, supported by the hypervisor, in which operating systems execute. The
virtualization stack runs in the management operating system of the Hyper-V parent
partition, and has direct access to the hardware devices. The management operating
system then creates the Hyper-V child partitions and starts the guest operating systems
within them.

Partitions do not have access to the physical processor, nor do they handle the
processor interrupts. Instead, they have a virtual view of the processor and run in a
virtual memory address region that is private to each guest partition. The hypervisor
handles the interrupts to the processor, and redirects them to the respective partition.
Hyper-V can also hardware accelerate the address translation between various guest
virtual address spaces by using an I/O memory management unit (IOMMU) which
operates independently of the memory management hardware used by the processor.
An IOMMU is used to remap physical memory addresses to the addresses that are used
by the child partitions.

Child partitions also do not have direct access to other hardware resources. Instead,
child partitions are presented a virtual view of the resources, known as virtual devices.
Requests to the virtual devices are redirected either through the virtual machine bus
(VMBus) or the hypervisor to the management operating system in the parent partition,
which handles the device requests. The VMBus is a logical inter-partition communication
channel, with separate channels allocated for communication between the parent
partition and a child partition.

The management operating system hosts virtual service providers (VSPs) that
communicate over the VMBus to handle device access requests from child partitions.
The guest operating system on a child partition hosts virtual service clients (VSCs) that
redirect device requests to VSPs in the management operating system by using the
VMBus.

For network access to child partitions, a Network VSC (NetVSC) runs in a guest
operating system. Networking requests and packets are sent between each NetVSC and

the Network VSP that runs in the management operating system. The NetVSC also
exposes a virtualized view of the physical network adapter on the host computer. This
virtualized network adapter is known as a synthetic network adapter.

Note Hyper-V also supports another less-efficient virtualized network adapter that is
known as an emulated network adapter. An emulated network adapter mimics an Intel
network adapter and uses hardware emulation to forward packets to and from the
NetVSP.

The following figure shows the networking data paths in Hyper-V over synthetic
network adapters.

These data paths are extended by using NDIS virtualized networking interfaces, such as
the virtual machine queue (VMQ), single root I/O virtualization (SR-IOV), or Hyper-V
extensible switch interfaces. For example, the NetVSC could be configured to connect to
a Virtual Function (VF) of a physical network adapter that supports the SR-IOV interface.
In this case, the NetVSC sends and receives packets directly over the underlying physical
adapter and not over the VMBus.

For more information about Hyper-V, see Hyper-V.

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc753637(v=ws.10)

Single Root I/O Virtualization (SR-IOV)
Interface
Article • 12/15/2021

The SR-IOV interface allows for the partitioning of the hardware resources on a PCI
Express (PCIe) network adapter into one or more virtual interfaces, known as virtual
functions (VFs). This allows the adapter resources to be shared in a virtual environment.
SR-IOV enables network traffic to bypass the virtual software switch layer by assigning a
VF to the Hyper-V child partition directly. By doing this, the I/O overhead in the software
emulation layer is diminished and network throughput achieves nearly the same
performance as in nonvirtualized environments.

Each PCIe VF is assigned a unique Requester ID, which allows an I/O memory
management unit (IOMMU) to do the following:

Distinguish between different traffic streams on each PCIe function of the network
adapter. This allows the IOMMU to apply memory and interrupt translations so
that these traffic streams can be delivered directly to the appropriate child or
parent partition.

Isolate traffic flows between partitions. This guarantees that traffic flow from a
partition does not affect other partitions on the device.

The following figure shows the VF data path within the SR-IOV interface.

The use of the VF data path provides the following benefits:

All data packets flow directly between the protocol stacks in the guest operating
system and the VF. This eliminates the overhead of the synthetic data path in
which data packets flow between the Hyper-V child and parent partitions. Once
forwarded to the parent partition, the Hyper-V extensible switch module forwards
these packets to other child partitions or to the physical network interface on the
underlying SR-IOV physical adapter.

The VF data path bypasses any involvement by the management operating system
in packet traffic from a Hyper-V child partition. The VF provides independent
memory space, interrupts and DMA streams for the child partition to which it is
attached. This achieves networking performance that is almost compatible with
nonvirtualized environments.

The routing of packets over the VF data path is performed by the NIC switch on
the SR-IOV network adapter. Packets are sent or received over the external
network through the physical port of the adapter. Packets are also forwarded to or
from other child partitions to which a VF is attached.

Note Packets to or from child partitions to which no VF is attached are forwarded
by the NIC switch to the extensible switch module. This module runs in the Hyper-
V parent partition and delivers these packets to the child partition by using the
synthetic data path.

For more information about the SR-IOV interface, see Single Root I/O Virtualization (SR-
IOV).

Virtual Machine Queue (VMQ) Interface
Article • 09/27/2024

A network adapter that supports the VMQ interface includes hardware that routes
packets to receive queues. This requires parsing of the packet header and configuration
of the queues on the network adapter.

When a miniport driver makes a receive indication, all of the packets are for the same
VM queue.

As an option, the network adapter can provide VLAN filtering in hardware for a specified
media access control (MAC) address.

Routing the packets to queues and indicating all the packets on a queue to a VM allows
concurrent receive processing for multiple VMs. Every queue is serviced by a different
processor.

Routing to queues in the network adapter prevents a copy step to copy data from the
network adapter receive buffers to the VM address space.

The following figure shows the synthetic data paths within the VMQ interface.

In the figure, the miniport driver for the physical network adapter indicates received
data up to the Hyper-V extensible switch component. This component acts as a network
virtual service provider (NetVSP) and provides services to support networking access by
the Hyper-V child partitions.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

The services that the extensible switch provides includes routing packets to and from
the virtual machine (VM) network adapters in the guest operating systems. The VM
network adapter is exposed by the network virtual service client (NetVSC) that runs in
the guest operating system.

Under VMQ, the physical network adapter transfers the data that matches a receive filter
test for a VMQ directly to that queue. This prevents software processing in the
extensible switch. Data that does not pass any filter tests goes to the default queue
where the extensible switch must process the data. In addition to preventing the routing
and copying in the extensible switch, the receive interrupts for VM queues are assigned
to different processors.

For more information about the VMQ interface, see Virtual Machine Queue (VMQ).

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Hyper-V Extensible Switch Interface
Article • 12/15/2021

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

A Hyper-V extensible switch is a virtual Ethernet switch that runs in the management
operating system of the Hyper-V parent partition. Each instance of the extensible switch
routes packets between the physical network interface in the host and the virtual
network interfaces that are configured for the Hyper-V child partitions. These virtual
network interfaces include Hyper-V external, internal, and private network interfaces.

Starting with NDIS 6.30 in Windows Server 2012, the extensible switch module supports
an interface that allows NDIS filter drivers (known as extensible switch extensions) to bind
within the extensible switch driver stack. This allows extensions to monitor, modify, and
forward packets to extensible switch ports. This also allows extensions to inspect and
inject packets in the virtual network interfaces that are used by the various Hyper-V
partitions.

Extensions can be configured with switch and port policies to apply to packets that are
routed through the extensible switch data path. This allows the driver to allow or deny a
packet from being sent or received over a port.

In the extensible switch interface, the filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

The extensible switch interface supports the following types of extensions:

Capturing Extension
An extension that captures and monitors packet traffic. This type of extension cannot
modify packets or packet destinations through the extensible switch. However,
capturing extensions can originate packet traffic, such as packets that contain traffic
statistics that the extension sends to a host application.

For more information, see Capturing Extensions.

Filtering Extension
An extension that captures and monitors packet traffic. This type of extension can also
inspect and reject packet delivery based on custom port or switch policy settings.

For more information, see Filtering Extensions.

Forwarding Extension
An extension that has the same capabilities as a filtering extension. This type of
extension can determine the extensible switch destination ports that a packet is
delivered to, as well as inject packet traffic to any extensible switch port. This type of
extension also inspects and rejects packet delivery based on standard port policy
settings.

For more information, see Forwarding Extensions.

Note In NDIS 6.40 (Windows Server 2012 R2) and later, forwarding extensions must
support Hybrid Forwarding.

Note If a forwarding extension is not installed and enabled in the extensible switch, the
switch determines a packet's destination ports as well as filters packets based on
standard port settings.

For more information about the extensible switch interface, see Hyper-V Extensible
Switch.

Potential Performance Bottlenecks in an
NDIS Virtualized Networking
Environment
Article • 07/07/2022

In a networking environment that supports device sharing, a virtual interface with its
own media access control (MAC) address is exposed in each Hyper-V child partition.
These virtual interfaces use the underlying virtual machine bus (VMBus) to connect to a
port on the Hyper-V extensible switch module that runs in the management operating
system of the Hyper-V parent partition. The extensible switch transmits all the outgoing
frames from the different partitions by issuing send requests to the underlying shared
network adapter.

The physical network adapter indicates all incoming frames that it receives up to the
extensible switch in the management operating system. The extensible switch uses the
destination MAC address to assign the indicated incoming frames to virtual network
adapters. For each child partition, the incoming frames must be copied from network
adapter buffers in the management operating system to secondary buffers that were
preallocated from the associated child partition. A notification is sent to each virtual
interface that has pending frames. The virtual interface in each child partition indicates
the incoming frames to overlying transport drivers. After identifying the application,
transport drivers copy the data payload from the secondary buffer to an application
buffer.

Therefore, in the virtualization environment, incoming received frames are copied twice,
first from the network adapter buffer to a temporary buffer that is allocated from the
target memory address space of a child partition, and then again from this temporary
buffer to an application buffer. The extensible switch in the management operating
system must use CPU cycles to parse incoming frames and place them in separate
queues based on their destination MAC address.

The following figure shows the performance bottlenecks for receive processing in a
virtualized environment.

The performance issues in the previous figure include the following:

Each incoming packet must be examined to identify the target virtual network
adapter.

Received data must be copied from the parent partition's memory address space
to the child partition's memory address space.

Lack of concurrency for interrupts and DPCs.

To address performance issues, the virtual machine queue (VMQ) interface allows:

A network adapter to determine the target child partition by implementing MAC
address filtering in hardware.

A network adapter to use DMA to transfer received packets directly to a child
partition's memory address space.

A miniport driver to provide interrupt and DPC concurrency by indicating received
packets for different child partitions on different CPUs.

Note Packets that are received from the external network still have to be forwarded by
the management operating system to the guest operating system over the VMBus.

For more information about the VMQ interface, see Virtual Machine Queue (VMQ).

Overcoming Performance Bottlenecks with VMQ

Overcoming Performance Bottlenecks with SR-IOV

The single root I/O virtualization (SR-IOV) interface provides a standards-based
foundation for efficiently sharing a PCI Express (PCIe) device among multiple child
partitions. Physical I/O resources are virtualized within the PCIe device, so each device
presents multiple virtual I/O interfaces called virtual functions (VFs). The management
operating system can configure each VF on the device and assign them to particular
child partitions.

A VF is exposed as a hardware device to the child partition. All data packets flow directly
between the guest operating system and the VF. This eliminates the software path
between the management operating system and the child partition for data traffic. It
bypasses the involvement by the management operating system in data movement by
providing independent memory space, interrupts, and DMA streams for each child
partition. Frames are sent to the external network by using the physical port of the
device or to another child partition by using the internal port connected to the VF.

In all cases, the SR-IOV interface eliminates the need for any involvement of the
management operating system in the data path. As a result, the SR-IOV interface
provides the following:

Improved I/O throughput and reduced CPU utilization.

Lower latency.

Improved scalability.

For more information about the SR-IOV interface, see Single Root I/O Virtualization (SR-
IOV).

Introduction to Single Root I/O
Virtualization (SR-IOV)
Article • 12/15/2021

This section describes the NDIS single root I/O virtualization (SR-IOV) interface. Starting
with NDIS 6.30, the SR-IOV interface supports Microsoft Hyper-V performance
improvements for virtualized networks on Windows Server 2012 and later versions of
Windows Server.

The SR-IOV specification from PCI-SIG defines the extensions to the PCI Express (PCIe)
specification suite that enable multiple virtual machines (VMs) to share the same PCIe
physical hardware resources. This section describes the NDIS SR-IOV interface and
describes the techniques for writing an NDIS miniport driver for an SR-IOV capable
network adapter that implements the PCIe SR-IOV specification.

This section includes the following topics:

Overview of Single Root I/O Virtualization (SR-IOV)

Writing SR-IOV PF Miniport Drivers

Writing SR-IOV VF Miniport Drivers

SR-IOV PF/VF Backchannel Communication

SR-IOV OIDs

For more information on SR-IOV, refer to the PCI-SIG Single Root I/O Virtualization and
Sharing 1.1 specification.

https://pcisig.com/specifications/iov/single_root

Feedback

Was this page helpful?

Overview of Single Root I/O
Virtualization (SR-IOV)
Article • 09/27/2024

The single root I/O virtualization (SR-IOV) interface is an extension to the PCI Express
(PCIe) specification. SR-IOV allows a device, such as a network adapter, to separate
access to its resources among various PCIe hardware functions. These functions consist
of the following types:

A PCIe Physical Function (PF). This function is the primary function of the device
and advertises the device's SR-IOV capabilities. The PF is associated with the
Hyper-V parent partition in a virtualized environment.

One or more PCIe Virtual Functions (VFs). Each VF is associated with the device's
PF. A VF shares one or more physical resources of the device, such as a memory
and a network port, with the PF and other VFs on the device. Each VF is associated
with a Hyper-V child partition in a virtualized environment.

Each PF and VF is assigned a unique PCI Express Requester ID (RID) that allows an I/O
memory management unit (IOMMU) to differentiate between different traffic streams
and apply memory and interrupt translations between the PF and VFs. This allows traffic
streams to be delivered directly to the appropriate Hyper-V parent or child partition. As
a result, nonprivileged data traffic flows from the PF to VF without affecting other VFs.

SR-IOV enables network traffic to bypass the software switch layer of the Hyper-V
virtualization stack. Because the VF is assigned to a child partition, the network traffic
flows directly between the VF and child partition. As a result, the I/O overhead in the
software emulation layer is diminished and achieves network performance that is nearly
the same performance as in nonvirtualized environments.

For more information, see the following topics:

SR-IOV Architecture

SR-IOV Data Paths

 Yes No

Provide product feedback | Get help at Microsoft Q&A

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

SR-IOV Architecture
Article • 06/28/2024

This section provides a brief overview of the single root I/O virtualization (SR-IOV)
interface and its components.

The following figure shows the components of the SR-IOV starting with NDIS 6.30 in
Windows Server 2012.

The SR-IOV interface consists of the following components:

Hyper-V Extensible Switch Module
The extensible switch module that configures the NIC switch on the SR-IOV network
adapter to provide network connectivity to the Hyper-V child partitions.

Note Hyper-V child partitions are known as virtual machines (VMs).

If the child partitions are connected to a PCI Express (PCIe) Virtual Function (VF), the
extensible switch module does not participate in data traffic between the VM and the
network adapter. Instead, data traffic is passed directly between the VM and the VF to
which it is attached.

For more information about the extensible switch, see Hyper-V Extensible Switch.

Physical Function (PF)
The PF is a PCI Express (PCIe) function of a network adapter that supports the SR-IOV
interface. The PF includes the SR-IOV Extended Capability in the PCIe Configuration

space. The capability is used to configure and manage the SR-IOV functionality of the
network adapter, such as enabling virtualization and exposing VFs.

For more information, see SR-IOV Physical Function (PF).

PF Miniport Driver
The PF miniport driver is responsible for managing resources on the network adapter
that are used by one or more VFs. Because of this, the PF miniport driver is loaded in the
management operating system before any resources are allocated for a VF. The PF
miniport driver is halted after all resources that were allocated for VFs are freed.

For more information, see Writing SR-IOV PF Miniport Drivers.

Virtual Function (VF)
A VF is a lightweight PCIe function on a network adapter that supports the SR-IOV
interface. The VF is associated with the VF on the network adapter, and represents a
virtualized instance of the network adapter. Each VF has its own PCI Configuration
space. Each VF also shares one or more physical resources on the network adapter, such
as an external network port, with the PF and other VFs.

For more information, see SR-IOV Virtual Functions (VFs).

VF Miniport Driver
The VF miniport driver is installed in the VM to manage the VF. Any operation that is
performed by the VF miniport driver must not affect any other VF or the PF on the same
network adapter.

For more information, see Writing SR-IOV VF Miniport Drivers.

Network Interface Card (NIC) Switch
The NIC switch is a hardware component of the network adapter that supports the SR-
IOV interface. The NIC switch forwards network traffic between the physical port on the
adapter and internal virtual ports (VPorts). Each VPort is attached to either the PF or a
VF.

For more information, see NIC Switches.

Virtual Ports (VPorts)
A VPort is a data object that represents an internal port on the NIC switch of a network
adapter that supports the SR-IOV interface. Similar to a port on a physical switch, a
VPort on the NIC switch delivers packets to and from a PF or VF to which the port is
attached.

For more information, see NIC Switches.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Physical Port
The physical port is a hardware component of the network adapter that supports the
SR-IOV interface. The physical port provides the interface on the adapter to the external
networking medium.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

SR-IOV Physical Function (PF)
Article • 09/27/2024

The Physical Function (PF) is a PCI Express (PCIe) function of a network adapter that
supports the single root I/O virtualization (SR-IOV) interface. The PF includes the SR-IOV
Extended Capability in the PCIe Configuration space. The capability is used to configure
and manage the SR-IOV functionality of the network adapter, such as enabling
virtualization and exposing PCIe Virtual Functions (VFs).

The PF is exposed as a virtual network adapter in the management operating system of
the Hyper-V parent partition. The PF miniport driver is an NDIS miniport driver that
manages the PF in the management operating system. The configuration and
provisioning of the VFs, together with other hardware and software resources for the
support of VFs, is performed through the PF miniport driver. The PF miniport driver uses
the traditional NDIS miniport driver functionality to provide the access to the
networking I/O resources to the management operating system. The PF driver is also
used as a way to manage the resources allocated on the adapter for the VFs.

The PF supports the SR-IOV Extended Capability structure in its PCIe configuration
space. This structure is defined in the PCI-SIG Single Root I/O Virtualization and Sharing
1.1 specification. This structure includes the following members:

TotalVFs
A read-only field that specifies the maximum number of VFs that can be associated with
the PF.

NumVFs
A read-write field that specifies the current number of VFs that are available on the SR-
IOV network adapter.

SR-IOV Control
A read-write field that specifies various control bits that enable or disable SR-IOV
functionality on the network adapter. For example, if the VF Enable bit is set to one, VFs
can be associated with the PF on the adapter. If this bit is set to zero, VFs are disabled
and not visible on the adapter.

The PF also provides the mechanism for the management operating system to
communicate with the external physical network. The PF provides network connectivity
to the all virtual network adapters that are connected to the Hyper-V extensible switch
module. This includes the following:

https://pcisig.com/specifications/iov/single_root
https://pcisig.com/specifications/iov/single_root
https://pcisig.com/specifications/iov/single_root

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Virtual network adapters that provide network connectivity to the Hyper-V parent
partition.

Virtual network adapters that provide network connectivity to the Hyper-V child
partitions that do not have VFs allocated to them.

The PF miniport driver is responsible for managing resources on the network adapter
that are used by one or more VFs. Because of this, the PF miniport driver is loaded in the
management operating system before any resources are allocated for a VF. The PF
miniport driver is halted after all resources that were allocated for VFs are freed.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

SR-IOV Virtual Functions (VFs)
Article • 09/27/2024

A PCI Express (PCIe) Virtual Function (VF) is a lightweight PCIe function on a network
adapter that supports single root I/O virtualization (SR-IOV).

The VF is associated with the PCIe Physical Function (PF) on the network adapter, and
represents a virtualized instance of the network adapter. Each VF has its own PCI
Configuration space. Each VF also shares one or more physical resources on the network
adapter, such as an external network port, with the PF and other VFs.

A VF is not a full-fledged PCIe device. However, it provides a basic mechanism for
directly transferring data between a Hyper-V child partition and the underlying SR-IOV
network adapter. Software resources associated for data transfer are directly available to
the VF and are isolated from use by the other VFs or the PF. However, the configuration
of most of these resources is performed by the PF miniport driver that runs in the
management operating system of the Hyper-V parent partition.

A VF is exposed as a virtual network adapter (VF network adapter) in the guest operating
system that runs in a Hyper-V child partition. After the VF is associated with a virtual
port (VPort) on the NIC switch of the SR-IOV network adapter, the virtual PCI (VPCI)
driver that runs in the VM exposes the VF network adapter. Once exposed, the PnP
manager in the guest operating system loads the VF miniport driver.

The VF miniport driver is an NDIS miniport driver that is installed in the VM to manage
the VF. Any operation that is performed by the VF miniport driver must not affect any
other VF or the PF on the same network adapter.

The VF miniport driver can function like any PCI device driver. It can read and write to
the VF's PCI configuration space. However, access to the virtual PCI device is a privileged
operation and is managed by the PF miniport driver in the following way:

When the VF miniport driver calls NdisMGetBusData to read data from the PCI
configuration space of the VF network adapter, the virtualization stack is notified.
This stack runs in the management operating system of the Hyper-V parent
partition. When the stack is notified of the read request, it issues an object
identifier (OID) method request of OID_SRIOV_READ_VF_CONFIG_SPACE to the PF

７ Note

A Hyper-V child partition is also known as a virtual machine (VM).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

miniport driver. The data to be read is specified in an
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure that is contained
in the OID request.

The driver reads the requested data from the VF PCI configuration space and
returns the data by completing the OID request. This data is then returned to the
VF miniport driver when the call to NdisMGetBusData completes.

When the VF miniport driver calls NdisMSetBusData to write data to the PCI
configuration space of the VF network adapter, the virtualization stack is notified
of the write request. It issues an OID method request of
OID_SRIOV_WRITE_VF_CONFIG_SPACE to the PF miniport driver. The data to be
written is specified in an NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS
structure that is contained in the OID request.

The driver writes the data to the VF PCI configuration space and returns the status
of the request when it completes the OID request. This status is returned to the VF
miniport driver after the call to NdisMSetBusData completes.

The VF miniport driver may also communicate with the PF miniport driver. This
communication path is over a backchannel interface. For more information, see SR-IOV
PF/VF Backchannel Communication.

Note The VF miniport driver must be aware that it is running in a virtualized
environment so that it can communicate with the PF miniport driver for certain
operations. For more information on how the driver does this, see Initializing a VF
Miniport Driver.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata

NIC Switches
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must implement
a hardware bridge that forwards network traffic between the physical port on the
adapter and internal virtual ports (VPorts). This bridge is known as the NIC switch and is
shown in the following figure.

Each NIC switch contains the following components:

One external, or physical, port that provides network connectivity to the external
physical network.

One internal port that provides the PCI Express (PCIe) Physical Function (PF) on the
network adapter with access to the external physical network. An internal port is
known as a virtual port (VPort).

The PF always has a VPort that is created and assigned to it. This VPort is known as
the default VPort, and is referenced by the DEFAULT_VPORT_ID identifier.

For more information about VPorts, see Virtual Ports (VPorts).

One or more VPorts that provide a PCIe Virtual Function (VF) on the network
adapter with access to the external physical network.

Note Additional VPorts can be created and allocated to the PF for network access.

Note Starting with NDIS 6.30 in Windows Server 2012, the SR-IOV interface supports
only one NIC switch on the network adapter. This switch is known as the default NIC

switch, and is referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

The hardware resources for the NIC switch are managed by the PF miniport driver for
the SR-IOV network adapter. The driver creates and configures the NIC switch through
one of the following methods:

Static creation based on standardized SR-IOV and NIC switch INF keywords. For
more information on these keywords, see Standardized INF Keywords for SR-IOV.

Dynamic creation based on object identifier (OID) method requests of
OID_NIC_SWITCH_CREATE_SWITCH. NDIS or the Hyper-V extensible switch module
issues these OID requests to create NIC switches on the SR-IOV network adapter.

For more information on how NIC switches are created, configured, and managed, see
Managing NIC Switches.

Virtual Ports (VPorts)
Article • 03/09/2022

A virtual port (VPort) is a data object that represents an internal port on the NIC switch
of a network adapter that supports single root I/O virtualization (SR-IOV). Each NIC
switch has the following ports for network connectivity:

One external physical port for connectivity to the external physical network.

One or more internal VPorts which are connected to the PCI Express Physical
Function (PF) or virtual functions (VFs).

The PF is attached to the Hyper-V parent partition and is exposed as a virtual
network adapter in the management operating system that runs in that partition.

A VF is attached to the Hyper-V child partition and is exposed as a virtual network
adapter in the guest operating system that runs in that partition.

The NIC switch bridges network traffic from the physical port to one or more VPorts.
This provides virtualized access to the underlying physical network interface.

Each VPort has a unique identifier (VPortId) that is unique for the NIC switch on the
network adapter. A default VPort always exists on the default NIC switch and can never
be deleted. The default VPort has the VPortId of NDIS_DEFAULT_VPORT_ID.

When the PF miniport driver handles an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH, it creates the NIC switch and the default VPort for
that switch. The default VPort is always attached to the PF and is always in an
operational state.

Nondefault VPorts are created through OID method requests of
OID_NIC_SWITCH_CREATE_VPORT. Only one nondefault VPort can be attached to a VF.
Once attached, the default is in an operational state. One or more nondefault VPorts can
also be created and attached to the PF. These VPorts are nonoperational when created
and can become operational through an OID set request of
OID_NIC_SWITCH_VPORT_PARAMETERS.

７ Note

After a VPort becomes operational, it can only become nonoperational when it is
deleted through an OID request of OID_NIC_SWITCH_DELETE_VPORT.

Each VPort has one or more hardware queue pairs associated with it for receiving and
transmitting packets. The default queue pair on the network adapter is reserved for use
by the default VPort. Queue pairs for nondefault VPorts are allocated and assigned when
the VPort is created through the OID_NIC_SWITCH_CREATE_VPORT request.

Nondefault VPorts are created and configured through OID method requests of
OID_NIC_SWITCH_CREATE_VPORT. The default VPort and nondefault VPorts are
reconfigured through OID set requests of OID_NIC_SWITCH_VPORT_PARAMETERS. Each
OID request contains an NDIS_NIC_SWITCH_VPORT_PARAMETERS structure that
specifies the following configuration parameters:

The PCIe function to which the VPort is attached.

Each VPort can be either attached to the PF or with a VF at any time. After the
VPort is created and attached to a PCIe function, the attachment cannot be
dynamically changed to another PCIe function.

Starting with NDIS 6.30 in Windows Server 2012, only one nondefault VPort can be
attached to a VF. However, multiple nondefault VPorts along with the default VPort can
be attached to the PF.

The number of hardware queue pairs that are assigned to a VPort.

Each VPort has a set of hardware queue pairs that are available to it. Each queue
pair consists of a separate transmit and receive queue on the network adapter.

Queue pairs are limited resources on the network adapter. The total number of
queue pairs reserved for use by the default and nondefault VPorts is specified
when the NIC switch is created. This allows the number of queue pairs that are
assigned to the default VPort to differ from the nondefault VPorts.

Each nondefault VPort can be configured to have a different number of queue
pairs. This is known as asymmetric allocation of queue pairs. If the NIC does not
allow for such an asymmetric allocation, each nondefault VPort is configured to
have equal number of queue pairs. This is known as symmetric allocation of queue
pairs. For more information, see Symmetric and Asymmetric Assignment of Queue
Pairs.

７ Note

The default VPort is always attached to the PF on the network adapter.

７ Note

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

The number of queue pairs assigned to each VPort is not changed dynamically. The
number of queue pairs assigned to a VPort cannot be changed after the VPort has been
created.

Interrupt moderation parameters for the VPort.

Different interrupt moderation types can be specified for different VPorts. This
allows the virtualization stack to control the number of interrupts generated by a
particular VPort.

In addition to configuration parameters, overlying drivers can configure receive filters
for each VPort by issuing OID method requests of OID_RECEIVE_FILTER_SET_FILTER. The
NIC switch performs the specified receive filtering on a VPort basis.

Receive filters parameters for VPorts include packet filtering conditions, such as a list of
media access control (MAC) addresses and the virtual LAN (VLAN) identifiers. Filters for
MAC addresses and VLAN identifiers are always specified together in the
NDIS_RECEIVE_FILTER_PARAMETERS associated with the
OID_RECEIVE_FILTER_SET_FILTER request. The NIC switch must filter incoming packets to
the switch whose destination MAC address and VLAN identifier matches any receive
filter condition that was set on the VPort. The NIC switch filters packets received from
either another VPort or from the external physical port. If the packet matches a filter, the
NIC switch must forward it to the VPort.

Multiple MAC address and VLAN identifier pairs may be set on the VPort. If only a MAC
address is set, the receive filter specifies that the VPort should receive packets that
match the following condition:

The packet's destination MAC address matches the filter's MAC address.

The packet has a VLAN tag or (if a VLAN tag is present) a VLAN identifier of zero.

Nondefault VPorts are deleted through OID set requests of
OID_NIC_SWITCH_DELETE_VPORT. The default VPort is only deleted when the NIC switch

The PF miniport driver reports on whether it supports asymmetric allocation
of queue pairs during MiniportInitializeEx. For more information, see
Initializing a PF Miniport Driver.

７ Note

One or more queue pairs assigned to the nondefault VPorts can be used for receive
side scaling (RSS) by the VF miniport driver that runs in the guest operating system.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

is deleted through an OID set request of OID_NIC_SWITCH_DELETE_SWITCH.

SR-IOV Data Paths
Article • 12/15/2021

This section describes the possible data paths between a network adapter that supports
single root I/O virtualization (SR-IOV) and the Hyper-V parent and child partitions.

This section includes the following topics:

Overview of SR-IOV Data Paths

SR-IOV VF Data Path

SR-IOV Synthetic Data Path

SR-IOV VF Failover and Live Migration Support

Overview of SR-IOV Data Paths
Article • 12/15/2021

When a Hyper-V child partition is started and the guest operating system is running, the
virtualization stack starts the Network Virtual Service Client (NetVSC). NetVSC exposes a
virtual machine (VM) network adapter by providing a miniport driver edge to the
protocol stacks that run in the guest operating system. In addition, NetVSC provides a
protocol driver edge that allows it to bind to the underlying miniport drivers.

NetVSC also communicates with the Hyper-V extensible switch that runs in the
management operating system of the Hyper-V parent partition. The extensible switch
component operates as a Network Virtual Service Provider (NetVSP). The interface
between the NetVSC and NetVSP provides a software data path that is known as the
synthetic data path. For more information about this data path, see SR-IOV Synthetic
Data Path.

If the physical network adapter supports the single root I/O virtualization (SR-IOV)
interface, it can enable one or more PCI Express (PCIe) Virtual Functions (VFs). Each VF
can be attached to a Hyper-V child partition. When this happens, the virtualization stack
performs the following steps:

1. The virtualization stack exposes a network adapter for the VF in the guest
operating system. This causes the PCI driver that runs in the guest operating
system to start the VF miniport driver. This driver is provided by the independent
hardware vendor (IHV) for the SR-IOV network adapter.

2. After the VF miniport driver is loaded and initialized, NDIS binds the protocol edge
of the NetVSC in the guest operating system to the driver.

Note NetVSC only binds to the VF miniport driver. No other protocol stacks in the
guest operating system can bind to the VF miniport driver.

After the NetVSC successfully binds to the driver, network traffic in the guest operating
system occurs over the VF data path. Packets are sent or received over the underlying VF
of the network adapter instead of the synthetic data path.

For more information about the VF data path, see SR-IOV VF Data Path.

The following figure shows the various data paths that are supported over an SR-IOV
network adapter.

After the Hyper-V child partition is started and before the VF data path is established,
network traffic flows over the synthetic data path. After the VF data path is established,
network traffic can revert to the synthetic data path if the following conditions are true:

The VF becomes unattached to the Hyper-V child partition. For example, the
virtualization stack could detach a VF from one child partition and attach it to
another child partition. This might occur when there are more Hyper-V child
partitions that are running than there are VF resources on the underlying SR-IOV
network adapter.

The process of failing over to the synthetic data path from the VF data path is
known as VF failover.

The Hyper-V child partition is being live migrated to a different host.

For more information about VF failover and live migration, see SR-IOV VF Failover and
Live Migration.

SR-IOV VF Data Path
Article • 12/15/2021

If the physical network adapter supports the single root I/O virtualization (SR-IOV)
interface, it can enable one or more PCI Express (PCIe) Virtual Functions (VFs). Each VF
can be attached to a Hyper-V child partition. When this happens, the virtualization stack
performs the following steps:

1. Once resources for the VF are allocated, the virtualization stack exposes a network
adapter for the VF in the guest operating system. This causes the PCI driver that
runs in the guest operating system to start the VF miniport driver. This driver is
provided by the independent hardware vendor (IHV) for the SR-IOV network
adapter.

Note Resources for the VF must be allocated by the miniport driver for the PCIe
Physical Function (PF) before the VF can be attached to the Hyper-V child partition.
VF resources include assigning a virtual port (VPort) on the NIC switch to the VF.
For more information, see SR-IOV Virtual Functions.

2. After the VF miniport driver is loaded and initialized, NDIS binds the protocol edge
of the Network Virtual Service Client (NetVSC) in the guest operating system to the
driver.

Note NetVSC only binds to the VF miniport driver. No other protocol stacks in the
guest operating system can bind to the VF miniport driver.

After the NetVSC successfully binds to the driver, network traffic in the guest operating
system occurs over the VF data path. Packets are sent or received over the underlying VF
of the network adapter instead of the software-based synthetic data path. For more
information about the synthetic data path, see SR-IOV Synthetic Data Path.

The following diagram shows the components of the VF data path over an SR-IOV
network adapter.

The use of the VF data path provides the following benefits:

All data packets flow directly between the networking components in the guest
operating system and the VF. This eliminates the overhead of the synthetic data
path in which data packets flow between the Hyper-V child and parent partitions.

For more information about the synthetic data path, see SR-IOV Synthetic Data
Path.

The VF data path bypasses any involvement by the management operating system
in packet traffic from a Hyper-V child partition. The VF provides independent
memory space, interrupts, and DMA streams for the child partition to which it is
attached. This achieves networking performance that is almost compatible with
nonvirtualized environments.

The routing of packets over the VF data path is performed by the NIC switch on
the SR-IOV network adapter. Packets are sent or received over the external
network through the physical port of the adapter. Packets are also forwarded to or
from other child partitions to which a VF is attached.

Note Packets to or from child partitions to which no VF is attached are forwarded
by the NIC switch to the Hyper-V extensible switch module. This module runs in
the Hyper-V parent partition and delivers these packets to the child partition by
using the synthetic data path.

SR-IOV Synthetic Data Path
Article • 12/15/2021

When a Hyper-V child partition is started and the guest operating system is running, the
virtualization stack starts the Network Virtual Service Client (NetVSC). NetVSC exposes a
virtual machine (VM) network adapter that provides a miniport driver edge to the
protocol stacks that run in the guest operating system.

NetVSC also communicates with the Hyper-V extensible switch that runs in the
management operating system of the Hyper-V parent partition. The extensible switch
component operates as a Network Virtual Service Provider (NetVSP). The interface
between the NetVSC and NetVSP provides a software data path that is known as the
synthetic data path.

The following diagram shows the components of the synthetic data path over an SR-IOV
network adapter.

If the underlying SR-IOV network adapter allocates resources for PCI Express (PCIe)
Virtual Functions (VFs), the virtualization stack will attach a VF to a Hyper-V child
partition. Once attached, packet traffic within the child partition will occur over the
hardware-optimized VF data path instead of the synthesized data path. For more
information on the VF data path, see SR-IOV Data Path.

The virtualization stack may still enable the synthetic data path for a Hyper-V child
partition if one of the following conditions is true:

The SR-IOV network adapter has insufficient VF resources to accommodate all of
the Hyper-V child partitions that were started. After all VFs on the network adapter
are attached to child partitions, the remaining partitions use the synthetic data
path.

The process of failing over to the synthetic data path from the VF data path is
known as VF failover.

A VF was attached to a Hyper-V child partition but becomes detached. For
example, the virtualization stack could detach a VF from one child partition and
attach it to another child partition. This might occur when there are more Hyper-V
child partitions that are running than there are VF resources on the underlying SR-
IOV network adapter.

The Hyper-V child partition is being live migrated to a different host.

Although the synthetic data path over an SR-IOV network adapter is not as efficient as
the VF data path, it can still be hardware optimized. For example, if one or more virtual
ports (VPorts) are configured and attached to the PCIe Physical Function (PF), the data
path can provide the offload capabilities that resemble the virtual machine queue (VMQ)
interface. For more information, see Nondefault Virtual Ports and VMQ.

SR-IOV VF Failover and Live Migration
Support
Article • 12/15/2021

After the Hyper-V child partition is started, network traffic flows over the synthetic data
path. If the physical network adapter supports the Single Root I/O Virtualization (SR-
IOV) interface, it can enable one or more PCI Express (PCIe) Virtual Functions (VFs). Each
VF can be attached to a Hyper-V child partition. When this happens, network traffic
flows over the hardware-optimized SR-IOV VF Data Path.

After the VF data path is established, network traffic can revert to the synthetic data
path if any of the following conditions is true:

A VF was attached to a Hyper-V child partition but becomes detached. For
example, the virtualization stack could detach a VF from one child partition and
attach it to another child partition. This might occur when there are more Hyper-V
child partitions that are running than there are VF resources on the underlying SR-
IOV network adapter.

The process of failing over to the synthetic data path from the VF data path is
known as VF failover.

The Hyper-V child partition is being live migrated to a different host.

The following figure shows the various data paths that are supported over an SR-IOV
network adapter.

The NetVSC exposes a Virtual Machine (VM) network adapter which is bound to the VF
miniport driver to support the VF data path. During the transition to the synthetic data
path, the VF network adapter is gracefully removed if possible from the guest operating
system. If the VF cannot be removed gracefully and times out, it will be surprise
removed. Then the VF miniport driver is halted, and the Network Virtual Service Client
(NetVSC) is unbound from the VF miniport driver.

The transition between the VF and synthetic data paths occurs with minimum loss of
packets and prevents the loss of TCP connections. Before the transition to the synthetic
data path is complete, the virtualization stacks follows these steps:

1. The virtualization stack moves the Media Access Control (MAC) and Virtual LAN
(VLAN) filters for the VM network adapter to the default Virtual Port (VPort) that is
attached to the PCIe Physical Function (PF). The VM network adapter is exposed in
the guest operating system of the child partition.

After the filters are moved to the default VPort, the synthetic data path is fully
operational for network traffic to and from the networking components that run in
the guest operating system. The PF miniport driver indicates received packets on
the default PF VPort which uses the synthetic data path to indicate the packets to
the guest operating system. Similarly, all transmitted packets from the guest
operating system are routed through the synthetic data path and transmitted
through the default PF VPort.

For more information about VPorts, see Virtual Ports (VPorts).

2. The virtualization stack deletes the VPort that is attached to the VF by issuing an
Object Identifier (OID) set request of OID_NIC_SWITCH_DELETE_VPORT to the PF
miniport driver. The miniport driver frees any hardware and software resources
associated with the VPort and completes the OID request.

For more information, see Deleting a Virtual Port.

3. The virtualization stack requests a PCIe Function Level Reset (FLR) of the VF before
its resources are deallocated. The stack does this by issuing an OID set request of
OID_SRIOV_RESET_VFto the PF miniport driver. The FLR brings the VF on the SR-
IOV network adapter into a quiescent state and clears any pending interrupt events
for the VF.

4. After the VF has been reset, the virtualization stack requests a deallocation of the
VF resources by issuing an OID set request of OID_NIC_SWITCH_FREE_VF to the PF
miniport driver. This causes the miniport driver to free the hardware resources
associated with the VF.

For more information about this process, see Virtual Function Teardown Sequence.

Writing SR-IOV PF Miniport Drivers
Overview
Article • 12/15/2021

This section discusses the requirements and guidelines for writing an NDIS miniport
driver for the PCI Express (PCIe) Physical Function (PF) of a single root I/O virtualization
(SR-IOV) network adapter.

This section includes the following topics:

Initializing a PF Miniport Driver

Managing NIC Switches

Managing Virtual Ports

Managing Virtual Functions

Halting a PF Miniport Driver

INF Requirements for PF Miniport Drivers

Note For information on how to write a miniport driver for a PCIe Virtual Function (VF)
of the SR-IOV network adapter, see Writing SR-IOV VF Miniport Drivers.

Initializing a PF Miniport Driver Topics
Article • 12/15/2021

This section discusses the requirements and guidelines for initializing an NDIS miniport
driver for the PCI Express (PCIe) Physical Function (PF) of a single root I/O virtualization
(SR-IOV) network adapter.

This section includes the following topics:

Determining SR-IOV Capabilities

Determining NIC Switch Capabilities

Determining Receive Filtering Capabilities

Initialization Sequence for PF Miniport Drivers

Determining SR-IOV Capabilities
Article • 12/15/2021

This topic describes how NDIS and overlying drivers determine the single root I/O
virtualization (SR-IOV) capabilities of a network adapter. This topic contains the
following information:

Reporting SR-IOV Capabilities during MiniportInitializeEx

Querying SR-IOV Capabilities by Overlying Drivers

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver provides
the following SR-IOV capabilities:

The complete set of SR-IOV hardware capabilities that the network adapter can
support.

The SR-IOV capabilities that are currently enabled on the network adapter.

Whether the miniport driver is managing the PCI Express (PCIe) Physical Function
(PF) or Virtual Function (VF) on the network adapter.

The miniport driver reports the SR-IOV hardware capabilities of the underlying network
adapter through an NDIS_SRIOV_CAPABILITIES structure that is initialized in the
following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

Starting with NDIS 6.30, the miniport driver sets the Revision member of Header to
NDIS_SRIOV_CAPABILITIES _REVISION_1 and the Size member to
NDIS_SIZEOF_SRIOV_CAPABILITIES_REVISION_1.

2. The miniport driver sets the appropriate flags in the SriovCapabilities member to
report SR-IOV capabilities.

If the network adapter supports SR-IOV, the miniport driver for the PCI Express
(PCIe) Physical Function of the adapter must set the following flags:

NDIS_SRIOV_CAPS_SRIOV_SUPPORTED

Reporting SR-IOV Capabilities during
MiniportInitializeEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities

NDIS_SRIOV_CAPS_PF_MINIPORT

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver registers
the SR-IOV capabilities of the network adapter by following these steps:

1. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The miniport driver sets the HardwareSriovCapabilities member to a pointer to
the previously initialized NDIS_SRIOV_CAPABILITIES structure.

If the registry setting for the *SRIOV INF keyword has a value of one, the SR-IOV
capabilities are currently enabled on the network adapter. The miniport driver sets
the CurrentSriovCapabilities members to a pointer to the same
NDIS_SRIOV_CAPABILITIES structure.

If the registry setting for the *SRIOV INF keyword has a value of zero, the SR-IOV
capabilities are currently disabled on the network adapter. The miniport driver
must set the CurrentSriovCapabilities member to NULL.

For more information about the *SRIOV INF keyword, see Standardized INF
Keywords for SR-IOV.

2. The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

NDIS passes the network adapter's currently enabled SR-IOV capabilities to overlying
drivers that bind to the network adapter in the following way:

７ Note

 The miniport driver for a PCIe Virtual Function (VF) of the network adapter
must set both the NDIS_SRIOV_CAPS_VF_MINIPORT flag and the
NDIS_SRIOV_CAPS_SRIOV_SUPPORTED flag.

Querying SR-IOV Capabilities by Overlying
Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

When NDIS calls an overlying filter driver's FilterAttach function, NDIS passes the
network adapter's SR-IOV capabilities through the AttachParameters parameter.
This parameter contains a pointer to an NDIS_FILTER_ATTACH_PARAMETERS
structure. The SriovCapabilities member of this structure contains a pointer to an
NDIS_SRIOV_CAPABILITIES structure.

When NDIS calls an overlying protocol driver's ProtocolBindAdapterEx function,
NDIS passes the network adapter's SR-IOV capabilities through the BindParameters
parameter. This parameter contains a pointer to an
NDIS_FILTER_ATTACH_PARAMETERS structure. The SriovCapabilities member of
this structure contains a pointer to an NDIS_SRIOV_CAPABILITIES structure.

NDIS also returns the NDIS_SRIOV_CAPABILITIES structure when it handles object
identifier (OID) query requests of OID_SRIOV_HARDWARE_CAPABILITIES and
OID_SRIOV_CURRENT_CAPABILITIES that are issued by overlying protocol or filter
drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities

Determining NIC Switch Capabilities
Article • 12/15/2021

This topic describes how NDIS and overlying drivers determine the NIC switch
capabilities of a network adapter that supports single root I/O virtualization (SR-IOV).
This topic contains the following information:

Reporting NIC Switch Capabilities during MiniportInitializeEx

Querying NIC Switch Capabilities by Overlying Drivers

Note Only the miniport driver for the PCI Express (PCIe) Physical Function (PF) of an SR-
IOV network adapter can report NIC switch capabilities. Miniport drivers for PCIe Virtual
Functions (VFs) must not report the NIC switch capabilities of the SR-IOV adapter.

For more information on NIC switches, see NIC Switches.

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver provides
the following NIC switch capabilities:

The complete set of hardware capabilities for a NIC switch that the network
adapter can support.

Note Starting with NDIS 6.30, only one NIC switch is created on the network
adapter. This switch is known as the default NIC switch.

The NIC switch capabilities that are currently enabled on the network adapter.

The miniport driver reports the NIC switch hardware capabilities of the underlying
network adapter through an NDIS_NIC_SWITCH_CAPABILITIES structure that is
initialized in the following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

Starting with NDIS 6.30, the miniport driver sets the Revision member of Header to
NDIS_NIC_SWITCH_CAPABILITIES_REVISION_2 and the Size member to
NDIS_SIZEOF_NIC_SWITCH_CAPABILITIES_REVISION_2.

Reporting NIC Switch Capabilities during
MiniportInitializeEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

2. The miniport driver sets appropriate flags in the NicSwitchCapabilities member of
the NDIS_NIC_SWITCH_CAPABILITIES structure to the NIC switch capabilities of
the SR-IOV network adapter. For example, the miniport driver sets the
NDIS_NIC_SWITCH_CAPS_PER_VPORT_INTERRUPT_MODERATION_SUPPORTED flag
if the NIC switch supports interrupt moderation on each virtual port (VPort) that is
created on the switch.

3. The miniport driver sets the other members of the
NDIS_NIC_SWITCH_CAPABILITIES structure to the range of values for the NIC
switch capabilities of the SR-IOV network adapter. For example, the miniport driver
sets the MaxNumVFs and MaxNumVPorts members to the maximum number of
VFs and VPorts that the adapter can support.

Note Depending on the available hardware resources on the network adapter, the
miniport driver can set the MaxNumVFs member to a value that is less than its
*NumVFs keyword. For more information about this keyword, see Standardized
INF Keywords for SR-IOV.

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver registers
the NIC switch capabilities of the network adapter by following these steps:

1. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The miniport driver sets the HardwareNicSwitchCapabilities member to a pointer
to a previously initialized NDIS_NIC_SWITCH_CAPABILITIES structure.

If the registry setting for the *SRIOV INF keyword has a value of one, the network
adapter is currently enabled for NIC switch creation and configuration. The
miniport driver sets the CurrentNicSwitchCapabilities members to a pointer to the
same NDIS_NIC_SWITCH_CAPABILITIES structure.

If the registry setting for the *SRIOV INF keyword has a value of zero, the network
adapter is not currently enabled for NIC switch creation and configuration. The
miniport driver must set the CurrentNicSwitchCapabilities member to NULL.

For more information about the *SRIOV INF keyword, see Standardized INF
Keywords for SR-IOV.

2. The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

Miniport drivers in NDIS 6.60 and later must adhere to the following requirements for
the coexistence of a NIC switch and VMQ capabilities when SR-IOV is not enabled.
When SR-IOV is enabled, the miniport driver should adhere to the existing requirements
in the previous section.

The miniport driver advertises both NIC switch and VMQ capabilities.
The NIC can toggle between NIC switch and VMQ mode without a NIC restart.

When the NIC starts initially, it is ready to be in either mode (either creating a
NIC switch or creating VMQ queues).

If a NIC switch is created, the miniport fails any subsequent VMQ queue
allocation callbacks.
If a VMQ queue is created first, the miniport driver succeeds the VMQ queue
allocation and fails any NIC switch allocation calls.

When the NIC switch is deleted or all VMQ queues are deleted, the miniport
driver returns to the initial state and is ready to go into either of these modes
again.

To advertise that a NIC switch can be created without the use of SR-IOV, the miniport
driver sets the NDIS_NIC_SWITCH_CAPS_NIC_SWITCH_WITHOUT_IOV_SUPPORTED flag
in the NicSwitchCapabilities member of the NDIS_NIC_SWITCH_CAPABILITIES structure.

NDIS passes the network adapter's currently enabled NIC switch capabilities to overlying
drivers that bind to the network adapter in the following way:

When NDIS calls an overlying filter driver's FilterAttach function, NDIS passes the
network adapter's NIC switch capabilities through the AttachParameters parameter.
This parameter contains a pointer to an NDIS_FILTER_ATTACH_PARAMETERS
structure. The NicSwitchCapabilities member of this structure contains a pointer to
an NDIS_NIC_SWITCH_CAPABILITIES structure.

When NDIS calls an overlying protocol driver's ProtocolBindAdapterEx function,
NDIS passes the network adapter's NIC switch capabilities through the
BindParameters parameter. This parameter contains a pointer to an

Creating a NIC switch without SR-IOV

Querying NIC Switch Capabilities by Overlying
Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

NDIS_FILTER_ATTACH_PARAMETERS structure. The NicSwitchCapabilities member
of this structure contains a pointer to an NDIS_NIC_SWITCH_CAPABILITIES
structure.

NDIS also returns the NDIS_NIC_SWITCH_CAPABILITIES structure when it handles
object identifier (OID) query requests of OID_NIC_SWITCH_HARDWARE_CAPABILITIES
and OID_NIC_SWITCH_CURRENT_CAPABILITIES that are issued by overlying protocol or
filter drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

Determining Receive Filtering
Capabilities
Article • 12/15/2021

This topic describes how NDIS and overlying drivers determine the receive filtering
capabilities of a network adapter that supports single root I/O virtualization (SR-IOV).
This topic contains the following information:

Reporting Receive Filtering Capabilities during MiniportInitializeEx

Querying Receive Filtering Capabilities by Overlying Drivers

Note Only the miniport driver for the PCI Express (PCIe) Physical Function (PF) of an SR-
IOV network adapter can report receive filtering capabilities. Miniport drivers for PCIe
Virtual Functions (VFs) must not report the receive filtering capabilities of the SR-IOV
adapter.

When NDIS calls the PF miniport driver's MiniportInitializeEx function, the driver
provides the following receive filtering capabilities:

The complete hardware receive filtering capabilities that the network adapter can
support.

The receive filtering capabilities for the interfaces that are currently enabled on the
network adapter.

The miniport driver reports the complete hardware receive filtering capabilities of the
underlying network adapter through an NDIS_RECEIVE_FILTER_CAPABILITIES structure
that is initialized in the following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

Starting with NDIS 6.30, the miniport driver sets the Revision member of Header to
NDIS_RECEIVE_FILTER_CAPABILITIES_REVISION_2 and the Size member to
NDIS_SIZEOF_RECEIVE_FILTER_CAPABILITIES_REVISION_2.

Reporting Receive Filtering Capabilities during
MiniportInitializeEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

2. The miniport driver sets the other members of the
NDIS_RECEIVE_FILTER_CAPABILITIES structure to the range of values for the
receive filtering capabilities of the SR-IOV network adapter. For example, the
miniport driver sets the appropriate flags in the SupportedFilterTests to specify
filter test operations that the miniport driver supports.

3. Besides SR-IOV, receive filtering is also used in the following interfaces:

NDIS Packet Coalescing. For more information about how to use receive
filters in this interface, see Managing Packet Coalescing Receive Filters.

Virtual Machine Queue (VMQ). For more information about how to use
receive filters in this interface, see Setting and Clearing VMQ Filters.

If the miniport driver supports any of these interfaces, it must also set the
members of the NDIS_RECEIVE_FILTER_CAPABILITIES structure to the range of
receive filtering capability values that are specific to the interface. For example, if
the driver supports NDIS packet coalescing and SR-IOV, it must set the
NDIS_RECEIVE_FILTER_PACKET_COALESCING_SUPPORTED_ON_DEFAULT_QUEUE
flag in the SupportedQueueProperties member.

The miniport driver reports the currently-enabled receive filtering capabilities of the
underlying network adapter through an NDIS_RECEIVE_FILTER_CAPABILITIES structure
that is initialized in the following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

Starting with NDIS 6.30, the miniport driver sets the Revision member of Header to
NDIS_RECEIVE_FILTER_CAPABILITIES_REVISION_2 and the Size member to
NDIS_SIZEOF_RECEIVE_FILTER_CAPABILITIES_REVISION_2.

2. The miniport driver sets the other members of the
NDIS_RECEIVE_FILTER_CAPABILITIES structure to the range of values for the
receive filtering capabilities of the interfaces that are currently enabled. For
example, if NDIS packet coalescing is enabled, the driver must only set the
members that are specific to this technology.

Interfaces that use receive filtering are enabled or disabled through standardized
INF keywords. For more information on how NDIS packet coalescing is enabled,
see Standardized INF Keywords for Packet Coalescing. For more information on
how SR-IOV and VMQ are enabled, see Handling SR-IOV, VMQ, and RSS
Standardized INF Keywords.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

When NDIS calls the miniport driver's MiniportInitializeEx function, the driver registers
the receive filtering capabilities of the network adapter by following these steps:

1. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The miniport driver sets the HardwareReceiveFilterCapabilities member to the
address of an NDIS_RECEIVE_FILTER_CAPABILITIES structure. This structure was
previously-initialized with the complete hardware receive filtering capabilities of
the network adapter.

2. If the VMQ, SR-IOV, and NDIS packet coalescing are all currently disabled on the
network adapter, the miniport driver sets the CurrentReceiveFilterCapabilities
member to NULL.

3. If either VMQ, SR-IOV, or NDIS packet coalescing are currently enabled on the
network adapter, the miniport driver must do the following:

The miniport driver must initialize another
NDIS_RECEIVE_FILTER_CAPABILITIES structure with the current receive
filtering capabilities for the interfaces that are currently enabled on the
network adapter.

If the SR-IOV interface is enabled, there are situations in which the miniport
driver must set the members of the NDIS_RECEIVE_FILTER_CAPABILITIES
structure to the same or different values. This is because the SR-IOV interface
provides a similar queuing mechanism to VMQ, but uses virtual ports (VPorts)
instead of VM receive queues.

For example, the miniport driver must set the
NDIS_RECEIVE_FILTER_VMQ_FILTERS_ENABLED flag in the EnabledFilterTypes
member if either the VMQ or SR-IOV interface is enabled. However, the
miniport driver must set the NumQueues member to zero if the SR-IOV
interface is enabled and a nonzero value if the VMQ interface is enabled.

The miniport driver sets the CurrentReceiveFilterCapabilities member to the
address of the NDIS_RECEIVE_FILTER_CAPABILITIES structure that contains
the current receive filtering capabilities for the currently-enabled interface.

4. If either VMQ, SR-IOV, or NDIS packet coalescing are currently enabled on the
network adapter, the miniport driver sets the HardwareReceiveFilterCapabilities
member to the address of an NDIS_RECEIVE_FILTER_CAPABILITIES structure. This
structure was previously-initialized with the currently-enabled receive filtering
capabilities of the network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

5. The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

For more information about the adapter initialization process, see Initializing a Miniport
Adapter.

NDIS passes the network adapter's currently-enabled receive filtering capabilities to
overlying drivers that bind to the network adapter in the following way:

When NDIS calls an overlying filter driver's FilterAttach function, NDIS passes the
network adapter's NIC switch capabilities through the AttachParameters parameter.
This parameter contains a pointer to an NDIS_FILTER_ATTACH_PARAMETERS
structure. The ReceiveFilterCapabilities member of this structure contains a pointer
to an NDIS_RECEIVE_FILTER_CAPABILITIES structure.

When NDIS calls an overlying protocol driver's ProtocolBindAdapterEx function,
NDIS passes the network adapter's NIC switch capabilities through the
BindParameters parameter. This parameter contains a pointer to an
NDIS_FILTER_ATTACH_PARAMETERS structure. The ReceiveFilterCapabilities
member of this structure contains a pointer to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

NDIS also returns the NDIS_RECEIVE_FILTER_CAPABILITIES structure when it handles
object identifier (OID) query requests of OID_RECEIVE_FILTER_CURRENT_CAPABILITIES
and OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES that are issued by overlying
protocol or filter drivers.

Querying Receive Filtering Capabilities by
Overlying Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

Initialization Sequence for PF Miniport
Drivers
Article • 12/15/2021

This section describes the requirements and guidelines for the initialization sequence of
a miniport driver for the PCI Express (PCIe) Physical Function (PF). The PF is a component
of a network adapter that supports single root I/O virtualization (SR-IOV).

This section includes the following topics:

DriverEntry Guidelines for PF Miniport Drivers

MiniportAddDevice Guidelines for PF Miniport Drivers

MiniportInitializeEx Guidelines for PF Miniport Drivers

Note For information on initializing miniport drivers for a PCIe Virtual Function (VF) on
the SR-IOV network adapter, see Initializing a VF Miniport Driver.

DriverEntry Guidelines for PF Miniport
Drivers
Article • 12/15/2021

This topic describes the guidelines for writing a DriverEntry function for the miniport
driver of the PCI Express (PCIe) Physical Function (PF). The PF is a component of a
network adapter that supports single root I/O virtualization (SR-IOV).

Note These guidelines only apply to PF miniport drivers. For initialization guidelines for
the miniport driver of a PCIe Virtual Function (VF) of the adapter, see Initializing a VF
Miniport Driver.

The SR-IOV network adapter must implement a hardware bridge that forwards network
traffic over the physical port on the adapter and internal virtual ports (VPorts). This
bridge is known as the NIC switch. For more information, see NIC Switches.

If the PF miniport driver supports the static creation of the NIC switch on the SR-IOV
network adapter, it may need to allocate switch resources when the functional device
object (FDO) is created for the network adapter in the device stack. In this case, the
driver must allocate those resources before NDIS calls MiniportInitializeEx. To do this, the
driver must register optional Plug-and-Play (PnP) handlers so that it can participate in
the process when the adapter's FDO is added or removed from the device stack.

The miniport driver must provide a MiniportSetOptions function to register these PnP
handler functions. To do this, the driver follows these steps from the context of the call
to its DriverEntry function:

1. The miniport driver initializes an NDIS_MINIPORT_DRIVER_CHARACTERISTICS
structure with the entry points of the MiniportXxx functions. In particular, the driver
sets the SetOptionsHandler member to the entry point of the driver's
MiniportSetOptions function.

2. The miniport driver calls the NdisMRegisterMiniportDriver function to register its
entry points. From the context of this call, NDIS calls the driver's
MiniportSetOptions function

3. When NDIS calls MiniportSetOptions, the miniport driver calls the
NdisSetOptionalHandlers function and specifies an
NDIS_MINIPORT_PNP_CHARACTERISTICS structure. This structure defines the
entry points for the MiniportAddDevice, MiniportRemoveDevice,
MiniportStartDevice, and MiniportFilterResourceRequirements functions. NDIS calls

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_pnp_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_remove_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pnp_irp

these handler functions when it handles PnP I/O request packets (IRPs) issued by
the PCI bus driver.

If the PF miniport driver must allocate additional software resources for the NIC
switch before NDIS calls the driver's MiniportInitializeEx function, the driver must
register a MiniportAddDevice function. When NDIS calls the MiniportAddDevice
function, the PF miniport driver can call NdisReadConfiguration to read the NIC
switch configuration keyword settings from the registry. For more information
about these keywords, see Standardized INF Keywords for SR-IOV.

For more information about guidelines for the MiniportAddDevice function, see
MiniportAddDevice Guidelines for PF Miniport Drivers.

For more information on how NIC switches are created, see Creating a NIC Switch.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device

MiniportAddDevice Guidelines for PF
Miniport Drivers
Article • 12/15/2021

This topic describes the guidelines for writing a MiniportAddDevice function for the
miniport driver of the PCI Express (PCIe) Physical Function (PF). The PF is a component
of a network adapter that supports single root I/O virtualization (SR-IOV).

Note These guidelines only apply to PF miniport drivers. For initialization guidelines for
the miniport driver of a PCIe Virtual Function (VF) of the adapter, see Initializing a VF
Miniport Driver.

The Plug and Play (PnP) Manager calls the NDIS AddDevice function to create the
functional device object (FDO) for the network adapter. If the PF miniport driver
registered a MiniportAddDevice entry point when it called
NdisMRegisterMiniportDriver, NDIS calls the driver's MiniportAddDevice function.

When MiniportAddDevice is called, the PF miniport driver can allocate additional
software resources for the SR-IOV and the network interface card (NIC) switch. Typically,
these are resources that must be allocated before NDIS calls the driver's
MiniportInitializeEx function.

The driver can do the following within the context of the call to MiniportAddDevice:

The PF miniport driver can call NdisReadConfiguration to read the SR-IOV and NIC
switch configuration settings from the registry. These configuration settings are
defined through the standardized SR-IOV keywords. For more information about
these keywords, see Standardized INF Keywords for SR-IOV.

Based on these configuration settings, the PF miniport driver allocates the
additional software resources for the SR-IOV network adapter.

Note The actual allocation of hardware resources and the enabling of SR-IOV in the PCI
configuration space must only be done within the context of the call to
MiniportInitializeEx. Because the network adapter's memory-mapped I/O (MMIO) space
is uninitialized when MiniportAddDevice is called, the miniport driver must not read or
write to the adapter until MiniportInitializeEx is called.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_add_device

MiniportInitializeEx Guidelines for PF
Miniport Drivers
Article • 12/15/2021

This topic describes the guidelines for writing a MiniportInitializeEx function for the
miniport driver of the PCI Express (PCIe) Physical Function (PF). The PF is a component
of a network adapter that supports single root I/O virtualization (SR-IOV).

Note These guidelines only apply to PF miniport drivers. For initialization guidelines for
the miniport driver of a PCIe Virtual Function (VF) of the adapter, see Initializing a VF
Miniport Driver.

The PF miniport driver follows the same steps as any NDIS miniport driver when its
MiniportInitializeEx function. For more information about these steps, see Initializing a
Miniport Driver.

In addition to these steps, the PF miniport driver must follow these additional steps
when NDIS calls the driver's MiniportInitializeEx function:

1. The PF miniport driver calls the NdisGetHypervisorInfo function to verify that it is
running in the Hyper-V parent partition. This function returns an
NDIS_HYPERVISOR_INFO structure that defines the partition type. If the partition
type is reported as NdisHypervisorPartitionMsHvParent, the miniport driver is
running in the Hyper-V parent partition that is attached to the PF on the adapter.

Note If the partition type is reported as NdisHypervisorPartitionMsHvChild, the
miniport driver is running in the Hyper-V child partition that is attached to a VF on
the adapter. In this case, the miniport driver must not initialize as a PF driver. If
possible, the driver must initialize as a VF driver as described in Initializing a VF
Miniport Driver.

2. The PF miniport driver must read the SR-IOV standardized keywords to determine
whether SR-IOV is enabled and obtain the NIC switch configuration settings. For
more information about these keywords, see Standardized INF Keywords for SR-
IOV.

Note If the PF miniport driver registered an entry point to a MiniportSetOptions
function, the driver may have previously obtained these settings from the registry
when NDIS called MiniportSetOptions.

3. If the network adapter supports SR-IOV, virtual machine queue (VMQ), or RSS, the
miniport driver must determine which feature to enable on the network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgethypervisorinfo
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hypervisor_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options

For more information on how to determine this, see Handling SR-IOV, VMQ, and
RSS Standardized INF Keywords.

4. Along with RSS and VMQ hardware capabilities (if supported), the miniport driver
must report its full set of hardware SR-IOV capabilities. These capabilities must be
advertised regardless of the SR-IOV standardized keyword settings in the registry.

If SR-IOV is enabled on the network adapter, the miniport driver must also report
the currentlyenabled SR-IOV settings on the adapter.

For more information on reporting the SR-IOV capabilities, see Determining SR-
IOV Capabilities.

5. The miniport driver must report its full set of hardware NIC switch capabilities.
These capabilities must be advertised regardless of the SR-IOV standardized
keyword settings in the registry.

If SR-IOV is enabled on the network adapter, the miniport driver must also report
the currentlyenabled NIC switch settings on the adapter.

For more information on reporting the NIC switch capabilities, see Determining
NIC Switch Capabilities.

6. The miniport driver must report its full set of hardware receive filtering capabilities.
These capabilities must be advertised regardless of the SR-IOV standardized
keyword settings in the registry.

If SR-IOV is enabled on the network adapter, the miniport driver must also report
the currentlyenabled receive filtering settings on the adapter.

For more information on reporting the receive filtering capabilities, see
Determining Receive Filtering Capabilities.

7. If the miniport driver supports static NIC switch creation, it must do the following
in the context of the call to MiniportInitializeEx.

The driver configures the adapter hardware based on the NIC switch
standardized keyword settings. Based on these settings, the driver allocates
the necessary hardware and software resources for the NIC switch.

The miniport driver calls NdisMEnableVirtualization to enable SR-IOV and
set the number of VFs on the network adapter. This function configures the
SR-IOV Extended Capability in the adapter's PCI configuration space. If this
function returns NDIS_STATUS_SUCCESS, SR-IOV is enabled and the VFs are
exposed over the PCIe interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization

For more information, see Static Creation of a NIC Switch.

Note If the miniport driver supports dynamic NIC switch creation, it creates the
switch and enables virtualization when it handles an object identifier (OID) method
request of OID_NIC_SWITCH_CREATE_SWITCH. For more information, see Dynamic
Creation of a NIC Switch.

Managing NIC Switches
Article • 12/15/2021

This section describes the requirements and guidelines for managing the NIC switch of a
network adapter that supports single root I/O virtualization (SR-IOV). The miniport
driver for the PCI Express (PCIe) Physical Function (PF) of the SR-IOV network adapter
manages the NIC switch on the adapter.

This section includes the following topics:

Creating a NIC Switch

Deleting a NIC Switch

Enumerating NIC Switches on a Network Adapter

Querying the Parameters of a NIC Switch

Setting the Parameters of a NIC Switch

For more information on NIC switches for SR-IOV network adapters, see NIC Switches.

Note Only the PF miniport driver can configure the network adapter's hardware
resources, such as the NIC switch. The miniport driver for a PCIe Virtual Function (VF) on
the SR-IOV network adapter cannot directly access most of the adapter's hardware
resources. For more information, see Writing SR-IOV VF Miniport Drivers.

Creating a NIC Switch
Article • 12/15/2021

This section describes the requirements and guidelines for creating the NIC switch of a
network adapter that supports single root I/O virtualization (SR-IOV). The miniport
driver for the PCI Express (PCIe) Physical Function (PF) of the SR-IOV network adapter
creates and configures the NIC switch on the adapter.

A NIC switch can be created through one of the following methods:

Static Creation
The NIC switch is statically created on the SR-IOV network adapter by using a set of
switch parameters defined by registry settings. After the NIC switch is created, its
parameters cannot be changed while the driver is running.

The PF miniport driver statically creates the NIC switch within the context of the call to
the driver's MiniportInitializeEx function. However, the NIC switch cannot be used until
NDIS issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH. Even though the NIC switch was previously created,
the PF miniport driver enabled the NIC switch for use when it handled this OID request.

For more information about this method, see Static Creation of a NIC Switch.

Dynamic Creation
The NIC switch is dynamically created on the SR-IOV network adapter through the OID
method request of OID_NIC_SWITCH_CREATE_SWITCH. This OID request defines the NIC
switch parameters through the NDIS_NIC_SWITCH_PARAMETERS structure. These
parameters are also based on the staticallydefined registry settings but could change
dynamically while the miniport driver is running.

For more information about this method, see Dynamic Creation of a NIC Switch.

For more information on how to handle the OID_NIC_SWITCH_CREATE_SWITCH request,
see Handling the OID_NIC_SWITCH_CREATE_SWITCH Request.

For more information on NIC switches for SR-IOV network adapters, see NIC Switches.

Note The miniport driver for a PCIe Virtual Function (VF) on the SR-IOV network
adapter does not create or configure the network adapter's hardware resources, such as
the NIC switch. For more information, see Writing SR-IOV VF Miniport Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

Static Creation of a NIC Switch
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
create a NIC switch. For some adapters, the NIC switch can be created statically within
the context of the call to MiniportInitializeEx.

Only the miniport driver for the PCI Express (PCIe) Physical Function (PF) of the SR-IOV
adapter can create a NIC switch on the adapter.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one NIC
switch on the network adapter. This switch is known as the default NIC switch, and is
referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

The parameters for the default NIC switch are defined through standardized keyword
settings in the registry. For more information on these keywords, see Standardized INF
Keywords for SR-IOV.

The PF miniport driver statically creates the NIC switch when NDIS calls the driver's
MiniportInitializeEx function. Typically, the driver creates and configures the NIC switch
as part of its initialization sequence before it enables SR-IOV on the network adapter.

The PF miniport driver follows these steps when it statically creates the NIC switch and
enables SR-IOV on the network adapter in the context of the call to MiniportInitializeEx:

1. The PF miniport driver must read the SR-IOV standardized keywords to determine
whether SR-IOV is enabled and obtain the NIC switch configuration parameters.

Note If the PF miniport driver registered an entry point to a MiniportSetOptions
function, the driver may have previously obtained these parameters from the
registry when NDIS called MiniportSetOptions.

2. If SR-IOV is enabled, the PF miniport driver configures the network adapter with
the NIC switch parameters from the registry. The driver must verify that the
parameters are valid before it configures the network adapter. For example, the
miniport driver must verify that the maximum number of PCIe Virtual Functions
(VFs) assigned to the NIC switch does not exceed the number of VFs supported by
the network adapter.

3. The miniport driver calls NdisMEnableVirtualization to enable SR-IOV and set the
number of VFs on the network adapter. This function configures the SR-IOV
Extended Capability in adapter's PCI configuration space. If this function returns

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization

NDIS_STATUS_SUCCESS, SR-IOV is enabled and the VFs are exposed over the PCIe
interface.

Note If the PF miniport driver statically creates the NIC switch, the switch cannot be
used until NDIS issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH. If the PF miniport driver statically created the NIC
switch, it must verify that the switch parameters are specified in the OID request. These
parameters, as contained within the NDIS_NIC_SWITCH_PARAMETERS structure
associated with the OID request, must be identical to the parameters the driver used to
create the switch.

For more information on how to handle the OID_NIC_SWITCH_CREATE_SWITCH request,
see Handling the OID_NIC_SWITCH_CREATE_SWITCH Request.

For more information on the initialization sequence and requirements for PF miniport
drivers, see Initializing a PF Miniport Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

Dynamic Creation of a NIC Switch
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
create a NIC switch. For some adapters, the NIC switch can be created dynamically after
the miniport driver has returned from the call to MiniportInitializeEx.

Only the miniport driver for the PCI Express (PCIe) Physical Function (PF) of the SR-IOV
adapter can create a NIC switch on the adapter.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one NIC
switch on the network adapter. This switch is known as the default NIC switch, and is
referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

NDIS issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH to create a NIC switch on the SR-IOV network
adapter. The InformationBuffer member of the NDIS_OID_REQUEST structure contains
a pointer to the NDIS_NIC_SWITCH_PARAMETERS structure that contains the
parameters for the switch.

If the PF miniport driver supports dynamic NIC switch creation, it must follow these
steps when it handles this OID request:

1. The PF miniport driver allocates the necessary hardware and software resources for
the NIC switch based on these parameters. The driver also configures the network
adapter with these parameters.

Note PF miniport drivers that support dynamic NIC switch creation do not have to
read the switch parameters through the standardized SR-IOV keyword settings in
the registry. NDIS reads these keywords to initialize the
NDIS_NIC_SWITCH_PARAMETERS structure before it issues the
OID_NIC_SWITCH_CREATE_SWITCH request. For more information on these
keywords, see Standardized INF Keywords for SR-IOV.

2. The miniport driver calls NdisMEnableVirtualization to enable SR-IOV and set the
number of VFs on the network adapter. This function configures the SR-IOV
Extended Capability in adapter's PCI configuration space. If this function returns
NDIS_STATUS_SUCCESS, SR-IOV is enabled and the VFs are exposed over the PCIe
interface.

For more information on how to handle the OID_NIC_SWITCH_CREATE_SWITCH request,
see Handling the OID_NIC_SWITCH_CREATE_SWITCH Request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization

Handling the
OID_NIC_SWITCH_CREATE_SWITCH
Request
Article • 12/15/2021

NDIS issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH to do the following:

Enable a NIC switch on a network adapter that was statically created by the
miniport driver for the PCI Express (PCIe) Physical Function (PF). The PF is a
hardware component of the network adapter that supports single root I/O
virtualization (SR-IOV).

A NIC switch is statically created by the PF miniport driver from within the context
to the call to MiniportInitializeEx. The driver allocates the resources and creates the
switch based on parameters read from registry settings.

Dynamically create a NIC switch on a network adapter.

If the PF miniport driver does not support static NIC switch creation, the miniport
driver allocates the resources and creates the switch based on parameters that are
specified in the OID request.

The PF miniport driver advertises its support of the SR-IOV interface when NDIS calls the
driver's MiniportInitializeEx function. If the PF miniport driver supports SR-IOV, NDIS
reads the NIC switch configuration from the registry. Before NDIS issues an OID method
request of OID_NIC_SWITCH_CREATE_SWITCH to the PF miniport driver, NDIS formats an
NDIS_NIC_SWITCH_PARAMETERS structure with the registry information in the
following way:

NDIS sets the SwitchType member to the type of the NIC switch.

Starting with Windows Server 2012, Windows only supports a switch type of
NdisNicSwitchTypeExternal. An external switch specifies that the virtual ports
(VPorts) that are connected to this type of switch can access the external network
through the physical port on the network adapter.

For more information about the NIC switch, see SR-IOV Architecture.

NDIS sets the SwitchId member to an identifier value for the NIC switch. The
switch identifier is an integer between zero and the number of switches that the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

network adapter supports. An NDIS_DEFAULT_SWITCH_ID value indicates the
default NIC switch.

Note Starting with Windows Server 2012, the SR-IOV interface only supports the
default NIC switch on the network adapter.

NDIS sets the NumVFs member that specifies the number of PCIe Virtual Function
(VFs) that can be allocated on the NIC switch.

When it receives the OID method request of OID_NIC_SWITCH_CREATE_SWITCH, the PF
miniport driver must do the following:

1. If the PF miniport driver supports static switch creation and configuration, it
creates the NIC switch when NDIS calls MiniportInitializeEx. When the driver
handles this OID request, it must verify the configuration parameters in the
NDIS_NIC_SWITCH_PARAMETERS structure. The parameters must be the same as
those used by the driver to create the switch during the call to MiniportInitializeEx.
If this is not true, the driver must fail the OID request.

For more information, see Static Creation of a NIC Switch.

2. If the PF miniport driver supports dynamic switch creation and configuration, the
driver must validate the configuration values of the
NDIS_NIC_SWITCH_PARAMETERS structure and create the NIC switch based on
these values.

For more information, see Dynamic Creation of a NIC Switch.

3. The PF miniport driver must allocate the necessary hardware and software
resources for the default VPort on the NIC switch.

Note The default VPort is always created through an OID request of
OID_NIC_SWITCH_CREATE_SWITCH and deleted through an OID request of
OID_NIC_SWITCH_DELETE_SWITCH. OID requests of
OID_NIC_SWITCH_CREATE_VPORT and OID_NIC_SWITCH_DELETE_VPORT are used
for the creation and deletion of nondefault VPorts on the NIC switch.

4. The PF miniport driver that supports dynamic switch creation and configuration
must enable SR-IOV virtualization on the switch by calling
NdisMEnableVirtualization. This call configures the NumVFs member and the VF
Enable bit in the SR-IOV Extended Capability structure of the adapter's PCI Express
(PCIe) configuration space.

For more information about the SR-IOV configuration space, see the PCI-SIG
Single Root I/O Virtualization and Sharing 1.1 specification.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://pcisig.com/specifications/iov/single_root

Note If the PF miniport driver supports static switch creation, it enables SR-IOV
virtualization after it creates the switch when MiniportInitializeEx is called.

If the PF miniport driver successfully completesthe OID method request of
OID_NIC_SWITCH_CREATE_SWITCH, it allows the following to occur:

VFs can be allocated on the NIC switch through OID method requests of
OID_NIC_SWITCH_ALLOCATE_VF.

Nondefault VPorts can be created on the NIC switch through OID method requests
of OID_NIC_SWITCH_CREATE_VPORT.

The miniport driver is responsible for managing its pool of nondefault VPorts. The
driver specifies the number of nondefault VPorts in its pool through the
NumVPorts member of the NDIS_NIC_SWITCH_INFO structure. The driver returns
this structure through an OID query request of
OID_NIC_SWITCH_ENUM_SWITCHES.

Note The network adapter must always create a default VPort from its pool for the
PF.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info

Deleting a NIC Switch
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
delete a NIC switch. Only the miniport driver for the PCI Express (PCIe) Physical Function
(PF) of the SR-IOV adapter can delete a NIC switch on the adapter.

Note Starting with NDIS 6.30 in Windows Server 2012, the SR-IOV interface supports
only one NIC switch on the network adapter. This switch is known as the default NIC
switch, and is referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

Prior to halting the PF miniport driver, NDIS deletes the NIC switch by issuing an object
identifier (OID) set request of OID_NIC_SWITCH_DELETE_SWITCH. The InformationBuffer
member of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_DELETE_SWITCH_PARAMETERS structure that specifies the
identifier of the switch being deleted.

NDIS enforces the following policies before issuing the OID set request of
OID_NIC_SWITCH_DELETE_SWITCH to the PF miniport driver:

NDIS guarantees that all receive filters have been cleared from the default and
nondefault virtual ports (VPorts) on the NIC switch. Receive filters are cleared
through an OID set request of OID_RECEIVE_FILTER_CLEAR_FILTER.

NDIS guarantees that all nondefault virtual ports (VPorts) created on the switch
have been previously deleted. VPorts are deleted through an OID set request of
OID_NIC_SWITCH_DELETE_VPORT.

NDIS guarantees that all the resources for PCIe Virtual Functions (VFs) attached to
the NIC switch have been previously freed. VFs are freed through an OID set
request of OID_NIC_SWITCH_FREE_VF.

When it receives the OID method request of OID_NIC_SWITCH_DELETE_SWITCH, the PF
miniport driver must do the following:

1. If the PF miniport driver supports static creation and configuration of NIC switches,
it must free the software resources associated with the specified NIC switch.
However, the driver can only free the hardware resources for the NIC switch when
MiniportHaltEx is called.

For more information about static NIC switch creation, see Static Creation of a NIC
Switch.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

2. If the PF miniport driver supports the dynamic creation and configuration of NIC
switches, it must free the hardware and software resources associated with the
specified NIC switch.

For more information about dynamic NIC switch creation, see Dynamic Creation of
a NIC Switch.

3. If the PF miniport driver supports the dynamic creation of NIC switches and all the
NIC switches have been deleted on the network adapter, the driver must disable
virtualization on the adapter by calling NdisMEnableVirtualization. To disable
virtualization, the network adapter must set the EnableVirtualization parameter to
FALSE and the NumVFs parameter to zero.

NdisMEnableVirtualization clears the NumVFs member and the VF Enable bit in
the SR-IOV Extended Capability structure in the PCIe configuration space of the
network adapter's PF.

Note If the PF miniport driver supports static creation and configuration of NIC
switches, it must only call NdisMEnableVirtualization when MiniportHaltEx is
called.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Enumerating NIC Switches on a Network
Adapter
Article • 12/15/2021

An overlying driver or user application can obtain a list of all NIC switches that have
been created on a network adapter that supports single root I/O virtualization (SR-IOV).
The driver or application issues an object identifier (OID) query request of
OID_NIC_SWITCH_ENUM_SWITCHES to obtain this list.

After a successful return from this OID request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the following:

An NDIS_NIC_SWITCH_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_INFO structures. Each of these structures contains
the information about a single NIC switch created on the network adapter.

Note If the network adapter has no NIC switches, the driver sets the
NumElements member of the NDIS_NIC_SWITCH_INFO_ARRAY structure to zero
and no NDIS_NIC_SWITCH_INFO structures are returned.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one NIC
switch on the network adapter. This switch is known as the default NIC switch, and is
referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

NDIS handles the OID_NIC_SWITCH_ENUM_SWITCHES request for miniport drivers. NDIS
returns the information from an internal cache of the data that it maintains from the
following sources:

The standardized SR-IOV keyword settings in the registry. For more information on
these keywords, see Standardized INF Keywords for SR-IOV.

OID requests of OID_NIC_SWITCH_CREATE_SWITCH and
OID_NIC_SWITCH_PARAMETERS.

Note NDIS also provides the enumeration of the switches in the NicSwitchArray
member in the NDIS_BIND_PARAMETERS and NDIS_FILTER_ATTACH_PARAMETERS
structures. Therefore, the overlying protocol and filter drivers do not have to issue
OID_NIC_SWITCH_ENUM_SWITCHES requests to obtain this information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters

Querying the Parameters of a NIC
Switch
Article • 12/15/2021

An overlying driver or user application can obtain the parameters for a NIC switch that
has been created on a network adapter that supports single root I/O virtualization (SR-
IOV). The driver or application issues an object identifier (OID) method request of
OID_NIC_SWITCH_PARAMETERS to obtain these parameters.

Before the overlying driver or user application issues this OID method request, it must
initialize an NDIS_NIC_SWITCH_PARAMETERS structure. The driver or application must
set the SwitchId member to the identifier of the NIC switch for which parameters are to
be returned.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one NIC
switch on the network adapter. This switch is known as the default NIC switch, and is
referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_PARAMETERS structure. This structure contains the parameters for
the specified switch.

NDIS handles the OID_NIC_SWITCH_PARAMETERS request for miniport drivers. NDIS
returns the information from an internal cache of the data that it maintains from the
following sources:

The standardized SR-IOV keyword settings in the registry. For more information on
these keywords, see Standardized INF Keywords for SR-IOV.

OID requests of OID_NIC_SWITCH_CREATE_SWITCH and
OID_NIC_SWITCH_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

Setting the Parameters of a NIC Switch
Article • 12/15/2021

An overlying driver can change the parameters for a NIC switch that has been created
on a network adapter that supports single root I/O virtualization (SR-IOV). The driver
issues an object identifier (OID) set request of OID_NIC_SWITCH_PARAMETERS to
change these parameters. Only the miniport driver for the PCI Express (PCIe) Physical
Function (PF) of the SR-IOV adapter handles this OID set request.

Before the overlying driver issues this OID set request, it must initialize an
NDIS_NIC_SWITCH_PARAMETERS structure with the parameters to be changed on the
NIC switch. The driver then initializes an NDIS_OID_REQUEST structure for the OID
request, and sets the InformationBuffer member to a pointer of the
NDIS_NIC_SWITCH_PARAMETERS structure.

Only a limited subset of configuration parameters for a NIC switch can be changed. The
overlying driver specifies the parameter to change by setting the following members of
the NDIS_NIC_SWITCH_PARAMETERS structure:

The SwitchId member is set to the identifier of the NIC switch whose parameters
will be changed.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch.
The SwitchId member must be set to NDIS_DEFAULT_SWITCH_ID.

The appropriate NDIS_NIC_SWITCH_PARAMETERS_Xxx_CHANGED flags are set in
the Flags member. Members of the NDIS_NIC_SWITCH_PARAMETERS structure
can only be changed if a corresponding
NDIS_NIC_SWITCH_PARAMETERS_Xxx_CHANGED flag is defined in Ntddndis.h.

The members of the NDIS_NIC_SWITCH_PARAMETERS structure, which
correspond to the NDIS_NIC_SWITCH_PARAMETERS_Xxx_CHANGED flags set in the
Flags member, are set with the NIC switch configuration parameters that are to be
changed.

Note Starting with Windows Server 2012, only the SwitchName member of the
NDIS_NIC_SWITCH_PARAMETERS structure can be changed through an OID set
request of OID_NIC_SWITCH_PARAMETERS.

The PF miniport driver must follow these guidelines when it receives the OID set request
of OID_NIC_SWITCH_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

If the PF miniport driver can apply the changes without requiring a reinitialization
of the network adapter, the driver applies the changes to the hardware and
completes the OID request with NDIS_STATUS_SUCCESS.

If this status code is returned, NDIS updates the NIC switch configuration
information in the registry.

If the PF miniport driver requires a reinitialization of the network adapter to apply
the changes, the driver completes the OID request with
NDIS_STATUS_REINIT_REQUIRED.

If this status code is returned, NDIS also updates the NIC switch configuration
information in the registry. However, the overlying driver that issued the OID set
request must reinitialize the network adapter so that the changes can take effect.

Note PF miniport drivers that support static NIC creation and configuration can
return NDIS_STATUS_REINIT_REQUIRED to make sure that the adapter is
reinitialized for the new parameters to take effect.

If the PF miniport driver cannot apply the changes requested in the OID, it must
fail the OID and return the appropriate NDIS_STATUS_Xxx code.

In this case, NDIS does not update the NIC switch configuration information in the
registry.

Managing Virtual Ports
Article • 12/15/2021

This section describes the requirements and guidelines for managing the virtual ports
(VPorts) on a NIC switch. This switch is provided by a network adapter that supports
single root I/O virtualization (SR-IOV).

This section includes the following topics:

Creating a Virtual Port

Deleting a Virtual Port

Enumerating Virtual Ports on a Network Adapter

Querying the Parameters of a Virtual Port

Setting the Parameters of a Virtual Port

Managing the Receive Filters for a Virtual Port

Symmetric and Asymmetric Assignment of Queue Pairs

Packet Flow over a Virtual Port

Nondefault Virtual Ports and VMQ

For more information on VPorts, see Virtual Ports (VPorts).

For more information on NIC switches, see NIC Switches.

Note Only the miniport driver for the PCI Express (PCIe) Physical Function (PF) can
configure the network adapter's hardware resources, such as the VPorts. The miniport
driver for the PCIe Virtual Function (VF) cannot directly access most of the SR-IOV
adapter's hardware resources. For more information, see Writing SR-IOV VF Miniport
Drivers.

Creating a Virtual Port
Article • 12/15/2021

A virtual port (VPort) is a data object that represents an internal port on the NIC switch
of a network adapter that supports single root I/O virtualization (SR-IOV). Each NIC
switch has the following ports for network connectivity:

One external physical port for connectivity to the external physical network.

One or more internal VPorts which are connected to the PCI Express (PCIe) Physical
Function (PF) or Virtual Functions (VFs).

The PF is attached to the Hyper-V parent partition and is exposed as a virtual
network adapter in the management operating system that runs in that partition.

A VF is attached to the Hyper-V child partition and is exposed as a virtual network
adapter in the guest operating system that runs in that partition.

There are two types of VPorts:

Default VPort
The default VPort provides network connectivity to the networking components that run
in the management operating system. The default VPort has an identifier of
NDIS_DEFAULT_VPORT_ID.

When the PF miniport driver creates and configures the default NIC switch, the driver
implicitly creates the default VPort and attaches it to the PF. The default VPort cannot be
attached to a VF.

The default VPort is always in an activated state and cannot be explicitly deleted. The PF
miniport driver implicitly deletes the default VPort only when it deletes the default NIC
switch.

For more information on how to create a NIC switch and the default VPort on the switch,
see Creating a NIC Switch.

Nondefault VPort
Nondefault VPorts are not created implicitly when the NIC switch is created. An
overlying driver, such as the virtualization stack, explicitly creates these ports by issuing
OID method requests of OID_NIC_SWITCH_CREATE_VPORT. Nondefault VPorts may be
attached to the PF or to a VF, and can only be created after the NIC switch has been
created.

A nondefault VPort that is attached to a VF provides network connectivity to the
networking components that run in the guest operating system. After it is created and
attached to the VF, the nondefault VPort is in an activated state.

A nondefault VPort that is attached to the PF provides additional network offload
capabilities to the networking components that run in the management operating
system. For example, nondefault VPorts on the PF could be used to provide offload
capabilities similar to the virtual machine queue (VMQ) interface.

Note Nondefault VPorts can only be created after the NIC switch has been created.

An overlying driver issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_VPORT to create a nondefault VPort on a specified NIC
switch. This OID request also attaches the created VPort to the network adapter's PF or a
previously allocated VF.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to theNDIS_NIC_SWITCH_VPORT_PARAMETERS structure. After a successful return from
the OID_NIC_SWITCH_CREATE_VPORT request, the VPortId member of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure has a VPort identifier that is unique
across the VPorts on the NIC switch.

The overlying driver initializes the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure
with the configuration information about the nondefault VPort to be created. The
configuration information includes the PCIe function to which the nondefault VPort is
attached and the number of queue pairs for the nondefault VPort.

When it initializes the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure, the overlying
driver must do the following:

The SwitchId member must be set to the identifier of a NIC switch that was
previously created on the network adapter through an OID method request of
OID_NIC_SWITCH_CREATE_SWITCH.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch.
When creating a nondefault VPort, the overlying driver must set the SwitchId
member to the NDIS_DEFAULT_SWITCH_ID identifier.

The VPortId member must be set to NDIS_DEFAULT_VPORT_ID.

The AttachedFunctionId member must be set to the identifier of the VF or PF on
which the nondefault VPort is to be attached.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

A value of NDIS_PF_FUNCTION_ID specifies the PF. Otherwise, the value must be
set to the identifier of a VF whose resources were previously allocated through an
OID method request of OID_NIC_SWITCH_ALLOCATE_VF.

Note The attachment of a nondefault VPort to a VF or PF cannot be changed after
the nondefault VPort has been created.

The overlying driver can also specify the number of queue pairs assigned to the VPort. A
queue pair is a transmit and receive queue on the network adapter that is assigned to
the VPort. If the network adapter supports asymmetric queue pairs for nondefault
VPorts, the overlying driver may specify a different number of queue pairs for each
VPort that the driver creates. For more information, see Symmetric and Asymmetric
Assignment of Queue Pairs.

The overlying driver calls NdisOidRequest to issue the
OID_NIC_SWITCH_CREATE_VPORT request to the underlying PF miniport driver. Before
NDIS forwards the OID method request to the miniport driver, it does the following:

1. NDIS validates the parameters within the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure. If the parameters are in error,
NDIS fails the OID method request and does not pass the request to the PF
miniport driver.

2. NDIS assigns an identifier for the nondefault VPort within the range from one to
(NumVPorts– 1), where NumVPorts is the number of VPorts that the miniport
driver has configured on the network adapter. The driver specifies this number in
the NumVPorts member of the NDIS_NIC_SWITCH_INFO structure. The driver
returns this structure through an OID query request of
OID_NIC_SWITCH_ENUM_SWITCHES.

Note A VPort identifier of NDIS_DEFAULT_VPORT_ID is reserved for the default
VPort that is attached to the PF on the default NIC switch.

The assigned VPort identifier uniquely identifies the nondefault VPort on the NIC switch
of the network adapter.

3. NDIS sets the VPortId member of the NDIS_NIC_SWITCH_VPORT_PARAMETERS
structure with the assigned VPort identifier.

When the PF miniport driver is issued the OID request, the driver allocates the hardware
and software resources associated with the specified nondefault VPort. After all of the
resources are successfully allocated, the PF miniport driver completes the OID
successfully by returning NDIS_STATUS_SUCCESS from MiniportOidRequest.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

If the OID_NIC_SWITCH_CREATE_VPORT request is completed successfully, the PF
miniport driver and the overlying driver must retain the VPortId value of the nondefault
VPort for successive operations. The VPortId value is used during these operations:

NDIS and the overlying drivers use the VPortId value to identify the nondefault
VPort in successive OID requests related to this VPort, such as
OID_NIC_SWITCH_VPORT_PARAMETERS and OID_NIC_SWITCH_DELETE_VPORT.

During send operations, NDIS specifies the VPortId value to identify the VPort
from which a packet was sent. This value is specified within the out-of-band (OOB)
NDIS_NET_BUFFER_LIST_FILTERING_INFO data of the NET_BUFFER_LIST structure.

During receive operations, the PF miniport driver specifies the VPortId value to
which a packet is to be forwarded. This value is also specified in the OOB
NDIS_NET_BUFFER_LIST_FILTERING_INFO data of the NET_BUFFER_LIST structure.

The following points apply to the creation of nondefault VPorts:

Receive filters for media access control (MAC) and virtual LAN (VLAN) identifiers
are configured on the VPort after it has been created. Overlying drivers
dynamically set these receive filters by issuing OID method requests of
OID_RECEIVE_FILTER_SET_FILTER. Receive filters can also be moved from one VPort
to another through OID set requests of OID_RECEIVE_FILTER_MOVE_FILTER.

A nondefault VPort attached to the VF is in an activated state when it is created.
The VPort cannot be deactivated if it is attached to the VF.

A nondefault VPort attached to the PF is in a deactivated state when it is created.
An overlying driver, such as the Hyper-V extensible switch module, explicitly
activates the nondefault VPort attached to the PF after the VPort has been created
successfully. This is done by issuing an OID method request of
OID_NIC_SWITCH_VPORT_PARAMETERS to the PF miniport driver.

When the overlying driver issues this OID request, it passes an
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure with the VPortState member
set to NdisNicSwitchVPortStateActivated.

After a nondefault VPort is in an activated state, the PF miniport driver can allocate
shared memory for the VPort by calling NdisAllocateSharedMemory. The driver
must set the VPortId member in the NDIS_SHARED_MEMORY_PARAMETERS
structure to the VPort's identifier value.

Note When a nondefault VPort is in an activated state, it is only set to a deactivated
state when it is deleted through an OID set request of OID_NIC_SWITCH_DELETE_VPORT.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_shared_memory_parameters

Deleting a Virtual Port
Article • 12/15/2021

An overlying driver issues an object identifier (OID) set request of
OID_NIC_SWITCH_DELETE_VPORT to delete a nondefault virtual port (VPort) on a
network adapter's NIC switch. The overlying driver can only delete a VPort that it has
previously created by issuing an OID method request of
OID_NIC_SWITCH_CREATE_VPORT.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS structure.

An overlying driver, such as the virtualization stack, can delete a nondefault VPort that it
has previously created. The overlying driver creates a VPort by issuing an OID method
request of OID_NIC_SWITCH_CREATE_VPORT.

Before it issues the OID set request of OID_NIC_SWITCH_DELETE_VPORT, the overlying
driver must do the following:

The overlying drivers must clear or move all receive filters that the driver previously
set on the VPort before deleting the VPort. Receive filters are set through OID
requests of OID_RECEIVE_FILTER_SET_FILTER and are moved through OID requests
of OID_RECEIVE_FILTER_MOVE_FILTER.

The overlying driver sets the VPortId member of the
NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS structure to the identifier of the
nondefault VPort to be deleted.

Note The overlying driver must not set the VPortId member to
NDIS_DEFAULT_PORT_NUMBER. This VPort identifier is reserved for the default
VPort that is attached to the PCI Express (PCIe) Physical Function (PF) on the
network adapter. The default VPort always exists and is not deleted explicitly
though an OID set request of OID_NIC_SWITCH_DELETE_VPORT.

The overlying driver calls NdisOidRequest to issue the OID_NIC_SWITCH_DELETE_VPORT
request to the underlying PF miniport driver. When the miniport driver receives the
OID_NIC_SWITCH_DELETE_VPORT request, the driver must do the following:

The driver must free the hardware and software resources that were allocated for
the specified VPort.

The driver must detach the specified VPort from the PF or a PCIe Virtual Function
(VF).

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

If the VPort is attached to a VF, the virtualization stack ensures that the VF miniport
driver that runs in the guest operating system has been previously paused and
halted. As a result, all previouslyindicated receive packets from the VPort should
have been returned to the VF miniport driver.

If the VPort is attached to the PF, the PF miniport driver must stop any additional
DMA to the shared memory associated with the VPort. The PF miniport driver must
make sure that all previouslyindicated receive packets from the VPort are returned
to the miniport. The PF miniport driver must not make any additional receive
indications to NDIS that specify the VPort's identifier in the packet's
NET_BUFFER_LIST structure. After all of the indicated receive packets from the
VPort are returned to the PF miniport driver, it must free the shared memory
associated with the VPort by calling NdisFreeSharedMemory.

The following points apply to the deletion of VPorts:

The overlying protocol driver must delete all nondefault VPorts that it created
before it calls NdisCloseAdapterEx.

The overlying filter driver must delete all nondefault VPorts that it created within
its FilterDetach function.

Before NDIS issues a set request of OID_NIC_SWITCH_DELETE_SWITCH to delete a
NIC switch on the network adapter, it guarantees that all nondefault VPorts are
deleted from that switch.

Only nondefault VPorts can be explicitly deleted through OID requests of
OID_NIC_SWITCH_DELETE_SWITCH. The default VPort is implicitly deleted when the
PF miniport driver deletes the default NIC switch. For more information, see
Deleting a NIC Switch.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach

Enumerating Virtual Ports on a Network
Adapter
Article • 12/15/2021

An overlying driver or user application can obtain a list of all virtual ports (VPorts) on a
NIC switch of a network adapter that supports single root I/O virtualization (SR-IOV).
The driver or application issues an object identifier (OID) method request of
OID_NIC_SWITCH_ENUM_VPORTS to obtain this list.

After a successful return from this OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the
following:

An NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_VPORT_INFO structures. Each of these structures
contains information about a VPort on the network adapter's NIC switch.

Note If no VPorts have been created on the network adapter, the driver sets the
NumElements member of the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure
to zero and no NDIS_NIC_SWITCH_VPORT_INFO structures are returned.

Before the overlying driver or user application issues the
OID_NIC_SWITCH_ENUM_VPORTS request, it must initialize an
NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure that is passed along with the
request. The driver or application must follow these guidelines when initializing the
NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure:

If the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY_ENUM_ON_SPECIFIC_SWITCH flag is
set in the Flags member, information is returned for all VPorts created on a
specified NIC switch. The NIC switch is specified by the SwitchId member of that
structure.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch,
and is referenced by the NDIS_DEFAULT_SWITCH_ID identifier. Regardless of the
flags that are set in the Flags member, the SwitchId member must be set to
NDIS_DEFAULT_SWITCH_ID.

If the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY_ENUM_ON_SPECIFIC_FUNCTION
flag is set in the Flags member, information is returned for all VPorts attached to a

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array

specified PCI Express (PCIe) Physical Function (PF) or Virtual Function (VF) on the
network adapter. The PF or VF is specified by the AttachedFunctionId member of
that structure.

If the AttachedFunctionId member is set to NDIS_PF_FUNCTION_ID, information is
returned for all VPorts. This includes the default VPort that is attached to the PF. If
the AttachedFunctionId member is set to a valid VF identifier, information is
returned for all VPorts attached to the specified VF.

Note Starting with Windows Server 2012, only one nondefault VPort can be
attached to a VF. However, multiple VPorts (including the default VPort) can be
attached to the PF.

If the Flags member is set to zero, information is returned for all VPorts attached to
the PF or VF on the network adapter. In this case, the values of the SwitchId and
AttachedFunctionId are ignored.

NDIS handles the OID_NIC_SWITCH_ENUM_VPORTS request for miniport drivers. NDIS
returns the information from an internal cache of the data that it maintains from
inspecting the following sources:

OID method requests of OID_NIC_SWITCH_CREATE_VPORT.

OID set requests of OID_NIC_SWITCH_VPORT_PARAMETERS.

Querying the Parameters of a Virtual
Port
Article • 12/15/2021

An overlying driver can obtain the parameters for a virtual port (VPort) on a NIC switch
on a network adapter that supports single root I/O virtualization (SR-IOV). The driver
issues an object identifier (OID) method request of
OID_NIC_SWITCH_VPORT_PARAMETERS to obtain these parameters.

Before the overlying driver issues this OID method request, it must initialize an
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure. The driver must set the members
of this structure in the following way:

The SwitchId member must be set to the identifier of the NIC switch for which
parameters are to be returned.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch.
The SwitchId member must be set to NDIS_DEFAULT_SWITCH_ID.

The VPortId member must be set to the identifier associated with the VPort. The
overlying driver obtains the VPort identifier through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure. This structure contains the
parameters for the specified VPort.

NDIS handles the OID_NIC_SWITCH_VPORT_PARAMETERS request for miniport drivers.
NDIS returns the information from an internal cache of the data that it maintains from
inspecting the following sources:

OID method requests of OID_NIC_SWITCH_CREATE_VPORT.

OID set requests of OID_NIC_SWITCH_VPORT_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

Setting the Parameters of a Virtual Port
Article • 12/15/2021

An overlying driver can change the parameters for a virtual port (VPort) on a NIC switch
on a network adapter that supports single root I/O virtualization (SR-IOV). The driver
issues an object identifier (OID) set request of OID_NIC_SWITCH_VPORT_PARAMETERS
to change these parameters.

Before the overlying driver issues this OID set request, it must initialize an
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure with the parameters to be changed
on the VPort. The driver then initializes an NDIS_OID_REQUEST structure for the OID
request, and sets the InformationBuffer member to a pointer to the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure.

Only a limited subset of configuration parameters for a VPort can be changed. The
overlying driver specifies the parameter to change by setting the following members of
the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure:

The SwitchId member must be set to the identifier of the NIC switch for which
parameters are to be returned.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch.
The SwitchId member must be set to NDIS_DEFAULT_SWITCH_ID.

The VPortId member must be set to the identifier associated with the VPort. The
overlying driver obtains the VPort identifier through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

The appropriate NDIS_NIC_SWITCH_VPORT_PARAMS_Xxx_CHANGED flags must be
set in the Flags member. Members of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure can only be changed if a
corresponding NDIS_NIC_SWITCH_VPORT_PARAMS_Xxx_CHANGED flag is defined
in Ntddndis.h.

The members of the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure, which
correspond to the NDIS_NIC_SWITCH_VPORT_PARAMS_Xxx_CHANGED flags set in
the Flags member, are set with the VPort configuration parameters that are to be
changed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

Starting with Windows Server 2012, only the following members of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure can be changed through an OID set
request of OID_NIC_SWITCH_VPORT_PARAMETERS:

PortName
This member contains a user-friendly description of the VPort.

InterruptModeration
This member specifies the interrupt moderation setting of the VPort.

ProcessorAffinity
This member specifies the group number and a bitmap of the CPUs that this VPort can
be associated with.

The overlying driver must follow these guidelines for changing the ProcessorAffinity
member for a VPort:

This member is valid only for the VPorts attached to the PF. This field is not valid
for nondefault VPorts that are attached to a VF.

For nondefault VPorts that are attached to the PF, at least one processor must be
specified when the VPort is created. The processor affinity associated with the
nondefault VPort can be changed after VPort creation.

Note Nondefault VPorts are created through OID method requests of
OID_NIC_SWITCH_CREATE_VPORT.

VPortState
This member specifies the current state of the VPort.

The overlying driver must follow these guidelines for changing the VPortState member
for a VPort:

For a nondefault VPort that is attached to a VF, the VPortState member must
always be set to NdisNicSwitchVPortStateActivated.

For a nondefault VPort that is attached to the PF, the VPortState member must be
set to NdisNicSwitchVPortStateDeactivated when the VPort is created. The PF
VPort is activated only after an OID set request of
OID_NIC_SWITCH_VPORT_PARAMETERS is issued by the overlying drivers to
change the VPortState to an activated state.

When the nondefault VPort is activated, the PF miniport driver can allocate
resources for the VPort, such as shared memory that is allocated through
NdisAllocateSharedMemory. The PF miniport driver may allocate resources for

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory

VPort any time after it is activated until the driver deletes the VPort through an OID
set request of OID_NIC_SWITCH_DELETE_VPORT.

The default VPort is always in an activated state. The value of the VPortState
member must always be set to NdisNicSwitchVPortStateActivated for the default
VPort.

When a VPort is in an activated state, it cannot be deactivated. A PF miniport driver
can receive and transmit packets from a VPort only if it is in an activated state and
the corresponding MAC filters are set on the VPort. However, after the VPort is
deleted through an OID set request of OID_NIC_SWITCH_DELETE_VPORT, the driver
must free the resources that were allocated for the VPort. The driver must also
cancel all pending transmit or receive operations for packets on the VPort.

After the PF miniport driver receives the OID set request of
OID_NIC_SWITCH_VPORT_PARAMETERS, the driver configures the hardware with the
configuration parameters. The driver can only change those configuration parameters
identified by NDIS_NIC_SWITCH_VPORT_PARAMETERS_Xxx_CHANGED flags in the Flags
member of the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

Managing the Receive Filters for a
Virtual Port
Article • 12/15/2021

Receive filters can be set, cleared, moved, and enumerated on a virtual port (VPort) after
the VPort has been created on the NIC switch.

This section includes the following topics:

Setting a Receive Filter on a Virtual Port

Clearing a Receive Filter on a Virtual Port

Moving a Receive Filter to a Virtual Port

Enumerating Receive Filters on a Virtual Port

For information about how to create VPorts, see Creating a Virtual Port.

Setting a Receive Filter on a Virtual Port
Article • 12/15/2021

After a virtual port (VPort) is created on the NIC switch of the network adapter, overlying drivers can set receive filters on the
VPort. Only the driver that created the VPort can set a receive filter on that VPort

This topic contains the following information:

Setting a Receive Filter on a VPort

Using the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO Flag

Using the Filter Identifier

Handling Receive Filters on a VPort

For more information on how to create a VPort, see Creating a Virtual Port.

Note Because the default VPort always exists and is never explicitly created, any overlying driver can set a receive filter on the
default VPort. Overlying drivers do not own the default VPort. Therefore, all protocol drivers that are bound to a network
adapter can use the default VPort. The default VPort has an identifier value of NDIS_DEFAULT_VPORT_ID.

To set and configure a filter on a VPort, an overlying driver issues an object identifier (OID) method request of
OID_RECEIVE_FILTER_SET_FILTER. The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure.

Before the overlying driver issues this OID method request, it must initialize an NDIS_RECEIVE_FILTER_PARAMETERS structure.
The driver must set the members of this structure in the following way:

The FilterType member must be set to an NDIS_RECEIVE_FILTER_TYPE enumeration value.

Note Starting with NDIS 6.30, only NdisReceiveFilterTypeVMQueue filter types are supported for the single root I/O
virtualization (SR-IOV) interface.

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The VPortId member must be set to the identifier associated with the VPort. The overlying driver obtains the VPort
identifier through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

The FilterId member must be set to NDIS_DEFAULT_RECEIVE_FILTER_ID.

Note NDIS assigns a unique filter identifier in this member before it forwards the OID request to the miniport driver for
processing.

The FieldParametersArrayOffset, FieldParametersArrayNumElements, and FieldParametersArrayElementSize members
of the NDIS_RECEIVE_FILTER_PARAMETERS structure must be set appropriately to define an array of
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures. Each NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure in the
array sets the filter test criterion for one field in a network header.

For the SR-IOV interface, the following field test parameters are defined:

The destination media access control (MAC) address in the packet equals the specified MAC address.

The virtual LAN (VLAN) identifier in the packet equals the specified VLAN identifier.

After a successful return from the OID method request, the InformationBuffer member of the NDIS_OID_REQUEST structure
contains a pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure with a new filter identifier.

Setting a Receive Filter on a VPort

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_receive_filter_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

The Flags member of the NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure specify actions to be performed for the receive
filter. The following points apply to the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag:

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag is set in the Flags member, the
network adapter must indicate only received packets that match all of the following test criteria:

A packet with a matching MAC address.

A packet that has no VLAN tag or has a VLAN identifier of zero.

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag is set, the network adapter must not
indicate packets that have a matching MAC address and a nonzero VLAN identifier.

Note If the virtualization stack sets the MAC address filter and no VLAN identifier filter is configured by the
OID_RECEIVE_FILTER_SET_FILTER set request, the switch also sets the
NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag.

Starting with NDIS 6.30, if the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag is not set
and there is no VLAN identifier filter configured by the OID_RECEIVE_FILTER_SET_FILTER method request, the miniport
driver must do either one of the following:

The miniport driver must return a failed status for the OID_RECEIVE_FILTER_SET_FILTER method request.

The miniport driver must configure the network adapter to inspect and filter the specified MAC address fields. If a VLAN
tag is present in the received packet, the network adapter must remove it from the packet data. The miniport driver
must put the VLAN tag in an NDIS_NET_BUFFER_LIST_8021Q_INFO that is associated with the packet's
NET_BUFFER_LIST structure.

If a protocol driver sets a MAC address filter and a VLAN identifier filter with the OID_RECEIVE_FILTER_SET_FILTER method
request, it does not set the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag in either of the
filter fields. In this case, the miniport driver should indicate packets that match both the specified MAC address and the
VLAN identifier. That is, the miniport driver should not indicate packets with a matching MAC address that have a zero
VLAN identifier or are untagged packets.

NDIS assigns a filter identifier in the FilterId member of the NDIS_RECEIVE_FILTER_PARAMETERS structure and passes the OID
method request of OID_RECEIVE_FILTER_SET_FILTER to the underlying miniport driver. Each filter that is set on a VPort has a
unique filter identifier for a network adapter. That is, the filter identifiers are not duplicated on different queues that the
network adapter manages.

The overlying driver must use the filter identifier that NDIS provides in later OID requests to change the filter parameters or to
free a filter.

When NDIS receives an OID request to set a filter on a VPort, it verifies the filter parameters. After NDIS allocates the necessary
resources and the filter identifier, it submits the OID request to the underlying network adapter. If the network adapter can
successfully allocate the necessary software and hardware resources for the filter, it completes the OID request with
NDIS_STATUS_SUCCESS.

The miniport driver must retain the filter identifiers for the allocated receive filters. NDIS uses the filter identifier of a filter with
later OID requests to change the receive filter parameters or clear the receive filter. For more information about how to change
parameters and clear filters, see Obtaining and Updating VM Queue Parameters and Clearing a VMQ Filter.

Using the
NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
Flag

Using the Filter Identifier

Handling Receive Filters on a VPort

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

The miniport driver programs the network adapter based on the filters in the following way:

All field test parameters for a particular filter must match to assign a packet to the VPort.

Multiple filters can be set on a VPort.

Packets must be assigned to the VPort if any of the filters pass.

The network adapter combines the results from all the field tests with a logical AND operation. That is, if any field test that is
included in the array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures fails, the network packet does not meet the
specified filter criterion.

When a network adapter tests a received packet against these filter criteria, it must ignore all fields in the packet that have no
test criteria that were specified.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

Clearing a Receive Filter on a Virtual
Port
Article • 12/15/2021

To clear a receive filter from a virtual port (VPort) on the NIC switch, an overlying driver
issues an object identifier (OID) set request of OID_RECEIVE_FILTER_CLEAR_FILTER. The
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to
an NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure.

Before the overlying driver issues the OID_RECEIVE_FILTER_CLEAR_FILTER request, it
must initialize the NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure and set the
members in the following way:

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The FilterId member must be set to the filter identifier value that the driver
obtained from an earlier OID_RECEIVE_FILTER_SET_FILTER method OID request. For
more information about how to set receive filters, see Setting a Receive Filter on a
Virtual Port.

An overlying driver must clear all of the filters that it set on a VPort before it frees the
VPort. An overlying driver must also clear all of the filters that it set on the default VPort
before it closes its binding to or detached from the network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters

Moving a Receive Filter to a Virtual Port
Article • 12/15/2021

The overlying driver issues an object identifier (OID) set request of
OID_RECEIVE_FILTER_MOVE_FILTER to move a receive filter from a virtual port (VPort) to
another VPort on the NIC switch. Typically, the overlying driver, such as the virtualization
stack, issues this OID request if any of the following conditions are true:

The virtualization stack sets a receive filter on the default VPort. This filter contains
the media access control (MAC) address and virtual LAN (VLAN) parameters for the
virtual machine (VM) network adapter that is exposed in the Hyper-V child
partition. This allows packets to be forwarded between the VM network adapter
and the underlying network adapter over the software-based synthetic data path.

After resources for a PCI Express (PCIe) Virtual Function (VF) are allocated and the
VF is attached to a child partition, the virtualization stack creates a nondefault
VPort on the VF. The virtualization stack then moves the receive filter for the VM
network adapter from the default VPort to the nondefault VPort attached to the
VF. This allows packets to be forwarded between the VM network adapter and the
underlying network adapter over the hardware-based VF data path.

For more information about these data paths, see SR-IOV Data Paths.

A VF has been detached from a Hyper-V child partition in which the guest
operating system is still running. In this case, the overlying driver issues the OID set
request to move the receive filter for the VM network adapter from the nondefault
VPort to the default VPort attached to the PF. When this happens, packet traffic
reverts to the synthetic data path.

To move a receive filter from one VPort to another VPort, an overlying driver issues an
OID set request of OID_RECEIVE_FILTER_MOVE_FILTER. The InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS structure.

Before the overlying driver issues the OID_RECEIVE_FILTER_MOVE_FILTER request, it
must initialize an NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS structure in the
following way:

The driver sets the FilterId member to the identifier of the identifier of the
previously allocated receive filter.

Note The overlying driver obtained the filter identifier from an earlier OID method
request of OID_RECEIVE_FILTER_SET_FILTER or OID_RECEIVE_FILTER_ENUM_FILTERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters

The driver sets the SourceQueueId member to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The driver sets the SourceVPortId member to the identifier of the VPort on which
this filter was previously set.

The driver sets the DestQueueId member to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The driver sets the DestVPortId member to the identifier of the VPort on which this
filter is to be moved.

NDIS validates the members of the NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS
before it forwards the OID set request to the PF miniport driver.

When the PF miniport driver handles this OID set request, it must move the receive filter
in an atomic operation. The driver must be able to configure the network adapter to
simultaneously remove the filter from a receive queue and VPort and set it on a different
receive queue and VPort.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters

Enumerating Receive Filters on a Virtual
Port
Article • 12/15/2021

After a virtual port (VPort) is created on the NIC switch of the network adapter, overlying
drivers and user applications can do the following:

Enumerate the parameters for receive filters on a VPort.

For more information, see Enumerating Receive Filters.

Query the parameters for a specific receive filter.

For more information, see Querying a Specific Receive Filter.

For more information on how to create a VPort, see Creating a Virtual Port.

To obtain a list of all receive filters that are set on a virtual port (VPort) of a NIC switch,
overlying drivers and applications can issue object identifier (OID) method requests of
OID_RECEIVE_FILTER_ENUM_FILTERS.

The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_INFO_ARRAY structure.

Before the overlying driver or user application issues this OID method request, it must
initialize an NDIS_RECEIVE_FILTER_INFO_ARRAY structure and set the members of this
structure in the following way:

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The VPortId member must be set to the identifier associated with the VPort. The
overlying driver obtains the VPort identifier through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

Note This member is only valid if the driver or application sets the
NDIS_RECEIVE_FILTER_INFO_ARRAY_VPORT_ID_SPECIFIED flag in the Flags
member. If this flag is not set, receive filters are returned that were set on every
VPort on the NIC switch.

Enumerating Receive Filters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array

After a successful return from the OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an updated
NDIS_RECEIVE_FILTER_INFO_ARRAY structure that is followed by one or more
NDIS_RECEIVE_FILTER_INFO structures. Each NDIS_RECEIVE_FILTER_INFO structure
specifies the unique identifier for the receive filter that is set on the specified VPort.

Overlying drivers or applications can issue an OID method request of
OID_RECEIVE_FILTER_PARAMETERS to obtain the parameters of a specific filter on a
VPort.

The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure.

Before the overlying driver or user application issues this OID method request, it must
initialize an NDIS_RECEIVE_FILTER_PARAMETERS structure and set the members of this
structure in the following way:

The FilterId member must be set to the nonzero identifier value of the filter whose
parameters are to be returned.

Note The overlying driver obtained the filter identifier from an earlier OID method
request of OID_RECEIVE_FILTER_SET_FILTER or OID_RECEIVE_FILTER_ENUM_FILTERS.
The application can obtain the filter identifier only from an earlier OID method
request of OID_RECEIVE_FILTER_ENUM_FILTERS.

The QueueId member must be set to NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The VPortId member must be set to the identifier associated with the VPort. The
overlying driver obtains the VPort identifier through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

NDIS handles the OID_RECEIVE_FILTER_ENUM_FILTERS and
OID_RECEIVE_FILTER_PARAMETERS method OID requests for miniport drivers. NDIS
obtained the information from an internal cache of the data that it received from the
OID_RECEIVE_FILTER_SET_FILTER OID request.

Querying a Specific Receive Filter

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Symmetric and Asymmetric Assignment
of Queue Pairs
Article • 12/15/2021

A queue pair consists of a separate transmit and receive queue on the network adapter.
Queue pairs are configured on a virtual port (VPort) when the VPort is created. Queue
pairs associated with the default VPort are configured at the time of switch creation
through an OID method request of OID_NIC_SWITCH_CREATE_SWITCH. One or more
queue pairs are configured on a nondefault VPort through an OID method request of
OID_NIC_SWITCH_CREATE_VPORT.

Each nondefault VPort can be configured to have a different number of queue pairs. This
is known as asymmetric allocation of queue pairs. If the miniport driver does not support
asymmetric allocations, each nondefault VPort is configured to have an equal number of
queue pairs. This is known as symmetric allocation of queue pairs.

The miniport driver advertises its VPort and queue pair capabilities during
MiniportInitializeEx by using an NDIS_NIC_SWITCH_CAPABILITIES structure. The driver
advertises its support for asymmetric allocation of queue pairs by setting the
NDIS_NIC_SWITCH_CAPS_ASYMMETRIC_QUEUE_PAIRS_FOR_NONDEFAULT_VPORT_SUPP
ORTED flag in the NicSwitchCapabilities member of this structure.

If the miniport driver supports asymmetric queue pair allocation, the virtualization stack
configures each nondefault VPort with a different number of queue pairs. If the miniport
driver supports symmetric queue pair allocation, the virtualization stack configures each
VPort with the same number of queue pairs.

Note A miniport driver that supports either symmetric or asymmetric queue pair
allocation on nondefault VPorts must support a different number of queue pairs to be
allocated on the default VPort. The default VPort is always attached to the network
adapter's PF.

The queue pair configuration is specified when the nondefault VPort is created or
updated through OID requests of OID_NIC_SWITCH_CREATE_VPORT and
OID_NIC_SWITCH_VPORT_PARAMETERS. The configuration parameters are specified in
an NDIS_NIC_SWITCH_VPORT_PARAMETERS structure that is associated with both OID
requests.

For example, assume that the miniport driver advertises the configuration for VPorts and
queue pairs on the NIC switch by setting the following members of the
NDIS_NIC_SWITCH_CAPABILITIES structure:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

MaxNumQueuePairs is set to 128.

MaxNumVPorts is set to 64.

MaxNumQueuePairsPerNonDefaultPort is set to 4.

If the miniport driver does not support asymmetric configuration of queue pairs on
nondefault VPorts, the virtualization stack can specify the following queue pair
configuration when VPorts are created:

63 nondefault VF VPorts with two queue pairs each, together with the default PF
VPort with one queue pair.
31 nondefault VF VPorts with four queue pairs each, together with the default PF
VPort with one queue pair.

Note Starting with Windows Server 2012, only one default VPort is supported and is
always attached to the network adapter's PF.

Packet Flow over a Virtual Port
Article • 12/15/2021

The default NIC switch is a component of a network adapter that supports the single
root I/O virtualization (SR-IOV) interface. The switch always attaches the default virtual
port (VPort) to the PCI Express (PCIe) Physical Function (PF). The switch can attach one
or more nondefault VPorts to the PF. For more information, see Creating a Virtual Port.

The following points apply to packets that are sent or received on a VPort that is
attached to the PF:

Packets sent or received over the default VPort are specified with a VPort identifier
value of DEFAULT_VPORT_ID.

Packets sent or received over nondefault VPorts are specified with the VPort
identifier that was returned when the VPort was created through an OID method
request of OID_NIC_SWITCH_CREATE_VPORT. When the driver handles this OID
request, it obtains the VPort identifier from the VPortId member of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure that is associated with the OID
request.

Note When a VPort is deleted, it is possible for the miniport driver to receive an
NBL that contains an invalid VPortId value. If this happens, the miniport should
ignore the invalid VPort ID and use DEFAULT_VPORT_ID instead. The VPortId is
found in the NetBufferListFilteringInfo portion of the NBL's OOB data, and is
retrieved by using the NET_BUFFER_LIST_RECEIVE_FILTER_VPORT_ID macro.

The PF miniport driver calls NdisMIndicateReceiveNetBufferLists to indicate
packets received from a VPort. Before the PF miniport driver calls
NdisMIndicateReceiveNetBufferLists, it must set the VPort identifier in the out-of-
band (OOB) data in the NET_BUFFER_LIST structure for the packet. The driver does
this by using the NET_BUFFER_LIST_RECEIVE_FILTER_VPORT_ID macro.

The virtualization stack calls NdisSendNetBufferLists to transmit packets to a
VPort. Before the virtualization stack calls NdisSendNetBufferLists, it sets the VPort
identifier in the OOB data in the NET_BUFFER_LIST structure for the packet.

The miniport driver obtains the VPort identifier by using the
NET_BUFFER_LIST_RECEIVE_FILTER_VPORT_ID macro.

The miniport driver must queue the transmit packet on the hardware transmit
queue of the specified VPort.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_vport_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_vport_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_vport_id

Note The miniport driver for the PCIe Virtual Function (VF) does not set or query the
VPort identifier in the OOB data of the NET_BUFFER_LIST structure for a packet. When
the VF miniport driver sends a packet, it queues the packet on the hardware transmit
queue for the single nondefault VPort that is attached to the VF.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Nondefault Virtual Ports and VMQ
Article • 07/07/2022

The default NIC switch is a component of a network adapter that supports the single
root I/O virtualization (SR-IOV) interface. The switch always attaches the default virtual
port (VPort) to the PCI Express (PCIe) Physical Function (PF). The switch can attach one
or more nondefault VPorts to the PF. For more information, see Creating a Virtual Port.

The virtualization stack runs in the management operating system of the Hyper-V parent
partition. This stack creates VPorts by issuing object identifier (OID) method requests of
OID_NIC_SWITCH_CREATE_VPORT. However, the stack can create more VPorts than the
number of active PCIe Virtual Functions (VFs) for which resources have been allocated
through OID method requests of OID_NIC_SWITCH_ALLOCATE_VF.

If SR-IOV is enabled on a network adapter, full VMQ functionality must be disabled.
However, nondefault VPorts that are attached to the PF and not attached to a VF can
provide the same functionality as the virtual machine queue (VMQ) interface. The
following points discuss how VPorts can provide hardware-accelerated data paths for
packet transfer that is similar to VMQ:

VMQ determines the target VM by media access control (MAC) filtering in
hardware. This avoids the overhead of a determining the target VM in the
virtualization stack.

Starting with Windows Server 2012, the virtualization stack configures the receive
filters on the VPort by issuing OID method requests of
OID_RECEIVE_FILTER_SET_FILTER. For this OID request, the virtualization stack
passes an NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the MAC
address and virtual LAN (VLAN) identifier that is associated with the virtual
network adapter. Similar to VMQ, it can configure multiple MAC address and VLAN
ID pairs on the VPort. The virtualization stack also specifies the target VPort to
which the receive filter will be set.

The SR-IOV network adapter performs similar hardware filtering based on the
filtering criteria that is specified through the OID_RECEIVE_FILTER_SET_FILTER
request. When a packet is received on the hardware receive queue of a VPort, the
miniport driver specifies the source VPort identifier in the out-of-band (OOB) data
of a NET_BUFFER_LIST structure for the packet. Based on the VPort identifier, the
virtualization stack determines the target VM and indicates the packets to the
network stack that runs in the VM.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Similarly, the virtualization stack specifies the target VPort identifier in the OOB
data of a NET_BUFFER_LIST structure for a transmit packet. When the driver
handles the send request for the packet, it places the packet in the hardware
transmit queue of the specified VPort.

The VPort identifier can be obtained from the packet's OOB data by using the
NET_BUFFER_LIST_RECEIVE_FILTER_VPORT_ID macro.

For more information about this process, see Packet Flow over a Virtual Port.

For more information about the receive filtering requirements for an SR-IOV
network adapter, see Determining Receive Filtering Capabilities.

VMQ provides interrupt and DPC concurrency.

Starting with NDIS 6.30 and Windows Server 2012, a VPort attached to the PF can
be configured to have a specific CPU affinity. The virtualization stack configures the
CPU affinity and interrupt moderation parameters for a VPort by using OID method
requests of OID_NIC_SWITCH_CREATE_VPORT or
OID_NIC_SWITCH_VPORT_PARAMETERS. By doing this, the virtualization stack
configures interrupt-based parameters similar to VMQ for interrupt and DPC
concurrency.

For example, when the SR-IOV network adapter receives packets on a VPort that is
configured to have a specific CPU affinity, the adapter generates the interrupts on
the specified CPU. The miniport driver indicates the received packets to NDIS and
the virtualization stack for that CPU.

The PF miniport driver advertises its SR-IOV capabilities within the context of the call to
MiniportInitializeEx. The driver initializes an NDIS_SRIOV_CAPABILITIES structure with its
capabilities and calls NdisMSetMiniportAttributes to register its capabilities. For more
information, see Determining SR-IOV Capabilities.

The following members of the NDIS_NIC_SWITCH_CAPABILITIES structure affect the
way that VPorts are allocated:

MaxNumVPorts, which specifies the maximum number of VPorts that can be
created on the network adapter.

MaxNumVFs, which specifies the maximum number of VFs that can be allocated
on the network adapter.

Starting with NDIS 6.30, when the miniport driver initializes the
NDIS_NIC_SWITCH_CAPABILITIES structure, it can set the
NDIS_NIC_SWITCH_CAPS_SINGLE_VPORT_POOL flag in the NicSwitchCapabilities

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_vport_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

member. This flag specifies that the nondefault VPorts can be created in a nonreserved
manner from the VPort pool on the network adapter. This allows available nondefault
VPorts to be created and assigned on an as-needed basis to the PF and allocated VFs. If
the network adapter supports the VMQ interface, nondefault VPorts that are assigned to
the PF can also be used for VM receive queues.

If the NDIS_NIC_SWITCH_CAPS_SINGLE_VPORT_POOL flag is set, available nondefault
VPorts are created and assigned to the PF and allocated VFs. The maximum number of
VPorts that can be created and assigned to the PF is the same value that the driver
reports in the MaxNumVPorts member. The miniport driver must reserve one VPort to
be used as the default VPort that is assigned to the PF. As a result, the maximum
number of nondefault VPorts that can be assigned to the PF and used for VM receive
queues is (MaxNumVPorts– 1).

If the NDIS_NIC_SWITCH_CAPS_SINGLE_VPORT_POOL flag is not set, the creation and
assignment of nondefault VPorts is reserved for VF assignment. The maximum number
of additional nondefault VPorts that can be created and assigned to the PF and used for
VM receive queues is (MaxNumVPorts–MaxNumVFs).

For more information about VMQ, see Virtual Machine Queue (VMQ).

７ Note

 If this flag is set, the creation and assignment of nondefault VPorts are not
reserved for VF allocation. As a result, situations may occur where a VF may not be
assigned a VPort if the pool has been exhausted of available VPorts.

Managing Virtual Functions
Article • 12/15/2021

This section describes the requirements and guidelines for managing the PCI Express
(PCIe) Virtual Functions (VFs) on a network adapter that supports single root I/O
virtualization (SR-IOV).

This section includes the following topics:

Overview of Virtual Function Initialization and Teardown

Allocating Resources for a Virtual Function

Freeing Resources for a Virtual Function

Enumerating Virtual Functions on a Network Adapter

Querying the Parameters of a Virtual Function

Accessing the PCI Configuration Space of a Virtual Function

Setting the Power State of a Virtual Function

Resetting a Virtual Function

For more information on VFs for SR-IOV network adapters, see SR-IOV Virtual Functions
(VFs).

Note Only the PF miniport driver can configure the network adapter's hardware
resources, such as the VFs. The VF miniport driver cannot directly access most of the SR-
IOV adapter's hardware resources. For more information, see Writing SR-IOV VF
Miniport Drivers.

Overview of Virtual Function
Initialization and Teardown
Article • 12/15/2021

This section provides an overview of the initialization and teardown sequence for PCI
Express (PCIe) Virtual Functions (VFs). VFs are provided by a network adapter that
supports single root I/O virtualization (SR-IOV).

This section includes the following topics:

Virtual Function Initialization Sequence

Virtual Function Teardown Sequence

For more information on VFs for SR-IOV network adapters, see SR-IOV Virtual Functions
(VFs).

Note Only the PF miniport driver can configure the network adapter's hardware
resources, such as the VFs. The VF miniport driver cannot directly access most of the SR-
IOV adapter's hardware resources. For more information, see Writing SR-IOV VF
Miniport Drivers.

Virtual Function Initialization Sequence
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
support the following hardware components:

One PCI Express (PCIe) Physical Function (PF). The PF always exists on the network
adapter and is attached to the Hyper-V parent partition.

For more information on this hardware component, see SR-IOV Physical Function
(PF).

One or more PCIe Virtual Functions (VF). Each VF must be initialized and attached
to a Hyper-V child partition before the networking components of the guest
operating system can send or receive packets over the VF.

For more information on this hardware component, see SR-IOV Virtual Functions
(VFs).

The PF miniport driver, which runs in the management operating system of the Hyper-V
parent partition, initializes and allocates resources for a VF on the SR-IOV network
adapter. After NDIS calls the PF miniport driver’s MiniportInitializeEx function, NDIS and
the virtualization stack can issue object identifier (OID) requests to the PF miniport
driver to do the following:

Create a NIC switch on the network adapter. The NIC switch bridges network traffic
between the VFs, PF, and the physical network port.

For more information, see NIC Switches.

Note Starting with Windows Server 2012, the SR-IOV interface supports only one
NIC switch on the network adapter. This switch is known as the default NIC switch,
and is referenced by the NDIS_DEFAULT_SWITCH_ID identifier.

Request the PF miniport driver to initialize and allocate resources for a VF on the
network adapter.

For more information, see SR-IOV Virtual Functions (VFs).

Create a virtual port (VPort) on the NIC switch and attach it to the VF.

For more information, see Virtual Ports (VPorts).

The following diagram shows the steps that are involved with VF initialization.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

NDIS, the virtualization stack, and the PF miniport driver follow these steps during the
VF initialization sequence:

1. NDIS reads the default switch configuration from the registry and issues an OID
method request of OID_NIC_SWITCH_CREATE_SWITCH to provision the switch in
the network adapter. The parameters that are passed in this OID request include
information on how to configure important hardware resources such as VFs and
VPorts. It also includes information on how to distribute the resources among the
nondefault VPorts and the default VPort that are attached to the PF.

After the OID has been successfully completed by the PF miniport driver, the NIC
switch is ready to be used to create VPorts and allocate VFs on it.

For more information on how to create a NIC switch, see Creating a NIC Switch.

2. A VF is treated as an offload mechanism for the virtual machine (VM) network
adapter. This adapter is exposed in the guest operating system that runs in the
Hyper-V child partition. By default, the networking components in the guest
operating system send and receive packets over the software-based synthetic data
path. However, if a child partition is enabled for VF offload, the virtualization stack
issues OID requests to the PF miniport driver for the resource allocation and
initialization of a VF. After the VF is attached to the child partition and a VPort on
the NIC switch, the networking components send and receive packets over the VF
data path. For more information about these data paths, see SR-IOV Data Paths.

If a Hyper-V child partition has been enabled for VF offload, the virtualization stack
issues an OID method request of OID_NIC_SWITCH_ALLOCATE_VF to the PF
miniport driver. The parameters that are passed in this OID request include the
identifier of the NIC switch on which the VF is allocated. Other parameters include
identifiers for the child partition to which the VF will be attached.

The PF miniport driver allocates the necessary hardware and software resources for
the VF. The PF miniport driver also determines the PCIe Requestor Identifier (RID)
for the VF by calling NdisMGetVirtualFunctionLocation. The RID is used for DMA
and interrupt remapping when DMA requests and interrupts are generated by the
VF.

The RID along with the VF identifier are returned by the PF miniport driver when it
successfully completes the OID_NIC_SWITCH_ALLOCATE_VF request.

For more information about resource allocation for a VF, see Allocating Resources
for a Virtual Function.

3. The virtualization stack creates a VPort on the NIC switch by issuing an OID
method request of OID_NIC_SWITCH_CREATE_VPORT to the PF miniport driver. The
parameters that are passed in this OID request include the identifier of the NIC
switch on which the VPort is to be created. Other parameters include the identifier
of the VF to which the VPort will be attached.

Note The default VPort on the NIC switch always exists and is attached to the PF.
Only a single nondefault VPort can be created and attached to a VF.

Before NDIS forwards the OID request to the PF miniport driver, it allocates a valid
VPort identifier that is unique over the network adapter.

When the PF miniport driver handles the OID request, it allocates the hardware
resources required for the VPort and retains the identifier for the VPort. This
identifier is used in later OID requests and SR-IOV function calls.

For more information about how to create a VPort, see Creating a Virtual Port.

4. The Hyper-V child partition may be started long before a VF and VPort are
allocated. During this time, the networking components in the guest operating
system send and receive packets over the synthetic data path. This involves packet
traffic over the default VPort that is attached to the PF. To bridge traffic to the child
partition, the virtualization stack configures the default VPort with the media
access control (MAC) and virtual LAN (VLAN) filters for the VM network adapter of
the child partition.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionlocation

After resources for the VF and VPort are allocated, the virtualization stack issues an
OID method request of OID_RECEIVE_FILTER_MOVE_FILTER to the PF miniport
driver. This OID request moves the MAC and VLAN filters for the VM network
adapter from the default VPort to the VPort that is attached to the VF. This causes
packets that match these filters to be forwarded to the VF VPort over the VF data
path.

Note Existing receive filters may be moved from the default VPort to the VF VPort
by using OID_RECEIVE_FILTER_MOVE_FILTER. Also, new filters may be set on the VF
VPort by using OID_RECEIVE_FILTER_SET_FILTER.

After the VF and the VPort are created successfully and the MAC filters have been set on
the VPort, the virtualization stack notifies the Virtual PCI (VPCI) virtual service provider
(VSP). This VSP runs in the management operating system of the Hyper-V parent
partition. The notification informs the VPCI VSP that the VF that has been successfully
allocated and attached to a child partition. The VPCI VSP sends messages over the
virtual machine bus (VMBus) to the VPCI virtual service client (VSC) that runs in the
guest operating system of the child partition. The VPCI VSC is a bus driver that exposes
a PCI device for the VF network adapter.

After the VF network adapter is exposed, the PnP subsystem that runs in the guest
operating system detects the adapter and loads the VF miniport driver. This driver
registers with NDIS. After the VF miniport driver has been initialized and the appropriate
packet filters are configured on the VF network adapter, the VF data path is fully
operational. As a result, packet traffic in the guest operating system switched to this
data path from the synthetic data path.

Virtual Function Teardown Sequence
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
support the following hardware components:

One PCI Express (PCIe) Physical Function (PF). The PF always exists on the network
adapter and is attached to the Hyper-V parent partition.

For more information on this hardware component, see SR-IOV Physical Function
(PF).

One or more PCIe Virtual Functions (VF). Each VF must be initialized and attached
to a Hyper-V child partition before the networking components of the guest
operating system can send or receive packets over the VF.

For more information on this hardware component, see SR-IOV Virtual Functions
(VFs).

Before the VF is torn down and its resources freed, the virtualization stack notifies the
Virtual PCI (VPCI) virtual service provider (VSP). This VSP runs in the management
operating system of the Hyper-V parent partition. The notification informs the VPCI VSP
that the VF will be torn down and detached from the child partition. The VPCI VSP sends
messages over the virtual machine bus (VMBus) to the VPCI virtual service client (VSC)
that runs in the guest operating system of the child partition. These messages request
the VPCI VSC to gracefully remove the VF network adapter that was exposed when the
VF was attached to the child partition. This causes the NetVSC to unbind from the VF
miniport driver and the driver to be halted. At this point, packet traffic in the child
partition migrates from the VF data path to the software-based synthetic data path. For
more information about these data paths, see SR-IOV Data Paths.

After the failover to the synthetic data path is complete, the VF is torn down and its
resources freed. The following diagram shows the steps that are involved with VF
teardown.

NDIS, the virtualization stack, and the PF miniport driver follow these steps during the
VF teardown sequence:

1. The virtualization stack moves the media access control (MAC) and virtual LAN
(VLAN) filters for the virtual machine (VM) network adapter to the default virtual
port (VPort) that is attached to the PF. The VM network adapter is exposed in the
guest operating system of the child partition.

Aftet the filters are moved to the default VPort, the synthetic data path is fully
operational for network traffic to and from the networking components that run in
the guest operating system. The PF miniport driver indicates received packets on
the default PF VPort which uses the synthetic data path to indicate the packets to
the guest operating system. Similarly, all transmitted packets from the guest
operating system are routed through the synthetic data path and transmitted
through the default PF VPort.

2. The virtualization stack deletes the VPort that is attached to the VF by issuing an
object identifier (OID) set request of OID_NIC_SWITCH_DELETE_VPORT to the PF
miniport driver. The miniport driver frees any hardware or software resources
associated with the VPort and completes the OID request.

For more information, see Deleting a Virtual Port.

3. The virtualization stack requests a PCIe function level reset (FLR) of the VF before
its resources are deallocated. The stack does this by issuing an OID set request of
OID_SRIOV_RESET_VFto the PF miniport driver. The FLR brings the VF on the SR-
IOV network adapter into a quiescent state and clears any pending interrupt events
for the VF.

4. After the VF has been reset, the virtualization stack requests a deallocation of the
VF resources by issuing an OID set request of OID_NIC_SWITCH_FREE_VF to the PF
miniport driver. This causes the miniport driver to free the hardware resources
associated with the VF.

Allocating Resources for a Virtual
Function
Article • 12/15/2021

A network adapter that supports single root I/O virtualization (SR-IOV) must be able to
support the following hardware components:

One PCI Express (PCIe) Physical Function (PF). The PF always exists on the network
adapter and is attached to the Hyper-V parent partition.

For more information on this hardware component, see SR-IOV Physical Function
(PF).

One or more PCIe Virtual Functions (VF). Each VF must be initialized and attached
to a Hyper-V child partition before the networking components of the guest
operating system can send or receive packets over the VF.

For more information on this hardware component, see SR-IOV Virtual Functions
(VFs).

The PF miniport driver, which runs in the management operating system of the Hyper-V
parent partition, allocates resources for the PF and each VF on the SR-IOV network
adapter. This driver allocates resources for the PF as it would for any network adapter.
However, the driver allocates resources for each VF in the following way:

The PF miniport driver allocates hardware resources for each VF when the driver
creates the network interface card (NIC) on the network adapter. The driver
completes the hardware resource allocation for the VFs by calling
NdisMEnableVirtualization. For more information on this process, see Creating a
NIC Switch.

The PF miniport driver allocates software resources for a VF when the driver
handles an object identifier (OID) method request of
OID_NIC_SWITCH_ALLOCATE_VF. Even though the hardware resources have been
allocated for a VF, it is considered nonoperational until the PF miniport driver
successfully completes the OID_NIC_SWITCH_ALLOCATE_VF.

The overlying driver can request the allocation of software resources for a VF by issuing
an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. The InformationBuffer
member of the NDIS_OID_REQUEST structure for the OID request contains a pointer to
an NDIS_NIC_SWITCH_VF_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

After a successful return from the OID request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_VF_PARAMETERS structure. This structure has an adapter-unique VF
identifier and PCI Requestor Identifier (RID). These identifiers are used in the following
ways:

The overlying driver uses the VF identifier in actions related to the VF, such as the
following:

Obtaining the current VF parameters through an OID method request of
OID_NIC_SWITCH_VF_PARAMETERS.

Freeing previously allocated resources for the VF through an OID set request of
OID_NIC_SWITCH_FREE_VF.

Issuing a PCI reset to the VF through an OID set request of
OID_SRIOV_RESET_VF.

The RID is used by the virtualization stack for remapping DMA and interrupts
between the PF and VF. The RID also enables the hardware input/output memory
management unit (IOMMU) to convert guest physical addresses to host physical
addresses.

For more information on how the overlying driver issues
OID_NIC_SWITCH_ALLOCATE_VF method requests, see Issuing
OID_NIC_SWITCH_ALLOCATE_VF Requests.

For more information on how the PF miniport driver handles
OID_NIC_SWITCH_ALLOCATE_VF method requests, see Handling
OID_NIC_SWITCH_ALLOCATE_VF Requests.

Note After resources for a VF have been allocated through an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF, the resource parameters for the VF cannot be changed
dynamically.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

Issuing OID_NIC_SWITCH_ALLOCATE_VF
Requests
Article • 12/15/2021

Before it issues the object identifier (OID) method request of
OID_NIC_SWITCH_ALLOCATE_VF to the miniport driver for the PCI Express (PCIe)
Physical Function (PF), the overlying driver formats an
NDIS_NIC_SWITCH_VF_PARAMETERS structure. This structure contains the
configuration parameters for the resources to be allocated for a PCIe Virtual Function
(VF) on the network adapter. The overlying driver must set the members of this structure
in the following way:

The SwitchId member must be set to the identifier of a NIC switch that was
previously created on the network adapter. A NIC switch is created through an OID
method request of OID_NIC_SWITCH_CREATE_SWITCH.

When it handles the OID method request of OID_NIC_SWITCH_ALLOCATE_VF, the
miniport driver for the PCIe Physical Function (PF) allocates resources for the VF. If
resources are allocated successfully, the PF miniport driver assigns the VF to the
specified NIC switch.

Note Starting with NDIS 6.30 in Windows Server 2012, the SR-IOV interface only
supports the default NIC switch on the network adapter. The value of the SwitchId
member must be set to NDIS_DEFAULT_SWITCH_ID.

For more information on a NIC switch, see NIC Switches.

The VFId member must be set to NDIS_INVALID_VF_FUNCTION_ID.

The RequestorId member must be set to NDIS_INVALID_RID.

The VMFriendlyName and VMName members must be set to the parameters of a
Hyper-V child partition. The PF miniport driver uses these members only for
informational purposes.

Note The Hyper-V child partition is also known as a virtual machine (VM).

The VF is associated with the specified VM before the overlying driver issues the
OID_NIC_SWITCH_CREATE_SWITCH request.

The NicName member must be set to the identifier of the virtual machine (VM)
network adapter. This virtual adapter is exposed in the guest operating system that

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

runs in the VM. The PF miniport driver uses this member only for informational
purposes.

When resources are allocated for the VF and it is attached to the child partition, a
VF network adapter is exposed in the guest operating system. The VM network
adapter teams with the VF network adapter for packet transfer over the hardware-
based VF data path.

However, the VF could be detached from the child partition, such as during Live
Migration. When this happens, the packet transfer occurs over the software-based
synthetic data path. For more information on these data paths, see SR-IOV Data
Paths.

The PermanentMacAddress and CurrentMacAddress members must be set to the
media access control (MAC) addresses for the virtual network adapter of the VF.
These addresses are exposed to the network stack that runs in the guest operating
system of the Hyper-V child partition.

The overlying driver issues the OID method request of OID_NIC_SWITCH_ALLOCATE_VF
by following these steps:

1. The overlying driver initializes an NDIS_OID_REQUEST structure for the OID
method request. The driver sets the InformationBuffer member to a pointer to an
initialized NDIS_NIC_SWITCH_VF_PARAMETERS structure.

2. The overlying driver calls NdisOidRequest to issue the OID request to the
underlying PF miniport driver.

Note When the overlying driver calls NdisOidRequest, NDIS intercepts the OID
request and verifies the VF parameters specified in the
NDIS_NIC_SWITCH_VF_PARAMETERS structure. If the parameters are verified
successfully, NDIS forwards the OID to the PF miniport driver. Otherwise, NDIS fails
the OID request with NDIS_STATUS_INVALID_PARAMETER.

After an overlying driver requests resource allocation for a VF, that driver is the only
component that can request the freeing of the resources for the same VF. The overlying
driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the VF
resources. Before the overlying driver can be halted, it must free the resources for each
VF that was allocated by the driver's OID_NIC_SWITCH_ALLOCATE_VF request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

Handling
OID_NIC_SWITCH_ALLOCATE_VF
Requests
Article • 12/15/2021

When the miniport driver for the PCI Express (PCIe) Physical Function (PF) on the
network adapter handles the object identifier (OID) method request of
OID_NIC_SWITCH_ALLOCATE_VF, it does the following:

The PF miniport driver allocates the software resources for a PCIe Virtual Function
(VF) on the network adapter. These resources are configured based on the
parameters that are specified in the NDIS_NIC_SWITCH_VF_PARAMETERS
structure.

The PF miniport driver assigns the VF to a NIC switch on the network adapter. The
NIC switch is identified by the SwitchId member of the
NDIS_NIC_SWITCH_VF_PARAMETERS structure.

For more information on a NIC switch, see NIC Switches.

The PF miniport driver updates the VFId member with a VF identifier. This identifier
is a zero-based index and must be unique across all VFs that are allocated on the
NIC switch by the PF miniport driver.

The overlying driver uses the value of the VFId member in successive OID requests
of OID_NIC_SWITCH_FREE_VF or OID_NIC_SWITCH_VF_PARAMETERS.

The PF miniport driver updates the RequestorId member with a PCIe Requestor
Identifier (RID) for the VF.

The miniport driver calls NdisMGetVirtualFunctionLocation to get the RID
information that corresponds to the VF. The driver then creates the RID by using
the NDIS_MAKE_RID macro based on the information returned by the call to
NdisMGetVirtualFunctionLocation.

The RID is used by the virtualization stack for remapping DMA and interrupts
between the PF and VF. The RID also enables the hardware input/output memory
management unit (IOMMU) to convert guest physical addresses to host physical
addresses.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionlocation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_make_rid

The PF miniport driver initializes and exposes the VF. This makes the VF ready for
use by the virtualization stack.

If the PF miniport driver can successfully allocate the necessary software resources and
initialize the VF, the driver completes the OID request with NDIS_STATUS_SUCCESS. The
PF miniport driver must keep the VF IDs for each allocated VF. NDIS and the overlying
drivers use the VF identifier in successive OID requests to the PF miniport driver for
various actions, such as resetting or freeing the VF.

Note When resources for the VF are allocated, the VF is in an unattached state because
a virtual port (VPort) is not attached to the VF. The overlying driver can issue an OID
request of OID_NIC_SWITCH_CREATE_VPORT to create and attach a VPort to the VF. For
more information, see Creating a Virtual Port.

Freeing Resources for a Virtual Function
Article • 12/15/2021

The overlying driver requests resource allocation for a PCI Express (PCIe) Virtual
Function (VF) through object identifier (OID) method requests of
OID_NIC_SWITCH_ALLOCATE_VF. After the VF resources are successfully allocated, the
overlying driver frees the resources through an OID set request of
OID_NIC_SWITCH_FREE_VF.

This section includes the following topics:

Issuing OID_NIC_SWITCH_FREE_VF Requests

Handling OID_NIC_SWITCH_FREE_VF Requests

Issuing OID_NIC_SWITCH_FREE_VF
Requests
Article • 12/15/2021

An overlying driver issues an object identifier (OID) set request of
OID_NIC_SWITCH_FREE_VF to free resources for a PCI Express (PCIe) Virtual Function
(VF). These resources were previously allocated through an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF.

The overlying driver issues the OID_NIC_SWITCH_FREE_VF set request to the miniport
driver for the PCIe Physical Function (PF). Before it issues this OID request, the overlying
driver must do the following:

1. The overlying driver must make sure that the VF is not attached to any virtual port
(VPort) on the NIC switch of the network adapter. The overlying driver must issue
OID set requests of OID_NIC_SWITCH_DELETE_VPORT to delete all VPorts that are
attached to the VF. For more information, see Deleting a Virtual Port.

2. The overlying driver initializes an NDIS_NIC_SWITCH_FREE_VF_PARAMETERS
structure. The driver must set the VFId member to the VF identifier that was
returned in the OID method request of OID_NIC_SWITCH_ALLOCATE_VF.

The overlying driver issues the OID set request of OID_NIC_SWITCH_FREE_VF by
following these steps:

1. The overlying driver initializes an NDIS_OID_REQUEST structure for the OID
method request. The driver sets the InformationBuffer member to a pointer to an
initialized NDIS_NIC_SWITCH_FREE_VF_PARAMETERS structure.

2. The overlying driver calls NdisOidRequest to issue the OID request to the
underlying PF miniport driver.

After an overlying driver requests resource allocation for a VF, that driver is the only
component that can request the freeing of the resources for the same VF. The overlying
driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the VF
resources. Before the overlying driver can be halted, it must free the resources for each
VF that was allocated by the driver's OID_NIC_SWITCH_ALLOCATE_VF request.

Note If an overlying driver issues an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF to allocate resources for a VF, that driver is the only
component that can request the freeing of the resources for the same VF. The overlying
driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the VF

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

resources. Before the overlying driver can be halted, it must free the resources for each
VF that was allocated by the driver's OID_NIC_SWITCH_ALLOCATE_VF request.

Handling OID_NIC_SWITCH_FREE_VF
Requests
Article • 12/15/2021

When the miniport driver for the PCI Express (PCIe) Physical Function (PF) on the
network adapter handles the object identifier (OID) set request of
OID_NIC_SWITCH_FREE_VF, it does the following:

The InformationBuffer member of the NDIS_OID_REQUEST structure for the OID
request contains a pointer to an NDIS_NIC_SWITCH_FREE_VF_PARAMETERS
structure. The PF miniport driver must verify that the identifier of the PCIe Virtual
Function (VF), which is specified by the VFId member, is valid. If this is not true, the
driver must fail the OID set request by returning
NDIS_STATUS_INVALID_PARAMETER.

The PF miniport driver must verify that resources for the VF have been previously
allocated through an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If
this is not true, the driver must fail the OID set request by returning
NDIS_STATUS_INVALID_PARAMETER.

The PF miniport driver must verify that no virtual ports (VPorts) are currently
attached to the VF. If this is not true, the driver must fail the set request by
returning NDIS_STATUS_INVALID_PARAMETER.

The PF miniport driver must free all software resources that were allocated for the
specified VF.

The PF miniport driver must detach the VF from the NIC switch on the network
adapter.

If the PF miniport driver can successfully free the allocated software resources and
detach the VF from the NIC switch, the driver completes the OID request with
NDIS_STATUS_SUCCESS.

Note NDIS guarantees that all the VFs allocated on the miniport are freed before NDIS
issues an OID set request of OID_NIC_SWITCH_DELETE_SWITCH to the PF miniport
driver. When it handles this OID, the driver deletes a NIC switch on the network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters

Enumerating Virtual Functions on a
Network Adapter
Article • 12/15/2021

An overlying driver or user application can obtain a list of all PCI Express (PCIe) Virtual
Functions (VFs) on a network adapter that supports single root I/O virtualization (SR-
IOV). The driver or application issues an object identifier (OID) method request of
OID_NIC_SWITCH_ENUM_VFS to obtain this list.

Before the driver or application issues the OID request, it must initialize an
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure that is passed along with the request.
The driver or application must follow these guidelines when initializing the
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure:

If the NDIS_NIC_SWITCH_VF_INFO_ARRAY_ENUM_ON_SPECIFIC_SWITCH flag is set
in the Flags member, the overlying driver or application must set the SwitchId
member to the identifier of a NIC switch on the SR-IOV network adapter. By setting
these members in this manner, VF information is returned only for the specified
NIC switch on the SR-IOV network adapter.

Note The overlying driver and user-mode application can obtain the NIC switch
identifiers by issuing an OID query request of OID_NIC_SWITCH_ENUM_SWITCHES.

If the Flags member is set to zero, the driver or application must set the SwitchId
member to zero. By setting these members in this manner, VF information is
returned for all NIC switches on the SR-IOV network adapter.

Note Starting with Windows Server 2012, Windows supports only the default NIC
switch on the network adapter. Regardless of the flags set in the Flags member,
the SwitchId member must be set to NDIS_DEFAULT_SWITCH_ID.

After a successful return from this OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the
following:

An NDIS_NIC_SWITCH_VF_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_VF_INFO structures. Each of these structures
contains information about a single VF on a NIC switch of the network adapter. A
VF is attached to a NIC switch through OID method requests of
OID_NIC_SWITCH_ALLOCATE_VF.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info

Note If no VFs are attached to a NIC switch on the network adapter, the
NumElements member of the NDIS_NIC_SWITCH_VF_INFO_ARRAY structure is set
to zero and no NDIS_NIC_SWITCH_VF_INFO structures are returned.

For more information on NIC switches, see NIC Switches.

NDIS handles the OID_NIC_SWITCH_ENUM_VFS request for miniport drivers. NDIS
returns the information from an internal cache of the data that it maintains from
inspecting the following sources:

OID method requests of OID_NIC_SWITCH_ALLOCATE_VF.

OID set requests of OID_NIC_SWITCH_VF_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info

Querying the Parameters of a Virtual
Function
Article • 12/15/2021

An overlying driver or a user-mode application can obtain the current parameters for a
PCI Express (PCIe) Virtual Function (VF) on a network adapter that supports single root
I/O virtualization (SR-IOV). The driver or application issues an object identifier (OID)
method request of OID_NIC_SWITCH_VF_PARAMETERS to obtain these parameters.

Before the overlying driver issues this OID method request, it must initialize an
NDIS_NIC_SWITCH_VF_PARAMETERS structure. The driver or application must set the
VFId member to the identifier of the VF for which parameters are to be returned. The VF
identifier can be obtained in the following ways:

By issuing an OID method request of OID_NIC_SWITCH_ENUM_VFS.

If this OID request is completed successfully, the overlying driver or user-mode
application receives a list of all VFs allocated on the network adapter. Each element
within the list is an NDIS_NIC_SWITCH_VF_INFO structure, with the VF identifier
specified by the VFId member.

By issuing an OID method request of OID_NIC_SWITCH_ALLOCATE_VF.

If this OID request is completed successfully, the overlying driver receives the
identifier of the newly created VF in the VFId member of the returned
NDIS_NIC_SWITCH_VF_PARAMETERS structure.

Note Only overlying drivers can obtain the VF identifier in this manner.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_VF_PARAMETERS structure. This structure contains the
configuration parameters for the specified VF.

NDIS handles the OID_NIC_SWITCH_VF_PARAMETERS request for miniport drivers. NDIS
returns the information from an internal cache of the data that it maintains from
inspecting the following sources:

OID method requests of OID_NIC_SWITCH_ALLOCATE_VF.

OID set requests of OID_NIC_SWITCH_VF_PARAMETERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

Accessing the PCI Configuration Space
of a Virtual Function
Article • 12/15/2021

This section describes guidelines for accessing the data from the PCI configuration
space of PCI Express (PCIe) Virtual Functions (VFs). VFs are a hardware function of a
network adapter that supports single root I/O virtualization (SR-IOV).

This section includes the following topics:

Querying the PCI Configuration Data of a Virtual Function

Setting the PCI Configuration Data of a Virtual Function

For more information on VFs for SR-IOV network adapters, see SR-IOV Virtual Functions
(VFs).

Note Only the PF miniport driver can configure the PCI configuration space for a VF.
The VF miniport driver cannot directly access most of the SR-IOV adapter's hardware
resources, such as the PCI configuration space. For more information, see Writing SR-
IOV VF Miniport Drivers.

Querying the PCI Configuration Space
for a Virtual Function
Article • 12/15/2021

Note This method can only be used by overlying drivers that run in the management
operating system of the Hyper-V parent partition.

The miniport driver for a PCI Express (PCIe) Virtual Function (VF) runs in the guest
operating system of a Hyper-V child partition. Because of this, the VF miniport driver
cannot directly access hardware resources, such as the VF's PCIe configuration space.
Only the miniport driver for the PCIe Physical Function (PF) can access the PCIe
configuration space for a VF. The PF miniport driver runs in the management operating
system of a Hyper-V parent partition and has privileged access to the VF resources.

An overlying driver that runs in the management operating system issues an object
identifier (OID) method request of OID_SRIOV_READ_VF_CONFIG_SPACE to read data
from the PCIe configuration space for a specified VF on the network adapter.

For example, the virtualization stack that runs in the management operating system
issues the OID method request of OID_SRIOV_READ_VF_CONFIG_SPACE when the VF
miniport driver calls NdisMGetBusData to read from its VF PCIe configuration space.

Before it issues this OID method request, the overlying driver must set the members of
the NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure in the following
way:

The VFId member must be set to the identifier of the VF from which the
information is to be read.

The Offset member must be set to the offset within the PCIe configuration space
of the VF in which data will be read.

The Length member must be set to the number of bytes to read from the VF's
PCIe configuration space.

The BufferOffset member must be set to the offset within the buffer (referenced
by the InformationBuffer member) that will contain the data that is read from the
specified VF's PCI configuration space. This offset is specified in units of bytes from
the beginning of the NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS
structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters

When it handles the OID method request of OID_SRIOV_READ_VF_CONFIG_SPACE, the
PF miniport driver must follow these guidelines:

The miniport driver must verify that the VF, specified by the VFId member of the
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure, has resources
that have been previously allocated. The miniport driver allocates resources for a
VF through an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If
resources for the specified VF have not been allocated, the driver must fail the OID
request.

The miniport driver must verify that the buffer (referenced by the
InformationBuffer member of the NDIS_OID_REQUEST structure) is large enough
to return the requested PCIe configuration space data. If this is not true, the driver
must fail the OID request.

The miniport driver typically calls NdisMGetVirtualFunctionBusData to query the
requested PCIe configuration space. However, the miniport driver can also return
PCIe configuration space data for the VF that the driver has cached from previous
read or write operations of the PCIe configuration space.

Note If an independent hardware vendor (IHV) provides a virtual bus driver (VBD)
as part of its SR-IOV driver package, its miniport driver must not call
NdisMGetVirtualFunctionBusData. Instead, the driver must interface with the VBD
through a private communication channel, and request that the VBD call
ReadVfConfigBlock. This function is exposed from the
GUID_VPCI_INTERFACE_STANDARD interface that is supported by the underlying
virtual PCI (VPCI) bus driver.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a caller-allocated buffer. This
buffer is formatted to contain the following:

An NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure that contains
the parameters for a read operation of the PCIe configuration space of a VF.

Additional buffer space for the data to be read from the PCIe configuration space.
The driver copies the data to the buffer at the offset specified by theBufferOffset
member of the NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh439637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters

Querying the PCI Vendor and Device
Identifiers for a Virtual Function
Article • 12/15/2021

Note This method can only be used by overlying drivers that run in the management
operating system of the Hyper-V parent partition.

An overlying driver issues an object identifier (OID) method request of
OID_SRIOV_VF_VENDOR_DEVICE_ID to query the PCI Express (PCIe) vendor identifier
(VendorID) and device identifier (DeviceID). This data is read from the PCIe configuration
space for the PCIe Virtual Function (VF) on the physical network adapter.

Overlying drivers issue this OID method request to the miniport driver of the PCI Express
(PCIe) Physical Function (PF) of the network adapter. This OID method request is
required for PF miniport drivers that support the single root I/O virtualization (SR-IOV)
interface.

The guest operating system, which runs in a Hyper-V child partition, uses the VendorID
and the DeviceID of the VF for generic Plug and Play (PnP) IDs for device enumeration.
Starting with Windows Server 2012, the PF miniport driver can provide the following set
of identifiers for the VF network adapter that is exposed in the child partition:

The VendorID and DeviceID of the physical network adapter. This allows
compatible drivers to be loaded in the guest operating system, which runs in the
Hyper-V child partition, and the management operating system, which runs in the
Hyper-V parent partition.

A VendorID and DeviceID that differ from the identifiers of the physical network
adapter. This allows a driver to be loaded in the guest operating system that is
more appropriate for its use. For example, the PF miniport driver may return a
VendorID and DeviceID for a VF network adapter so that a driver is loaded that
disables certain feature sets, such as power management or protocol task offloads.

Before it issues this OID method request, the overlying driver must initialize an
NDIS_SRIOV_VF_VENDOR_DEVICE_ID_INFO structure. The driver must set the VFId
member to the identifier of the VF from which the information is to be read.

When it handles this OID request, the PF miniport driver must verify that the specified
VF has resources that have been previously allocated. The PF miniport driver allocates
resources for a VF during an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_vendor_device_id_info

resources for the specified VF have not been allocated, the driver must fail the OID
request.

Querying the PCI Base Address
Registers of a Virtual Function
Article • 12/15/2021

Note This method can only be used by overlying drivers that run in the management
operating system of the Hyper-V parent partition.

The PCI bus driver, which runs in the management operating system of the Hyper-V
parent partition, queries the memory or I/O address space requirements of each PCI
Base Address Register (BAR) of the network adapter. The PCI bus driver performs this
query when it first detects the adapter on the bus.

Through this PCI BAR query, the PCI bus driver determines the following:

Whether a PCI BAR is supported by the network adapter.

If a BAR is supported, how much memory or I/O address space is required for the
BAR.

The PCI driver performs this PCI BAR query in following way:

1. The PCI driver first writes all ones to a BAR.

2. The PCI driver then reads the BAR to determine the required memory or address
space that is required by the BAR. A value of zero indicates that the BAR is not
supported by the network adapter.

The virtual PCI (VPCI) bus driver runs in the guest operating system of a Hyper-V child
partition. When a PCI Express (PCIe) Virtual Function (VF) is attached to the child
partition, the VPCI bus driver exposes a virtual network adapter for the VF (VF network
adapter). Before it does this, the VPCI bus driver must perform a PCI BAR query to
determine the required memory or address space that is required by the VF network
adapter.

Because access to the PCI configuration space is a privileged operation, it can only be
performed by components that run in the management operating system of a Hyper-V
parent partition. When the VPCI bus driver queries the PCI BARs, NDIS issues an object
identifier (OID) query request of OID_SRIOV_PROBED_BARS to the PF miniport driver.
The results returned by this OID query request are forwarded to the VPCI bus driver so
that it can determine how much memory address space would be needed by the VF
network adapter.

Note OID requests of OID_SRIOV_BAR_RESOURCES can only be issued by NDIS. The
OID request must not be issued by overlying drivers, such as protocol or filter drivers.

The OID_SRIOV_PROBED_BARS query request contains an
NDIS_SRIOV_PROBED_BARS_INFO structure. When the PF miniport driver handles this
OID, the driver must return the PCI BAR values within the array referenced by the
BaseRegisterValuesOffset member of the NDIS_SRIOV_PROBED_BARS_INFO structure.
For each offset within the array, the PF miniport driver must set the array element to the
ULONG value of the BAR at the same offset within the physical network adapter's PCI
configuration space.

Each BAR value returned by the driver must be the same value that would follow a PCI
BAR query as performed by the PCI driver that runs in the management operating
system. The PF miniport driver can call NdisMQueryProbedBars to determine this
information.

For more information about the base address registers of a PCI device, see the PCI Local
Bus Specification.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueryprobedbars

Setting the PCI Configuration Data of a
Virtual Function
Article • 12/15/2021

The miniport driver for a PCI Express (PCIe) Virtual Function (VF) runs in the guest
operating system of a Hyper-V child partition. Because of this, the VF miniport driver
cannot directly access hardware resources, such as the VF's PCI configuration space.
Only the miniport driver for the PCIe Physical Function (PF) can access the PCI
configuration space for a VF. The PF miniport driver runs in the management operating
system of a Hyper-V parent partition and has privileged access to the VF resources.

The overlying driver, such as the virtualization stack, issues the OID set request of
OID_SRIOV_WRITE_VF_CONFIG_SPACE when the VF miniport driver calls
NdisMSetBusData to write to its PCI configuration space.

Before it issues this OID set request, the overlying driver must set the members of
theNDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS structure in the following
way:

Set the VFId member to the identifier of the VF for which the information is to be
written.

Set the Offset member to the offset within the PCI configuration space of the VF in
which data will be written.

Set the Length member to the number of bytes to write to the VF's PCI
configuration space.

Set the BufferOffset member to the offset within the buffer (referenced by
theInformationBuffer member) that will contain the data that is written to the
specified VF's PCI configuration space. This offset is specified in units of bytes from
the beginning of the NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS
structure.

When it handles the OID method request of OID_SRIOV_WRITE_VF_CONFIG_SPACE, the
PF miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS structure, has
resources that have been previously allocated. The PF miniport driver allocates
resources for a VF through an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters

If resources for the specified VF have not been allocated, the driver must fail the
OID request.

The PF miniport driver calls NdisMSetVirtualFunctionBusData to write to the
requested PCI configuration space. However, the PF miniport driver can also return
PCI configuration space data for the VF that the driver has cached from previous
read or write operations of the PCI configuration space.

Note If an independent hardware vendor (IHV) provides a virtual bus driver (VBD)
as part of its SR-IOV driver package, its PF miniport driver must not call
NdisMSetVirtualFunctionBusData. Instead, the driver must interface with the VBD
through a private communication channel, and request that the VBD call
SetVirtualFunctionData. This function is exposed from the
GUID_VPCI_INTERFACE_STANDARD interface that is supported by the underlying
virtual PCI (VPCI) bus driver.

If the PF miniport driver can successfully complete the OID request, the driver must copy
the requested PCI configuration space data to the buffer referenced by the
InformationBuffer member of the NDIS_OID_REQUEST structure. The driver copies the
data to the buffer at the offset specified by theBufferOffset member of the
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-set_virtual_device_data
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters

Setting the Power State of a Virtual
Function
Article • 12/15/2021

An overlying driver issues an object identifier (OID) set request of
OID_SRIOV_SET_VF_POWER_STATE to change the power state of a specified PCI Express
(PCIe) Virtual Function (VF) on the network adapter. Because changing the power state is
a privileged operation, overlying drivers issue this OID set request to the miniport driver
of the PCIe Physical Function (PF) on the network adapter. The PF miniport driver then
sets the specified power state on the VF.

For example, the virtualization stack manages the power state of the Hyper-V child
partition that is attached to the VF. The stack changes the power state by issuing the
OID_SRIOV_SET_VF_POWER_STATE to the PF miniport driver.

Before it issues the OID set request of OID_SRIOV_SET_VF_POWER_STATE, the overlying
driver must set the members of NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS
structure in the following way:

The VFId member must be set to the identifier of the VF from which the
information is to be read.

The PowerState member must be set to the power state that the VF should
transition to.

If the network adapter must have its WAKE# signal (on the PCI Express bus) or
PME# signal (on the PCI bus) asserted as it goes into the low-power state, the
WakeEnable member must be set to TRUE. Otherwise, this member must be set to
FALSE.

When the PF miniport driver is issued this OID set request, it must follow these
guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS structure, has resources
that have been previously allocated. The PF miniport driver allocates resources for
a VF during an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If the
specified VF is not in an allocated state, the driver must fail the OID request.

The power state operation must only affect the specified VF. The operation must
not affect other VFs or the PF on the same network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters

Resetting a Virtual Function
Article • 12/15/2021

An overlying driver issues an object identifier (OID) set request of OID_SRIOV_RESET_VF
to reset a specified PCI Express (PCIe) Virtual Function (VF). The VF is a hardware
component of a network adapter that supports single root I/O virtualization. Overlying
drivers issue this OID set request to the miniport driver of the PCI Express (PCIe) Physical
Function (PF).

For example, the virtualization stack runs in the management operating system of the
Hyper-V parent partition. Before the stack detaches a VF from a Hyper-V child partition,
it requests a Function Level Reset (FLR) on the VF. Because the FLR is a privileged
operation, it can be performed only by the PF miniport driver that also runs in the
management operating system. To request an FLR of a specified VF, the virtualization
stack issues the OID_SRIOV_RESET_VFrequest to the PF miniport driver.

Before it issues this OID set request, the overlying driver must initialize an
NDIS_SRIOV_RESET_VF_PARAMETERS structure. The driver must set the VFId member
to the identifier of the VF to be reset.

When it handles this OID request, the PF miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_RESET_VF_PARAMETERS structure, has resources that have been
previously allocated. The PF miniport driver allocates resources for a VF during an
OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If resources for the
specified VF have not been allocated, the driver must fail the OID request.

The reset operation must only affect the specified VF. The operation must not
affect other VFs or the PF on the same network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters

Halting a PF Miniport Driver
Article • 12/15/2021

This topic discusses the steps that are involved with halting the miniport driver for a PCI
Express (PCIe) Physical Function (PF) on an adapter that supports single root I/O
virtualization (SR-IOV). These steps are shown in the following figure.

This topic contains the following information:

Actions Performed by NDIS and Overlying Drivers Before MiniportHaltEx is Called

Actions Performed by the PF Miniport Driver When MiniportHaltEx is Called

Before NDIS calls the PF miniport driver's MiniportHaltEx function, it first does the
following:

NDIS unbinds all protocol drivers that have previously bound to the underlying PF
miniport driver. NDIS does this by calling the protocol driver's
ProtocolUnbindAdapterEx function.

Actions Performed by NDIS and Overlying
Drivers Before MiniportHaltEx is Called

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_unbind_adapter_ex

NDIS detaches all filter drivers that have previously bound to the underlying PF
miniport driver. NDIS does this by calling the filter driver's FilterDetach function.

When an overlying protocol or filter driver is being unbound or detached from the PF
miniport driver, it must follow these steps:

1. The driver must issue an object identifier (OID) set request of
OID_RECEIVE_FILTER_CLEAR_FILTER to clear any receive filters that it previously set.
The driver sets these filters on the default virtual port (VPort) or any nondefault
VPorts of the NIC switch on the network adapter. The driver sets these filters by
issuing OID method requests of OID_RECEIVE_FILTER_SET_FILTER to the PF
miniport driver.

2. The driver must issue an OID set request of OID_NIC_SWITCH_DELETE_VPORT to
delete any nondefault VPorts that it previously created on the NIC switch. The
driver sets these VPorts by issuing OID method requests of
OID_NIC_SWITCH_CREATE_VPORT to the PF miniport driver.

3. The driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the
resources for any PCIe Virtual Functions (VFs) that it previously allocated on the
NIC switch. The driver allocates resources for the VF by issuing OID method
requests of OID_NIC_SWITCH_ALLOCATE_VF to the PF miniport driver.

For more information, see Freeing Resources for a Virtual Function.

Note When resources for the VF are freed, NDIS calls the MiniportHaltEx function
of the VF miniport driver. For more information, see Halting a VF Miniport Driver.

After all receive filters, nondefault VPorts, and VFs have been deleted from the NIC
switch, NDIS follows these steps:

NDIS deletes all NIC switches by issuing OID set requests of
OID_NIC_SWITCH_DELETE_SWITCH to the PF miniport driver. For more information
on how a NIC switch is deleted, see Deleting a NIC Switch.

Note Starting with Windows Server 2012, the SR-IOV interface only supports the
default NIC switch on the network adapter.

After all NIC switches have been successfully deleted, NDIS calls the MiniportHaltEx
function of the PF miniport driver.

Actions Performed by the PF Miniport Driver
When MiniportHaltEx is Called

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

When NDIS calls MiniportHaltEx, the PF miniport driver must follow these steps:

1. If the PF miniport driver supports the static creation of NIC switches and all the NIC
switches have been deleted, the driver must disable the virtualization on the
adapter by calling NdisMEnableVirtualization with EnableVirtualization parameter
set to FALSE and the NumVFs parameter set to zero.

NdisMEnableVirtualization clears the NumVFs member and the VF Enable bit in
the SR-IOV Extended Capability structure in the PCIe configuration space of the
network adapter's PF.

Note If the PF miniport driver supports dynamic creation and configuration of NIC
switches, it must call NdisMEnableVirtualization when the driver handles the OID
set request of OID_NIC_SWITCH_DELETE_SWITCH. This OID request is issued before
MiniportHaltEx is called.

2. The PF miniport driver performs the other tasks associated with a miniport halt
operation. For more information, see Halting a Miniport Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization

INF Requirements for PF Miniport
Drivers
Article • 12/15/2021

This section describes the INF requirements for the miniport driver of a network adapter
that supports the single root I/O virtualization (SR-IOV) interface. These are only
requirements for the miniport driver of the adapter's PCI Express (PCIe) Physical
Function (PF).

This section includes the following topics:

Standardized INF Keywords for SR-IOV

INF DDInstall.HW Section for PF Miniport Drivers

Handling SR-IOV, VMQ, and RSS Standardized INF Keywords

Standardized INF Keywords for SR-IOV
Article • 12/15/2021

This topic describes the standardized INF keywords for the single root I/O virtualization
(SR-IOV) interface. These keywords apply to the INF file for the miniport driver of the PCI
Express (PCIe) Physical Function (PF) of an SR-IOV network adapter.

The SR-IOV INF keywords are described in the following sections:

Standardized INF Keywords for the Enabling or Disabling SR-IOV Support

Standardized INF Keywords for Configuration of the Default NIC Switch

Standardized INF keywords are defined to enable or disable support for the SR-IOV
features of a network adapter.

*SRIOV
A value that describes whether the device has enabled or disabled the SR-IOV feature.

After the driver is installed, administrators can update the *SRIOV keyword value in the
Advanced property page for the network adapter. For more information about
advanced properties, see Specifying Configuration Parameters for the Advanced
Properties Page.

Note The miniport driver is automatically restarted after a change is made in the
Advanced property page for the adapter.

*SriovPreferred
A value that defines whether SR-IOV capabilities should be enabled instead of virtual
machine queue (VMQ) or receive side scaling (RSS) capabilities.

This is a hidden keyword value that must not be specified in the INF file and is not
displayed in Advanced property page for the network adapter.

For more information about how to interpret SR-IOV, VMQ, and RSS keywords, see
Handling SR-IOV, VMQ, and RSS Standardized INF Keywords.

The SR-IOV standardized INF keywords are enumeration keywords and are described in
the following table. The columns in this table describe the following attributes for an

Standardized INF Keywords for Enabling or
Disabling SR-IOV Support

enumeration keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\ key for the network adapter.

ParamDesc
The display text that is associated with the SubkeyName keyword.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Value
The enumeration integer value that is associated with each SubkeyName keyword in the
list.

EnumDesc
The display text that is associated with each value that appears in the menu.

SubkeyName ParamDesc Value EnumDesc

*SRIOV SR-IOV 0 Disabled

1
(Default)

Enabled

*SriovPreferred The ParamDesc and
EnumDesc entries for
this subkey cannot be
used in either INF files
or a user interface.

0
(Default)

Report RSS or VMQ capabilities based on
the *VmqOrRssPreferrence keyword. Do
not report SR-IOV capabilities. For more
information about the
*VmqOrRssPreferrence keyword, see
Standardized INF Keywords for VMQ.

1 Report SR-IOV capabilities.

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

Starting with Windows Server 2012, the SR-IOV interface supports only one NIC switch
on the network adapter. This switch is known as the default NIC switch, and is referenced
by the NDIS_DEFAULT_SWITCH_ID identifier.

Standardized INF Keywords for Configuration
of the Default NIC Switch

The INF file for the PF miniport driver must specify the configuration of the default NIC
switch on the SR-IOV network adapter. This allows the network installer to copy the
default switch configuration information from the INF to the miniport registry
configuration under the subkey for the default switch (NDI\params\NicSwitches\0).

These keywords are not displayed in the Advanced property page for the network
adapter and cannot be configured by the user. These keywords are specified by using
the AddReg directive in the DDInstall section of the INF file. Each keyword is specified
by a separate AddReg directive.

The following table describes the INF keywords for the default NIC switch configuration
of the SR-IOV network adapter. The columns in this table describe the following
attributes for these keywords:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params\NicSwitches\0 key for the network adapter.

Data value
The value that is associated with the SubkeyName keyword.

Data type
The type of the data value.

SubkeyName Data
value

Data type Notes

*Flags 0 REG_DWORD The keyword must be assigned this value.

*SwitchType 1 REG_DWORD The keyword must be assigned this value.

*SwitchId 0 REG_DWORD The keyword must be assigned this value.

*SwitchName “Default
Switch”

REG_SZ The keyword must be assigned this value.

*NumVFs (0-n), REG_DWORD n is the maximum number of PCIe Virtual Functions
(VFs) that are supported by the SR-IOV network
adapter. Note This registry key defines the maximum
number of VFs that the network adapter supports.
When the miniport driver calls
NdisMSetMiniportAttributes, it can advertise less
than this value depending on the available hardware
resources on the network adapter. For more
information, see Determining NIC Switch Capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

The following is an example of AddReg directives for the default NIC switch
configuration of an SR-IOV network adapter:

syntax

For more information about the syntax of the AddReg directive, see INF AddReg
Directive.

For more information about the default NIC switch, see NIC Switches.

HKR, NicSwitches\0, *SwitchId, 0x00010001, 0
HKR, NicSwitches\0, *SwitchName, 0x00000000, “Default Switch”

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive

INF DDInstall.HW Section for PF
Miniport Drivers
Article • 12/15/2021

INF DDInstall.HW sections are typically used for setting up any device-specific
information in the registry, whether with explicit AddReg directives or with Include and
Needs entries.

The INF file for the miniport driver of the PCI Express (PCIe) Physical Function (PF)
network adapter must have a DDInstall.HW section that contains the following INF
entries:

An Include entry that specifies the pci.inf file that is included with the Windows
operating system.

A Needs entry that specifies the PciSriovSupported.HW section to include from
the pci.inf file. This section defines standard INF settings that apply to all PF
miniport drivers for network adapters that support the single root I/O virtualization
(SR-IOV) interface.

The following is an example of a DDInstall.HW section for a PF miniport driver:

syntax

For more information about the DDInstall section, see DDInstall Section in a Network
INF File.

For more information about the DDInstall.HW section, see INF DDInstall.HW Section.

[Device_Inst.NT.HW]

Include=pci.inf
Needs=PciSriovSupported.HW

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-ddinstall-hw-section

Handling SR-IOV, VMQ, and RSS
Standardized INF Keywords
Article • 12/15/2021

Network adapters that support single root I/O virtualization (SR-IOV), virtual machine
queue (VMQ), and receive side scaling (RSS) can enable the use of these interfaces in the
following way:

SR-IOV and VMQ can be enabled individually or at the same time.

RSS cannot be enabled on the network adapter when SR-IOV or VMQ is enabled.

The operating system enables the use of the SR-IOV, VMQ, or RSS interfaces in the
following way:

When the network adapter is bound to the TCP/IP stack, the operating enables the
use of the RSS feature.

When the network adapter is bound to the Hyper-V extensible switch driver stack,
the operating system enables the use of either the SR-IOV or VMQ feature.

For more information about the Hyper-V extensible switch, see Hyper-V Extensible
Switch.

When the network adapter is unbound from the TCP/IP stack and the Hyper-V
extensible switch driver stack, the miniport driver is halted and then reinitialized.
Because of this, it is not possible for such network adapters to switch between RSS,
VMQ, and SR-IOV automatically.

When NDIS calls the MiniportInitializeEx function, the miniport driver follows these steps
before it reports its currently enabled SR-IOV, VMQ, or RSS capabilities to NDIS:

1. The miniport driver reads the *SriovPreferred keyword before reporting its
currently enabled capabilities to NDIS.

If the value of the *SriovPreferred keyword is one, the miniport driver is
configured for SR-IOV preference.

2. The miniport driver reads the *RssOrVmqPreference keyword before reporting its
currently enabled capabilities to NDIS.

If the value of the *RssOrVmqPreference keyword is one, the miniport driver is
configured for VMQ preference.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

If the value of the *RssOrVmqPreference keyword is zero or the keyword is not
present, the miniport driver is configured for RSS preference.

3. If the miniport driver is configured for SR-IOV preference, it must read the *SRIOV
keyword to determine whether SR-IOV is enabled on the network adapter. If the
keyword is set to one, the driver reports the currently enabled SR-IOV settings.

For more information on how the miniport driver reports SR-IOV settings, see
Determining SR-IOV Capabilities.

For more information about the SR-IOV keywords, see Standardized INF Keywords
for SR-IOV.

Note If the miniport driver is configured for SR-IOV preference, it must not read
any of the RSS standardized keywords. However, the driver must read the VMQ
*VMQVlanFiltering standardized keyword. This keyword specifies whether the
miniport driver is enabled to filter network packets by using the virtual VLAN
(VLAN) identifier in the media access control (MAC) header. The miniport driver
reports this capability by setting the
NDIS_RECEIVE_FILTER_MAC_HEADER_VLAN_ID_SUPPORTED flag in the
SupportedMacHeaderFields member of the NDIS_RECEIVE_FILTER_CAPABILITIES
structure. For more information on the *VMQVlanFiltering standardized keyword,
see Standardized INF Keywords for VMQ.

4. If the miniport driver is configured for VMQ preference, it must read the *VMQ
keyword to determine whether VMQ is enabled on the network adapter. If the
keyword is set to one, the driver reports the currently enabled VMQ settings. For
more information on how the miniport driver reports VMQ settings, see
Determining the VMQ Capabilities of a Network Adapter.

For more information about VMQ keywords, see Standardized INF Keywords for
VMQ.

Note If the miniport driver is configured for VMQ preference, it must not read any
of the RSS or SR-IOV standardized keywords.

5. If the miniport driver is configured for RSS preference, it must read the *RSS
keyword to determine whether RSS is enabled on the network adapter. If the
keyword is set to one, the driver reports the currently enabled RSS settings. For
more information on how the miniport driver reports RSS settings, see RSS
Configuration.

For more information about the RSS keywords, see Standardized INF Keywords for
RSS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

Note If the miniport driver is configured for RSS preference, it must not read any
of the VMQ or SR-IOV standardized keywords.

The following table describes how the miniport driver determines SR-IOV, VMQ, or RSS
preference in order to enable the correct interface in the network adapter.

SriovPreferred RssOrVmqPreference SRIOV VMQ *RSS Enabled
interface

1 1 1 1 N/A SR-IOV and
VMQ

1 1 0 1 N/A VMQ

1 1, 0, or not present in
registry

0 0 N/A None

0, or not
present in
registry

1 N/A 1 N/A VMQ

0, or not
present in
registry

1 N/A 0 N/A None

0, or not
present in
registry

0, or not present in
registry

N/A N/A 1 RSS

0, or not
present in
registry

0, or not present in
registry

N/A N/A 0 None

Note When the SR-IOV and VMQ interfaces are both enabled, SR-IOV nondefault
virtual ports (VPorts) that are attached to the PCI Express (PCIe) Physical Function (PF)
are used instead of VM queues for the VMQ interface. For more information, see
Nondefault Virtual Ports and VMQ.

The miniport driver must advertise the capabilities of the currently enabled interface. For
example, if SR-IOV is enabled, the miniport driver must advertise the SR-IOV capabilities
but not the capabilities for VMQ or RSS. However, the miniport driver must always
report the complete RSS, VMQ, and SR-IOV hardware capabilities regardless of which
interface is enabled on the network adapter.

Note The VMQ and SR-IOV interfaces use receive filtering over VM queues or SR-IOV
virtual ports (VPorts). As a result, some receive filtering capabilities require the same or
different settings when either of these interfaces are enabled. For more information on

how to report the receive filtering capabilities for the SR-IOV interface, see Determining
Receive Filtering Capabilities. For more information on how to report the receive filtering
capabilities for the VMQ interface, see Determining the VMQ Capabilities of a Network
Adapter.

Writing SR-IOV VF Miniport Drivers
Overview
Article • 12/15/2021

This section discusses the requirements and guidelines for writing an NDIS miniport
driver for the PCI Express (PCIe) Virtual Function (VF) of a single root I/O virtualization
(SR-IOV) network adapter.

This section includes the following topics:

Initializing a VF Miniport Driver

Halting a VF Miniport Driver

INF Requirements for VF Miniport Drivers

Note For information on how to write a miniport driver for a PCIe Physical Function (PF)
of the SR-IOV network adapter, see Writing SR-IOV PF Miniport Drivers.

Initializing a VF Miniport Driver
Article • 12/15/2021

This topic describes the guidelines for writing a MiniportInitializeEx function for the
miniport driver for a PCI Express (PCIe) Virtual Function (VF). The VF is exposed by a
network adapter that supports single root I/O virtualization (SR-IOV).

The VF miniport driver follows the same steps as any NDIS miniport driver when its
MiniportInitializeEx function is called. For more information about these steps, see
Initializing a Miniport Driver.

In addition to these steps, the VF miniport driver must follow these additional steps
when NDIS calls the driver's MiniportInitializeEx function:

The VF miniport driver calls the NdisGetHypervisorInfo function to verify that it is
running in the Hyper-V child partition. This function returns an
NDIS_HYPERVISOR_INFO structure which defines the partition type. If the partition
type is reported as NdisHypervisorPartitionMsHvChild, the miniport driver is
running in a Hyper-V child partition that is attached to the PF on the adapter.

Unlike the PF miniport driver, the VF miniport driver must not be installed with the
SR-IOV standardized keywords and must not attempt to read these keywords. For
more information about these keywords, see Standardized INF Keywords for SR-
IOV.

７ Note

 These guidelines only apply to VF miniport drivers of the SR-IOV network adapter.
For initialization guidelines for the miniport driver of a PCIe Physical Function (PF)
of the adapter, see Initializing a PF Miniport Driver.

７ Note

If the partition type is reported as NdisHypervisorPartitionMsHvParent, the
miniport driver is running in the Hyper-V parent partition that is attached to
the PF on the adapter. In this case, the miniport driver must not initialize as a
VF driver. If possible, the driver must initialize as a PF driver as described in
Initialization Sequence for PF Miniport Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgethypervisorinfo
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hypervisor_info

The VF miniport driver reports the SR-IOV hardware capabilities of the underlying
virtual network adapter through an NDIS_SRIOV_CAPABILITIES structure that is
initialized in the following way:

1. The miniport driver initializes the Header member. The driver sets the Type
member of Header to NDIS_OBJECT_TYPE_DEFAULT.

Starting with NDIS 6.30, the miniport driver sets the Revision member of
Header to NDIS_SRIOV_CAPABILITIES _REVISION_1 and the Size member to
NDIS_SIZEOF_SRIOV_CAPABILITIES_REVISION_1.

2. The miniport driver sets the NDIS_SRIOV_CAPS_PF_MINIPORT flag in the
SriovCapabilities member to report SR-IOV capabilities.

The VF miniport driver registers the SR-IOV capabilities of the network adapter by
following these steps:

1. The miniport driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The miniport driver sets the HardwareSriovCapabilities and
CurrentSriovCapabilities members to a pointer to the previouslyinitialized
NDIS_SRIOV_CAPABILITIES structure.

2. The driver calls NdisMSetMiniportAttributes and sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

The VF miniport driver must not advertise virtual machine queue (VMQ)
capabilities. However, the driver can advertise support for other NDIS technologies,
such as power management and receive side scaling (RSS).

For more information about RSS, see Receive Side Scaling.

７ Note

The VF miniport driver must set both the
NDIS_SRIOV_CAPS_VF_MINIPORT flag and the
NDIS_SRIOV_CAPS_SRIOV_SUPPORTED flag.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

Halting a VF Miniport Driver
Article • 12/15/2021

The VF miniport driver follows the same steps as any NDIS miniport driver when its
MiniportHaltEx function is called. For more information about these steps, see Halting a
Miniport Adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

INF Requirements for VF Miniport
Drivers
Article • 12/15/2021

The INF file for the miniport driver of a PCI Express (PCIe) Virtual Function (VF) does not
specify any standardized INF keywords for single root I/O virtualization (SR-IOV). Only
the INF file of a PCIe Physical Function (PF) specifies standardized SR-IOV keywords. For
more information about these keywords, see INF Requirements for PF Miniport Drivers.

The INF for a VF miniport driver follows (with one exception) the same requirements as
other INF files for network adapters. For more information, see Standardized INF
Keywords for Network Devices.

The only exception is that the INF file for the VF miniport driver must define the binding
relationships to the services that manage the SR-IOV data paths. This is needed to
ensure that network access can fail over to the synthetic data path if the VF data path is
torn down for any reason. For more information about these data paths, see SR-IOV
Data Paths.

To bind to the services that manage these data paths, the INF file for the VF miniport
driver must specify the following settings for the UpperRange and LowerRange entries:

syntax

HKR, Ndi\Interfaces, UpperRange, 0, "ndisvf"
HKR, Ndi\Interfaces, LowerRange, 0, "iovvf"

SR-IOV PF/VF Backchannel
Communication Overview
Article • 12/15/2021

The single root I/O virtualization (SR-IOV) interface provides a communication channel,
or backchannel, between the miniport drivers of a PCI Express (PCIe) Virtual Function
(VF) and the PCIe Physical Function (PF). Each VF miniport driver can issue requests over
the backchannel to the PF miniport driver. The PF miniport driver can issue status
notifications over the backchannel to individual VF miniport drivers.

Data exchanged between the PF and VF miniport drivers over the backchannel interface
involves the use of a VF configuration block. Each VF configuration block is similar in
concept to an interprocess communication (IPC) message, in which each block has a
proprietary format, length, and block identifier. The independent hardware vendor (IHV)
can define one or more VF configuration blocks for the PF and VF miniport drivers.

This section includes the following topics:

Backchannel Communication from a VF Miniport Driver

Backchannel Communication from the PF Miniport Driver

Backchannel Communication from a VF
Miniport Driver
Article • 12/15/2021

A miniport driver of a PCI Express (PCIe) Virtual Function (VF) communicates with the
miniport driver of the PCIe Physical Function (PF) to read or write data from a VF
configuration block.

A VF configuration block is used for backchannel communication between the PF and VF
miniport drivers. The independent hardware vendor (IHV) can define one or more VF
configuration blocks for the device. Each VF configuration block has an IHV-defined
format, length, and block ID. For example, the IHV can define a VF configuration block
that can be used for the media access control (MAC) address of the VF miniport driver.
Another VF configuration block can be used for the current VF and virtual port (VPort)
configuration.

Note Data from each VF configuration block is used only by the PF and VF miniport
drivers. The format and content of this data is opaque to components of the Windows
operating system.

Each VF configuration block is assigned a unique identifier by the IHV. This allows the VF
miniport driver to query or set information on specific VF configuration blocks.

VF miniport drivers initiate the read or write operation on a specified VF configuration
block through the following functions:

NdisMReadConfigBlock, which reads data from a specified VF configuration block.
When the VF miniport driver calls this function, it specifies the block identifier and
length of the data to be read. The driver also passes a pointer to the buffer that
will contain the requested data.

NdisMWriteConfigBlock, which writes data to a specified VF configuration block.
When the VF miniport driver calls this function, it specifies the block identifier and
length of the data to be written. The driver also passes a pointer to the buffer from
which the data is to be written.

The PF miniport driver manages access to the specified VF configuration block in the
following ways:

When the VF miniport driver calls NdisMReadConfigBlock, NDIS issues an object
identifier (OID) method request of OID_SRIOV_READ_VF_CONFIG_BLOCK to the PF

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock

miniport driver. This OID request contains the parameter data that was passed by
the VF miniport driver in the function call.

The PF miniport driver performs the read operation and returns the requested data
when the driver completes the OID request. After the OID request is completed,
NDIS returns from the call to NdisMReadConfigBlock.

When the VF miniport driver calls NdisMWriteConfigBlock, NDIS issues an OID
method request of OID_SRIOV_WRITE_VF_CONFIG_BLOCK to the PF miniport
driver. This OID request contains the parameter data that was passed by the VF
miniport driver in the function call.

The PF miniport driver performs the write operation and completes the OID
request. After the OID request is completed, NDIS returns from the call to
NdisMWriteConfigBlock.

The following figure shows the process involved in reading and writing VF configuration
blocks over the SR-IOV backchannel interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock

Backchannel Communication from the
PF Miniport Driver
Article • 12/15/2021

A miniport driver of the PCI Express (PCIe) Physical Function (PF) communicates with a
miniport driver of the PCIe Virtual Function (VF) to issue notifications about changes in
the data of a VF configuration block. The PF miniport driver issues these notifications to
invalidate the data in the VF configuration block. In response to this notification, the VF
miniport driver can issue a backchannel request to the PF miniport driver to read the
data from an invalidated VF configuration block.

A VF configuration block is used for backchannel communication between the PF and VF
miniport drivers. The IHV can define one or more VF configuration blocks for the device.
Each VF configuration block has an IHV-defined format, length, and block ID.

Note Data from each VF configuration block is used only by the PF and VF miniport
drivers. The format and content of this data is opaque to components of the Windows
operating system.

The following steps occur when issuing and handling notifications of invalid VF
configuration data:

1. In the guest operating system, NDIS issues an I/O control request of
IOCTL_VPCI_INVALIDATE_BLOCK. When this IOCTL is completed, NDIS is notified
that VF configuration data has changed.

2. In the management operating system that runs in the Hyper-V parent partition, the
following steps occur:

a. The PF miniport driver calls the NdisMInvalidateConfigBlock function to notify
NDIS that VF configuration data has changed and is no longer valid. The driver
sets the BlockMask parameter to a ULONGLONG bitmask that specifies which VF
configuration blocks have changed. Each bit in the bitmask corresponds to a VF
configuration block. If the bit is set to one, the data in the corresponding VF
configuration block has changed.

b. NDIS signals the virtualization stack, which runs in the management operating
system, about the change to VF configuration block data. The virtualization
stack caches the BlockMask parameter data.

Note Each time that the PF miniport driver calls NdisMInvalidateConfigBlock,
the virtualization stack ORs the BlockMask parameter data with the current value

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock

in its cache.

c. The virtualization stack notifies the virtual PCI (VPCI) driver, which runs in the
guest operating system, about the invalidation of VF configuration data. The
virtualization stack sends the cached BlockMask parameter data to the VPCI
driver.

3. In the guest operating system that runs in a Hyper-V child partition, the following
steps occur:

a. The VPCI driver saves the cached BlockMask parameter data in the BlockMask
member of the VPCI_INVALIDATE_BLOCK_OUTPUT structure that is associated
with the IOCTL_VPCI_INVALIDATE_BLOCK request.

b. The VPCI driver successfully completes the IOCTL_VPCI_INVALIDATE_BLOCK
request. When this happens, NDIS issues an object identifier (OID) method
request of OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK to the VF miniport
driver. An NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO is passed along
in the OID request. This structure contains the cached BlockMask parameter
data.

NDIS also issues another IOCTL_VPCI_INVALIDATE_BLOCK request to handle
successive notifications of changes to VF configuration data.

c. When the VF driver handles the OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK
request, it can read data from the specified VF configuration blocks by calling
NdisMReadConfigBlock. For more information about this process, see
Backchannel Communication from a VF Miniport Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ns-vpci-_vpci_invalidate_block_output
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismreadconfigblock

SR-IOV OIDs
Article • 12/15/2021

The single root I/O virtualization (SR-IOV) object identifiers (OIDs) apply to miniport and
overlying drivers that support the SR-IOV interface. This interface is supported in NDIS
version 6.30 and later versions.

The following table defines the characteristics of the SR-IOV OIDs. The following
abbreviations are used to specify the OIDs' characteristics in the table.

Q
The OID is used only in query requests.
S
The OID is used only in set requests.
M
The OID is used only in method requests. These requests could be issued for set or
query operations.
N
The OID request is handled directly by NDIS and not by the miniport driver. The
driver will not be issued these OIDs.
P
The OID request is issued only to the miniport driver of the network adapter's
physical function (PF).
The PF driver must support these OIDs. The driver must also list these OIDs in the
SupportedOidList member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the driver passes
in the MiniportAttributes parameter of the call to NdisMSetMiniportAttributes.
V
The OID request is issued only to the miniport driver of one of the network's virtual
functions (VFs).
The VF driver must support these OIDs. The driver must also list these OIDs in the
SupportedOidList member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the driver passes
in the MiniportAttributes parameter of the call to NdisMSetMiniportAttributes.

Name Q S M N P V

OID_NIC_SWITCH_ALLOCATE_VF X X

OID_NIC_SWITCH_CREATE_SWITCH X X

OID_NIC_SWITCH_CREATE_VPORT X X

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Name Q S M N P V

OID_NIC_SWITCH_CURRENT_CAPABILITIES X X

OID_NIC_SWITCH_DELETE_SWITCH X X

OID_NIC_SWITCH_DELETE_VPORT X X

OID_NIC_SWITCH_ENUM_SWITCHES X X

OID_NIC_SWITCH_ENUM_VFS X X

OID_NIC_SWITCH_ENUM_VPORTS X X

OID_NIC_SWITCH_FREE_VF X X

OID_NIC_SWITCH_HARDWARE_CAPABILITIES X X

OID_NIC_SWITCH_PARAMETERS X X

OID_NIC_SWITCH_VF_PARAMETERS X X

OID_NIC_SWITCH_VPORT_PARAMETERS X X

OID_SRIOV_BAR_RESOURCES X X

OID_SRIOV_CURRENT_CAPABILITIES X X

OID_SRIOV_HARDWARE_CAPABILITIES X X

OID_SRIOV_PF_LUID X X

OID_SRIOV_PROBED_BARS X X

OID_SRIOV_READ_VF_CONFIG_BLOCK X X

OID_SRIOV_READ_VF_CONFIG_SPACE X X

OID_SRIOV_RESET_VF X X

OID_SRIOV_SET_VF_POWER_STATE X X

OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK X X

OID_SRIOV_VF_SERIAL_NUMBER X X

OID_SRIOV_VF_VENDOR_DEVICE_ID X X

OID_SRIOV_WRITE_VF_CONFIG_BLOCK X X

OID_SRIOV_WRITE_VF_CONFIG_SPACE X X

NDIS_STATUS_NIC_SWITCH_CURRENT_C
APABILITIES
Article • 03/14/2023

The NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES status indicates to NDIS and
overlying drivers that the currently enabled hardware capabilities of the NIC switch in a
network adapter have changed.

The status indication is made by the miniport driver of the network adapter's PCI
Express (PCIe) Physical Function (PF). The PF miniport driver runs in the management
operating system of the Hyper-V parent partition.

The PF miniport driver must issue an
NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES status indication whenever it
detects a change to the currently enabled hardware capabilities of the NIC switch on the
network adapter. These capabilities could change when one of the following conditions
is true:

The currently enabled NIC switch hardware capabilities are changed through a
management application developed by the independent hardware vendor (IHV).

The currently enabled NIC switch hardware capabilities change for one or more
network adapters that belong to a load balancing failover (LBFO) team managed
by a MUX intermediate driver. For more information, see NDIS MUX Intermediate
Drivers.

When the PF miniport driver issues the
NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES status indication, it must follow
these steps:

1. The miniport driver initializes an NDIS_NIC_SWITCH_CAPABILITIES structure with
the currently enabled hardware capabilities of the network adapter's NIC switch.

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure in the
following way:

The StatusCode member must be set to
NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

The StatusBuffer member must be set to the pointer to a
NDIS_NIC_SWITCH_CAPABILITIES structure. This structure contains the
currently enabled hardware capabilities of the NIC switch.

The StatusBufferSize member must be set to
sizeof(NDIS_NIC_SWITCH_CAPABILITIES).

3. The PF miniport driver issues the status notification by calling
NdisMIndicateStatusEx. The driver must pass a pointer to the
NDIS_STATUS_INDICATION structure to the StatusIndication parameter.

Overlying drivers can use the NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES
status indication to determine the currently enabled NIC switch capabilities on the
network adapter. Alternatively, these drivers can also issue OID query requests of
OID_NIC_SWITCH_CURRENT_CAPABILITIES to obtain these capabilities at any time.

Version Supported in NDIS 6.30 and later.

Header Ndis.h

NDIS_NIC_SWITCH_CAPABILITIES

NDIS_STATUS_INDICATION

OID_NIC_SWITCH_CURRENT_CAPABILITIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_NIC_SWITCH_HARDWARE
_CAPABILITIES
Article • 03/14/2023

The NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES status indicates to NDIS
and overlying drivers that the hardware capabilities of the NIC switch in a network
adapter have changed. These capabilities include the hardware capabilities that are
currently disabled by INF file settings or through the Advanced properties page.

The status indication is made by the miniport driver of the network adapter's PCI
Express (PCIe) Physical Function (PF). The PF miniport driver runs in the management
operating system of the Hyper-V parent partition.

The PF miniport driver must issue an
NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES status indication whenever it
detects a change to the hardware capabilities of the NIC switch on the network adapter.
These capabilities could change when one of the following conditions is true:

The NIC switch hardware capabilities are enabled or disabled through a
management application developed by the independent hardware vendor (IHV).

The NIC switch hardware capabilities change for one or more network adapters
that belong to a load balancing failover (LBFO) team managed by a MUX
intermediate driver. For more information, see NDIS MUX Intermediate Drivers.

When the PF miniport driver issues the
NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES status indication, it must follow
these steps:

1. The miniport driver initializes an NDIS_NIC_SWITCH_CAPABILITIES structure with
the hardware capabilities of the network adapter's NIC switch.

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure in the
following way:

The StatusCode member must be set to
NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

The StatusBuffer member must be set to the pointer to a
NDIS_NIC_SWITCH_CAPABILITIES structure. This structure contains the
hardware capabilities of the NIC switch.

The StatusBufferSize member must be set to
sizeof(NDIS_NIC_SWITCH_CAPABILITIES).

3. The PF miniport driver issues the status notification by calling
NdisMIndicateStatusEx. The driver must pass a pointer to the
NDIS_STATUS_INDICATION structure to the StatusIndication parameter.

Overlying drivers can use the NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES
status indication to determine the currently enabled NIC switch capabilities on the
network adapter. Alternatively, these drivers can also issue OID query requests of
OID_NIC_SWITCH_HARDWARE_CAPABILITIES to obtain these capabilities at any time.

Version Supported in NDIS 6.30 and later.

Header Ndis.h

NDIS_NIC_SWITCH_CAPABILITIES

NDIS_STATUS_INDICATION

OID_NIC_SWITCH_HARDWARE_CAPABILITIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Virtual Machine Queue (VMQ) Overview
Article • 09/12/2022

The NDIS Virtual Machine Queue (VMQ) interface supports Microsoft Hyper-V network
performance improvements in NDIS 6.20 and later in Windows Server 2008 R2 and later
versions of Windows Server.

The VMQ interface supports:

Classification of received packets in network adapter hardware by using the
destination media access control (MAC) address to route the packets to different
receive queues.

Shared memory; For more information see NDIS Memory Management Interface.

Scaling to multiple processors by processing packets for different virtual machines
on different processors.

The NDIS VMQ architecture provides advantages for virtualization such as:

Virtualization impacts performance and VMQ helps overcome those effects.

VMQ supports live migration.

VMQ coexists with NDIS task offloads and other optimizations.

This section provides high-level information about the NDIS VMQ interface. You should
read this section before writing an NDIS driver that supports VMQ.

For information about writing VMQ drivers, see Writing VMQ Drivers.

This section includes the following topics:

Introduction to NDIS Virtual Machine Queue (VMQ)

VMQ Components

VMQ Receive Queues

VMQ Receive Filters

７ Note

Be sure to study the NDIS Virtual Miniport Driver sample , especially the vmq.c
and vmq.h source files.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://github.com/Microsoft/Windows-driver-samples/tree/main/network/ndis/netvmini/6x

Security Issues with NDIS Virtual Machine (VM) Shared Memory

NDIS VMQ Live Migration Support

NDIS VM Queue States

Introduction to NDIS Virtual Machine
Queue (VMQ)
Article • 03/14/2023

Many network adapters can support more than one unicast media access control (MAC)
address for a network server. Therefore, the network adapter can receive network data
frames with a destination MAC address that matches any of the unicast MAC addresses
that are set on the network adapter hardware without being in promiscuous mode. Such
hardware can allocate a receive queue for each MAC address and route incoming frames
with a matching MAC address to the queue. This feature, coupled with the ability to
allocate receive buffers for each queue from the memory address space that is assigned
to each virtual machine, are the primary capabilities that are required for VMQ support.

A VMQ-capable network adapter can use DMA to transfer all incoming frames that
should be routed to a receive queue to the receive buffers that are allocated for that
queue. The miniport driver can indicate all of the frames that are in a receive queue in
one receive indication call.

VMQ provides the following features:

Improves network throughput by distributing processing of network traffic for
multiple virtual machines (VMs) among multiple processors.

Note In Hyper-V, a child partition is also known as a VM.

Reduces CPU utilization by offloading receive packet filtering to network adapter
hardware.

Prevents network data copy by using DMA to transfer data directly to VM memory.

Splits network data to provide a secure environment. For more information about
security issues, see Security Issues with NDIS Virtual Machine (VM) Shared
Memory.

Note Starting with NDIS 6.30 and Windows Server 2012, splitting network data
into separate lookahead buffers is no longer supported.

Supports live migration. For more information about live migration, see NDIS VMQ
Live Migration Support.

To introduce high-level VMQ concepts, this section includes the following additional
topics:

VMQ Components

VMQ Receive Queues

VMQ Receive Filters

VMQ Components
Article • 12/15/2021

The following illustration shows the relationships among the various components in a
virtual machine queue (VMQ) operating environment.

The preceding figure illustrates the following VMQ components:

Network Virtual Service Provider (NetVSP)
An NDIS driver that runs in the management operating system of the Hyper-V parent
partition. This driver provides services to support networking access by the Hyper-V
child partitions.

Note Starting with Windows Server 2008, the Hyper-V extensible switch component
provides NetVSP support to the NetVSC components that run in the guest operating
system. For more information about this component, see Hyper-V Extensible Switch.

Network Virtual Service Client (NetVSC)
An NDIS driver that runs in the guest operating system of a Hyper-V child partition.
NetVSC exposes a virtualized view of the physical network adapter on the host
computer. This virtualized device is known as the VM network adapter.

The NetVSC provides the following functionality:

Supports networking device functionality in Hyper-V child partitions.

Accesses the physical network adapter by passing messages over the virtual
machine bus (VMBus) to the associated NetVSP driver. This driver runs in the
management operating system of the Hyper-V parent partition.

Virtual Machine Bus (VMBus)
A virtual communications bus that passes control and data messages between the
Hyper-V parent and child partitions.

Note In Hyper-V, a child partition is also known as a virtual machine (VM).

VM Bus Channel
A communications channel on the VMBus between a NetVSC in a Hyper-V child
partition and the NetVSP in the Hyper-V parent partition.

VM Queue
A queue for received data. A network adapter that supports VMQ has hardware to route
data to a VM queue.

VMQ Filter
A filter to test incoming data. A network adapter that supports VMQ uses filters to test
packet data in order to assign the packet to a queue.

VMQ Receive Queues
Article • 12/15/2021

A virtual machine queue (VMQ) service provider allocates VMQ receive queues. The
network adapter hardware assigns an incoming network data packet to a queue if the
packet passes the filter tests that are set on the queue.

A VMQ receive queue has the following properties:

A queue identifier that is unique to the associated network adapter.

Processor affinity for interrupts.

Filters that are set on the queue.

Receive buffers that are assigned to the queue.

There is also a default queue that has the following properties:

The default queue always exists. Other queues must be allocated.

The default queue receives packets that do not pass the filter tests for the other
queues.

Miniport drivers allocate shared memory for the receive buffers that are associated with
a VMQ. Depending on the Windows Server version, miniport drivers must follow
guidelines for buffer allocation that are described in the following sections:

Allocating Shared Memory for VMQ Receive Buffers (Windows Server 2008 R2)

Allocating Shared Memory for VMQ Receive Buffers (Windows Server 2012 and
Later Versions)

VMQ shared memory requirements are designed to address potential security issues for
virtual machines (VMs). For more information about VMQ security issues, see Security
Issues with NDIS Virtual Machine (VM) Shared Memory.

For NDIS 6.20 in Windows Server 2008 R2, if the miniport driver supports splitting
packet data into separate lookahead buffers, it can allocate shared memory in the
following way:

Allocating Shared Memory for VMQ Receive Buffers
(Windows Server 2008 R2)

The miniport driver allocates the shared memory for the pre-lookahead buffer
from the address space of the management operating system that runs in a Hyper-
V parent partition. The pre-lookahead buffer is the part of the packet that is
inspected by the management operating system.

The miniport driver allocates the shared memory for the post-lookahead buffer
from the address space of the guest operating system that runs in a Hyper-V child
partition. The post-lookahead buffer is the part of the packet that is inspected by
the guest operating system.

Note The Hyper-V child partition is also known as a VM.

The following figure shows the shared memory in the queues, the management
operating system, and the guest operating systems.

In the figure, each packet in a queue is shown with header information that was
allocated from the management operating system address space and data that was
allocated from the guest operating system address space.

Starting with NDIS 6.30, splitting VMQ receive buffers into separate lookahead buffers is
no longer supported. The miniport driver must allocate memory for each receive buffer
from the address space of the management operating system.

Allocating Shared Memory for VMQ Receive Buffers
(Windows Server 2012 and Later Versions)

VMQ Receive Filters
Article • 12/15/2021

A network virtual service provider (VSP) sets VMQ receive filters on VMQ receive queues.
Such a filter includes a set of network header field tests. The network adapter hardware
performs these tests on header fields in incoming packets to determine the receive
queue assignments for the packets. Each filter that is set on a queue has a unique filter
identifier for a network adapter. That is, the filter identifiers are not duplicated on
different queues that the network adapter manages.

The VMQ interface uses fields in the media access control (MAC) header in filter tests.
Within the MAC header, VMQ filter tests use the virtual local area network (VLAN)
identifier and the destination MAC address fields.

Multiple field tests can be specified in a receive filter. All of the tests must pass to match
the criterion for the filter and assign a packet to a receive queue. VMQ filters test for
fields that are equal to a specified value. For example, the destination MAC address is
equal to a specified address.

Multiple filters can be set on a receive queue. If any of the filters on a queue match (that
is, all of the tests for that filter were passed), the network adapter assigns the packet to
that receive queue.

This following figure shows how filter tests are performed and how filters determine a
queue assignment.

In the preceding figure, the destination address (DA) is tested (compared to A and B).
Also, the VLAN identifier is tested (compared to 2 and 3). The AND operation illustrates
that both the DA and VLAN identifier must be equal to the specified values to have a
filter match. The OR operation illustrates that any filter on the queue that matches
results in the assignment of the network data packet to that queue.

This following figure shows how filters and queues affect the receive data flow.

If an incoming packet matches a filter on a queue, it is assigned to that queue.
Otherwise, the packet is tested against the filters on the next queue and so on. If there is
no filter match on any of the queues, the network adapter assigns the packet to the
default queue.

Security Issues with NDIS Virtual
Machine (VM) Shared Memory
Article • 03/14/2023

This topic discusses the potential security issues involved with allocating shared memory
from a virtual machine (VM) for virtual machine queue (VMQ) receive buffers. The topic
includes the following sections:

Overview of the Security Issues with VM Shared Memory

How Windows Server 2008 R2 Addresses the Security Issue

How Windows Server 2012 and Later Versions Address the Security Issue

Note In Hyper-V, a child partition is also known as a VM.

VMs are not trusted software entities. That is, a malicious VM must not be able to
interfere with other VMs or the management operating system that runs in the Hyper-V
parent partition. This section provides background information and requirements to
ensure that driver writers understand VMQ security issues and requirements for shared
memory. For more information about shared memory, see the Shared Memory Resource
Allocation topic in the Writing VMQ Drivers section.

In the virtualized environment, VM shared memory can be viewed or modified by the
VM. However, viewing or modifying data that is associated with other VMs is not
allowed. VMs are also not allowed to access the management operating address space.

The header portion of the received packets must be protected. A VM is not allowed to
affect the behavior of the Hyper-V extensible switch in a network virtual service provider
(VSP). Therefore, VLAN (virtual LAN) filtering must happen before the network adapter
uses DMA to transfer the data to VM shared memory. Also, the media access control
(MAC) address learning of the switch cannot be affected.

If the Hyper-V extensible switch port that is connected to a VM has an associated VLAN
identifier, the host computer must ensure that the destination MAC address and the
VLAN identifier of the incoming frame match those respective attributes of the port
before the host forwards the packet to the VM's virtual network adapter. If the VLAN
identifier of the frame does not match the VLAN identifier of the port, the packet is
dropped. When the receive buffers for a virtual network adapter are allocated from host

Overview of the Security Issues with VM Shared Memory

memory, the host can check the VLAN identifier and drop the frame if necessary before
making the contents of the frame visible to the target VM. If the frame is not copied to a
VM's address space, it cannot be accessed by that VM.

However, when VMQ is configured to use shared memory, the network adapter uses
DMA to transfer incoming frames directly to the VM address space. This transfer
introduces a security issue in which a VM can examine the contents of the received
frames without waiting for the extensible switch to apply the required VLAN filtering.

In Windows Server 2008 R2, before the VSP configures a VM queue to use shared
memory that is allocated from the VM address space, it uses the following filtering test
for the queue.

syntax

If the network adapter hardware can support this test before the DMA transfer to the
receive buffers, the network adapter can either drop frames with invalid VLAN identifiers
or send them to the default queue so that they can be filtered out by the extensible
switch. If the miniport driver succeeds in a request to set a filter with this test on a
queue, the extensible switch can use VM shared memory for that queue. However, if the
network adapter hardware is not capable of filtering the frames based on both
destination MAC address and VLAN identifier, the extensible switch uses host shared
memory for that queue.

The extensible switch inspects the source MAC address of received frames to configure
the routing information for transmit frames—that is, it is similar to a physical learning
switch. It is possible to install firewall filter drivers in the host stack; for example, above
the miniport driver for the network adapter hardware and below the extensible switch
driver. Firewall filter drivers can access data in a received frame before the extensible
switch. If the entire receive buffer for each frame is allocated from VM address space, a
malicious VM could access parts of the frame that would be examined by either a filter
driver or the extensible switch that runs in the host.

To address this security issue, when using VM shared memory for a VM queue, the
network adapter must split the packet at a byte offset that is at least the lookahead size,
which is a predetermined fixed value. Any lookahead data— meaning data that is ahead
of the byte offset for the lookahead size—must be transferred with DMA to shared

How Windows Server 2008 R2 Addresses the Security
Issue

(MAC address == x) && (VLAN identifier == n)

memory that was allocated for lookahead data. The post-lookahead data—the rest of
the frame payload—should be transferred with DMA to shared memory that was
allocated for the post-lookahead data.

The following illustration shows the relationships for the network data structures when
the incoming data is split into lookahead and post-lookahead shared memory buffers.

The summary requirements for VMQ shared memory are as follows:

A network adapter can split a received frame at a network-header boundary that is
larger than the lookahead size. However, when requested by NDIS, and without
exception, all of the frames that are received and assigned to a VMQ must be split
at or beyond the lookahead size boundary that NDIS requests.

The lookahead data must be transferred with DMA to shared memory that is
allocated by the miniport driver. The miniport driver must specify in the allocation
call that the memory will be used for lookahead data.

The post-lookahead data must be transferred with DMA to shared memory that is
allocated by the miniport driver. The miniport driver must specify in the allocation
call that the memory will be used for post-lookahead data.

Miniport drivers must not be dependent upon which address space NDIS will use
to complete the shared memory allocation request. That is, the shared memory
address space for lookahead or post-lookahead data is implementation specific. In
many cases, NDIS or the extensible switch might satisfy all the requests, including
those for post-lookahead use, from host memory address space.

The order in which frames are received on a VMQ receive queue must be
preserved when the frames in that queue are indicated up the driver stack.

The network adapter must allocate enough backfill memory space in each post-
lookahead buffer. This allocation allows the lookahead data to be copied to the

backfill portion of the post-lookahead buffer, and allows the frame to be delivered
to the VM in a contiguous buffer.

If there is no mechanism in hardware to meet these requirements for VMQ shared
memory, the hardware that supports scatter-gather DMA on the receive side might
achieve the same results by allocating two receive buffers for each received frame. In
this case, the size of the first buffer is limited to the requested lookahead size.

If the network adapter cannot meet these requirements for VMQ shared memory by any
method, the VSP will allocate memory for the VMQ receive buffers from the host
address space and will copy the received packets from the network adapter receive
buffers to VM address space.

Starting with Windows Server 2012, the VSP does not allocate shared memory from the
VM for the VMQ receive buffers. Instead, the VSP allocates memory for the VMQ receive
buffers from the host address space and then copies the received packets from the
network adapter receive buffers to VM address space.

The following points apply to VMQ miniport drivers that run on Windows Server 2012
and later versions of Windows:

For NDIS 6.20 VMQ miniport drivers, no change is required. However, when the
VSP allocates a VM queue by issuing an OID (object identifier) method request of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE, it will set the LookaheadSize member of
the NDIS_RECEIVE_QUEUE_PARAMETERS structure to zero. This will force a
miniport driver to not split the packet into pre-lookahead and post-lookahead
buffers.

Starting with NDIS 6.30, VMQ miniport drivers must not advertise support for
splitting packet data into pre-lookahead and post-lookahead buffers. When a
miniport driver registers its VMQ capabilities, it must follow these rules when it
initializes the NDIS_RECEIVE_FILTER_CAPABILITIES structure:

The miniport driver must not set the
NDIS_RECEIVE_FILTER_LOOKAHEAD_SPLIT_SUPPORTED flag in the Flags
member.

The miniport driver must set the MinLookaheadSplitSize and
MaxLookaheadSplitSize members to zero.

How Windows Server 2012 and Later Versions Address
the Security Issue

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

For more information about how to register VMQ capabilities, see Determining the
VMQ Capabilities of a Network Adapter.

NDIS VMQ Live Migration Support
Article • 03/14/2023

To support live migration, a virtual machine (VM) can be paused at any instruction or
pending I/O boundary. That is, the VM might not finish pending receive requests. So,
the network virtual service provider (VSP) returns all of the received packets to the
underlying network adapter that the VM did not return.

Note In Hyper-V, a child partition is also known as a VM.

When the VM is restarted on another host, the network VSP on the new host handles
the receive packets that the resumed VM returns and does not pass them down to the
new underlying in miniport driver. After the migration is complete, the receive queue
that was associated with the VM is freed and it can be reused for another VM.

Note The new network adapter might not support VMQ.

When NDIS requests a miniport driver to free a VMQ receive queue, it follows these
steps:

1. The network adapter stops the DMA transfer of data to receive buffers that are
associated with the receive queue, after which the queue must enter the DMA
Stopped state. The network adapter probably stopped the DMA activity when it
received the OID_RECEIVE_FILTER_CLEAR_FILTER OID request to clear the last set
filter on the receive queue.

2. The miniport driver generates an NDIS_STATUS_RECEIVE_QUEUE_STATE status
indication with the QueueState member of the NDIS_RECEIVE_QUEUE_STATE
structure set to NdisReceiveQueueOperationalStateDmaStopped to notify NDIS
that the DMA transfer has been stopped.

3. The miniport driver waits for all the indicated receive packets for that queue to be
returned to the miniport driver.

4. The miniport driver frees all the shared memory that it allocated for the network
adapter's receive buffers that are associated with the queue by calling
NdisFreeSharedMemory.

5. The miniport driver completes the OID_RECEIVE_FILTER_FREE_QUEUE OID request
to free the receive queue.

For more information about queue states, see NDIS VM Queue States.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_queue_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory

NDIS Virtual Machine Queue States
Article • 03/14/2023

This topic provides an overview of the operational states of NDIS virtual machine
queues (VMQs). For more information about queue states, see the Queue States and
Operations topic in the Writing VMQ Drivers section.

For each queue, a network adapter must support the following set of operational states:

Undefined

Allocated

Set

Paused

Running

Stop DMA

Freeing

The following figure shows the relationships between these states.

The following defines the adapter states:

Undefined
Undefined is the initial state of a queue. In this state, the queue is not allocated. A queue
(except the default queue which always exists) is undefined until the miniport driver
receives a queue allocation request. Also, it is undefined after the free operation is
complete and any receive indications that had been started are complete.

Allocated
A queue is in the Allocated state after an allocation request and before there are any
filters set on the queue. The filter can also enter the Allocated state if the queue is in the
Set state and the last filter is cleared on the queue. The queue enters the Paused state if
the miniport driver receives an allocation complete request while the miniport driver is
in the Allocated state. The queue enters the Stop DMA state if the miniport driver
receives a free queue request.

Set
In the Set state, a queue is allocated and a least one filter is set on the queue but the
miniport driver did not receive an allocation complete OID yet. The queue enters the
Running state if it receives an allocation complete request. The queue enters the
Allocated state if the last filter on the queue is cleared. Note that the queue cannot be
freed while there are filters set on the queue.

Paused
In the Paused state, the queue is allocated but its miniport driver does not indicate
received packets because there are no filters set on the queue. The miniport driver can
enter the Paused state either from the Allocated state or from the Running state. The
queue enters the Running state when it receives a filter set request. The queue enters
the Stop DMA state when it receives a free queue request.

Running
In the Running state, a queue has filters set, the queue allocation is complete, and the
network adapter indicates receive packets. The queue enters the Paused state if the last
filter on the queue is cleared. Note that the queue cannot be freed while there are filters
set on the queue. Also, the miniport driver can stop the DMA if the last filter is cleared.
However, the miniport driver should not send the DMA stopped state indication in this
case.

Stop DMA
In the Stop DMA state, the miniport driver received a free queue request and the DMA
activity must be stopped. The miniport driver must send a DMA stopped state
indication. After the miniport driver sends the status indication, the queue is in the
Freeing state. Note that the DMA was probably already stopped when the last filter was

cleared. However, the miniport driver should only send the status indication when it
receives the free queue request.

Freeing
In the Freeing state, a miniport driver is waiting for all of the outstanding receive
indications on a queue to complete and freeing the resources that are associated with
the queue. After all of the resources are freed, the queue enters the Undefined state.

Getting Started Writing VMQ Drivers
Article • 12/15/2021

This section provides information about writing NDIS virtual machine queue (VMQ)
drivers. You should already understand the Virtual Machine Queue Architecture before
you read this section.

Note Be sure to study the NDIS Virtual Miniport Driver sample , especially the vmq.c
and vmq.h source files.

A miniport driver that supports VMQ manages NICs that provide the VMQ hardware
support. Such a NIC provides hardware services to filter incoming network data, and
assign it to VM receive queues.

This section describes how overlying drivers obtain information about the underlying
network adapter and set the VMQ configuration. Overlying drivers and user applications
can obtain the current configuration and enable or disable VMQ features.

This section includes the following topics:

VMQ Driver Configuration
Queue States and Operations
VMQ Interrupt Requirements
Allocating and Freeing VM Queues
Setting and Clearing VMQ Filters
Obtaining and Updating VM Queue Parameters
VMQ Send and Receive Operations
Obtaining VMQ Information

https://go.microsoft.com/fwlink/p/?LinkId=617918

VMQ Driver Configuration
Article • 12/15/2021

This section describes the features that NDIS provides to determine the virtual machine
queue (VMQ) capabilities of network adapters.

A miniport driver reports its VMQ capabilities to NDIS and overlying drivers during
network adapter initialization.

Standardized INF file entries can enable or disable VMQ features when a driver is
installed.

This section includes the following topics:

Determining the VMQ Capabilities of a Network Adapter

Standardized INF Keywords for VMQ

Determining the VMQ Capabilities of a
Network Adapter
Article • 12/15/2021

NDIS provides the interface to determine the VMQ capabilities of a network adapter,
such as:

The generic filtering capabilities of a network adapter.

Supported VM queue capabilities.

Lookahead support to allow splitting of the networking data memory into two
separate buffers.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead
buffers is no longer supported.

Miniport drivers provide the following information to NDIS during network adapter
initialization:

The VMQ hardware capabilities that the network adapter can support.

The VMQ capabilities that are currently enabled.

The global receive filtering features that are enabled or disabled on a network
adapter.

Overlying drivers and applications can use the following OID query requests to obtain
the network adapter capabilities.

OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES

OID_RECEIVE_FILTER_CURRENT_CAPABILITIES

OID_RECEIVE_FILTER_GLOBAL_PARAMETERS

NDIS handles these OID query requests for miniport drivers. Therefore, the query is not
requested for miniport drivers. NDIS reports the currently enabled receive VMQ
capabilities of a network adapter during initialization. Therefore, overlying drivers do not
have to query these OIDs.

The NDIS_RECEIVE_FILTER_CAPABILITIES structure specifies the filtering capabilities of a
network adapter. This structure is used in the following ways:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

When NDIS calls the MiniportInitializeEx function, the miniport driver registers its
filtering capabilities by initializing an NDIS_RECEIVE_FILTER_CAPABILITIES
structure. The driver then sets the HardwareReceiveFilterCapabilities member of
the NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to
point to the NDIS_RECEIVE_FILTER_CAPABILITIES structure. The driver next calls
the NdisMSetMiniportAttributes function and then sets the MiniportAttributes
parameter to a pointer to the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

An overlying protocol driver receives the NDIS_RECEIVE_FILTER_CAPABILITIES
structure in the NDIS_BIND_PARAMETERS structure when NDIS calls the driver's
ProtocolBindAdapterEx function.

An overlying filter driver receives the NDIS_RECEIVE_FILTER_CAPABILITIES
structure in the NDIS_FILTER_ATTACH_PARAMETERS structure when NDIS calls the
driver's FilterAttach function.

Overlying drivers receive the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure by issuing
an OID query request of OID_RECEIVE_FILTER_CURRENT_CAPABILITIES or
OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES. The
HardwareReceiveFilterCapabilities and CurrentReceiveFilterCapabilities members
point to an NDIS_RECEIVE_FILTER_CAPABILITIES structure.

The NDIS_RECEIVE_FILTER_CAPABILITIES structure includes the following information:

EnabledFilterTypes
The types of the supported receive filters. The
NDIS_RECEIVE_FILTER_VMQ_FILTERS_ENABLED flag specifies that virtual machine queue
(VMQ) filters are enabled.

EnabledQueueTypes
The types of supported receive queues. The
NDIS_RECEIVE_FILTER_VM_QUEUES_ENABLED flag specifies that virtual machine (VM)
queues are enabled.

NumQueues
The number of receive queues that the network adapter supports. To support VMQ, this
number must be equal to or less than the number of unicast MAC addresses that the
NIC supports. This number must not include the default queue.

Note The number of unicast MAC addresses or VM queues that a network adapter
supports does not include the MAC address of the associated NIC.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

SupportedQueueProperties
The queue properties that the network adapter supports. The
NDIS_RECEIVE_FILTER_VM_QUEUE_SUPPORTED flag specifies that the network adapter
provides the minimum requirements to support VMQ filtering. A VMQ-capable NIC
must provide an MSI-X table entry for each receive queue. Therefore, a VMQ miniport
driver must set the NDIS_RECEIVE_FILTER_MSI_X_SUPPORTED flag.

SupportedFilterTests
The filter test operations that a miniport driver supports. For example, the network
adapter supports testing the selected header field to determine whether it is equal to a
given value. A VMQ miniport driver must set the
NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_EQUAL_SUPPORTED flag.

SupportedHeaders
The types of network packet headers that a miniport driver can inspect. For example, the
network adapter can inspect the MAC header of a network packet. The MAC header
includes the packet type, destination and source MAC addresses, the VLAN identifier,
and the priority tag fields. A VMQ miniport driver must set the
NDIS_RECEIVE_FILTER_MAC_HEADER_SUPPORTED flag.

SupportedMacHeaderFields
The types of MAC header fields that a miniport driver can inspect. A VMQ miniport
driver must set the NDIS_RECEIVE_FILTER_MAC_HEADER_DEST_ADDR_SUPPORTED flag.

MaxMacHeaderFilters
The maximum number of MAC header filters that the miniport driver supports. There
should be at least as many header filters as there are VM queues.

MaxQueueGroups
This member is reserved for NDIS.

MaxQueuesPerQueueGroup
This member is reserved for NDIS.

MinLookaheadSplitSize
The minimum size, in bytes, that the network adapter supports for lookahead packet
segments.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead buffers is
no longer supported. Miniport drivers that support NDIS 6.30 or later versions must set
this member to zero.

MaxLookaheadSplitSize
The maximum size, in bytes, that the network adapter supports for lookahead packet

segments.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead buffers is
no longer supported. Miniport drivers that support NDIS 6.30 or later versions must set
this member to zero.

After a successful return from the OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES OID
query, the InformationBuffer member of the NDIS_OID_REQUEST structure contains a
pointer to an NDIS_RECEIVE_FILTER_CAPABILITIES structure. These capabilities can
include VMQ hardware capabilities that are currently disabled by INF file settings or
through the Advanced properties page. For more information about VMQ INF files
settings, see VMQ Standard INF Entries.

NDIS miniport drivers supply the receive-filtering hardware capabilities during
initialization in the HardwareReceiveFilterCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

After a successful return from the OID_RECEIVE_FILTER_CURRENT_CAPABILITIES OID
query, the InformationBuffer member of the NDIS_OID_REQUEST structure contains a
pointer to an NDIS_RECEIVE_FILTER_CAPABILITIES structure. These capabilities include
the currently enabled VMQ capabilities.

NDIS miniport drivers supply the currently enabled receive filtering capabilities during
initialization in the CurrentReceiveFilterCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

NDIS reports the currently enabled receive filtering capabilities of an underlying network
adapter to overlying protocol drivers in the ReceiveFilterCapabilities member of the
NDIS_BIND_PARAMETERS structure during the bind operation.

The NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS structure is used in the
OID_RECEIVE_FILTER_GLOBAL_PARAMETERS query OID to obtain the current global
receive filter settings.

NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS includes the following information:

EnabledFilterTypes
The types of enabled receive filters. The NDIS_RECEIVE_FILTER_VMQ_FILTERS_ENABLED
flag specifies that virtual machine queue (VMQ) filters are enabled.

EnabledQueueTypes
The types of enabled receive queues. The NDIS_RECEIVE_FILTER_VM_QUEUES_ENABLED
flag specifies that virtual machine (VM) queues are enabled.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_global_parameters

After a successful return from the OID_RECEIVE_FILTER_GLOBAL_PARAMETERS OID
query, the InformationBuffer member of the NDIS_OID_REQUEST structure contains a
pointer to an NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS structure. The
NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS structure specifies the receive-filtering
features that are enabled or disabled on a network adapter.

NDIS protocol drivers use OID_RECEIVE_FILTER_GLOBAL_PARAMETERS to query the
current global configuration parameters for receive filtering on a network adapter. For
example, protocol drivers can use this OID to determine whether types of receive filters
or receive queues are enabled or disabled.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_global_parameters

Standardized INF Keywords for VMQ
Article • 12/15/2021

The following standardized INF keywords are defined to enable or disable support for
the virtual machine queue (VMQ) features of network adapters.

*VMQ
A value that describes whether the device has enabled or disabled the VMQ feature.

*VMQLookaheadSplit
A value that describes whether the device has enabled or disabled the ability to split
receive buffers into lookahead and post-lookahead buffers. The miniport driver reports
this capability with the NDIS_RECEIVE_FILTER_LOOKAHEAD_SPLIT_SUPPORTED flag in
the SupportedQueueProperties member of the NDIS_RECEIVE_FILTER_CAPABILITIES
structure. For more information about this feature, see Shared Memory in Receive
Buffers.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead buffers is no
longer supported. Starting with Windows Server 2012, this INF keyword is obsolete.

*VMQVlanFiltering
A value that describes whether the device has enabled or disabled the ability to filter
network packets by using the VLAN identifier in the media access control (MAC) header.
The miniport driver reports this capability with the
NDIS_RECEIVE_FILTER_MAC_HEADER_VLAN_ID_SUPPORTED flag in
SupportedMacHeaderFields member of the NDIS_RECEIVE_FILTER_CAPABILITIES
structure.

*RssOrVmqPreference
A value that defines whether VMQ capabilities should be enabled instead of receive side
scaling (RSS) capabilities.

This is a hidden keyword value that must not be specified in the INF file and is not
displayed in Advanced property page for the network adapter. For more information,
see Handling VMQ and RSS INF Keywords.

VMQ standardized INF keywords are enumeration keywords. The following table
describes the possible INF entries for the VMQ standardized INF keywords.

SubkeyName ParamDesc Value EnumDesc

*VMQ Virtual Machine Queues 0 Disabled

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

SubkeyName ParamDesc Value EnumDesc

1
(Default)

Enabled

*VMQLookaheadSplit VMQ Lookahead Split 0 Disabled
Note
Starting
with NDIS
6.30, this
keyword is
no longer
supported.

1
(Default)

Enabled

*VMQVlanFiltering VMQ VLAN Filtering 0 Disabled

1
(Default)

Enabled

*RssOrVmqPreference Note: The ParamDesc and EnumDesc entries
for this subkey cannot be used in either INF
files or a user interface. For more information,
see Handling VMQ and RSS INF Keywords.

0
(Default)

Note
Report RSS
capabilities

1 Note
Report
VMQ
capabilities

The columns in this table describe the following attributes for an enumeration keyword:

SubkeyName
The name of the keyword that you must specify in the INF file. This name also appears in
the registry under the NDI\params key for the network adapter.

ParamDesc
The display text that is associated with the SubkeyName INF entry.

Note The independent hardware vendor (IHV) can define any descriptive text for the
SubkeyName.

Value
The enumeration integer value that is associated with each SubkeyName in the list.

EnumDesc
The display text that is associated with each value that appears in the Advanced

property page.

For more information about standardized INF keywords, see Standardized INF Keywords
for Network Devices.

Network adapters that support VMQ and receive side scaling (RSS) cannot use these
features simultaneously. The operating system enables the use of the RSS or VMQ
features in the following way:

When the network adapter is bound to the TCP/IP stack, the operating enables the
use of the RSS feature.

When the network adapter is bound to the Hyper-V extensible switch driver stack,
the operating system enables the use of the VMQ feature.

For more information, see Hyper-V Extensible Switch.

Because the network adapter is not disabled and then re-enabled when it is unbound
from the TCP/IP stack and bound to the Hyper-V driver stack (or the reverse), it is not
possible for such network adapters to switch between VMQ and RSS automatically.

When NDIS calls the MiniportInitializeEx function, the miniport driver follows these steps
before it reports its currently-enabled VMQ or RSS capabilities to NDIS:

1. The miniport driver reads the *RssOrVmqPreference keyword before reporting its
currently-enabled capabilities to NDIS.

If the value of the *RssOrVmqPreference keyword is 1, the miniport driver is
configured for VMQ preference.

If the value of the *RssOrVmqPreference keyword is zero or the keyword is not
present, the miniport driver is configured for RSS preference.

2. If the miniport driver is configured for VMQ preference, it must read the *VMQ
keyword to determine if VMQ is enabled on the network adapter. If the keyword is
set to 1, the driver reports the currently-enabled VMQ settings. For more
information on how the miniport driver reports VMQ settings, see Determining the
VMQ Capabilities of a Network Adapter.

For more information about the VMQ keywords, see Standardized INF Keywords
for VMQ.

Handling VMQ and RSS INF Keywords

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Note If the miniport driver is configured for VMQ preference, it must not read any
of the RSS standardized keywords.

3. If the miniport driver is configured for RSS preference, it must read the *RSS
keyword to determine if RSS is enabled on the network adapter. If the keyword is
set to 1, the driver reports the currently-enabled RSS settings. For more
information on how the miniport driver reports RSS settings, see RSS
Configuration.

For more information about the RSS keywords, see Standardized INF Keywords for
RSS.

Note If the miniport driver is configured for RSS preference, it must not read any
of the VMQ standardized keywords.

The following table describes how the miniport driver determines RSS or VMQ
preference and advertises capabilities based on registry keywords:

*RssOrVmqPreference *VMQ *RSS VMQ or RSS capabilities advertised

1 1 N/A VMQ

1 0 N/A None

0, or not present in registry N/A 1 RSS

0, or not present in registry N/A 0 None

Note The miniport driver must always report the complete RSS and VMQ hardware
capabilities regardless of the values of these keywords. These keyword settings only
affect how the driver reports the currently-enabled RSS and VMQ capabilities.

If the miniport driver supports VMQ and the VMQ interface is enabled on the network
adapter, the driver must not read the following RSS INF entries:

SubkeyName ParamDesc Value

*RssMaxProcNumber The maximum processor number of
the RSS interface.

0 through
(MAXIMUM_PROC_PER_GROUP-
1),

*MaxRssProcessors The maximum number of RSS
processors.

1 through
MAXIMUM_PROC_PER_SYSTEM.

Reserved Registry Keywords

The miniport driver that supports VMQ must not read the following subkeys under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\VMSMP\Parameters
registry key.

SubkeyName ParamDesc Value

*TenGigVmqEnabled Enable or disable VMQ on all 10
gigabits per second (Gbps)
network adapters.

0=System default (disabled for
Windows Server 2008 R2).

1=Enabled.

2=Explicitly disabled.

*BelowTenGigVmqEnabled Enable or disable VMQ on all
network adapters that support
less than 10 Gbps.

0=System default (disabled for
Windows Server 2008 R2).

1=Enabled.

2=Explicitly disabled.

*RssMaxProcNumber The maximum processor number
of the RSS interface.

0 through
(MAXIMUM_PROC_PER_GROUP-
1),

*MaxRssProcessors The maximum number of RSS
processors.

1 through
MAXIMUM_PROC_PER_SYSTEM.

Queue States and Operations
Article • 12/15/2021

For each queue, a network adapter must support the following set of operational states:

Undefined
The queue is not allocated. To allocate a queue, an overlying driver sends an OID_RECEIVE_FILTER_ALLOCATE_QUEUE
OID request.

Allocated
The Allocated state is the initial state for a queue. When a queue is in the Allocated state, the overlying driver usually
sets filters on the queue with the OID_RECEIVE_FILTER_SET_FILTER OID or completes the queue allocation with the
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE OID request.

Set
In the Set state, a queue has at least one filter allocated but the overlying driver has not sent the
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE OID.

Running
In the Running state, the queue has filters set, the queue allocation is complete and the miniport adapter is indicating
receive packets for the queue.

Paused
In the Paused state, the network adapter does not indicate received network data for the queue. Either there were no
filters set on the queue before the OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE OID request or all of the
filters that were set on the queue were cleared with the OID_RECEIVE_FILTER_CLEAR_FILTER OID request.

DMA Stopped
In the DMA Stopped state, a miniport driver received an OID_RECEIVE_FILTER_FREE_QUEUE OID request. When the
DMA is stopped and the driver has issued the DMA-stopped status indication (with
NDIS_STATUS_RECEIVE_QUEUE_STATE), the driver enters the Freeing state.

Freeing
In the Freeing state, a miniport driver completes the operations that are required to stop send and receive operations
for the queue, and releases the associated resources. After all of the outstanding receive indications are complete,
the queue is deleted and the queue is Undefined.

In the following table, the headings are the queue states. Major events are listed in the first column. The rest of the
entries in the table specify the next state that the queue enters after an event occurs within a state. The blank entries
represent invalid event/state combinations.

Event \ State Undefined Allocated Set Running Paused Stop
DMA

Freeing

OID_RECEIVE_FILTER_ALLOCATE_QUEUE - method
(set)

Allocated

OID_RECEIVE_FILTER_QUEUE_PARAMETERS - method
(query) request

Allocated Set Running Paused

OID_RECEIVE_FILTER_QUEUE_PARAMETERS - set
request

Allocated Set Running Paused

OID_RECEIVE_FILTER_SET_FILTER - method (set)
request

Set Set Running Running

OID_RECEIVE_FILTER_CLEAR_FILTER - set request (last
filter)

Allocated Paused

Event \ State Undefined Allocated Set Running Paused Stop
DMA

Freeing

OID_RECEIVE_FILTER_CLEAR_FILTER - set request (not
last filter)

Set Running

OID_RECEIVE_FILTER_ENUM_FILTERS - method (query
request)

Allocated Set Running Paused

OID_RECEIVE_FILTER_PARAMETERS - method (query)
request

Set Running

OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE
- method (set) request

Paused Running

Receive packet Running

OID_RECEIVE_FILTER_FREE_QUEUE set request Stop
DMA

Stop
DMA

DMA is stopped and
NDIS_STATUS_RECEIVE_QUEUE_STATE status
indication was sent (Note: DMA was probably already
stopped in Allocated or Paused state)

Freeing

All receive indications are complete and the queue
resources are freed

Undefined

Note The events listed in the preceding table include some secondary events that do not result in a state change.
These secondary events are included in the table to specify the states where these events are valid.

The primary queue events are defined as follows:

OID_RECEIVE_FILTER_ALLOCATE_QUEUE - method (set) request
An overlying driver allocated a queue. For more information about allocating queues, see Allocating and Freeing VM
Queues.

OID_RECEIVE_FILTER_SET_FILTER - method (set) request
An overlying driver set a filter on a queue. If the overlying driver has not sent the
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE OID, the queue is in the Set state. Otherwise, the queue is in
the Running state. For more information about setting filters on queues, see Setting and Clearing VMQ Filters.

OID_RECEIVE_FILTER_CLEAR_FILTER - set request
An overlying driver cleared a filter on a queue. If the last filter was cleared on a running queue, the DMA can be
stopped; receive indications are stopped and the queue should be cleared of received data, if any. For more
information about clearing filters on queues, see Setting and Clearing VMQ Filters.

OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE - method (set) request
An overlying driver completed the queue allocation. If there are filters set on the queue, it is in the Running state and
receive indications can start. For more information about completing queue allocation, see Allocating and Freeing
VM Queues.

Receive packet
A miniport driver can only indicate receive packets for a queue that is in the Running state. For more information
about indicating received data for queues, see VMQ Send and Receive Operations.

OID_RECEIVE_FILTER_FREE_QUEUE set request.
An overlying driver freed a queue. The driver issues the DMA-stopped status indication (with
NDIS_STATUS_RECEIVE_QUEUE_STATE), the driver enters the Freeing state. When all of the outstanding receive
indications are complete and the queue resources are freed, the queue is undefined.

VMQ Interrupt Requirements
Article • 12/15/2021

A miniport driver that supports the virtual machine queue (VMQ) functionality must also
support the following interrupt allocation requirements:

The miniport driver must support MSI-X. The driver must set the
NDIS_RECEIVE_FILTER_MSI_X_SUPPORTED flag in the SupportedQueueProperties
member of the NDIS_RECEIVE_FILTER_CAPABILITIES structure.

The driver returns this structure in the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure that the
driver uses in its call to the NdisMSetMiniportAttributes function.

The miniport driver must call the NdisGetRssProcessorInformation function to
obtain processor information for allocating interrupt vectors. It must not rely on
registry keys or information obtained from other sources for interrupt allocation.

NdisGetRssProcessorInformation returns information about the set of processors
that a miniport driver can use for RSS and VMQ. This information is contained in an
NDIS_RSS_PROCESSOR_INFO structure.

The miniport driver should allocate only one interrupt vector for each processor
that is specified in the NDIS_RSS_PROCESSOR_INFO structure.

The miniport driver should allocate no more than two interrupt vectors for other
events that are not related to send or receive packet operations. For example, the
driver could allocate an IDT for link status events.

The miniport driver must support the minimum number of MSI-X interrupt vectors
as defined in the following table:

Number of queues Minimum number of required MSI-X
interrupt vectors

1–16 1–16

17–64 16–32

65 or more 32 or more

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetrssprocessorinformation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetrssprocessorinformation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_processor_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_processor_info

Allocating and Freeing VM Queues
Article • 12/15/2021

This section includes the following topics:

Allocating a VM Queue

Freeing a VM Queue

Shared Memory Resource Allocation

Enumerating the Allocated Queues

Allocating a VM Queue
Article • 12/15/2021

To allocate a queue with an initial set of configuration parameters, an overlying driver
issues an OID_RECEIVE_FILTER_ALLOCATE_QUEUE method OID request. The
InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_QUEUE_PARAMETERS structure. After a successful return
from the OID method request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_QUEUE_PARAMETERS structure that has a new queue identifier and an
MSI-X table entry.

The NDIS_RECEIVE_QUEUE_PARAMETERS structure is used in the
OID_RECEIVE_FILTER_ALLOCATE_QUEUE OID and the
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID. For more information about VM queue
parameters, see Obtaining and Updating VM Queue Parameters.

The overlying driver initializes the NDIS_RECEIVE_QUEUE_PARAMETERS structure with
the following queue configuration parameters:

The queue type (NdisReceiveQueueTypeVMQueue from the
NDIS_RECEIVE_QUEUE_TYPE enumeration.)

The processor affinity for the queue.

The queue name and the virtual machine name.

The lookahead-split parameters.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead
buffers is no longer supported.

Note The overlying driver can set the
NDIS_RECEIVE_QUEUE_PARAMETERS_PER_QUEUE_RECEIVE_INDICATION and
NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flags in the Flags
member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure. The other flags are not
used for queue allocation.

When NDIS receives an OID request to allocate a receive queue, it verifies the queue
parameters. After NDIS allocates the necessary resources and the queue identifier, it
submits the OID request to the underlying miniport driver. The queue identifier is
unique to the associated network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_receive_queue_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

If the miniport driver can successfully allocate the necessary software and hardware
resources for the receive queue, it completes the OID request with a success status.

Before NDIS sends the OID request to the miniport driver, NDIS assigns a queue
identifier in the QueueId member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure
and passes the method request to the miniport driver. The miniport driver provides the
MSI-X table entry in the MSIXTableEntry member.

The miniport driver must retain the queue identifiers for the allocated receive queues.
NDIS uses the queue identifier of a receive queue for subsequent calls to the miniport
driver to set a receive filter on the receive queue, change the receive queue parameters,
or free the receive queue.

Note The default queue (queue identifier zero) is always allocated and cannot be freed.

The overlying driver must use the queue identifier that NDIS provides in subsequent OID
requests, for example, to modify the queue parameters or free the queue. The queue
identifier is also included in the OOB data on all NET_BUFFER_LIST structures that are
associated with the queue. Drivers use the NET_BUFFER_LIST_RECEIVE_QUEUE_ID
macro to retrieve the queue identifier in a NET_BUFFER_LIST structure.

Note A protocol driver can set VMQ filters at any time after it successfully allocates a
queue and before the queue is deleted.

The protocol driver issues an OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE
method OID request to complete the queue allocation. The miniport driver can allocate
shared memory and other resources when the allocation is complete. For more
information about allocating shared memory resources, see Shared Memory Resource
Allocation.

After a miniport driver receives an OID_RECEIVE_FILTER_QUEUE_ALLOCATION OID
request and handles it successfully, the queue is in the Allocated state. For more
information about queue states, see Queue States and Operations.

After an overlying driver allocates one or more receive queues (and optionally sets the
initial filters), it must issue OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE set
OID requests to notify the miniport driver that the allocation is complete for the current
batch of receive queues.

The miniport driver must not retain any packets in a receive queue if there are no filters
set on that queue. If a queue never had any filters set or all the filters were cleared, the
queue should be empty and any packets should be discarded. That is, they are not
indicated up the driver stack or retained in the queue.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id

Overlying drivers use the OID_RECEIVE_FILTER_FREE_QUEUE OID to free queues that
they allocate. For more information about freeing queues, see Freeing a VM Queue.

Freeing a VM Queue
Article • 12/15/2021

To free a receive queue, an overlying driver issues an OID_RECEIVE_FILTER_FREE_QUEUE
set OID request. The InformationBuffer member of the NDIS_OID_REQUEST structure
contains a pointer to an NDIS_RECEIVE_QUEUE_FREE_PARAMETERS structure with a
queue identifier of type NDIS_RECEIVE_QUEUE_ID.

OID_RECEIVE_FILTER_FREE_QUEUE frees a receive queue that an overlying driver
allocated by using the OID_RECEIVE_FILTER_ALLOCATE_QUEUE OID. For more
information about allocating a receive queue, see Allocating a VM Queue.

Note The default queue, which has a queue identifier of
NDIS_DEFAULT_RECEIVE_QUEUE_ID, is always allocated and cannot be freed.

An overlying driver must free all the filters that it sets on a queue before it frees the
queue. Also, an overlying driver must free all the receive queues that it allocated on a
network adapter before it calls the NdisCloseAdapterEx function to close a binding to
the network adapter. NDIS frees all the queues that are allocated on a network adapter
before it calls the miniport driver's MiniportHaltEx function.

When a miniport driver receives a request to free a queue, it does the following:

Must immediately stop DMA to shared memory resources that are associated with
the queue.

Generates a status indication to indicate that the DMA is stopped.

Waits for all outstanding NET_BUFFER_LIST structures, which are associated with
the queue, to be returned.

Frees the associated shared memory and hardware resources.

When a miniport driver receives an OID_RECEIVE_FILTER_FREE_QUEUE set request, the
queue must enter the Stop DMA state, it stops the DMA on a queue and the miniport
driver must indicate the status change by using the
NDIS_STATUS_RECEIVE_QUEUE_STATE status indication. For more information about
queue states, see Queue States and Operations.

After the miniport driver issues the NDIS_STATUS_RECEIVE_QUEUE_STATE status
indication, it must wait for all the pending receive indications to complete before it can
free the associated shared memory. For more information about freeing shared
memory, see Shared Memory Resource Allocation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_free_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Shared Memory Resource Allocation
Article • 12/15/2021

To allocate shared memory resources for a VM queue, a miniport driver calls the
NdisAllocateSharedMemory function. For example, the miniport driver allocates shared
memory when it receives the OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE
OID. Also, a miniport driver can allocate shared memory for the default queue during
network adapter initialization. For more information about allocating queues, see
Allocating a VM Queue.

The miniport driver can allocate more memory for the queue until the queue is freed.
For more information about freeing a queue, see Freeing a VM Queue.

The NDIS_SHARED_MEMORY_PARAMETERS structure specifies the shared memory
parameters for a shared memory allocation request. Miniport drivers pass this structure
to the NdisAllocateSharedMemory function. NDIS passes this structure to the
NetAllocateSharedMemory function (that is, the
ALLOCATE_SHARED_MEMORY_HANDLER entry point).

When a miniport driver allocates shared memory, it specifies the following:

Queue identifier.

Shared memory length.

How the shared memory is used. For example, the miniport driver specifies
NdisSharedMemoryUsageReceive if the shared memory is to be used for receive
buffers.

If the NDIS_SHARED_MEM_PARAMETERS_CONTIGOUS flag is not set in the Flags
member, shared memory can be specified in a scatter-gather list that is contained in
non-contiguous memory.

The NDIS_SHARED_MEMORY_USAGE enumeration specifies how shared memory is
used. The NDIS_SHARED_MEMORY_USAGE enumeration is used in the
NDIS_SHARED_MEMORY_PARAMETERS and
NDIS_SCATTER_GATHER_LIST_PARAMETERS structures. For information about shared
memory parameters in VMQ receive data buffers, see Shared Memory in Receive Buffers.

The NdisAllocateSharedMemory function provides the following to the caller:

Virtual address of the allocated memory.

Scatter-gather list.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_shared_memory_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-allocate_shared_memory_handler
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ne-ndis-_ndis_shared_memory_usage
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_shared_memory_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_scatter_gather_list_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory

Shared memory handle - for receive indications.

Allocation handle - used to identify the memory later.

Miniport drivers call the NdisFreeSharedMemory function to free shared memory for a
queue. If the miniport driver allocated the shared memory for a nondefault queue, it
frees the shared memory in the context of the OID_RECEIVE_FILTER_FREE_QUEUE OID
while it is freeing the queue. Miniport drivers free shared memory that they allocated for
the default queue in the context of the MiniportHaltEx function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

Enumerating the Allocated Queues
Article • 12/15/2021

To get a list of all the receive queues that are allocated on a network adapter, an
overlying driver issues an OID_RECEIVE_FILTER_ENUM_QUEUES query OID request. After
a successful return from the OID query request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_QUEUE_INFO_ARRAY structure that is followed by an
NDIS_RECEIVE_QUEUE_INFO structure for each queue.

NDIS handles the OID_RECEIVE_FILTER_ENUM_QUEUES query OID request for miniport
drivers. NDIS obtained the information from an internal cache of the data that it
received from the OID_RECEIVE_FILTER_ALLOCATE_QUEUE and
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID requests.

Overlying drivers and user-mode applications can use the
OID_RECEIVE_FILTER_ENUM_QUEUES OID query request to enumerate the receive
queues on a network adapter.

If a protocol driver issues the request, the request type in the NDIS_OID_REQUEST
structure is set to NdisRequestQueryInformation and this OID returns an array of all the
receive queues that the protocol driver allocated on the network adapter. If a user-mode
application issued the request, the request type in the NDIS_OID_REQUEST is set to
NdisRequestQueryStatistics, and this OID returns an array of information for all the
receive queues on the miniport adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Setting and Clearing VMQ Filters
Article • 12/15/2021

Filters can be set and cleared any time after the queue has been allocated. For
information about allocating and freeing queues, see Allocating and Freeing VM
Queues.

This section includes the following topics:

Setting a VMQ Filter

Clearing a VMQ Filter

Enumerating Filters on a VMQ

Setting a VMQ Filter
Article • 12/15/2021

After a receive queue is allocated, overlying drivers can set filters on the receive queue.
Only the driver that allocated a receive queue can set a filter on that queue.

Note Because the default receive queue (NDIS_DEFAULT_RECEIVE_QUEUE_ID) always
exists, overlying drivers can always set a receive filter on the default queue. Overlying
drivers do not own the default queue. Therefore, all protocol drivers that are bound to a
network adapter can use the default queue.

To set a filter on a receive queue with an initial set of configuration parameters, an
overlying driver issues an OID_RECEIVE_FILTER_SET_FILTER method object identifier
(OID) request. The InformationBuffer member of the NDIS_OID_REQUEST structure
initially contains a pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure. After a
successful return from the OID method request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_PARAMETERS structure with a new filter identifier.

The overlying driver initializes the NDIS_RECEIVE_FILTER_PARAMETERS structure with
the following filter configuration parameters for the receive queue:

The filter type that is specified through an NDIS_RECEIVE_FILTER_TYPE
enumeration value.

Note Starting with NDIS 6.20, only NdisReceiveFilterTypeVMQueue filter types
are supported for the virtual machine queue (VMQ) interface.

The queue identifier.

One or more field test parameters that are formatted as
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures. For VMQ, the following
field test parameters are defined.

The destination media access control (MAC) address in the packet equals the
specified MAC address.

The virtual LAN (VLAN) identifier in the packet equals the specified VLAN
identifier.

Setting a Filter on a Receive Queue

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_receive_filter_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

The NDIS_RECEIVE_FILTER_PARAMETERS structure is used with the
OID_RECEIVE_FILTER_PARAMETERS OID and the OID_RECEIVE_FILTER_SET_FILTER OID to
specify the configuration parameters of a filter.

The FieldParametersArrayOffset, FieldParametersArrayNumElements, and
FieldParametersArrayElementSize members of the
NDIS_RECEIVE_FILTER_PARAMETERS structure define an array of
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures. Each
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure in the array sets the filter test
criterion for one field in a network header.

The Flags member of the NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structure specifies
actions to be performed for the receive filter. The following points apply to the
NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag:

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag is set in the Flags member of the NDIS_RECEIVE_FILTER_FIELD_PARAMETERS
structure, the network adapter must indicate only received packets that match all
of the following test criteria:

A packet with a matching MAC address.

A packet that has no VLAN tag or has a VLAN identifier of zero.

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag is set, the network adapter must not indicate packets that have a matching
MAC address and a nonzero VLAN identifier.

Note If the Hyper-V extensible switch sets the MAC address filter and no VLAN
identifier filter is configured in OID_RECEIVE_FILTER_SET_FILTER, the switch also
sets the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag.

If the NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO
flag is not set and there is no VLAN identifier filter configured by an OID set
request of OID_RECEIVE_FILTER_SET_FILTER, the miniport driver must do one of the
following:

If the miniport driver supports NDIS 6.20, it must return a failed status for the
OID request of OID_RECEIVE_FILTER_SET_FILTER.

If the miniport driver supports NDIS 6.30 or later versions of NDIS, it must
configure the network adapter to inspect and filter the specified MAC address
fields. If a VLAN tag is present in the received packet, the network adapter must

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

remove it from the packet data. The miniport driver must put the VLAN tag in
an NDIS_NET_BUFFER_LIST_8021Q_INFO that is associated with the packet's
NET_BUFFER_LIST structure.

If a protocol driver sets a MAC address filter and a VLAN identifier filter with the
OID_RECEIVE_FILTER_SET_FILTER OID, it does not set the
NDIS_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO flag in
either of the filter fields. In this case, the miniport driver should indicate packets
that match both the specified MAC address and the VLAN identifier. That is, the
miniport driver should not indicate packets with a matching MAC address that
have a zero VLAN identifier or are untagged packets.

NDIS assigns a filter identifier in the FilterId member of the
NDIS_RECEIVE_FILTER_PARAMETERS structure and passes the OID method request of
OID_RECEIVE_FILTER_SET_FILTER to the underlying miniport driver. Each filter that is set
on a receive queue has a unique filter identifier for a network adapter. That is, the filter
identifiers are not duplicated on different queues that the network adapter manages.

The overlying driver must use the filter identifier that NDIS provides in later OID
requests; for example, to modify the filter parameters or to free a filter.

When NDIS receives an OID request to set a filter on a receive queue, it verifies the filter
parameters. After NDIS allocates the necessary resources and the filter identifier, it
submits the OID request to the underlying network adapter. If the network adapter can
successfully allocate the necessary software and hardware resources for the filter, it
completes the OID request with NDIS_STATUS_SUCCESS.

The miniport driver must retain the filter identifiers for the allocated receive filters. NDIS
uses the filter identifier of a filter with later OID requests in order to change the receive
filter parameters or clear the receive filter. For more information about how to change
parameters and clear filters, see Obtaining and Updating VM Queue Parameters and
Clearing a VMQ Filter.

The miniport driver programs the network adapter based on the filters in the following
way:

All field test parameters for a particular filter must match in order to assign a
packet to the queue.

Using the Filter Identifier

Handling the Filter on a Receive Queue

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl8021q/ns-nbl8021q-ndis_net_buffer_list_8021q_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

Multiple filters can be set on a queue.

Packets must be assigned to the receive queue if any of the filters pass.

The network adapter combines the results from all the field tests with a logical AND
operation. That is, if any field test that is included in the array of
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures fails, the network packet does
not meet the specified filter criterion.

When a network adapter tests a received packet against these filter criteria, it must
ignore all fields in the packet that have no test criteria specified.

After a miniport driver receives an
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE request and has filters that are
set on the queue, the queue is in the Running state. While the queue is in this state, the
miniport driver can indicate packets on the queue. For more information about queue
states, see Queue States and Operations.

If the miniport driver has received an
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE OID request for a queue but
there are no filters set on the queue, the miniport driver must not indicate any receive
packets on that queue. In this case, when the miniport driver receives an
OID_RECEIVE_FILTER_SET_FILTER OID request for the queue, and possibly before it
completes the OID request, it can indicate packets on that queue. If the miniport driver
indicates packets on a queue while it is processing an OID_RECEIVE_FILTER_SET_FILTER
OID request, the miniport driver must complete the OID_RECEIVE_FILTER_SET_FILTER
request that has an NDIS_STATUS_SUCCESS return code.

Receiving Packets from a Receive Queue

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

Clearing a VMQ Filter
Article • 12/15/2021

To free a filter on a receive queue, an overlying driver issues an
OID_RECEIVE_FILTER_CLEAR_FILTER set OID request. The InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure.

The protocol driver obtained the filter identifier from an earlier
OID_RECEIVE_FILTER_SET_FILTER method OID request. For more information about
setting filters, see Setting a VMQ Filter.

A protocol driver must clear all the filters that it set on a queue before it frees the
queue. A protocol driver must also clear all the filters that it set on the default queue
before it closes its binding to the network adapter.

A miniport driver must not indicate packets on a nondefault queue if it has completed
the OID_RECEIVE_FILTER_CLEAR_FILTER OID request to clear the last filter on the queue
or if it has completed an OID_RECEIVE_FILTER_FREE_QUEUE OID request to free the
queue.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters

Enumerating Filters on a VMQ
Article • 12/15/2021

To obtain a list of all the filters that are set on a receive queue, overlying drivers and
applications can use the OID_RECEIVE_FILTER_ENUM_FILTERS method object identifier
(OID) request.

The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_INFO_ARRAY structure. When it formats the
NDIS_RECEIVE_FILTER_INFO_ARRAY structure, the overlying driver or application must
set the QueueId member to the identifier (ID) of the receive queue. The receive queue
ID is obtained in the following ways:

The overlying driver obtained the receive queue ID value from earlier OID method
requests of OID_RECEIVE_FILTER_ALLOCATE_QUEUE or
OID_RECEIVE_FILTER_ENUM_QUEUES. The driver can also specify
NDIS_DEFAULT_RECEIVE_QUEUE_ID for the default receive queue.

An application obtained the receive queue ID value from an earlier OID method
request of OID_RECEIVE_FILTER_ENUM_QUEUES. The application can also specify
NDIS_DEFAULT_RECEIVE_QUEUE_ID for the default receive queue.

After a successful return from the OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an updated
NDIS_RECEIVE_FILTER_INFO_ARRAY structure that is followed by one or more
NDIS_RECEIVE_FILTER_INFO structures. Each NDIS_RECEIVE_FILTER_INFO structure
specifies the ID for a filter that is set on the specified receive queue.

Overlying drivers or applications can use the OID_RECEIVE_FILTER_PARAMETERS OID
method request to obtain the parameters of a specific filter on a receive queue.

The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure. The overlying driver or
application formats the NDIS_RECEIVE_FILTER_PARAMETERS structure by setting the
FilterId member to the nonzero ID value of the filter whose parameters are to be
returned.

Note The overlying driver obtained the filter ID from an earlier OID method request of
OID_RECEIVE_FILTER_SET_FILTER or OID_RECEIVE_FILTER_ENUM_FILTERS. The application
can obtain the filter ID only from an earlier OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

NDIS handles the OID_RECEIVE_FILTER_ENUM_FILTERS and
OID_RECEIVE_FILTER_PARAMETERS method OID requests for miniport drivers. NDIS
obtained the information from an internal cache of the data that it received from the
OID_RECEIVE_FILTER_SET_FILTER OID request.

Obtaining and Updating VM Queue
Parameters
Article • 12/15/2021

An overlying driver can set the configuration parameters of a VM queue after it is
allocated. Also, an overlying driver or application can obtain the current parameters for
a queue and parameters for the filters that are set on a queue.

To change the current configuration parameters of a queue, overlying drivers can use
the OID_RECEIVE_FILTER_QUEUE_PARAMETERS set OID request. The overlying driver
provides a pointer to an NDIS_RECEIVE_QUEUE_PARAMETERS structure in the
InformationBuffer member of the NDIS_OID_REQUEST structure.

The NDIS_RECEIVE_QUEUE_PARAMETERS structure is used in the
OID_RECEIVE_FILTER_ALLOCATE_QUEUE OID and the
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID. For more information about allocating
queues, see Allocating a VM Queue.

To get the current configuration parameters of a queue, overlying drivers can use the
OID_RECEIVE_FILTER_QUEUE_PARAMETERS method OID request. The InformationBuffer
member of the NDIS_OID_REQUEST structure initially contains a pointer to an
NDIS_RECEIVE_QUEUE_PARAMETERS structure with a queue identifier of type
NDIS_RECEIVE_QUEUE_ID. After a successful return from the OID method request, the
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to
an NDIS_RECEIVE_QUEUE_PARAMETERS structure.

NDIS handles the method request for miniport drivers. Therefore, the
OID_RECEIVE_FILTER_QUEUE_PARAMETERS method OID request is not requested for
miniport drivers. NDIS obtained the information from an internal cache of the data that
it received from the OID_RECEIVE_FILTER_ALLOCATE_QUEUE and
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID requests.

To get the current configuration parameters of a filter on a receive queue, overlying
drivers can use the OID_RECEIVE_FILTER_PARAMETERS method OID request. The
InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to an NDIS_RECEIVE_FILTER_PARAMETERS structure. NDIS uses the FilterId
member in the input structure to identify the filter. After a successful return from the
method request, the InformationBuffer member of the NDIS_OID_REQUEST structure
contains a pointer to an updated NDIS_RECEIVE_FILTER_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

NDIS handles the OID_RECEIVE_FILTER_PARAMETERS method OID request for miniport
drivers. NDIS obtained the information from an internal cache of the data that it
received from the OID_RECEIVE_FILTER_SET_FILTER OID request.

Overlying drivers can use the OID_RECEIVE_FILTER_PARAMETERS method OID request to
get the configuration parameters for a filter on a receive queue.

The overlying driver obtained the filter identifier from an earlier
OID_RECEIVE_FILTER_SET_FILTER method OID request or from the
OID_RECEIVE_FILTER_ENUM_FILTERS OID request. Only drivers can use the
OID_RECEIVE_FILTER_SET_FILTER request.

An application obtained the filter identifier from the
OID_RECEIVE_FILTER_ENUM_FILTERS OID request.

VMQ Send and Receive Operations
Article • 12/15/2021

This section provides information about implementing send and receive operations in
NDIS drivers that support VMQ.

To support VMQ send and receive operations, the VMQ interface requires network
adapter hardware that supports the VMQ filter operations. These filters determine the
assignment of packets to receive queues.

This section includes the following topics:

VMQ Filter Operations

Shared Memory in Receive Buffers

VMQ Receive Path

VMQ Transmit Path

VMQ Filter Operations
Article • 12/15/2021

Multiple receive filters and can be set on a receive queue. Also, the current VMQ
implementation supports filters on the destination media access control (MAC) address
of the incoming packets and optional filters that inspect the virtual local area network
(VLAN) identifier.

The following illustration shows the relationship between the VLAN identifier and MAC
address tests, filters, and queues.

In the preceding illustration, the network data packet includes a destination address
(DA) and VLAN identifier field. The network adapter hardware implements the filters on
the queue based on the settings that the miniport driver received and set in the network
adapter hardware. For more information about setting filters on a receive queue, see
Setting and Clearing VMQ Filters.

In this illustration, there are two filters; each filter compares a destination address and a
VLAN identifier to the fields in the incoming packet. If both the VLAN and DA tests
match, then the criterion for that filter is met and the incoming packet is assigned to the
queue. If there is more than one filter on the queue and then a match for any filter, then
the network adapter assigns the packet to the queue.

Shared Memory in Receive Buffers
Article • 12/15/2021

This section describes the layout of the shared memory in VMQ receive buffers.For more
information about using the buffers in receive indications, see VMQ Receive Path.

If the overlying protocol driver set the
NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flag in the Flags
member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure, the network adapter
should split a received packet at an offset equal to or greater than the requested
lookahead size and use DMA to transfer the lookahead data and the post-lookahead
data to separate shared memory segments.

Miniport drivers specify the settings for the lookahead type
(NdisSharedMemoryUsageReceiveLookahead) or other shared memory types when the
shared memory is allocated. For example, the miniport driver calls the
NdisAllocateSharedMemory function and sets the Usage member in the
NDIS_SHARED_MEMORY_PARAMETERS structure to
NdisSharedMemoryUsageReceiveLookahead. Miniport drivers should allocated shared
memory for a queue when the queue allocation is complete. For information about
allocating and freeing shared memory resources for queues, see Shared Memory
Resource Allocation.

The following illustration shows the relationships for the network data when the
incoming data is split into two shared memory buffers.

The NET_BUFFER_SHARED_MEMORY structure specifies shared memory information.
There can be a linked list of such shared memory buffers that are associated with a
NET_BUFFER structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_shared_memory_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_shared_memory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

Use the NET_BUFFER_SHARED_MEM_NEXT_SEGMENT,
NET_BUFFER_SHARED_MEM_FLAGS, NET_BUFFER_SHARED_MEM_HANDLE,
NET_BUFFER_SHARED_MEM_OFFSET, and NET_BUFFER_SHARED_MEM_LENGTH
macros to access the NET_BUFFER_SHARED_MEMORY in a NET_BUFFER structure. The
SharedMemoryInfo member of the NET_BUFFER structure contains the first
NET_BUFFER_SHARED_MEMORY structure in the linked list.

Note Starting with NDIS 6.30, splitting packet data into separate lookahead buffers is
no longer supported. Starting with Windows Server 2012, the overlying protocol driver
will not set the NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED
flag in the Flags member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_shared_mem_next_segment
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_shared_mem_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_shared_mem_handle
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_shared_mem_offset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_shared_mem_length
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

VMQ Receive Path
Article • 12/15/2021

A network adapter indicates a received packet on a queue only if it passes all the filter
field tests for a filter that is set on that queue. For more information about filter tests,
see VMQ Filter Operations.

If the overlying protocol driver set the
NDIS_RECEIVE_QUEUE_PARAMETERS_PER_QUEUE_RECEIVE_INDICATION flag in the
Flags member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure, the miniport
driver must not mix NET_BUFFER_LIST structures for other receive queues with the
NET_BUFFER_LIST structures for this queue in a single call to the
NdisMIndicateReceiveNetBufferLists function. Also, the driver must set the
NDIS_RECEIVE_FLAGS_SINGLE_QUEUE flag in the ReceiveFlags parameter of the
NdisMIndicateReceiveNetBufferLists function.

If NDIS_RECEIVE_QUEUE_PARAMETERS_PER_QUEUE_RECEIVE_INDICATION was not set,
miniport drivers can link NET_BUFFER_LIST structures for frames from different VM
queues and indicate them in a single call to NdisMIndicateReceiveNetBufferLists. In this
case, the indicated linked list of NET_BUFFER_LIST structures is not required to be
sorted by queue number. NET_BUFFER_LIST structures for different queues are not
required to be grouped together.

When a protocol driver sets NDIS_RETURN_FLAGS_SINGLE_QUEUE and it returns
receive buffers, all of the NET_BUFFER_LIST structures in the NetBufferLists parameter of
the NdisReturnNetBufferLists function must belong to the same VM queue. However,
protocol drivers are not required to return all the NET_BUFFER_LIST structures that were
indicated in a single call to the ProtocolReceiveNetBufferLists function in a single call to
NdisReturnNetBufferLists. Also, the returned list can include NET_BUFFER_LIST
structures from multiple receive indications if they belong to the same VM queue.

Protocol drivers set the NDIS_RETURN_FLAGS_SINGLE_QUEUE bit on the ReturnFlags
parameter of NdisReturnNetBufferLists to indicate that all of the returned
NET_BUFFER_LIST structures belong to the same VM queue.

VMQ receive indications must include the following out of band (OOB) information in
the NetBufferListInfo member of the NET_BUFFER_LIST structures.

Specify the queue identifier in the NetBufferListFilteringInfo information.

Set the filter identifier in the NetBufferListFilteringInfo information to zero.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

The NetBufferListFilteringInfo information is specified in an
NDIS_NET_BUFFER_LIST_FILTERING_INFO structure. To access the
NDIS_NET_BUFFER_LIST_FILTERING_INFO structure in the NET_BUFFER_LIST OOB data,
an NDIS driver calls the NET_BUFFER_LIST_INFO macro and specifies the
NetBufferListFilteringInfo information type.

To access the filter identifier and queue identifier directly, use the
NET_BUFFER_LIST_RECEIVE_FILTER_ID and NET_BUFFER_LIST_RECEIVE_QUEUE_ID
macros.

VMQ receive indications must define shared memory information at the
SharedMemoryInfo member of the NET_BUFFER structure.

Note When a VMQ is deleted (for example, during VM live migration), it is possible for
the miniport driver to receive an NBL that contains an invalid QueueId value. If this
happens, the miniport should ignore the invalid queue ID and use 0 (the default queue)
instead. The QueueId is found in the NetBufferListFilteringInfo portion of the NBL's
OOB data, and is retrieved by using the NET_BUFFER_LIST_RECEIVE_QUEUE_ID macro.

To indicate that the NET_BUFFER_SHARED_MEMORY pointer at SharedMemoryInfo is
valid, the miniport driver must set the
NDIS_RECEIVE_FLAGS_SHARED_MEMORY_INFO_VALID flag in the ReceiveFlags
parameter of the NdisMIndicateReceiveNetBufferLists function. For more information
about the layout of shared memory buffers in VMQ receive buffers, see Shared Memory
in Receive Buffers.

The receive indication must include the following information in the
NET_BUFFER_SHARED_MEMORY structure.

NextSharedMemorySegment
A pointer to the next NET_BUFFER_SHARED_MEMORY structure in a NULL-terminated
linked list of such structures.

SharedMemoryHandle
An NDIS shared memory handle that NdisAllocateSharedMemory returned.

SharedMemoryOffset
An offset, in bytes, to the start of the data from the beginning of the shared memory
buffer.

SharedMemoryLength
The length, in bytes, of the shared memory segment.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_shared_memory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_shared_memory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_shared_memory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatesharedmemory

If the overlying protocol driver set the
NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flag in the Flags
member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure, each NET_BUFFER
includes:

Two MDLs and corresponding SharedMemoryInfo structures.

A post-lookahead buffer with backfill space.

If necessary, the protocol driver copies the contents of the lookahead buffer to the
backfill area. However, backfill space must exist even if the packet is entirely in the
lookahead buffer.

If the overlying driver does not set the
NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flag, each
NET_BUFFER structure includes a single MDL and a single SharedMemoryInfo structure.

The byte count and byte offset in the MDL and the DataLength and DataOffset
members in the NET_BUFFER_DATA structure are set in the same way as they are set for
drivers that do not use VMQ. The SharedMemoryLength and SharedMemoryOffset
members in the SharedMemoryInfo structure can be set once during initialization. The
miniport driver is not required to update the SharedMemoryLength and
SharedMemoryOffset members for every packet that is received because the overlying
drivers and NDIS can use the NET_BUFFER DataLength member and the MDL byte
count to determine the packet start and size.

Note Starting with NDIS 6.30 and Windows Server 2012, splitting packet data into
separate lookahead buffers is no longer supported. The overlying protocol driver will
not set the NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flag.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

VMQ Transmit Path
Article • 12/15/2021

For transmit requests, the overlying driver uses the
NET_BUFFER_LIST_RECEIVE_QUEUE_ID macro to set the queue identifier of the
outgoing queue in the outgoing data with the NetBufferListFilteringInfo OOB
information. The NetBufferListFilteringInfo information is specified in an
NDIS_NET_BUFFER_LIST_FILTERING_INFO structure.

NDIS drivers can use the NET_BUFFER_LIST_RECEIVE_QUEUE_ID macro to set or get the
queue identifier of a NET_BUFFER_LIST structure. If a queue group contains more than
one VM queue, the queue identifier of the transmit packet might be set to the queue
identifier of any of the VM queues in the group.

Protocol drivers set the NDIS_SEND_FLAGS_SINGLE_QUEUE bit on the SendFlags
parameter of the NdisSendNetBufferLists function to indicate that all of the transmit
NET_BUFFER_LIST structures in the call are for the same transmit queue.

Miniport drivers set the NDIS_SEND_COMPLETE_FLAGS_SINGLE_QUEUE bit on the
SendCompleteFlags parameter of the NdisMSendNetBufferListsComplete function to
indicate that all NET_BUFFER_LISTs in the call were sent on the same transmit queue.

For more information about filter tests, see VMQ Filter Operations.

Note When a VMQ is deleted (for example, during VM live migration), it is possible for
the miniport driver to receive an NBL that contains an invalid QueueId value. If this
happens, the miniport should ignore the invalid queue ID and use 0 (the default queue)
instead. The QueueId is found in the NetBufferListFilteringInfo portion of the NBL's
OOB data, and is retrieved by using the NET_BUFFER_LIST_RECEIVE_QUEUE_ID macro.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id

Obtaining VMQ Information
Article • 12/15/2021

The VMQ interface includes OID requests and WMI GUIDs that allow overlying drivers
and applications to obtain information about the underlying VMQ configuration.

OID_RECEIVE_FILTER_ENUM_QUEUES enumerates the queues allocated on a network
adapter. For more information about enumerating queues, see Enumerating the
Allocated Queues.

As a method OID request, overlying drivers can use the
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID to obtain the parameter settings of a
particular queue. For more information about obtaining queue parameter settings, see
Obtaining and Updating VM Queue Parameters.

OID_RECEIVE_FILTER_ENUM_FILTERS enumerates the filters that are allocated on a
particular queue. For more information about enumerating the filters that are set on a
queue, see Enumerating Filters on a VMQ.

As a method OID request, overlying drivers can use the
OID_RECEIVE_FILTER_PARAMETERS OID to obtain the parameter settings of a filter. For
more information about obtaining filter parameter settings, see Obtaining and Updating
VM Queue Parameters.

Overlying drivers and applications can issue the following OID query requests to obtain
the VMQ capabilities.

OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES

OID_RECEIVE_FILTER_CURRENT_CAPABILITIES

OID_RECEIVE_FILTER_GLOBAL_PARAMETERS

For more information about obtaining VMQ capabilities, see Determining the VMQ
Capabilities of a Network Adapter.

Introduction to Hyper-V Extensible
Switch
Article • 12/15/2021

The Hyper-V extensible switch supports an interface that allows instances of NDIS filter
drivers (known as extensible switch extensions) to bind within the extensible switch driver
stack. After they are bound and enabled, extensions can monitor, modify, and forward
packets to extensible switch ports. This also allows extensions to reject, redirect, or
originate packets to ports that are used by the Hyper-V partitions.

The Hyper-V extensible switch is supported starting with NDIS 6.30 in Windows
Server 2012.

This section includes the following topics that describe the Hyper-V extensible switch
and its interface:

Getting Started Writing a Hyper-V Extensible Switch Extension
Overview of the Hyper-V Extensible Switch
Hyper-V Extensible Switch Architecture
Writing Hyper-V Extensible Switch Extensions
Installing Hyper-V Extensible Switch Extensions
Hyper-V Extensible Switch OIDs

Getting Started Writing a Hyper-V
Extensible Switch Extension
Article • 07/08/2024

A Hyper-V Extensible Switch extension is an NDIS filter or Windows Filtering Platform
(WFP) filter that runs inside the Hyper-V Extensible Switch (also called the "Hyper-V
virtual switch").

There are 3 classes of extensions: capture, filtering, and forwarding. All of them can be
implemented as NDIS filter drivers. Filtering extensions can also be implemented as WFP
filter drivers.

For an architectural overview for driver developers, see Overview of the Hyper-V
Extensible Switch.

To create a Hyper-V Extensible Switch extension, follow these steps:

1. Learn the extension architecture and programming model.

Read the online documentation for NDIS-based extensions, beginning with
Hyper-V Extensible Switch. Capture, filtering, and forwarding extensions use
the standard NDIS filtering API. The NDIS interfaces have been enhanced to
provide configuration, notifications, and identification of virtual switches and
virtual machines.

Hyper-V Extensible Switch Functions
Hyper-V Extensible Switch Enumerations
Hyper-V Extensible Switch Structures and Unions
Hyper-V Extensible Switch OIDs
Hyper-V Extensible Switch Status Indications
Hyper-V Extensible Switch Macros

Read the online documentation for WFP-based extensions, beginning with
Using Virtual Switch Filtering.
There are several PowerShell commands that can be used to manage
extensions. These are listed in Managing Installed Hyper-V Extensible Switch
Extensions.

2. Set up your development environment.

Install Microsoft Visual Studio Professional.
Download and install Windows Driver Kit.

3. Study the sample extensions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/
https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

Download the NDIS forwarding extension sample .
Download the WFP sample . This is a functioning prototype that includes
vSwitch capability.

4. Write your extension.

You can use one of the samples as a starting point, port existing filter code, or
write your extension from scratch.
If you’re developing an NDIS extension, you can use the standard NDIS INF
with a few changes as outlined in INF Requirements for Hyper-V Extensible
Switch Extensions.

5. Build your extension and unit-test it.

You must use Visual Studio to build your extension .
You can familiarize yourself with the extension build process by using Visual
Studio to compile and run the sample extensions.

6. Learn about the Windows certification (logo) process for getting an extension
signed.

An extension must pass the tests in the Windows Hardware Lab Kit (HLK).
The requirements for an extension are listed under the
Filter.Driver.vSwitchExtension.ExtensionRequirements in the Windows
Hardware Certification Requirements - Filter Driver .

7. Set up your Windows Hardware Lab Kit environment.

Download and install the Windows Hardware Lab Kit (HLK).

8. Run the WHCK tests for extensions:

Filter.Driver.Fundamentals
Filter.Driver.Security
Filter.Driver.vSwitchExtension

9. After your final extension passes WHCK certification, submit it to Microsoft.

Your extension must be submitted as an MSI install package with a specific
format to ensure that it can be tracked and deployed by management
packages, such as System Center Virtual Machine Manager (SCVMM) 2012.
The MSI format is defined in Extension Driver MSI Packaging Requirements.

10. List your extension on WindowsServerCatalog.com.

List a brief description of your extension on WindowsServerCatalog.com.

https://go.microsoft.com/fwlink/p/?LinkId=618935
https://go.microsoft.com/fwlink/p/?LinkId=618935
https://go.microsoft.com/fwlink/p/?LinkId=618934
https://go.microsoft.com/fwlink/p/?LinkId=618934
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/cert-program/windows-hardware-certification-requirements---filter-driver
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/cert-program/windows-hardware-certification-requirements---filter-driver
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/previous-versions/technet-magazine/hh300651(v=msdn.10)

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Information on listing a certified extension on WindowsServerCatalog.com
will be available soon.

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Overview of the Hyper-V Extensible
Switch
Article • 09/27/2024

Windows Server 2012 introduces the Hyper-V Extensible Switch (also called the Hyper-V
Virtual Switch), which is a virtual Ethernet switch that runs in the management operating
system of the Hyper-V parent partition. This page covers the following subjects:

Background Reading
Types of Hyper-V extensible switches and network adapters
Types of extensible switch extensions
Hyper-V extensible switch architectural diagrams

For high-level technical overviews of this technology and its underpinnings, see the
following TechNet documentation:

Hyper-V Virtual Switch Overview
Hyper-V Network Virtualization Overview
Hyper-V Overview

The Hyper-V Virtual Network Manager can be used to create, configure, or delete one or
more extensible switches of the following types:

An external extensible switch that supports ports that connect to a single external
network adapter as well as one or more virtual machine (VM) network adapters.
This type of switch allows packets to be sent or received between all Hyper-V
partitions and the physical network interface on the host.

Also, applications and drivers that run in the management operating system can
send or receive packets through this type of switch.

An internal extensible switch that supports ports that connect to one or more
internal network adapters as well as one or more VM network adapters. This type
of switch allows packets to be sent or received between the Hyper-V parent
partition and one or more Hyper-V child partitions on the host.

Background Reading

Types of Hyper-V extensible switches and
network adapters

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831823(v=ws.11)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/jj134230(v=ws.11)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh831531(v=ws.11)

Also, applications and drivers that run in the management operating system can
send or receive packets through this type of switch.

A private extensible switch that supports ports that connect to one or more VM
network adapters. This type of switch allows packets to be sent or received only
between Hyper-V child partitions.

Note Applications and drivers that run in the management operating system
cannot send or receive packets through this type of switch.

Each extensible switch module routes incoming and outgoing packets over the network
adapters that are used by the Hyper-V child and parent partitions. These network
adapters include the following:

External network adapters that provide the connection to the physical network
interface that is available on the host.

For more information about this type of network adapter, see External Network
Adapters.

Note Only external extensible switches provide access to an external network
adapter.

Internal network adapters that provide access to an extensible switch for processes
that run in the management operating system of the Hyper-V parent partition. This
allows these processes to send or receive packets over the extensible switch.

For more information about this type of network adapter, see Internal Network
Adapters.

Note Only external and internal extensible switches provide access to an internal
network adapter.

VM network adapters that are exposed within the guest operating system that runs
in a Hyper-V child partition. VM network adapters provide a connection to the
extensible switch for packets to be sent or received by processes that run in the
guest operating system of the child partition.

For more information about this type of network adapter, see Virtual Machine
Network Adapters.

Each Hyper-V child partition can be configured to have one or more VM network
adapters. Each VM network adapter is configured to be associated with an instance of
an extensible switch. This allows a child partition to be configured in the following way:

The child partition can be configured to have a single VM network adapter that is
associated with one instance of an extensible switch.

The child partition can be configured to have multiple VM network adapters, with
each VM network adapter associated with an instance of an extensible switch.

The child partition can be configured to have multiple VM network adapters, with
one or more VM network adapters associated with the same instance of an
extensible switch.

The Hyper-V extensible switch supports an interface in which independent software
vendors (ISVs) can extend the switch functionality in the following ways:

The Hyper-V extensible switch supports an interface that allows NDIS filter drivers,
known as extensions, to bind within the extensible switch driver stack. This allows
extensions to capture, filter, and forward packets to extensible switch ports. This
also allows extensions to inject, drop, or redirect packets to ports that are
connected to the network adapters exposed in the Hyper-V partitions.

After extensions are installed, they can be enabled or disabled on separate
instances of a Hyper-V extensible switch. For more information, see Installing
Hyper-V Extensible Switch Extensions.

The Windows Filtering Platform (WFP) provides an in-box filtering extension
(Wfplwfs.sys) that allows WFP filters or callout drivers to intercept packets along
the Hyper-V extensible switch data path. This allows the WFP filters or callout
drivers to perform packet inspection or modification by using the WFP
management and system functions.

For an overview of WFP, see Windows Filtering Platform.

For an overview of WFP callout drivers, see Windows Filtering Platform Callout
Drivers.

Note To perform WFP-based filtering of extensible switch packet traffic, ISVs only
need to extend their WFP filters and callout drivers to use extended WFP calls and
data types. ISVs do not need to develop their own extensions.

The extensible switch interface supports the following types of extensions:

Capturing Extensions
Extensions that capture and monitor packet traffic. This type of extension cannot modify

Types of extensible switch extensions

or drop packets, or exclude packets from being delivered to extensible switch ports.
However, capturing extensions can originate packet traffic, such as packets that contain
traffic statistics that the extension sends to a host application.

Multiple capturing extensions can be bound and enabled in each instance of an
extensible switch.

For more information on this type of extension, see Capturing Extensions.

Filtering Extensions
These extensions have the same capabilities as capturing extensions. However, based on
port or switch policy settings, this type of extension can inspect and drop packets, or
exclude packet delivery to extensible switch ports. Filtering extensions can also
originate, duplicate, or clone packets and inject them into the extensible switch data
path.

Multiple filtering extensions can be bound and enabled in each instance of an extensible
switch.

For more information on this type of extension, see Filtering Extensions.

Forwarding Extensions
These extensions have the same capabilities as filtering extensions, but are responsible
for performing the core packet forwarding and filtering tasks of extensible switches.
These tasks include the following:

Determining the destination ports for a packet, unless the packet is an NVGRE
packet. For more information, see Hybrid Forwarding.

Filtering packets by enforcing standard port policies, such as security, profile, or
virtual LAN (VLAN) policies.

Note If a forwarding extension is not installed and enabled in the extensible switch, the
switch determines a packet's destination ports as well as filters packets based on
standard port settings.

Only one forwarding extension can be bound and enabled in each instance of an
extensible switch.

For more information on this type of extension, see Forwarding Extensions.

Hyper-V extensible switch architectural
diagrams

Feedback

The following figure shows the components of the extensible switch interface for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows the components of the extensible switch interface for NDIS
6.30 (Windows Server 2012).

For more information about the components for the extensible switch interface, see
Hyper-V Extensible Switch Architecture.

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Hyper-V Extensible Switch Architecture
Topics
Article • 12/15/2021

This section describes the architecture of the Microsoft Hyper-V extensible switch
interface. This section includes the following topics:

Hyper-V Extensible Switch Components

Hyper-V Extensible Switch Data Path

Hyper-V Extensible Switch Control Path

Hyper-V Extensible Switch Policies

Hyper-V Extensible Switch Feature Status Information

Hyper-V Extensible Switch Save and Restore Operations

Hyper-V Extensible Switch Components
Overview
Article • 12/15/2021

Starting with Windows Server 2012, the Hyper-V extensible switch supports an interface
that allows NDIS filter drivers (known as Hyper-V extensible switch extensions) to bind
within the extensible switch driver stack. This allows extensions to monitor, modify, and
forward packets to extensible switch ports. This also allows extensions to drop, redirect,
or originate packets to ports that are used by the Hyper-V partitions.

Extensions can be provisioned with policies that apply to packet traffic over an
individual extensible switch port or the switch itself. This allows the extension to allow a
packet to be sent or deny a packet from being sent.

The following figure shows the components of the extensible switch interface for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows the components of the extensible switch interface for NDIS
6.30 (Windows Server 2012).

This section includes the following topics that describe the extensible switch
components:

Hyper-V Extensible Switch Extensions

Hyper-V Extensible Switch Ports

Hyper-V Extensible Switch Network Adapters

Hyper-V Extensible Switch Port and Network Adapter States

Hyper-V Extensible Switch Extensions
Article • 12/15/2021

This section describes the type of NDIS filter drivers that are supported in the extensible
switch interface. These filter drivers are known as extensible switch extensions.

This section includes the following topics:

Capturing Extensions

Filtering Extensions

Forwarding Extensions

Note If multiple extensions of the same type are bound to an extensible switch
instance, the order in which they are layered within the extensible switch driver stack can
be modified. For more information, see Reordering Hyper-V Extensible Switch
Extensions.

Capturing Extensions
Article • 12/15/2021

A Hyper-V extensible switch capturing extension inspects packet traffic, object identifier
(OID) requests, and NDIS status indications. This type of extension cannot modify or
drop packets, or exclude packets from being delivered to extensible switch ports.
However, capturing extensions can originate packet traffic, such as packets that contain
traffic statistics that the extension sends to a host application.

Capturing extensions are invoked at the start of the ingress data path and at the end of
the egress data path. For more information about these data paths, see Hyper-V
Extensible Switch Data Path.

A capturing extension has the following requirements and restrictions:

A capturing extension must be developed as an NDIS filter driver that supports the
extensible switch interface.

For more information about filter drivers, see NDIS Filter Drivers.

For more information on how to write a capturing extension, see Writing Hyper-V
Extensible Switch Extensions.

A capturing extension provides the same functionality as a standard NDIS
monitoring filter driver. However, the INF file for a capturing extension must install
it as a modifying filter driver.

For more information about modifying filter drivers, see Types of Filter Drivers.

For more information about the INF requirements for modifying filter drivers, see
Configuring an INF File for a Modifying Filter Driver.

A capturing extension can monitor packets over the ingress and egress extensible
switch data path. However, this type of extension must always call
NdisFSendNetBufferLists to forward the packets to underlying drivers in the
extensible switch driver stack and not complete them.

A capturing extension must not modify the data within the packets nor add port
destinations to the out-of-band (OOB) data of the packet. The extension must not
exempt the delivery of the packet to any extensible switch port.

A capturing extension can originate packets. For example, the extension may
originate packets in order to report traffic conditions to a remote monitoring
application.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

For more information on originating packets by an extension, see Originating
Packet Traffic.

Note As with other extensions, the capturing extension can only originate packet
traffic in the extensible switch ingress data path.

A capturing extension can monitor packets, OID requests, and NDIS status
indications that are issued over the extensible switch driver stack. However, this
type of extension must forward packets, OID requests, and NDIS status indications
through the extensible switch driver stack. The extension must not modify the data
within the packets, OID requests, or NDIS status indications that it monitors.

The FilterClass value in the INF file for the extension must be set to
ms_switch_capture. For more information, see INF Requirements for Hyper-V
Extensible Switch Extensions.

Any number of capturing extensions can be bound to an extensible switch
instance. By default, multiple capturing extensions are ordered based on when
they were installed. For example, multiple capturing extensions are layered in the
extensible switch driver stack with the most recently installed extension layered
above other capturing extensions in the stack.

Once bound to an extensible switch instance, the layering of capturing extensions
in the extensible switch driver stack can be reordered. For more information, see
Reordering Hyper-V Extensible Switch Extensions.

Filtering Extensions
Article • 12/15/2021

A Hyper-V extensible switch filtering extension can inspect, modify, and insert packets
into the extensible switch data path. Based on extensible switch port and switch policy
settings, the extension can drop a packet or exclude its delivery to one or more
destination ports.

Filtering extensions are invoked after capturing extensions in the ingress data path and
after the forwarding extensions in the egress data path. For more information about
these data paths, see Hyper-V Extensible Switch Data Path.

A filtering extension can do the following with packets that were obtained on the
ingress data path:

Filter packet traffic and enforce custom port or switch policies for packet delivery
through the extensible switch. When the filtering extension filters packets in the
ingress data path, it can apply filtering rules based only on the source port and
network adapter connection from which the packet originated. This information is
stored in the out-of-band (OOB) data of a packet's NET_BUFFER_LIST structure
and can be obtained by using the
NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

Note Packets obtained on the ingress data path do not contain destination ports.
Filtering packets based on destination ports can be done only on packets obtained
on the egress data path.

Custom policies are defined by the independent software vendor (ISV). Property
settings for this policy type are managed through the Hyper-V WMI management
layer. The filtering extension is configured with these property settings through an
object identifier (OID) request of OID_SWITCH_PORT_PROPERTY_UPDATE and
OID_SWITCH_PROPERTY_UPDATE.

For more information on custom extensible port or switch policies, see Managing
Hyper-V Extensible Switch Policies.

Note Only forwarding extensions can enforce standard port policies for packet
delivery through the extensible switch.

Inject new, modified, or cloned packets into the ingress data path.

For more information, see Hyper-V Extensible Switch Send and Receive Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail

A filtering extension can do the following with packets that were obtained on the egress
data path:

Filter packet traffic and enforce custom port or switch policies for packet delivery
through the extensible switch. When the filtering extension filters packets in the
egress data path, it can apply filtering rules based on the source or destination
ports for a packet. Destination port data is stored in the OOB data of a packet's
NET_BUFFER_LIST structure. Extensions obtain this information by calling the
GetNetBufferListDestinations function.

Exclude the delivery of the packet to one or more extensible switch destination
ports. This allows the filtering extension to exclude the delivery of a packet to
extensible switch ports.

For more information on how to exclude packet delivery to extensible switch ports,
see Excluding Packet Delivery to Extensible Switch Destination Ports.

Manage the traffic flow to one or more destination ports by postponing the
forwarding of packets up the egress data path.

For example, a filtering extension that supports quality of service (QoS)
functionality may want to immediately call NdisFSendNetBufferLists to forward
packets that are specified with a higher priority value. Depending on the traffic
flow, the extension may want to forward packets with a lower priority value at a
later time.

Modify the packet data. If the filtering extension needs to modify the data in a
packet, it must first clone the packet without preserving port destinations. Then,
the extension must inject the modified packet into the ingress data path. This
allows the underlying extensions to enforce policies on the modified packet and
the forwarding extension can add port destinations.

For more information, see Cloning Packet Traffic.

Besides inspecting OID requests and NDIS status indications, a filtering extension can do
the following:

Veto the creation of an extensible switch port or network adapter connection by
returning STATUS_DATA_NOT_ACCEPTED for the applicable extensible switch OIDs.
For example, the filtering extension can veto a port creation request by returning
STATUS_DATA_NOT_ACCEPTED when the driver receives an OID set request of
OID_SWITCH_PORT_CREATE.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

Note Filtering extensions do not create or delete ports or network adapter
connections. The protocol edge of the extensible switch issues OIDs to notify the
underlying filter drivers about the creation or deletion of ports or network adapter
connections. For more information, see Hyper-V Extensible Switch Port and
Network Adapter States.

Veto the addition or update of an extensible switch or port policy by returning
STATUS_DATA_NOT_ACCEPTED for the applicable extensible switch OIDs. For
example, the filtering extension can veto the addition of a port policy by returning
STATUS_DATA_NOT_ACCEPTED when the extension receives an OID set request of
OID_SWITCH_PORT_PROPERTY_ADD.

For more information about extensible switch policies, see Managing Hyper-V
Extensible Switch Policies.

A filtering extension has the following requirements:

A filtering extension must be developed as an NDIS filter driver that supports the
extensible switch interface.

For more information about filter drivers, see NDIS Filter Drivers.

For more information on how to write a filtering extension, see Writing Hyper-V
Extensible Switch Extensions.

Note The Windows Filtering Platform (WFP) provides an in-box extensible switch
filtering extension (Wfplwfs.sys). This extension allows WFP filters or callout drivers
to intercept packets along the Hyper-V extensible switch data path. This allows the
filters or callout drivers to perform packet inspection or modification by using the
WFP management and system functions. For an overview of WFP, see Windows
Filtering Platform.

The INF file for a filtering extension must install the driver as a modifying filter
driver. NDIS-monitoring filter drivers cannot be installed in the extensible switch
driver stack.

For more information about modifying filter drivers, see Types of Filter Drivers.

For more information about the INF requirements for modifying filter drivers, see
Configuring an INF File for a Modifying Filter Driver.

The FilterClass value in the INF file for the filter driver must be set to
ms_switch_filter. For more information, see INF Requirements for Hyper-V
Extensible Switch Extensions.

Any number of filtering extensions can be bound and enabled in the driver stack
for each instance of an extensible switch. By default, multiple filtering extensions
are ordered based on when they were installed. For example, multiple filtering
extensions are layered in the extensible switch driver stack with the most recently
installed extension layered above other filtering extensions in the stack.

After they are bound and enabled in an extensible switch instance, the layering of
filtering extensions in the extensible switch driver stack can be reordered. For more
information, see Reordering Hyper-V Extensible Switch Extensions.

Forwarding Extensions
Article • 12/15/2021

A forwarding extension has the same capabilities as a filtering extension, but is
responsible for performing the core packet forwarding and filtering tasks of the
extensible switch. These tasks include the following:

Determining the destination ports for a packet.

Note If the packet is an NVGRE packet, the Hyper-V Network Virtualization (HNV)
component of the extensible switch determines the destination ports and forwards
the packet. For more information, see Hybrid Forwarding.

Filtering packets by enforcing standard port policies, such as security, profile, or
virtual LAN (VLAN) policies.

Note The extensible switch still performs filtering based on built-in policies. These
policies include access control lists (ACLs) and quality of service (QoS).

Note If a forwarding extension is not installed and enabled in the extensible switch, the
switch determines a packet's destination ports as well as filters packets based on
standard port settings.

Forwarding extensions are layered immediately above the extensible switch extension
miniport driver in the egress and ingress data path. For more information about these
data paths, see Hyper-V Extensible Switch Data Path.

A forwarding extension can do the following with packets that were obtained on the
ingress data path:

It can filter packet traffic and enforce custom and standard port or switch policies
for packet delivery through the extensible switch. When the forwarding extension
filters packets in the ingress data path, it applies filtering rules based on the source
port as well as the destination ports that the extension assigns to the packet.

Custom policies are defined by the independent software vendor (ISV). Standard
policies are defined by the extensible switch interface. Property settings for these
types of policies are managed through the Hyper-V WMI management layer. The
forwarding extension is configured with these property settings through an object
identifier (OID) request of OID_SWITCH_PORT_PROPERTY_UPDATE and
OID_SWITCH_PROPERTY_UPDATE.

For more information on extensible switch policies, see Managing Hyper-V
Extensible Switch Policies.

It can inject new, modified, or cloned packets into the ingress data path.

For more information, see Hyper-V Extensible Switch Send and Receive Operations.

It can determine the delivery of the packet to one or more extensible switch
destination ports. This allows the forwarding extension to add destination ports for
the delivery of a packet to extensible switch ports.

For more information on how to add destination ports, see Adding Extensible
Switch Destination Port Data to a Packet.

A forwarding extension can do the following with packets that were obtained on the
egress data path:

It can filter packet traffic and enforce custom and standard port or switch policies
for packet delivery through the extensible switch. When the forwarding extension
filters packets in the egress data path, it can apply filtering rules based on the
source or destination ports for a packet.

It can exclude the delivery of the packet to one or more extensible switch
destination ports. This allows the forwarding extension to exclude the delivery of a
packet to extensible switch ports.

For more information on how to exclude packet delivery to extensible switch ports,
see Excluding Packet Delivery to Extensible Switch Destination Ports.

Note The forwarding extension can only exclude packet delivery when it handles
the packet on the egress data path. The extension can only add or modify
destination ports for the packet on the ingress data path.

It can modify the packet data. If the forwarding extension needs to modify the data
in a packet, it must first clone the packet before it assigns port destinations. After
the packet has been modified and port destinations assigned, the extension must
inject the modified packet into the egress data path.

For more information, see Cloning Packet Traffic.

Besides inspecting OID requests and NDIS status indications, a forwarding extension can
do the following:

It can inject OIDs or NDIS status indications into the extensible switch control path.
This allows the forwarding extension to create or modify OIDs and status

indications and forward them to or from underlying physical network adapters.

For example, the extensible switch external network adapter can be bound to the
virtual miniport edge of an NDIS multiplexer (MUX) intermediate driver. The MUX
intermediate driver itself can be bound to a team of one or more physical networks
on the host. This configuration is known as an extensible switch team.

In this configuration, the extensible switch extensions are exposed to every
network adapter in the extensible switch team. This allows the forwarding
extension in the extensible switch driver stack to manage the configuration and
use of individual network adapters in the team. For example, the extension can
provide support for a load balancing failover (LBFO) solution over the team by
forwarding outgoing packets to individual adapters. Such an extension is known as
a teaming provider.

By acting as a teaming provider, the forwarding extension can create or modify
OID requests to enable or disable hardware capabilities on an adapter in the team.
The teaming provider can also create or modify NDIS status indications based on
changes to one or more adapters in the team.

For more information about teaming providers, see Teaming Provider Extensions.

It can veto the creation of an extensible switch port or network adapter connection
by returning STATUS_DATA_NOT_ACCEPTED for the applicable extensible switch
OIDs. For example, the forwarding extension can veto a port creation request by
returning STATUS_DATA_NOT_ACCEPTED when the driver receives an OID set
request of OID_SWITCH_PORT_CREATE.

Note Forwarding extensions do not create or delete ports or network adapter
connections. The protocol edge of the extensible switch issues OIDs to notify the
underlying extensions about the creation or deletion of ports or network adapter
connections. For more information, see Hyper-V Extensible Switch Port and
Network Adapter States.

It can veto the addition or update of an extensible switch or port policy by
returning STATUS_DATA_NOT_ACCEPTED for the applicable extensible switch OIDs.
For example, the forwarding extension can veto the addition of a port policy by
returning STATUS_DATA_NOT_ACCEPTED when the driver receives an OID set
request of OID_SWITCH_PORT_PROPERTY_ADD.

For more information about extensible switch policies, see Managing Hyper-V
Extensible Switch Policies.

A forwarding extension has the following requirements:

A forwarding extension must be developed as an NDIS filter driver that supports
the extensible switch interface.

For more information about filter drivers, see NDIS Filter Drivers.

For more information on how to write a forwarding extension, see Writing Hyper-V
Extensible Switch Extensions.

The INF file for a forwarding extension must install the extension as a modifying
filter driver. NDIS-monitoring filter drivers cannot be installed in the extensible
switch driver stack.

For more information about modifying filter drivers, see Types of Filter Drivers.

For more information about the INF requirements for modifying filter drivers, see
Configuring an INF File for a Modifying Filter Driver.

The FilterClass value in the INF file for the extension must be set to
ms_switch_forward. For more information, see INF Requirements for Hyper-V
Extensible Switch Extensions.

Only one forwarding extension can be enabled in the driver stack for each instance
of an extensible switch.

For more information about extensible switch teams, see Types of Physical Network
Adapter Configurations.

For more information about forwarding extensions, see the following pages:

Teaming Provider Extensions
Hybrid Forwarding

Forwarding Packets to Hyper-V Extensible Switch Ports

Forwarding Packets to Physical Network Adapters

Overview of the Hyper-V Extensible Switch

Related topics

Teaming Provider Extensions
Article • 12/15/2021

The extensible switch external network adapter can be bound to the virtual miniport
edge of an NDIS multiplexer (MUX) intermediate driver. The MUX intermediate driver
itself can be bound to a team of one or more physical networks on the host. This
configuration is known as an extensible switch team. For more information about
extensible switch teams, see Types of Physical Network Adapter Configurations.

In this configuration, the extensible switch extensions are exposed to every network
adapter in the extensible switch team. This allows the forwarding extension in the
extensible switch driver stack to manage the configuration and use of individual network
adapters in the team. For example, the extension can provide support for a load
balancing failover (LBFO) solution over the team by forwarding outgoing packets to
individual adapters. Such an extension is known as a teaming provider.

The following figure shows the data path for packet traffic to or from the underlying
extensible switch team that is bound to the external network adapter for NDIS 6.40
(Windows Server 2012 R2) and later.

The following figure shows the data path for packet traffic to or from the underlying
extensible switch team that is bound to the external network adapter for NDIS 6.30
(Windows Server 2012).

Teaming providers can do everything that a forwarding extension can. In addition,
teaming providers can do the following.

Forward outgoing packets to an individual physical adapter in the extensible switch
team. This ability is especially useful for LBFO functionality.

Forward standard NDIS object identifier (OID) requests to an individual physical
adapter in the extensible switch team. This ability is especially useful for
configuring the adapters in the team for hardware offloads.

For example, the MUX driver advertises the common capabilities of the entire
extensible switch team. However, the teaming provider can issue OID requests to
query the individual capabilities of adapters within the team. Then, the teaming
provider can issue OID requests to the extensible switch external network adapter
to set the capabilities that apply to the entire team.

Forward private OID requests to an individual physical adapter in the extensible
switch team. These private OID requests are defined by the independent hardware
vendor (IHV) for the physical network adapters. This allows a teaming provider that
was also developed by the IHV to enable or disable proprietary attributes on
individual physical adapters in the team.

Modify NDIS status indications from the extensible switch team. This ability is
especially useful for managing the extensible switch team for hardware offloads.

For example, the MUX driver issues NDIS status indications with settings that are
common for the entire extensible switch team. If the status indication was for a
hardware offload that the teaming provider enabled for a network adapter in the
extensible switch team, the teaming provider can first issue an OID request to
query the current capabilities on that adapter. Then, the teaming provider can
modify the indication data to set those attributes that may have changed on the
adapter.

Teaming providers must follow these guidelines when managing an extensible switch
team:

The teaming provider must maintain state for every physical network adapter for
which an extensible switch network connection had been established.

For every physical network adapter that is bound to the external network adapter,
the protocol edge of the extensible switch issues a separate OID set request of
OID_SWITCH_NIC_CREATE. This OID request notifies the extension about the
creation of a network connection to an underlying physical adapter.

When the network connection to the physical network adapter is created, it is
assigned a nonzero index value that is unique for the port to which the external
network adapter is connected.

The teaming provider must specify the network adapter index value when it issues
or forwards packets or OID requests to an underlying physical network adapter.

For more information, see Network Adapter Index Values.

If the teaming provider issues or forwards packets to a physical adapter, it must
specify the nonzero network adapter index value of the physical adapter
connection.

When the provider receives packets, it can determine the source network adapter
index value from the packet's out-of-band forwarding context in the
NET_BUFFER_LIST structure. For more information about the forwarding context,
see Hyper-V Extensible Switch Forwarding Context.

For more information, see Hyper-V Extensible Switch Data Path.

To issue forward OID requests to a physical adapter, the teaming provider must
encapsulate the OID request within an NDIS_SWITCH_NIC_OID_REQUEST
structure. The provider must set the DestinationNicIndex member to the nonzero
network adapter index value of the physical adapter connection. The provider then

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

issues an OID set request of OID_SWITCH_NIC_REQUEST to deliver the
encapsulated OID request to the target physical adapter.

For more information, see Managing OID Requests to Physical Network Adapters.

The teaming provider can issue NDIS status indications on behalf of an underlying
physical adapter. To do this, the provider must encapsulate the indication within an
NDIS_SWITCH_NIC_STATUS_INDICATION structure. The provider must set the
SourceNicIndex member to the nonzero network adapter index value of the
physical adapter connection. The provider then issues an NDIS status indication of
NDIS_STATUS_SWITCH_NIC_STATUS to deliver the encapsulated status indication
to overlying drivers in the extensible switch driver stack.

For more information, see Managing NDIS Status Indications from Physical
Network Adapters.

For more information about forwarding extensions, see Forwarding Extensions.

For more information on MUX drivers, see NDIS MUX Intermediate Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

Hybrid Forwarding
Article • 12/15/2021

Starting with NDIS 6.40 (Windows Server 2012 R2, the Hyper-V extensible switch
architecture supports hybrid forwarding by the Hyper-V Network Virtualization (HNV)
component of the extensible switch and by forwarding extensions.

Note This page assumes that you are familiar with Network Virtualization using Generic
Routing Encapsulation (NVGRE) Task Offload and Overview of the Hyper-V Extensible
Switch.

In a hybrid forwarding environment, there are two types of packets that enter and leave
the Hyper-V extensible switch: NVGRE packets and non-NVGRE packets:

NVGRE packets have the encapsulated format that is specified in the NVGRE:
Network Virtualization using Generic Routing Encapsulation Internet Draft.
NVGRE packets are forwarded by the HNV component of the Hyper-V extensible
switch.
Non-NVGRE packets are just normal network packets. Non-NVGRE packets are
forwarded by the forwarding extension (or, in the absence of a forwarding
extension, the extensible switch itself).

In the ingress data path, after the capturing and filtering extensions but before the
forwarding extension, if a packet is an NVGRE packet, the extensible switch sets the
NativeForwardingRequired flag in the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure for the packet.
This structure is contained in the NetBufferListInfo member of the packet's
NET_BUFFER_LIST structure.

Note The NetBufferListInfo member of the NET_BUFFER_LIST is often referred to as
the packet's "out-of-band (OOB) data."

If the NativeForwardingRequired flag is set in the packet's OOB data, the packet is an
NVGRE packet. If it is not set, the packet is a non-NVGRE packet.

NVGRE and non-NVGRE packets

Flow of NVGRE and non-NVGRE packets
through the switch

https://tools.ietf.org/html/rfc7637
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Extensions should use the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro to
check the value of the NativeForwardingRequired flag.

NVGRE and non-NVGRE packets are treated as follows:

The HNV component of the Hyper-V extensible switch forwards (i.e., determines
the destination table for) all NVGRE packets
The HNV component performs NVGRE encapsulation and decapsulation as
needed.
The forwarding extension forwards all non-NVGRE packets.
The forwarding extension cannot forward NVGRE packets, but it can perform the
same filtering actions as a filtering extension, including adding or excluding
destination ports or even dropping packets.
If there is no forwarding extension, the Hyper-V extensible switch forwards all
packets.

For more information, see Packet Flow through the Extensible Switch Data Path.

A VirtualSubnetId can be configured on a VM network adapter port as an external
virtual subnet. This feature was added to enable forwarding extensions to provide third-
party network virtualization solutions. On ingress, the Hyper-V extensible switch will not
set the NativeForwardingRequired flag in the NET_BUFFER_LIST structures for these
packets. A forwarding extension may then modify the packet headers, as required,
during forwarding. Packets that are being modified must be cloned and their
ParentNetBufferList pointers set to the original NET_BUFFER_LIST. (See Cloning Packet
Traffic.)

Adding Extensible Switch Destination Port Data to a Packet

Cloning Packet Traffic

Forwarding Extensions

Packet Flow through the Extensible Switch Data Path

NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL

NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO

Support for third-party network virtualization

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info

Hyper-V Extensible Switch Ports Topics
Article • 12/15/2021

This section includes the following topics that describe the characteristics of Hyper-V
extensible switch ports:

Overview of Hyper-V Extensible Switch Ports

Validation Ports

Operational Ports

Note NDIS ports and extensible switch ports are different objects. Packets that move
through the extensible switch data path are always assigned to the NDIS port number of
NDIS_DEFAULT_PORT_NUMBER. However, the packet's source and destination
extensible switch port number can be a value of NDIS_SWITCH_DEFAULT_PORT_ID or
greater. For more information, see Hyper-V Extensible Switch Data Path.

Overview of Hyper-V Extensible Switch
Ports
Article • 12/15/2021

Each network connection to the Hyper-V extensible switch is represented by a port. The
extensible switch interface creates and configures a port before a network connection is
made. After the network connection is torn down, the interface may delete the port or
reuse it for another network connection.

Every Hyper-V child partition that is configured with a network interface is assigned a
port on the extensible switch. When a Hyper-V child partition is started, the extensible
switch interface creates a port before the virtual machine (VM) network adapter is
exposed within the guest operating system. After the VM network adapter is exposed
and initialized, the extensible switch interface creates a network connection between the
VM network adapter and the extensible switch port. If the child partition is stopped, the
extensible switch interface first deletes the network connection and then deletes the
extensible switch port.

When an extensible switch port is created, it is configured with a unique identifier and
name. After it is created, the extensible switch port can be provisioned with policies that
define various attributes for the management of packet traffic over the port. For
example, standard port policies can be defined for virtual LAN (VLAN) attributes and
access restrictions for port traffic. In addition, independent software vendors (ISVs) can
define custom policies that individual ports can be provisioned with. For more
information, see Port Policies.

Extensible switch ports consist of the following types:

Validation ports
Validation ports are used to validate and verify port settings. These ports are temporary
and are created under certain conditions.

For example, when a Hyper-V child partition is created or reconfigured for network
access, the extensible switch interface creates a validation port. The interface uses this
port to verify the settings for the network connection to the virtual machine (VM)
network adapter of the partition. After the verification is completed, the validation port
is deleted and an operational port is created.

For more information, see Validation Ports.

Operational ports
Operational ports are created to host an extensible switch network adapter connection.
When an operational port is created, it is assigned a port type. This port type is in effect
after the port is created and before it is torn down. For ports assigned to Hyper-V child
partitions, the operational port type stays in effect while the partition is running and
operational.

For more information, see Operational Ports.

Extensible switch extensions are notified of port creation, update and deletion through
the following extensible switch object identifier (OID) requests:

OID_SWITCH_PORT_CREATE
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_CREATE to notify extensible switch extensions about the creation of
an extensible switch port.

The extension can veto the creation notification by returning
STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension cannot
allocate resources to enforce its configured policies on the port, the extension vetoes
the creation notification.

If the extension accepts the creation notification, it must forward the OID request down
the extensible switch driver stack. The extension monitors the completion status of this
OID request to determine whether underlying extensions have vetoed the port creation
notification.

Extensions cannot forward packets to the newly created port until a network connection
is created. For more information on this process, see Hyper-V Extensible Switch Network
Adapters.

OID_SWITCH_PORT_UPDATED
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_UPDATED to notify extensible switch extensions that an extensible
switch port’s parameters are being updated. The OID will only be issued for ports that
have already been created, and have not yet begun the teardown/delete process.
Currently only the PortFriendlyName field is subject to update after creation.

The protocol edge of the extensible switch issues this OID request when the previous
network connection to the port has been torn down and all OID requests to the port
have been completed.

Note This OID request could be issued if a network adapter connection was not
previously made to the port.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

OID_SWITCH_PORT_TEARDOWN
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN to notify extensible switch extensions that an
extensible switch port is being deleted. The protocol edge of the extensible switch
issues this OID request when the previous network connection to the port has been torn
down and all OID requests to the port have been completed.

Note This OID request could be issued if a network adapter connection was not
previously made to the port.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

After the extension forwards this OID request, it can no longer issue OID requests for
the port being deleted.

OID_SWITCH_PORT_DELETE
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_DELETE to notify extensible switch extensions that an extensible
switch port has been deleted. The protocol edge of the extensible switch issues this OID
request after it issues the OID_SWITCH_PORT_TEARDOWN request and OID requests
that target the port have been completed.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

All extensible switch ports that are created for network connections are assigned an
identifier greater than NDIS_SWITCH_DEFAULT_PORT_ID. The
NDIS_SWITCH_DEFAULT_PORT_ID identifier is reserved and used in the following ways:

The source port identifier for a packet is stored in the packet's out-of-band (OOB)
forwarding context that is associated with its NET_BUFFER_LIST structure. A source
port identifier of NDIS_SWITCH_DEFAULT_PORT_ID specifies that the packet
originated from the extensible switch extension and not from an extensible switch
port. A packet with a source port identifier of NDIS_SWITCH_DEFAULT_PORT_ID is
trusted and bypasses the extensible switch port policies, such as access control lists
(ACLs) and quality of service (QoS).

The extension may want the packet to be treated as if it originated from a
particular port. This allows the policies for that port to be applied to the packet.
The extension calls SetNetBufferListSource to change the source port for the packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_set_net_buffer_list_source

However, there may be situations where the extension may want to assign the
packet's source port identifier to NDIS_SWITCH_DEFAULT_PORT_ID. For example,
the extension may want to set the source port identifier to
NDIS_SWITCH_DEFAULT_PORT_ID for proprietary control packets that are sent to
a device on the external network.

For more information about the forwarding context, see Hyper-V Extensible Switch
Forwarding Context.

Object identifier (OID) requests of OID_SWITCH_NIC_REQUEST are issued by the
extensible switch interface to encapsulate OID requests that are issued to the
extensible switch external network adapter. For example, hardware offload OID
requests are encapsulated by the interface before they are issued down the
extensible switch driver stack.

An extension can also issue encapsulated OID requests in order to forward
requests down the extensible switch control path. This allows extensions to query
or configure the capabilities of an underlying physical network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure for this OID
request contains a pointer to an NDIS_SWITCH_NIC_OID_REQUEST structure. If the
SourcePortId member is set to NDIS_SWITCH_DEFAULT_PORT_ID, this specifies
that the OID request was originated by the extensible switch interface. If the
DestinationPortId is set to NDIS_SWITCH_DEFAULT_PORT_ID, this specifies that
the OID request is targeted for processing by an extension in the extensible switch
driver stack.

For more information about the control path for OID requests, see Hyper-V
Extensible Switch Control Path for OID Requests.

NDIS status indications of NDIS_STATUS_SWITCH_NIC_STATUS are issued by the
miniport edge of the extensible switch to encapsulate a status indication from the
extensible switch external network adapter.

An extension can also issue encapsulated NDIS status indications in order to
forward indications up the extensible switch control path. This allows extensions to
change the reported capabilities of an underlying physical network adapter.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure for this
indication contains a pointer to an NDIS_SWITCH_NIC_STATUS_INDICATION
structure. If the SourcePortId member is set to NDIS_SWITCH_DEFAULT_PORT_ID,
this specifies that the status indication was originated by the extensible switch
interface. If the DestinationPortId is set to NDIS_SWITCH_DEFAULT_PORT_ID, this

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

specifies that the OID request is targeted for processing by an extension in the
extensible switch driver stack.

For more information about the control path for NDIS status indications, see
Hyper-V Extensible Switch Control Path for NDIS Status Indications.

The extensible switch interface maintains a reference counter for each port that has
been created. A port will not be deleted if its reference counter has a nonzero value. The
interface provides the following handler functions for incrementing or decrementing an
extensible switch port's reference counters:

ReferenceSwitchPort
The extensible switch extension calls this function to increment a port's reference
counter. While the reference counter has a nonzero value, the protocol edge of the
extensible switch will not issue an object identifier (OID) set request of
OID_SWITCH_PORT_DELETE to delete the extensible switch port.

The extension must call ReferenceSwitchPort before it performs any operation that
requires the port to be in an active state. For example, the extension must call
ReferenceSwitchPort before it issues an OID method request of
OID_SWITCH_PORT_PROPERTY_ENUM.

Note The extension must not call ReferenceSwitchPort for a port after it receives an OID
set request of OID_SWITCH_PORT_TEARDOWN for that port.

DereferenceSwitchPort
The extensible switch extension calls this function to decrement a port's reference
counter.

The extension must call DereferenceSwitchPort after the operation being performed on
the port has completed. For example, if the extension called ReferenceSwitchPort before
if issued an OID_SWITCH_PORT_PROPERTY_ENUM request, the extension must call
DereferenceSwitchPort after the OID request has completed.

Note NDIS ports and extensible switch ports are different objects. Packets that move
through the extensible switch data path are always assigned to the NDIS port number of
NDIS_DEFAULT_PORT_NUMBER. However, the packet's source and destination
extensible switch port number can be a value of NDIS_SWITCH_DEFAULT_PORT_ID or
greater. For more information, see Hyper-V Extensible Switch Data Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

Validation Ports
Article • 12/15/2021

Starting with NDIS 6.30 in Windows Server 2012, the extensible switch interface creates
an operational port to host an extensible switch network adapter connection. Under
certain conditions, the extensible switch interface creates a validation port before it
creates the operational port for a Hyper-V child partition. The validation port is used to
validate and verify settings for the operational port that will be connected to the
extensible switch virtual machine (VM) network adapter of the child partition.

Note In Hyper-V, a child partition is also known as a VM.

This validation port is created under the following conditions:

The VM is first created. Once the VM is powered on, the validation port is deleted
and the operational port is created in its place.

The VM enters a saved state. When the VM is restored and powered on, the
validation port is deleted and the operational port is created in its place.

For more information, see Hyper-V Extensible Switch Save and Restore Operations.

The VM is stopped and powered down. Once the VM is powered on, the validation
port is deleted and the operational port is created in its place.

The VM is being live migrated to another host computer. Once the VM is created
and powered on in the new host computer, the validation port is deleted and the
operational port is created in its place.

After the validation port is created, the extensible switch interface issues OID requests to
download port policies for the port. Because these ports are created for policy validation
and verification, such as when a VM is first configured, it is important that the validation
that occurs is appropriate for configuration time rather than run time. Extensions should
perform the following types of policy validation for these ports:

Syntax validation. This validation fails if the values are not properly formatted.

Range validation. This validation fails if the settings do not conform to the
expected range of minimum and maximum values.

Applicability validation. This validation fails if the settings do not apply to the
extensible switch. For example, a policy profile that defines an external network
service-level agreement (SLA) would not apply to an extensible switch that does
not have access to the external networking interface.

Conflict detection. The validation fails if the settings conflict with other settings
that are already set on the same port.

When the extensible switch extension validates port and policy settings for a validation
port, it must follow these guidelines:

Because the validation port is temporal, the extension must not validate and fail
policy and configuration settings that cannot be currently satisfied by the
extensible switch.

For example, an extensible switch, which supports a maximum of 10 gigabits of
bandwidth, may currently only have 1 gigabit of bandwidth available for
reservation. The extension does not fail the validation of a port property that is
reserving more than 1 gigabit of bandwidth. This kind of validation should instead
occur when the operational port is created. This is because the settings that are
being validated may still be applied to an operational port in which the bandwidth
is available. This allows system administrators to initially configure VMs without
being restricted by run-time constraints.

The extension must not allocate or reserve resources for the validation port. For
example, bandwidth reservation settings on a validation port should not deduct
from the available bandwidth of the extensible switch. Reservation should occur
only when the operational port is created.

For more information on extensible switch operational ports, see Operational Ports.

Operational Ports
Article • 12/15/2021

Starting with NDIS 6.30 in Windows Server 2012, the extensible switch interface creates
an operational port to host an extensible switch network adapter connection. When an
extensible switch port is created, it is assigned a port type. This port type is in effect
after the port is created and before it is torn down. For ports assigned to Hyper-V child
partitions, the operational port type stays in effect while the partition is running and
operational.

Operational port types define the type of extensible switch network adapter that can
connect to it. The extensible switch interface defines the following operational port
types:

NdisSwitchPortTypeExternal
This is a port that is configured to be connected to the external network adapter of the
extensible switch. This adapter is exposed in the management operating system that
runs in the Hyper-V parent partition.

The external network adapter provides a connection to the physical network interface
that is available on the host. The external network adapter can be accessed by the
Hyper-V parent partition and all child partitions.

Note An extensible switch supports only one external network adapter connection.

NdisSwitchPortTypeInternal
This is a port that is configured to be connected to the internal network adapter of the
extensible switch. This adapter is exposed in the management operating system that
runs in the Hyper-V parent partition.

The internal network adapter provides access to an extensible switch for processes that
run in the management operating system. This allows these processes to send or receive
packets over the extensible switch.

Note An extensible switch supports only one internal network adapter.

NdisSwitchPortTypeSynthetic
This is a port that is configured to be connected to a synthetic network adapter. This
adapter is exposed in a guest operating system that runs in a Hyper-V child partition.

Note A synthetic network adapter is a type of virtual machine (VM) network adapter.
This adapter is exposed in a guest operating system that is running Windows Vista or a
later version of Windows.

NdisSwitchPortTypeEmulated
This value specifies a port that is configured to be connected to an emulated network
adapter. This adapter is exposed in a guest operating system.

Note An emulated network adapter is a type of VM network adapter. This adapter can
be exposed in a guest operating system that is running Windows XP or a non-Windows
operating system.

Hyper-V Extensible Switch Network
Adapters Topics
Article • 12/15/2021

This section includes the following topics that describe the characteristics of extensible
switch network adapters and their connections to extensible switch ports:

Overview of Hyper-V Extensible Switch Network Adapters

External Network Adapters

Internal Network Adapters

Virtual Machine Network Adapters

Network Adapter Index Values

Overview of Hyper-V Extensible Switch
Network Adapters
Article • 12/15/2021

The Hyper-V extensible switch supports connections from various types of virtual or
physical network adapters. The connection to these types of network adapters is made
through an extensible switch port. Ports are created before a virtual network adapter
connection is made, and are deleted after the network adapter connection is torn down.

For example, when a Hyper-V child partition is started, the extensible switch interface
creates a port before the virtual machine (VM) network adapter is exposed within the
guest operating system. After the VM network adapter is exposed and enumerated, the
extensible switch interface creates a network connection between the VM network
adapter and the extensible switch port. If the child partition is stopped, the extensible
switch interface first deletes the network connection and then deletes the extensible
switch port.

The Hyper-V extensible switch supports connections from the following types of virtual
network adapters:

External network adapters
This is an extensible switch network adapter that is exposed in the management
operating system that runs in the Hyper-V parent partition. Each extensible switch
supports only one external network adapter connection.

The external network adapter provides a connection to the physical network interface
that is available on the host. The external network adapter can be accessed by the
Hyper-V parent partition and all child partitions.

For more information about this type of network adapter, see External Network
Adapters.

Internal network adapters
This is an extensible switch network adapter that is exposed in the management
operating system that runs in the Hyper-V parent partition. Each extensible switch
supports only one internal network adapter connection.

The internal network adapter provides access to an extensible switch for processes that
run in the management operating system. This allows these processes to send or receive
packets over the extensible switch.

For more information about this type of network adapter, see Internal Network
Adapters.

Virtual machine (VM) network adapters
This is an extensible switch network adapter that is exposed in the guest operating
system that runs in the Hyper-V child partition.

Note In Hyper-V, a child partition is also known as a VM.

The VM network adapter supports the following virtualization types:

The VM network adapter could be a synthetic virtualization of a network adapter
(synthetic network adapter). In this case, the network virtual service client (NetVSC)
that runs in the VM exposes this virtual network adapter. NetVSC forwards packets
to and from the extensible switch port over the VM bus (VMBus).

The VM network adapter could be an emulated virtualization of a physical network
adapter (emulated network adapter). In this case, the VM network adapter mimics
an Intel network adapter and uses hardware emulation to forward packets to and
from the extensible switch port.

For more information about this type of network adapter, see Virtual Machine Network
Adapters.

Extensible switch network adapter connections are created, updated, and deleted
through the following extensible switch OID requests:

OID_SWITCH_NIC_CREATE
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CREATE to notify extensible switch extensions about the creation of a
network adapter connection to an extensible switch port. The port must have been
previously created through an OID set request of OID_SWITCH_PORT_CREATE.

The OID_SWITCH_NIC_CREATE request only notifies the extension that a new extensible
switch network adapter connection is being brought up and that packet traffic may soon
begin to occur over the specified port.

The extension can veto the creation notification by returning
STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension cannot
satisfy its configured policies on the port that is used for the network adapter
connection, the extension should veto the creation notification.

If the extension accepts the creation notification, it must forward the OID request down
the extensible switch driver stack. The extension monitors the completion status of this

OID request to determine whether underlying extensions have vetoed the creation
notification.

When the network adapter connection is created, it is assigned an
NDIS_SWITCH_NIC_INDEX value. This index value identifies the network adapter
connection on an extensible switch port. Connections to the external, internal, and VM
network adapters are assigned an NDIS_SWITCH_NIC_INDEX value of
NDIS_SWITCH_DEFAULT_NIC_INDEX. Each physical or virtual network adapter that is
bound to the external network adapter is assigned an NDIS_SWITCH_NIC_INDEX value in
the following way:

If the physical or virtual network adapter is directly bound to the external network
adapter, it is assigned an NDIS_SWITCH_NIC_INDEX value of one.

If the physical network adapter is part of an extensible switch team, it is assigned
an NDIS_SWITCH_NIC_INDEX value that is greater than or equal to one. An
extensible switch team is a configuration in which a team of one or more physical
network adapters are bound to the extensible switch external network adapter.

For more information about the different configurations in which physical network
adapters can be bound to the external network adapter, see Types of Physical Network
Adapter Configurations.

For more information on NDIS_SWITCH_NIC_INDEX values, see Network Adapter Index
Values.

Note The extension cannot generate or forward packets over the network adapter
connection until the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT.

OID_SWITCH_NIC_CONNECT
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT to notify extensible switch extensions that an extensible
switch network adapter connection is fully operational.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

After the OID request has completed with NDIS_STATUS_SUCCESS, the network adapter
connection and extensible switch port are fully operational. When the network adapter
connection is in this state, the extension can do the following:

Generate or forward packet traffic to the port's network adapter connection.

Issue extensible switch OIDs or status indications that use the port as the source
port.

Call ReferenceSwitchNic to increment a reference counter for the network adapter
connection. The extensible switch interface will not tear down a network adapter
connection while the reference counter has a nonzero value.

OID_SWITCH_NIC_UPDATED
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_UPDATED to notify extensible switch extensions that the parameters
for an extensible switch network adapter have been updated. The OID will only be
issued for NICs that have already been connected, and have not yet begun the
disconnect process. These run-time configuration changes can include NicFriendlyName,
MTU, NetCfgInstanceId, PermanentMacAddress, VMMacAddress, CurrentMacAddress, and
VFAssigned.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

OID_SWITCH_NIC_DISCONNECT
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DISCONNECT to notify extensible switch extensions that an extensible
switch network adapter connection is being torn down. After the connection has been
completely torn down, the protocol edge of the extensible switch issues an OID set
request of OID_SWITCH_NIC_DELETE.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

After the extension forwards this OID request, it can no longer generate or forward
packets to the port on which the network adapter connection is being torn down. Also,
the extension can no longer call ReferenceSwitchNic for the network adapter connection.

OID_SWITCH_NIC_DELETE
The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DELETE to notify extensible switch extensions that an extensible
switch network adapter connection has been torn down and deleted. This OID request is
only issued for network connections for which an OID set request of
OID_SWITCH_NIC_DISCONNECT was previously issued.

Note The extension must always forward this OID set request down the extensible
switch driver stack. The extension must not fail the request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

After this OID request is completed, the protocol edge of the extensible switch issues an
OID set request of OID_SWITCH_PORT_TEARDOWN to start the deletion process for the
port that was used for the network adapter connection.

The extension must always forward this OID set request down the extensible switch
driver stack. The extension must not fail the request.

The extensible switch interface maintains a reference counter for each network adapter
connection that has been created. A network adapter connection will not be deleted if
its reference counter has a nonzero value. The interface provides the following handler
functions for incrementing or decrementing the reference counter of an extensible
switch network adapter connection:

ReferenceSwitchNic
The extensible switch extension calls this function to increment a network adapter
connection's reference counter. Although the reference counter has a nonzero value, the
extensible switch interface does not delete the network adapter connection.

The extension should call ReferenceSwitchNic before it performs the following
operations:

Forwards an OID_SWITCH_NIC_REQUEST request down the extensible switch driver
stack to an underlying external adapter.

Forwards an NDIS_STATUS_SWITCH_NIC_STATUS status indication up the
extensible switch driver stack from an underlying external adapter.

Note The extension must not call ReferenceSwitchNic for a network adapter connection
after it receives an OID set request of OID_SWITCH_NIC_DISCONNECT for that
connection.

DereferenceSwitchNic
The extensible switch extension calls this function to decrement a port's reference
counter.

If the extension calls ReferenceSwitchNic, it must call DereferenceSwitchNic after the
OID_SWITCH_NIC_REQUEST or NDIS_STATUS_SWITCH_NIC_STATUS indication have
completed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic

External Network Adapters
Article • 12/15/2021

The external network adapter is exposed in the management operating system that runs
in the Hyper-V parent partition. The external network adapter provides the connection
to a Hyper-V external network. This network forwards packet traffic over the physical
network interface of the host.

The external network is accessed by the Hyper-V parent partition and all child partitions
that are connected to the extensible switch. Each instance of the extensible switch
supports no more than one external network adapter connection.

The external network adapter is a virtual representation of the underlying physical
network adapter on the host. The external network adapter forwards packets, object
identifier (OIDs) requests, and NDIS status indications to and from one or more
underlying physical network adapters.

Internally, the external network adapter binds to various configurations of underlying
physical network adapters. Each of these configurations provides access to the external
network interface through one or more physical network adapters. For more information
about these physical adapter configurations, see Types of Physical Network Adapter
Configurations.

If the extensible switch is configured to provide an external network adapter connection,
the following steps occur when the switch is started:

1. The protocol edge of the extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_CREATE down the extensible switch driver stack.
This OID request notifies the underlying extensible switch extensions that a port is
being created for the external network adapter.

2. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CREATE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the external network adapter is being created for the port that was
previously created.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the external network adapter is connected and operational. At this

point, the extension can inspect, inject, and forward packets to the port that is
connected to the external network adapter.

The following steps occur when the extensible switch with an external network adapter
connection is stopped:

1. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DISCONNECT down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the connection to
the external network adapter is being torn down.

2. After all packet traffic and OID requests that target the network connection are
completed, the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the connection to
the external network adapter has been gracefully torn down and deleted.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the port that was
used for the external network adapter connection is being torn down.

4. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the port that was
used for the external network adapter connection has been torn down and
deleted.

Types of Physical Network Adapter
Configurations
Article • 12/15/2021

The Hyper-V extensible switch architecture supports the connection to a single external
network adapter for access to the underlying physical medium. The external network
adapter can be bound to one of the following physical network adapter configurations:

The external network adapter can be bound to a single underlying physical
network adapter. In this configuration, an extensible switch extension is exposed to
and manages only one underlying network adapter on the host.

The following figure shows the extensible switch configuration in which the
external network adapter is bound to a single physical network adapter for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows the extensible switch configuration in which the
external network adapter is bound to a single physical network adapter for NDIS
6.30 (Windows Server 2012).

The external network adapter can be bound to the virtual miniport edge of a load
balancing failover (LBFO) provider. This is an NDIS filter driver that is layered above
an NDIS multiplexer (MUX) driver, which may be bound to a team of one or more
physical networks on the host. This configuration is known as an LBFO team.

In this configuration, the extensible switch extensions are exposed to only the
underlying virtual miniport edge as a network adapter. This allows the provider to
support an LBFO solution by binding to multiple physical network adapters. These
physical network adapters are not managed by a forwarding extension that runs in
the extensible switch driver stack.

The following figure shows an example of an LBFO team configuration for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows an example of an LBFO team configuration for NDIS
6.30 (Windows Server 2012).

Note To extensible switch extensions, an underlying LBFO team appears as a
single virtual network adapter that is bound to the external network adapter.

The external network adapter can be bound to the virtual miniport edge of an
NDIS MUX intermediate driver. The MUX driver is bound to a team of one or more
physical networks on the host. This configuration is known as an extensible switch
team.

In this configuration, an extensible switch extension is exposed to every network
adapter in the team. This allows the extension to manage the configuration and
use of individual network adapters in the team. For example, the extension can
provide support for a load balancing failover (LBFO) solution over the team by
forwarding outgoing packets to individual adapters.

The following figure shows an example of an extensible switch team for NDIS 6.40
(Windows Server 2012 R2) and later.

The following figure shows an example of an extensible switch team for NDIS 6.30
(Windows Server 2012).

For more information on MUX drivers, see NDIS MUX Intermediate Drivers.

Internal Network Adapters
Article • 12/15/2021

The internal network adapter is exposed in the management operating system that runs
in the Hyper-V parent partition. This type of network adapter provides access to an
extensible switch for processes that run in the management operating system. This
allows these processes to send or receive packets over the extensible switch.

If the extensible switch is configured to provide an internal network adapter connection,
the following steps occur when the switch is started:

1. The protocol edge of the extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_CREATE down the extensible switch driver stack.
This OID request notifies the underlying extensible switch extensions that a port is
being created for the internal network adapter

2. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CREATE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the internal network adapter is being created for the port that was
previously created.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the internal network adapter is connected and operational. At this
point, the extension can inspect, inject, and forward packets to the port that is
connected to the internal network adapter.

The following steps occur when the extensible switch with an internal network adapter
connection is stopped:

1. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DISCONNECT down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the connection to
the internal network adapter is being torn down.

2. After all packet traffic and OID requests that target the network connection are
completed, the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the connection to
the internal network adapter has been gracefully torn down and deleted.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the port that was
used for the internal network adapter connection is being torn down.

4. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the port that was
used for the internal network adapter connection has been torn down and deleted.

Virtual Machine Network Adapters
Article • 12/15/2021

The virtual machine (VM) network adapter is exposed in the guest operating system that
runs in the Hyper-V child partition.

Note In Hyper-V, a child partition is also known as a VM.

The VM network adapter supports the following virtualization types:

The VM network adapter could be a synthetic virtualization of a network adapter
(synthetic network adapter). In this case, the network virtual service client (NetVSC)
that runs in the VM exposes this virtual network adapter. NetVSC forwards packets
to and from the extensible switch port over the VM bus (VMBus).

The VM network adapter could be an emulated virtualization of a physical network
adapter (emulated network adapter). In this case, the VM network adapter mimics
an Intel network adapter and uses hardware emulation to forward packets to and
from the extensible switch port.

The following figure shows the interface between VM network adapters and the
extensible switch NDIS 6.40 (Windows Server 2012 R2) and later.

The following figure shows the interface between VM network adapters and the
extensible switch for NDIS 6.30 (Windows Server 2012).

The following steps occur when the user starts a Hyper-V VM:

1. The protocol edge of the extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_CREATE down the extensible switch driver stack.
This OID request notifies the underlying extensible switch extensions that a port is
being created for the VM.

2. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CREATE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the VM network adapter is being created for the VM port that was
previously created.

3. When the networking stacks are operational and have bound to the VM network
adapter, the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that a network
connection for the VM network adapter is connected and operational. At this
point, the extension can inspect, inject, and forward packets to the port that is
connected to the VM network adapter.

The following steps occur when the user stops a Hyper-V VM:

1. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DISCONNECT down the extensible switch driver stack. This OID

request notifies the underlying extensible switch extensions that the connection to
the VM network adapter is being torn down.

2. After all packet traffic and OID requests that target the network connection are
completed, the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the connection to
the VM network adapter has been gracefully torn down and deleted.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the port that was
used for the VM network adapter connection is being torn down.

4. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_DELETE down the extensible switch driver stack. This OID
request notifies the underlying extensible switch extensions that the VM port has
been torn down and deleted.

Network Adapter Index Values
Article • 12/15/2021

In the Hyper-V extensible switch interface, each network adapter that is connected to a
port is assigned an NDIS_SWITCH_NIC_INDEX value. This index value identifies the
network connection on an extensible switch port.

The index value is unique for each network adapter connection to a port. Although most
network adapters require only one index value, the port connection to the external
network adapter may be assigned multiple index values. For example, if the external
network adapter is bound to a team of physical network adapters, the external network
adapter and each physical network adapter is assigned a unique index value.

The connections to network adapters in the extensible switch are identified through the
following NDIS_SWITCH_NIC_INDEX values:

NDIS_SWITCH_DEFAULT_NIC_INDEX
This index value specifies the index for the network adapter that is connected to an
extensible switch port. This index value applies to any network adapter that is directly
connected to an extensible switch port, such as an external network adapter, internal
network adapter, or virtual machine (VM) network adapter.

Note NDIS_SWITCH_DEFAULT_NIC_INDEX is defined to be zero.

1-32
This index value specifies the index for an underlying physical network adapter that is
bound to the extensible switch external network adapter. Index values are assigned
based on the following configurations:

If the external network adapter is bound to a single physical network adapter, it is
assigned an index value of one.

If the external network adapter is bound to a load balancing fail over (LBFO) team
of physical network adapters, the entire team is assigned an index value of one. An
LBFO team is a configuration in which the external network adapter is bound to
the virtual miniport edge of an LBFO provider. The LBFO provider itself can bind to
a team of one or more physical network adapters.

Note To extensible switch extensions, an underlying LBFO team appears as a
single network adapter that is bound to the external network adapter.

If the external network adapter is bound to an extensible switch team of physical
network adapters, each adapter in the team is assigned a unique index value that is

greater than or equal to one. An extensible switch team is a configuration in which
a team of one or more physical network adapters is bound to the external network
adapter.

For more information about the different configurations in which physical network
adapters can be bound to the external network adapter, see Types of Physical Network
Adapter Configurations.

Hyper-V Extensible Switch Port and
Network Adapter States
Article • 12/15/2021

The Hyper-V extensible switch interface manages the lifetime of the following
components:

Hyper-V Extensible Switch Ports
Each network adapter connection to the extensible switch is represented by a port. Ports
are created when a Hyper-V child partition is configured to connect to an instance of an
extensible switch. Depending on the switch type, ports are also created for the external
and internal network adapter connections. For more information about switch types, see
Overview of the Hyper-V Extensible Switch.

Each port is used to hold the configuration for the network interface connection. If the
configuration for the network interface connection is removed or the child partition is
stopped, the port is torn down and deleted.

For more information about this component, see Hyper-V Extensible Switch Ports.

Hyper-V Extensible Switch Network Adapters
These are virtual network adapters that connect to the extensible switch port. These
virtual network adapters are exposed within the Hyper-V child and parent partitions.
This includes the virtual machine (VM) network adapter exposed in a child partition and
the external network adapter that is teamed with the underlying physical network
adapter.

Each network adapter connection requires a corresponding extensible switch port. The
port must have been created before the network adapter connection is brought up.
Similarly, the network adapter connection must be deleted before the port can be torn
down and deleted.

Note In some situations, extensible switch ports could be created and deleted without
ever having a network adapter connection.

For example, when a Hyper-V child partition is started, the extensible switch interface
creates a port before the VM network adapter is exposed within the guest operating
system. After the VM network adapter is exposed and enumerated, the extensible switch
interface creates a network connection between the VM network adapter and the
extensible switch port. If the child partition is stopped, the extensible switch interface
first deletes the network connection and then deletes the extensible switch port.

For more information about this component, see Hyper-V Extensible Switch Network
Adapters.

When the extensible switch interface creates, deletes, or changes the configuration of
these components, it issues object identifier (OID) set requests down the extensible
switch driver stack. This operation is performed so that underlying extensible switch
extensions can be notified about the state of the component and its configuration. Each
OID set request results in a state transition for these components.

When an extension is bound and enabled on an extensible switch instance, it can issue
OIDs to discover the existing port and network adapter connection configuration of the
switch.

The following diagram shows the various states for the extensible switch port and
network adapter connection components. The diagram also shows the OID set requests
that cause the state transition for the component.

The following list describes the various states of the extensible switch port and network
adapter connection components:

Port not created
In this state, an extensible switch port does not exist on the extensible switch. OID
requests that target a previously created port cannot be issued after the port has
entered this state.

Port created
When the extensible switch interface issues an OID set request of
OID_SWITCH_PORT_CREATE, the port is created on the extensible switch. In this state,
the extensible switch interface and extension can issue OID requests that target the port.

For more information about OID traffic through the extensible switch driver stack, see
Hyper-V Extensible Switch Control Path.

Note An underlying extension can fail the OID set request and veto the port creation.
The extension does this by completing the OID request with
STATUS_DATA_NOT_ACCEPTED. If this is done, the port is not created on the extensible
switch. For more information on this procedure, see Hyper-V Extensible Switch Ports.

Network adapter connection created
When the extensible switch interface issues an OID set request of
OID_SWITCH_NIC_CREATE, the network adapter connection to the port is created on the
extensible switch. In this state, the extensible switch interface can do the following:

Issue OID requests that target the network adapter connection.

Forward packet traffic to or from the network adapter connection.

It is also possible for a new adapter to connect to an existing port without going
through a port teardown and create sequence.

In this state, the extension must forward these packets and OID requests through the
extensible switch extension stack. However, the extension cannot originate or redirect
packets or OID requests to other network adapter connections on the extensible switch.

Note In this state, the extension must not issue OID requests or originate packet traffic
to the network adapter connection.

For more information about OID traffic through the extensible switch driver stack, see
Hyper-V Extensible Switch Control Path.

For more information about packet traffic through the extensible switch driver stack, see
Hyper-V Extensible Switch Data Path.

Note An underlying extension can fail the OID set request and veto the creation of the
network adapter connection. If so, the connection is not created on the extensible

switch port. For more information on this procedure, see Hyper-V Extensible Switch
Network Adapters.

Network adapter connected
When the extensible switch interface issues an OID set request of
OID_SWITCH_NIC_CONNECT, the network adapter is fully connected to the extensible
switch port. In this state, the extension can now do the following:

Issue OID requests that target the network adapter connection.

Originate packet traffic to the network adapter connection.

Redirect packet traffic to the network adapter connection. For example, the
extension can redirect packets from one network adapter connection to another
connection on the extensible switch.

Note Only forwarding extensions can perform this operation. For more
information, see Forwarding Extensions.

Network adapter disconnected
When the extensible switch interface issues an OID set request of
OID_SWITCH_NIC_DISCONNECT, the network adapter is being disconnected from the
extensible switch port. For example, this OID request is issued when the child partition,
which exposed a VM network adapter, is stopped or the external network adapter is
disabled.

In this state, the extensible switch extension can no longer originate packets or OID
requests that target the connection. Also, forwarding extensions can no longer redirect
packets to the connection.

Note Pending packets and OID requests that were issued by the extensible switch
interface before the connection became disconnected may still be delivered to the
extension. However, the extension must forward the packets and OID requests without
making any modifications.

Network adapter connection deleted
After all packet traffic and OID requests that target the network adapter connection are
completed, the extensible switch interface issues an OID set request of
OID_SWITCH_NIC_DELETE to delete the connection from the extensible switch.

In this state, the extensible switch interface will no longer issue packets or OID requests
that target the connection.

Port tearing down
When the extensible switch interface issues an OID set request of

OID_SWITCH_PORT_TEARDOWN, the extensible switch port is being torn down in
preparation to being deleted.

In this state, the extensible switch extension can no longer originate OID requests that
target the port.

Note Pending OID requests that were issued by the extensible switch interface before
the port started its tear down process may still be delivered to the extension. However,
the extension must forward the OID requests without making any modifications.

After all pending OID requests that target the port are completed, the extensible switch
interface issues an OID set request of OID_SWITCH_PORT_DELETE. This causes the port
to transition to a Port not created state.

The extension can call an extensible switch handler function to increment or decrement
a reference counter on a port or network adapter connection component. While a
component's reference counter is nonzero, the extensible switch interface cannot delete
the component.

The extension can call ReferenceSwitchPort or DereferenceSwitchPort to increment or
decrement a reference counter for an extensible switch port. These calls can be made
after the port has reached the Port created state. These calls must not be made after the
port has reached the Port tearing down or Port not created states.

The extension can call ReferenceSwitchNic or DereferenceSwitchNic to increment or
decrement a reference counter for an extensible switch network adapter connection.
These calls can be made after the connection has reached the Network adapter
connected state. These calls must not be made after the connection has reached the
Network adapter disconnected or Network adapter deleted states.

The following table describes the operations that are allowed based on the state of the
extensible switch port or network adapter connection components.

Component state Calls to ReferenceSwitchPort
or DereferenceSwitchPort
allowed?

Calls to ReferenceSwitchNic
or DereferenceSwitchNic
allowed?

Port not created No No

Port created Yes No

Network adapter connection
created

Yes No

Network adapter connected Yes Yes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic

Component state Calls to ReferenceSwitchPort
or DereferenceSwitchPort
allowed?

Calls to ReferenceSwitchNic
or DereferenceSwitchNic
allowed?

Network adapter
disconnected

Yes No

Network adapter connection
deleted

Yes No

Port tearing down No No

Component
state

OID
requests
from
extensible
switch
allowed
for port?

OID
requests
from
extensions
allowed
for port?

OID
requests
from
extensible
switch
allowed for
network
adapter
connection?

OID
requests
from
extensions
allowed for
network
adapter
connection?

Packet
traffic from
extensible
switch
allowed
over
network
adapter
connection?

Packet
traffic from
extensions
allowed
over
network
adapter
connection?

Port not
created

No No No No No No

Port created Yes Yes No No No No

Network
adapter
connection
created

Yes Yes Yes No Yes No

Network
adapter
connected

Yes Yes Yes Yes Yes Yes

Network
adapter
disconnected

Yes Yes Yes No Yes No

Network
adapter
connection
deleted

Yes Yes No No No No

Port tearing
down

Yes No No No No No

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic

Hyper-V Extensible Switch Data Path
Topics
Article • 12/15/2021

This section discusses the Hyper-V extensible switch data path that packets move
across. This section includes the following topics:

Overview of the Hyper-V Extensible Switch Data Path

Hyper-V Extensible Switch Forwarding Context

Hyper-V Extensible Switch Send and Receive Flags

Overview of the Hyper-V Extensible
Switch Data Path
Article • 12/15/2021

This section describes the Hyper-V extensible switch data path over which packets move
to or from extensible switch ports. It includes the following topics:

Packet Flow through the Extensible Switch Data Path

Packet Management Guidelines for the Extensible Switch Data Path

Packet Flow through the Extensible
Switch Data Path
Article • 12/15/2021

This topic describes how packets move to or from extensible switch ports through the
Hyper-V extensible switch data path.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about the extensions, see Hyper-V Extensible Switch Extensions.

Note This page assumes that you are familiar with the information in Overview of the
Hyper-V Extensible Switch and Hybrid Forwarding.

All packet traffic that arrives at the extensible switch from its ports follows the same
path through the extensible switch driver stack. For example, packet traffic received
from the external network adapter connection or sent from a virtual machine (VM)
network adapter connection moves through the same data path.

The following figure shows the extensible switch data path for NDIS 6.40 (Windows
Server 2012 R2) and later.

The following figure shows the extensible switch data path for NDIS 6.30 (Windows
Server 2012).

For more information about the components for the extensible switch interface, see
Hyper-V Extensible Switch Architecture.

The extensible switch data path has the following parts, listed in the order that packets
flow through them:

Overlying protocol edge
Ingress data path
Underlying miniport edge
Egress data path

1. Packets arrive at the extensible switch from network adapters that are connected
to the switch ports. These packets are first issued as send requests from the
protocol edge of the extensible switch down the extensible switch ingress data
path.

The protocol edge of the extensible switch prepares the packets for the ingress
data path. The protocol edge allocates a context area for these packets that
contains the out-of-band (OOB) extensible switch forwarding context. It populates
the OOB data with information about the source port and network adapter
connection from which the packet was delivered to the extensible switch.

For more information about the forwarding context, see Hyper-V Extensible Switch
Forwarding Context.

2. In NDIS 6.40 (Windows Server 2012 R2) and later, if the packet is an NVGRE packet
from an external network adapter, the extensible switch sets the

Overlying protocol edge

NativeForwardingRequired flag in the packet's out-of-band (OOB) information.
For more information, see Hybrid Forwarding.

3. If the packet arrived on a port where the traffic has a virtual subnet, the extensible
switch sets the VirtualSubnetId member of the
NDIS_NET_BUFFER_LIST_VIRTUAL_SUBNET_INFO structure for the packet.

Note The virtual subnet could be an HNV subnet or a third-party virtual subnet.

1. An extension obtains a packet from the ingress data path when its
FilterSendNetBufferLists function is called. The extension forwards the packet to
underlying extensions on the ingress data path by calling
NdisFSendNetBufferLists. Filtering and forwarding extensions can also drop the
packet from the ingress data path by calling NdisFSendNetBufferListsComplete.

2. When capturing extensions obtain packets on the ingress data path, they can
inspect the packet data. However, capturing extensions must not complete the
send requests for packets on the ingress data path. These extensions must always
forward the packets to underlying extensions in the extensible switch driver stack.

A capturing extension can also originate packets on the ingress data path. For
example, the extension may originate packets in order to report traffic conditions
to a remote monitoring application.

For more information on originating packets by an extension, see Originating
Packet Traffic.

3. When filtering extensions obtain packets on the ingress data path, they can do the
following:

Drop packets based on custom extensible switch or port policies.

For more information about these policies, see Hyper-V Extensible Switch
Policies.

Note Packets obtained on the ingress data path do not have destination
ports defined in the packet's OOB data. As a result, filtering extensions must
only enforce custom policies based on the packet data or the packet's source
port or network adapter connection.

Clone or modify packets obtained from the ingress data path.

Inject new packets into the ingress data path.

Ingress data path

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_virtual_subnet_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete

4. In NDIS 6.40 and later, after the capturing and filtering extensions but before the
forwarding extension on the ingress data path, the extensible switch does the
following:

If the packet is an NVGRE packet from an external network adapter, the
address in the packet header is a provider address (PA) space address. The
extensible switch indicates this by setting the NativeForwardingRequired flag
in the packet's out-of-band (OOB) information. For more information, see
Hybrid Forwarding.

The extensible switch applies the built-in ingress policies to the packet. These
policies may include ingress access control lists (ACLs), DHCP Guard, and
Router Guard.

5. If a forwarding extension is not enabled in the extensible switch driver stack, the
destination port array for a packet is determined by the extensible switch.

6. If a forwarding extension is enabled, it must do the following when it obtains
packets on the ingress data path:

In NDIS 6.40 and later, if the packet is an NVGRE packet (see Hybrid
Forwarding), the forwarding extension cannot modify the destination port
array in the OOB data of the packet in the ingress data path. However, it can
drop the packet.

If the packet is not an NVGRE packet, the forwarding extension must add
destination ports to the destination port array in the OOB data of the packet.

The forwarding extension must drop packets based on standard or custom
extensible switch or port policies. Standard switch or port policies include
security and virtual LAN (VLAN) properties. If a forwarding extension is not
enabled in the extensible switch driver stack, these policies are enforced by
the extensible switch.

Note When the forwarding extension filters packets in the ingress data path,
it applies filtering rules based on the source port as well as the destination
ports that the extension assigns to the packet.

In addition, the forwarding extension can do the following:

Clone or modify packets obtained from the ingress data path.

Inject new packets into the ingress data path.

1. When the packet arrives at the underlying miniport edge of the extensible switch,
the extensible switch applies its built-in policies to the packet. These policies
include access control lists (ACLs) and quality of service (QoS) properties. If the
packet is not dropped because of these policies, the extensible switch originates a
receive indication for the packet and forwards the packet up the egress data path.

Note If port mirroring is enabled on a port that the packet is to be delivered to,
the miniport edge adds a destination port to the packet's OOB data for the mirror
port. The miniport edge does this regardless of whether a forwarding extension is
installed and enabled in the extensible switch driver stack. The miniport edge only
adds the mirror port if it is not already specified in the array of destination ports
for the packet.

2. If a forwarding extension is not enabled, the extensible switch determines the
destination ports for the packet and add these destination ports to the packet's
OOB data before it forwards the packet up the egress data path.

3. In NDIS 6.40 and later, the HNV component performs any needed NVGRE
encapsulation or decapsulation after ingress and before egress, so that the
forwarding extension can see the packet in encapsulated and decapsulated form.
For example, if the packet arrived from an external network adapter and is
destined for an internal VM, the forwarding extension obtains the encapsulated
packet on ingress and the decapsulated packet on egress.

Note In the encapsulated packet, the address in the packet header is a provider
address (PA) space address. In the decapsulated packet, it is a customer address
(CA) space address.

a. If the packet is an NVGRE packet that arrived from an external network adapter,
the Hyper-V Network Virtualization (HNV) component of the extensible switch
performs NVGRE decapsulation on the packet. The HNV component determines
the destinations for the packet according to HNV policies, and then the
extensible switch forwards the packet up the egress data path.

b. If the packet arrived from an internal VM, the HNV component will perform
NVGRE encapsulation on the packet if HNV policies are set for the packet. The
HNV component determines the destinations for the packet according to HNV
policies, and then the extensible switch forwards the packet up the egress data
path.

Underlying miniport edge

c. Otherwise, the forwarding extension forwards the packet up the egress data
path.

4. In NDIS 6.30, if a forwarding extension is enabled, it must forward the packet up
the egress data path.

1. An extension obtains a packet from the egress data path when its
FilterReceiveNetBufferLists function is called. The extension forwards the packet to
overlying extensions on the egress data path by calling
NdisFIndicateReceiveNetBufferLists. Filtering and forwarding extensions can also
drop the packet from the egress data path by calling NdisFReturnNetBufferLists.

2. When the forwarding extension obtains a packet on the egress data path, it can
inspect the packet's destination port information in the OOB data.

Note The extension obtains this information from the OOB data by calling
GetNetBufferListDestinations.

Based on standard or custom switch or port policies, the extension can exclude the
delivery of the packet to one or more destination ports that are contained within the
OOB data.

3. In NDIS 6.40 (Windows Server 2012 R2) and later, after the forwarding extension
but before the filtering and capturing extensions on the egress data path, the
extensible switch applies the built-in egress policies to the packet. These policies
may include trunk mode, monitoring mode, egress ACLs, and quality of service
(QoS) properties.

4. When filtering extensions obtain a packet on the egress data path, they can
inspect the packet's destination port information in the OOB data. Based on
custom switch or port policies, the extension can exclude the delivery of the packet
to one or more destination ports that are contained within the OOB data.

If the filtering extension needs to modify the data in a packet, it must first clone
the packet without preserving port destinations. Then, the extension must inject
the modified packet into the ingress data path. This allows the underlying
extensions to enforce policies on the modified packet and the forwarding
extension can add port destinations.

For more information, see Cloning or Packet Traffic.

Egress data path

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations

5. When capturing extensions obtain packets on the egress data path, they can
inspect the packet data. However, if the capturing extension needs to originate
packets in order to report traffic conditions to a remote monitoring application, it
must originate this packet traffic by calling NdisFSendNetBufferLists to initiate a
send operation on the ingress data path.

6. When the packet arrives at the overlying protocol edge of the extensible switch,
the extensible switch interface forwards the packet to all specified destination
ports.

7. Once the packet has been forwarded, the interface completes the packet through
the same path in reverse. First, the interface calls the extension's
FilterReturnNetBufferLists function to complete packets forwarded on the egress
data path. Then, the interface calls the extension's FilterSendNetBufferListsComplete
function to complete packets forwarded on the ingress data path.

When the packet is completed on both the egress and ingress data path, the
extension performs any necessary packet cleanup and post-processing that may be
required.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete

Packet Management Guidelines for the
Extensible Switch Data Path
Article • 12/15/2021

This topic describes the guidelines that Hyper-V extensible switch extensions must
follow for managing packets obtained on the extensible switch data path.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about the extensions, see Hyper-V Extensible Switch Extensions.

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Extensions must follow these guidelines for packet management in the extensible switch
data path:

Extensions that originate packets must call NdisFSendNetBufferLists to initiate a
send request on the ingress data path. This must be done in this way to allow for
proper forwarding of the packet through the extensible switch.

A capturing extension can monitor packets on the extensible switch ingress and
egress data path. However, this type of extension must always forward packets and
must not drop the packets. Also, the capturing extension must not modify the
packet data before it forwards the packet.

On the extensible switch ingress data path, filtering and forwarding extensions can
do the following:

Filtering extensions can filter packet traffic and enforce only custom port or
switch policies for packet delivery through the extensible switch. When the
extension filters packets in the ingress data path, it can only apply filtering rules
based only on the source port and network adapter connection from which the
packet originated. This information is stored in the OOB data of a packet's
NET_BUFFER_LIST structure and can be obtained by using the
NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

Note Packets obtained on the ingress data path do not contain destination
ports. Filtering packets based on destination ports can only be done on packets
obtained on the egress data path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail

Forwarding extensions can filter packet traffic and enforce custom and standard
port or switch policies for packet delivery through the extensible switch. When
the forwarding extension filters packets in the ingress data path, it applies
filtering rules based on the source port as well as the destination ports that the
forwarding extension assigns to the packet.

On the extensible switch egress data path, filtering and forwarding extensions can
do the following:

Filtering extensions can filter packet traffic and enforce only custom port or
switch policies for packet delivery through the extensible switch. When the
filtering extension filters packets in the egress data path, it can apply filtering
rules based only on the destination ports for a packet.

Destination port data is stored in the OOB data of a packet's NET_BUFFER_LIST
structure. Extensions obtain this information by calling the
GetNetBufferListDestinations function.

Forwarding extensions can filter packet traffic and enforce custom and standard
port or switch policies for packet delivery through the extensible switch. When
the forwarding extension filters packets in the egress data path, it can apply
filtering rules based on the source or destination ports for a packet.

Based on the policies enforced on a packet, the filtering or forwarding extension
can exclude the delivery of the packet to one or more destinations. For more
information on this procedure, see Excluding Packet Delivery to Extensible
Switch Destination Ports.

Based on the policies enforced on a packet, the forwarding extension can
exclude the delivery of the packet to one or more destinations. For more
information, see Hybrid Forwarding.

On the extensible switch egress data path, filtering and forwarding extensions
must not do the following:

Modify the packet data before forwarding the packet on the egress data path.

If a filtering extension needs to modify the data in a packet, it must first clone
the packet without preserving port destinations. Then, the extension must inject
the modified packet into the ingress data path. This allows the underlying
extensions to enforce policies on the modified packet and the forwarding
extension can add port destinations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations

If the forwarding extension needs to modify the data in a packet, it must first
clone the packet before it assigns port destinations. After the packet has been
modified and port destinations assigned, the extension must inject the modified
packet into the ingress data path.

For more information, see Cloning Packet Traffic.

Note If the extension clones a packet that was obtained on the egress data
path, it can inject the new packet into the egress data path only if it has not
changed the packet data and has preserved the original destination port data.

Add destination ports to the packet before forwarding the packet.

Note Forwarding extensions are allowed to add destination ports to packets
obtained on the ingress data path.

Inject new or cloned data packets into the egress data path.

In the standard NDIS data path, non-extensible switch OOB data often has
different formats depending on whether the packet is being indicated as a send or
a receive. For example, the
NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO OOB data is a union
of send-and receive–specific structures.

In the extensible switch data path, all packets move through the extension driver
stack as both sends and receives. Because of this, the non-extensible switch OOB
data within the packet's NET_BUFFER_LIST structure will be in either a send or
receive format through the duration of the flow through the driver stack.

The format of this OOB data depends upon the source extensible switch port from
which the packet arrived at the extensible switch. If the source port is connected to
the external network adapter, the non-extensible switch OOB data will be in a
receive format. For other ports, this OOB data will be in a send format.

Note If the extension clones a packet's NET_BUFFER_LIST structure, it must take
the non-extensible switch OOB data into consideration if it adds or modifies the
OOB data. The extension must call CopyNetBufferListInfo to copy the OOB data
associated with the extensible switch data path from a source packet to a cloned
packet. This function will maintain the OOB send or receive format when the data
is copied to the cloned packet.

If an extension drops a packet from either the ingress of egress data path, it must
call ReportFilteredNetBufferLists. When this function is called, the extensible switch

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists

interface increments counters and logs events for the dropped or excluded
packets.

Hyper-V Extensible Switch Forwarding
Context Overview
Article • 12/15/2021

The NET_BUFFER_LIST structure for each packet that traverses the Hyper-V extensible
switch data path contains out-of-band (OOB) data. This data specifies the source port
from where the packet originated, as well as one or more destination ports for packet
delivery. This OOB data is known as the extensible switch forwarding context.

This section includes the following topics about the extensible switch forwarding
context:

Hyper-V Extensible Switch Forwarding Context Data Types

Managing the Hyper-V Extensible Switch Forwarding Context

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Hyper-V Extensible Switch Forwarding
Context Data Types
Article • 12/15/2021

The NET_BUFFER_LIST structure for each packet that traverses the Hyper-V extensible
switch data path contains out-of-band (OOB) data. This data specifies the source port
from where the packet originated, as well as one or more destination ports for packet
delivery. This OOB data is known as the extensible switch forwarding context.

The following data types have been declared to access the extensible switch forwarding
context within a packet's NET_BUFFER_LIST structure:

NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO
This is a 64-bit union that contains the forwarding characteristics of a packet. This data
includes the identifiers for the source port and network adapter connection from which
the packet originated. This data also includes the number of unused elements that are
available in the destination port array.

The extensible switch extension can access this data by using the
NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY
This structure defines the destination port array for the packet. Each element in this
array is formatted as an NDIS_SWITCH_PORT_DESTINATION structure.

The NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure contains members
that specify the current number of the total number of elements as well as the number
of used elements in the array.

The extensible switch extension can obtain this array by calling the
GetNetBufferListDestinations function. If the driver adds or modifies elements in the
array for a packet with multiple destination ports, it must call the
UpdateNetBufferListDestinations function. This function commits those changes to the
destination port array in the packet's forwarding context.

Note To commit changes to a packet with only one destination port, it is more efficient
for the driver to call the AddNetBufferListDestination function.

NDIS_SWITCH_PORT_DESTINATION
This structure defines a destination port for the packet. For packets with a single
destination port, there is only one NDIS_SWITCH_PORT_DESTINATION element in the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination

destination port array. For packets with multiple destination ports, there are one or
more of these elements in the array.

After the extensible switch extension has called GetNetBufferListDestinations to obtain
the packet's destination port array, it can access individual elements in the array by
using the NDIS_SWITCH_PORT_DESTINATION_AT_ARRAY_INDEX macro.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_switch_port_destination_at_array_index

Managing the Hyper-V Extensible
Switch Forwarding Context
Article • 12/15/2021

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

The NET_BUFFER_LIST structure for each packet that traverses the Hyper-V extensible
switch data path contains out-of-band (OOB) data. This data specifies the source port
from where the packet originated, as well as one or more destination ports for packet
delivery. This OOB data is known as the extensible switch forwarding context.

Note The extensible switch forwarding context is different from the
NET_BUFFER_LIST_CONTEXT structure. This allows extensions to allocate their own
context structures without affecting the forwarding context.

The extensible switch forwarding context is allocated and freed in the following way:

When a packet arrives at the extensible switch from a network adapter, the
extensible switch interface allocates the forwarding context and associates it with
the packet's NET_BUFFER_LIST structure.

When the packet is delivered to its destination ports, the interface frees the
forwarding context from the packet's NET_BUFFER_LIST structure.

If an extensible switch extension injects a new or cloned packet into the extensible
switch data path, it must allocate the forwarding context before it calls
NdisFSendNetBufferLists.

After the extension allocates a NET_BUFFER_LIST structure for a new or cloned
packet, it must call the AllocateNetBufferListForwardingContext function to allocate
the forwarding context for the packet. When the send packet request is completed,
the extension must call FreeNetBufferListForwardingContext before it frees or
reuses the NET_BUFFER_LIST structure.

Note When the extension calls AllocateNetBufferListForwardingContext, the source
port for the packet is set to NDIS_SWITCH_DEFAULT_PORT_ID. This specifies that
the packet originated from an extension instead of arriving at an extensible switch
port. Under certain conditions, the extension may want to change the source port
for the packet. For more information, see Modifying a Packet's Extensible Switch
Source Port Data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_free_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context

For more information, see Hyper-V Extensible Switch Send and Receive Operations.

All extensible switch extensions can call the following extensible switch handler
functions to access the data within the packet's forwarding context:

AllocateNetBufferListForwardingContext
Allocates the extensible switch forwarding context and prepares a NET_BUFFER_LIST
structure for send or receive operations within the extensible switch.

CopyNetBufferListInfo
Copies the forwarding context from a source packet's NET_BUFFER_LIST structure to a
destination packet's NET_BUFFER_LIST structure. This data includes the extensible
switch source port and network adapter information. The extensible switch destination
port information can also be copied to the destination packet.

FreeNetBufferListForwardingContext
Frees the resources in the extensible switch forwarding context of a NET_BUFFER_LIST
structure. This data was used for send or receive operations in a Hyper-V extensible
switch, and was previously allocated by calling the
AllocateNetBufferListForwardingContext function.

GetNetBufferListDestinations
Returns the destination ports from the forwarding context of a packet's
NET_BUFFER_LIST structure.

A forwarding extension is responsible for adding destination ports for a packet, unless
the packet is an NVGRE packet. (For more information, see Hybrid Forwarding.) The
extension calls the following extensible switch handler functions to add or update the
destination ports within the packet's forwarding context:

AddNetBufferListDestination
Adds a single destination to the extensible switch forwarding context area for a packet
that is specified by a NET_BUFFER_LIST structure.

Note This call commits the change to the forwarding context area. In this case, the
forwarding extension does not need to call UpdateNetBufferListDestinations.

GrowNetBufferListDestinations
Increases the size of the destination port array in the forwarding context area of a
packet's NET_BUFFER_LIST structure.

UpdateNetBufferListDestinations
Commits modifications that the extension made to one or more extensible switch

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_free_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations

destination ports of a packet. This function updates the forwarding context of a packet's
NET_BUFFER_LIST structure with these changes.

Note After the forwarding extension commits the changes for destination ports to the
forwarding context, destination ports cannot be removed and only the IsExcluded
member of a destination port's NDIS_SWITCH_PORT_DESTINATION structure can be
changed. For more information, see Excluding Packet Delivery to Extensible Switch
Destination Ports.

Hyper-V Extensible Switch Forwarding Context

Hyper-V Extensible Switch Forwarding Context Data Types

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination

Hyper-V Extensible Switch Send and
Receive Flags
Article • 12/15/2021

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Packet traffic that moves over the Hyper-V extensible switch data path is obtained by
extensions in the following way:

An extension obtains a packet from the ingress data path when its
FilterSendNetBufferLists function is called. The extension forwards the packet to
underlying extensions on the ingress data path by calling
NdisFSendNetBufferLists. Filtering and forwarding extensions can also drop the
packet from the ingress data path by calling NdisFSendNetBufferListsComplete.

An extension obtains a packet from the egress data path when its
FilterReceiveNetBufferLists function is called. The extension forwards the packet to
overlying extensions on the egress data path by calling
NdisFIndicateReceiveNetBufferLists. Filtering and forwarding extensions can also
drop the packet from the egress data path by calling NdisFReturnNetBufferLists.

The following flags may be set in the SendFlags parameter of FilterSendNetBufferLists or
NdisFSendNetBufferLists:

NDIS_SEND_FLAGS_SWITCH_SINGLE_SOURCE
If this flag is set, all packets in a linked list of NET_BUFFER_LIST structures originated
from the same Hyper-V extensible switch source port.

When NDIS calls FilterSendNetBufferLists, it will set this flag if the extensible switch
extensible interface has grouped multiple packets from the same source port. For the
best performance, the extensions should keep this grouping in place and set this flag
when it calls NdisFSendNetBufferLists. The extension can also add any originated or
cloned packets to the linked list of NET_BUFFER_LIST structures if the extension uses the
same source port as the other packets in the list.

Note If each packet in the linked list of NET_BUFFER_LIST structures uses the same
source port, the extension should set the
NDIS_SEND_COMPLETE_FLAGS_SWITCH_SINGLE_SOURCE flag in the
SendCompleteFlags parameter of NdisFSendNetBufferListsComplete when it completes
the send request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete

NDIS_SEND_FLAGS_SWITCH_DESTINATION_GROUP
If this flag is set, all packets in a linked list of NET_BUFFER_LIST structures are to be
forwarded to the same extensible switch destination port.

A forwarding extension can use this flag for a linked list of NET_BUFFER_LIST structures
that it forwards on the ingress data path after it determines each packet's destination
ports. This flag is consumed and removed by the underlying miniport edge of the
extensible switch before it forwards the packets up the egress data path.

Capturing and filtering extensions cannot use this flag.

Note The forwarding extension only determines the packet's destination ports for non-
NVGRE packets. If the packet is an NVGRE packet, the Hyper-V Network Virtualization
(HNV) component determines the packet's destination ports and forwards the packet.
For more information, see Hybrid Forwarding.

For the best performance, forwarding extensions should set this flag if all packets in the
linked list are to be forwarded to the same destination port. By setting this flag, the
extension is acknowledging that all packets in the linked list have the same destination
port elements in the extensible switch forwarding context.

Note The forwarding extension must not set this flag for a linked list of packets that
have multiple destination ports.

The following flags may be set in the ReceiveFlags parameter of
FilterReceiveNetBufferLists or NdisFIndicateReceiveNetBufferLists:

NDIS_RECEIVE_FLAGS_SWITCH_SINGLE_SOURCE
If this flag is set, all packets in a linked list of NET_BUFFER_LIST structures originated
from the same Hyper-V extensible switch source port.

When NDIS calls FilterReceiveNetBufferLists, it will set this flag if the extensible switch
has grouped multiple packets from the same source port. For the best performance, the
extensions should keep this grouping in place and set this flag when it calls
NdisMIndicateReceiveNetBufferLists. The extensions should also add any originated or
cloned packets to the linked list of NET_BUFFER_LIST structures if the packet has the
same source port as the other packets in the list.

Note If each packet in the linked list of NET_BUFFER_LIST structures use the same
source port, the extension should set the
NDIS_RETURN_FLAGS_SWITCH_SINGLE_SOURCE flag in the ReturnFlags parameter of
FilterReturnNetBufferLists when the receive request completes. The extension must set
this flag in the ReturnFlags parameter if it calls NdisFReturnNetBufferLists to return
packets that it did not originate or clone.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists

NDIS_RECEIVE_FLAGS_SWITCH_DESTINATION_GROUP
If this flag is set, all packets in a linked list of NET_BUFFER_LIST structures are to be
forwarded to the same extensible switch destination port.

When NDIS calls FilterReceiveNetBufferLists, it will set this flag if the extensible switch
has grouped multiple packets that have the same destination ports. For the best
performance, the extensions should keep this grouping in place and set this flag when it
calls NdisMIndicateReceiveNetBufferLists. The extensions should also add any
originated or cloned packets to the linked list of NET_BUFFER_LIST structures if the
packet has the same destination ports as the other packets in the list.

Note When an extension calls NdisFIndicateReceiveNetBufferLists, it must not set the
NDIS_RECEIVE_FLAGS_RESOURCES flag in the ReceiveFlags parameter. The extensible
switch interface ignores this flag and will complete the receive indication by calling
FilterReturnNetBufferLists.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_receive_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists

Hyper-V Extensible Switch Control Path
Topics
Article • 12/15/2021

This section discusses the control path that Hyper-V extensible switch object identifier
(OID) requests and NDIS status indications move across.

This section includes the following topics:

Hyper-V Extensible Switch Control Path for OID Requests

Hyper-V Extensible Switch Control Path for NDIS Status Indications

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

Hyper-V Extensible Switch Control Path
for OID Requests
Article • 12/15/2021

This topic discusses the control path that Hyper-V extensible switch object identifier
(OID) requests move across.

The following figure shows the extensible switch control path for OID requests for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows the extensible switch control path for OID requests for NDIS
6.30 (Windows Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

Extensible switch extensions, such as filtering and forwarding extensions, are responsible
for allowing or rejecting packet traffic based on port or switch policies. In order for these
extensions to apply policy decisions, these extensions must be able to do the following:

Receive the necessary information from the extensible switch interface about the
new or updated configuration and state of the extensible switch, its ports, and its
network adapter connections.

Receive the necessary information from the extensible switch interface about the
new or updated properties for a switch or port policy.

Issue OID requests to the extensible switch interface to obtain the current
configuration of the extensible switch, its ports, and its network adapter
connections.

The extensible switch interface notifies underlying extensions about changes to its
component configuration and policy parameters by issuing extensible switch OID set
requests. These requests are issued by the protocol edge of the extensible switch to
notify underlying extension about these changes. These OID requests move through the
extensible switch driver stack to the underlying miniport edge of the extensible switch.

The miniport edge of the extensible switch is responsible for completing the OID
requests. However, with some extensible switch OID requests, an underlying extension
can fail an OID request in order to veto a notification. For example, when the protocol
edge of the extensible switch notifies the extensions about a new port that will be
created, it issues an OID set request of OID_SWITCH_PORT_CREATE. An underlying

filtering or forwarding extension can veto the port creation by completing the OID
request with STATUS_DATA_NOT_ACCEPTED. For more information on this procedure,
see Receiving OID Requests about Hyper-V Extensible Switch Configuration Changes.

Note If the extension does not veto an extensible switch OID request, it should monitor
the status when the request is completed. The extension should do this to determine
whether the OID request was vetoed by underlying extensions in the extensible switch
control path or by the extensible switch interface.

Note Stack restart requests using NdisFRestartFilter will not complete while an
extensible switch OID request is pending. For this reason, an extension that is waiting for
a stack restart must complete any ongoing OID requests.

Most of the extensible switch OID requests can only be issued by the extensible switch
interface. However, some extensible switch OID requests can be issued by an extension
to obtain information about the configuration of the extensible switch, its ports, and its
network adapter connections. For more information, see Querying the Hyper-V
Extensible Switch Configuration.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfrestartfilter

Hyper-V Extensible Switch Control Path
for NDIS Status Indications
Article • 03/14/2023

This topic discusses the control path that NDIS status indications from an underlying
physical adapter move across. One or more underlying physical adapters can be teamed
with the Hyper-V extensible switch external network adapter.

For example, the extensible switch external network adapter can be bound to the virtual
miniport edge of an NDIS multiplexer (MUX) intermediate driver. The MUX intermediate
driver itself can be bound to a team of one or more physical networks on the host. This
configuration is known as an extensible switch team. For more information about
extensible switch teams, see Types of Physical Network Adapter Configurations.

In this configuration, the extensible switch extensions are exposed to every network
adapter in the extensible switch team. This allows the forwarding extension in the
extensible switch driver stack to manage the configuration and use of individual network
adapters in the team. For example, the extension can provide support for a load
balancing failover (LBFO) solution over the team by forwarding outgoing packets to
individual adapters. Such an extension is known as a teaming provider. For more
information about teaming providers, see Teaming Provider Extensions.

Note Operations of this sort can only be performed by a forwarding extension. For
more information about this type of driver, see Forwarding Extensions.

The following figure shows the extensible switch control path for NDIS status indications
issued by an underlying extensible switch team for NDIS 6.40 (Windows Server 2012 R2)
and later.

The following figure shows the extensible switch control path for NDIS status indications
issued by an underlying extensible switch team for NDIS 6.30 (Windows Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

The extensible switch supports NDIS status indications from the underlying physical
adapter or extensible switch team in the following ways:

When an NDIS status indication arrives at the extensible switch interface, it
encapsulates the indication inside an NDIS_SWITCH_NIC_STATUS_INDICATION
structure. Then, the miniport edge of the extensible switch issues an
NDIS_STATUS_SWITCH_NIC_STATUS indication that contains this structure.

When a forwarding extension receives this indication, it can duplicate the
indication to change the encapsulated data. This allows the forwarding extension
to change the indicated status or capabilities of the underlying extensible switch
team.

A forwarding extension that operates as a teaming provider can participate in the
configuration of the adapter team for hardware offloads by initiating
NDIS_STATUS_SWITCH_NIC_STATUS indications that are related to the offload
technology.

For example, the provider can initiate an NDIS_STATUS_SWITCH_NIC_STATUS
indication with an encapsulated

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES indication to modify the
offload capabilities for the virtual machine queue (VMQ) on the adapter team.

Teaming providers can also initiate an NDIS_STATUS_SWITCH_NIC_STATUS
indication to modify other network adapter configurations other than an extensible
switch team.

For example, the extension can initiate an NDIS_STATUS_SWITCH_NIC_STATUS
with an encapsulated NDIS_STATUS_SWITCH_PORT_REMOVE_VF indication. This
indication removes the binding between a virtual machine (VM) network adapter
and a PCI Express (PCIe) virtual function (VF). The VF is exposed by an underlying
physical network adapter that supports the single root I/O virtualization (SR-IOV)
interface.

After this binding is removed, packets are delivered through an extensible switch
port instead of directly between the VM network adapter and the VF of the
underlying SR-IOV physical adapter. This allows the extensible switch port policies
to be applied to packets that are received or sent over the extensible switch port.

Note The extensible switch extension must follow the same guidelines for filtering NDIS
status indications that applies to all NDIS filter drivers. For more information, see Filter
Module Status Indications.

For more information on how forwarding extensions can initiate
NDIS_STATUS_SWITCH_NIC_STATUS indications, see Managing NDIS Status Indications
from Physical Network Adapters.

Hyper-V Extensible Switch Policies
Topics
Article • 12/15/2021

The Hyper-V platform and the extensible switch interface provide an infrastructure to
manage switch and port policies for an extensible switch through PowerShell cmdlets
and WMI. Hyper-V also provides the infrastructure to store and migrate policies.

This section includes the following topics that describe the various extensible switch
policies:

Overview of Hyper-V Extensible Switch Policies

Port Policies

Switch Policies

Overview of Hyper-V Extensible Switch
Policies
Article • 12/15/2021

The Hyper-V platform and the extensible switch interface provide an infrastructure to
manage switch and port policies for an extensible switch. These policies are managed
through PowerShell cmdlets and WMI-based application programs. This infrastructure
also provides support for the storage and migration of policies.

Independent software vendors (ISVs) can use this infrastructure to register their own
custom policies. After they are registered, these policies can be discovered and
managed through the built-in Hyper-V policy interfaces. Properties of policies can be
configured either on a per-port level or a per-switch level.

In addition to custom policy properties, the Hyper-V extensible switch interface provides
the infrastructure to obtain status information for custom policy properties on a per-
port or a per-switch basis. This status information is known as feature status information.

Extensible switch custom policy data is registered with the WMI management layer by
using managed object format (MOF) class definitions. The following shows an example
of a MOF class for a custom port policy property.

C++

#pragma namespace("\\\\.\\root\\virtualization\\v2")

[Dynamic,
 UUID("F2F73F23-2B8E-457a-96C4-F541201C9150"),
 ExtensionId("5CBF81BE-5055-47CD-9055-A76B2B4E369E"),
 Provider("VmmsWmiInstanceAndMethodProvider"),
 Locale(0x409),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
DisplayName("VendorName Port Settings Friendly Name") : Amended,
Description("VendorName Port Settings detailed description.") : Amended]
class Vendor_SampleFeatureSettingData:
Msvm_EthernetSwitchPortFeatureSettingDataMsvm
{
 [WmiDataId(1),
 InterfaceVersion("1"),
 InterfaceRevision("0")]
 uint8 IntValue8 = 0;

 [WmiDataId(2),
 InterfaceVersion("1"),
 InterfaceRevision("0")]

The WMI management layer serializes the MOF data when it is transferred to an
underlying extensible switch extension. The MOF class is serialized to a corresponding C
structure that can be processed by the Hyper-V extensible switch extension. The
following shows an example of the C structure that was serialized for the MOF class
from the previous example.

C++

 uint16 IntValue16 = 0;

 [WmiDataId(3),
 InterfaceVersion("1"),
 InterfaceRevision("0")]
 uint32 IntValue32 = 0;

 [WmiDataId(4),
 InterfaceVersion("1"),
 InterfaceRevision("0")]
 uint64 IntValue64 = 0;

 [WmiDataId(5),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 MaxLen(255)]
 string FixedLengthString = "";

 [WmiDataId(6),
 InterfaceVersion("1"),
 InterfaceRevision("0")]
 string VariableLengthString = "";

 [WmiDataId(7),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Max(8)]
 uint32 FixedLengthArray[] = {};

 [WmiDataId(8),
 InterfaceVersion("1"),
 InterfaceRevision("0")]
 uint32 VariableLengthArray[] = {};

};

#pragma pack(8)

typedef struct _VARIABLE_LENGTH_ARRAY
{
 UINT32 Buffer[1];
} VARIABLE_LENGTH_ARRAY;

typedef struct _SAMPLE_FEATURE_SETTINGS

This example highlights the following points that occur when a MOF class is serialized to
a corresponding C structure for an extensible switch policy property:

The version definition in MOF files is converted into a USHORT value, where the
high-order bits contain the major version and the low-order bits contain the minor
version. The version is serialized by using the following code:

(((MajorVersion) << 8) + (MinorVersion))

For example, Version("1") above would be serialized to a value of 0x0100 through
(((1) << 8) + (0)) . Version ("1.1") would be serialized to a value of 0x0101
through (((1) << 8) + (1)) .

When a custom policy property is issued to an underlying extension, the
PropertyVersion member of the structures that define policy properties contains
the serialized version value.

For example, when the extensible switch interface issues an object identifier (OID)
request of OID_SWITCH_PORT_PROPERTY_ADD, the OID is associated with an
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure. The PropertyVersion
member of that structure contains the serialized version value.

All variable-length strings are serialized into offsets within the buffer that contains
the serialized C structure. Each variable-length string is formatted as a
VARIABLE_LENGTH_STRING structure within this buffer offset.

{
 UINT8 IntValue8;
 UINT32 IntValue16;
 UINT32 IntValue32;
 UINT64 IntValue64;
 UINT16 FixedLengthStringByteCount;
 WCHAR FixedLengthString[256];
 UINT32 VariableLengthStringOffset; // offset to
VARIABLE_LENGTH_STRING structure
 UINT32 FixedLengthArrayElementCount;
 UINT32 FixedLengthArray[8];
 UINT32 VariableLengthArrayElementCount;
 UINT32 VariableLengthArrayOffset; // offset to VARIABLE_LENGTH_ARRAY
} SAMPLE_FEATURE_SETTINGS;

typedef struct _VARIABLE_LENGTH_STRING
{
 USHORT StringLength;
 WCHAR StringBuffer[1];
} VARIABLE_LENGTH_STRING;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters

Port Policies
Article • 12/15/2021

This section includes the following topics that describe custom properties for Hyper-V
extensible switch port policies:

Overview of Port Policies

Custom Port Property Definition and Registration

Overview of Port Policies
Article • 12/15/2021

Starting with NDIS 6.30, the following types of policies are supported for Hyper-V
extensible switch ports:

Built-in Port Policies
Built-in port policies specify properties that are enforced by the extensible switch
interface. Extensions in the extensible switch driver stack are not provisioned with the
properties of these policies.

Built-in port policies include access control lists (ACLs) and quality of service (QoS)
properties. When a packet arrives at the miniport edge of the extensible switch on the
ingress data path, the switch filters the packet and enforces these policies. If the packet
passes the filtering, the switch forwards the packet up the egress data path for
additional handling and filtering by overlying extensions.

For more information about the extensible switch data path, see Hyper-V Extensible
Switch Data Path.

Standard Port Policies
Standard port policies specify security, profile, or virtual LAN (VLAN) properties. These
properties are provisioned by object identifier (OID) requests issued by the protocol
edge of the extensible switch. If a forwarding extension is not installed and enabled in
the extensible switch data path, these policies are enforced by the underlying extensible
switch's miniport edge. Otherwise, the forwarding extension enforces these policies if it
allows the policy to be provisioned.

Standard port properties are specified by an NDIS_SWITCH_PORT_PROPERTY_TYPE
enumeration value of NdisSwitchPortPropertyTypeSecurity,
NdisSwitchPortPropertyTypeVlan, and NdisSwitchPortPropertyTypeProfile.

Note If a forwarding extension does not manage or enforce VLAN port properties, it
must return STATUS_DATA_NOT_ACCEPTED for the OID_SWITCH_PORT_PROPERTY_ADD
and OID_SWITCH_PORT_PROPERTY_UPDATE requests that add or update the property.
VLAN port properties have a property type of NdisSwitchPortPropertyTypeVlan.

Custom Port Policies
Custom port policies specify proprietary properties that are defined by an independent
software vendor (ISV). These properties are provisioned by OID requests issued by the
extensible switch's protocol edge of the extensible switch and enforced by the
underlying extension that manages the custom port policy.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_port_property_type

Custom port properties are defined through managed object format (MOF) class
definitions. The ISV defines the format of the custom port properties through the MOF
class definition. After the MOF file is registered with the WMI management layer, the
underlying extensions are provisioned with the custom port policy.

A custom port property is specified by NDIS_SWITCH_PORT_PROPERTY_TYPE
enumeration value of NdisSwitchPortPropertyTypeCustom. Each custom port property
is uniquely defined through a GUID value. The extension manages those custom port
properties for which it has been configured with the property's GUID value.

Note The method by which the extension is configured with the property's GUID value
is proprietary to the ISV.

Standard and custom port policies are provisioned through the following OID requests:

The protocol edge issues OID set requests of OID_SWITCH_PORT_PROPERTY_ADD
to notify underlying extensions of the addition of a standard or custom port
property.

The protocol edge issues OID set requests of
OID_SWITCH_PORT_PROPERTY_UPDATE to notify underlying extensions of the
update to a standard or custom port property.

The protocol edge issues OID set requests of
OID_SWITCH_PORT_PROPERTY_DELETE to notify underlying extensions of the
deletion of a standard or custom port property.

A forwarding extension can block the provisioning of the new or updated port policy by
vetoing the OID request. The extension does this by completing the OID request with
STATUS_DATA_NOT_ACCEPTED. If the extension does not veto the OID request, it must
call NdisFOidRequest to forward the OID request down the extensible switch control
path.

Note If the extension does not veto the OID request, it monitors the status when the
request is completed. The extension does this to determine whether the OID request
was vetoed by underlying extensions in the extensible switch control path or by the
extensible switch interface.

For more information on how to manage port policies and properties, see Managing
Port Policies.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_port_property_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Custom Port Property Definition and
Registration
Article • 12/15/2021

Custom property definitions for a Hyper-V extensible switch port policy are registered
with the WMI management layer by using managed object format (MOF) class
definitions. In addition to the structure members that define the attributes of the
custom port property, the MOF class must also contain the following:

A UUID that uniquely identifies the custom port property.

A GUID that uniquely identifies the extensible switch extension. This GUID is
declared as the ExtensionId qualifier of the MOF class and must match the value of
the NetCfgInstanceId entry that is declared in the extension's INF file.

A descriptive class name string. The name of the vendor must be included in the
string.

The following shows an example of a MOF class for a custom property of an extensible
switch port policy.

C++

#pragma namespace("\\\\.\\root\\virtualization\\v2")

[Dynamic,
 UUID("EB29F0F2-F5DC-45C6-81BB-3CD9F219BBBB"),
 ExtensionId("5CBF81BE-5055-47CD-9055-A76B2B4E369E"),
 Provider("VmmsWmiInstanceAndMethodProvider"),
 Locale(0x409),
 InterfaceVersion("1"),
 InterfaceRevison("0"),
DisplayName("Fabrikam, Inc. Port Settings Friendly Name") : Amended,
Description("Fabrikam, Inc. Port Settings detailed description.") : Amended]
class Fabrikam_PortCustomSettingData :
Msvm_EthernetSwitchPortFeatureSettingData {

 [Read,
 Write,
 WmiDataId(1),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description (
 "int32 setting.") : Amended]
 uint32 SettingIntA = 0;

 [Read,

The MOF classes for custom properties of a port policy are registered in the common
information model (CIM) repository by using the MOF compiler (Mofcomp.exe). Once
registered, the MOF class can be configured through PowerShell cmdlets and WMI-
based application programs.

The following example shows the commands that must be entered to register a file
(Fabrikam_PortCustomSettingData.mof) that contains the MOF class for a custom port
property.

PowerShell

For more information about how to use the MOF compiler, see Compiling a Driver's
MOF File.

The following example shows how you can configure the sample feature. In this
example, the Fabrikam_PortCustomSettingData MOF class is used to configure a port
from a Hyper-V partition named "TestVm".

PowerShell

 Write,
 WmiDataId(2),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description (
 "int64 setting.") : Amended]
 uint64 SettingIntB = 0;
};

net stop vmms
mofcomp -N:root\virtualization\v2 Fabrikam_PortCustomSettingData.mof
net start vmms

Retrieve the template object for the custom configuration. We know the ID
already so
we can retrieve it directly, otherwise Get-
VmSystemSwitchExtensionPortFeature can list all available
properties.
PS C:\> $feature = Get-VMSystemSwitchExtensionPortFeature -FeatureId
EB29F0F2-F5DC-45C6-81BB-3CD9F219BBBB

Output the values
PS C:\> $feature

Id : eb29f0f2-f5dc-45c6-81bb-3cd9f219bbbb
ExtensionId : 5cbf81bd-5055-47cd-9055-a76b2b4e369d
ExtensionName : Fabrican Extension
Name : Fabrikam, Inc. Port Settings Friendly Name

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/compiling-a-driver-s-mof-file

ComputerName : TEST_SERVER
SettingData :
\\TEST_SERVER\root\virtualization\v2:VendorName_SwitchPortCustomSettingData.
InstanceID="Microsoft:Defini
 tion\\EB29F0F2-F5DC-45C6-81BB-3CD9F219BBBB\\Default"

Cast the SettingsData to a WMI object to see the actual configurable
values.
PS C:\> $wmiObj = [wmi]$feature.SettingData
PS C:\> $wmiObj

__GENUS : 2
__CLASS : Fabrikam_PortCustomSettingData
__SUPERCLASS : Msvm_EthernetSwitchFeatureSettingData
__DYNASTY : CIM_ManagedElement
__RELPATH :
Fabrikam_PortCustomSettingData.InstanceID="Microsoft:Definition\\EB29F0F2-
F5DC-45C6-81BB-3CD
 9F219BBBB\\Default"
__PROPERTY_COUNT : 6
__DERIVATION : {Msvm_EthernetSwitchFeatureSettingData, CIM_SettingData,
CIM_ManagedElement}
__SERVER : TEST_SERVER
__NAMESPACE : root\virtualization\v2
__PATH :
\\TEST_SERVER\root\virtualization\v2:Fabrikam_PortCustomSettingData.Instance
ID="Microsoft:Def
 inition\\EB29F0F2-F5DC-45C6-81BB-3CD9F219BBBB\\Default"
Caption : Fabrikam, Inc. Port Settings Friendly Name
Description : Fabrikam, Inc. Port Settings detailed description.
ElementName : Fabrikam, Inc. Port Settings Friendly Name
InstanceID : Microsoft:Definition\EB29F0F2-F5DC-45C6-81BB-
3CD9F219BBBB\Default
SettingIntA : 0
SettingIntB : 0

Update the property settings and add to the NIC attached to TestVm
PS C:\> $wmiObj.SettingIntA = 100
PS C:\> $wmiObj.SettingIntB = 9999
PS C:\> Add-VMSwitchExtensionPortFeature -VMSwitchExtensionFeature $feature
-VmName TestVm

Validate that the properties are now set on the VM’s NIC
PS C:\> $feature = Get-VmSwitchExtensionPortFeature -FeatureId EB29F0F2-
F5DC-45C6-81BB-3CD9F219BBBB -VmName TestVm

PS C:\> [wmi]$feature.SettingData

__GENUS : 2
__CLASS : Fabrikam_PortCustomSettingData
__SUPERCLASS : Msvm_EthernetSwitchFeatureSettingData
__DYNASTY : CIM_ManagedElement
__RELPATH :
Fabrikam_PortCustomSettingData.InstanceID="Microsoft:6208FB20-2490-4DC1-

For more information on how extensible switch extensions manage port policies, see
Managing Port Policies.

B121-877B68B4CE11\\4
 DDC57F5-6DAE-4A36-9D62-7A838D5601F2\\C\\EB29F0F2-F5DC-
45C6-81BB-3CD9F219BBBB\\CB323B56-FA54-4506-B58
 B-78C70C0B3229"
__PROPERTY_COUNT : 6
__DERIVATION : {Msvm_EthernetSwitchFeatureSettingData, CIM_SettingData,
CIM_ManagedElement}
__SERVER : TEST_SERVER
__NAMESPACE : root\virtualization\v2
__PATH :
\\TEST_SERVER\root\virtualization\v2:Fabrikam_PortCustomSettingData.Instance
ID="Microsoft:620
 8FB20-2490-4DC1-B121-877B68B4CE11\\4DDC57F5-6DAE-4A36-
9D62-7A838D5601F2\\C\\EB29F0F2-F5DC-45C6-81BB-
 3CD9F219BBBB\\CB323B56-FA54-4506-B58B-78C70C0B3229"
Caption : Fabrikam, Inc. Port Settings Friendly Name
Description : Fabrikam, Inc. Port Settings detailed description.
ElementName : Fabrikam, Inc. Port Settings Friendly Name
InstanceID : Microsoft:6208FB20-2490-4DC1-B121-877B68B4CE11\4DDC57F5-
6DAE-4A36-9D62-7A838D5601F2\C\EB29F0F2-F5DC-
 45C6-81BB-3CD9F219BBBB\CB323B56-FA54-4506-B58B-
78C70C0B3229
SettingIntA : 100
SettingIntB : 9999

Switch Policies
Article • 12/15/2021

This section includes the following topics that describe custom properties for Hyper-V
extensible switch policies:

Overview of Switch Policies

Custom Switch Property Definition and Registration

Overview of Switch Policies
Article • 12/15/2021

Starting with NDIS 6.30, the following types of policies are supported for Hyper-V
extensible switches:

Built-in Switch Policies
Built-in switch policies specify properties that are enforced by the extensible switch
interface. Extensions in the extensible switch driver stack are not provisioned with the
properties of these policies.

Built-in switch policies include properties that affect the switch configuration in general
but do not affect traffic flow over individual switch ports. For example, one such built-in
policy configures the switch to allow hardware offloads to physical adapters that
support the single root I/O virtualization (SR-IOV) interface. For more information about
this interface, see Single Root I/O Virtualization (SR-IOV).

Custom Switch Policies
Custom switch policies specify proprietary properties that are defined by an
independent software vendor (ISV). These properties are provisioned by the protocol
edge of the extensible switch and enforced by the underlying extension that manages
the custom switch policy.

The ISV defines the format for the custom switch properties. The format of the custom
switch property is proprietary to the ISV.

Custom switch properties are defined through managed object format (MOF) class
definitions. After the MOF file is registered with the WMI management layer, the
underlying extensions are provisioned with the custom switch policy.

A custom switch property is specified by the NDIS_SWITCH_PROPERTY_TYPE
enumeration value of NdisSwitchPropertyTypeCustom. Each custom switch property is
uniquely defined through a GUID value. The extension manages those custom switch
properties for which it has been configured with the property's GUID value.

Note The method by which the extension is configured with the property's GUID value
is proprietary to the ISV.

Custom switch policies are provisioned through the following OID requests:

The protocol edge issues OID set requests of OID_SWITCH_PROPERTY_ADD to
notify underlying extensions of the addition of a custom switch property.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_property_type

The protocol edge issues OID set requests of OID_SWITCH_PROPERTY_UPDATE to
notify underlying extensions of the update to a custom switch property.

The protocol edge issues OID set requests of OID_SWITCH_PROPERTY_DELETE to
notify underlying extensions of the deletion of a custom switch property.

A forwarding extension can block the provisioning of the new or updated switch policy
by vetoing the OID request. The extension does this by completing the OID request with
STATUS_DATA_NOT_ACCEPTED. If the extension does not veto the OID request, it must
call NdisFOidRequest to forward the OID request down the extensible switch control
path.

Note If the extension does not veto the OID request, it monitors the status when the
request is completed. The extension does this to determine whether the OID request
was vetoed by underlying extensions in the extensible switch control path or by the
extensible switch interface.

For more information on how to manage switch policies and properties, see Managing
Switch Policies.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Custom Switch Property Definition and
Registration
Article • 12/15/2021

Custom property definitions for a Hyper-V extensible switch policy are registered with
the WMI management layer by using managed object format (MOF) class definitions. In
addition to the structure members that define the attributes of the custom switch
property, the MOF class must also contain the following:

A UUID that uniquely identifies the custom switch property.

A GUID that uniquely identifies the extensible switch extension. This GUID is
declared as the ExtensionId qualifier of the MOF class and must match the value of
the NetCfgInstanceId entry that is declared in the extension's INF file.

A descriptive class name string. The name of the vendor must be included in the
string.

The following shows an example of a MOF class for a custom property of an extensible
switch policy.

C++

#pragma namespace("\\\\.\\root\\virtualization\\v2")

[Dynamic,
 UUID("FF36C3A6-D2F1-46ed-A376-32B43D6B8390"),
 ExtensionId("5CBF81BE-5055-47CD-9055-A76B2B4E369E"),
 Provider("VmmsWmiInstanceAndMethodProvider"),
 Locale(0x409),
 InterfaceVersion("1"),
 InterfaceRevison("0"),
DisplayName("Fabrikam, Inc. Switch Settings Friendly Name") : Amended,
Description("Fabrikam, Inc. Switch Settings detailed description.") :
Amended]
class Fabrikam_SwitchCustomSettingData :
Msvm_EthernetSwitchFeatureSettingData {

 [Read,
 Write,
 WmiDataId(1),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description (
 "int32 setting.") : Amended]
 uint32 SwitchSettingIntA = 0;

The MOF classes for custom properties of a switch policy are registered in the common
information model (CIM) repository by using the MOF compiler (Mofcomp.exe). Once
registered, the MOF class can be configured through PowerShell cmdlets and WMI-
based application programs.

The following example shows the commands that must be entered to register a file
(Fabrikam_SwitchCustomSettingData.mof) that contains the MOF class for a custom port
property.

PowerShell

For more information about how to use the MOF compiler, see Compiling a Driver's
MOF File.

The following example shows how you can configure the sample feature. In this
example, the Fabrikam_SwitchCustomSettingData MOF class is used to configure a
switch named “TestSwitch”.

PowerShell

 [Read,
 Write,
 WmiDataId(2),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description (
 "int64 setting.") : Amended]
 uint64 SwitchSettingIntB = 0;
};

net stop vmms
mofcomp -N:root\virtualization\v2 Fabrikam_SwitchCustomSettingData.mof
net start vmms

Retrieve the template object for the custom configuration. We know the ID
already so
we can retrieve it directly, otherwise Get-
VMSystemSwitchExtensionSwitchFeature can list all available
properties.
PS C:\> $feature = Get-VMSystemSwitchExtensionSwitchFeature -FeatureId
FF36C3A6-D2F1-46ed-A376-32B43D6B8390

Output the values
PS C:\temp> $feature

Id : ff36c3a6-d2f1-46ed-a376-32b43d6b8390
ExtensionId : 5CBF81BE-5055-47CD-9055-A76B2B4E369E

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/compiling-a-driver-s-mof-file

ExtensionName : Fabrican Extension
Name : Fabrikam, Inc. Switch Settings Friendly Name
ComputerName : TEST_SERVER
SettingData :
\\TEST_SERVER\root\virtualization\v2:VendorName_SwitchCustomSettingData.Inst
anceID="Microsoft:Definition\\
 FF36C3A6-D2F1-46ED-A376-32B43D6B8390\\Default"

Cast the SettingsData to a WMI object to see the actual configurable
values.
PS C:\> $wmiObj = [wmi]$feature.SettingData
PS C:\> $wmiObj

__GENUS : 2
__CLASS : Fabrikam_SwitchCustomSettingData
__SUPERCLASS : Msvm_EthernetSwitchFeatureSettingData
__DYNASTY : CIM_ManagedElement
__RELPATH : Fabrikam_SwitchCustomSettingData
.InstanceID="Microsoft:Definition\\FF36C3A6-D2F1-46ED-A376-32B43D
 6B8390\\Default"
__PROPERTY_COUNT : 6
__DERIVATION : {Msvm_EthernetSwitchFeatureSettingData,
Msvm_FeatureSettingData, CIM_SettingData,
 CIM_ManagedElement}
__SERVER : TEST_SERVER
__NAMESPACE : root\virtualization\v2
__PATH :
\\TEST_SERVER\root\virtualization\v2:Fabrikam_SwitchCustomSettingData
.InstanceID="Microsoft:Definiti
 on\\FF36C3A6-D2F1-46ED-A376-32B43D6B8390\\Default"
Caption : Fabrikam, Inc. Switch Settings Friendly Name
Description : Fabrikam, Inc. Switch Settings detailed description.
ElementName : Fabrikam, Inc. Switch Settings Friendly Name
InstanceID : Microsoft:Definition\FF36C3A6-D2F1-46ED-A376-
32B43D6B8390\Default
SwitchSettingIntA : 0
SwitchSettingIntB : 0
PSComputerName : TEST_SERVER

Update the property settings and add to the NIC attached to TestVm
PS C:\> $wmiObj.SwitchSettingIntA = 100
PS C:\> $wmiObj.SwitchSettingIntB = 9999
PS C:\> Add-VMSwitchExtensionSwitchFeature -VMSwitchExtensionFeature
$feature -SwitchName TestSwitch

Validate that the properties are now set on the VM’s NIC
PS C:\> $feature = Get-VmSwitchExtensionSwitchFeature -FeatureId FF36C3A6-
D2F1-46ed-A376-32B43D6B8390 -SwitchName TestSwitch

PS C:\> [wmi]$feature.SettingData

__GENUS : 2
__CLASS : Fabrikam_SwitchCustomSettingData

For more information on how extensible switch extensions manage switch policies, see
Managing Switch Policies.

__SUPERCLASS : Msvm_EthernetSwitchFeatureSettingData
__DYNASTY : CIM_ManagedElement
__RELPATH : Fabrikam_SwitchCustomSettingData
.InstanceID="Microsoft:88835394-FDE1-437C-B249-D840575154E2\\FF36
 C3A6-D2F1-46ED-A376-32B43D6B8390\\F9EA07E7-7B73-431A-
8705-26EC2B592306"
__PROPERTY_COUNT : 6
__DERIVATION : {Msvm_EthernetSwitchFeatureSettingData,
Msvm_FeatureSettingData, CIM_SettingData,
 CIM_ManagedElement}
__SERVER : TEST_SERVER
__NAMESPACE : root\virtualization\v2
__PATH :
\\TEST_SERVER\root\virtualization\v2:Fabrikam_SwitchCustomSettingData
.InstanceID="Microsoft:88835394
 -FDE1-437C-B249-D840575154E2\\FF36C3A6-D2F1-46ED-A376-
32B43D6B8390\\F9EA07E7-7B73-431A-8705-26EC2B5
 92306"
Caption : Fabrikam, Inc. Switch Settings Friendly Name
Description : Fabrikam, Inc. Switch Settings detailed description.
ElementName : Fabrikam, Inc. Switch Settings Friendly Name
InstanceID : Microsoft:88835394-FDE1-437C-B249-D840575154E2\FF36C3A6-
D2F1-46ED-A376-32B43D6B8390\F9EA07E7-7B73-4
 31A-8705-26EC2B592306
SwitchSettingIntA : 100
SwitchSettingIntB : 9999
PSComputerName : TEST_SERVER

Hyper-V Extensible Switch Feature
Status Information Overview
Article • 12/15/2021

The Hyper-V extensible switch interface supports the ability to obtain custom status
information for an extensible switch or one of its ports. This status information is known
as feature status information.

This section includes the following topics that describe the support for feature status
information:

Custom Port Feature Status

Custom Switch Feature Status

Custom Port Feature Status
Article • 12/15/2021

The Hyper-V platform and Hyper-V extensible switch interface provide the infrastructure
to obtain custom status information for an extensible switch port. This information is
known as port feature status information.

Custom feature status definitions for a Hyper-V extensible switch port property are
registered with the WMI management layer by using managed object format (MOF)
class definitions. In addition to the structure members that define the attributes of the
custom port feature status definition, the MOF class must also contain the following:

A UUID that uniquely identifies the custom port feature status definition.

A GUID that uniquely identifies the extensible switch extension. This GUID is
declared as the ExtensionId qualifier of the MOF class and must match the value of
the NetCfgInstanceId entry that is declared in the extension's INF file.

A descriptive class name string. The name of the vendor must be included in the
string.

The following shows an example of a MOF class for a custom feature status definition of
an extensible switch port.

C++

#pragma namespace("\\\\.\\root\\virtualization\\v2")

[Dynamic,
 UUID("DAA0B7CC-74DB-41ef-8354-7002F9FA463E"),
 ExtensionId("5CBF81BE-5055-47CD-9055-A76B2B4E369E"),
 Provider("VmmsWmiInstanceAndMethodProvider"),
 InterfaceVersion("1"),
 InterfaceRevison("0"),
 Locale(0x409),
 Description("Fabricam, Inc. port custom feature status description.") :
Amended,
 DisplayName("Fabricam, Inc.port custom feature status friendly name.") :
Amended]
class Fabrikam_CustomPortData : Msvm_EthernetPortData {
 [Read,
 Write,
 WmiDataId(1),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description(
 "The current status of custom feature on this port.") : Amended]

The MOF classes for custom feature status definition of a port are registered in the
common information model (CIM) repository by using the MOF compiler
(Mofcomp.exe). After it is registered, the MOF class can be configured through
PowerShell cmdlets and WMI-based application programs.

The following example shows the commands that must be entered to register a file
(Fabrikam_CustomPortData.mof) that contains the MOF class for a custom port feature
status definition.

PowerShell

For more information about how to use the MOF compiler, see Compiling a Driver's
MOF File.

The following example shows how you can use the custom port feature status definition
to obtain port data. In this example, the Fabrikam_CustomPortData MOF class is used to
obtain port status from a Hyper-V partition named "TestVm". The Fabrikam, Inc.
extension is enabled on the vSwitch “TestSwitch”, and is returning 123 for the status.

PowerShell

For more information on how extensible switch extensions manage port feature status
information, see Managing Custom Port Feature Status Information.

 uint32 CurrentStatus = 0 ;
};

net stop vmms
mofcomp -N:root\virtualization\v2 Fabrikam_CustomPortData.mof
net start vmms

PS C:\> $portData = Get-VMSwitchExtensionPortData -VmName TestVm -FeatureId
DAA0B7CC-74DB-41ef-8354-7002F9FA463E
Output the current value
PS C:\> $portData.Data.CurrentStatus
123

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/compiling-a-driver-s-mof-file

Custom Switch Feature Status
Article • 12/15/2021

The Hyper-V platform and Hyper-V extensible switch interface provide the infrastructure
to obtain custom status information for an extensible switch. This information is known
as switch feature status information.

Custom switch feature status definitions are registered with the WMI management layer
by using managed object format (MOF) class definitions. In addition to the structure
members that define the attributes of the custom switch feature status definition, the
MOF class must also contain the following:

A UUID that uniquely identifies the custom switch feature status definition.

A GUID that uniquely identifies the extensible switch extension. This GUID is
declared as the ExtensionId qualifier of the MOF class and must match the value of
the NetCfgInstanceId entry that is declared in the extension's INF file.

A descriptive class name string. The name of the vendor must be included in the
string.

The following shows an example of a MOF class for a custom feature status definition of
an extensible switch.

C++

#pragma namespace("\\\\.\\root\\virtualization\\v2")

[Dynamic,
 UUID("B3E57D77-8E95-4977-97DE-524F8DAF03E4"),
 ExtensionId("5CBF81BE-5055-47CD-9055-A76B2B4E369E"),
 Provider("VmmsWmiInstanceAndMethodProvider"),
 InterfaceVersion("1"),
 InterfaceRevison("0"),
 Locale(0x409),
 Description(
 "Fabricam, Inc. Switch custom feature status description.") : Amended,
 DisplayName("Fabricam, Inc. Switch custom feature status friendly name.")
: Amended]
class Fabrikam_CustomSwitchData : Msvm_EthernetSwitchFeatureSettingData{
 [Read,
 Write,
 WmiDataId(1),
 InterfaceVersion("1"),
 InterfaceRevision("0"),
 Description(
 "The current status of custom feature on this switch.") : Amended]

The MOF classes for custom feature status definition of an extensible switch are
registered in the common information model (CIM) repository by using the MOF
compiler (Mofcomp.exe). After it is registered, the MOF class can be configured through
PowerShell cmdlets and WMI-based application programs.

The following example shows the commands that must be entered to register a file
(Fabrikam_CustomSwitchData.mof) that contains the MOF class for a custom switch
feature status definition.

PowerShell

For more information about how to use the MOF compiler, see Compiling a Driver's
MOF File.

The following example shows how you can use the custom switch feature status
definition to obtain switch data. In this example, the Fabrikam_CustomSwitchData MOF
class is used to obtain switch status from a switch named “TestSwitch”. The Fabrikam,
Inc. extension is enabled on the vSwitch “TestSwitch”, and is returning 123 for the status.

PowerShell

For more information on how extensible switch extensions manage switch feature status
information, see Managing Custom Switch Feature Status Information.

 uint32 CurrentStatus = 0 ;
};

net stop vmms
mofcomp -N:root\virtualization\v2 Fabrikam_CustomSwitchData.mof
net start vmms

PS C:\> $switchData = Get-VMSwitchExtensionSwitchData -SwitchName TestSwitch
-FeatureId B3E57D77-8E95-4977-97DE-524F8DAF03E4
Output the current value
PS C:\> $switchData$customSwitchData.Data.CurrentStatus
123

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/compiling-a-driver-s-mof-file

Hyper-V Extensible Switch Save and
Restore Operations Overview
Article • 12/15/2021

When a Hyper-V child partition is stopped, saved, or live migrated, the run-time state of
the partition is saved. When the partition is restarted or has completed the live
migration to another host computer, the run-time state is restored. During the transition
between saved and restored states, the settings of the network interfaces for the child
partition are unchanged and network connections to the Hyper-V extensible switch are
not torn down.

The extensible switch interface notifies underlying extensions of save and restore
operations for the child partition. During the save operation, the extension can return
run-time data for each extensible switch network adapter (NIC). During the restore
operation, the interface returns the run-time data to the extension so that it can restore
the state of the NIC.

This section includes the following topics:

Hyper-V Extensible Switch Save Operations

Hyper-V Extensible Switch Restore Operations

Hyper-V Extensible Switch Live Migration Support

Hyper-V Extensible Switch Save
Operations
Article • 12/15/2021

When a Hyper-V child partition is stopped, saved, or live migrated, the run-time state of
the partition is saved. During the save operation, a Hyper-V extensible switch extension
can save run-time data about an extensible switch network adapter (NIC).

When a save operation is being performed on a Hyper-V child partition, the extensible
switch interface notifies the extension about the operation. The extension is notified
through the following object identifier (OID) requests:

OID_SWITCH_NIC_SAVE
The extensible switch interface signals the protocol edge of the extensible switch to
issue this OID during the save operation for an extensible switch NIC. When it handles
this OID request, the extension returns run-time data for the NIC. After the run-time
data is saved, it is restored through OID set requests of OID_SWITCH_NIC_RESTORE.

When it receives the OID_SWITCH_NIC_SAVE method request, the extension can do one
of the following:

If the extension has run-time data to save, it initializes an
NDIS_SWITCH_NIC_SAVE_STATE structure and sets the various members, such as
the ExtensionId member, to identify itself and the data that it is saving. The
extension also saves the data within the NDIS_SWITCH_NIC_SAVE_STATE structure
starting SaveDataOffset bytes from the start of the structure, and then completes
the OID method request with NDIS_STATUS_SUCCESS.

If the NDIS_SWITCH_NIC_SAVE_STATE structure does not provide a sufficient
buffer size, enumerated in the NDIS_OBJECT_HEADER Size member to hold the
run-time state, the extension sets the method structure's BytesNeeded field to
NDIS_SIZEOF_NDIS_SWITCH_NIC_SAVE_STATE_REVISION_1 plus the amount of
buffer necessary to hold the save data, and completes the OID with
NDIS_STATUS_BUFFER_TOO_SHORT. The OID will be reissued with the required
size.

If the extension does not have run-time data to save, it must call NdisFOidRequest.
This forwards the OID method request to underlying extensions in the extensible
switch driver stack. For more information about this procedure, see Filtering OID
Requests in an NDIS Filter Driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

For more information about this OID request, see Handling the OID_SWITCH_NIC_SAVE
Request.

OID_SWITCH_NIC_SAVE_COMPLETE
The extensible switch interface signals the protocol edge of the extensible switch to
issue this OID at the completion of the save operation of run-time data for an extensible
switch NIC.

This OID request notifies the extension that the save operation has completed only for a
specified extensible switch NIC.

For more information about this OID request, see Handling the
OID_SWITCH_NIC_SAVE_COMPLETE Request.

During the save operation for run-time data, the protocol edge of the extensible switch
issues OID requests of OID_SWITCH_NIC_SAVE and OID_SWITCH_NIC_SAVE_COMPLETE
for the network interface of a Hyper-V child partition is connected. If multiple Hyper-V
child partitions are stopped or live migrated, the protocol edge issues separate sets of
OID_SWITCH_NIC_SAVE and OID_SWITCH_NIC_SAVE_COMPLETE requests for each
network interface connection.

Note The protocol edge of the extensible switch will not interleave save operations for
run-time data for the same NIC. The protocol edge will start a run-time data save
operation for a NIC only after a previous save operation has completed on the same
NIC. However, the protocol edge may start a save operation for a NIC while another
save operation is in progress for another NIC. Because of this, we highly recommend
that extensions perform save operations in a non-interleaved fashion. For example,
extensions should not assume that a new save operation cannot start on another NIC
before an ongoing save operation has completed for a different NIC.

Hyper-V Extensible Switch Restore
Operations
Article • 12/15/2021

When a Hyper-V child partition is restarted after it was stopped or live migrated, the
run-time state of the partition is restored. During the restore operation, a Hyper-V
extensible switch extension driver can restore run-time data about an extensible switch
network adapter (NIC).

When a restore operation is being performed on a Hyper-V child partition, the
extensible switch interface signals the protocol edge of the extensible switch to issue an
OID set request of OID_SWITCH_NIC_RESTORE. The InformationBuffer member of the
NDIS_OID_REQUEST structure for the OID_SWITCH_NIC_RESTORE request contains a
pointer to an NDIS_SWITCH_NIC_SAVE_STATE structure.

When it handles this OID request, the extension restores the run-time data for the
network adapter. This run-time data was previously saved through OID requests of
OID_SWITCH_NIC_SAVE and OID_SWITCH_NIC_SAVE_COMPLETE.

When it receives the OID_SWITCH_NIC_RESTORE request, the extensible switch
extension must first determine whether it owns the run-time data. The driver does this
by comparing the value of the ExtensionId member of the
NDIS_SWITCH_NIC_SAVE_STATE structure to the GUID value that the driver uses to
identify itself.

If the extension owns the run-time data, it restores this data in the following way:

1. The extension copies the run-time data in the SaveData member to driver-
allocated storage.

Note The value of the PortId member of the NDIS_SWITCH_NIC_SAVE_STATE
structure may be different from the PortId value at the time that the run-time data
was saved. This can occur if run-time data was saved during a Live Migration from
one host to another. However, the configuration of the extensible switch NIC is
retained during the Live Migration. This enables the extension to restore the run-
time data to the extensible switch NIC by using the new PortId value.

2. The extension completes the OID set request with NDIS_STATUS_SUCCESS.

If the extension does not own the run-time data, it must call NdisFOidRequest. This
forwards the OID method request to underlying extensions in the extensible switch

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

driver stack. For more information about this procedure, see Filtering OID Requests in an
NDIS Filter Driver.

OID_SWITCH_NIC_RESTORE_COMPLETE
The extensible switch interface signals the protocol edge of the extensible switch to
issue this OID at the completion of the restore operation of run-time data for an
extensible switch NIC.

This OID request notifies the extension that the restore operation has completed only
for a specified extensible switch NIC.

For more information about this OID request, see
OID_SWITCH_NIC_RESTORE_COMPLETE.

During the restore operation for run-time data, the protocol edge of the extensible
switch issues OID requests of OID_SWITCH_NIC_RESTORE and
OID_SWITCH_NIC_RESTORE_COMPLETE for the network interface of a Hyper-V child
partition is connected. If multiple Hyper-V child partitions are restored, the protocol
edge issues separate sets of OID_SWITCH_NIC_RESTORE and
OID_SWITCH_NIC_RESTORE_COMPLETE requests for each network interface connection.

Note The protocol edge of the extensible switch will not interleave restore operations
for run-time data for the same NIC. The protocol edge will start a run-time data restore
operation for a NIC only after a previous restore operation has completed on the same
NIC. However, the protocol edge may start a restore operation for a NIC while another
restore operation is in progress for another NIC. Because of this, we highly recommend
that extensions perform restore operations in a non-interleaved fashion. For example,
extensions should not assume that a new restore operation cannot start on another NIC
before an ongoing restore operation has completed for a different NIC.

For more information about this OID request, see Restoring Hyper-V Extensible Switch
Run-Time Data.

Hyper-V Extensible Switch Live
Migration Support
Article • 12/15/2021

During a Hyper-V live migration, a child partition, or virtual machine (VM), is stopped on
one host computer (source host) and migrated to another host computer (destination
host). During live migration, the following operations occur:

When the live migration starts on the source host, the extensible switch interface
requests underlying extensions to save run-time data for each port and its
associated network adapter connection.

For more information about this operation, see Hyper-V Extensible Switch Save
Operations.

Before the live migration completes on the destination host, the extensible switch
interface requests underlying extensions to restore run-time data for each port and
its associated network adapter connection.

For more information about this operation, see Hyper-V Extensible Switch Restore
Operations.

During the live migration setup stage, the source host creates a TCP connection with the
destination physical host. Hyper-V transfers the source VM's configuration data over this
connection to the destination physical host. A skeleton VM is set up on the destination
host and memory is allocated to the destination VM. At this point, Hyper-V transfers the
source VM's state, including its memory pages, to the destination VM.

The extensible switch interface also uses the TCP connection to synchronize steps and
results during the live migration. For example, the interface that runs on the destination
host requests the transfer of run-time data from the source host for the port and
network adapter connection associated with the migrated VM.

Before the destination VM is brought online on the destination host, the extensible
switch interface performs these steps:

1. A validation port is created on the destination host through an object identifier
(OID) set request of OID_SWITCH_PORT_CREATE. If the port is created successfully,
the extensible switch interface issues other OID requests to verify the properties of
port policies by underlying extensions.

If the extension fails the port creation or invalidates any of the policy properties,
the live migration does not continue for that destination node and switch.

For more information about the validation port and its usages, see Validation Ports.

2. After the verification of policy properties is completed successfully, the validation
port is deleted on the destination host through an OID set request of
OID_SWITCH_PORT_DELETE. After this port is deleted, an operational port is
created on the destination host and an operational port is created in its place. The
NDIS_SWITCH_PORT_PARAMETERS structure that is associated with the
OID_SWITCH_PORT_CREATE request for the operational port contains the same
data that was used to create the port on the source host.

If the operational port is created successfully, port policies are added to the
operational port.

3. If the settings are successfully applied to the operational port on the destination
host, a save operation is issued for the operational port on the source host.

4. If the save operation is completed successfully, the operational port and its
network adapter connection are deleted on the source host in the following way:

a. The network connection is first disconnected through an OID set request of
OID_SWITCH_NIC_DISCONNECT. After this OID request is completed, the
network adapter connection on the source host is deleted through an OID set
request of OID_SWITCH_NIC_DELETE.

b. After the network adapter connection is deleted, the operational port is torn
down through an OID set request of OID_SWITCH_PORT_TEARDOWN. After this
OID request is completed, the operational port is deleted through an OID set
request of OID_SWITCH_PORT_DELETE.

5. A network adapter connection is created for the operational port on the
destination host through an OID set request of OID_SWITCH_NIC_CREATE. If this
OID request completes successfully, the network adapter connection is established
on the associated operation port through an OID set request of
OID_SWITCH_NIC_CONNECT.

If the network adapter connection is established successfully, the run-time data for
the operational port and network adapter connection is restored on the target
host.

At this point, the underlying extensions can perform resource reservation and
validation on the network adapter connection.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters

Writing Hyper-V Extensible Switch
Extensions Topics
Article • 12/15/2021

The following topics provide information about how to write Hyper-V extensible switch
extensions:

Hyper-V Extensible Switch Send and Receive Operations

Hyper-V Extensible Switch OID Requests

Managing Hyper-V Extensible Switch Source and Destination Port Data

Managing Hyper-V Extensible Switch Policies

Managing Hyper-V Extensible Switch Feature Status Information

Managing Hyper-V Extensible Switch Run-Time Data

Managing Physical Network Adapters

Note Extensible switch extensions are based on the NDIS filter driver architecture. For
more information, see NDIS Filter Drivers.

Hyper-V Extensible Switch Send and
Receive Operations
Article • 12/15/2021

This section describes the send and receive operations for Hyper-V extensible switch
extensions. The following table describes the operations that an extension can perform
on packets that are sent or received over the extensible switch data path.

Operation Capturing Extensions Filtering Extensions Forwarding
Extensions

Originating packets X X X

Cloning packets X X

Forwarding packets X

This section includes the following topics:

Originating Packet Traffic

Cloning Packet Traffic

Forwarding Packets to Hyper-V Extensible Switch Ports

For more information about the extensible switch data path, see Hyper-V Extensible
Switch Data Path.

Originating Packet Traffic
Article • 12/15/2021

This topic describes how Hyper-V extensions originate new packets and inject them into
the extensible switch data path.

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about the extensions, see Hyper-V Extensible Switch Extensions.

Extensible switch extensions can only inject new packets into the extensible switch
ingress data path. This ensures that the extensible switch interface can filter and forward
these packets correctly. Extensions must follow these guidelines for injecting new
packets into the ingress data path:

The extension must first allocate a NET_BUFFER_LIST structure for a new packet.

After the extension allocates a NET_BUFFER_LIST structure for a new packet, it
must call the AllocateNetBufferListForwardingContext handler function to allocate
the extensible switch forwarding context for the packet.

The forwarding context resides in the out-of-band (OOB) data of the packet. It
contains forwarding information for the packet, such as its source port and an
array of one or more destination ports.

For more information about the forwarding context, see Hyper-V Extensible Switch
Forwarding Context.

After the extension calls AllocateNetBufferListForwardingContext, the source port
for the packet will be set to NDIS_SWITCH_DEFAULT_PORT_ID. A packet with a
source port identifier of NDIS_SWITCH_DEFAULT_PORT_ID is trusted and bypasses
the extensible switch port policies, such as access control lists (ACLs) and quality of
service (QoS).

The extension may want the packet to be treated as if it originated from a
particular port. This allows the policies for that port to be applied to the packet.
The extension calls SetNetBufferListSource to change the source port for the packet.

However, there may be situations where the extension may want to assign the
packet's source port identifier to NDIS_SWITCH_DEFAULT_PORT_ID. For example,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_set_net_buffer_list_source

the extension may want to set the source port identifier to
NDIS_SWITCH_DEFAULT_PORT_ID for proprietary control packets that are sent to
a device on the external network.

If the forwarding extension is sending a new packet on the ingress data path, it
must determine the destination ports for the packet. For more information on this
procedure, see Adding Extensible Switch Destination Port Data to a Packet.

Note A capturing or filtering extension cannot add new destination ports to the
new packet.

When the extension creates a new packet, the packet data is located in local, or
trusted, memory in the parent operating system of the Hyper-V parent partition.
This memory is not accessible by the child partition. Therefore, it is considered
"safe" from unsynchronized updates by the guest operating system that runs in
that partition.

The extension must obtain the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO union for the new
packet by using the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.
The extension must set the IsPacketDataSafe member to TRUE. This specifies that
all of the packet data is located in trusted memory.

When the extension calls NdisFSendNetBufferLists to inject the packet into the
ingress data path, it must set the Flags parameter with the appropriate extensible
switch flag settings. For more information about these flag settings, see Hyper-V
Extensible Switch Send and Receive Flags.

When NDIS calls the extension's FilterSendNetBufferListsComplete function to
complete the send request of the new packet, the extension must call
FreeNetBufferListForwardingContext to free the allocated forwarding context. The
extension must do this before it frees or reuses the NET_BUFFER_LIST structure for
the packet.

For more information about the extensible switch ingress and egress data paths, see
Hyper-V Extensible Switch Data Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_free_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context

Cloning Packet Traffic
Article • 12/15/2021

This topic describes how Hyper-V extensible switch extensions clone, or duplicate,
packets and inject them into the extensible switch data path. For more information on
cloning packets, see Cloned NET_BUFFER_LIST Structures.

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about the extensions, see Hyper-V Extensible Switch Extensions.

Extensible switch filtering and forwarding extensions can inject cloned packets into the
extensible switch ingress or egress data path by following these guidelines:

The extension must first allocate a NET_BUFFER_LIST structure for the cloned
packet. The extension must then copy the packet data from the original packet to
the cloned packet. For more information on how to clone packets, see Derived
NET_BUFFER_LIST Structures.

After the extension allocates a NET_BUFFER_LIST structure, it must call the
AllocateNetBufferListForwardingContext handler function to allocate the extensible
switch forwarding context for the packet.

The forwarding context resides in the out-of-band (OOB) data of the packet. It
contains forwarding information for the packet, such as its source port and an
array of one or more destination ports.

For more information about the forwarding context, see Hyper-V Extensible Switch
Forwarding Context.

The extension must copy the OOB data, including the existing source port, from
the original packet to the cloned packet by calling CopyNetBufferListInfo. If the
extension plans to inject the packet into the ingress data path, it must also copy
the destination ports from the OOB data of the original packet.

When it copies the OOB data, the extension must follow these guidelines:

If the filtering extension plans to inject the packet into the ingress data path, it
must call CopyNetBufferListInfo with the
NDIS_SWITCH_COPY_NBL_INFO_FLAGS_PRESERVE_DESTINATIONS flag

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info

unspecified. This causes the original packet's destination ports to not be copied
to the cloned packets. When the filtering extension injects this packet into the
ingress data path, destination ports will be added to the packet by either an
underlying forwarding extension (if enabled in the driver stack) or the miniport
edge of the extensible switch.

If the filtering extension plans to inject the packet into the egress data path, it
must call CopyNetBufferListInfo with the
NDIS_SWITCH_COPY_NBL_INFO_FLAGS_PRESERVE_DESTINATIONS flag
specified. This causes the original packet's destination ports to be copied to the
cloned packets.

If the filtering extension is cloning or duplicating a packet that was obtained from
the egress data path, it can change the destination ports for the packet after it calls
CopyNetBufferListInfo with the
NDIS_SWITCH_COPY_NBL_INFO_FLAGS_PRESERVE_DESTINATIONS flag specified.
For more information on this procedure, see Modifying a Packet's Extensible
Switch Source Port Data.

If the forwarding extension is cloning or duplicating a packet that was obtained
from the ingress data path, it must add new destination ports for the packet before
it injects the packet into the ingress data path. For more information on this
procedure, see Adding Extensible Switch Destination Port Data to a Packet.

After the extension calls CopyNetBufferListInfo, the packet will be assigned the
same source port information that was contained in the original packet.

The extension can call SetNetBufferListSource to change the source port
information in the packet's out-of-band (OOB) data.

The extension may want the packet to be treated as if it originated from a
particular port. This allows the policies for that port to be applied to the packet.
The extension calls SetNetBufferListSource to change the source port for the packet.

However, there may be situations where the extension may want to assign the
packet's source port identifier to NDIS_SWITCH_DEFAULT_PORT_ID. For example,
the extension may want to set the source port identifier to
NDIS_SWITCH_DEFAULT_PORT_ID for proprietary control packets that are sent to
a device on the external network.

In the standard NDIS data path, non-extensible switch OOB data often has
different values depending on whether the packet is being indicated as a send or a
receive. For example, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_set_net_buffer_list_source
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_set_net_buffer_list_source

NDIS_IPSEC_OFFLOAD_V2_HEADER_NET_BUFFER_LIST_INFO OOB data is a union
of send-and-receive–specific structures

In the extensible switch data path, all packets move through the extension driver
stack as both sends and receives. Because of this, the non-extensible switch OOB
data within the packet's NET_BUFFER_LIST structure will be in either a send or
receive format through the duration of the flow through the driver stack.

The format of this OOB data depends on the source extensible switch port from
which the packet arrived at the extensible switch. If the source port is connected to
the external network adapter, the non-extensible switch OOB data will be in a
receive format. For other ports, this OOB data will be in a send format.

The source port information is stored in the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO union in the OOB
data of the packet's NET_BUFFER_LIST structure. The extension obtains the data by
using the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

Note If the extension clones a packet's NET_BUFFER_LIST structure, it must take
the non-extensible switch OOB data into consideration if it adds or modifies the
OOB data. The extension can call CopyNetBufferListInfo to copy all OOB data from
a source packet to a cloned packet. This function will maintain the OOB send or
receive format when the data is copied to the packet.

When the extension clones a packet, the cloned packet data is located in local, or
trusted, memory in the parent operating system of the Hyper-V parent partition.
This memory cannot be accessed by the child partition. Therefore, it is considered
"safe" from unsynchronized updates by the guest operating system that runs in
that partition.

After the original packet has been cloned, the extension must obtain the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO union in the
cloned packet by using the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL
macro. The extension must set the IsPacketDataSafe member to TRUE. This
specifies that all of the packet data is located in trusted memory.

Filtering and forwarding extensions must follow these guidelines for injecting cloned
packets into the ingress or egress data path:

The extension must call NdisFSendNetBufferLists to inject the cloned packet into
the ingress data path. The extension must set the SendFlags parameter with the
appropriate extensible switch flag settings. For more information about these flag
settings, see Hyper-V Extensible Switch Send and Receive Flags.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_header_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_copy_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

When NDIS calls the extension's FilterSendNetBufferListsComplete function to
complete the send request of the cloned packet, the extension must call
FreeNetBufferListForwardingContext to free the allocated forwarding context. The
extension must do this before it frees or reuses the NET_BUFFER_LIST structure for
the packet.

Note The extension must inject the cloned packet into the ingress data path if it
modifies the packet data or source port for a packet that it obtained from the
egress data path. It must also inject the cloned packet into the ingress data path if
the packet's destination ports are not preserved.

The extension must call NdisFIndicateReceiveNetBufferLists to inject the cloned
packet into the egress data path. The extension must set the ReceiveFlags
parameter with the appropriate extensible switch flag settings.

When NDIS calls the extension's FilterReturnNetBufferLists function to complete the
receive request of the cloned packet, the extension must call
FreeNetBufferListForwardingContext before it frees or reuses the NET_BUFFER_LIST
structure for the packet.

Note Before the forwarding extension calls NdisFIndicateReceiveNetBufferLists, it
must have determined the cloned packet's destination ports and added this data
to the packet's OOB data.

If the extension clones a packet's NET_BUFFER_LIST structure, it must retain
ownership of the original packet's NET_BUFFER_LIST structure until the cloned
packet's send or receive request has completed. The extension must use the
ParentNetBufferList member of the cloned packet's NET_BUFFER_LIST structure to
link to the original packet's NET_BUFFER_LIST structure.

Note In NDIS 6.30 (Windows Server 2012), the extension can use the
ParentNetBufferList member to link to the original packet, but it is not required to
do so. In NDIS 6.40 (Windows Server 2012 R2) and later, the extension is required
to use the ParentNetBufferList member to link to the original packet.

Once the cloned packet's send or receive request has completed, the extension
must complete the send or receive request of the original packet.

Note If the extension has cloned a packet's NET_BUFFER_LIST structure, it can
complete the send or receive request of the original packet after it has been
cloned.

If the extension clones a packet, it can complete the send or receive request of the
original packet as soon as it is cloned.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_free_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_free_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list_context

If the forwarding or filtering extension obtains a packet in the egress data path, it
cannot inject a cloned version of the packet in this data path if the extension modified
the packet data or changed the source port. However, the extension can inject these
packets into the ingress data path. This allows the packet to be forwarded and filtered
properly through the extensible switch data path.

Note Filtering extensions can only inject cloned packets into the ingress data path if the
packet's destination ports are not preserved.

For example, assume that a packet with multiple destination ports was obtained in the
extensible switch egress data path. If one destination port requires special handling,
such as data encapsulation, the forwarding or filtering extension handles this by
following these steps:

1. Exclude packet delivery to the port that requires special handling. The extension
does this by setting the IsExcluded member of the destination port's
NDIS_SWITCH_PORT_DESTINATION structure to a value of one. For more
information on this procedure, see Excluding Packet Delivery to Extensible Switch
Destination Ports.

2. Clone the original packet and perform the required handling of the packet data.

Note The filtering extension must not add a destination port for the cloned packet.
This data will be added later by the forwarding extension or the miniport edge of
the extensible switch.

3. Forward the original packet on the egress data path by calling
NdisMIndicateReceiveNetBufferLists.

4. Inject the cloned packet on the ingress data path by calling
NdisFSendNetBufferLists.

For more information about the extensible switch ingress and egress data paths, see
Hyper-V Extensible Switch Data Path.

Note Capturing extensions cannot clone packet traffic. However, they can originate
packet traffic. For more information, see Originating Packet Traffic.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

Forwarding Packets to Hyper-V
Extensible Switch Ports
Article • 12/15/2021

This page describes how a Hyper-V extensible switch forwarding extension can forward
packets to one or more ports. This type of extension can also forward packets to
individual network adapters that are connected to the extensible switch external
network adapter.

Note Only the extensible switch forwarding extension or the extensible switch itself can
forward packets to extensible switch ports.

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about extensions, see Hyper-V Extensible Switch Extensions.

If a forwarding extension is installed and enabled in the extensible switch driver stack, it
is responsible for making forwarding decisions for each packet that it obtains on the
extensible switch ingress data path. Based on these forwarding decisions, the extension
adds destination ports into the destination port array in the out-of-band (OOB) data of
the packet's NET_BUFFER_LIST structure. After the packet has completed its traversal of
the extensible switch data path, the extensible switch interface delivers the packet to the
specified destination ports.

Note If a forwarding extension is not installed or enabled, the extensible switch makes
the forwarding decisions for packets it obtains from the ingress data path. The switch
adds the destination ports to the OOB data of the packet's NET_BUFFER_LIST structure
before it forwards the packet up the extensible switch egress data path.

Note If the packet is an NVGRE packet, the forwarding extension can add destination
ports to the destination port array. However, the Hyper-V Network Virtualization (HNV)
component of the extensible switch is responsible for determining the destination ports
and forwarding the packet. For more information, see Hybrid Forwarding.

The forwarding extension can add port destinations only to packets obtained from the
ingress data path. After the packet is forwarded up the egress data path, filtering and
forwarding extensions can exclude packet delivery to extensible switch ports. For more
information, see Excluding Packet Delivery to Extensible Switch Destination Ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Within the OOB data of a packet's NET_BUFFER_LIST structure, the data for destination
ports are contained in an NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY
structure. Each element in the array defines a destination port and is formatted as an
NDIS_SWITCH_PORT_DESTINATION structure.

The forwarding extension can call the following Hyper-V Extensible Switch handler
functions to manage the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure
and its NDIS_SWITCH_PORT_DESTINATION elements:

AddNetBufferListDestination
This function adds a single destination port to the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure in the packet's OOB
data.

GetNetBufferListDestinations
This function returns a pointer to the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure in a packet's OOB data.

GrowNetBufferListDestinations
This function adds more destination port elements to the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure of a packet's OOB data.

UpdateNetBufferListDestinations
This function commits the modifications that the extension made to add or exclude one
or more destination ports for a packet. These changes are committed to the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure in the packet's OOB
data.

When the forwarding extension's FilterSendNetBufferLists function is called, the
NetBufferList parameter contains a pointer to a linked list of NET_BUFFER_LIST
structures. Each of these structures specifies a packet obtained from the ingress data
path.

For each NET_BUFFER_LIST structure in this list, the forwarding extension adds
destination ports for the packet by following these steps:

1. The extension makes forwarding decisions for the packet based on various types of
criteria. These criteria include the following:

Policy criteria based on the packet's source port and network adapter
connection. The forwarding extension obtains this information by using the
NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail

Policy criteria for an extensible switch port based on the packet's payload
data. For example, a policy for an extensible switch port may include a filter
to allow delivery of only IP version 4 (IPv4) packets.

Note If the packet is an NVGRE packet, the HNV component of the extensible
switch is responsible for forwarding the packet. However, the forwarding extension
can apply its own policy criteria in the ingress and egress paths. For more
information, see Hybrid Forwarding.

2. If the extension determines that the packet can be forwarded to one or more
extensible switch ports, it must add destination ports to the packet's OOB data. For
more information about this procedure, see Adding Extensible Switch Destination
Port Data to a Packet.

Note If the packet is an NVGRE packet, the forwarding extension is not required to
add destination ports. For more information, see Hybrid Forwarding.

3. If the extension determines that the packet cannot be forwarded to any extensible
switch port, it must drop the packet.

Note This is not true if the packet is an NVGRE packet. For more information, see
Hybrid Forwarding.

4. If the extension has added one or more destination ports for the packet, it must
call NdisFSendNetBufferLists to forward the packet on the egress data path.

Note If the packet is an NVGRE packet, the HNV component of the extensible
switch is responsible for forwarding the packet. For more information, see Hybrid
Forwarding.

For more information about the extensible switch ingress and egress data paths, see
Hyper-V Extensible Switch Data Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

Hyper-V Extensible Switch OID Requests
Article • 12/15/2021

The Hyper-V extensible switch interface includes object identifier (OID) requests that are
used in the following ways:

OID requests that are issued by an extensible switch extension to query the current
configuration of the extensible switch. For example, the filter driver (also known as
a Hyper-V extensible switch extension) can issue an OID query request of
OID_SWITCH_NIC_ARRAY to obtain an array. Each element in the array specifies the
configuration parameters of a network adapter that is associated with an
extensible switch port.

For more information, see Querying the Hyper-V Extensible Switch Configuration.

OID requests that are issued by the extensible switch interface to notify underlying
extensions about changes to the extensible switch configuration. For example, the
protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_CREATE to notify extensions about the creation of an
extensible switch port.

For more information, see Receiving OID Requests about Hyper-V Extensible
Switch Configuration Changes.

OID requests from a Hyper-V child partition that are forwarded by the extensible
switch interface to extensions over the extensible switch control path. This allows
the extensions to obtain configuration information about the network interface
that is used in the partition.

For example, the protocol edge of the extensible switch in the extensibility
interface forwards an OID set request of OID_802_3_ADD_MULTICAST_ADDRESS
from a child partition down the extensible switch control path. This allows
extensions to obtain the multicast address configuration that is used by the
networking interface in that partition.

For more information, see Forwarding OID Requests from a Hyper-V Child
Partition.

For more information on how extensions and NDIS filter drivers handle OID requests,
see Filter Module OID Requests.

Querying the Hyper-V Extensible Switch
Configuration
Article • 12/15/2021

The Hyper-V extensible switch interface includes object identifier (OID) requests that are
issued by an extensible switch extension to query the current configuration of the
extensible switch, its ports, and its network adapter connections. These requests include
the following OIDs:

OID_SWITCH_NIC_ARRAY
This OID query request returns an array. Each element in the array specifies the
configuration parameters of a network adapter that is associated with an extensible
switch port.

OID_SWITCH_PARAMETERS
This OID query request returns the current configuration of the extensible switch.

OID_SWITCH_PORT_ARRAY
This OID query request returns an array. Each element in the array specifies the
configuration parameters for an extensible switch port.

OID_SWITCH_PORT_PROPERTY_ENUM
This OID method request returns an array. Each element in the array specifies the
properties of a policy for a specified extensible switch port.

OID_SWITCH_PROPERTY_ENUM
This OID method request returns an array. Each element in the array specifies the
properties of an extensible switch policy.

Note When a switch extension binds for a Hyper-v Extensible Switch, it must first issue
the OID_SWITCH_PARAMETERS OID to obtain the basic switch information. If the
IsActive member of the NDIS_SWITCH_PARAMETERS structure is FALSE, the extension
must not issue the other query OIDs until the switch has finished activation. In this case,
the NetEventSwitchActivate NET_PNP_EVENT notification specifies the switch activation
event. If the IsActive member is TRUE at bind, the extension can safely issue the other
query OIDs. Querying for the configuration while the Hyper-v Extensible Switch has not
completed activation will result in the extension having an incomplete initial view of the
switch configuration.

Note When an extension generates its own OID requests, it does this in the same way
as any NDIS filter driver. For more information on how this is done, see Generating OID

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event

Requests from an NDIS Filter Driver.

For more information on the control path for extensible switch OID requests, see Hyper-
V Extensible Switch Control Path for OID Requests.

Receiving OID Requests about Hyper-V
Extensible Switch Configuration
Changes
Article • 12/15/2021

The extensible switch interface notifies underlying extensions about changes to the
extensible switch component configuration and policy parameters by issuing extensible
switch object identifier (OID) set requests. These requests are issued by the protocol
edge of the extensible switch to notify underlying extensions about changes to the
extensible switch component configuration and policy parameters. These OID requests
move through the extensible switch driver stack to the underlying miniport edge of the
extensible switch.

The following figure shows the extensible switch control path for OID requests for NDIS
6.40 (Windows Server 2012 R2) and later.

The following figure shows the extensible switch control path for OID requests for NDIS
6.30 (Windows Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

The protocol edge of the extensible switch issues OID set requests for the following
types of notifications:

Changes to the port configuration on the extensible switch.

For example, the protocol driver issues OID_SWITCH_PORT_CREATE to notify
underlying extensions about the creation of a port on the extensible switch.
Similarly, the protocol driver issues OID_SWITCH_PORT_DELETE to notify extensions
about the deletion of a port.

For more information about this type of OID notification, see Hyper-V Extensible
Switch Ports.

Changes to the network adapter connection to a port on the extensible switch.

For example, the protocol driver issues OID_SWITCH_NIC_CONNECT to notify
underlying extensions about the connection of a network adapter to a port on the
extensible switch. Similarly, the protocol driver issues
OID_SWITCH_NIC_DISCONNECT to notify extensions that the network adapter has
been disconnected from the port.

For more information about this type of OID notification, see Hyper-V Extensible
Switch Network Adapters.

Changes to the extensible switch port or switch policies.

For example, the protocol driver issues OID_SWITCH_PROPERTY_ADD to notify
underlying extensions about the addition of an extensible switch property.

Similarly, the protocol driver issues OID_SWITCH_PORT_PROPERTY_DELETE to
notify extensions about the deletion of a port property.

For more information about this type of OID notification, see Managing Hyper-V
Extensible Switch Policies.

Note The extension is not notified of changes to the default port or switch policies
that are managed by the underlying miniport edge of the extensible switch.

Save or restore run-time port data.

For example, the protocol driver issues OID_SWITCH_NIC_SAVE to notify
underlying extensions to save run-time data for a specified port on the extensible
switch. These OIDs are issued when the Hyper-V state is being saved or migrated
to another host. Similarly, the protocol driver issues OID_SWITCH_NIC_RESTORE to
notify extensions that run-time port data is being restored on the extensible
switch.

For more information about this type of OID notification, see Managing Hyper-V
Extensible Switch Run-Time Data.

The extensible switch extension miniport driver is responsible for completing these OID
requests. However, with some extensible switch OID requests, an underlying extension
can fail an OID request to veto a notification. For example, when the extensible switch
protocol driver notifies the filter drivers about a new port that will be created on the
extensible switch, it issues an OID set request of OID_SWITCH_PORT_CREATE. An
underlying filtering or forwarding extension can veto the port creation by completing
the OID request with STATUS_DATA_NOT_ACCEPTED.

The extensible switch extension must follow these guidelines when its FilterOidRequest
function is called for an extensible switch OID request:

The extension must not modify any data that is pointed to by the OidRequest
parameter.

For some extensible switch OID requests, the extension can complete the OID
request with STATUS_DATA_NOT_ACCEPTED. This vetoes the operation on an
extensible switch component for which the OID request was issued.

For example, the extension can complete the OID_SWITCH_NIC_CREATE request
with STATUS_DATA_NOT_ACCEPTED. The driver may need to do this if it cannot
satisfy its configured policies on the specified port to which the network
connection is being created.

The extension can complete requests in this manner for the following OIDs:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request

OID_SWITCH_NIC_CREATE

OID_SWITCH_PORT_CREATE

OID_SWITCH_PORT_PROPERTY_ADD

OID_SWITCH_PORT_PROPERTY_DELETE

OID_SWITCH_PORT_PROPERTY_UPDATE

OID_SWITCH_PROPERTY_ADD

OID_SWITCH_PROPERTY_DELETE

OID_SWITCH_PROPERTY_UPDATE

If the extension does not complete the OID request, it must call NdisFOidRequest
to forward the request down the extensible switch driver stack.

Note Before the driver calls NdisFOidRequest, the driver must call
NdisAllocateCloneOidRequest to allocate an NDIS_OID_REQUEST structure and
transfer the request information to the new structure.

The extension should monitor the completion result of the OID request when its
FilterOidRequestComplete function is called. This allows the extension to determine
whether the operation on an extensible switch component completed successfully
or was vetoed by an underlying extension.

For more information on how to filter and forward an OID request, see Filtering
OID Requests in an NDIS Filter Driver.

NDIS and overlying protocol and filter drivers can issue OID requests for hardware
offload technologies to the underlying physical network adapter. This includes OID
requests for offload technologies, such as virtual machine queue (VMQ), Internet
Protocol security (IPsec), and single root I/O virtualization (SR-IOV).

When these OID requests arrive at the extensible switch interface, it encapsulates
the OID request inside an NDIS_SWITCH_NIC_OID_REQUEST. Then, the protocol
edge of the extensible switch issues an OID request of OID_SWITCH_NIC_REQUEST
that contains this structure.

An extensible switch forwarding extension can provide support for an NDIS
hardware offload technology on one or more physical adapters that are bound to
the external network adapter. In this configuration, the extensible switch external
network adapter is bound to the virtual miniport edge of an NDIS multiplexer
(MUX) intermediate driver. The MUX intermediate driver is bound to a team of one

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatecloneoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

or more physical networks on the host. This configuration is known as an extensible
switch team. For more information about extensible switch teams, see Types of
Physical Network Adapter Configurations.

In this configuration, the extensible switch extensions are exposed to every
network adapter in the team. This allows the forwarding extension in the extensible
switch driver stack to manage the configuration and use of individual network
adapters in the team. For example, the extension can provide support for a load
balancing failover (LBFO) solution over the team by forwarding outgoing packets
to individual adapters. Such an extension is known as a teaming provider. For more
information about teaming providers, see Teaming Provider Extensions.

By handling the OID request of OID_SWITCH_NIC_REQUEST, teaming providers can
participate in the configuration of the adapter team for hardware offloads. For
example, the extension can generate its own OID request of
OID_SWITCH_NIC_REQUEST to configure a physical adapter with parameters for
the hardware offload.

For more information on how to handle the OID_SWITCH_NIC_REQUEST OID
request, see Forwarding OID Requests to Physical Network Adapters.

Note Extension filter drivers can generate OID requests of
OID_SWITCH_NIC_REQUEST to issue private OIDs to any physical adapter that is
bound to the extensible switch external network adapter.

Note Stack restart requests using NdisFRestartFilter will not complete while an
extensible switch OID request is pending. For this reason, an extension that is waiting for
a stack restart must complete any ongoing OID requests.

For more information on the control path for extensible switch OID requests, see Hyper-
V Extensible Switch Control Path for OID Requests.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfrestartfilter

Forwarding OID Requests from a Hyper-
V Child Partition
Article • 12/15/2021

Multicast object identifier (OID) requests, including
OID_802_3_ADD_MULTICAST_ADDRESS and OID_802_3_DELETE_MULTICAST_ADDRESS,
are issued by overlying protocol and filter drivers that run in the following:

The management operating system that runs in the Hyper-V parent partition.

The guest operating system that runs Windows Vista or a later version of the
Windows operating system in the Hyper-V child partition.

The extensible switch interface forwards these OID requests down the extensible switch
control path. This allows the extensions to obtain configuration information about the
network interface that is used in the partition.

For example, the protocol edge of the extensible switch forwards an OID set request of
OID_802_3_ADD_MULTICAST_ADDRESS from a child partition down the extensible
switch control path. This allows extensions to obtain the multicast address configuration
that is used by the networking interface in that partition.

When these multicast OID requests arrive at the extensible switch interface, the protocol
edge of the extensible switch encapsulates the OID request within an
NDIS_SWITCH_NIC_OID_REQUEST structure. The protocol edge also sets the members
of this structure in the following way:

The SourcePortId and SourceNicIndex members are set to the corresponding
values for the port and network adapter used by the partition from which the OID
request originated.

Note If the multicast OID request was originated from the management operating
system, the protocol edge sets these members to the values for the extensible
switch internal network adapter.

The DestinationPortId and DestinationNicIndex members are set to zero. This
specifies that the encapsulated OID request is to be delivered to extensions in the
control path.

The OidRequest member is set to the address of an NDIS_OID_REQUEST structure
for the encapsulated OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

The protocol edge then issues the OID_SWITCH_NIC_REQUEST request to forward the
encapsulated OID request down the extensible switch control path. Underlying
forwarding extensions can inspect these encapsulated OID requests and retain the
multicast address information that they specify. For example, the extension may need
this information if it originates multicast packets that it forwards to an extensible switch
port.

For more information about the extensible switch control path, see Hyper-V Extensible
Switch Control Path.

Managing Hyper-V Extensible Switch
Source and Destination Port Data
Article • 12/15/2021

This section describes how a Hyper-V extensible switch extension manages the source
and destination extensible switch port data within a packet's out-of-band (OOB) data.
This section includes the following topics:

Managing Hyper-V Extensible Switch Source Port Data

Managing Hyper-V Extensible Switch Destination Port Data

Managing Hyper-V Extensible Switch
Source Port Data
Article • 12/15/2021

This section describes how a Hyper-V extensible switch extension manages the source
extensible switch port data within a packet's out-of-band (OOB) data. This section
includes the following topics:

Querying a Packet's Extensible Switch Source Port Data

Modifying a Packet's Extensible Switch Source Port Data

Querying a Packet's Extensible Switch
Source Port Data
Article • 12/15/2021

The Hyper-V extensible switch source port is specified by the SourcePortId member in
the NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure. This
structure is contained in the out-of-band (OOB) forwarding context of the packet's
NET_BUFFER_LIST structure. For more information on this context, see Hyper-V
Extensible Switch Forwarding Context.

The extensible switch extension accesses the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure by using the
NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro. The following example
shows how the driver can obtain the source port identifier from the packet's
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure.

C++

PNDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO fwdDetail;
NDIS_SWITCH_PORT_ID sourcePortId;

fwdDetail = NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL(NetBufferList);
sourcePortId = fwdDetail->SourcePortId;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail

Modifying a Packet's Extensible Switch
Source Port Data
Article • 12/15/2021

The Hyper-V extensible switch source port is specified by the SourcePortId member in
the NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure. This
structure is contained in the out-of-band (OOB) forwarding context of the packet's
NET_BUFFER_LIST structure. For more information about this context, see Hyper-V
Extensible Switch Forwarding Context.

The extensible switch extension must follow these guidelines for modifying a packet's
source port identifier:

The extensible switch extension must call SetNetBufferListSource to modify the
source port for a packet. The extension must not directly modify the SourcePortId
member of the NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO
structure.

If the extension is creating or cloning a packet, it must call the
AllocateNetBufferListForwardingContext function after it calls
NdisAllocateNetBufferList. This function allocates an extensible switch context
area for the OOB data that is used for forwarding information for the packet.

When the extension calls AllocateNetBufferListForwardingContext, the SourcePortId
member is set to NDIS_SWITCH_DEFAULT_PORT_ID. This specifies that the packet
originated from an extension instead of arriving at an extensible switch port.

Packets with a source port of NDIS_SWITCH_DEFAULT_PORT_ID are treated by the
extensible switch extension data path as privileged and trusted. Such traffic should
not be subjected to the policies that are applied to packets from other source
ports. For example, packets with a source port identifier of
NDIS_SWITCH_DEFAULT_PORT_ID bypass the built-in extensible switch policies
that are applied by the underlying miniport edge of the extensible switch. These
policies include access control lists (ACLs) and quality of service (QoS).

When the extension is originating packet traffic, it should use the source port of
NDIS_SWITCH_DEFAULT_PORT_ID sparingly and carefully. In most cases, the
extension should modify the source port identifier to an active port on the
extensible switch. This allows the policies of that port to be applied to the packet.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_set_net_buffer_list_source
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisallocatenetbufferlist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_allocate_net_buffer_list_forwarding_context

However, there may be situations where the extension has to use the source port
of NDIS_SWITCH_DEFAULT_PORT_ID for packets that it originates. For example, if
the extension originates a control packet that has to be sent to its destination on
the physical or virtual network, it should use NDIS_SWITCH_DEFAULT_PORT_ID for
the source port identifier. This ensures that the packet will not be filtered and
rejected by underlying extensions in the extensible switch driver stack.

Managing Hyper-V Extensible Switch
Destination Port Data
Article • 12/15/2021

This section describes how a Hyper-V extensible switch extension manages the
destination extensible switch port data within a packet's out-of-band (OOB) data. This
section includes the following topics:

Querying a Packet's Extensible Switch Destination Port Data

Adding Extensible Switch Destination Port Data to a Packet

Excluding Packet Delivery to Extensible Switch Destination Ports

Querying a Packet's Extensible Switch
Destination Port Data
Article • 12/15/2021

Each Hyper-V extensible switch destination port is specified by an
NDIS_SWITCH_PORT_DESTINATION element within the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. This array is contained
in the out-of-band (OOB) forwarding context of the packet's NET_BUFFER_LIST
structure. For more information on this context, see Hyper-V Extensible Switch
Forwarding Context.

The extensible switch extension calls the GetNetBufferListDestinations function to obtain
a pointer to the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure within a
packet's NET_BUFFER_LIST structure. Individual NDIS_SWITCH_PORT_DESTINATION
elements within this structure can be accessed by using the
NDIS_SWITCH_PORT_DESTINATION_AT_ARRAY_INDEX macro.

To improve performance, a forwarding extension can call the
GrowNetBufferListDestinations function instead of GetNetBufferListDestinations to obtain
a pointer to the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. The
extension does this if it determines that it needs additional array elements in the
packet's OOB data for destination ports. For more information, see Adding Extensible
Switch Destination Port Data to a Packet.

Note Only packets obtained from the extensible switch egress data path will contain
destination port information. For more information, see Hyper-V Extensible Switch Data
Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_switch_port_destination_at_array_index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array

Adding Extensible Switch Destination
Port Data to a Packet
Article • 12/15/2021

This topic describes how Hyper-V extensible switch forwarding extensions can specify
the delivery of packets to one or more destination ports. These extensions can also
forward packets to individual physical network adapters that are bound to the extensible
switch external network adapter.

Note Only a forwarding extension or the switch itself can forward packets to extensible
switch ports or individual network adapters.

The following figure shows the data path for packet traffic through the extensible switch
driver stack for NDIS 6.40 (Windows Server 2012 R2) and later. Both figures also show
the data path for packet traffic to or from the network adapters that are connected to
extensible switch ports.

The following figure shows the data path for packet traffic through the extensible switch
driver stack for NDIS 6.30 (Windows Server 2012).

Each extensible switch destination port is specified by an
NDIS_SWITCH_PORT_DESTINATION element within the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. This array is contained
in the out-of-band (OOB) forwarding context of the packet's NET_BUFFER_LIST
structure. For more information on this context, see Hyper-V Extensible Switch
Forwarding Context.

If a forwarding extension is bound and enabled in the extensible switch driver stack, it is
responsible for determining the destination ports for every packet obtained from the
extensible switch ingress data path, unless the packet is an NVGRE packet. For more
information about this data path, see Overview of the Hyper-V Extensible Switch Data
Path. For more information about NVGRE packets, see Hybrid Forwarding.

Note If a forwarding extension is not bound or enabled in the driver stack, the
extensible switch determines the destination ports for packets it obtains from the
ingress data path.

The forwarding extension must follow these guidelines when it determines destination
ports for a packet obtained on the ingress data path:

The extension must initialize an NDIS_SWITCH_PORT_DESTINATION structure
within the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure with the
destination port information.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array

If the destination port is not connected to the external network adapter, the
extension must set the NicIndex member of the
NDIS_SWITCH_PORT_DESTINATION structure to
NDIS_SWITCH_DEFAULT_NIC_INDEX.

If the destination port is connected to the extensible switch external network
adapter, the extension can specify the index of an underlying physical network
adapter to forward the send request to. The extension does this by setting the
NicIndex member to the nonzero NDIS_SWITCH_NIC_INDEX value of the
destination network adapter that is bound to the external network adapter.

For more information, see Forwarding Packets to Physical Network Adapters.

The extension must add destination ports to a packet's OOB data only for those
ports that have active network adapter connections. If the extension had
forwarded an OID_SWITCH_NIC_DISCONNECT request, it must not add a
destination port that is associated with the disconnected network adapter.

To improve performance, the extension must only add port destinations that are
valid for packet delivery. In this case, the extension must set the IsExcluded
member of the destination port's NDIS_SWITCH_PORT_DESTINATION structure to
FALSE.

To retain the 802.1Q virtual local area network (VLAN) data in a packet before it is
delivered to a port, the extension sets the PreserveVLAN member to TRUE.

To remove the 802.1Q virtual local area network (VLAN) data in a packet before it
is delivered to a port, the extension sets the PreserveVLAN member to FALSE.

To retain the 802.1Q priority data in a packet before it is delivered to a port, the
extension sets the PreservePriority member to TRUE.

To remove the 802.1Q priority data in a packet before it is delivered to a port, the
extension sets the PreservePriority member to FALSE.

If the forwarding extension adds multiple destination ports for a packet, it must
follow these steps:

1. The extension first accesses the packet's
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO structure by
using the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro. The
extension then reads the NumAvailableDestinations member to determine
how many unused destination port elements are available in the destination
port array. If the extension requires more destination ports than are available

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail

in the array, it must call the GrowNetBufferListDestinations function to allocate
space for additional destination ports in the array.

When the extension calls GrowNetBufferListDestinations, it sets the
NumberOfNewDestinations parameter to the number of new destination
ports to be added to the packet.

The extension also sets the NetBufferLists parameter to a pointer to the
packet's NET_BUFFER_LIST structure.

Note If there are available destination ports in the array, the extension should
not call GrowNetBufferListDestinations.

2. If the GrowNetBufferListDestinations function returns successfully, it has
added the additional destination ports to the end of the destination array in
the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. A pointer
to this structure is returned in the Destinations parameter.

Note If the GrowNetBufferListDestinations function cannot allocate the
requested number of destination ports, it returns NDIS_STATUS_RESOURCES.

3. The extension specifies new destination port elements in the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. The
extension initializes each new destination port as an
NDIS_SWITCH_PORT_DESTINATION structure.

The extension initializes new destination ports to the array starting at the
NumDestinations offset. NumDestinations is a member of the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure.

4. After the extension has finished adding or modifying destination port
elements, it must call UpdateNetBufferListDestinations to commit those
changes.

If the extension adds a single destination port for a packet, it must follow these
steps:

1. The extension initializes the destination port information for the packet in an
extension-allocated NDIS_SWITCH_PORT_DESTINATION structure.

2. The extension calls AddNetBufferListDestination to commit the changes to the
NET_BUFFER_LIST structure for the packet. The extension passes the address
of the NDIS_SWITCH_PORT_DESTINATION structure in the Destination
parameter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination

Note The extension should not call the UpdateNetBufferListDestinations
function to commit the changes to a packet with only one destination port.

When the forwarding extension calls AddNetBufferListDestination or
UpdateNetBufferListDestinations to commit the changes for destination ports, the
extensible switch interface will not delete the extensible switch ports that are
specified in the elements of the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. After the packet
send or receive operation is complete, the interface is free to delete the port if it is
necessary.

Note After the forwarding extension commits the changes for destination ports to
the forwarding context, destination ports cannot be removed and only the
IsExcluded member of a destination port's NDIS_SWITCH_PORT_DESTINATION
structure can be changed. For more information, see Excluding Packet Delivery to
Extensible Switch Destination Ports.

The forwarding extension must synchronize its handling of object identifier (OID)
set requests of OID_SWITCH_NIC_DISCONNECT with its code that adds destination
ports for the disconnected network adapter.

If the forwarding extension's FilterOidRequest is called for an
OID_SWITCH_NIC_DISCONNECT request, the extension can do one of the
following:

If the extension called NdisFOidRequest to forward this OID request, it must not
specify the port with the disconnected network adapter as a destination port for
the packet.

Note If the only destination port for the packet is the one with the disconnected
network adapter, the extension must drop the packet.

The extension can return NDIS_STATUS_PENDING to complete the request
asynchronously. This allows the extension to add the port with the disconnected
network adapter as a destination port for the packet. This also allows the
extension to call AddNetBufferListDestination or UpdateNetBufferListDestinations
and complete the addition of destination ports to a packet.

The extension may want to do this for packets that it has to forward to a port
before it is torn down.

Note If the extension returns NDIS_STATUS_PENDING, it can also call
ReferenceSwitchPort to increment the reference counter for the port with the
disconnected network adapter. However, the extension cannot forward the OID

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_add_net_buffer_list_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

request until after it calls DereferenceSwitchPort to decrement the reference
counter for the port.

If the number of destination ports is zero, the forwarding extension must call
NdisMSendNetBufferListsComplete to drop the packet. The extension must also
call ReportFilteredNetBufferLists to notify the extensible switch interface about the
dropped packet.

Note If the forwarding extension obtained a linked list of NET_BUFFER_LIST
structures for multiple packets from the ingress data path, it should create a
separate list of dropped packets. By doing this, the extension can call
NdisMSendNetBufferListsComplete and ReportFilteredNetBufferLists just once.

If the number of destination ports is greater than zero, the forwarding extension
must call NdisFSendNetBufferLists to forward the packet over the ingress data
path to the miniport edge of the extensible switch.

Note If the forwarding extension obtained a linked list of NET_BUFFER_LIST
structures for multiple packets from the ingress data path, it should create a
separate list of forwarded packets. By doing this, the extension can call
NdisFSendNetBufferLists just once to forward the list of packets. In addition, the
extension should maintain separate lists to forward packets that have the same
destination ports. For more information, see Hyper-V Extensible Switch Send and
Receive Flags.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

Excluding Packet Delivery to Extensible
Switch Destination Ports
Article • 12/15/2021

This topic describes how Hyper-V extensible switch extensions can exclude the delivery
of packets to extensible switch ports. The destination ports for a packet are specified
within the out-of-band (OOB) forwarding context within the packet's NET_BUFFER_LIST
structure. For more information on this context, see Hyper-V Extensible Switch
Forwarding Context.

Note This page assumes that you are familiar with the information and diagrams in
Overview of the Hyper-V Extensible Switch and Hybrid Forwarding.

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack. For more
information about the extensions, see Hyper-V Extensible Switch Extensions.

Filtering and forwarding extensions can exclude the delivery of packets obtained on the
extensible switch ingress or egress data paths. Excluding packet delivery can be done in
the following ways:

The extension can drop the packet by completing the packet request or indication.
This excludes the delivery of a packet to any extensible switch port. This method
can be used on packets that have one or more destination ports.

For packets obtained on the extensible switch ingress data path, the extension
completes the packet send request by calling NdisFSendNetBufferListsComplete.

For packets obtained on the extensible switch egress data path, the extension
completes the packet receive indication by calling NdisFReturnNetBufferLists.

For packets obtained on the egress data path with multiple destination ports, the
extension can exclude packet delivery by modifying the data for one or more
destination ports. The extension does this by setting the IsExcluded member of the
destination port's NDIS_SWITCH_PORT_DESTINATION structure to a value of one.
This method allows the packet to be delivered to those ports whose IsExcluded
value is set to zero.

Note Packets obtained on the ingress data path do not contain destination ports.
This data is only available after the extensible switch forwards the packet up the
egress data path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination

After the extension has modified the destination port's IsExcluded value, it must forward
the packet in the egress data path to overlying extensions. However, if the IsExcluded
data for all the packet's destination ports is set to one, the extension should drop the
packet by completing the packet receive indication instead of forwarding it.

Note After an extension has set the destination port's IsExcluded value to one, overlying
extensions on the egress data path cannot change this value to zero.

Note Capturing extensions cannot exclude the delivery of packets to extensible switch
ports.

Filtering and forwarding extensions must follow these guidelines for excluding packet
delivery to extensible switch ports:

On the extensible switch ingress data path, filtering and forwarding extensions can
exclude packet delivery based on a policy criteria for a packet's source port or
data.

The source port information is stored in the
NDIS_SWITCH_FORWARDING_DETAIL_NET_BUFFER_LIST_INFO union in the OOB
data of the packet's NET_BUFFER_LIST structure. The extension obtains the data by
using the NET_BUFFER_LIST_SWITCH_FORWARDING_DETAIL macro.

If the extension excludes the delivery of a packet obtained from the ingress data
path, it must drop the packet by completing the packet send request.

On the extensible switch ingress data path, forwarding extensions determine a
packet's destination ports and add this information to the packet's OOB data.
Based on policy criteria enforced by the extension, it can exclude packet delivery to
a port by not adding its destination port information to the OOB data.

For more information about this procedure, see Adding Extensible Switch
Destination Port Data to a Packet.

On the extensible switch egress data path, filtering and forwarding extensions can
exclude the delivery of the packet based on policy criteria. For example, filtering
extensions can exclude packet delivery based on policy criteria for a packet's
source port or destination ports.

Extensions exclude the delivery of a packet to destination ports by following these
steps:

1. The extension obtains the packet's destination ports by calling
GetNetBufferListDestinations. If the call returns NDIS_STATUS_SUCCESS, the
Destinations parameter contains a pointer to an

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_detail_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_switch_forwarding_detail
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations

NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. This
structure specifies the extensible switch destination ports of the packet. Each
destination port is formatted as an NDIS_SWITCH_PORT_DESTINATION
structure.

Note If the NumDestinations member of the
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure contains a
value of zero, the packet has no data for destination ports.

2. The extension excludes the packet delivery to an extensible switch port by setting
the IsExcluded member of the destination port's
NDIS_SWITCH_PORT_DESTINATION structure to a value of one.

Note If the extension excludes delivery of the packet to all of its destination ports,
the extension must drop the packet by completing the packet's receive indication.

3. If the extension excludes delivery to one or all destination ports in a packet, it must
do the following:

The extension must call UpdateNetBufferListDestinations to commit these
changes to the packet's OOB data.

The extension must call ReportFilteredNetBufferLists. When this function is
called, the extensible switch interface increments counters and logs events for
the excluded packet. The extension must make this call before it forwards the
packet in the extensible switch data path from which it obtained the packet.

Similarly, if the extension completes the packet send request or indication to
exclude delivery to all ports for the packet, it must also call
ReportFilteredNetBufferLists.

Note The extension can create a linked list of NET_BUFFER_LIST structures for
packets that the extension is excluding. When the extension calls
ReportFilteredNetBufferLists, it sets the NetBufferLists parameter to a pointer to the
linked list.

For more information about the extensible switch ingress and egress data paths, see
Hyper-V Extensible Switch Data Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_update_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_report_filtered_net_buffer_lists

Managing Hyper-V Extensible Switch
Policies
Article • 12/15/2021

This section describes how a Hyper-V extensible switch extension manages port and
switch policies. This section includes the following topics:

Managing Port Policies

Managing Switch Policies

For more information on extensible switch policies, see Overview of Hyper-V Extensible
Switch Policies.

Managing Port Policies
Article • 12/15/2021

Hyper-V extensible switch filtering and forwarding extensions can be provisioned with
the properties of standard and custom port properties. Once provisioned, these
extensions enforce the policies when they filter packets obtained on the extensible
switch ingress data path. For more information about these policies, see Port Policies.

The Hyper-V extensible switch interface uses the following object identifiers (OIDs) to
provision filtering and forwarding extensions with the properties of standard and
custom port policies:

OID_SWITCH_PORT_PROPERTY_ADD
This OID set request is issued by the protocol edge of the extensible switch to notify
underlying extensions of the addition of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure.

Note Custom port properties are specified by an
NDIS_SWITCH_PORT_PROPERTY_TYPE enumeration value of
NdisSwitchPortPropertyTypeCustom. Standard port properties are specified by an
NDIS_SWITCH_PORT_PROPERTY_TYPE enumeration value of
NdisSwitchPortPropertyTypeSecurity, NdisSwitchPortPropertyTypeVlan, and
NdisSwitchPortPropertyTypeProfile.

OID_SWITCH_PORT_PROPERTY_UPDATE
This OID set request is issued by the protocol edge of the extensible switch to inform
underlying extensions of the update of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure.

OID_SWITCH_PORT_PROPERTY_DELETE
This OID set request is issued by the protocol edge of the extensible switch to inform
underlying extensions of the deletion of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PORT_PROPERTY_DELETE_PARAMETERS structure.

OID_SWITCH_PORT_PROPERTY_ENUM
This OID method request is sent by the extension to query the underlying miniport edge
of the extensible switch about the currently configured properties for a specified port on
the extensible switch. The InformationBuffer of the NDIS_OID_REQUEST structure
contains a pointer to a buffer. This buffer contains the following data:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_port_property_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

An NDIS_SWITCH_PORT_PROPERTY_ENUM_PARAMETERS structure that specifies
the parameters for the policy enumeration of a specified port.

An array of NDIS_SWITCH_PORT_PROPERTY_ENUM_INFO structures. Each of
these structures contains information about the properties of an extensible switch
port policy.

Note If the NumProperties member of the
NDIS_SWITCH_PORT_PROPERTY_ENUM_PARAMETERS structure is set to zero, no
NDIS_SWITCH_PORT_PROPERTY_ENUM_INFO structures are returned.

Note The extension must not originate OID set requests of
OID_SWITCH_PORT_PROPERTY_ADD. OID_SWITCH_PORT_PROPERTY_UPDATE, or
OID_SWITCH_PORT_PROPERTY_DELETE.

The extensible switch extension must follow these guidelines when it handles an OID set
request of OID_SWITCH_PORT_PROPERTY_ADD, OID_SWITCH_PORT_PROPERTY_UPDATE,
or OID_SWITCH_PORT_PROPERTY_DELETE:

The extension must not modify the
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS or
NDIS_SWITCH_PORT_PROPERTY_DELETE_PARAMETERS structure that is
associated with the OID request.

The extension must handle these OID requests if the extension manages the
property. Depending on the OID request, the extension must inspect the following
members of the NDIS_SWITCH_PORT_PROPERTY_PARAMETERS or
NDIS_SWITCH_PORT_PROPERTY_DELETE_PARAMETERS structures to determine
whether it manages the port property:

The PropertyType member. This member specifies the type of the port
property. Custom port properties have a PropertyType member value of
NdisSwitchPortPropertyTypeCustom. Standard port properties have other
property type values. For example, standard VLAN port policies have a property
type value of NdisSwitchPortPropertyTypeVlan.

The PropertyId member. This member specifies a proprietary GUID value for a
custom port property. This GUID value is created by the independent software
vendor (ISV) who also defines the format of the custom extensible switch
property.

Note The extension must ignore this member for standard port policies.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_delete_parameters

The extension must handle an OID_SWITCH_PORT_PROPERTY_UPDATE set request
if the extension was previously provisioned with a port property that matches the
following members of the NDIS_SWITCH_PROPERTY_PARAMETERS structure:

The PropertyType member.

The PropertyId member.

Note The extension must ignore this member for standard port policies.

The PropertyVersion member. This member specifies the version of the port
property that the extension was provisioned with.

The PropertyInstanceId member. This member specifies the instance of the port
property that the extension was provisioned with.

The filtering or forwarding extension can veto the addition or update of a port
policy that it manages. The extension does this by completing the OID request
with STATUS_DATA_NOT_ACCEPTED.

Note Capturing extensions must not veto the addition or update of a port policy.
Instead, it must forward the OID request down the extensible switch control path.

A forwarding extension can fail the OID request for standard port properties that it
does not support or if the property conflicts with its own policy configuration. In
this case, the extension must complete the OID request and return the appropriate
NDIS status code to report the failure.

If the extension successfully handles the OID set request for a standard port policy,
it must not complete the OID request and must forward it down the extensible
switch control path.

If the capturing or filtering extension successfully handles the OID set request for a
custom port policy, it must not complete the OID request and must forward it
down the extensible switch control path.

If the forwarding extension successfully handles the OID set request for a custom
port policy, it must complete the OID request and return the appropriate
NDIS_STATUS_Xxx value.

If the extension does not complete the OID set request, it must call
NdisFOidRequest to forward the OID request down the extensible switch driver
stack. In this case, the extensions should monitor the completion status of the OID
to detect whether an underlying extension has failed the OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Managing Switch Policies
Article • 12/15/2021

Hyper-V extensible switch filtering and forwarding extensions can be provisioned with
the properties of custom switch properties. Once provisioned, these extensions enforce
the policies when they filter packets obtained on the extensible switch ingress data path.
For more information about these policies, see Switch Policies.

The Hyper-V extensible switch interface uses the following object identifiers (OIDs) to
provision filtering and forwarding extensions with the properties of custom switch
policies:

OID_SWITCH_PROPERTY_ADD
This OID set request is issued by the protocol edge of the extensible switch to notify
underlying extensions of the addition of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PROPERTY_PARAMETERS structure.

Note Custom switch properties are specified by an NDIS_SWITCH_PROPERTY_TYPE
enumeration value of NdisSwitchPropertyTypeCustom.

OID_SWITCH_PROPERTY_UPDATE
This OID set request is issued by the protocol edge of the extensible switch to notify
underlying extensions of the update of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PROPERTY_PARAMETERS structure.

OID_SWITCH_PROPERTY_DELETE
This OID set request is issued by the protocol edge of the extensible switch to notify
underlying extensions of the deletion of a property at the WMI management layer. The
InformationBuffer of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_SWITCH_PROPERTY_DELETE_PARAMETERS structure.

OID_SWITCH_PROPERTY_ENUM
This OID method request is sent by the extension to query the underlying miniport edge
of the extensible switch about the currently configured switch properties on the
extensible switch. The InformationBuffer of the NDIS_OID_REQUEST structure contains
a pointer to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS structure that specifies the
parameters for the property enumeration of a switch policy.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_property_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters

An array of NDIS_SWITCH_PROPERTY_ENUM_INFO structures. Each of these
structures contains information about the properties of a switch policy.

Note If the NumProperties member of the
NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS structure is set to zero, no
NDIS_SWITCH_PROPERTY_ENUM_INFO structures are returned.

Note The extension must not originate OID set requests of
OID_SWITCH_PROPERTY_ADD. OID_SWITCH_PROPERTY_UPDATE, or
OID_SWITCH_PROPERTY_DELETE.

The extensible switch extension must follow these guidelines when it handles an OID set
request of OID_SWITCH_PROPERTY_ADD, OID_SWITCH_PROPERTY_UPDATE, or
OID_SWITCH_PROPERTY_DELETE:

The extension must not modify the NDIS_SWITCH_PROPERTY_PARAMETERS or
NDIS_SWITCH_PROPERTY_DELETE_PARAMETERS structure that is associated with
the OID request.

The extension must handle an OID_SWITCH_PROPERTY_UPDATE or
OID_SWITCH_PROPERTY_DELETE set request if the extension has been previously
provisioned with a switch property that matches the following members of the
NDIS_SWITCH_PROPERTY_PARAMETERS or
NDIS_SWITCH_PROPERTY_DELETE_PARAMETERS structure:

The PropertyType member that specifies the type of switch property.

Note Starting with NDIS 6.30, only switch properties of
NdisSwitchPropertyTypeCustom are specified by the
NDIS_SWITCH_PROPERTY_PARAMETERS or
NDIS_SWITCH_PROPERTY_DELETE_PARAMETERS structures.

The PropertyId member that specifies a proprietary GUID value that the
extension recognizes. This GUID value is created by the independent software
vendor (ISV) who also defines the format of the custom extensible switch policy
property.

Note A custom extensible switch policy property is contained within an
NDIS_SWITCH_PROPERTY_CUSTOM structure.

If the extension handles these OID set requests, the extension must update or
delete the switch policy that matches the following members of the
NDIS_SWITCH_PROPERTY_PARAMETERS structure:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters

The PropertyVersion member that specifies the version of the extensible switch
policy.

The PropertyInstanceId member that specifies the instance of the extensible
switch policy.

If the values of these members do not match a switch policy property for which the
extension has been previously provisioned, the extension must fail the OID set
request with NDIS_STATUS_INVALID_PARAMETER. Otherwise, the extension must
complete the OID set request and return NDIS_STATUS_SUCCESS.

The filtering or forwarding extension can veto the addition, deletion, or update of a
switch policy. The extension does this by completing the OID request with
STATUS_DATA_NOT_ACCEPTED.

Note Capturing extensions must not veto the addition or update of a switch
policy. Instead, it must forward the OID request down the extensible switch control
path.

If the capturing or filtering extension successfully handles the OID set request for a
custom switch policy, it must not complete the OID request and must forward it
down the extensible switch control path.

If the forwarding extension successfully handles the OID set request for a custom
switch policy, it must complete the OID request and return the appropriate
NDIS_STATUS_Xxx value.

If the extension does not complete the OID set request, it must call
NdisFOidRequest to forward the OID request down the extensible switch driver
stack. In this case, the extensions should monitor the completion status of the OID
to detect whether an underlying extension has failed the OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Managing Hyper-V Extensible Switch
Feature Status Information
Article • 12/15/2021

The Hyper-V extensible switch interface supports the ability to obtain custom status
information for an extensible switch or one of its ports. This status information is known
as a feature status information.

This section includes the following topics:

Managing Custom Port Feature Status Information

Managing Custom Switch Feature Status Information

For more information on feature status information, see Hyper-V Extensible Switch
Feature Status Information.

Managing Custom Port Feature Status
Information
Article • 12/15/2021

The Hyper-V extensible switch interface uses the following object identifier (OID) to
query custom status information for an extensible switch port. This status information is
known as port feature status information:

OID_SWITCH_PORT_FEATURE_STATUS_QUERY
This OID method request is issued by the protocol edge of the extensible switch to
obtain the custom feature status information for a specified port property.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains
the following data:

An NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS structure that specifies
the custom feature status information that is to be returned.

Note For a custom feature status, the FeatureStatusType member is set to
NdisSwitchPortPropertyTypeCustom.

An NDIS_SWITCH_PORT_FEATURE_STATUS_CUSTOM structure that contains the
status information about a custom property assigned to an extensible switch port.

When the protocol edge of the extensible switch issues the
OID_SWITCH_PORT_FEATURE_STATUS_QUERY request, it sets the
FeatureStatusCustomBufferLength and FeatureStatusCustomBufferOffset
members to a location in the InformationBuffer member that the extension can
use to return the feature status information.

The extensible switch extension must follow these guidelines when it receives an OID
method request of OID_SWITCH_PORT_FEATURE_STATUS_QUERY:

The extension must handle the OID request if it manages a custom extensible
switch port property that matches the FeatureStatusId member of the
NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS structure.

If the extension handles the OID method request, it must return the feature status
information that matches the parameters specified by the
NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters

If the feature status buffer is too small, the extension must fail the OID request
with NDIS_STATUS_INVALID_LENGTH. The extension must set the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

Otherwise, the extension must return the feature status information and complete
the OID request with NDIS_STATUS_SUCCESS.

If the extension does not manage the custom extensible switch property, it must
call NdisFOidRequest to forward the OID request down the extensible switch
driver stack.

For more information about how to forward OID requests, see Filtering OID
Requests in an NDIS Filter Driver.

For more information about how to define and register port feature status information,
see Custom Port Feature Status.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Managing Custom Switch Feature Status
Information
Article • 12/15/2021

The Hyper-V extensible switch interface uses the following object identifier (OID) to
query custom status information for the extensible switch. This status information is
known as switch feature status information:

OID_SWITCH_FEATURE_STATUS_QUERY
This OID method request is issued by the protocol edge of the extensible switch to
obtain the custom feature status information for a specified switch property.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains
the following data:

An NDIS_SWITCH_FEATURE_STATUS_PARAMETERS structure that specifies the
custom feature status information that is to be returned.

Note For a custom feature status, the FeatureStatusType member is set to
NdisSwitchPropertyTypeCustom.

An NDIS_SWITCH_FEATURE_STATUS_CUSTOM structure that contains the status
information about a custom property assigned to an extensible switch port.

When the protocol edge of the extensible switch issues the
OID_SWITCH_FEATURE_STATUS_QUERY request, it sets the
FeatureStatusCustomBufferLength and FeatureStatusCustomBufferOffset
members to a location in the InformationBuffer member that the extension can
use to return the feature status information.

The extensible switch extension must follow these guidelines when it receives an OID
method request of OID_SWITCH_FEATURE_STATUS_QUERY:

The extension must handle the OID request if it manages a custom extensible
switch feature status that matches the FeatureStatusId member of the
NDIS_SWITCH_FEATURE_STATUS_PARAMETERS structure.

If the extension handles the OID method request, it must return the feature status
information that matches the parameters specified by the
NDIS_SWITCH_FEATURE_STATUS_PARAMETERS structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters

If the feature status buffer is too small, the extension must fail the OID request
with NDIS_STATUS_INVALID_LENGTH. The extension must set the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

Otherwise, the extension must return the feature status information and complete
the OID request with NDIS_STATUS_SUCCESS.

If the extension does not manage the custom extensible switch feature status, it
must call NdisFOidRequest to forward the OID request down the extensible switch
driver stack.

For more information about how to forward OID requests, see Filtering OID
Requests in an NDIS Filter Driver.

For more information about how to define and register switch feature status
information, see Custom Switch Feature Status.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Managing Hyper-V Extensible Switch
Run-Time Data
Article • 12/15/2021

This topic describes save and restore operations for Hyper-V extensible switch
extensions. These operations allow an extension to save and restore run-time data for
individual extensible switch network adapters(NICs). These operations are performed
when a Hyper-V child partition that has a network adapter connection to an extensible
switch port is being stopped or started.

This section describes the operation by which a Hyper-V Extensible Switch extension can
save run-time data for individual network adapters (NICs). This operation is performed
when a Hyper-V child partition with a network adapter connection to an extensible
switch port is being stopped or its state is being saved.

When a Hyper-V child partition with a network adapter connection to an extensible
switch port is stopped or its state is saved, the Hyper-V extensible switch interface is
notified. This causes the protocol edge of the extensible switch to issue an object
identifier (OID) method request of OID_SWITCH_NIC_SAVE down the extensible switch
driver stack. When an extensible switch extension receives this OID request, it can save
its run-time data for the specified network adapter connection that is attached to the
child partition.

The InformationBuffer member of the NDIS_OID_REQUEST structure for the
OID_SWITCH_NIC_SAVE request contains a pointer to an
NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the protocol
edge of the extensible switch and initialized in the following way:

The Header member is initialized to contain the current type, revisionof the
NDIS_SWITCH_NIC_SAVE_STATE structure. Size is set to the full buffer size.

The PortId member contains the unique identifier of the extensible switch port for
which the save operation is being performed.

Saving Hyper-V Extensible Switch Run-Time
Data

Handling the OID_SWITCH_NIC_SAVE Request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

When it receives the OID_SWITCH_NIC_SAVE method request, the extension does the
following:

1. The extension reads the PortId member of the NDIS_SWITCH_NIC_SAVE_STATE
structure.

2. If the extension has run-time data to save for the specified NIC, it saves its data
within the NDIS_SWITCH_NIC_SAVE_STATE structure starting with SaveDataOffset
bytes from the start of the structure. The extension then completes the OID
method request with NDIS_STATUS_SUCCESS.

3. If the NDIS_SWITCH_NIC_SAVE_STATE structure does not provide a sufficient
buffer to hold the runtime state, the extension the extension sets the method
structure’s BytesNeeded field to
NDIS_SIZEOF_NDIS_SWITCH_NIC_SAVE_STATE_REVISION_1 plus the amount of
buffer necessary to hold the save data, and completes the OID with
NDIS_STATUS_BUFFER_TOO_SHORT. The OID will be re-issued with the required
size.

4. If the extension does not have run-time data to save for the specified NIC, it must
call NdisFOidRequest. This forwards the OID method request to underlying drivers
in the extensible switch driver stack. For more information about this procedure,
see Filtering OID Requests in an NDIS Filter Driver.

If the extension has run-time port data to save, it must follow these guidelines when it
saves run-time port data within the NDIS_SWITCH_NIC_SAVE_STATE structure:

1. The extension sets the ExtensionId member to the GUID value that uniquely
identifies the driver.

2. The extension sets the ExtensionFriendlyName member to the name of the driver.

Note The NDIS_SWITCH_EXTENSION_FRIENDLYNAME data type is type-defined
by the IF_COUNTED_STRING structure. A string that is defined by this structure
does not have to be null-terminated. However, the length of the string must be set
in the Length member of this structure. If the string is NULL-terminated, the
Length member must not include the terminating NULL character.

3. If a feature class is associated with the saved run-time data, the extension sets the
FeatureClassId with the GUID that uniquely identifies the class.

Note If a feature class is not associated with the saved run-time data, the
extension sets the FeatureClassId to zero.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-if_counted_string_lh

4. The extension copies the run-time data to the SaveData member and sets the
SaveDataSize member to the size, in bytes, of the run-time data.

Note The extension must not change the Header or PortId members of the
NDIS_SWITCH_NIC_SAVE_STATE structure.

OID method requests of OID_SWITCH_NIC_SAVE are ultimately handled by the
underlying miniport edge of the extensible switch. Once this OID method request has
been forwarded to the miniport driver through the extensible switch driver stack, the
miniport driver completes the OID request with NDIS_STATUS_SUCCESS. This notifies the
protocol edge of the extensible switch that all extensions in the extensible switch driver
stack have been queried for run-time port data. The protocol edge of the extensible
switch then issues an OID set request of OID_SWITCH_NIC_SAVE_COMPLETE to
complete the save operation.

When a Hyper-V child partition that has a network adapter connection to an extensible
switch port is paused or its state is being saved, the Hyper-V extensible switch interface
is notified. This causes the protocol edge of the extensible switch to issue an object
identifier (OID) method request of OID_SWITCH_NIC_SAVE down the extensible switch
driver stack.

When every Hyper-V extensible switch extension has saved its run-time data, the
protocol edge of the extensible switch notifies underlying extensions that the save
operation has completed. The protocol edge does this by issuing an OID set request of
OID_SWITCH_NIC_SAVE_COMPLETE down the extensible switch driver stack.

Note When a run-time save operation is started for an extensible switch network
adapter connection, another save operation for the same network adapter connection
will not be performed until the OID_SWITCH_NIC_SAVE_COMPLETE request is issued.
However, save operations for other network adapter connections could occur during
this time.

The InformationBuffer member of the NDIS_OID_REQUEST structure for the
OID_SWITCH_NIC_SAVE_COMPLETE request contains a pointer to an
NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the protocol
edge of the extensible switch.

When it receives the OID set request of OID_SWITCH_NIC_SAVE_COMPLETE, the
extension must follow these guidelines:

Handling the OID_SWITCH_NIC_SAVE_COMPLETE Request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

The extension must not modify the NDIS_SWITCH_NIC_SAVE_STATE structure that
is associated with the OID request.

The extension must call NdisFOidRequest to forward this OID request through the
extensible switch extension stack. The extension must not fail the OID request.

Note The extension should monitor the completion status of this OID request. The
extension does this to detect whether the save operation has completed
successfully.

OID method requests of OID_SWITCH_NIC_SAVE_COMPLETE are ultimately handled by
the underlying miniport edge of the extensible switch. Once this OID method request
has been received by the miniport edge, it completes the OID request with
NDIS_STATUS_SUCCESS. This notifies the protocol edge of the extensible switch that all
extensions in the extensible switch driver stack have completed the save operation.

When a Hyper-V child partition that has a network adapter connection to an extensible
switch port is resumed from a pause, the Hyper-V extensible switch interface is notified.
This causes the protocol edge of the extensible switch to issue an object identifier (OID)
set request of OID_SWITCH_NIC_RESTORE down the extensible switch driver stack. When
an extension receives this OID request, it can restore its run-time data for the extensible
switch port that is used by the child partition.

The InformationBuffer member of the NDIS_OID_REQUEST structure for the
OID_SWITCH_NIC_RESTORE request contains a pointer to an
NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the protocol
edge of the extensible switch.

When it receives the OID set request of OID_SWITCH_NIC_RESTORE, the extensible
switch extension must first determine whether it owns the run-time data. The extension
does this by comparing the value of the ExtensionId member of the
NDIS_SWITCH_NIC_SAVE_STATE structure to the GUID value that the extension uses to
identify itself.

If the extension owns the run-time data for an extensible switch NIC, it restores this data
in the following way:

1. The extension copies the run-time data in the SaveData member to driver-
allocated storage.

Restoring Hyper-V Extensible Switch Run-Time
Data

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

Note The value of the PortId member of the NDIS_SWITCH_NIC_SAVE_STATE
structure may be different from the PortId value at the time that the run-time data
was saved. This can occur if run-time data was saved during a Live Migration from
one host to another. However, the configuration of the extensible switch NIC is
retained during the Live Migration. This enables the extension to restore the run-
time data to the extensible switch NIC by using the new PortId value.

2. The extension completes the OID set request with NDIS_STATUS_SUCCESS.

If the extension does not own the specified run-time data to save, the extension calls
NdisFOidRequest. This forwards the OID set request to underlying drivers in the
extensible switch driver stack. In this case, the extension must not modify the
NDIS_SWITCH_NIC_SAVE_STATE structure that is associated with the OID request. For
more information on how to forward OID requests, see Filtering OID Requests in an
NDIS Filter Driver.

If the OID set request of OID_SWITCH_NIC_RESTORE is completed with
NDIS_STATUS_SUCCESS, the protocol edge of the extensible switch issues another OID
set request. When it receives this new OID set request, the extension can do one of the
following:

If it owns the run-time data in the new OID request, the extension restores the
additional run-time data within the NDIS_SWITCH_NIC_SAVE_STATE structure. The
extension then completes the OID request with NDIS_STATUS_SUCCESS.

If it does not own the run-time data in the new OID request, the extension calls
NdisFOidRequest to forward this OID set request to underlying drivers.

OID_SWITCH_NIC_RESTORE_COMPLETE
The extensible switch interface signals the protocol edge of the extensible switch to
issue this OID at the completion of the restore operation of run-time data for an
extensible switchnetwork adapter.

This OID request notifies the extension that the restore operation has completed only
for a specified extensible switch NIC.

For more information about this OID request, see
OID_SWITCH_NIC_RESTORE_COMPLETE.

Note If the OID_SWITCH_NIC_RESTORE set request is received by the miniport edge of
the extensible switch, it completes the OID request with NDIS_STATUS_SUCCESS. This
notifies the protocol edge of the extensible switch that no extension owns the run-time
data. If this happens, the extensible switch interface logs an event that documents the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

ExtensionId and PortId member values for the extension that originally saved the run-
time port data.

Managing Physical Network Adapters
Article • 12/15/2021

This section describes the operations that a Hyper-V extensible switch extension can
perform on underlying physical adapters that are bound to the extensible switch
external network adapter.

These operations allow an extension to forward or originate object identifier (OID)
requests to an underlying physical network adapter. The extension can also forward or
originate NDIS status indications from a physical network adapter up the extensible
switch driver stack.

Note Operations of this sort can only be performed by an extensible switch forwarding
extension. For more information about this type of extension, see Forwarding
Extensions.

This section includes the following topics:

Managing Physical Network Adapter Connection Status

Forwarding Packets to Physical Network Adapters

Managing OID Requests to Physical Network Adapters

Managing NDIS Status Indications from Physical Network Adapters

Managing Physical Network Adapter
Connection Status
Article • 12/15/2021

The Hyper-V extensible switch architecture supports the connection to a single external
network adapter for access to the underlying physical medium. The external network
adapter can be bound to one or more underlying physical network adapters in a variety
of configurations. For more information about these configurations, see Types of
Physical Network Adapter Configurations.

The extensible switch interface notifies extensions of each physical network adapter
connection status through the following steps:

1. The protocol edge of the extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_CREATE. This OID request notifies underlying
extensible switch extensions about the creation of network connection to the
extensible switch external network adapter.

When the network connection is created, it is assigned an
NDIS_SWITCH_NIC_INDEX value. This index value identifies the network connection
of the adapter on an extensible switch port. The network connection to the
external network adapter is assigned an NDIS_SWITCH_NIC_INDEX value of
NDIS_SWITCH_DEFAULT_NIC_INDEX.

2. For every network adapter that is bound directly or indirectly to the external
network adapter, the protocol edge of the extensible switch issues a separate OID
set request of OID_SWITCH_NIC_CREATE. This OID request notifies the extension
about the creation of a network connection to an underlying network adapter.

Each physical or virtual network adapter that is bound to the external network
adapter is assigned an identifier in the following way:

If a single physical adapter is bound to the external network adapter, it is
assigned a NDIS_SWITCH_NIC_INDEX value of one.

If an load balancing fail over (LBFO) team of network adapters is bound to
the external network adapter, it is assigned a NDIS_SWITCH_NIC_INDEX value
of one.

Note In the LBFO team configuration, only the virtual miniport edge of the
LBFO provider that supports the LBFO team is considered to be bound to the
external network adapter.

If an extensible switch team of network adapters is bound to the external network
adapter, each physical network adapter in the team is assigned a unique
NDIS_SWITCH_NIC_INDEX value that is greater than or equal to one.

Note In the extensible switch team configuration, every physical network adapter
in the team is considered to be bound to the external network adapter.

3. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT for the external network adapter.

Note At this point, the connection to the external network is not operational and
cannot be used for packet traffic.

4. For every network adapter that is bound to the external network adapter, the
protocol edge of the extensible switch issues a separate OID set request of
OID_SWITCH_NIC_CONNECT. This OID request is issued after the OID set request
of OID_SWITCH_NIC_CREATE is completed successfully.

The OID_SWITCH_NIC_CONNECT OID request notifies the extension that the
extensible switch network connection is now operational. If the external network
adapter is bound to the virtual miniport edge of the MUX driver, the protocol edge
issues a separate OID_SWITCH_NIC_CONNECT request.

Note As soon as an OID_SWITCH_NIC_CONNECT request is issued for a physical
network adapter with a NDIS_SWITCH_NIC_INDEX value greater than or equal to
one, the connection to the external network is operational. At this point, packet
traffic can be sent or received over the external network.

5. If the external network connection is being torn down, the protocol edge of the
extensible switch first issues a separate OID set request of
OID_SWITCH_NIC_DISCONNECT for every network adapter that is bound to the
external network adapter. Once these OID requests are completed, the protocol
edge of the extensible switch then issues separate OID set request of
OID_SWITCH_NIC_DELETE for every physical network adapter that is bound to the
external network adapter,

Once all network connections to the underlying physical adapters have been
disconnected and deleted, the protocol edge of the extensible switch issues
OID_SWITCH_NIC_DISCONNECT and OID_SWITCH_NIC_DELETE requests to
disconnect and delete the external network adapter connection.

For more information on NDIS_SWITCH_NIC_INDEX values, see Network Adapter Index
Values.

Forwarding Packets to Physical Network
Adapters
Article • 12/15/2021

Note This page assumes that you are familiar with the information and diagrams in the
following pages:

Forwarding Extensions
Hybrid Forwarding
Hyper-V Extensible Switch Extensions
Overview of the Hyper-V Extensible Switch
Teaming Provider Extensions

This page describes how Hyper-V extensible switch forwarding extensions can forward
send requests of packets to underlying physical adapters. One or more physical network
adapters can be bound to the extensible switch external network adapter.

For example, the extensible switch external network adapter can be bound to the virtual
miniport edge of an NDIS multiplexer (MUX) intermediate driver. The MUX intermediate
driver itself can be bound to a team of one or more physical networks on the host. This
configuration is known as an extensible switch team. For more information about
extensible switch teams, see Types of Physical Network Adapter Configurations.

In this configuration, the extensible switch extensions are exposed to every network
adapter in the extensible switch team. This allows a forwarding extension in the
extensible switch driver stack to manage the configuration and use of individual network
adapters in the team. For example, the extension can provide support for a load
balancing failover (LBFO) solution over the team by forwarding outgoing packets to
individual adapters. Such as extension is known as a teaming provider. For more
information about teaming providers, see Teaming Provider Extensions.

If a forwarding extension is installed and enabled in the extensible switch driver stack, it
is responsible for making forwarding decisions for each packet that it obtains on the
extensible switch ingress data path, unless the packet is an NVGRE packet. (For more
information about NVGRE packets, see Hybrid Forwarding.) Based on these forwarding
decisions, the extension can add destination ports into the out-of-band (OOB) data of
the packet's NET_BUFFER_LIST structure. After the packet has completed its traversal of
the extensible switch data path, the extensible switch interface delivers the packet to the
specified destination ports.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Note If a forwarding extension is not installed or enabled, the extensible switch itself
makes the forwarding decisions for packets it obtains from ingress data path. The switch
adds the destination ports to the OOB data of the packet's NET_BUFFER_LIST structure
before it forwards the packet up the extensible switch egress data path.

When the forwarding extension's FilterSendNetBufferLists function is called, the
NetBufferList parameter contains a pointer to a linked list of NET_BUFFER_LIST
structures. Each of these structures specifies a packet obtained from the ingress data
path. Within the OOB data of each packet's NET_BUFFER_LIST structure, the data for
destination ports are contained in an
NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. The extension obtains
the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure and its elements by
calling GetNetBufferListDestinations.

Note To improve performance, a forwarding extension can call the
GrowNetBufferListDestinations function instead of GetNetBufferListDestinations to obtain
a pointer to the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY structure. The
extension does this if it determines that it needs additional array elements in the
packet's OOB data for destination ports. For more information, see Adding Extensible
Switch Destination Port Data to a Packet.

Each element in the NDIS_SWITCH_FORWARDING_DESTINATION_ARRAY array defines
a destination port and is formatted as an NDIS_SWITCH_PORT_DESTINATION structure.
This structure contains the following members:

The PortId member contains a value that specifies the destination port on the
extensible switch.

The NicIndex member specifies the index of the network adapter that is connected
to the extensible switch port specified by the PortId member.

For more information on these index values, see Network Adapter Index Values.

If the forwarding extension adds a destination port that is connected to the external
network adapter, the extension can specify the index of an underlying physical network
adapter. For example, the extension could operate as a teaming provider for LBFO
support over an extensible switch team. This allows the extension to balance the traffic
overhead by forwarding send requests to different adapters of the team.

The forwarding extension must follow these guidelines when it adds or modifies an
NDIS_SWITCH_PORT_DESTINATION structure to forward send requests to an
underlying physical network adapter:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_grow_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_get_net_buffer_list_destinations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_forwarding_destination_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_port_destination

If the PortId member specifies the extensible switch port to which the external
network adapter is connected, the extension must set the NicIndex member to
one of the following index values:

If only one physical network adapter is bound to the external network adapter,
the extension must set the NicIndex member to
NDIS_SWITCH_DEFAULT_NIC_INDEX or one.

If multiple physical network adapters are bound to the external network
adapter, the extension must set the NicIndex member to the nonzero index
value of the destination network adapter in the extensible switch team.

Note If the PortId member does not specify the extensible switch port to which
the external network adapter is connected, the extension must set the NicIndex
member to NDIS_SWITCH_DEFAULT_NIC_INDEX.

After the extension has added all of the destination ports for the packet, it must
call NdisFSendNetBufferLists to forward the packet on the ingress data path.

For more information on how to add destination ports to a packet, see Forwarding
Packets to Hyper-V Extensible Switch Ports.

For more information on the egress data path, see Hyper-V Extensible Switch Data Path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfsendnetbufferlists

Managing OID Requests to Physical
Network Adapters
Article • 12/15/2021

This section discusses how Hyper-V extensible switch extensions manage object
identifier (OID) requests for underlying physical network adapters over the extensible
switch control path.

This section includes the following topics:

Forwarding OID Requests to Physical Network Adapters

Managing Hardware Offload OID Requests to Physical Network Adapters

For more information on how to manage OID requests over the Hyper-V extensible
switch control path, see Hyper-V Extensible Switch Control Path for OID Requests.

Forwarding OID Requests to Physical
Network Adapters
Article • 12/15/2021

This topic discusses how Hyper-V extensible switch extensions forward object identifier
(OID) requests for underlying physical adapters over the Hyper-V extensible switch
control path. The extension can also originate OID requests to underlying physical
network adapters by following the methods described in this topic.

For example, the external network adapter can be bound to the virtual miniport edge of
an NDIS multiplexer (MUX) intermediate driver. The MUX driver is bound to a team of
one or more physical networks on the host. This configuration is known as an extensible
switch team.

In this configuration, an extensible switch extension is exposed to every network adapter
in the team. This allows the extension to manage the configuration and use of individual
network adapters in the team. For example, a forwarding extension can provide support
for a load balancing failover (LBFO) solution over the team by forwarding outgoing
packets to individual adapters. A forwarding extension that manages an extensible
switch team is known as a teaming provider. For more information about teaming
providers, see Teaming Provider Extensions.

The following figure shows an example of an extensible switch team for NDIS 6.40
(Windows Server 2012 R2) and later.

The following figure shows an example of an extensible switch team for NDIS 6.30
(Windows Server 2012).

Note In the Hyper-V extensible switch interface, NDIS filter drivers are known as
extensible switch extensions and the driver stack is known as the extensible switch driver
stack.

OID requests must be encapsulated to forward the request to an underlying physical
network adapter. OID requests are first encapsulated inside an
NDIS_SWITCH_NIC_OID_REQUEST structure. Then, the OID requests are forwarded
through the extensible switch control path by an OID set request of
OID_SWITCH_NIC_REQUEST.

OID requests to the underlying physical adapters are issued by the following:

The extensible switch interface.
OID requests, such as requests for hardware offloads, are issued by overlying protocol
or filter drivers that run in one of the following:

The management operating system that runs in the Hyper-V parent partition.

The guest operating system that runs in the Hyper-V child partition.

When these OID requests are received by the extensible switch, they are encapsulated
and forwarded over the extensible switch control path. When a forwarding extension
receives the encapsulated OID request, it can forward the request to an underlying
physical adapter. This ability is especially useful for configuring the extensible switch
team for hardware offloads.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

For example, the MUX driver advertises the common capabilities of the entire extensible
switch team. However, the forwarding extension can issue OID requests to query or set
the individual capabilities of adapters within the team. Then, the forwarding extension
can originate an NDIS status indication from the external network adapter to notify
overlying drivers about the capabilities that apply to the entire team. For more
information on this procedure, see Originating NDIS Status Indications from Physical
Network Adapters.

When the forwarding extension forwards the OID request over the control path, it is
received by the external network adapter. At this point, the OID request is decapsulated
and forwarded to the specified physical network adapter.

Note Starting with Windows Server 2012, only hardware offload OID requests are
encapsulated and forwarded in this manner. For example, offload OID requests for
virtual machine queue (VMQ) or Internet Protocol security (IPsec) are encapsulated and
forwarded over the extensible switch control path. For more information, see Managing
Hardware Offload OID Requests to Physical Network Adapters.

A forwarding extension.
The forwarding extension can originate its own encapsulated OID requests and forward
them to an underlying physical network adapter. The forwarding extension can
encapsulate standard NDIS OID requests. The forwarding extension can also encapsulate
private OID requests that are defined by the independent hardware vendor (IHV) for the
physical network adapters. This allows a forwarding extension that was also developed
by the IHV to enable or disable proprietary attributes on individual physical adapters in
the team.

In addition, the forwarding extension can originate encapsulated hardware offload OID
requests to allocate resources for a specified Hyper-V child partition. For example, the
forwarding extension can originate encapsulated OID requests of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE to allocate a VMQ for a specified child partition.
In this case, the extension encapsulates the request as originating from the extensible
switch port and network adapter connection associated with the partition.

Note The forwarding extension can only originate its own encapsulated hardware
offload OID request if it is filtering the same OID request that was issued by overlying
drivers. In this case, the extension must not forward the original OID request. Instead,
the extension must call NdisFOidRequestComplete to complete this request when NDIS
calls its FilterOidRequestComplete to complete the originated OID request.

Filtering or capturing extensions
A filtering or capturing extension can originate its own encapsulated OID query requests
and forward them to an underlying physical network adapter. These extensions can

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete

encapsulate standard NDIS OID query requests or private OID query requests that are
defined by the independent hardware vendor (IHV) for the physical network adapters.

Note Only forwarding extensions can originate encapsulated OID set requests to
underlying physical adapters.

The forwarding extension must follow these steps when it forwards, redirects, or
originates an encapsulated OID request for an underlying physical adapter:

1. If the forwarding extension is originating an OID request, it must initialize an
extension-allocated NDIS_OID_REQUEST structure with the information related to
the request.

If the extension is forwarding an OID request, it must not change the existing
NDIS_OID_REQUEST structure referenced by the OidRequest parameter of the
FilterOidRequest function. Instead, the extension must call
NdisAllocateCloneOidRequest to allocate memory for a new NDIS_OID_REQUEST
structure and copy all the information from the existing NDIS_OID_REQUEST
structure.

2. The extension sets the members of an extension-allocated
NDIS_SWITCH_NIC_OID_REQUEST structure to the following values:

The DestinationPortId member must be set to the identifier of the extensible
switch port to which the external network adapter is connected.

The DestinationNicIndex member must be set to the nonzero index value of
the underlying physical network adapter.

For more information on these index values, see Network Adapter Index
Values.

If the forwarding extension is originating a hardware offload OID request for
a Hyper-V child partition, the SourcePortId member must be set to the
identifier of the port that is used by the partition. Also, the SourceNicIndex
member must be set to the network adapter index for the network
connection to that port.

If the forwarding extension is originating a standard or private OID request
for its own purposes, the SourcePortId and SourceNicIndex members must
be set to zero.

If the forwarding extension is forwarding or redirecting a hardware offload
OID request, it must retain the values of the SourcePortId and
SourceNicIndex members that were set by the extensible switch interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatecloneoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

The OidRequest member must be set to a pointer to an initialized
NDIS_OID_REQUEST structure for the encapsulated OID request. The
forwarding extension either allocates and initializes this structure or uses the
cloned copy of the structure.

3. The extension sets the members of an extension-allocated NDIS_OID_REQUEST
structure to the following values:

The Oid member must be set to OID_SWITCH_NIC_REQUEST.

The InformationBuffer member must contain a pointer to a buffer that
contains the generated or filtered OID request data.

The InformationBufferLength member must contain the length, in bytes, of
the buffer that contains the generated or filtered OID request data.

The extension sets the other members to values that are valid for the
NDIS_OID_REQUEST structure.

4. The extension calls ReferenceSwitchNic to increment a reference counter for the
index of the destination physical network adapter. This guarantees that the
extensible switch interface will not delete the physical network adapter connection
while its reference counter is nonzero.

When the extension calls ReferenceSwitchNic, it sets the SwitchPortId parameter to
the value specified for the DestinationPortId member. The extension also sets the
SwitchNicIndex parameter to the value specified for the DestinationNicIndex
member.

Note If ReferenceSwitchNic does not return NDIS_STATUS_SUCCESS, the OID
request cannot be forwarded to the destination physical network adapter.

5. If the forwarding extension is originating a hardware offload OID request for a
Hyper-V child partition, it also calls ReferenceSwitchNic to increment a reference
counter for the index of the source network adapter connection that is associated
with the partition. This guarantees that the extensible switch interface will not
delete the physical network adapter connection while its reference counter is
nonzero.

When the extension calls ReferenceSwitchNic, it sets the SwitchPortId parameter to
the value specified for the SourcePortId member. The extension also sets the
SwitchNicIndex parameter to the value specified for the SourceNicIndex member.

Note If ReferenceSwitchNic does not return NDIS_STATUS_SUCCESS, the OID
request cannot be forwarded to the destination physical network adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

6. The extension calls NdisFOidRequest to forward the encapsulated OID request to
the specified destination extensible switch port and network adapter.

Note If the extension is forwarding a filtered OID request, it must call
NdisFOidRequest within the context of the call to its FilterOidRequest function. If
the extension is forwarding OID requests that it has generated, it calls
NdisFIndicateStatus while it is in the Running, Restarting, Paused, and Pausing
states. For more information on these states, see Filter Module States and
Operations.

7. When NDIS calls the FilterOidRequestComplete function, the extension calls
DereferenceSwitchNic to clear the reference counter for the index of the
destination physical network adapter.

If the forwarding extension originated a hardware offload OID request for a Hyper-
V child partition, it also calls DereferenceSwitchNic to clear the reference counter
for the index of the source network adapter connection for the adapter.

In both cases, the extension sets the SwitchPortId and SwitchNicIndex parameters
to the same values that it used in the call to ReferenceSwitchNic.

For more information on how the extension issues OID requests, see Generating OID
Requests from an NDIS Filter Driver.

For more information on MUX drivers, see NDIS MUX Intermediate Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

Managing Hardware Offload OID
Requests to Physical Network Adapters
Article • 07/07/2022

This topic discusses how a Hyper-V extensible switch forwarding extension manages
object identifier (OID) requests for hardware offload technologies on underlying physical
adapters over the extensible switch control path.

For example, the external network adapter can be bound to the virtual miniport edge of
an NDIS multiplexer (MUX) intermediate driver. The MUX driver is bound to a team of
one or more physical networks on the host. This configuration is known as an extensible
switch team.

In this configuration, an extensible switch extension is exposed to every network adapter
in the team. This allows the extension to manage the configuration and use of individual
network adapters in the team. For example, a forwarding extension can provide support
for a load balancing failover (LBFO) solution over the team by forwarding outgoing
packets to individual adapters. A forwarding extension that manages an extensible
switch team is known as a teaming provider. For more information about teaming
providers, see Teaming Provider Extensions.

The following figure shows an example of an extensible switch team for NDIS 6.40
(Windows Server 2012 R2) and later.

The following figure shows an example of an extensible switch team for NDIS 6.30
(Windows Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

By handling the OID request of OID_SWITCH_NIC_REQUEST, a forwarding extension can
participate in the configuration of the extensible switch team for hardware offloads. For
example, if the extension manages the physical network adapters of an extensible switch
team, it can forward the OID_SWITCH_NIC_REQUEST request to a physical adapter that
supports the hardware offload.

NDIS and overlying protocol and filter drivers can issue OID requests for hardware
offload technologies to the underlying physical network adapter. When these OID
requests arrive at the extensible switch interface, it encapsulates the OID request inside
an NDIS_SWITCH_NIC_OID_REQUEST. Then, the protocol edge of the extensible switch
issues an OID request of OID_SWITCH_NIC_REQUEST that contains this structure.

The extensible switch interface encapsulates OIDs for the following hardware offload
technologies:

Internet Protocol security (IPsec) offload (version 2)
The following IPsec OID requests are encapsulated:

OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA

OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX

OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA

The forwarding extension must not fail, or veto, these OID requests.

For more information about version 2 of the IPsec hardware offload technology, see
IPsec Offload Version 2.

Single root I/O virtualization (SR-IOV)
The following SR-IOV OID requests are encapsulated:

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_CREATE_VPORT

OID_NIC_SWITCH_DELETE_VPORT

OID_NIC_SWITCH_FREE_VF

OID_RECEIVE_FILTER_CLEAR_FILTER

OID_RECEIVE_FILTER_MOVE_FILTER

The forwarding extension can veto OID requests of OID_NIC_SWITCH_ALLOCATE_VF and
OID_NIC_SWITCH_CREATE_VPORT by completing the request with a status code other
than NDIS_STATUS_SUCCESS. However, the extension must not veto the other SR-IOV
OID requests.

For more information about the SR-IOV hardware offload technology, see Single Root
I/O Virtualization (SR-IOV).

Virtualized machine queue (VMQ)
The following VMQ OID requests are encapsulated:

OID_RECEIVE_FILTER_ALLOCATE_QUEUE

OID_RECEIVE_FILTER_CLEAR_FILTER

OID_RECEIVE_FILTER_FREE_QUEUE

OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE

OID_RECEIVE_FILTER_SET_FILTER

The forwarding extension can veto OID requests of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE and OID_RECEIVE_FILTER_SET_FILTER by
completing the request with a status code other than NDIS_STATUS_SUCCESS. However,
the extension must not veto the other VMQ OID requests.

For more information about the VMQ hardware offload technology, see Virtual Machine
Queue (VMQ).

The forwarding extension must follow these guidelines for handling hardware offload
OID requests:

The Microsoft IM platform advertises only the common offload capabilities for the
overall team. However, the extension can generate OID requests to query the
capabilities of each adapter in the team.

Once the extension has determined the hardware capabilities of the physical
adapters in the team, it can forward OID set requests for hardware offloads to an
adapter that is best suited for the offload.

All hardware offload OID requests that are originated by overlying protocol or filter
drivers will be encapsulated within a NDIS_SWITCH_NIC_OID_REQUEST structure.
All hardware offload OID requests that are originated by the forwarding extension
must also be encapsulated in an NDIS_SWITCH_NIC_OID_REQUEST structure.

The extension forwards the encapsulated OID request to an underlying physical
network adapter through an OID set request of OID_SWITCH_NIC_REQUEST. For
more information on this procedure, see Forwarding OID Requests to Physical
Network Adapters.

The extension must not modify or fail hardware offload OID requests to clear, free,
or complete the allocation of offload resources. For example, the extension must
not fail OID requests of OID_RECEIVE_FILTER_CLEAR_FILTER or
OID_NIC_SWITCH_DELETE_VPORT. The extensible switch interface must handle
these OID requests to clean up state information for these resources.

The extension can modify or fail hardware offload OID requests to allocate, move,
or set offload resources. For example, the extension can fail or modify OID
requests of OID_NIC_SWITCH_ALLOCATE_VF or
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA.

The extension can originate any hardware offload OIDs to an underlying physical
network adapter. However, the extension must not originate a hardware offload
OID that clears or frees offload resources that the extension did not allocate.

For example, the extension must not originate a hardware offload OID request of
OID_RECEIVE_FILTER_FREE_QUEUE if it did not originate an
OID_RECEIVE_FILTER_ALLOCATE_QUEUE request for the same queue.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

Note The extension can only originate its own encapsulated hardware offload OID
request if it is filtering the same OID request that was issued by overlying drivers.
In this case, the extension must not forward the original OID request. Instead, the
extension must call NdisFOidRequestComplete to complete this request when
NDIS calls its FilterOidRequestComplete to complete the originated OID request.

If the extension is forwarding a hardware offload OID request to an underlying
physical network adapter, the DestinationNicIndex member of the
NDIS_SWITCH_NIC_OID_REQUEST structure must be set to the nonzero index
value of the adapter. For more information on these index values, see Network
Adapter Index Values.

Also, the DestinationPortId member must be set to the identifier of the extensible
switch port to which the external network adapter is connected.

If the extension is originating a hardware offload OID request to allocate resources
for a Hyper-V child partition, the SourcePortId member of the
NDIS_SWITCH_NIC_OID_REQUEST structure must be set to the identifier of the
extensible switch port to which the partition is connected.

The SourceNicIndex member must be set to NDIS_SWITCH_DEFAULT_NIC_INDEX.

When the extension calls NdisFOidRequest to forward the OID request, it must set
the OidRequest parameter to a pointer to an NDIS_OID_REQUEST structure for an
OID_SWITCH_NIC_REQUEST OID request.

For more information on how the extension filters OID requests, see Filtering OID
Requests in an NDIS Filter Driver.

For more information on MUX drivers, see NDIS MUX Intermediate Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Managing NDIS Status Indications from
Physical Network Adapters
Article • 03/14/2023

This section discusses how Hyper-V extensible switch extensions manage NDIS status
indications from underlying physical network adapters over the extensible switch control
path.

This section includes the following topics:

Forwarding NDIS Status Indications from Physical Network Adapters

Originating NDIS Status Indications from Physical Network Adapters

For more information on how to manage NDIS status indications over the Hyper-V
extensible switch control path, see Hyper-V Extensible Switch Control Path for NDIS
Status Indications.

Forwarding NDIS Status Indications
from Physical Network Adapters
Article • 03/14/2023

This topic discusses the method that is used by extensible switch forwarding extensions
to forward NDIS status indications from an underlying physical adapter. One or more
underlying physical adapters can be bound to the external network adapter of the
Hyper-V extensible switch.

For example, the external network adapter can be bound to the virtual miniport edge of
an NDIS multiplexer (MUX) intermediate driver. The MUX driver is bound to a team of
one or more physical networks on the host. This configuration is known as an extensible
switch team.

In this configuration, an extensible switch extension is exposed to every network adapter
in the team. This allows the extension to manage the configuration and use of individual
network adapters in the team. For example, a forwarding extension can provide support
for a load balancing failover (LBFO) solution over the team by forwarding outgoing
packets to individual adapters. A forwarding extension that manages an extensible
switch team is known as a teaming provider. For more information about teaming
providers, see Teaming Provider Extensions.

The following figure shows the Hyper-V extensible switch control path for NDIS status
indications from underlying physical network adapters for NDIS 6.40 (Windows
Server 2012 R2) and later.

The following figure shows the Hyper-V extensible switch control path for NDIS status
indications from underlying physical network adapters for NDIS 6.30 (Windows
Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensible switch
extensions and the driver stack is known as the extensible switch driver stack.

The extensible switch interface forwards NDIS status indications that were generated by
the underlying physical adapters. If an external network adapter is bound to an
extensible switch team, the NDIS status indication is originated by the virtual adapter
edge of a MUX driver. Otherwise, the status indication is originated by the single
physical network adapter that is bound to the external network adapter.

When an NDIS status indication arrives at the extensible switch interface, it encapsulates
the indication inside an NDIS_SWITCH_NIC_STATUS_INDICATION structure. Then, the
miniport edge of the extensible switch issues an NDIS_STATUS_SWITCH_NIC_STATUS
indication that contains this structure.

Once the forwarding extension receives the NDIS status indication, it can forward the
original indication data or modify the data before it forwards the indication.

Note Only forwarding extensions can modify the data before forwarding the status
indication. For more information about this type of extension, see Forwarding Extension.

A forwarding extension can modify and forward status indications from any underlying
physical adapter that is bound to the external network adapter of the extensible switch.
Typically, the extension issues these status indications to change the advertised
hardware offload capabilities of the underlying physical adapter. For example, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

extension can modify and forward status indications for the following types of hardware
offloads:

Internet Protocol security (IPsec)

Virtualized machine queue (VMQ)

Single root I/O virtualization (SR-IOV)

If the forwarding extension is forwarding an NDIS status indication, it must set the
members of the NDIS_SWITCH_NIC_STATUS_INDICATION structure in the following
way:

The SourcePortId member must be set to the identifier of the port to which the
external network adapter is connected. The external network adapter is bound to
one or more physical adapters. For more information, see External Network
Adapters.

The SourceNicIndex member must be set to NDIS_SWITCH_DEFAULT_NIC_INDEX.
This allows the status indication to be interpreted as originating from the entire
extensible switch team that is bound to the external network adapter.

The DestinationPortId member must be set to NDIS_SWITCH_DEFAULT_PORT_ID.

The DestinationNicIndex member must be set to
NDIS_SWITCH_DEFAULT_NIC_INDEX.

The StatusIndication member must be set to a pointer to an
NDIS_STATUS_INDICATION structure. This structure contains the data for the
encapsulated NDIS status indication.

When a forwarding extension issues the encapsulated NDIS status indication, it must
follow these steps:

1. The extension calls ReferenceSwitchNic to increment a reference counter for the
external network adapter. This guarantees that the extensible switch interface will
not delete the network adapter connection while its reference counter is nonzero.

When the extension calls ReferenceSwitchNic, it sets the SwitchPortId parameter to
the value specified for the SourcePortId member. The extension also sets the
SwitchNicIndex parameter to the value specified for the SourceNicIndex member.

Note If ReferenceSwitchNic does not return NDIS_STATUS_SUCCESS, the
encapsulated NDIS status indication cannot be issued.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

2. The extension calls NdisFIndicateStatus to forward the encapsulated status
notification.

Note If the extension is forwarding an encapsulated NDIS status indication, it must
call NdisFIndicateStatus within the context of the call to its FilterStatus function.

3. After NdisFIndicateStatus returns, the extension calls DereferenceSwitchNic to clear
the reference counter for the source or destination network adapter connection.
The extension sets the SwitchPortId and SwitchNicIndex parameters to the same
values that it used in the call to ReferenceSwitchNic.

For more information on MUX drivers, see NDIS MUX Intermediate Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

Originating NDIS Status Indications
from Physical Network Adapters
Article • 03/14/2023

This topic discusses the method that is used by an extensible switch forwarding
extension to originate NDIS status indications for a network adapter that is connected to
the switch. The extension can originate an NDIS status indication for the following types
of adapters:

One or more underlying physical adapters that are bound to the external network
adapter of the extensible switch.

For example, the external network adapter can be bound to the virtual miniport
edge of an NDIS multiplexer (MUX) intermediate driver. The MUX driver is bound
to a team of one or more physical networks on the host. This configuration is
known as an extensible switch team.

In this configuration, an extensible switch extension is exposed to every network
adapter in the team. This allows the extension to manage the configuration and
use of individual network adapters in the team. For example, a forwarding
extension can provide support for a load balancing failover (LBFO) solution over
the team by forwarding outgoing packets to individual adapters. A forwarding
extension that manages an extensible switch team is known as a teaming provider.
For more information about teaming providers, see Teaming Provider Extensions.

A virtual machine (VM) network adapter that is exposed within a Hyper-V child
partition and connected to an extensible switch port.

The following figure shows the Hyper-V extensible switch control path for NDIS status
indications from physical and VM network adapters for NDIS 6.40 (Windows
Server 2012 R2) and later.

The following figure shows the Hyper-V extensible switch control path for NDIS status
indications from physical and VM network adapters for NDIS 6.30 (Windows
Server 2012).

Note In the extensible switch interface, NDIS filter drivers are known as extensions and
the driver stack is known as the extensible switch driver stack.

A forwarding extension can originate encapsulated hardware offload status indications
to overlying drivers in the extensible switch driver stack. This also allows the extension to
change the current offload capabilities of the underlying team of physical adapters that
are bound to the external network adapter of the extensible switch. When a team of
adapters are bound to the external network adapter, only the common capabilities of
the team are advertised to NDIS or overlying protocol and filter drivers. The extension
can extend the advertised capabilities by originating encapsulated status indications to
advertise capabilities that are supported by some adapters in the team. For example, the
extension can issue an encapsulated
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES indication to change the
currently enabled receive filter capabilities for the entire team.

Note Only forwarding extensions can originate encapsulated status indications. For
more information about this type of extension, see Forwarding Extension.

Typically, the forwarding extension originates encapsulated NDIS status indications to
change the advertised hardware offload capabilities of the underlying physical adapter.
For example, the extension can originate status indications for the following types of
hardware offloads:

Internet Protocol security (IPsec).

Virtualized machine queue (VMQ).

Single root I/O virtualization (SR-IOV).

The forwarding extension can also originate encapsulated NDIS status indications to
change the hardware offload resources that are allocated for a Hyper-V child partition.
Starting with NDIS 6.30, the extension can issue an encapsulated
NDIS_STATUS_SWITCH_PORT_REMOVE_VF indication to remove the binding between a
VM network adapter and a PCI Express (PCIe) virtual function (VF). The VF is exposed
and supported by an underlying physical network adapter that supports the single root
I/O virtualization (SR-IOV) interface.

If the forwarding extension originates an encapsulated NDIS status indication for the
hardware offload resources of an underlying physical adapter, it must set the members
of the NDIS_SWITCH_NIC_STATUS_INDICATION structure in the following way:

The DestinationPortId member must be set to NDIS_SWITCH_DEFAULT_PORT_ID.

The DestinationNicIndex member must be set to
NDIS_SWITCH_DEFAULT_NIC_INDEX

The SourcePortId member must be set to the identifier of the extensible switch
port to which the external network adapter is connected.

The SourceNicIndex member must be set to NDIS_SWITCH_DEFAULT_NIC_INDEX.
This allows the status indication to be interpreted as originating from the entire
extensible switch team that is bound to the external network adapter.

Note The forwarding extension must also set this member to
NDIS_SWITCH_DEFAULT_NIC_INDEX if only a single physical network adapter is
bound to the external network adapter.

The StatusIndication member must be set to a pointer to an
NDIS_STATUS_INDICATION structure. This structure contains the data for the
encapsulated NDIS status indication.

If the forwarding extension is originating an NDIS status indication for the hardware
offload resources of a Hyper-V child partition, it must set the members of the
NDIS_SWITCH_NIC_STATUS_INDICATION structure in the following way:

The DestinationPortId and DestinationNicIndex members must be set to the
corresponding values of the port and network adapter index for the network
connection that is used by the partition.

The SourcePortId member must be set to NDIS_SWITCH_DEFAULT_PORT_ID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

The SourceNicIndex member must be set to NDIS_SWITCH_DEFAULT_NIC_INDEX.

The StatusIndication member must be set to a pointer to an
NDIS_STATUS_INDICATION structure. This structure contains the data for the
encapsulated NDIS status indication.

When the extension issues the encapsulated NDIS status indication, it must follow these
steps:

1. The extension calls ReferenceSwitchNic to increment a reference counter for the
source or destination network adapter connection. This guarantees that the
extensible switch interface will not delete the network adapter connection while its
reference counter is nonzero.

When the extension calls ReferenceSwitchNic, it sets the parameters in the
following ways:

If the forwarding extension is originating an encapsulated NDIS status
indication for an underlying physical adapter, it sets the SwitchPortId
parameter to the value specified for the SourcePortId member. The extension
also sets the SwitchNicIndex parameter to the value specified for the
SourceNicIndex member.

If the forwarding extension is originating an NDIS status indication for a
Hyper-V child partition, it sets the SwitchPortId parameter to the value
specified for the DestinationPortId member. The extension also sets the
SwitchNicIndex parameter to the value specified for the DestinationNicIndex
member.

Note If ReferenceSwitchNic does not return NDIS_STATUS_SUCCESS, the
encapsulated NDIS status indication cannot be issued.

2. The extension calls NdisFIndicateStatus to forward the encapsulated status
notification.

Note If the extension is forwarding a filtered OID request, it must call
NdisFIndicateStatus within the context of the call to its FilterStatus function.

3. After NdisFIndicateStatus returns, the extension calls DereferenceSwitchNic to clear
the reference counter for the source or destination network adapter connection.
The extension sets the SwitchPortId and SwitchNicIndex parameters to the same
values that it used in the call to ReferenceSwitchNic.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

Installing Hyper-V Extensible Switch
Extensions
Article • 12/15/2021

This section describes the installation of Hyper-V extensible switch extensions and
includes the following topics:

INF Requirements for Hyper-V Extensible Switch Extensions

Extension Driver MSI Packaging Requirements

Managing Installed Hyper-V Extensible Switch Extensions

INF Requirements for Hyper-V
Extensible Switch Extensions
Article • 12/15/2021

Hyper-V extensible switch extensions are developed as NDIS filter drivers. As a result,
the INF requirements for extensions are based on the INF requirements for all NDIS filter
drivers. When you create an INF file for an extensible switch extension, you should use
the INF settings for a modifying or monitoring filter driver. For more information on
these settings, see INF File Settings for Filter Drivers.

In addition, you must follow these guidelines for INF files for extensible switch
extensions:

An extensible switch extension must be installed as a modifying filter driver.

For more information on the INF requirements for a modifying filter driver, see
Configuring an INF File for a Modifying Filter Driver.

Note An extension with a filter class of ms_switch_capture can perform the same
tasks as a monitoring filter driver. For more information, see Types of Filter Drivers.

The FilterMediaTypes entry in the filter INF file defines the driver's bindings to
other drivers and interfaces. The FilterMediaTypes entry for an extensible switch
extension must include the vmnetextension value. This value specifies a binding to
the extensible switch extension miniport adapter.

The FilterMediaTypes entry allows a comma-delimited list of media types to be
specified. This allows the extension to be bound to a physical interface or to the
extensible switch interface.

The following example shows a FilterMediaTypes entry that allows an extension to
be bound to either the physical Ethernet network adapter or an extensible switch
virtual network adapter.

INF

If the FilterMediaTypes entry only specifies the vmnetextension value, the
extension will only bind to the driver stacks for all extensible switches on the
system.

HKR, Ndi\Interfaces, FilterMediaTypes, , "ethernet, vmnetextension"

If the FilterMediaTypes entry specifies vmnetextension as well as other media
types, the extension can determine whether it is bound within an extensible switch
driver stack by calling NdisFGetOptionalSwitchHandlers. If the function returns
NDIS_STATUS_SUCCESS, the extension is bound within the extension driver stack. If
the function returns NDIS_STATUS_NOT_SUPPORTED, the extension is bound
within the driver stack for a different physical network interface.

For more information about the FilterMediaTypes entry, see Intermediate Driver
UpperRange And LowerRange INF File Entries.

The FilterClass value in the INF file for an extension determines its order in a stack
of filters. The FilterClass entry must contain one of the values from the following
table.

FilterClass value Description

ms_switch_capture An extension of this class monitors packet
traffic. However, this class of extension
cannot apply port policies or alter
destination ports for a packet.

For more information about this class of
extension, see Capturing Extensions.

ms_switch_filter An extension of this class filters packet
traffic and enforces port or switch policy for
packet delivery through the extensible
switch. This class of driver can also inspect
and remove destination ports for each
packet based on policy settings.

For more information about this class of
extension, see Filtering Extensions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfgetoptionalswitchhandlers

FilterClass value Description

ms_switch_forward An extension of this class has the same
capabilities as the ms_switch_filter class.
This class of extension can also forward
packets to other extensible switch ports, as
well as inject packet traffic to any extensible
switch port.

On the ingress data path, this class of
extension is invoked after the
ms_switch_filter class of extension. On the
egress data path, this class of extension is
invoked before the ms_switch_filter class of
extension.

For more information about this class of
extension, see Forwarding Extensions.

When the extension is installed with these INF settings, it will be configured to bind to
every extensible switch instance. However, the binding will be disabled and must be
explicitly enabled through a PowerShell cmdlet. For more information on this procedure,
see Enabling Hyper-V Extensible Switch Extensions.

Note Only one extension of this
class is allowed in the extensible
switch driver stack.

Extension Driver MSI Packaging
Requirements
Article • 12/15/2021

Switch extensions must be packaged in a silently installable MSI file. This file can then be
deployed to the computer where the extensions are used by management applications
automatically.

The MSI file must meet the following requirements:

Drivers must be packaged and distributed in the standard MSI package format.
The MSI package must be silently uninstallable.
The MSI package can contain only one extension.
The MSI package must contain the required table fields described in the MSI table
fields listed below. In addition, the MSI file must be able to silently install the driver
.sys, .inf and any supplemental files required for the driver to operate using the
parameters described in the DriverInstallParams field of the MSI Properties table
fields list below.

Field Required Type Details

Description Required String Description for the extension that is displayed.

Manufacturer Required String Name of the company publishing the
extension driver. Localized strings can be
stored.

ProductVersion Required String The version of the this MSI package. Example:
1.0.0.0

ProductName Required String Name of the driver.

DriverID Required String Must match the
Msvm_InstalledEthernetSwitchExtension.Name
field that is available after the driver is
installed and the driver ID in the driver’s INF
file.

DriverVersion Required String The version of the driver contained in this
package. Example: 1.0.0.0

ExtensionType Required String Type of the extension. Values: Forwarding,
Capture, Monitoring, Filter

Field Required Type Details

DriverInstallParams Required String Parameters used to install this driver silently.
Example: /q

IsManagedByExtensionManager Optional String Present and non-zero = Yes, 0 or not present
= No

MinApplicableOSVersion Required String The minimum version of the Windows
operating system that this extension will run
on. See Operating System Version for
operating system version numbers. Note that
the Hyper-V Extensible Switch feature was
added in Windows Server 2012, so the lowest
valid value for this field is "6.2".

MaxApplicableOSVersion Optional String The maximum version of the Windows
operating system that this extension will run
on. See Operating System Version for
operating system version numbers. Note that
the Hyper-V Extensible Switch feature was
added in Windows Server 2012, so the lowest
valid value for this field is "6.2" or the value of
MinApplicableOSVersion, whichever is higher.
This field is optional. If no value is specified,
the extension will run on
MinApplicableOSVersion and later.

https://learn.microsoft.com/en-us/windows/desktop/SysInfo/operating-system-version

Managing Installed Hyper-V Extensible
Switch Extensions
Article • 12/15/2021

Starting with Windows Server 2012, Hyper-V extensible switch extensions within each
extensible switch instance can be managed through PowerShell cmdlets. Through these
cmdlets, extensions can be enabled or disabled, and the order of extensions within the
same class can be changed in the extensible switch driver stack. This allows each
extensible switch instance to have a different set of enabled extensions and a unique
ordering of extensions of the same class.

This section includes the following topics that describe how you use PowerShell cmdlets
to manage Hyper-V extensible switch extensions:

Enumerating Hyper-V Extensible Switch Instances
Enumerating Hyper-V Extensible Switch Extensions
Enabling Hyper-V Extensible Switch Extensions
Disabling Hyper-V Extensible Switch Extensions
Reordering Hyper-V Extensible Switch Extensions

Enumerating Hyper-V Extensible Switch
Instances
Article • 12/15/2021

The Get-VMSwitch PowerShell cmdlet enumerates the Hyper-V virtual networks that
have been created. One or more Hyper-V child partitions can be assigned to each virtual
network. The Hyper-V virtualization stack creates an instance of a Hyper-V extensible
switch for a virtual network when the first Hyper-V child partition that is assigned to the
network is started.

The Get-VMSwitch cmdlet uses the following syntax:

syntax

The following example shows the output from the Get-VMSwitch cmdlet.

syntax

Get-VMSwitch

Msvm_VirtualEthernetSwitch

Get-VMSwitch [[-Name] <string>] [-SwitchType <VMSwitchType[]>] [[-
ResourcePoolName] <string[]>] [-ComputerName
 <string[]>] [<CommonParameters>]

Get-VMSwitch [[-Id] <Guid[]>] [-SwitchType <VMSwitchType[]>] [[-
ResourcePoolName] <string[]>] [-ComputerName
 <string[]>] [<CommonParameters>]

PS C:\Windows\system32> Get-VMSwitch

Name Learnable Status
 Addresses
---- --------- ------
Virtual Network - 1 2048 {OK}
Virtual Network - 2 2048 {OK}

Related topics

https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmswitch
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmswitch
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmswitch
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmswitch
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-virtualethernetswitch

Enumerating Hyper-V Extensible Switch
Extensions
Article • 12/15/2021

The Get-VMSwitchExtension PowerShell cmdlet enumerates the Hyper-V extensible
switch extensions that are currently bound to an instance of an extensible switch. This
cmdlet also reports whether the extension is enabled in the extensible switch instance.

The Get-VMSwitchExtension cmdlet uses the following syntax:

syntax

The following example shows the output from the Get-VMSwitchExtension cmdlet.

syntax

Get-VMSwitchExtension [[-VMSwitchName] <string[]>] [[-Name] <string[]>] [-
ComputerName <string[]>]
 [<CommonParameters>]

Get-VMSwitchExtension [[-VMSwitch] <VMSwitch[]>] [-ComputerName <string[]>]
[<CommonParameters>]

PS C:\Windows\system32> Get-VMSwitchExtension PrivateNetwork | fl -property
@("Name","ExtensionType", "SwitchName","Enabled")

Name : NDIS Capture LightWeight Filter
ExtensionType : Capture
SwitchName : PrivateNetwork
Enabled : False

Name : Switch Extensibility Test Extension 2
ExtensionType : Filter
SwitchName : PrivateNetwork
Enabled : False

Name : Switch Extensibility Test Extension 1
ExtensionType : Filter
SwitchName : PrivateNetwork
Enabled : False

Name : WFP extensible switch Layers LightWeight Filter
ExtensionType : Filter
SwitchName : PrivateNetwork
Enabled : True

https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension

Note In order to minimize the amount of information, the example pipes the returned
extension objects through the filter command "fl". This causes a subset of information to
be displayed that matches the attributes of the -property switch.

Get-VMSwitchExtension

Msvm_EthernetSwitchExtension

Related topics

https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-ethernetswitchextension

Enabling Hyper-V Extensible Switch
Extensions
Article • 12/15/2021

When Hyper-V extensible switch extensions are installed, they are bound to each
instance of an extensible switch. However, the extensions are disabled by default and
must be explicitly enabled on each extensible switch instance.

The Enable-VMSwitchExtension PowerShell cmdlet enables an extension on a specific
instance of an extensible switch. This cmdlet uses the following syntax:

syntax

The following shows an example of how to use the Enable-VMSwitchExtension cmdlet.

syntax

Note The Windows Filtering Platform (WFP) in-box filtering extension (Wfplwfs.sys) is
enabled by default on each extensible switch instance.

Enable-VMSwitchExtension [-Name] <string[]> [-ComputerName <string[]>]
[<CommonParameters>]

Enable-VMSwitchExtension [-Name] <string[]> [-VMSwitchName] <string[]> [-
ComputerName <string[]>]
 [<CommonParameters>]

Enable-VMSwitchExtension [-Name] <string[]> [-VMSwitch] <VMSwitch[]> [-
ComputerName <string[]>]
 [<CommonParameters>]

Enable-VMSwitchExtension [-VMSwitchExtension] <VMSwitchExtension[]> [-
ComputerName <string[]>] [<CommonParameters>]

PS C:\Windows\system32> Enable-VMSwitchExtension "Switch Extensibility Test
Extension 1" PrivateNetwork

PS C:\Windows\system32> Get-VMSwitchExtension PrivateNetwork "Switch
Extensibility Test Extension 1" | fl -property @("Name","ExtensionType",
"SwitchName","Enabled")

Name : Switch Extensibility Test Extension 1
ExtensionType : Filter
SwitchName : PrivateNetwork
Enabled : True

https://learn.microsoft.com/en-us/powershell/module/hyper-v/enable-vmswitchextension

Enable-VMSwitchExtension

Get-VMSwitchExtension

Msvm_EthernetSwitchExtension

Related topics

https://learn.microsoft.com/en-us/powershell/module/hyper-v/enable-vmswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-ethernetswitchextension

Disabling Hyper-V Extensible Switch
Extensions
Article • 12/15/2021

The Disable-VMSwitchExtension PowerShell cmdlet disables an extension on a specific
instance of an extensible switch.

The Disable-VMSwitchExtension cmdlet uses the following syntax:

syntax

The following shows an example of how to use the Disable-VMSwitchExtension cmdlet.

syntax

Disable-VMSwitchExtension

Disable-VMSwitchExtension [-VMSwitchExtensionName] <string[]> [-ComputerName
<string[]>] [<CommonParameters>]

Disable-VMSwitchExtension [-VMSwitchExtensionName] <string[]> [-
VMSwitchName] <string[]> [-ComputerName
 <string[]>] [<CommonParameters>]

Disable-VMSwitchExtension [-VMSwitchExtensionName] <string[]> [-VMSwitch]
<VMSwitch[]> [-ComputerName <string[]>]
 [<CommonParameters>]

Disable-VMSwitchExtension [-VMSwitchExtension] <VMSwitchExtension[]> [-
ComputerName <string[]>]
 [<CommonParameters>]

PS C:\Windows\system32> Disable-VMSwitchExtension "Switch Extensibility Test
Extension 1" PrivateNetwork

PS C:\Windows\system32> Get-VMSwitchExtension PrivateNetwork "Switch
Extensibility Test Extension 1" | fl -property @("Name","ExtensionType",
"SwitchName","Enabled")

Name : Switch Extensibility Test Extension 1
ExtensionType : Filter
SwitchName : PrivateNetwork
Enabled : False

Related topics

https://learn.microsoft.com/en-us/powershell/module/hyper-v/disable-vmswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/disable-vmswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/disable-vmswitchextension
https://learn.microsoft.com/en-us/powershell/module/hyper-v/disable-vmswitchextension

Get-VMSwitchExtension

Msvm_EthernetSwitchExtension

https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmsystemswitchextension
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-ethernetswitchextension

Reordering Hyper-V Extensible Switch
Extensions
Article • 12/15/2021

Multiple Hyper-V extensible switch capturing or filtering extensions can be enabled in
each instance of an extensible switch.

Note Only one forwarding extension can be enabled in each instance of an extensible
switch.

By default, multiple capturing or filtering extensions are ordered based on their type and
when they were installed. For example, multiple capturing extensions are layered in the
extensible switch driver stack with the most recently installed extension closest to the
protocol edge of the switch.

When multiple capturing or filtering extensions are installed, you can use PowerShell
cmdlets to reorder the drivers in the extensible switch driver stack. The following
example shows the commands that you enter from a PowerShell window to do this.

syntax

Show the current order. The ExtensionOrder field contains paths to WMI
extension instances.
The [wmi] operator can be used to convert the paths to full WMI objects.
PS C:\Windows\system32> $privateNetwork = Get-VMSwitch PrivateNetwork
PS C:\Windows\system32> $extensionOrder = $privateNetwork.ExtensionOrder
PS C:\Windows\system32> $extensionOrder | ForEach-Object { Write-Host
"Name:" ([wmi]$_).ElementName }
Name: NDIS Capture LightWeight Filter
Name: Switch Extensibility Test Extension 2
Name: Switch Extensibility Test Extension 1
Name: WFP extensible switch Layers LightWeight Filter

Place “Test Extension 1” above “Test Extension 2” in the ordered list of
extensions.
PS C:\Windows\system32> $tmp = $extensionOrder[1]
PS C:\Windows\system32> $extensionOrder[1] = $extensionOrder[2]
PS C:\Windows\system32> $extensionOrder[2] = $tmp

Commit the updated order.
PS C:\Windows\system32> $privateNetwork.ExtensionOrder = $extensionOrder

Retrieve the switch information again to validate the order.
PS C:\Windows\system32> $privateNetwork = Get-VMSwitch PrivateNetwork
PS C:\Windows\system32> $privateNetwork.ExtensionOrder | ForEach-Object {
Write-Host "Name:" ([wmi]$_).ElementName }

Get-VMSwitch

Msvm_EthernetSwitchExtension

Msvm_VirtualEthernetSwitchSettingData

Name: NDIS Capture LightWeight Filter
Name: Switch Extensibility Test Extension 1

Related topics

https://learn.microsoft.com/en-us/powershell/module/hyper-v/get-vmswitch
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-ethernetswitchextension
https://learn.microsoft.com/en-us/windows/desktop/HyperV_v2/msvm-virtualethernetswitchsettingdata

Hyper-V Extensible Switch OIDs
Article • 12/15/2021

This section describes the Hyper-V extensible switch object identifiers (OIDs). These
OIDs may be issued by either the extensible switch extension or a Hyper-V extensible
switch extension.

The following table defines the characteristics of the extensible switch OIDs. The
following abbreviations are used to specify the OIDs' characteristics in the table.

Q
The OID is used only in query requests.
S
The OID is used only in set requests.
M
The OID is used only in method requests. These requests could be issued for set or
query operations.
P
The OID request is issued by the protocol edge of the extensible switch. The
extension can inspect the results of the OID request to obtain information about
the extensible switch, its ports, or virtual network adapters connected to the ports.
E
The OID request is issued by an extension.

Name Q S M P E

OID_SWITCH_FEATURE_STATUS_QUERY X X

OID_SWITCH_NIC_ARRAY X X

OID_SWITCH_NIC_CONNECT X X

OID_SWITCH_NIC_CREATE X X

OID_SWITCH_NIC_DELETE X X

OID_SWITCH_NIC_DISCONNECT X X

OID_SWITCH_NIC_REQUEST X X

OID_SWITCH_NIC_RESTORE X X

OID_SWITCH_NIC_SAVE X X

OID_SWITCH_NIC_SAVE_COMPLETE X X

Name Q S M P E

OID_SWITCH_PARAMETERS X X

OID_SWITCH_PORT_ARRAY X X

OID_SWITCH_PORT_CREATE X X

OID_SWITCH_PORT_DELETE X X

OID_SWITCH_PORT_FEATURE_STATUS_QUERY X X

OID_SWITCH_PORT_PROPERTY_ADD X X

OID_SWITCH_PORT_PROPERTY_DELETE X X

OID_SWITCH_PORT_PROPERTY_ENUM X X

OID_SWITCH_PORT_PROPERTY_UPDATE X X

OID_SWITCH_PORT_TEARDOWN X X

OID_SWITCH_PROPERTY_ADD X X

OID_SWITCH_PROPERTY_DELETE X X

OID_SWITCH_PROPERTY_ENUM X X

OID_SWITCH_PROPERTY_UPDATE X X

Hyper-V Extensible Switch Status
Indications
Article • 12/15/2021

This section describes the following NDIS status indications that can be issued or
handled by a Hyper-V extensible switch extension:

NDIS_STATUS_SWITCH_NIC_STATUS
NDIS_STATUS_SWITCH_PORT_REMOVE_VF

For more information on how extensions issue or handle extensible switch extension
status indications, see Hyper-V Extensible Switch Control Path for NDIS Status
Indications.

NDIS_STATUS_SWITCH_NIC_STATUS
Article • 03/14/2023

The NDIS_STATUS_SWITCH_NIC_STATUS status indication is used to encapsulate a
status indication from a physical network adapter that is bound to the external network
adapter of the Hyper-V extensible switch. Through this encapsulation, the status
indication is forwarded up the extensible switch driver stack.

The StatusBuffer member of the NDIS_STATUS_INDICATION structure for this indication
contains a pointer to an NDIS_SWITCH_NIC_STATUS_INDICATION structure.

When an underlying physical network adapter issues an NDIS status indication, it is
received by the external network adapter. When this happens, the extensible switch
interface performs these steps:

1. The interface encapsulates the status indication inside an
NDIS_SWITCH_NIC_STATUS_INDICATION structure.

2. The interface issues an NDIS_STATUS_SWITCH_NIC_STATUS status indication to
forward the encapsulated status indication up the extensible switch driver stack.
This allows extensible switch extensions to modify the encapsulated status
indication.

Typically, the extension modifies an encapsulated status indication to change the
current offload capabilities of the underlying team of physical adapters that are
bound to the external network adapter.

For more information about the different configurations in which physical network
adapters can be bound to the external network adapter, see Types of Physical
Network Adapter Configurations.

3. When the NDIS_STATUS_SWITCH_NIC_STATUS status indication is received by the
overlying extensible switch protocol driver in the stack, the interface forwards the
decapsulated status indication to overlying protocol or filter drivers.

An extension can also originate encapsulated hardware offload status indications to
overlying drivers in the extensible switch driver stack. This also allows the driver to
change the current offload capabilities of the underlying team of physical adapters that
are attached to the external network adapter. When a team of adapters are bound to
the external network adapter, only the common capabilities of the team are advertised

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

to NDIS or the overlying protocol and filter drivers. The extension can extend the
advertised capabilities by originating encapsulated status indications to advertise
capabilities that are supported by some adapters in the team.

For example, the extension can issue an encapsulated
NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES indication to change the
currently-enabled receive filter capabilities for the entire team.

For more information on how to forward or originate
NDIS_STATUS_SWITCH_NIC_STATUS indications, see Managing NDIS Status Indications
from Physical Network Adapters.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_SWITCH_PORT_REMOVE_
VF
Article • 03/14/2023

The NDIS_STATUS_SWITCH_PORT_REMOVE_VF status indication is issued by a Hyper-V
extensible switch forwarding extension to remove the binding between a virtual
machine (VM) network adapter and a PCI Express (PCIe) virtual function (VF). The VF is
exposed and supported by an underlying physical network adapter that supports the
single root I/O virtualization (SR-IOV) interface.

In order to issue the NDIS_STATUS_SWITCH_PORT_REMOVE_VF status indication, the
forwarding extension must encapsulate the indication in an
NDIS_SWITCH_NIC_STATUS_INDICATION structure and issue an
NDIS_STATUS_SWITCH_NIC_STATUS status indication.

For more information on this process, see Guidelines for Issuing an
NDIS_STATUS_SWITCH_PORT_REMOVE_VF Status Indication.

A PCIe VF is created and allocated by an underlying physical adapter that supports the
SR-IOV interface. Once created, the virtualization stack attaches, or assigns, the VF to a
Hyper-V child partition. The guest operating system that runs in this partition exposes a
virtual machine (VM) network adapter that is bound to the VF of the underlying SR-IOV
physical adapter.

After the virtual and physical network adapters are assigned, packets are routed directly
between the VF and the VM network adapter. However, because the extensible switch is
not involved in packet delivery, extensible switch port policies are not applied to these
packets. This includes port policies for access control lists (ACLs) and quality of service
(QoS).

An extensible switch forwarding extension can remove the assignment of the VF to the
child partition by issuing an NDIS_STATUS_SWITCH_PORT_REMOVE_VF status
indication. This indication causes the packets to be delivered through an extensible
switch port instead of directly between the VM network adapter and the VF of the
underlying SR-IOV physical adapter. This allows the extensible switch port policies to be
applied to packets that are received or sent over the extensible switch port.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication

When the forwarding extension makes the NDIS_STATUS_SWITCH_PORT_REMOVE_VF
status indication, it specifies the extensible switch port to which the VM network adapter
is connected.

For more information about extensible switch forwarding extensions, see Forwarding
Extensions.

In order to issue the NDIS_STATUS_SWITCH_PORT_REMOVE_VF status indication, the
forwarding extension must follow these steps:

1. The forwarding extension initializes an NDIS_STATUS_INDICATION structure for
the NDIS_STATUS_SWITCH_PORT_REMOVE_VF indication. For this indication, the
forwarding extensions sets the following members of the
NDIS_STATUS_INDICATION structure:

The StatusCode member must be set to
NDIS_STATUS_SWITCH_PORT_REMOVE_VF.

The StatusBuffer member must be set to NULL.

The StatusBufferSize must be set to zero.

2. The forwarding extension initializes an NDIS_SWITCH_NIC_STATUS_INDICATION
structure. In order to remove a VF assignment, the forwarding extension must set
the members in the following way:

The DestinationPortId member must be set to the identifier of an extensible
switch port to which the VM network adapter is connected.

The DestinationNicIndex member must be set to the index value of the VM
network adapter that is connected to the specified port.

The SourcePortId member must be set to NDIS_SWITCH_DEFAULT_PORT_ID.

The SourceNicIndex member must be set to
NDIS_SWITCH_DEFAULT_NIC_INDEX.

The StatusIndication member must be set to the address of the
NDIS_STATUS_INDICATION structure for the
NDIS_STATUS_SWITCH_PORT_REMOVE_VF indication.

Guidelines for Issuing an
NDIS_STATUS_SWITCH_PORT_REMOVE_VF Status
Indication

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

3. The forwarding extension initializes an NDIS_STATUS_INDICATION structure for
the NDIS_SWITCH_NIC_STATUS_INDICATION indication. For this indication, the
forwarding extension sets the following members of the
NDIS_STATUS_INDICATION structure:

The StatusCode member must be set to
NDIS_STATUS_SWITCH_NIC_STATUS.

The StatusBuffer member must be set to the address of the
NDIS_SWITCH_NIC_STATUS_INDICATION structure.

The StatusBufferSize must be set to the length, in bytes, of the
NDIS_SWITCH_NIC_STATUS_INDICATION structure and the
NDIS_STATUS_INDICATION structure for the
NDIS_STATUS_SWITCH_PORT_REMOVE_VF indication.

4. The forwarding extension must call ReferenceSwitchNic to increment a reference
counter for the VM network adapter. If ReferenceSwitchNic does not complete with
NDIS_STATUS_SUCCESS, the forwarding extension must not forward the status
indication.

Note If the forwarding extension has received an OID_SWITCH_NIC_DISCONNECT
set request for the VM adapter, it must not call ReferenceSwitchNic nor forward the
status indication.

5. The forwarding extension calls NdisFIndicateStatus to forward the
NDIS_STATUS_INDICATION to overlying extensions in the extensible switch driver
stack. When the forwarding extension calls this function, it sets the StatusIndication
parameter to a pointer to the NDIS_STATUS_INDICATION structure for the
NDIS_STATUS_SWITCH_NIC_STATUS indication.

6. After NdisFIndicateStatus returns, the forwarding extension must call
DereferenceSwitchNic to decrement the reference counter for the VM network
adapter.

Note The forwarding extension must follow the previous steps for each VF assignment
that the forwarding extension is removing.

For more information on how a forwarding extension forwards status indications, see
Filter Module Status Indications.

Guidelines for Determining VF Assignments

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic

The forwarding extension can enumerate the current VF assignments for virtual network
adapters by issuing an OID query request of OID_SWITCH_NIC_ARRAY. This request
returns an NDIS_SWITCH_NIC_ARRAY structure that contains an array of
NDIS_SWITCH_NIC_PARAMETERS structures. Each NDIS_SWITCH_NIC_PARAMETERS
structure specifies the parameters of a network adapter that is exposed in one of the
following environments:

The management operating system that runs in the Hyper-V parent partition.

Network adapters that are exposed in this operating system are specified with an
NDIS_SWITCH_NIC_TYPE enumeration value of NdisSwitchNicTypeExternal or
NdisSwitchNicTypeInternal.

The guest operating system that runs in a Hyper-V child partition.

Network adapters that are exposed in this operating system are specified with an
NDIS_SWITCH_NIC_TYPE enumeration value of NdisSwitchNicTypeSynthetic or
NdisSwitchNicTypeEmulated.

If the OID query request of OID_SWITCH_NIC_ARRAY completes with a status of
NDIS_STATUS_SUCCESS, the forwarding extension can determine VF assignments by
inspecting each NDIS_SWITCH_NIC_PARAMETERS structure in the returned array. If the
VFAssigned member of the NDIS_SWITCH_NIC_PARAMETERS structure is set to TRUE,
the network adapter that corresponds to the NDIS_SWITCH_NIC_PARAMETERS
structure is assigned to a VF.

The forwarding extension can remove the assignment by issuing an
NDIS_STATUS_SWITCH_PORT_REMOVE_VF status indication. In this case, the forwarding
extension must set the DestinationPortId member of the
NDIS_SWITCH_NIC_STATUS_INDICATION to the value of the PortId member of the
NDIS_SWITCH_NIC_PARAMETERS structure.

For more information on how to issue an NDIS_STATUS_SWITCH_PORT_REMOVE_VF
status indication, see Guidelines for Issuing an
NDIS_STATUS_SWITCH_PORT_REMOVE_VF Status Indication.

Version Supported in NDIS 6.30 and later.

Header Ndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_nic_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_nic_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_switch_nic_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

NdisFIndicateStatus

NDIS_STATUS_INDICATION

NDIS_STATUS_SWITCH_NIC_STATUS

NDIS_SWITCH_NIC_ARRAY

NDIS_SWITCH_NIC_PARAMETERS

NDIS_SWITCH_NIC_TYPE

OID_SWITCH_NIC_ARRAY

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfindicatestatus
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_nic_type

NDIS_STATUS_ISOLATION_PARAMETERS
_CHANGE
Article • 03/14/2023

A VM network adapter miniport driver generates an
NDIS_STATUS_ISOLATION_PARAMETERS_CHANGE status indication whenever the
routing domain configuration is updated on the network adapter's port. This triggers
the TCP layer to re-query the multi-tenancy configuration by issuing an
OID_GEN_ISOLATION_PARAMETERS OID. This status indication does not have a status
buffer.

Version Supported in NDIS 6.40 and later.

Header Ndis.h

NDIS_STATUS_INDICATION

OID_GEN_ISOLATION_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_RECEIVE_FILTER_QUEUE_P
ARAMETERS
Article • 03/14/2023

The NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS status indicates to NDIS and
overlying drivers that the current virtual machine (VM) queue parameters have changed
on the network adapter.

The miniport driver must issue an NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS
status indication when the current VM queue parameters have changed on the network
adapter. The VM queue parameters could change when one of the following conditions
is true:

The VM queue parameters are changed through a management application
developed by the independent hardware vendor (IHV).

The VM queue parameters change for one or more network adapters that belong
to a load balancing failover (LBFO) team managed by a MUX intermediate driver.
For more information, see NDIS MUX Intermediate Drivers.

When the miniport driver issues the
NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS status indication, it must follow
these steps:

1. The miniport driver initializes an NDIS_RECEIVE_QUEUE_PARAMETERS structure
with the current VM queue parameters on the network adapter. The driver must
also set the Flags member of this structure with the appropriate
NDIS_RECEIVE_QUEUE_PARAMETERS_Xxx_CHANGED flags to report on
NDIS_RECEIVE_QUEUE_PARAMETERS member values that have changed.

Note Starting with NDIS 6.30, the miniport driver can only issue an
NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS status indication to report
on changes to the InterruptCoalescingDomainId member.

When the miniport driver initializes the Header member of this structure, it sets the
Type member of Header to NDIS_OBJECT_TYPE_DEFAULT. The miniport driver sets the
Revision member of Header to NDIS_RECEIVE_QUEUE_PARAMETERS_REVISION_2 and
the Size member to NDIS_SIZEOF_RECEIVE_QUEUE_PARAMETERS_REVISION_2.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

2. The miniport driver initializes an NDIS_STATUS_INDICATION structure in the
following way:

The StatusCode member must be set to
NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS.

The StatusBuffer member must be set to the pointer to a
NDIS_RECEIVE_QUEUE_PARAMETERS structure. This structure contains the
currently enabled hardware capabilities of the NIC switch.

The StatusBufferSize member must be set to
sizeof(NDIS_RECEIVE_QUEUE_PARAMETERS).

3. The miniport driver issues the status notification by calling NdisMIndicateStatusEx.
The driver must pass a pointer to the NDIS_STATUS_INDICATION structure to the
StatusIndication parameter.

Overlying drivers can use the NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS
status indication to determine the current VM queue parameters on the network
adapter. Alternatively, these drivers can also issue object identifier (OID) query requests
of OID_RECEIVE_FILTER_QUEUE_PARAMETERS to obtain these parameters at any time.

Version Supported in NDIS 6.30 and later.

Header Ndis.h

NDIS_RECEIVE_QUEUE_PARAMETERS

NDIS_STATUS_INDICATION

OID_RECEIVE_FILTER_QUEUE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_STATUS_RECEIVE_QUEUE_STATE
Article • 03/14/2023

The NDIS_STATUS_RECEIVE_QUEUE_STATE status indicates to overlying drivers that the
queue state of a virtual machine queue (VMQ) receive queue has changed.

NDIS 6.20 and later miniport drivers that support the virtual machine queue interface
generate this status indication.

The miniport driver supplies an NDIS_RECEIVE_QUEUE_STATE structure in the
StatusBuffer member of the NDIS_STATUS_INDICATION structure.

The change to the DMA Stopped state is the only queue state change indication that is
required. A miniport driver must indicate this state after it receives an
OID_RECEIVE_FILTER_FREE_QUEUE set request and stops the DMA. In this case, the
miniport driver sets the QueueState member of the NDIS_RECEIVE_QUEUE_STATE
structure to NdisReceiveQueueOperationalStateDmaStopped.

After the miniport driver receives the OID_RECEIVE_FILTER_FREE_QUEUE set request, it
must stop DMA to any shared memory that was allocated for the specified queue.

If the miniport driver stopped the DMA for some other reason (for example, it freed the
last filter on a queue), the queue should not enter the DMA Stopped state. However, the
DMA can be stopped in the Paused or Running states if there are no filters set on the
queue.

Version Supported in NDIS 6.20 and later.

Header Ndis.h

NDIS_RECEIVE_QUEUE_STATE

NDIS_STATUS_INDICATION

OID_RECEIVE_FILTER_FREE_QUEUE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_queue_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_queue_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_queue_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

Cellular architecture
Article • 03/14/2023

This section describes the elements of the cellular architecture for Windows 10 and how
they interact. It also includes the implementation requirements for making cellular
modem hardware compatible with Windows 10.

The following describes the elements shown in the Windows 10 cellular architecture:

WWAN Service and MBAE WinRT API

The Wireless Wide Area Network Service (WwanSvc) is responsible for handling modem
initialization, registration, power state changes, and automatic and manual connection
for default and on-demand cellular connection. WWAN Service also handles the modem
access interface for SAR, PCO, Scan, SMS, USSD, LTE configuration, SIM File, SIM PIN,
and low level SIM card access. The Mobile Broadband Account Experience Windows
Runtime (MBAE WinRT) API allows programmatic access to these interfaces for original
equipment manufacturer (OEM)/Mobile Operator (MO) applications.

WCM Service

Windows 10 cellular architecture

User Mode

The Windows Connection Manager (WCM) Service controls L3 connectivity and
dynamically selects which specific L2 media (Ethernet, Wi-Fi, or Cellular) should
be connected or disconnected at any given time.

SMS Router Service and SMS WinRT API

The SMS Router Service is responsible for decoding the SMS Packet Data Unit (PDU) and
routing SMS messages to associated applications. The SMS WinRT API allows
applications to subscribe to SMS messages and launch when the matching messages
are received. Apps can also send SMS messages. The SMS messages are temporarily
stored for concatenation while decoding the messages and for reliable delivery to
services and applications.

Messaging Service and Messaging App

The messaging service stores user text messages for persistent access and the
application displays the messages to users.

LPA (eSIM) Service and eSIM WinRT API

The Local Profile Assistant (LPA) Service implements GSMA specification for remote SIM
profile management by interacting with the Subscription Manager – Device Provisioning
server (SM-DP+) to download eSIM profiles for the user. The WinRT API allows accessing
eSIM profiles, enabling, disabling, and deleting profiles, and sending low level
Application Protocol Data Unit (APDU) for firmware update via smartcard interface.

Cellular CSPs

Cellular Configuration Service Providers (CSPs) allow configuration management
through Intune (Enterprise), Multivariant, and Open Mobile Alliance – Device
Management and Client Provisioning (OMA-DM/CP). Enterprise uses EnterpriseAPN,
eUICC, and MultiSIM CSPs to override the APN connectivity settings, download and
activate eSIM profiles, and switch to preferred SIM slot. CM CellularEntries CSP is used
to configure the default connectivity for the modem. Cellular Settings CSP is used to
control roaming and automatic connection configurations. CSPLte is used for Verizon-
specific configurations.

Mobile Plans Service and Mobile Plans App

The mobile plans service and application offers users a simplified mechanism to
purchase and install eSIM profiles.

Cellular UX

Cellular UX is a settings application and VANUI network flyout that allows users to view
and control the cellular settings, control connectivity, and change radio state. PNIDUI
shows the default network connection and signal bars for the network. Quick actions
and airplane mode controls allow radio state control.

COSA/MultiVariant Service

Country & Operator Settings Asset (COSA) is an OEM configurable database with
settings that are applied through the MultiVariant service that are specific to the SIM
inserted by the user.

NDIS

Network Driver Interface Specification (NDIS) is a driver model that abstracts network
hardware from network drivers and specifies a standard interface between layered
network drivers.

NetCx

Network Adapter WDF Class Extension (NetAdapterCx) is a driver model that enables
you to write a KMDF-based client driver for a Network Interface Controller (NIC).
NetAdapterCx gives you the power and flexibility of WDF and the networking
performance of NDIS, and makes it easy to write a NIC driver.

MBBCx

Mobile Broadband WDF Class Extension (MBBCx) extends the NetAdatperCx Driver
Framework with cellular-specific functionalities, and implementing the "upper edge"
which is common across different modems. MbbCx handles the control OIDs from NDIS
and converts them to MBIM commands for the IHV driver.

IHV Driver (wmbclass)

The IHV-implemented "lower edge" cellular device driver implements all of the adapter-
specific cellular driver functionalities that are specified by MBIM. For USB based
modems, the interfaces are standardized and handled by the inbox wmbclass driver. For
PCIe cellular modem devices, the IHV vendors are expected to provide an IHV client
driver that translates the MBIM commands to be transmitted over the PCIe bus.

Kernel Mode

MBB and MBIM Driver Interactions

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/

For Windows 10, the following is required.

Implement the MBIM protocol interface in your modem hardware.
Implement a USB interface to the modem hardware. This can be a removable USB
dongle or another interface that presents itself as a USB host controller.

Windows 10 cellular implementation
requirements

Roadmap to Develop MB Miniport
Drivers
Article • 03/14/2023

To create an MB miniport driver, follow these steps:

Step 1: Learn about Windows architecture and miniport drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn the fundamentals of MB miniport drivers.

MB miniport drivers are supported in Windows 7 and later versions of Windows
and conform to the NDIS 6.20 Specification. To understand the miniport driver
design decisions you must make, see Introduction to NDIS 6.20.

Step 3: Determine additional Windows driver design decisions.

For information about how to make additional Windows design decisions, see
Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers, and
Creating International INF Files.

Step 4: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user mode application. For information
about Windows driver build, debug, and test processes, driver signing, and
Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For information about building, testing, verifying, and debugging tools,
see Driver Development Tools.

Step 5: Make design decisions about your MB miniport driver.

For more information, see MB Interface Overview.

Step 6: Develop, build, test, and debug your MB miniport driver.

For information about iterative building, testing, and debugging, see Overview of
Build, Debug, and Test Process. This process will help ensure that you build a
miniport driver that works.

Step 7: Create a driver package for your MB miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/
https://learn.microsoft.com/en-us/windows-hardware/drivers

For more information, see Providing a Driver Package.

Step 8: Sign and distribute your MB miniport driver.

The final step is to sign (optional) and distribute the miniport driver. If your
miniport driver meets the quality standards that are defined for the Windows
Hardware Lab Kit (HLK), you can distribute it through the Microsoft Windows
Update program. For more information about how to distribute a driver, see Get
started with the hardware submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

MB Interface Model Overview
Article • 03/14/2023

This section provides information for mobile broadband devices that are implemented
based on the Mobile Broadband Interface Model (MBIM) specification.

Starting with Windows 8, Microsoft provides an inbox class driver, referred to as MBCD,
for MBIM functions. Microsoft already provides an inbox driver, USBCCGP, for composite
devices. This section describes the requirements for mobile broadband devices to load
USBCCGP and MBCD in Windows 8.

Mobile broadband composite devices that use WMC UFD for grouping interfaces into
functions should implement Microsoft OS descriptors to load USBCCGP on Windows 8
and instruct USBCCGP to parse WMC UFD to create functions. Mobile broadband
composite devices that use Interface Association Descriptors (IADs) for grouping
interfaces into functions do not need to implement Microsoft OS descriptors to load
USBCCGP.

MBIM functions that are backward compatible should implement Microsoft OS
descriptors to load MBCD. MBIM functions that are not backward compatible do not
need to implement Microsoft OS descriptors to load MBCD.

Mobile broadband devices that exhibit identity morphing should also implement
Microsoft OS descriptors.

These scenarios are discussed in more detail throughout the MB Interface Model topics.
The following table summarizes all of the Microsoft OS compatible IDs mentioned in
these subtopics. For more information see Microsoft OS Descriptors.

Microsoft OS compatible IDs

Microsoft OS Compatible ID Microsoft OS Sub
Compatible ID

Required for Scenario

"CDC_WMC" Loading USBCCGP on
composite devices that use
WMC UFD for grouping
interfaces into functions

"MBIM" Loading MBCD on MBIM
backward-compatible function

"ALTRCFG" Configuration number in ASCII Identity morphing with IADs

https://learn.microsoft.com/en-us/previous-versions/gg463179(v=msdn.10)

Microsoft OS Compatible ID Microsoft OS Sub
Compatible ID

Required for Scenario

"WMCALTR" Configuration number in ASCII Identity morphing with WMC
UFD

The MB Interface Model in described further in the following subtopics:

MB Interface Terms MB Union Function Descriptors MB Identity Morphing MB Interface
Model Supplement

MB Interface Terms
Article • 03/14/2023

The following terminology is used throughout the Mobile Broadband
(MB)documentation:

Term Description

MBIM Mobile Broadband Interface Model, a USB Device Working Group (DWG)
specification for mobile broadband devices.

MBIM
function

A USB function within a USB device that is compliant with the MBIM specification.

Mobile
broadband
device

A USB device that is either single function or multi-functional. In the single function
case, the function should be an MBIM function. In the multi-function case, one of
the functions is the MBIM function. This may also be a multi-configuration device in
which at least one of the configurations contains the MBIM function.

NCM2 The earlier name for the MBIM specification. Some diagrams still refer to the MBIM
functions as NCM2 functions.

Virtual CD-
ROM

A CD-ROM function that does not have a physical CD-ROM drive.

IAD Interface association descriptors (IADs) used to group interfaces into functions.

WMC UFD Union function descriptors (UFDs) described in the Wireless Mobile Communication
(WMC) specifications. UFDs are used to group interfaces into functions. This is an
alternative to using IADs.

Morphing The ability of a USB device to expose a different set of USB functions than what is
currently exposed.

Driver Software required by Windows to work with a USB function.

Inbox
driver

A driver supplied by Microsoft for USB functions. These drivers are present in
Windows.

IHV driver A driver supplied by the independent hardware vendor (IHV) for USB functions that
do not have inbox drivers.

IHV driver
package

A collection of all IHV drivers supplied by the IHV.

USBHUB A Microsoft USB hub driver.

USBCCGP A Microsoft driver for USB composite devices.

Term Description

MBCD Mobile Broadband Class Driver, the inbox driver in Windows 8 for USB functions
that conform to the MBIM specification.

MB Union Function Descriptors
Article • 03/14/2023

Mobile broadband devices that implement UFDs have Device Class / Subclass / Protocol
of 2 / 0 / 0 as required for CDC devices. This prevents Windows from loading USBCCGP
on the device. For information on how Windows loads USBCCGP on composite devices,
see USB Generic Parent Driver (Usbccgp.sys).

To allow Windows to load USBCCGP, the device needs to report a Microsoft OS
compatible ID of "CDC_WMC" when the device is not configured. After detecting the
compatible ID of "CDC_WMC", Windows loads USBCCGP, and USBCCGP sets the
configuration on the device to 1. USBCCGP will then query again for the Microsoft OS
compatible IDs. This time, however, the device should not report the Microsoft OS
compatible ID of "CDC_WMC". The device may report Microsoft OS compatible IDs for
functions in the selected configuration.

USBHUB queries for the Microsoft OS descriptor when the device is not configured

Union Function Descriptors

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/index

The device responds with "CDC_WMC", which causes Windows to load USBCCGP

USBCCGP selects Configuration #1 on the device.

The device selects the configuration and morphs the list of compatible IDs. The device
may include CompatID2, which is necessary for Function2.

After loading, USBCCGP queries for Microsoft OS compatible IDs again.

The device reports any compatible ID that it has for its function. USBCCGP then creates
child device nodes for each function in the device.

MBIM functions that are backward compatible with the NCM 1.0 specification will come
up as NCM 1.0 functions by default. Mobile broadband devices that consist of an MBIM
backward-compatible function should report a Microsoft OS compatible ID of "MBIM"
for the MBIM function. This allows Windows 8 to detect the NCM 1.0 function as the
MBIM function and load MBCD as the function driver.

MBIM Backward-Compatible Functions

Introduction to MB Identity Morphing
Article • 03/14/2023

Mobile broadband USB dongle solutions eliminate the need for distributing the driver
package for mobile broadband and other IHV functions through separate media (such
as CD-ROM) by having a storage function in the USB device itself that contains the
driver package.

Upon first time insertion of such a device in Windows, the device presents itself as mass
storage, which results in the Windows AutoPlay dialog displayed to the user. At this
point, the device exposes no other functions to the host except the mass storage
function to prevent the other functions appearing to the user as non-functional due to
missing driver software. The user can run the IHV-supplied software that installs the
driver package. In addition to installing the driver package, the IHV-supplied software
also morphs the device to expose the other functions to the user.

Mobile broadband devices that use the previously described mechanism when inserted
in Windows 8 would come up as mass storage. Because Windows 8 has native support
for mobile broadband functions that conform to the MBIM specification, installation of
the driver package is not necessary for the user to use the mobile broadband function.
The subtopics in this section provide guidance to IHVs on how to implement this
solution for Windows 8 to allow the user to use the mobile broadband device without
the need to install the driver package.

Mobile broadband devices that exhibit morphing behavior are referred to as morphing
devices throughout the subtopics in this section.

MB Identity Morphing Solution Overview MB Identity Morphing Solution Details

Identity Morphing

MB Identity Morphing Solution
Overview
Article • 03/14/2023

The solution maps the morphing device’s USB configuration to a set of USB functions.
At any point in time, a single set of functions (by way of a configuration) are exposed to
the host. The solution achieves morphing by switching between these configurations.

The functions present in the device are grouped into the following logical sets.

Logical Set of Functions

Logical Set of Functions Description

Windows-7-Configuration Configuration selected by Windows 7 and older
versions of Windows when the morphing
device is inserted into the host for the first
time.

Windows-8-Configuration Configuration selected by Windows 8 when the
morphing device is inserted into the host.

IHV-NCM-1.0-Configuration Configuration selected by the IHV software
installed on Windows 7 and older versions of
Windows after the user installs the driver
package.

IHV-NCM-2.0-Configuration Configuration selected by the IHV software
installed on Windows 8 after the user installs
the driver package.

The following table shows the USB configurations listed in the previous table along with
possible interfaces and functions. Additional requirements for each configuration are
described in the remaining subtopics.

USB Configurations

Configuration 1
(Windows-7-
Configuration)

Configuration
2(IHV–NCM-10-
Configuration)

Configuration
3(Windows-8-
Configuration)

Configuration
4(IHV–NCM-20-
Configuration)

Logical configurations

Configuration 1
(Windows-7-
Configuration)

Configuration
2(IHV–NCM-10-
Configuration)

Configuration
3(Windows-8-
Configuration)

Configuration
4(IHV–NCM-20-
Configuration)

Mass CD-ROM

Mass SD

Mass CD-ROM

Mass SD

NCM1.0

Modem

TV

GPS

FP

PC/SC smart card

Voice

Diag

Mass CD-ROM

Mass SD

MBIM

Mass CD-ROM

Mass SD

NCM2.0

Modem

TV

GPS

FP

PC/SC smart card

Voice

Diag

Goals of the solution

In Windows 7, users need to perform the extra step of installing driver packages
before being able to use the mobile broadband function on morphing devices.
In Windows 8, users should not have to perform extra steps for installing driver
packages to use the mobile broadband function on morphing devices that
conform to the MBIM specification.
In Windows 8, users need to perform the extra step of installing driver packages
before being able to use IHV functions on morphing devices that do not have
inbox drivers.

Assumptions

MBIM also includes backward compatibility for NCM 1.0.

For Windows 8

Not-Configured -> Windows-8-Configuration

Windows-8-Configuration -> IHV-NCM-2.0-Configuration

For Windows 7

Supported Transitions

Not-Configured -> Windows-7-Configuration

Windows-7-Configuration -> IHV–NCM-1.0-Configuration

The configuration transition paths for Windows 7 and Windows 8

Note that any transition not shown previously is not supported.

Consider a sample USB morphing device with the following functions in its
configurations.

USB device with multiple functions

Windows 8

Windows-8-Configuration

Transition Details

When the morphing device is plugged into a computer running Windows 8, the
Windows-8-Configuration would be selected, which exposes the MBIM function. The
Windows 8 Mobile Broadband Class Driver (MBCD) will be loaded on the MBIM
function. In the following example, Configuration 3 is the Windows-8-Configuration
containing the MBIM function.

Driver stack and device configuration on Windows 8 after device is plugged in

IHV-NCM-2.0-Configuration

In the Windows-8-Configuration, the morphing device also has a mass storage function
that will allow the user to install the IHV driver package. After installation of the driver
package from the mass storage function, the device will morph to expose the functions
in the IHV-NCM-2.0-Configuration. This configuration has an additional IHV function
such as GPS, diagnostics, and so on. Configuration 4 in the following diagram represents
the IHV-NCM-2.0-Configuration.

Driver stack and device configuration on Windows 8 after user installs IHV driver
package

Windows 7

Windows-7-Configuration

When the morphing device is plugged into a computer running Windows 7 or an earlier
version of Windows, the Windows-7-Configuration would be selected, which exposes
the mass storage function. This will allow the user to install the IHV driver package from
the mass storage function.

In the following example, Configuration 1 is the Windows-7-Configuration

Driver stack and device configuration on Windows 7 when the user has not installed the
IHV driver package

IHV-NCM-1.0-Configuration

In Windows 7, the user can install the driver package from the mass storage function.
Along with installing the driver software, the IHV software will also morph the device
from the Windows-7-Configuration to the IHV-NCM-1.0-Configuration.

Driver stack and device configuration in Windows 7 after user installs IHV driver package

MB Identity Morphing Solution Details
Article • 03/14/2023

The order of the functions across transitions in Windows 8 needs to be maintained. For
example, if MBIM is the third function in the Windows-8-Configuration, it should also be
the third function in the IHV-NCM-2.0-Configuration.

Windows-7-Configuration

The Windows-7-Configuration should be the first configuration in the morphing device.
This configuration should have the mass storage function as one of the functions.
Windows 8 will not select this configuration. In Windows 7 and earlier versions of
Windows, the Windows-7-Configuration is the default configuration selected. This
configuration is used to expose a USB mass storage function where IHVs put their driver
package, which allows users to install the IHV’s driver.

Windows-8-Configuration

The Windows-7-Configuration exposes the MBIM function as one of the functions on
which MBCD is loaded. In Windows 8, the value of this configuration is used in the
subCompatibleID value returned to USBCCGP. USBCCGP selects this configuration when
it is loaded. The Windows-8-Configuration should be either Configuration 2, 3, or 4. No
other configuration is supported as the Windows-8-Configuration. This configuration
also exposes the mass storage function as the first function to allow a user to install the
IHV’s driver package.

IHV-NCM-2.0-Configuration

The IHV-NCM-2.0-Configuration exposes IHV-specific functions along with MBIM and
mass storage functions. This configuration is not set or used by Windows. The IHV
software, after installation by the user, can morph to this configuration. Note that the
order of the functions in this configuration should be the same as in the Windows-8-
Configuration. Although extra functions can be added to the Windows-8-Configuration,
the existing functions should be retained in the same order.

IHV-NCM-1.0-Configuration

The IHV-NCM-1.0-Configuration exposes IHV-specific functions along with NCM 1.0 and
mass storage functions. This configuration is not set or used by Windows 8. This
configuration is used only in Windows 7 and earlier versions of Windows after the IHV

Configuration requirements

software is installed by the user. The IHV software morphs the morphing device from the
Windows-7-Configuration to this configuration.

Compatible IDs are 8-character or smaller strings used by the device to indicate the
driver loading preference to Windows. Devices can define compatible IDs by using
Microsoft OS descriptors. Compatible and subcompatible IDs apply to individual
functions. Each configuration can have a separate set of compatible IDs, which map to
the set of functions within that configuration. Although compatible and subcompatible
IDs apply to individual functions, the morphing device can have a single compatible ID
when no configuration is selected. This compatible and subcompatible ID logically
applies to the whole morphing device.

Loading USBCCGP

In Windows 8, a USBCCGP driver is required to automatically select the Windows-8-
Configuration on the morphing device.

To load the USBCCGP driver, the morphing device needs to report the following
compatible and subcompatible IDs when no configuration is selected on the morphing
device:

If the morphing device uses IADs for grouping interfaces into functions, the
compatible ID should be reported as "ALTRCFG" and the subcompatible ID as the
number of the Windows-8-Configuration.
If the morphing device uses WCM UFDs for grouping interfaces into functions, the
compatible ID should be reported as "WMCALTR" and the subcompatible ID as the
number of the Windows-8-Configuration.

For example, if the Windows-8-Configuration is Configuration 3, the subcompatible ID
would be "3" in both of these cases.

Morphing compatible IDs

During USB device enumeration, USBHUB queries the morphing device for the
compatible ID when no configuration is selected on the morphing device. The morphing
device should return the compatible and subcompatible ID used to load USBCCGP, as
described in MB Identity Morphing Solution Overview.

After USBHUB loads USBCCGP, USBCCGP selects the configuration indicated by the
subcompatible ID reported earlier. USBCCGP then queries the compatible and
subcompatible ID a second time. At this point, the morphing device should return the

Compatible IDs

compatible and subcompatible IDs for the configuration that is currently selected.
Therefore, after USBCCGP loads and selects a particular configuration, the morphing
device needs to morph the compatible and subcompatible IDs that are reported. The
morphing device must not report the compatible and subcompatible IDs that are used
to load USBCCGP after a configuration is selected.

USBHUB querying the Microsoft OS descriptor from the device during enumeration.

Device returns CompatId in the not-configured state. This CompatId is used to load
USBCCGP.

USBCCGP selects the configuration reported in the subcompatible ID.

Device morphs its Microsoft OS descriptor based on the new configuration. USBCCGP
queries for the Microsoft OS descriptor.

Device does not return any CompatID. Based on the Class / Subclass / Protocol,
USBCCGP loads USBSTOR and MBCD.

MB Interface Model Supplement
Article • 03/14/2023

The Microsoft OS descriptor is broken up into the following segments:

One Microsoft OS string descriptor
One or more Microsoft OS feature descriptors

To support the OS descriptor, the device must implement the string descriptor. String
Descriptor

The Microsoft OS string descriptor is a string that is stored at string index 0xEE. The
format of this string is well defined.

The Microsoft OS String Descriptor is used to achieve the following objectives

The presence of the Microsoft OS string descriptor indicates to the operating
system that the device has information embedded in it, in the form of Microsoft
OS feature descriptors.
The Microsoft OS string descriptor has an embedded signature field that is used to
differentiate it from random strings that might happen to be on a device at string
index 0xEE.
The Microsoft OS string descriptor also has an embedded version number that
allows for future revisions of the Microsoft OS descriptor.

Only one Microsoft OS string descriptor is stored on a device. The following sections
describe the structure of the Microsoft OS string descriptor and its retrieval procedure.
Structure of the OS string

Here is the structure of the string descriptor:

String Descriptor Structure

Field Length (Bytes) Value Description

bLength 1 0x12 Length of the descriptor

bDescriptorType 1 0x03 String descriptor

qwSignature 14 "MSFT100" Signature field
(4D00530046005400310030003000)

bMS_VendorCode 1 Vendor Code Vendor code to fetch other OS
feature descriptors

Field Length (Bytes) Value Description

bPad 1 0x00 Pad field

The structure of the Microsoft OS string descriptor is fixed for version 1.00 and has an
overall length of 18 bytes. The version number of the Microsoft OS string descriptor is
listed in the qwSignature field. The information stored in the bMS_VendorCode field
must be a single byte value. It will be used to retrieve Microsoft OS feature descriptors,
and this byte value is used in the bmRequestType field described as follows:

Retrieving the OS string descriptor

To retrieve the information stored in the string, a standard GET_DESCRIPTOR request
must be issued to the device. Here is the format of the request:

Standard Get_Descriptor String Request

bmRequestType bRequest wValue wIndex wLength Data

1000 0000b GET_DESCRIPTOR 0x03EE 0x0000 0x12 Returns the
string

The bmRequestType field is a bitmap composed of three parts—direction of data
transfer, descriptor type, and recipient. According to the USB specification, the value of
bmRequestType is set to 1000 0000b (0x80).

For a GET_DESCRIPTOR request, the wValue field is split into two parts. The high byte
stores the descriptor type and the low byte stores the descriptor index. To retrieve the
Microsoft OS string descriptor, the high byte should be set to retrieve a string descriptor
—0x03. Because the Microsoft OS string descriptor is always stored at index 0xEE, this
string index should be stored in the lower byte of the wValue field.

The wIndex is used to store the language ID, but it must be set to zero for a Microsoft
OS string descriptor.

The wLength field is used to indicate the length of the string descriptor to be retrieved.
The device should respond to any valid range from 0x02–0xFF.

If a device does not have a valid descriptor at the corresponding address (0xEE), it will
respond with a request error or stall. When devices do not respond with a stall, a single-
ended zero reset will be issued to the device (to recover it, if it should go into an
unknown state).

Verifying the integrity of the OS descriptor

Because vendors are allowed to use any string ID to store information, the operating
system must verify that the string stored in index 0xEE is indeed the Microsoft OS string
descriptor. To verify this, the following tests will be conducted. Failure of either will
inhibit retrieval of the Microsoft OS feature descriptors.

If a vendor stores a string in index location 0xEE, the operating system will retrieve
the string and query it to see if it is the Microsoft OS string. This can be verified by
comparing the signature field in the string to the signature field entry specified
previously. A mismatch would prevent further parsing of the string.
The second test will include a verification of the length of the string based on the
version number specified in the signature field. The version number specified (in
the string "MSFT100") is 1.00. This corresponds to an 18-byte string descriptor.

Microsoft OS string descriptor constraints

The following constraints apply to Microsoft OS string descriptors and their retrieval:

To store information in compliance with the Microsoft OS descriptor specification,
the device must have one and only Microsoft OS string descriptor that is in
compliance with the information outlined in Microsoft OS Descriptors.
A device vendor is free to use any value in the bMS_VendorCode field in the
Microsoft OS string descriptor

Feature Descriptor

A feature descriptor is a fixed-format descriptor that has been defined for a specific
purpose.

Retrieving an OS feature descriptor

To retrieve a Microsoft OS feature descriptor, a special GET_MS_DESCRIPTOR request
needs to be issued to the device. Here is the format of the request:

Standard device request format

bmRequestType bRequest wValue wIndex wLength Data

1100 0000b GET_MS_DESCRIPTOR X Feature
Index

Length Returns
descriptor

The bmRequestType field is a bitmap composed of three parts—direction of data
transfer, descriptor type, and recipient—and is in accordance with the USB specification.
The Microsoft OS feature descriptor is a vendor-specific descriptor and the direction of
data transfer is from the device to the host. Therefore, the value of bmRequestType is
set to 1100 0000b (0xC0).

https://learn.microsoft.com/en-us/previous-versions/gg463179(v=msdn.10)

The bRequest field is used to indicate the format of the request. To retrieve a Microsoft
OS feature descriptor, the bRequest field should be populated with a special
GET_MS_DESCRIPTOR byte. The value of this byte is indicated by the bMS_VendorCode,
which is retrieved from the Microsoft string descriptor. For more information about the
retrieval of the Microsoft OS string descriptor, see Retrieving the OS string descriptor.

The wValue field is put to special use and is broken up into a high byte and a low byte.
The high byte is used to store the interface number. This is essential for storing feature
descriptors on a per interface basis, especially for composite devices, or devices with
multiple interfaces. In most cases, interface 0 will be used. The low byte is used to store
a page number. This feature prevents descriptors from having a size boundary of 64 KB
(a limit set by the size of the wLength field). A descriptor will be fetched with the page
value initially set to zero. If a full descriptor (size is 64 KB) is received, the page value will
be incremented by one and the request for the descriptor will be sent again (this time
with the incremented page value). This process will repeat until a descriptor with a size
less than 64 KB is received. Note that the maximum number of pages is 255, which
places a limit of 16 MB on the descriptor size.

The wIndex field stores the feature index number for the Microsoft OS feature
descriptor being retrieved. Microsoft will maintain this list of Microsoft OS feature
descriptors and indexes. To learn more about Microsoft OS feature descriptors, see
Microsoft OS Descriptors.

The wLength field specifies the length of the descriptor to be fetched. If the descriptor is
longer than the number of bytes stated in the wLength field, only the initial bytes of the
descriptor are returned. If it is shorter than the value specified in the wLength field, a
short packet is returned.

If a particular OS descriptor is not present, the device will issue a request error or stall.

Microsoft OS feature descriptor constraints

The following constraints apply to Microsoft OS feature descriptors and their retrieval.

All Microsoft OS feature descriptors are defined and standardized. Vendors are not
allowed to modify, append, or create Microsoft OS feature descriptors without
direct consent from Microsoft.
All Microsoft OS feature descriptors will have a size and version number
embedded in them. These values should always report correct information to the
operating system.
A device can have more than one Microsoft OS feature descriptor embedded in its
firmware.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/index
https://learn.microsoft.com/en-us/previous-versions/gg463179(v=msdn.10)

Some Microsoft OS feature descriptors are stored on a per-interface level, while
others are unique to the device. Device-level Microsoft OS feature descriptors
should set the high byte of the wValue field as zero.

Structure of the feature descriptor

To identify itself as capable of supporting MBIM, a device must also support the
extended configuration descriptor, which is one of the defined feature descriptors. The
structure of this descriptor is as follows.

Header section

The header section stores information about the rest of the extended configuration
descriptor. The dwLength field contains the length of the entire extended configuration
descriptor. The header section also contains a version number, which will be initially set
to 1.00 (0100H). Future revisions of this descriptor may be released at a later stage. Note
that future versions of the extended configuration descriptor might also need to
increase the number of entries in the header section, so please verify that this number is
accurately stored in the device and read by the operating system.

Extended configuration descriptor header section

Offset Field Size Value Description

0 dwLength 4 Unsigned
DWORD

The length field
describes the
length of the
extended
configuration
descriptor, in
bytes.

4 bcdVersion 2 BCD Extended
configuration
descriptor
release number
in Binary Coded
Decimal (for
example, version
1.00 is 0100H).

6 wIndex 2 WORD Fixed = 0x0004

Offset Field Size Value Description

8 bCount 1 BYTE Total number of
function sections
that follow the
header section =
0x01

9 RESERVED 7 RESERVED

Function section

The function section provides two important pieces of information. It groups
consecutive interfaces that serve a similar purpose into function groups, and provides
compatible and subcompatible IDs for each function.

Here is the format of the function section, including values that should be used by an
MBIM device:

Extended configuration descriptor function section

Offset¹ Field Size Value Description

0 bFirstInterfaceNumber 1 Byte Starting interface
number for this
function = 0x00

1 bInterfaceCount 1 Byte Total number of
Interfaces that
must be included
to from this
function = 0x01

2 compatibleID 8 Bytes Compatible ID

10 subCompatibleID 8 Bytes Subcompatible
ID

18 RESERVED 6 RESERVED = 0

¹Offset of the custom property section has been reset to zero. To calculate the offset of
a field from the beginning of the extended configuration descriptor, add the length of
the sections that precede it.

Compatible and Subcompatible IDs based on the configuration exposing the MBIM
function

bConfiguration compatibleID subCompatibleID

bConfiguration compatibleID subCompatibleID

2 ALTRCFG

(0x41 0x4C 0x54 0x52 0x43
0x46 0x47 0x00)

20000000

(0x32 0x00 0x00 0x00 0x00
0x00 0x00 0x00)

3 ALTRCFG

(0x41 0x4C 0x54 0x52 0x43
0x46 0x47 0x00)

30000000

(0x33 0x00 0x00 0x00 0x00
0x00 0x00 0x00)

4 ALTRCFG

(0x41 0x4C 0x54 0x52 0x43
0x46 0x47 0x00)

40000000

(0x34 0x00 0x00 0x00 0x00
0x00 0x00 0x00)

bConfiguration refers to the bConfiguration value within the USB configuration
descriptor of the configuration that exposes the MBIM function. bConfiguration
cannot be 1 because that is the default configuration exposing only the CDROM
function. bConfiguration cannot be greater than 4; that is, the MBIM function
should be exposed within the first four configurations.
compatibleID remains the same for all configurations. The subcompatibleID
changes based on the configuration

Example

This table shows a sample multi-configuration scenario. The table lists the functions
available in each configuration and the actions that different versions of the operating
system takes for each of these configurations:

Example of a multi-configuration mobile broadband device

bConfiguration 1 (Windows-7-
Configuration)

2 (IHV-NCM-
1.0-
Configuration)

3 (Windows-8-
Configuration)

3 (IHV-NCM-
2.0-
Configuration)

bConfiguration 1 (Windows-7-
Configuration)

2 (IHV-NCM-
1.0-
Configuration)

3 (Windows-8-
Configuration)

3 (IHV-NCM-
2.0-
Configuration)

Functions
exposed

CDROM

SD

CD-ROM

SD

NCM1.0

Modem

TV

GPS

FP

PC/SC smart card

Voice

Diag

CD-ROM

SD

MBIM

CD-ROM

SD

NCM2.0

Modem

TV

GPS

FP

PC/SC smart card

Voice

Diag

The following tables show the values used by the Microsoft OS string descriptor and the
Microsoft OS extended configuration feature descriptor for the previous sample’s multi-
configuration scenario.

Example of a multi-configuration mobile broadband device

Field Length (Bytes) Value

bLength 1 0x12

bDescriptorType 1 0x03

qwSignature 14 ‘MSFT100’

0x4D 0x00 0x53 0x00 0x46
0x00 0x54 0x00 0x31 0x00
0x30 0x00 0x30 0x00

bMS_VendorCode 1 0xA5

bPad 1 0x00

Example Microsoft OS extended configuration feature descriptor header

Offset Field Size Value

0 dwLength 4 16

Offset Field Size Value

4 bcdVersion 2 0100H

6 wIndex 2 0x0004

8 bCount 1 1

9 RESERVED 7

Example Microsoft OS extended configuration feature descriptor function

Offset² Field Size Value

0 bFirstInterfaceNumber 1

1 bInterfaceCount 1

2 compatibleID 8

10 subCompatibleID 8

18 RESERVED 6

²Offset of the custom property section has been reset to zero. To calculate the offset of
a field from the beginning of the extended configuration descriptor, add the length of
the sections that precede it.

MB Interface Overview
Article • 03/14/2023

This documentation describes the Mobile Broadband (MB) driver model. The MB driver
model is a software architecture provided with Windows 7 and later versions of
Windows. It provides a framework for an integrated set of networking features based on
CDMA-based (1xRTT/1xEV-DO/1xEV-DO RevA/1xEvDO RevB) and GSM-based
(GPRS/EDGE/UMTS/HSDPA/TD-SCDMA) cellular technologies.

Windows 8 MB miniport drivers are based on the NDIS 6.30 interface. Windows 7 MB
miniport drivers are based on the NDIS 6.20 interface. MB miniport drivers must follow
the appropriate "NDIS 6.x Specification" in addition to the device driver interfaces (DDIs)
described throughout this documentation.

The following diagram represents the architecture of the MB driver model.

Terminology

Be aware that the terms Wireless Wide Area Network (WWAN) and Mobile Broadband
(MB) are used interchangeably throughout this documentation to represent the Mobile
Broadband technology.

The terms activate and activation have two different meanings in this documentation.
The term activate is related to service activation, such as when a network provider must
explicitly enable the MB subscription before the provider's services can be used. The
term activation is specific to setting up a connection in GSM-based
(GPRS/EDGE/UMTS/HSDPA/TD-SCDMA) technologies. For example, PDP context
activation refers to setting up an MB connection according to the parameters specified
in the PDP context.

SIM access refers to accessing the Subscriber Identity Module (SIM, also known as the R-
UIM). If the MB device does not have a SIM/R-UIM as a physical entity but instead has a
logical equivalent embedded in the device, this term is applicable to that logical circuit
equivalent as well. When SIM access is not required, the miniport driver is not expected
to retrieve the information from the SIM in order to complete the request.

The MB Service component in user mode cannot directly exchange data with MB
miniport drivers in kernel mode. Intermediaries such as WMI or NDIS filter drivers are
required. For simplicity, these intermediaries are not explicitly discussed in this
documentation. However, this omission does not mean that the MB Service and MB
miniport drivers can engage in direct data exchanges.

The following topics provide a summary of NDIS 6.20 and MB OID semantics, the
procedures that miniport drivers must follow to perform synchronous and asynchronous
operations, and an overview of the operations supported by the Mobile Broadband
driver model:

MB / NDIS 6.20 Interfacing Overview

MB Data Model

MB Operational Semantics

MB Driver Model Versioning

MB Miniport Driver INF Requirements

MB Miniport Driver Types

MB Adapter General Attribute Requirements

Semantics

MB Raw IP Packet Processing Support

Guidelines for MB Miniport Driver IP Address Notifications

MB Miniport Driver Error Logging

MB Miniport Driver Performance Requirements

MB / NDIS 6.20 Interfacing Overview
Article • 03/14/2023

This topic is designed to provide enough background about the NDIS 6.20 Specification
to put the MB driver model into perspective. It is not intended to be a reference for
NDIS 6.20. In the case of discrepancies between this content and the NDIS 6.20
Specification, see the NDIS 6.20 documentation for complete information.

In NDIS 6.20, the MB Service calls NdisOidRequest to issue OID requests to the miniport
driver. Then, miniport drivers call NdisMIndicateStatusEx to return data back to the MB
Service.

NDIS 6.20 supports the following types of OID operations:

Set operations that send data from the service to a miniport driver.

Query operations that request miniport drivers to return data to the service.

Method operations, equivalent to a function call, that have both input parameters
and output parameters.

Finally, miniport drivers may send indications that contain data to notify the service
about state changes in the MB device.

MB miniport drivers implement the MiniportOidRequest NDIS handler to respond to
both set and query requests.

Miniport drivers provide status indications to the MB Service by calling
NdisMIndicateStatusEx. See the NDIS_STATUS_INDICATION structure for more details
about status indications.

NDIS 6.20 miniport drivers must use the NDIS_STATUS_LINK_STATE status indication to
notify NDIS and overlying drivers that there has been a change in the physical
characteristics of a transmission medium.

Receiving Set and Query Requests

Sending Status Indications

Connection State Indications

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

The StatusBuffer member of the NDIS_STATUS_INDICATION structure is an
NDIS_LINK_STATE structure, which specifies the physical state of the transmission
medium.

MB miniport drivers should avoid sending the NDIS_STATUS_LINK_STATUS status
indication if there have been no changes in the physical state of the medium. However,
miniport drivers are not necessarily required to avoid sending this status indication.

MB miniport drivers must report the maximum data rate of the currently connected
data-class. A change in data-class while connected must result in a Connection State
Indication with the corresponding data rate reported. The following is a recommended
implementation of this rule:

1. MB miniport drivers that conform to this specification must use
NDIS_STATUS_LINK_STATE to indicate connection status changes instead of
NDIS_STATUS_MEDIA_CONNECT, NDIS_STATUS_MEDIA_DISCONNECT, or
NDIS_STATUS_LINK_SPEED_CHANGE (as in NDIS 5.1) for connection status
indications.

2. The XmitLinkSpeed and RcvLinkSpeed members of the NDIS_LINK_STATE
structure must not report NDIS_LINK_SPEED_UNKNOWN. Miniport drivers must
report the speed by using the information in the following tables.

For GSM-based MB device speed links

Data class XmitLinkSpeed RcvLinkSpeed

GPRS 8 to 48 kbps 8 to 48 kbps

EDGE 8 to 220 kbps 8 to 220 kbps

UMTS 64 to 384 kbps 64 to 384 kbps

HSDPA 64 to 5.76 mbps 1.8 to 14.4 mbps

HSUPA 1.4 to 5.76 mbps 64 kbps to 7.2 mbps

For CDMA-based MB device speed links

Data Class XmitLinkSpeed RcvLinkSpeed

1xRTT 115.2 kbps to 307.2 kbps 153.6 kbps to 3 mbps

3xRTT 614 kbps to 1.04 mbps 307.2 kbps to 1.04 mbps

1xEV-DO 153.6 kbps 2.4 mbps

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state

Data Class XmitLinkSpeed RcvLinkSpeed

1xEvDO Rev. A. 1.8 mbps 3.1 mbps

1xEV-DV 1.8 mbps 3.1 mbps

1xEvDO Rev. B. 27 mbps 3.1 mbps to 73.5 mbps

Note MB devices should report the speed in the range of speed shown in the previous
tables.

Unlike NDIS 5.1, different link state change indications are consolidated into a single
NDIS_STATUS_LINK_STATE indication by using the NDIS_LINK_STATE data structure. NDIS
5.1 indications can be mapped to this structure according to the information in the
following table. In the case of link speed change, the consumer of the indication should
compare the transmitting and receiving speed values with the ones it recorded for a
previous indication to decide whether the link speed change has occurred or not.

Connection status indication mapping from NDIS 5.1 to 6.x

NDIS 5.1 indication NDIS 6.x NDIS_LINK_STATE data structure Parameter Value
NDIS_STATUS_MEDIA_CONNECT

MediaConnectState

MediaConnectStateConnected

NDIS_STATUS_MEDIA_DISCONNECT

MediaConnectState

MediaConnectStateDisconnected

NDIS_STATUS_LINK_SPEED_CHANGE

XmitLinkSpeed

Transmitting speed (bps)

RcvLinkSpeed

Receiving speed (bps)

MB Data Model
Article • 03/14/2023

The MB driver model uses a data model that consists of a set of objects defined as abstractions of MB device
features. Each object is identified by a unique object identifier (OID) and is defined by a set of corresponding
attributes. The set of attributes is organized into a data structure. To manage the device, the MB Service and the
MB miniport driver exchange OIDs and their associated data structures based on OID requests and indications
provided by the Network Driver Interface Specification (NDIS).

In the MB driver model, only set and query operations are used for OID requests. The MB driver model does not
use method operations. For indications, the MB driver model uses both event and transactional notifications to
indicate state changes in the objects of the MB device. Transactional notifications also signal completion of an
asynchronous transaction.

The following tables list the OIDs and status indications defined for MB miniport drivers, as well as the associated
data structures. MB miniport drivers must implement all mandatory general OIDs that the NDIS 6.20 Specification
requires. For a list of general OIDs for NDIS 6.x, see General Operational OIDs.

In addition, MB miniport drivers must implement OID_GEN_PHYSICAL_MEDIUM even though the NDIS
Specification describes it as optional to implement.

The syntax and semantics of the MB OIDs listed in the following table are described in MB Operational Semantics.

OID and Corresponding Data Structure Set,
Windows 7

Set,
Windows
8

Query,
Windows
7

Query,
Windows
8

GSM/CDMA

OID_WWAN_DRIVER_CAPS uses
NDIS_WWAN_DRIVER_CAPS

Not
supported

Not
supported

S S GSM, CDMA

OID_WWAN_DEVICE_CAPS has no corresponding
structure

Not
supported

Not
supported

A A GSM, CDMA

OID_WWAN_READY_INFO has no corresponding
structure

Not
supported
Not
supported

A A GSM,
CDMA

OID_WWAN_SERVICE_ACTIVATION† uses
NDIS_WWAN_SERVICE_ACTIVATION

A A Not
supported

Not
supported

GSM, CDMA

OID_WWAN_RADIO_STATE uses
NDIS_WWAN_SET_RADIO_STATE

A A A A GSM, CDMA

OID_WWAN_PIN uses NDIS_WWAN_SET_PIN A Not
supported

A Not
supported

GSM, CDMA

OID_WWAN_PIN_LIST has no corresponding structure Not
supported

Not
supported

A A GSM, CDMA

OID_WWAN_PIN_EX uses NDIS_WWAN_SET_PIN_EX Not
supported

A Not
supported

A GSM, CDMA

OID_WWAN_HOME_PROVIDER has no corresponding
structure

Not
supported

Not
supported

A A GSM, CDMA

WWAN-Specific OIDs

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_driver_caps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_service_activation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin_ex

OID and Corresponding Data Structure Set,
Windows 7

Set,
Windows
8

Query,
Windows
7

Query,
Windows
8

GSM/CDMA

OID_WWAN_PREFERRED_PROVIDERS† uses
NDIS_WWAN_SET_PREFERRED_PROVIDERS

A A A A GSM only

OID_WWAN_VISIBLE_PROVIDERS has no corresponding
structure

Not
supported

Not
supported

A A GSM

OID_WWAN_REGISTER_STATE uses
NDIS_WWAN_SET_REGISTER_STATE

A A A A CDMA

OID_WWAN_SIGNAL_STATE uses
NDIS_WWAN_SET_SIGNAL_INDICATION

A A A A GSM, CDMA

OID_WWAN_PACKET_SERVICE uses
NDIS_WWAN_SET_PACKET_SERVICE

A A A A GSM, CDMA

OID_WWAN_PROVISIONED_CONTEXTS†† uses
NDIS_WWAN_SET_PROVISIONED_CONTEXT

A A A A GSM, CDMA

OID_WWAN_CONNECT uses
NDIS_WWAN_SET_CONTEXT_STATE

A A A A GSM, CDMA

OID_WWAN_SMS_CONFIGURATION uses
NDIS_WWAN_SET_SMS_CONFIGURATION

A A A A GSM, CDMA

OID_WWAN_SMS_READ uses NDIS_WWAN_SMS_READ Not
supported

A A A GSM, CDMA

OID_WWAN_SMS_SEND uses NDIS_WWAN_SMS_SEND A A Not
supported

Not
supported

GSM, CDMA

OID_WWAN_SMS_DELETE uses
NDIS_WWAN_SMS_DELETE

A A Not
supported

Not
supported

GSM, CDMA

OID_WWAN_SMS_STATUS uses
NDIS_WWAN_SMS_STATUS

Not
supported

Not
supported

A A GSM, CDMA

OID_WWAN_VENDOR_SPECIFIC† uses a vendor-defined
structure

A A Not
supported

Not
supported

GSM, CDMA

OID_WWAN_DEVICE_SERVICES has no corresponding
structure

Not
supported

Not
supported

Not
supported

A GSM, CDMA

OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS uses
NDIS_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS

Not
supported

A Not
supported

Not
supported

GSM, CDMA

OID_WWAN_AUTH_CHALLENGE uses
NDIS_WWAN_AUTH_CHALLENGE

Not
supported

Not
supported

Not
supported

A GSM, CDMA

OID_WWAN_USSD uses NDIS_WWAN_USSD_REQUEST Not
supported

A Not
supported

Not
supported

GSM

OID_WWAN_DEVICE_SERVICE_COMMAND uses
NDIS_WWAN_DEVICE_SERVICE_COMMAND

Not
supported

A Not
supported

A GSM, CDMA

７ Note

The following notes apply to the preceding table: † represents optional OIDs that miniport drivers may
support. Miniport drivers that do not support the optional OIDs must not return them in
OID_GEN_SUPPORTED_LIST.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_preferred_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_register_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_signal_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_packet_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_provisioned_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_context_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sms_configuration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_read
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_subscribe_device_service_events
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_auth_challenge
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_command

Indication and Corresponding Data Structure Windows 7 Revision

Windows 8 Revision

NDIS_STATUS_WWAN_DEVICE_CAPS

uses NDIS_WWAN_DEVICE_CAPS

NDIS_WWAN_DEVICE_CAPS_REVISION_1

NDIS_WWAN_DEVICE_CAPS_REVISION_2

NDIS_STATUS_WWAN_READY_INFO

uses NDIS_WWAN_READY_INFO

NDIS_WWAN_READY_INFO_REVISION_1

NDIS_WWAN_READY_INFO_REVISION_1

NDIS_STATUS_WWAN_RADIO_STATE

uses NDIS_WWAN_RADIO_STATE

NDIS_WWAN_RADIO_STATE_REVISION_1

NDIS_WWAN_RADIO_STATE_REVISION_1

NDIS_STATUS_WWAN_PIN_INFO

uses NDIS_WWAN_PIN_INFO

NDIS_WWAN_PIN_INFO_REVISION_1

NDIS_WWAN_PIN_INFO_REVISION_1

NDIS_STATUS_WWAN_PIN_LIST

uses NDIS_WWAN_PIN_LIST

NDIS_WWAN_PIN_LIST_REVISION_1

NDIS_WWAN_PIN_LIST_REVISION_1

NDIS_STATUS_WWAN_SERVICE_ACTIVATION†

uses NDIS_WWAN_SERVICE_ACTIVATION_STATUS

NDIS_WWAN_SERVICE_ACTIVATION_STATUS_REVISION_1

NDIS_WWAN_SERVICE_ACTIVATION_STATUS_REVISION_1

NDIS_STATUS_WWAN_HOME_PROVIDER

uses NDIS_WWAN_HOME_PROVIDER

NDIS_WWAN_HOME_PROVIDER_REVISION_1

NDIS_WWAN_HOME_PROVIDER_REVISION_1

†† represents miniport drivers that support GSM-based devices which can optionally support
OID_WWAN_PROVISIONED_CONTEXTS set and query operations. Miniport drivers that support CDMA-based
devices can optionally support OID_WWAN_PROVISIONED_CONTEXTS query operations for CDMA-based
devices that report Simple IP (WWAN_CTRL_CAPS_CDMA_SIMPLE_IP).

Miniport drivers must support all non-optional OIDs. The MB Service may ignore any miniport driver that
does not report all of the mandatory OIDs.

"A" and "S" in the Set and Query operation columns in the preceding table reflect the nature of the
transaction for completing the OID request: "A" stands for an asynchronous transaction and "S" for a
synchronous transaction.

The data structures in the preceding table correspond to set operation OIDs and to return data for
synchronous query operation OIDs.

The following OIDs share a common variable length list data structure called WWAN_LIST_HEADER in their
corresponding data structures:

OID_WWAN_READY_INFO

OID_WWAN_PREFERRED_PROVIDERS
OID_WWAN_VISIBLE_PROVIDERS

OID_WWAN_PROVISIONED_CONTEXTS

OID_WWAN_SMS_READ

WWAN-Specific Indications, Corresponding Data Structures,
and OS Revisions

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_service_activation_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_list_header

NDIS_STATUS_WWAN_PREFERRED_PROVIDERS†

uses NDIS_WWAN_PREFERRED_PROVIDERS

NDIS_WWAN_PREFERRED_PROVIDERS_REVISION_1

NDIS_WWAN_PREFERRED_PROVIDERS_REVISION_1

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

uses NDIS_WWAN_VISIBLE_PROVIDERS

NDIS_WWAN_VISIBLE_PROVIDERS_REVISION_1

NDIS_WWAN_VISIBLE_PROVIDERS_REVISION_1

NDIS_STATUS_WWAN_REGISTER_STATE

uses NDIS_WWAN_REGISTRATION_STATE

NDIS_WWAN_REGISTRATION_STATE_REVISION_1

NDIS_WWAN_REGISTRATION_STATE_REVISION_2

NDIS_STATUS_WWAN_SIGNAL_STATE

uses NDIS_WWAN_SIGNAL_STATE

NDIS_WWAN_SIGNAL_STATE_REVISION_1

NDIS_WWAN_SIGNAL_STATE_REVISION_1

NDIS_STATUS_WWAN_PACKET_SERVICE

uses NDIS_WWAN_PACKET_SERVICE_STATE

NDIS_WWAN_PACKET_SERVICE_STATE_REVISION_1

NDIS_WWAN_PACKET_SERVICE_STATE_REVISION_1

NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS

uses NDIS_WWAN_PROVISIONED_CONTEXTS

NDIS_WWAN_PROVISIONED_CONTEXTS_REVISION_1

NDIS_WWAN_PROVISIONED_CONTEXTS_REVISION_1

NDIS_STATUS_WWAN_CONTEXT_STATE

uses NDIS_WWAN_CONTEXT_STATE

NDIS_WWAN_CONTEXT_STATE_REVISION_1

NDIS_WWAN_CONTEXT_STATE_REVISION_1

NDIS_STATUS_WWAN_SMS_CONFIGURATION

uses NDIS_WWAN_SMS_CONFIGURATION

NDIS_WWAN_SMS_CONFIGURATION_REVISION_1

NDIS_WWAN_SMS_CONFIGURATION_REVISION_1

NDIS_STATUS_WWAN_SMS_RECEIVE

uses NDIS_WWAN_SMS_RECEIVE

NDIS_WWAN_SMS_RECEIVE_REVISION_1

NDIS_WWAN_SMS_RECEIVE_REVISION_1

NDIS_STATUS_WWAN_SMS_SEND

uses NDIS_WWAN_SMS_SEND_STATUS

NDIS_WWAN_SMS_SEND_STATUS_REVISION_1

NDIS_WWAN_SMS_SEND_STATUS_REVISION_1

NDIS_STATUS_WWAN_SMS_DELETE

uses NDIS_WWAN_SMS_DELETE_STATUS

NDIS_WWAN_SMS_DELETE_STATUS_REVISION_1

NDIS_WWAN_SMS_DELETE_STATUS_REVISION_1

NDIS_STATUS_WWAN_SMS_STATUS

uses NDIS_WWAN_SMS_STATUS

NDIS_WWAN_SMS_STATUS_REVISION_1

NDIS_WWAN_SMS_STATUS_REVISION_1

NDIS_STATUS_WWAN_VENDOR_SPECIFIC†

uses a vendor-defined structure

N/A

NDIS_STATUS_WWAN_USSD

uses NDIS_WWAN_USSD_EVENT

NDIS_WWAN_USSD_EVENT_REVISION_1

NDIS_WWAN_USSD_EVENT_REVISION_1

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS

uses NDIS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS

NDIS_WWAN_DEVICE_SERVICES_REVISION_1

NDIS_WWAN_DEVICE_SERVICES_REVISION_1

NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE

uses NDIS_WWAN_DEVICE_SERVICE_RESPONSE

NDIS_WWAN_DEVICE_SERVICE_RESPONSE_REVISION_1

NDIS_WWAN_DEVICE_SERVICE_RESPONSE_REVISION_1

NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT

uses NDIS_WWAN_DEVICE_SERVICE_EVENT

NDIS_WWAN_DEVICE_SERVICE_EVENT_REVISION_1

NDIS_WWAN_DEVICE_SERVICE_EVENT_REVISION_1

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION NDIS_WWAN_DEVICE_SERVICE_SUBSCRIPTION_REVISION_1

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_registration_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_provisioned_contexts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_context_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_configuration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_receive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_supported_commands
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_event

uses NDIS_WWAN_DEVICE_SERVICE_SUBSCRIPTION NDIS_WWAN_DEVICE_SERVICE_SUBSCRIPTION_REVISION_1

NDIS_STATUS_WWAN_AUTH_RESPONSE

uses NDIS_WWAN_AUTH_RESPONSE

NDIS_WWAN_AUTH_RESPONSE_REVISION_1

NDIS_WWAN_AUTH_RESPONSE_REVISION_1

NDIS_STATUS_WWAN_SET_HOME_PROVIDER_COMPLETE

uses NDIS_WWAN_SET_HOME_PROVIDER

N/A

NDIS_WWAN_HOME_PROVIDER_REVISION_2

Indication GSM CDMA Unsolicited

indication

allowed?

NDIS_STATUS_WWAN_DEVICE_CAPS X X N

NDIS_STATUS_WWAN_READY_INFO X X Y

NDIS_STATUS_WWAN_RADIO_STATE X X Y

NDIS_STATUS_WWAN_PIN_INFO X X N

NDIS_STATUS_WWAN_PIN_LIST X X N

NDIS_STATUS_WWAN_SERVICE_ACTIVATION X X N

NDIS_STATUS_WWAN_HOME_PROVIDER X X N

NDIS_STATUS_WWAN_PREFERRED_PROVIDERS X Y

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS X X N

NDIS_STATUS_WWAN_REGISTER_STATE X X Y

NDIS_STATUS_WWAN_SIGNAL_STATE X X Y

NDIS_STATUS_WWAN_PACKET_SERVICE

uses NDIS_WWAN_PACKET_SERVICE_STATE

X X Y

NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS X X Y

NDIS_STATUS_WWAN_CONTEXT_STATE X X Y

NDIS_STATUS_WWAN_SMS_CONFIGURATION X X Y

NDIS_STATUS_WWAN_SMS_RECEIVE X X Y

NDIS_STATUS_WWAN_SMS_SEND

uses NDIS_WWAN_SMS_SEND_STATUS

X X N

７ Note

 The following notes apply to the preceding table: † represents optional indications that miniport drivers may
support. Be aware that if a miniport driver supports an optional OID, the miniport driver should also support
the corresponding indication.

WWAN-Specific Indication Support for GSM, CDMA, and
Unsolicited Indications

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_subscription
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_auth_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_home_provider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send_status

NDIS_STATUS_WWAN_SMS_DELETE X X N

NDIS_STATUS_WWAN_SMS_STATUS X X Y

NDIS_STATUS_WWAN_VENDOR_SPECIFIC X X Y

NDIS_STATUS_WWAN_USSD X Y

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS X X N

NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE X X N

NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT X X Y

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION X X N

NDIS_STATUS_WWAN_AUTH_RESPONSE X X N

NDIS_STATUS_WWAN_SET_HOME_PROVIDER_COMPLETE X X N

The following changes apply to NDIS 6.30 miniport drivers that support multi-carrier mode. If the miniport driver
does not support multi-carrier mode then please refer to the preceding table.

OID and Windows 8 Corresponding Data Structure Query Operation Set Operation GSM/CDMA

OID_WWAN_HOME_PROVIDER

uses NDIS_WWAN_SET_HOME_PROVIDER

A A GSM, CDMA

OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

uses
NDIS_WWAN_SET_PREFERRED_MULTICARRIER_PROVIDERS.
The PreferredListHeader.ElementType should be set to
WwanStructProvider2 and the structure is
WWAN_PROVIDER2.

A A GSM, CDMA

Indication and Corresponding Data Structure Windows 8 Revision

NDIS_STATUS_WWAN_HOME_PROVIDER

uses NDIS_WWAN_HOME_PROVIDER2

NDIS_WWAN_HOME_PROVIDER_REVISION_2

NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

uses NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS_REVISION_1.
The PreferredListHeader.ElementType should be set to
WwanStructProvider2 and the list should contain
WWAN_PROVIDER2 structure.

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

uses NDIS_WWAN_VISIBLE_PROVIDERS

NDIS_WWAN_VISIBLE_PROVIDERS_REVISION_1. The
VisibleListHeader.ElementType should be set to
WwanStructProvider2 and the list should contain
WWAN_PROVIDER2 structure.

Multi-carrier Specific OIDs

Multi-carrier Specific Indications, Corresponding Data
Structures, and OS Revisions

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_home_provider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_preferred_multicarrier_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers

Indication and Corresponding Data Structure GSM CDMA Unsolicited

indication

allowed?

NDIS_STATUS_WWAN_HOME_PROVIDER X X N

NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS X X Y

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

uses NDIS_WWAN_VISIBLE_PROVIDERS

X X N

Multi-carrier Specific Indication Support for GSM, CDMA,
and Unsolicited Indications

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers

MB Operational Semantics
Article • 03/14/2023

The MB driver model assumes non-blocking operational semantics between the MB
Service and miniport drivers by using the asynchronous notification mechanism
provided in NDIS 6.x. This mechanism allows the MB Service to continue to send OID
requests to the miniport driver for processing without waiting for the current operation
to complete.

An asynchronous transaction is a three-way handshake that starts with the initial
request, followed by a request status response, and then completed by a final
transactional indication. The request status response is provisional in that it only
acknowledges that the miniport driver has received the request. The follow-up
asynchronous indication is transactional in that it signals the completion of the
transaction. The miniport driver returns the status code as well as the resulting data in
the transactional indication.

Many of the set and query OID requests that are used by the MB Service are processed
asynchronously. For more information about set and query OID requests, see
NDIS_OID_REQUEST. The "WWAN-specific OIDs" table in the MB Data Model topic
identifies which OIDs are processed asynchronously.

The following diagram represents the interaction sequence for an asynchronous query
transaction between the MB Service and the miniport driver. The labels in bold represent
OID identifiers, or transactional flow control, and the labels in regular text represent the
important flags within the OID structure.

Asynchronous Transactions

Asynchronous Set and Query Requests

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

The three-way handshake is the same for both query and set requests.

Except for OID_WWAN_DRIVER_CAPS, all other MB-specific OID requests follow the
asynchronous transaction mechanism for information exchange between miniport
drivers and the MB Service, with the following additional notes:

Miniport drivers should immediately fail an OID request on any error condition,
such as an invalid OID request.

Miniport drivers must return any WWAN-specific error conditions with the correct
error code (for example, WWAN_STATUS_XXX) specified in the uStatus member of
the event notification structure. Miniport drivers should also appropriately fill in

the members that follow the uStatus member, as needed. For example, miniport
drivers should fill in the ContextState.uNwError member of the
NDIS_WWAN_CONTEXT_STATE structure, if available. However, in the case of a
failure when processing OIDs related to PINs, miniport drivers may not necessarily
have the current PIN state information to specify in the PinInfo.PinState member
of NDIS_WWAN_PIN_INFO.

Miniport drivers should return NDIS_STATUS_INDICATION_REQUIRED as a
provisional response for all asynchronous OID requests.

Miniport drivers should be able to distinguish device state changes caused by an
OID request from other causes. Miniport drivers should send transactional
notifications for state changes resulting from OID requests, and they should send
unsolicited event notifications for state changes from other causes.

Miniport drivers are responsible for managing kernel-mode memory, although the
MB Service initially allocates the memory for requests. After the MB Service
receives a response from a miniport driver, the service may release the user-mode
memory that it allocated for the OID request.

The following diagram represents the interaction sequence for an asynchronous set
transaction between the MB Service and the miniport driver. The labels in bold represent
OID identifiers, or transactional flow control, and the labels in regular text represent the
important flags within the OID structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_context_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info

The NDIS 6.0 Specification (released with Windows Vista) introduced a new status code,
NDIS_STATUS_INDICATION_REQUIRED, for miniport drivers to convey the asynchronous
nature of a transaction to the MB Service in a miniport driver's provisional response to
an OID request.

As mentioned in MB Interface Overview, the MB Service does not have direct access to
kernel-mode memory that is allocated by an MB miniport driver. The execution result
stored in the kernel-mode memory is assumed to be copied and made available to the
MB Service by some intermediary, such as WMI or an NDIS filter driver. Hence, miniport

Asynchronous Response

drivers can release the allocated kernel-mode memory after the NdisMIndicateStatusEx
function call returns in the transactional indication.

The handshake procedures that miniport drivers and the MB Service must follow are
described in the following procedure.

Upon receiving an OID request, miniport drivers should perform the following steps:

1. Allocate memory in kernel mode to copy the contents of the NDIS_OID_REQUEST
data structure associated with the OID request.

2. Among the request's parameters, ensure that the RequestId and RequestHandle
members of the OID request structure are also copied. These members will be
used later in the transactional indication.

3. Return a provisional NDIS_STATUS_INDICATION_REQUIRED status response to
inform the MB Service that the miniport driver will complete the request
asynchronously.

4. Upon completion of the operation, store the result in local or driver-allocated
memory, as appropriate.

5. Call the NdisMIndicateStatusEx function to notify the MB Service that the
outstanding operation has been completed. Miniport drivers should fill in the
members of the NDIS_STATUS_INDICATION structure as follows:
a. Set the StatusCode member to the type of status notification. For example,

NDIS_STATUS_WWAN_XXX.
b. Set the DestinationHandle member to the RequestHandle member that was

received in the NDIS_OID_REQUEST data structure when the miniport driver
received the corresponding OID request.

c. Set the RequestId member to match the RequestId member of the
NDIS_OID_REQUEST status structure when the miniport driver received the
corresponding OID request.

d. Set the StatusBuffer and StatusBufferSize members to point to the miniport
driver-allocated memory and the size of the memory buffer, respectively. This
memory buffer contains the result of the completed operation.

e. If the operation completes successfully, set the uStatus member to
WWAN_STATUS_SUCCESS. Otherwise, set the uStatus member to the
appropriate WWAN_STATUS_XXX value to indicate the type of failure.

MB miniport driver procedure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

6. When the function call returns, the miniport driver should release the memory it
allocated for the OID request.

The MB Service processes asynchronous transactions by using the following procedure:

1. Allocate buffer memory for the request based on the OID data structure. Fill in the
data structure members with appropriate values.

2. Call the NdisOidRequest function with the InformationBuffer member pointing to
the OID data structure for the OID request and wait for the miniport driver to
respond.

3. Upon receipt of an NDIS_STATUS_INDICATION_REQUIRED provisional response
from the miniport driver, the MB Service saves the RequestId, releases the
allocated memory, and marks the transaction as open. At this point, the MB Service
is free to process subsequent OID requests and notifications.

4. Upon receipt of a notification with NDIS_STATUS_WWAN_XXX as the StatusCode
value, check whether the RequestId matches that of any transaction marked as
open. If there is a match, the service closes the transaction. If no match is found,
treat the notification as an unsolicited event notification.

5. Process the data returned in the StatusBuffer member and make state changes to
the MB Service as appropriate.

There are two types of WWAN-specific indications that miniport drivers can generate:

Event notifications that result from an object state change in the MB device.

Transactional notifications that signal the completion of an asynchronous
operation.

In both cases, miniport drivers should call the NdisMIndicateStatusEx function.

Event notification is unsolicited in the sense that the miniport driver proactively sends
the indication to the MB Service as a state change event. The state change is caused by

MB Service procedure

Indications

Event Notification

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

an action from some entity other than the MB Service. The MB Service assumes miniport
drivers are able to detect the cause of the change.

For any WWAN-specific event notification, miniport drivers must set the RequestId
member of the NDIS_STATUS_INDICATION structure to zero. The StatusCode member
specifies which object in the MB device has changed. The miniport driver can set this
object to any of the following values:

NDIS_STATUS_WWAN_DEVICE_CAPS

NDIS_STATUS_WWAN_READY_INFO

NDIS_STATUS_WWAN_RADIO_STATE

NDIS_STATUS_WWAN_PIN_INFO

NDIS_STATUS_WWAN_PIN_LIST

NDIS_STATUS_WWAN_HOME_PROVIDER

NDIS_STATUS_WWAN_PREFERRED_PROVIDERS

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

NDIS_STATUS_WWAN_REGISTER_STATE

NDIS_STATUS_WWAN_PACKET_SERVICE

NDIS_STATUS_WWAN_SIGNAL_STATE

NDIS_STATUS_WWAN_CONTEXT_STATE

NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS

NDIS_STATUS_WWAN_SERVICE_ACTIVATION

NDIS_STATUS_WWAN_SMS_CONFIGURATION

NDIS_STATUS_WWAN_SMS_RECEIVE

NDIS_STATUS_WWAN_SMS_SEND

NDIS_STATUS_WWAN_SMS_DELETE

NDIS_STATUS_WWAN_SMS_STATUS

NDIS_STATUS_WWAN_VENDOR_SPECIFIC

The MB Service may also process other event notifications from NDIS. These non-MB
event notifications are not necessarily subject to the requirement that their RequestId
values be set to zero.

Miniport drivers use transactional notifications to inform the MB Service that an
asynchronous transaction has completed, and the MB Service uses transactional
notifications to close open transactions and to update its state machine.

The MB Service expects transactional notifications so that it can close open transactions.
It is the final exchange of the three-way handshake between the MB Service and the
miniport driver in an asynchronous transaction. The value of RequestId member of the
NDIS_STATUS_INDICATION in any transactional notification must be nonzero, which is
copied from the corresponding request in the same transaction.

You must set the RequestId member of the NDIS_STATUS_INDICATION structure
correctly for the asynchronous mechanism to function properly. The MB Service ensures
that the RequestId value is unique and nonzero among all outstanding requests.
Miniport drivers must return the same RequestId value in the corresponding indication
in order for the MB Service to correlate the indication with an open transaction.

Both the asynchronous response for a given OID request and the unsolicited event
notification structures share the following structure members that are pointed to by
StatusBuffer member of the StatusIndication parameter to NdisMIndicateStatusEx:

C++

A value of zero in the RequestId member of the NDIS_STATUS_INDICATION structure
means it is an unsolicited event notification and can occur any time.

If the uStatus member in the returned indication of any set or query OID request does
not equal WWAN_STATUS_SUCCESS the members of the associated NDIS_WWAN_XXX
structure do not need to be valid.

Transactional Notifications

Status Indication Structure

typedef struct _NDIS_WWAN_XXX {
 NDIS_OBJECT_HEADER Header;
 WWAN_STATUS uStatus;
 ULONG uNwError;//Optional. Only used for network operations.
 WWAN_XXX XxxStruct;
} NDIS_WWAN_XXX, *PNDIS_WWAN_XXX;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

In the case of unsolicited event notifications based on network events, miniport drivers
must fill in the uNwError member as appropriate, if applicable.

The following table shows registration, packet-attach, and packet-detach cause code
failure values that are defined in the 3GPP TS 24.008 Specification for GSM-based
networks:

3GPP 24.008 Cause code Interpretation of cause code

2 - International Mobile Subscriber Identity
(IMSI) unknown in HLR

Either the SIM or the device is not activated, or
the subscription has expired, which caused a
network deactivation.

4 - IMSI unknown in VLR Roaming feature is not subscribed to.

6 - Illegal ME MS blocked by network due to stolen report.

7 - GPRS services not allowed User does not have a GPRS subscription. User
has only a voice connection subscription.

8 - GPRS and non-GPRS services not allowed GPRS and non-GPRS services are not allowed.

11 - PLMN not allowed Service is blocked by the network due to an
expired subscription or another cause.

12 - Location area not allowed User subscription does not allow access in the
present location area.

13 - Roaming not allowed in this location area The subscription permits roaming, but roaming
is not allowed in the present location area.

14 - GPRS services not allowed in this PLMN Selected network provider does not provide
GPRS service to the MS.

15 - No suitable cells in location area No subscription for the service.

17 - Network failure Registration failed.

22 - Congestion Registration failed due to network congestion.

For example, if the network initiates a deactivate context event because roaming is not
allowed in the location area, miniport drivers should set the uNwError member to 13 as
per the 3GPP TS 24.008 Cause codes for GSM-based networks.

Similar logic should be applied to CDMA-based networks as well. However, there is no
standard for CDMA-based network error codes. CDMA-based devices should use the
network -specific or device-specific error codes.

In the case of a miniport driver's asynchronous response to OID requests, the RequestId
member of the NDIS_STATUS_INDICATION structure is a non-zero number that was
passed to the miniport driver as part of a set or query request. The miniport driver must
fill the uStatus member as appropriate. For example, WWAN_STATUS_SUCCESS, or any
of the appropriate error values listed in the following section. In addition to this, the
miniport driver must fill in the uNwError member where appropriate and available.

The following table lists the WWAN_STATUS codes that MB miniport drivers can specify
in the uStatus member of the NDIS_WWAN_XXX event notification structures.

Value Meaning

WWAN_STATUS_SUCCESS The operation succeeded.

WWAN_STATUS_FAILURE The operation failed (a generic failure).

WWAN_STATUS_BUSY The operation failed because the device is busy.

WWAN_STATUS_SIM_NOT_INSERTED The operation failed because the SIM card was
not inserted fully into the device.

WWAN_STATUS_BAD_SIM The operation failed because the SIM card is
bad and cannot be used any further.

WWAN_STATUS_PIN_REQUIRED The operation failed because a PIN must be
entered to proceed.

WWAN_STATUS_PIN_DISABLED The operation failed because the PIN is
disabled.

WWAN_STATUS_NOT_REGISTERED The operation failed because the device is not
registered with any network.

WWAN_STATUS_PROVIDERS_NOT_FOUND The operation failed because no network
providers could be found.

WWAN_STATUS_NO_DEVICE_SUPPORT The operation failed because the device does
not support the operation.

WWAN_STATUS_PROVIDER_NOT_VISIBLE The operation failed because the service
provider is not currently visible.

WWAN_STATUS_DATA_CLASS_NOT_AVAILABLE The operation failed because the requested
data-class was not available.

WWAN_STATUS_PACKET_SVC_DETACHED The operation failed because packet service is
detached.

Event Notification Status

Value Meaning

WWAN_STATUS_MAX_ACTIVATED_CONTEXTS The operation failed because the maximum
number of activated contexts has been
reached.

WWAN_STATUS_NOT_INITIALIZED The operation failed because the device is in
the process of initializing. Retry the operation
after the ready-state of the device changes to
WwanReadyStateInitialized.

WWAN_STATUS_VOICE_CALL_IN_PROGRESS The operation failed because a voice call is in
progress.

WWAN_STATUS_CONTEXT_NOT_ACTIVATED The operation failed because the context is not
activated.

WWAN_STATUS_SERVICE_NOT_ACTIVATED The operation failed because service is not
activated.

WWAN_STATUS_INVALID_ACCESS_STRING The operation failed because the access string
is invalid.

WWAN_STATUS_INVALID_USER_NAME_PWD The operation failed because the user name
and/or password supplied are invalid.

WWAN_STATUS_RADIO_POWER_OFF The operation failed because the radio is
currently powered off.

WWAN_STATUS_INVALID_PARAMETERS The operation failed because of invalid
parameters.

WWAN_STATUS_READ_FAILURE The operation failed because of a read failure.

WWAN_STATUS_WRITE_FAILURE The operation failed because of a write failure.

The following table shows SMS specific status values.

Value Meaning

WWAN_STATUS_SMS_OPERATION_NOT_ALLOWED The SMS operation failed because the
operation is not allowed.

WWAN_STATUS_SMS_MEMORY_FAILURE The SMS operation failed because of a
memory failure.

WWAN_STATUS_SMS_INVALID_MEMORY_INDEX The SMS operation failed because of an
invalid memory index-- WwanSmsFlagIndex
for OID_WWAN_SMS_READ.

Value Meaning

WWAN_STATUS_SMS_UNKNOWN_SMSC_ADDRESS The SMS operation failed because the
service center number is either invalid or
unknown.

WWAN_STATUS_SMS_NETWORK_TIMEOUT The SMS operation failed because of a
network timeout.

WWAN_STATUS_SMS_MEMORY_FULL The SMS operation failed because the SMS
message store is full.

WWAN_STATUS_SMS_UNKNOWN_ERROR The SMS operation failed because of an
unknown error (a generic error).

WWAN_STATUS_SMS_FILTER_NOT_SUPPORTED The SMS operation failed because the filter
type requested is not supported.

WWAN_STATUS_SMS_MORE_DATA This transaction is not yet complete. Some
data has been returned and there is more
data to be returned.

WWAN_STATUS_SMS_LANG_NOT_SUPPORTED The SMS operation failed because the SMS
language is not supported. This applies to
CDMA-based devices only.

WWAN_STATUS_SMS_ENCODING_NOT_SUPPORTED The SMS operation failed because the SMS
encoding is not supported. This applies to
CDMA-based devices only.

WWAN_STATUS_SMS_FORMAT_NOT_SUPPORTED The SMS operation failed because the SMS
format is not supported.

Note These WWAN-specific status codes are used only for asynchronous transactions in
the uStatus member of the NDIS_WWAN_XXX structures.

Miniport drivers use event notifications to inform the MB Service about an object state
change in their MB device without first having received an OID request. The MB Service
uses event notifications to update its state machine only.

Be aware that while NDIS serializes all requests that are sent to miniport drivers,
miniport drivers might not return the responses in the same order. This is because the
queued requests in the miniport driver might be processed in parallel. Hence the MB
Service ensures that if two requests are dependent upon each other, it will not send the
second request until the miniport driver completes the first request.

State Change Notification

In general, miniport drivers should always notify the MB Service about the updated state
of their MB device either through transactional notifications or through unsolicited
event notifications. The following scenarios are some exceptions where miniport drivers
are not supposed to respond with updated state information. The MB Service can
determine the updated state from the completion status of other operations:

1. Miniport drivers do not need to send an NDIS_STATUS_WWAN_PIN_LIST event
indication when PIN state changes occur because the MB Service requested to
enable or disable the PIN.

2. Miniport drivers do not need to return the updated list of the provisioned contexts
in transactional responses to OID_WWAN_PROVISIONED_CONTEXT set operations.

3. Miniport drivers do not need to respond with the updated list of the preferred
providers in transactional responses to OID_WWAN_PREFERRED_PROVIDERS set
operations. The MB Service can determine this information based on the initial list
and success status of the set operation.

4. Miniport drivers do not need to respond with the current
WWAN_SMS_CONFIGURATION value for OID_WWAN_SMS_CONFIGURATION set
operations.

MB Driver Model Versioning
Article • 03/14/2023

MB driver model versioning is accomplished by having the driver model version and
individual OID data structure revisions. This is consistent with the versioning paradigm
used in NDIS 6.x.

The driver model version defines the interface evolution between the MB Service and
the MB miniport driver. The individual OID revisions keep track of the changes made to
OIDs in different MB driver model versions. That is, the driver model version defines a
set of OIDs whose data structures are identified by specific revision numbers.

Consistent with the NDIS Specification, the MB driver model evolution is additive. That is,
new OIDs and new members can only be added to existing OID data structures. This
ensures that the MB Service can support backward compatibility for miniport drivers.

Important Only under extremely rare circumstances will existing OIDs be deprecated or
members of existing OID data structures not be used in the next version. If that
happens, these changes and their impacts on backward compatibility shall be clearly
documented in subsequent documentation about newer versions of the MB driver
model specification.

This documentation covers the Windows 8 release of the MB driver model. The driver
model version has been incremented to version 2.0. Some OID revisions continue to be
revision number 1, while some have been updated to revision 2. For more information
about which revisions to use with respective OIDs, see MB Data Model.

This documentation covers the initial release of the MB driver model, so both the driver
model version and individual OID revisions start with revision number 1.

When the driver model moves to the next version, its version number is increased by 1.
Any new OIDs added to the driver model will start at revision 1; any existing OIDs whose
data structures have changed will increase their corresponding revision by 1, and any
existing OIDs that do not change will keep their respective revision numbers.

The driver model version is conveyed by OID_WWAN_DRIVER_CAPS. The MB Service
sends an OID_WWAN_DRIVER_CAPS query request to the miniport driver during MB
Miniport Driver Initialization. Individual OID revisions are described by the Revision
member of the NDIS_OBJECT_HEADER structure that is included as part of the data
structure for each individual OID.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_object_header

MBIM extension 2.0 versioning for 5G

See also

Introduction to the Mobile Broadband
(MBB) WDF class extension (MBBCx)
Article • 12/15/2021

Starting in the next release of Windows 10, the Windows Driver Kit (WDK) includes a
Mobile Broadband (MBB) WDF class extension that works with NetAdapterCx. MBB-
NetAdapter client drivers are first and foremost fully fledged WDF client drivers, then
they're NetAdapterCx client drivers just like other NIC drivers, and finally they're client
drivers of the MBB class extension (MBBCx) that provides MBB media-specific
functionality. The following block diagram illustrates the MBBCx architecture:

An MBB-NetAdapter client driver performs 3 categories of tasks based on its
relationships with the framework:

Call standard WDF APIs for common device tasks like Pnp and Power management.
Call NetAdapterCx APIs for common network device operations like transmitting or
receiving network packets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_wdf/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/#netadaptercx

Call MbbCx APIs for MBB-specific control path operations like MBIM message
handling.

Before you begin, you should familiarize yourself with these concepts:

Windows Driver Foundation (WDF)
NetAdapter class extension (NetAdapterCx)

The topics in this section assume you already know how to write a NetAdapterCx client
driver for a basic NIC, so they focus only on MBBCx-specific code.

This section contains the following topics:

Writing an MBBCx client driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/#mbbcx
https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/using-the-framework-to-develop-a-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/writing-an-mbbcx-client-driver

MB Driver Stack, Suspend, and Resume
Article • 03/14/2023

Microsoft provides an inbox class driver for mobile broadband (MBB) devices called the
Mobile Broadband Class Driver (MBCD). This driver is based on the Mobile Broadband
Interface Model (MBIM) specification, which is an interface for MBB devices (also known
as modems) to communicate with Windows. The MBIM specification is based on USB.
MBCD provides support for USB modems and modems that emulate USB through a
technology called USB Device Emulation (UDE).

MBCD is a miniport driver that combines with the Network Driver Interface Specification
(NDIS) port driver to form a single function driver. In the OSI Network Model, this driver
logically sits on the top half of the Data Link Layer (layer 2). Network protocol drivers
(such as IP) that logically sit on the Network layer (layer 3) receive data (SDUs) in
segments (TCP) or datagrams (UDP) from the Transport Layer (layer 4) and send down
data (PDUs) as packets to the Data Link Layer by invoking NDIS APIs. Generally, NDIS
only involves a miniport driver when it is necessary.

OSI Network Model

Layer Protocol
Data
Unit
(PDU)

Function

Host
Layer

7 Application Data High level APIs including resource sharing and remote
file access

6 Presentation Translation of data between a networking service and
an application including character encoding, data
compression, and encryption

5 Session Management of communication sessions, for example
continuous information exchange in the form of
multiple back-and-forth transmissions between two
nodes

4 Transportation Segment Reliable transmission of data segments between points
on a network, including segmentation,
acknowledgement, and multiplexing

Overview

Media
Layer

3 Network Packet Management and structuring of multi-node networks
including address mapping, routing, and traffic control

2 Data Link Frame Reliable transmission of data frames between two
nodes connected by the Physical layer

1 Physical Symbol Transmission and reception of raw bit streams over a
physical medium

The Network Layer is where network protocol drivers reside, including the NDIS
Usermode I/O (NDISUIO) protocol driver. This driver serves an important role in the
control and configuration of MBB devices. It is important to note that this layer is also
conceptually where the IP portion of TCP/IP resides. You may think of these as siblings.

WwanSvc is the service primarily responsible for control of the modems, enumerating
their capabilities, and their configuration. WwanSvc uses WWAN OIDs to issue
commands to NDISUIO, which will pass these OIDs to NDIS. The MBCD miniport driver
defines the OIDs that it supports and provides this to NDIS as part of the initialization of
the function driver. Therefore, when NDIS receives an OID from NDISUIO it will involve
the miniport as necessary.

The flow of a command from an application (such as the cellular UI) looks like this:

Application -> WwanSvc ---(OID)---> NDISUIO ----(OID)---> NDIS ----(OID)---> MBCD
---(MBIM)---> MBB Device.

The above provides an overview of the technologies involved for the control path. The
data path is more complicated as there are several solutions in place. However, we can
generalize the data path as:

Application -> TCP/IP --(packets)--> NDIS ----(frames)---> [Driver] ---> MBB Device.

[Driver] might be the legacy driver, the new modern driver, or a 3rd party IHV driver.

Driver Architecture

Legacy

Current (Since RS5 OSBuild 17763)

Device Power Up

Device Power Down

MBBCx interface

See Also

EvtMbbDeviceSendMBIMFragment

MbbRequestComplete

Default NetAdapter Initialization

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/mbbcx/nc-mbbcx-evt_mbb_device_send_mbim_fragment
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/mbbcx/nf-mbbcx-mbbrequestcomplete

See Also

MbbAdapterInitialize

Additional NetAdapter Initialization

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/mbbcx/nf-mbbcx-mbbadapterinitialize

Device Initialization

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run test:
TestPowerStates.

Via netsh, we can run the TestPowerStates HLK testlist. For more information on using
the netsh tool, see netsh-mbn and netsh-mbn-test-installation.

This file showing the HLK test results should have been generated in the directory that
the 'netsh mbn test' command was ran from: TestPowerStates.htm .

1. Ensure "Let Windows manage this connection" is checked in Cellular settings.
2. Put DUT into S4.

Hardware Lab Kit (HLK) Tests

netsh mbn test feature=power testpath="C:\\data\\test\\bin"
taefpath="C:\\data\\test\\bin"

Manual Tests

Auto-connect after wake from hibernation (S4)

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/f0af8e06-4d04-4027-8b84-777a6de4ce49
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

3. Wake DUT. Verify it automatically establishes a cellular connection and the user is
able to browse the internet.

1. With Ethernet unplugged and Wi-Fi toggled off, uncheck "Let Windows manage
this connection" in Cellular settings.

2. In an admin CMD prompt run the command: shutdown -h
3. Machine will hibernate. After more than 30 seconds press the machine's power

button to wake from hibernation. Log back in, open Cellular settings, and click
Connect to Cellular. Cellular should connect and the user should be able to browse
the internet.

1. With Ethernet unplugged and Wi-Fi toggled off, verify an active cellular
connection.

2. (Optional Step) Allow screen to sleep. You can set screen sleep to 1 minute under
Settings -> System -> Power & sleep. The setting should not be set to "Never".

3. Wake the screen by using the mouse or keyboard and log back in. Cellular should
stay connected and the user should be able to browse internet, including under
the VAIL/WCOS system.

Ensure necessary ETW providers are included in the log, including MbbCx,
NetAdapterCx, WwanSvc, and NdisUio.
Check the device power state (Dx state) and the device power capabilities first
Check the logs with power flows above
OID and indication pair

Connect Cellular manually after wake from hibernation
(S4)

Auto-connect after wake from screen sleep

Log Analysis

Tips

Sample log

597454 [2]1020.115C::2018-08-31 01:05:12.669792000 [WwanService]INFO:
CWwanDataExecutor::OnNdisNotification - current device power state 3

UDE Architecture

Introduction to NDIS 6.20

MBIM Overview

MBIM Compliance Testing Revision 1.0

Mobile Broadband Implementation Guidelines for USB Devices

NetAdapterCx

(WaitForDeviceD0AfterSleep 1 systemPowerState 0)
679337 [6]1020.115C::2018-08-31 01:07:36.343312200 [WwanService]INFO:
CWwanManager::OnSystemPowerStateChange - system resuming from sleep
(fWaitForDeviceD0AfterSleep 1)
2422155 [7]1020.1150::2018-08-31 01:07:37.878446100 [WwanService]INFO:
CWwanDataExecutor::OnNdisNotification - current device power state 0
(WaitForDeviceD0AfterSleep 1 systemPowerState 1)
2437098 [3]1020.115C::2018-08-31 01:07:37.893061200 [WwanService]INFO:
CWwanDeviceEnumerator::onDeviceRemoval: MBB device removed [9d33b700-d66d-
4c0a-807f-6a328690dafa].
2678588 [5]1020.2E30::2018-08-31 01:07:40.765642800 [WwanService]INFO:
CWwanDeviceEnumerator::onDeviceArrival: MBB device arrived [9d33b700-d66d-
4c0a-807f-6a328690dafa]. Parent Interface = [00000000-0000-0000-0000-
000000000000].
2679204 [6]1020.2E30::2018-08-31 01:07:40.766278700 [sys]Ref
WwanprotGetD3ColdCapability:0x6a2 \DEVICE\{9D33B700-D66D-4C0A-807F-
6A328690DAFA} 0x2
2679205 [6]1020.2E30::2018-08-31 01:07:40.766280200 [sys]Sending
IRP_MN_QUERY_INTERFACE for interface GUID_D3COLD_SUPPORT_INTERFACE
2679211 [6]1020.2E30::2018-08-31 01:07:40.766287400
[sys]IRP_MN_QUERY_INTERFACE for interface GUID_D3COLD_SUPPORT_INTERFACE
succeeded
2679212 [6]1020.2E30::2018-08-31 01:07:40.766289500 [sys]Successfully
queried the D3 cold capability of device. D3ColdCapability = 0
2679213 [6]1020.2E30::2018-08-31 01:07:40.766290000 [sys]DeRef
WwanprotGetD3ColdCapability:0x6a8 \DEVICE\{9D33B700-D66D-4C0A-807F-
6A328690DAFA} 0x2
2679214 [6]1020.2E30::2018-08-31 01:07:40.766290500 [sys]Returning D3 cold
capability as 0. Status = c0000225
2679219 [6]1020.2E30::2018-08-31 01:07:40.766294100
[WwanService]CWwanNetworkInterface::InitializeInterface: Getting D3 cold
capability for interface 9d33b700-d66d-4c0a-807f-6a328690dafa failed [1168]
2679220 [6]1020.2E30::2018-08-31 01:07:40.766294600
[WwanService]CWwanNetworkInterface::InitializeInterface:
fIsEmbedded:0x00000001(true) fIsD3ColdSupported:0x00000000(false)

See Also

https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/developing-windows-drivers-for-emulated-usb-host-controllers-and-devices
https://www.usb.org/sites/default/files/MBIM-Compliance-1.0.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/

MB Miniport Driver INF Requirements
Article • 03/14/2023

MB miniport drivers must have the following entries in their INF file:

INF

All the entries mentioned in the preceding code example, except UpperRange and
LowerRange, should be under the same INF section as that of keywords such as AddReg
and CopyFiles. UpperRange and LowerRange should be put in the add-registry-section
of the INF file.

Dual-mode devices can specify either of the IfType values from the following table:

Description Name IfType

GSM-based MB devices IF_TYPE_WWANPP 243

CDMA-based MB devices IF_TYPE_WWANPP2 244

MB miniport drivers must specify one of the MediaType values from the following table
based on the type of packet framing the miniport driver is capable of interpreting in its
send and receive data path.

Description Name MediaType

MB miniport drivers that
interpret 802.3 packets must
report this media type. This
framework is only for
migration of old miniport

NdisMedium802_3 0

*IfType = 243; IF_TYPE_WWANPP
*MediaType = 9; <mark type="enumval">NdisMediumWirelessWan</mark>
*PhysicalMediaType = 8; NdisPhysicalMediumWirelessWan
EnableDhcp = 0; Disable DHCP

;Entries to be put in add-registry-section for NdisMediumWirelessWan
HKR, Ndi\Interfaces, UpperRange, 0, "flpp4, flpp6"
HKR, Ndi\Interfaces, LowerRange, 0, "ppip"

*IfType

*MediaType

drivers and is not
recommended for production-
quality miniport drivers.

MB miniport drivers that are
able to handle raw IP traffic
must set this media type. This
is the recommended media
type to be used in production-
quality miniport drivers.

NdisMediumWirelessWan 9

MB miniport drivers must specify one of the EnableDhcp values from the following table
based on whether they implement DHCP server emulation.

Value Description

0 Disable DHCP for this interface. The miniport
driver does not implement DHCP server
spoofing. This is the recommended value to be
used in production-quality drivers.

1 Enable DHCP for this interface. The miniport
driver implements DHCP server spoofing. That
is, the miniport driver will need to spoof a
DHCP server and ARP resolutions.

This keyword is set with one or more combinations of the following strings as applicable
when media type is NdisMediumWirelessWan. NdisMedium802_3 miniport drivers
should use the existing values in UpperRange.

Value Description

"flpp4" Miniport drivers specify "flpp4" if the MB device
supports IPv4.

"flpp6" Miniport drivers specify "flpp6" if the MB device
supports IPv6. This value is needed only for
devices that support IPv6.

EnableDhcp

UpperRange

LowerRange

This keyword must have, at the minimum, the following value when media type is
NdisMediumWirelessWan. NdisMedium802_3 miniport drivers should use the existing
values in LowerRange.

Value Description

"ppip" MB device type on the lower edge.

MB Miniport Driver Types
Article • 03/14/2023

Based on data packet handling, DHCP Server and ARP emulations, multiple MB miniport
driver implementation types are possible. The following table represents the different
possible implementation types and the required implementation for production quality
miniport drivers.

Description MediaType EnableDhcp ARP emulation

Ethernet emulation
with DHCP
emulation

NdisMedium802_3 1 Required

Ethernet emulation
with no DHCP

NdisMedium802_3 0 Required

IP packet handling
with DHCP
emulation

NdisMediumWirelessWan 1 Not required

IP packet handling
capability

NdisMediumWirelessWan 0 Not Required

During development or migration phases, miniport drivers can specify any of first three
entries. However, production quality miniport drivers should use only the settings
specified in the last entry of the table ("IP packet handling capability").

Production quality MB miniport drivers should specify the settings in the following table
in the INF file.

Field in INF file Recommended value(s)

*IfType IF_TYPE_WWANPP / IF_TYPE_WWANPP2

MediaType NdisMediumWirelessWan

EnableDhcp 0

UpperRange "flpp4" and "flpp6" (if IPv6 supported)

LowerRange "ppip"

MB Adapter General Attribute
Requirements
Article • 03/14/2023

The following table describes the values that miniport drivers should set the member
variables of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure to. MB
miniport drivers must use these values when they call NdisMSetMiniportAttributes
from their MiniportInitializeEx function, during miniport driver initialization.

Field in INF file Recommended values

IfType GSM-based devices must specify
IF_TYPE_WWANPP.

CDMA-based devices specify
IF_TYPE_WWANPP2.

The value must match the *IfType value
specified in the miniport driver's INF file.

MediaType The value must match the *MediaType value
specified in the miniport driver's INF file. For
example, either NdisMediumWirelessWan or
NdisMedium802_3.

PhysicalMediumType The value must match the *PhysicalMediaType
value specified in the miniport driver's INF file.
The value must be
NdisPhysicalMediumWirelessWan.

AccessType If the value in MediaType is specified as
NdisMediumWirelessWan, specify
NET_IF_ACCESS_POINT_TO_POINT for
AccessType. If MediaType is
NdisMedium802_3, specify
NET_IF_ACCESS_BROADCAST.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

MB Raw IP Packet Processing Support
Article • 03/14/2023

MB miniport drivers that support Raw IP packet frames in their send/receive data path
should observe the following guidelines:

For IPv4 packets:

The NblFlags member of the NET_BUFFER_LIST structure must be set to
NDIS_NBL_FLAGS_IS_IPV4.

The NetBufferListFrameType member of the NET_BUFFER_LIST structure must be
set to 0x0800 (Ethertype IPv4) in network byte order.

For IPv6 packets:

The NblFlags member of NET_BUFFER_LIST structure must be set to
NDIS_NBL_FLAGS_IS_IPV6.

The NetBufferListFrameType member of the NET_BUFFER_LIST structure must be
set to 0x86dd (Ethertype IPv6) in network byte order.

Miniport drivers can use the NdisSetNblFlag macro to set flags in the net buffer list. The
following line demonstrates how to set IPv4 packet flag in the net buffer list:

C++

Miniport drivers can use the NET_BUFFER_LIST_INFO to get and set information in a net
buffer list. The following line demonstrates how to modify the NetBufferListFrameType
OOB in the network buffer list for IPV4 packets:

C++

C++

Net buffer list (NBL) flags for RAW IP packet processing

NdisSetNblFlag(pNbl, NDIS_NBL_FLAGS_IS_IPV4);

Value = ConvertToNetworkByteOrder(0x0800);

NET_BUFFER_LIST_INFO(pNbl, NetBufferListFrameType) = Value;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-ndissetnblflag
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_info

The MB Service will set these flags in the NBL before passing the list to the miniport
driver to send across the network. The miniport driver can verify the flags in the input
NBL.

Miniport drivers should set flags in the NBL before passing the NBL to the MB Service
for received packets.

If your miniport driver implements Raw IP Packet Processing during its driver
development phase, but still has DHCP server spoofing enabled (EnableDhcp = 1), your
miniport driver should ensure following:

The hardware address and its length set in DHCP response from the miniport
driver should match the values of the CurrentMacAddress and MacAddressLength
members specified by the miniport driver in the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure.

Transaction ID (the xid member) of the DHCP response from the miniport driver
should match exactly the transaction ID set in the DHCP request message from the
client.

Send Path Processing

Receive Path Processing

Guidelines for MB Miniport Driver IP
Address Notifications
Article • 03/14/2023

MB miniport drivers that specify EnableDhcp equal to zero in their INF files can use the
IP Helper and associated functions in kernel mode to create, change, and delete the IP
address:

To use the IP Helper functions in kernel mode, miniport drivers must include the
Netioapi.h header file, and link against Netio.lib.

When miniport drivers specify EnableDhcp equal to zero they are required to perform
the following operations to notify the MB Service about any of the following events:

Set IP address for the MB interface

Set default gateway address

Update DNS addresses

IP addresses and default gateways that are set by using the IP Helper API persist
network connect or disconnect events, or both. Therefore, if the new IP address or
default gateway, or both, values are different than the values currently set, the miniport
driver should first clear the previous values before setting new values on a network
connection event.

Note Miniport drivers can find the LUID and Index of the MB interface from the
NetLuid or IfIndex members of NDIS_MINIPORT_INIT_PARAMETERS structure that is
passed to the miniport driver's MiniportInitializeEx function.

Certain changes to the TCP/IP stack, such as the loading of a mandatory filter driver, can
remove the IP and gateway addresses set by the IP helper functions. Miniport drivers
must reset the IP and gateway addresses if changes to the TCP/IP stack remove the
settings.

Miniport drivers should use following procedure to be notified when the addresses are
removed, and must be reset again.

1. During driver initialization, miniport drivers should specify a callback function to
register for IP interface change notifications using NotifyIpInterfaceChange.

Resetting the IP Address and Gateway Address

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568805(v=vs.85)

Windows will call the function wheneven an IP interface is added, deleted or
changed.

2. During adapter initialization, miniport drivers should save in miniport driver's local
adapter context the LUID value from the NDIS_MINIPORT_INIT_PARAMETERS
structure that is passed to the miniport driver's MiniportInitializeEx function. The
value contains the NetLuid which identifies adapter's interface, which is used in the
notification callback.

3. In the notification callback, Windows passes the following parameters to the
notification function registered with NotifyIpInterfaceChange:

A pointer to a MIB_IPINTERFACE_ROW structure, which contains the NetLuid
of the miniport adapter's interface.
The type of notification, which can be MibAddInstance, MibDeleteInstance
or MibParameterNotification.

Miniport drivers should reset the IP and gateway addresses when the adapter is in
a connected state, and the notification type is MibAddInstance, and the NetLuid in
MIB_IPINTERFACE_ROW corresponds to one of the miniport driver's adapters,
which was saved during adapter initialization.

Miniport drivers should then follow the Setting the IP Address for the MB Interface
and Setting Default Gateway Address procedures to reset the respective addresses.

4. During driver unload, miniport drivers should unregister the notification callback
function using the CancelMibChangeNotify2 IP helper function.

To set an IPv4 address, use the following procedure. You can use similar IP Helper
functionality to set an IPv6 address.

1. Use the GetUnicastIpAddressTable IP Helper function to find all the IP address
entries in the system.

2. For each entry whose InterfaceLuid value matches the InterfaceLuid of the MB
interface:
a. Find the IP address entry that matches the IP address used in previous

connection. First time connections will not have a previous IP address.
b. If the new IP address is different than the previous IP address, delete the IP

address entry for previous connection IP addresses by using the
DeleteUnicastIpAddressEntry IP Helper function.

Setting the IP Address for the MB Interface

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568805(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559254(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559254(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff544864(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552594(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546370(v=vs.85)

c. If the new IP address is the same as the previous IP address, verify that the
desired entry already exists.

3. If the miniport driver did not find the desired IP address entry in the previous loop,
it should add a new entry.

a. Use the InitializeUnicastIpAddressEntry IP Helper function to initialize a
MIB_UNICASTIPADDRESS_ROW structure and set the following members of the
structure:
i. Set the InterfaceLuid or InterfaceIndex members, as appropriate.
ii. Set the OnlinePrefixLength member. This is the number of bits that have a

value of one in the subnet mask. For example, if the subnet mask is
255.255.255.0, OnlinePrefixLength should be 24.

iii. Set the Address member.
iv. Set the PrefixOrigin member to IpPrefixOriginManual.

b. Pass the initialized MIB_UNICASTADDRESS_ROW structure to the
CreateUnicastIpAddressEntry IP Helper function to create the IP address entry.

To set an IPv4 gateway address, use the following procedure. You can use similar IP
Helper functionality to set an IPv6 gateway address.

1. Use GetIpForwardTable2 IP Helper function to obtain all the routing entries in the
system.

2. For each entry whose InterfaceLuid value matches the InterfaceLuid value of the
MB interface and DestinationPrefix is "0.0.0.0/0", call the DeleteIpForwardEntry2
IP Helper function to delete the route if NextHop is not equal to the new gateway
address. Otherwise, the routing entry is already in the system.

3. If the miniport driver did not find the desired routing entry in the previous loop, it
should add a new entry by using the InitializeIpForwardEntry IP Helper function to
initialize a MIB_IPFORWARD_ROW2 structure. Initialize the following members of
the structure:

InterfaceLuid or InterfaceIndex .

Set DestinationPrefix to 0.0.0.0/0 for default gateway. (Prefix = 0.0.0.0 and
PrefixLength = 0)

Set NextHop to the IP address of the default gateway.

Setting Default Gateway Address

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff554886(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559308(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546227(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552536(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546365(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff554882(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559245(v=vs.85)

Other members are set to default values during initialization. Miniport drivers
should use default values for those members.

4. Pass the MIB_IPFORWARD_ROW2 structure to the CreateIpForwardEntry2 IP
Helper function to set a new default gateway address.

Set the NameServer registry key as described in MB DNS Updates to notify
Windows about updated DNS addresses.

To Set DNS Addresses

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559245(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546209(v=vs.85)

MB Miniport driver Error Logging
Article • 03/14/2023

MB miniport drivers should perform the following checks in their MiniportInitializeEx
function, such as:

The presence of the correct device firmware version required to support the MB
driver model.

An available COM port to communicate with the device.

No resource conflicts.

If a miniport driver fails to obtain resources it requires, it should return
NDIS_STATUS_RESOURCES from its MiniportInitializeEx function. Miniport drivers should
call NdisWriteErrorLogEntry to log the details of failure to the Windows Event Log.

Miniport drivers should specify the error code in the first element of the last parameter
in the call to NdisWriteErrorLogEntry (a variable-sized array of ULONGs) according to
the information in the following table.

Error code Description

WWAN_ERROR_UNSUPPORTED_FIRMWARE The device is running an unsupported firmware
version.

WWAN_ERROR_COM_PORT_CONFLICT Unable to open COM port for communicating
with the device.

WWAN_ERROR_RESOURCE_CONFLICT_OTHER Any other resource conflict.

Miniport drivers can put other values in the remainder of the elements of variable-sized
array.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiswriteerrorlogentry

MB Miniport Driver Performance
Requirements
Article • 03/14/2023

The following table describes the expectations for MB miniport drivers to respond to
different MB operations. For the best experience, miniport drivers should complete
operations within the time identified in the "Best case time (sec)" column.

MB operation Best case time (sec) Worst case time (sec)

Time for device to initialize (to reach
WwanReadyStateInitialized) after being
inserted into the machine (
OID_WWAN_READY_INFO)

1 5

Manual network registration (
OID_WWAN_REGISTER_STATE)

0 50

Network scan operation (
OID_WWAN_VISIBLE_PROVIDERS)

2 200

Packet-attach operation (
OID_WWAN_PACKET_SERVICE)

1 5

Packet-detach operation
(OID_WWAN_PACKET_SERVICE)

1 5

PDP activation (OID_WWAN_CONNECT) 2 10

PDP deactivation (OID_WWAN_CONNECT) 1 10

Update system with IP address, default
gateway, and DNS address

1 5

NDIS_STATUS_LINK_STATE notification after
PDP activation

2 10

Completion of the following PIN operations (
OID_WWAN_PIN):

Enter

Enable

Disable

Change

1 4

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ne-wwan-_wwan_ready_state

MB operation Best case time (sec) Worst case time (sec)

Query OID_WWAN_PIN to get the current
PIN state of the MB device

1 4

OID_WWAN_PIN_LIST response to get a list
of supported PIN types

1 4

Time for SMS subsystem to be ready (should
send the
NDIS_STATUS_WWAN_SMS_CONFIGURATION
unsolicited indication)

1 60

Time for miniport driver to complete all other
WWAN OIDs except
OID_WWAN_VENDOR_SPECIFIC which are
not covered in this table

1 15

MB Device Readiness
Article • 03/14/2023

This topic describes the procedures to ensure that an MB device is accessible and ready
to be used for network-related activities before the MB Service proceeds to setup data
connections. The device is ready to use when the user subscription has been activated
and subscriber-related information stored to the device or the Subscriber Identity
Module (SIM card)

The MB Service assumes that a miniport driver automatically initializes its MB device's
hardware (radio stack, SIM card or equivalent circuitry) after the system has loaded it,
without waiting for any instruction from the service.

Miniport drivers set the initial ready-state of their MB device to WwanReadyStateOff. As
they proceed with initializing, miniport drivers must send event notifications to inform
the MB Service of changes to their device's ready state.

Miniport drivers must stop the initialization process if they run into any error conditions.
After the error condition is cleared, miniport drivers can resume the initialization process
until their device has reached the WwanReadyStateInitialized ready-state.

The following are examples of some error scenarios:

If the device requires a SIM card and the miniport driver detects that no SIM card
is present, the miniport driver must send a WwanReadyStateSimNotInserted
ready-state event notification, and the miniport driver must remain in that state
until the user inserts a SIM card into the device.

If the device requires a SIM card and the miniport driver cannot read the SIM card
that has been inserted (for example, a U-RIM is inserted into a GSM-based device
or a USIM is inserted into a CDMA-based device) or the SIM card is not compatible
with the device (for example, a 3G USIM is inserted into a 2G device, which cannot
interpret the USIM format), the miniport driver must send a
WwanReadyStateBadSim ready-state event notification, and the miniport driver
must remain in that state until the user inserts a correct SIM card into the device.

If the device is locked by the PIN (for devices that use SIM cards) or by a password
(for devices that do not use SIM cards) that prevents further device initialization
progress, the miniport driver must send a WwanReadyStateDeviceLocked ready-
state event notification, and the miniport driver must remain in that state until the
user enters the correct PIN or password.

If the miniport driver detects that service activation is required to proceed, the
miniport driver must send a WwanReadyStateNotActivated ready-state event
notification, and it must remain in that state until the service has been activated.
This is typical behavior for CDMA-based devices in North America.

If the miniport driver runs into failures other than the ones mentioned previously,
the miniport driver must send a WwanReadyStateFailure ready-state event
notification, and it must remain in that state until the problem has been identified
and corrected.

Be aware that the MB Service does not assume that miniport drivers can detect all these
errors. Nor does the service assume the order in which miniport drivers detect these
error conditions. However, it is best to implement the error scenarios in the order listed
previously.

Until a miniport driver sends a WwanReadyStateInitialized ready-state event
notification, the service will not proceed any further with network-related activities until
the problem has been identified and corrected. However, the service may still send OIDs
to the miniport driver.

Miniport drivers do not need to wait for the SMS subsystem to be ready before
reporting the WwanReadyStateInitialized ready-state. Instead, miniport drivers should
send a separate OID_WWAN_SMS_CONFIGURATION notification when the SMS
subsystem is ready to send and receive SMS messages.

If the miniport driver indicates that it supports emergency call services while processing
OID_WWAN_READY_INFO the miniport driver must set the EmergencyMode member of
the WWAN_READY_INFO structure to WwanEmergencyModeOn. In this case, the
miniport driver should continue to send registration notifications to the MB Service, but
the service will not invoke any automatic configuration related functionalities.

Miniport drivers can specify that they support emergency call services even in scenarios
where they detect that the SIM is no longer valid, perhaps because the subscription is
unpaid, or service has been deactivated because the device has been reported stolen.

The following diagram represents the process taken to determine whether the interface
is a qualified MB interface and to gather information about the device capabilities. These
steps are performed for each enumerated MB interface when the MB Service starts up,

Emergency Mode Support

MB Miniport Driver Initialization

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_ready_info

as well as for each new interface arrival while the service is running. The labels in bold
represent OID identifiers or transactional flow control. The labels in regular text
represent the important flags within the OID structure.

To initialize an MB miniport driver, use the following procedure:

1. The MB Service sends a synchronous (blocking) OID_GEN_PHYSICAL_MEDIUM
query request to identify the type of the MB device. The miniport driver responds
with NdisPhysicalMediumWirelessWan to indicate that the MB device is a WWAN
device.

2. The MB Service sends a synchronous (blocking) OID_GEN_MEDIA_SUPPORTED
query request to the miniport driver to identify what kind of medium the MB
device uses. The miniport driver responds with NdisMedium802_3 to indicate that
it uses Ethernet emulation.

3. The MB Service sends a synchronous (blocking) OID_WWAN_DRIVER_CAPS query
request to the miniport driver to identify what driver model version the miniport
driver supports. The miniport driver responds with WWAN_VERSION.

4. The MB Service sends an asynchronous (non-blocking) OID_WWAN_DEVICE_CAPS
query request to the miniport driver to identify the capabilities of the MB device.
The miniport driver responds with a provisional acknowledgement that it has
received the request, and it will send a notification with the requested information
in the future.

5. The miniport driver sends an NDIS_STATUS_WWAN_DEVICE_CAPS notification to
the MB Service that indicates the capabilities of the MB device that the miniport
driver supports. For example, if the miniport driver supports a GSM-based device,
it should specify the WwanCellularClassGsm value in the
DeviceCaps.WwanCellularClass member of the NDIS_WWAN_DEVICE_CAPS
structure. If the miniport driver supports a CDMA-based device, it should specify
WwanCellularClassCdma.

The following diagram illustrates the scenario in which the user enters a SIM PIN and
manually configures an access point name string. The labels in bold are OID identifiers
or transactional flow control, and the labels in regular text are the important flags within
the OID structure.

Initialization of SIM-Locked GPRS Device with a
User-Defined Context

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps

To initialize a GSM-based device with PIN1 locked, implement the following steps:

1. The MB Service sends an asynchronous (non-blocking) OID_WWAN_READY_INFO
query request to the miniport driver to identify the ready state of the device. The
miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and that it
will send a notification with the requested information in the future.

2. The miniport driver sends an NDIS_STATUS_WWAN_FAILURE notification to the MB
Service to indicate to the MB Service that the subscriber identity module (SIM) is

locked.

3. The MB Service sends an asynchronous (non-blocking) OID_WWAN_PIN query
request to the miniport driver. The miniport driver responds with a provisional
acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the
request, and that it will send a notification with the requested information in the
future.

4. The miniport driver sends an NDIS_STATUS_WWAN_SUCCESS notification to the
MB Service.

5. The MB Service sends an asynchronous (non-blocking) OID_WWAN_PIN set
request to the miniport driver. The miniport driver responds with a provisional
acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the
request, and that it will send a notification with the requested information in the
future.

6. The miniport driver sends an NDIS_STATUS_WWAN_SUCCESS notification to the
MB Service.

7. The miniport driver sends an NDIS_STATUS_WWAN_READY_INFO notification to
the MB Service that indicates to the MB Service that the state of the MB device is
WwanReadyStateInitialized.

8. The MB Service sends an asynchronous (non-blocking)
OID_WWAN_REGISTER_STATE query request to the miniport driver. The miniport
driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

9. The miniport driver sends an NDIS_STATUS_WWAN_SUCCESS notification to the
MB Service.

10. The miniport driver sends an NDIS_STATUS_WWAN_REGISTER_STATE notification
to the MB Service.

11. The MB Service sends an asynchronous (non-blocking)
OID_WWAN_HOME_PROVIDER query request to the miniport driver. The miniport
driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

12. The miniport driver sends an NDIS_STATUS_WWAN_SUCCESS notification to the
MB Service.

13. The miniport driver sends an NDIS_STATUS_WWAN_REGISTER_STATE notification
to the MB Service.

14. The MB Service sends an asynchronous (non-blocking)
OID_WWAN_PACKET_SERVICE request to the miniport driver. The miniport driver
responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and that it
will send a notification with the requested information in the future.

15. The miniport driver sends an NDIS_STATUS_WWAN_PACKET_SERVICE notification
to the MB Service.

16. The MB Service sends an asynchronous (non-blocking)
OID_WWAN_PROVISIONED_CONTEXTS query request to the miniport driver. The
miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

17. The miniport driver sends NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS to the
MB Service.

18. The MB Service sends an asynchronous (non-blocking)
OID_WWAN_PROVISIONED_CONTEXTS set request to the MB Service. The miniport
driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

19. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

For more information about device readiness, see OID_WWAN_READY_INFO.

For more information about device initialization with provisioned contexts, see MB
Provisioned Context Operations.

See Also

MB Data Connectivity
Article • 03/14/2023

How data connectivity components interact
Cellular Architecture in Windows
General block diagram of components involved in basic data connectivity
Interactions between the Default Context Controller and its immediate
neighbors

How the Default Context Controller manages the internet data connection
The data connectivity flows between WWAN Service and the modem
Hardware Lab Kit (HLK) tests
Manual Tests for cellular connection
MB data connectivity troubleshooting guide

The main componment of the cellular stack in the OS is WWAN Service (WwanSvc)
which controls and sets up all the data connection, states, and events. It interacts with a
couple of client drivers to enable activities across the OS.

Summary

Cellular Architecture in Windows

The acronyms in the preceding image:

COSA: Country & Operator Settings Asset
CSP: Configuration Service Provider
GP Editor: Group Policy Editor
MDM: Mobile Device Management
MBBCx: Mobile Broadband WDF class extension
MO: Mobile Operator
MV: Multivariant (framework that associates SIMs with corresponding data from
the COSA database)
NDISUIO: NDIS Usermode I/O
NQM: Network Quiet Mode
OEM: Original Equipment Manufacturer
OMA-DM: Open Mobile Alliance – Device Management
OMA-CP: Open Mobile Alliance – Client Provisioning
SCM: Service Control Manager
WCM: Windows Connection Manager
WMI: Windows Management Instrumentation
WNF: Windows Notification Facility
wwanprot DIM: WWAN Protocol Driver Interface Model
wwansvc: WWAN Service

For more information on individual components, see Cellular architecture.

The main state machines resides in the Default Context Controller and its associated
Context Life Cycle object.

General block diagram of components involved
in basic data connectivity

Interactions between the Default Context
Controller and its immediate neighbors

The Default Context Controller controls the internet data connection. It manages the
cellular data connection base on either auto-connect or manual connect, with or without
a profile.

The Default Context Controller performs the following tasks:

Performs auto-connect, back-off, and auto-retry for cell internet connection

There is one instance of the Default Context Controller for each primary/physical
interface, where each instance:

Receives and keeps related policy settings from various sources
Receives and keeps related state information (SIM state, reg state, packet
service state, iWLAN state, ICCID/IMSI, etc.)

MBB profile evaluation

Default Context Controller

Evaluates whether an MBB profile is applicable for the current policy settings
and cellular states

In the Vibranium release or older:
Keeps track of add/delete/update of related MBB profiles and keeps a list of
them
Selects profiles for activation (priority rings, previous profile, auto-connect
order, LKG profile, purchase profile, provisioned context profile, etc.)

In the Manganese release:
Profile Administrator handles the profile selection for activation

Back-off interval calculation and timer

Handles cellular Internet manual connect requests (profile or no-profile mode)

Uses an instance of the class CWwanContextLifeCycle to activate a connection with
an MBB profile

The Default Context Controller uses a finite state machine to manage its tasks.

Finite state machine transitions of the Default Context
Controller

Policy Setting Config from Config
Unit

EnabledInternet from users via UI in phones per
system

Auto-connect

Policy settings that need to be met for auto-connect

Policy Setting Config from Config
Unit

highestConnCategory from Admin/User/Operator/Device via UI per
interface

ClientDisableAutoConnect from user via UI in desktops per
interface

OperatorServiceEnablement from MO via OTA per
interface

GPolicyDisableAutoConnect group policy via registry per
system

mdmDataEnablementPolicy from MDM, notified via WNF
(OnEnforced/OffEnforced/NoPolicy)

per
system

mdmRoamingPolicy from MDM, notified via WNF
(DisabledEnforced/EnabledEnforced/NoPolicy)

per
system

State Value

System power
state

S0/S3/S4/D0/D3/D4

device power
state

D0/D3/D4

Ready state Initialized/ICCID

IMSI affects applicability of IMSI-conditioned profiles

IWLAN state affect applicability of IWLAN only/OK profiles

Registration
state

Home/Roam/Partner

provider ID may cancel back-off and trigger immediate retry

Packet service
state

Detached/Attached

Current data
class

may trip highestConnCategory policy and affect applicability of data class
conditioned profiles

RnR State RnR in progress

States that need to be concerned about auto-connect

SimIccID: Must match the ICCID of current SIM at the interface (except for
AnyICCID)
IsAdditionalPdpContextProfile: Must be false (except for purchase profile)
ConnectionMode: Auto or auto-home
ProfileCreationType: At or below the highestConnCategory
(Admin/User/Operator/Device)
CellularClass (v4): 3GPP/3GPP2
RATApplicability (v4): LTE_eHRPD/3GPP_LEGACY
RoamApplicability (v4): NonPartnerOnly/PartnerOnly/HomeOnly/
HomeAndPartner/PartnerAndNonpartner/AllRoaming; except for iWLAN profile
and iWLAN available
IMSI (v4): If present, must match current IMSI. For multi-app SIMs
AdminEnable (v4): Is not administratively disabled
AdminRoamControl (v4): Is not administratively roam-controlled out except for
iWLAN profile and iWLAN available

Priority rings:
Are based on ProfileCreationType: AdminProvisioned, UserProvisioned,
OperatorProvisioned, and DeviceProvisioned.
An applicable profile in a higher priority ring excludes all profiles in lower
priority rings.

Modem provisioned profiles:
Are based on provisioned contexts.
Have the same ring as DeviceProvisioned profiles with subtle details.

Purchase profiles are special.
One round of auto-connect and retry attempts:

Will try all applicable profiles in the highest priority ring with any applicable
profile, plus all applicable purchase profiles.
Each profile in one round has at most one chance.
If connection with a profile succeeds with a valid IP, the round stops and the
profile is designated the last known good (LKG) profile.

If one round of attempts has multiple MBB profiles, the order is:

LKG profile if it is present and is a non-purchase profile.

MB profile applicability for auto-connect

Selection of MBB profiles for auto-connect in VB

Order of profiles in one round of attempts in VB

https://learn.microsoft.com/en-us/windows/win32/mbn/schema-profilecreationtype-mbnprofile-element

Non-purchase modem provisioned profiles. If there are more than one, the order
of these profiles is unspecified.
All non-purchase profiles with explicit AutoConnectOrder, in order of increasing
AutoConnectOrder. If an AutoConnectOrder has more than one profiles, the order
of these profiles is unspecified.
All non-purchase profiles with no explicit AutoConnectOrder. If there are more
than one, the order of these profiles is unspecified.
All purchase profiles. If there are more than one, the order of these profiles is
unspecified.

Pause for a certain amount of time before retry after failures to activate all
applicable MBB profiles in a retry round.
Commonly used technique in random access media to avoid re-collision after a
collision.
Back-off happens after all profiles in one round of attempts fail to connect.
There is no back-off between retries of two profiles inside one round.
The base exponential back-off algorithm: Initial back-off 3 seconds, exponential
factor 3, with cap of 24 hours. For example: 3, 9, 27, 81, ….
Special network cause codes for slow-pace retry (initial back-off 300 seconds):

WWAN_ERR_3GPP_SO_NOT_SUBSCRIBED, // 33
WWAN_ERR_3GPP_AUTH_FAILURE, // 29
WWAN_ERR_3GPP_INSUFFICIENT_RESOURCES, // 26
WWAN_ERR_3GPP_UNKNOWN_PDP_ADDRESS_TYPE, // 28
WWAN_ERR_3GPP_ACTIVATION_REJECT /

OEM can customize the initial back-off. Each code can have one of these three
catagories:

Normal-pace: the same as the base case (3 seconds)
Slow-pace: 300 seconds
Glacier-pace: 24 hours (practically no retry)

Back-off can be cancelled and retry commenced immediately in these situations:
Auto-connect hint from WCM
Auto-connect MBB profiles are added or updated
Device roams to a different MO
Highest connection category policy is changed

Exponential back-off

Back-off cancelation or back-off timer expiration

If a manual connect request comes during back-off, back-off is canceled and
manual connect procedure commences.

Back-off will be cancelled and no auto-connect occurs in these situations:
The SIM is removed.
Cellular state is no longer available for connect (such as during deregistration or
detachment).
Auto-connect token is revoked.
Cellular data is disabled.
Other policy settings are changed such that auto-connect is no longer possible.
Later events may re-trigger auto-connect in the event that back-off is cancelled
and no auto-connect occurs.

When the back-off timer expires naturally, retry starts and does the same thing as
the initial auto-connect.

Bring-up of the data connection is initiated externally via the wwansvc RPC API:
In Cellular Setting UI or Network flyout, users uncheck the "let Windows keep
this connected" box and then click the Connect button.
Starting with Windows 8, WCM may also bring-up the data connection.
Manual connect is only allowed if auto-connect is not in progress (idle or back-
off).

The connect request may be issued with or without a specific MBB profile. For
Cellular UX since RS2:

If a specific MBB profile is given, only that MBB profile is used to connect.
If no specific MBB profile is given, the Default Context Controller picks MBB
profiles and tries them one by one until the connection is either successfully
activated with an MBB profile or all of them fail to connect.

Is subject to similar set of policy settings as auto-connect.

Is subject to similar set of cellular state information and restrictions as auto-
connect.

MBB profile applicability is subject to a similar set of rules as for auto-connect with
one notable exception:

An MBB profile with a ConnectionMode of manual is applicable for manual
connect.

MBB profile selection and order are the same as for auto-connect.

Manual Connect

If no specific MBB profile is given and the MBB profiles in the a round all fail to
connect successfully, then the manual connect request is completed with failure.
There is no back-off and no retry.

If a specific MBB profile is given and the MBB profile fails to connect successfully,
then the manual connect request is completed with failure. There is no back-off
and no retry.

If a successfully-connected manual connection gets disconnected later
unsolicitedly, the state is reported but there is no back-off and no retry.

OID_WWAN_CONNECT is used to initiate the connection with the modem. Below are
flows describing the data connection with the modem.

MB data connectivity flows

Successful Activation

Successful Deactivation

Manual Connect

Connect the test machine with ATT SIM to HLK Server.

See Steps for installing HLK .

In HLK Studio, connect to the device Cellular modem driver and run the test:
Win6_4.MB.GSM.Data.TestConnect.

Alternatively, run the TestConnect HLK testlist by netsh and netsh-mbn-test-
installation.

The file showing the HLK test results should have been generated in the directory that
the 'netsh mbn test' command was ran.

Hardware Lab Kit (HLK) tests

netsh mbn test feature=connectivity param="AccessString=internet"

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/b5a998f3-bd1c-47aa-bcf3-6c9092935e1c
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

1. With Wi-Fi toggled off, verify active cellular connection. Systray should show
Cellular connection bars and internet browsing should work.

2. Reboot DUT. After reboot, verify there is an active cellular connection. Systray
should show Cellular connection bars.

1. Insert SIM card with an active data plan. If the device already has a SIM card, pop
out the SIM card and insert a different SIM card from another operator.

2. With Wi-Fi toggled off, verify an active cellular connection. Swipe down from top
of screen to bring up quick action center and Systray should show Cellular
connection bars and a data icon.

1. With Ethernet unplugged and Wi-Fi toggled off, uncheck "Let Windows manage
this connection" in Cellular settings.

2. Reboot DUT.
3. After boot, open Cellular settings and click Connect to Cellular. Cellular should

connect and internet browsing should work.

1. Ensure "Let Windows manage this connection" is checked in Cellular settings.
2. Put DUT into S4.
3. Wake DUT and verify it automatically establishes a cellular connection. The user

should be able to browse the internet.

1. With Ethernet unplugged and Wi-Fi toggled off, uncheck "Let Windows manage
this connection" in Cellular settings.

2. In an admin CMD prompt run command: shutdown -h

Manual tests

After reboot, Cellular auto-connects

Browse Internet using Cellular data with new SIM

Connect Cellular manually

After wake from hibernation (S4), Cellular auto-connects

After wake from hibernation (S4), connect Cellular
manually

3. Machine will hibernate. After more than 30 seconds press the machine's power
button to wake from hibernation. Log back in, open Cellular settings, and click
Connect to Cellular. Cellular should connect and the user should be able to browse
the internet.

1. With Ethernet unplugged and Wi-Fi toggled off, verify an active cellular
connection.

2. (Optional) Allow the screen to sleep. You can set the screen sleep to 1 minute
under Settings -> System -> Power & sleep. The setting should not be set to
"Never".

3. Wake the screen by using the mouse or keyboard and log back in. Cellular should
stay connected and the user should be able to browse internet (also via container
for VAIL/WCOS).

1. Logs can be collected and decoded using these instructions: MB Collecting Logs
2. Open the .txt file in TextAnalysisTool
3. Load the Bacis Connectivity filter

After wake from screen sleep, Cellular auto-connects

MB data connectivity troubleshooting guide

Sample log for disconnect success:

TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanManager::EnumerateInterfaces Message: Number of interfaces returned:
1"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDataExecutor::WwanDisconnect InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: connectionID 0x0"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDefaultContextController::WwanDisconnect Message: Disconnect
(connectionId:85) Invoked"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDefaultContextController::fsmEventHandler InterfaceGuid: {f1a7855c-
27f0-433d-9bcd-55e1068c4f41} Message: ""entry with state: 4, event: 15
(EXEC 0)"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDefaultContextController::fsmEventHandler_Connected Message: manual
disconnecting"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanNhTraceMsmNotification InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: ""[NH] Dispatch

WwanNotificationSourceMsm\WwanMsmEventTypeConnectionIStreamUpdated
ConnectionIStream[Intf={F1A7855C-27F0-433D-9BCD-55E1068C4F41} Prfl[Name=
Guid= Conn=] State[Ready=1 Register=3 Activation=4] contextState NwError =
0x0, apiInfoResult = 0x0]"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::fsmEventHandler Message: entry with state 4 Event
1"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::CleanUpFull Message: Starting to Cleanup the
Context LifeCyle"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::SetProfileIndex InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: ""set profile index, profile index
20000006"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 " InterfaceGuid=
{f1a7855c-27f0-433d-9bcd-
55e1068c4f41},RequestId=0x8C,,cbPayload=131614,Payload=0x1C00000006000020011
8C01E340300000A000000C8000000983A0000,ErrorCode=The operation completed
successfully."
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanTxSendReq Message: OID (Code: 23 Type: 0) sent and completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
wwanTxmAoAcRefHandler InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: Acquiring AoAc Ref for Parent Interface before
sending a TX [0x8d]"
TraceLog Microsoft-Windows-wmbclass 24:09.5 "Instance: 1 request:
0xFFFFCD067126BF00 OID: 0xE01010C OID name: OID_WWAN_CONNECT
RequestId: 0x8D RequestHandle: 0x0 Type: 1 InformationLength:
1260"
TraceLog Microsoft-Windows-wmbclass 24:09.5 "Instance: 1 Request:
0xFFFFCD067126BF00 Status: The operation that was requested is pending
completion." TraceLog Microsoft-Windows-wmbclass 24:09.5
"CallerRequestId: 0x8D DriverRequestId: 0 ServiceId: {00000274-cc33-
a289-bbbc-4f8bb6b0133e} CommandName: ???¦????BASIC_CONNECT CommandId:
12 InBufferSize: 116 Payload:
0x00000000000000003C0000001A000000580000000A00000064000000100000000000000000
000000000000007E5E2A7E4E6F7272736B656E7E5E2A7E6D006900630072006F0073006F0066
0074002E0063006F006D000000610064006D0069006E000000700061007300730077006F0072
006400"
TraceLog Microsoft-Windows-wmbclass 24:09.5 "Instance: 1MessageType:
0x3 MessageLength: 164 MessageTransactionId: 54TotalFragments:
1CurrentFragment: 0 ServiceId: {33cc89a2-bbbc-4f8b-b6b0-133ec2aae6df}
CID: 12 CommandType: 1 InfoLength: 116"
TraceLog Microsoft-Windows-wmbclass 24:09.5 "CallerRequestId: 0x8D
DriverRequestId: 0 ServiceId: {00000274-cc33-a289-bbbc-4f8bb6b0133e}
CommandName: ???¦????BASIC_CONNECT CommandId: 12 InBufferSize: 116
Payload:
0x00000000000000003C0000001A000000580000000A00000064000000100000000000000000
000000000000007E5E2A7E4E6F7272736B656E7E5E2A7E6D006900630072006F0073006F0066
0074002E0063006F006D000000610064006D0069006E000000700061007300730077006F0072
006400 NdisStatus: STATUS_SUCCESS"
TraceLog Microsoft-Windows-wmbclass 24:09.5 "Instance: 1 Request:
0xFFFFCD067126BF00 OID: 0xE01010C OID name: OID_WWAN_CONNECT
RequestId: 0x8D RequestHandle: 0x0 Type: 1 BytesUsed: 1260
BytesNeeded: 0 Status: The request will be completed later by NDIS

status indication."
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanTxSendReq Message: OID (Code: 12 Type: 0 timeoutInSec: 199) sent to dim
and pending solicited notif"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanTimerWrapper::StartTimer Message: Timer (ID = 0) Start Completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanTxmEvaluateArmTimer InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: ""TXM timer armed for 199 seconds expire 0x4e42f9,
TxmHandle=(0x2)"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
_sendReq Message: ASYNC OID (pTx->handle: 000000000000008D Code: 12) sent
(time 0x4b39a1)"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::SendMbbConnectReq InterfaceGuid: {f1a7855c-27f0-
433d-9bcd-55e1068c4f41} Message: OID_WWAN_CONNECT (Deactivate): ReqHandle
0x8d ReqID 0x60 ConnID 0x55 APN [microsoft.com] IPType (sent 0 confg 0) Auth
0 PwdP 1 MediaPref 1 PrefSrc 4"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::StartTimer Message: Timer Start Completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::CleanUpFull Message: Completed Cleanup of the
Context LifeCyle"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanContextLifeCycle::fsmEventHandler Message: exit with state 6"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDefaultContextController::fsmEventHandler InterfaceGuid: {f1a7855c-
27f0-433d-9bcd-55e1068c4f41} Message: exit with state 5 (EXEC 0)"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanResetRecovery::fsmEventHandler InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: "" entry with state: 3, event: 0"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanResetRecovery::fsmEventHandler InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: "" exit with state: 1, event: 0, RnR stage:
0 Potent RnR: 0"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "InterfaceGuid:
{f1a7855c-27f0-433d-9bcd-55e1068c4f41}"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
WwanNhTraceMsmNotification InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: [NH] Dispatch
WwanNotificationSourceMsm\WwanMsmEventTypeIStreamChanged (RegistrationState:
3)"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "FunctionCall:
CWwanDataExecutor::GetConnectionInfo InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: isPhysi 1 PS 2 isIWLANAvail 0 isConnected 0"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "interfaceGuid:
{f1a7855c-27f0-433d-9bcd-55e1068c4f41}"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "mbnInterface:
{F1A7855C-27F0-433D-9BCD-55E1068C4F41} info: 12301"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 "mbnInterface:
{F1A7855C-27F0-433D-9BCD-55E1068C4F41} info: MS MBN"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 24:09.5 " Message:
WWAN_INTERFACE_OBJECT::readyObject.readyInfo.ReadyState=1"

Sample log for connect success:

TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanManager::EnumerateInterfaces Message: Number of interfaces returned:
1"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataExecutor::WwanConnect Message: ""Connect (connMode:0,
str:!!##MBIMModemProvisionedContextV2InternetProfile##098765432109876)
Invoked"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataExecutor::WwanConnect Message: ""Connect (flags 0x0,
apiStartTime 4996546 isUserStarted 1 isLowBoxMBAERequest 0"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "InterfaceGuid:
{f1a7855c-27f0-433d-9bcd-55e1068c4f41} ModemIndex: 0 ExecutorIndex: 0
ProfileName:
!!##MBIMModemProvisionedContextV2InternetProfile##098765432109876
ProfileSource: WwanProfileModemProvisioned connMode:
WwanConnectionModeProfile"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::IsAllowedByRoamingPolicies Message: return
TRUE"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWWANContextControllerBase::FillProfileGuidInCIS Message:
[ConnectionIStream] Updated PrflGuid={64CFE041-9925-4109-B738-9C9F7EC95A92}"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::WwanConnect Message: manual connection
request: temp conn ID 0x61 APN [microsoft.com]"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::fsmEventHandler InterfaceGuid: {f1a7855c-
27f0-433d-9bcd-55e1068c4f41} Message: ""entry with state: 0, event: 14
(EXEC 0)"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::IsAllowedByRoamingPolicies Message: return
TRUE"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataExecutor::DisconnectMatchingAdditionalPdpContexts Message:
""Looking for APN: microsoft.com, IPType: 0"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataResourceManager::CheckResourceMaxContextCountByOEM Message: non-
CDMA"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataResourceManager::CheckResourceMaxContextCountByOEM Message:
""per IMSI OEM configred MaxNumberOfPDPContexts not found, trying device
settings."""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataResourceManager::CheckResourceMaxContextCountByOEM Message:
""device OEM configred MaxNumberOfPDPContexts not found, using default
settings."""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataResourceManager::SetPdpContextsOEMConfigured Message: OEMConfig
using 8"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:

CWwanDataResourceManager::UpdatePdpContexts Message: ""OEMConfiged 8,
Modem supports 17, using 8"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataResourceManager::ExecutorAcquireResourceMessage: Acquired
Resource Count 1"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanNhTraceMsmNotification InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: ""[NH] Dispatch
WwanNotificationSourceMsm\WwanMsmEventTypeConnectionIStreamUpdated
ConnectionIStream[Intf={F1A7855C-27F0-433D-9BCD-55E1068C4F41}
Prfl[Name=!!##MBIMModemProvisionedContextV2InternetProfile##098765432109876
Guid={64CFE041-9925-4109-B738-9C9F7EC95A92} Conn=] State[Ready=1 Register=3
Activation=2] contextState NwError = 0x0, apiInfoResult = 0x0]"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::StartContextLifeCycleWrapper Message:
Manual connecting on profile
!!##MBIMModemProvisionedContextV2InternetProfile##098765432109876 ConnID 97"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanContextLifeCycle::fsmEventHandler Message: entry with state 0 Event
0"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanContextLifeCycle::SetProfileIndex InterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41} Message: ""set profile index, profile index
20000006"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 " InterfaceGuid=
{f1a7855c-27f0-433d-9bcd-
55e1068c4f41},RequestId=0x8E,,cbPayload=131614,Payload=0x1C00000006000020011
8C01E340300000A000000C8000000983A0000,ErrorCode=The operation completed
successfully."
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanTxSendReq Message: OID (Code: 23 Type: 0) sent and completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
wwanTxmAoAcRefHandler InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: Acquiring AoAc Ref for Parent Interface before
sending a TX [0x8f]"
TraceLog Microsoft-Windows-wmbclass 25:16.1 "Instance: 1 Request:
0xFFFFCD06728F7160 OID: 0xE01010C OID name: OID_WWAN_CONNECT
RequestId: 0x8F RequestHandle: 0x0 Type: 1 InformationLength:
1260"
TraceLog Microsoft-Windows-wmbclass 25:16.1 "Instance: 1 Request:
0xFFFFCD06728F7160 Status: The operation that was requested is pending
completion."
TraceLog Microsoft-Windows-wmbclass 25:16.1 "CallerRequestId: 0x8F
DriverRequestId: 0 ServiceId: {00000281-cc33-a289-bbbc-4f8bb6b0133e}
CommandName: Ã‚ÂªÃ¦ÃŸBASIC_CONNECT CommandId: 12 InBufferSize: 116
Payload:
0x00000000010000003C0000001A000000580000000A00000064000000100000000000000000
000000000000007E5E2A7E4E6F7272736B656E7E5E2A7E6D006900630072006F0073006F0066
0074002E0063006F006D000000610064006D0069006E000000700061007300730077006F0072
006400"
TraceLog Microsoft-Windows-wmbclass 25:16.1 "Instance: 1 MessageType:
0x3 MessageLength: 164 MessageTransactionId: 55 TotalFragments: 1
CurrentFragment: 0 ServiceId: {33cc89a2-bbbc-4f8b-b6b0-133ec2aae6df}
CID: 12 CommandType: 1 InfoLength: 116"
TraceLog Microsoft-Windows-wmbclass 25:16.1 "CallerRequestId: 0x8F

DriverRequestId: 0 ServiceId: {00000281-cc33-a289-bbbc-4f8bb6b0133e}
CommandName: Ã‚ÂªÃ¦ÃŸBASIC_CONNECT CommandId: 12InBufferSize:
116Payload:
0x00000000010000003C0000001A000000580000000A00000064000000100000000000000000
000000000000007E5E2A7E4E6F7272736B656E7E5E2A7E6D006900630072006F0073006F0066
0074002E0063006F006D000000610064006D0069006E000000700061007300730077006F0072
006400 NdisStatus: STATUS_SUCCESS"
TraceLog Microsoft-Win dows-wmbclass 25:16.1 "Instance: 1 Request:
0xFFFFCD06728F7160 OID: 0xE01010C OID name: OID_WWAN_CONNECT
RequestId: 0x8FRequestHandle: 0x0Type: 1BytesUsed: 1260
BytesNeeded: 0 Status: The request will be completed later by NDIS
status indication."
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanTxSendReq Message: OID (Code: 12 Type: 0 timeoutInSec: 181) sent to dim
and pending solicited notif"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanTimerWrapper::StartTimer Message: Timer (ID = 0) Start Completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanTxmEvaluateArmTimer InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41} Message: ""TXM timer armed for 181 seconds expire 0x4f00ca,
TxmHandle=(0x2)"""
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
_sendReq Message: ASYNC OID (pTx->handle: 000000000000008F Code: 12) sent
(time 0x4c3dc2)"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanContextLifeCycle::SendMbbConnectReq InterfaceGuid: {f1a7855c-27f0-
433d-9bcd-55e1068c4f41} Message: OID_WWAN_CONNECT (Activate): ReqHandle
0x8f ReqID 0x62 ConnID 0x61 APN [microsoft.com] IPType (sent 0 confg 0) Auth
0 PwdP 1 MediaPref 1 PrefSrc 4"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanContextLifeCycle::StartTimer Message: Timer Start Completed"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanContextLifeCycle::fsmEventHandler Message: exit with state 2"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDefaultContextController::fsmEventHandler InterfaceGuid: {f1a7855c-
27f0-433d-9bcd-55e1068c4f41} Message: exit with state 3 (EXEC 0)
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "InterfaceGuid:
{f1a7855c-27f0-433d-9bcd-55e1068c4f41}"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
WwanNhTraceMsmNotification InterfaceGuid: {f1a7855c-27f0-433d-9bcd-
55e1068c4f41}Message: [NH] Dispatch
WwanNotificationSourceMsm\WwanMsmEventTypeIStreamChanged (RegistrationState:
3)"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
CWwanDataExecutor::GetConnectionInfoInterfaceGuid: {f1a7855c-27f0-433d-
9bcd-55e1068c4f41}Message: isPhysi 1 PS 2 isIWLANAvail 0 isConnected 0"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "interfaceGuid:
{f1a7855c-27f0-433d-9bcd-55e1068c4f41}"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "mbnInterface:
{F1A7855C-27F0-433D-9BCD-55E1068C4F41}info: 12301"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "mbnInterface:
{F1A7855C-27F0-433D-9BCD-55E1068C4F41}info: MS MBN"
TraceLog Microsoft-Windows-WWAN-SVC-EVENTS 25:16.1 "FunctionCall:
_PublishSebNotificationMessage:
WWAN_INTERFACE_OBJECT::readyObject.readyInfo.ReadyState=1"

Basic Connectivity Log Filter
Article • 12/15/2021

To load a basic connectivity log filter:

1. Copy and paste the lines below and save them into a text file named
"basicconnectivity.tat."

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2016-01-08" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="y" excluding="n" description="" foreColor="800000"
type="matches_text" case_sensitive="n" regex="n" text="Globals Module
Initialization Completed" />
 <filter enabled="n" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n" text="ERROR: " />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="IsAutoConnectPossible" />
 <filter enabled="y" excluding="n" description="" foreColor="800080"
type="matches_text" case_sensitive="n" regex="n" text="SetAcState" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="SetEnablementPolicy" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="SetRoamControlPolicy" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="y" regex="n" text=": entry with state" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text=": exit with state" />
 <filter enabled="n" excluding="n" description="" foreColor="8b008b"
type="matches_text" case_sensitive="n" regex="n" text=" Dispatch
WwanNotificationSourceMsm\WwanMsmEventTypeConnectionIStream" />
 <filter enabled="y" excluding="n" description="" foreColor="006400"
type="matches_text" case_sensitive="n" regex="n" text="OID_WWAN_CONNECT ("
/>
 <filter enabled="y" excluding="n" description="" foreColor="4b0082"
type="matches_text" case_sensitive="n" regex="n" text=" Indicating
NDIS_STATUS_WWAN_CONTEXT_STATE with status=" />
 <filter enabled="y" excluding="n" description="" foreColor="008b8b"
type="matches_text" case_sensitive="n" regex="n"
text="CWwanDataExecutor::OnNdisNotification: NDIS_STATUS_WWAN_CONTEXT_STATE
Resp (" />
 <filter enabled="y" excluding="n" description="" foreColor="b22222"
type="matches_text" case_sensitive="y" regex="n" text="BASIC_CONNECT" />
 <filter enabled="y" excluding="n" description="" foreColor="008080"
type="matches_text" case_sensitive="n" regex="n"
text="NDIS_STATUS_WWAN_CONTEXT_STATE Event" />
 <filter enabled="n" excluding="n" description="" type="matches_text"

case_sensitive="n" regex="n" text="ound valid v" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="OnIPAddrLinkStateChange" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="WwanContextLifeCycleFSMState_Idle" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="WwanContextLifeCycleFSMState_Connected"
/>
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="data call connected" />
 <filter enabled="n" excluding="y" description="" type="matches_text"
case_sensitive="n" regex="n" text="Qualcomm-WOS-mbb" />
 <filter enabled="n" excluding="n" description="" foreColor="00008b"
type="matches_text" case_sensitive="n" regex="n" text="::OnNdisNotification:
WwanEventCodeRegisterState" />
 <filter enabled="n" excluding="n" description="" foreColor="ff00ff"
type="matches_text" case_sensitive="n" regex="n" text="::OnNdisNotification:
WwanEventCodePacketService" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="->ActivOption DSResponse" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="->DataDormancyHint DSResponse" />
 <filter enabled="y" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n" text="InternalErrorReport"
/>
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="ModemDualSIMCap" />
 <filter enabled="y" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n"
text="CWwanDataExecutorState::SendMbbPsAttachDetachReq" />
 <filter enabled="n" excluding="n" description="" foreColor="b22222"
type="matches_text" case_sensitive="n" regex="n"
text="WwanDefaultContextControllerFSMEvent_PSStateChanged" />
 <filter enabled="n" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n"
text="WwanDefaultContextControllerFSMEvent_ContextStoppedUnsolictedly" />
 <filter enabled="n" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n" text="lossing link state or
IP addr" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="_debouncing" />
 <filter enabled="n" excluding="n" description="" foreColor="ff0000"
type="matches_text" case_sensitive="n" regex="n" text=" unsolicitedlt
deactivated. APN " />
 <filter enabled="n" excluding="n" description="" foreColor="ff1493"
type="matches_text" case_sensitive="n" regex="n" text="ims status update
received" />
 <filter enabled="y" excluding="n" description="" foreColor="800000"
type="matches_text" case_sensitive="n" regex="n" text="RetryBackoffT" />
 <filter enabled="n" excluding="n" description="" foreColor="006400"
type="matches_text" case_sensitive="n" regex="n"
text="CWWANContextControllerBase::StartTimer: " />
 <filter enabled="n" excluding="n" description="" foreColor="800080"
type="matches_text" case_sensitive="n" regex="n"
text="CWwanDefaultContextController::CalculateArmBackoffTimer" />

 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="WwanProtDim" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="wmbclass" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="MBIM" />
 <filter enabled="n" excluding="n" description="" foreColor="808000"
type="matches_text" case_sensitive="y" regex="n" text="CID " />
 <filter enabled="n" excluding="n" description="" foreColor="808000"
type="matches_text" case_sensitive="n" regex="n" text="CID=" />
 <filter enabled="n" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="AdaptersAddresses" />
 </filters>
</TextAnalysisTool.NET>

MB Service Detection and Activation
Article • 03/14/2023

This topic describes the procedures to detect whether an MB device must have its
service activated, and how to gain access to a provider's network.

Miniport drivers can determine whether they must perform service activation in a couple
of ways:

For CDMA-based devices, in North America or other places where U-RIM is not
used, there should be a flag on the device to indicate activation status. Miniport
drivers should be able to detect the activation status during initialization without
contacting the provider network. Miniport drivers should perform service activation
automatically when the device first connects over-the-air to the home network.
After activation has been completed, miniport drivers should clear the flag so that
they will not need to perform service activation again.

Miniport drivers inform the MB Service about service activation progress by
sending NDIS_STATUS_WWAN_READY_INFO notifications during MB device
initialization. Alternatively, to determine service activation status, the service may
send an OID_WWAN_READY_INFO query request to a miniport driver. In both
cases, the initial ready-state should be WwanReadyStateNotActivated. After
service has been activated, miniport drivers should resume the initialization
process and notify the service as the device ready-state changes.

For GSM-based devices, there is no general method to detect whether a device
must have its service activated. Miniport drivers can implement their own
proprietary method, specific to its carrier, to perform service detection and
activation.

Service activation refers to the process of activating the MB service subscription so that
the device can gain access to the provider's network. The MB Service is not equipped
with service activation logic because the exact activation procedure must be performed
by the miniport driver and/or third-party software because the actual activation process
varies from cellular technologies and is usually customized for different provider
networks. Service activation can be automatic, or manual, or a combination of both.

Service Activation Detection

MB Service Activation

Miniport drivers should only need to perform service activation one time for each new
subscription.

For more information about service detection and activation, see
OID_WWAN_SERVICE_ACTIVATION.

MB Radio State
Article • 03/14/2023

This topic describes the operations that are used to set and read an MB device's radio
power state(s). These states can be controlled through software (airplane mode) or
hardware (if the appropriate switch is present). This topic explains how the radio power
states are controlled, how to test radio power state functionality, and how to investigate
radio power state issues.

System Radio State - System Radio State is a system-wide state. It is the most evident
indicator of airplane mode state. System Radio State is managed by the Radio
Management Service (RmSvc).

Radio Manager - RmSvc iterates several RadioManagers (MediaManagers) in the system
like WlanRadioManager, BlueTooth, and WwanRadioManager. WwanRadioManager(.lib)
is hosted in RmSvc.dll and manages the wwan side of the radio logic.
WwanRadioManager uses the WWAN Service (WwanSvc) RPC to:

1. Query and set cellular radio.
2. Control the flow before and after airplane mode.

Radio Instance - Each RadioManager can include multiple radio instances. For example,
WwanRadioManager can have two radio instances if there are two cellular modems in
the system. Each radio instance is an abstract object and should map to one hardware
radio module. In most cases, each radio instance maps to one cellular modem.

RmSvc.dll - Manages system-wide radio events like airplane mode. It also hosts all radio
managers, including WwanRadioManager.

WwanSvc.dll - Cellular modems are managed by WwanSvc. Therefore, commands
(OID/CID) are issued via WwanSvc. External requests from RmSvc or other components
(UI) go via the WwanSvc RPC to query or set cellular radio state.

MbbCx.sys - The kernel-mode driver that manages device power state especially
between D0 and Dx transition. On some system setups, the device is allowed to

Overview

Terminology

Relevant Services and Drivers

transition to Dx state and recover to D0 only when needed. MbbCx.sys manages the
logic and control of radio state recovery before D0 and Dx.

Architecture/Flows

Radio Control from WwanSvc to Modem Hardware

SET Radio via WwanSvc API

Initial Radio State upon Device Arrival

As seen in the above diagrams, the CID used in airplane mode operations is
MBIM_CID_RADIO_STATE. This CID sets or returns information about a MB device's
radio power state.

MBIM_CID_RADIO_STATE

Query

The InformationBuffer on MBIM_COMMAND_MSG is not used.
MBIM_RADIO_STATE_INFO is returned in the InformationBuffer of
MBIM_COMMAND_DONE.

The InformationBuffer on MBIM_COMMAND_MSG contains MBIM_SET_RADIO_STATE.
MBIM_RADIO_STATE_INFO is returned in the InformationBuffer of
MBIM_COMMAND_DONE.

The Event InformationBuffer contains an MBIM_RADIO_STATE_INFO structure.

Set Query Notification

Command MBIM_SET_RADIO_STATE Empty N/A

Response MBIM_RADIO_STATE_INFO MBIM_RADIO_STATE_INFO MBIM_RADIO_STATE_INFO

Offset Size Field Type Description

0 4 RadioState MBIM_RADIO_SWITCH_STATE Sets the software controlled radio
state. See table below.

MBIM_RADIO_SWITCH_STATE

Types Value

MBIMRadioOff 0

MBIMRadioOn 1

The InformationBuffer will be null and InformationBufferLength will be zero.

Set

Unsolicited Event

Parameters

Data Structures

Set

Query

MBIM_RADIO_STATE_INFO

Offset Size Field Type Description

0 4 HwRadioState MBIM_RADIO_SWITCH_STATE The state of the W_DISABLE
switch. If the device does not
have a W_DISABLE switch, the
function must return
MBIMRadioOn in this field.

4 4 SwRadioState MBIM_RADIO_SWITCH_STATE Software configured radio state.

See the MBIM_RADIO_STATE_INFO table above.

This CID only uses Generic Status Codes.

Function Name Description

CellularRadioWinrtTest::VerifyCellularModemExistence Assert winrt api can
query cellular modem
and radio state

CellularRadioWinrtTest::VerifyCellularRadioToggle Assert winrt api can
toggle radio state on
each wwan adapter

CellularRadioRecoveryTest::VerifyCellularRadioRecoveryToOnAfterAPM Assert cellular radio
states are recovered to
On when leaving
Airplane Mode

CellularRadioRecoveryTest::VerifyCellularRadioRecoveryToOffAfterAPM Assert cellular radio
states remain off when
leaving Airplane Mode

Response

Notification

Status Codes

Testing

Cellular Radio Tests

Function Name Description

CellularRadioRecoveryTest::VerifyCellularRadioAcrossSvcRestart Assert cellular radio
states stay consistent
across WwanSvc
restarting

CellularRadioRecoveryTest::VerifyCellularRadioAcrossDevNodePnp Assert cellular radio
states stay consistent
across device
arrival/removal

CellularRadioTest.dll contains these tests.

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run these tests:

TestRadioStateSoftware
TestRadioStateHardware

Alternatively you can run the TestRadioStateHardware and TestRadioStateSoftware HLK
testlist by netsh-mbn and netsh-mbn-test-installation.

The two files showing the HLK test results should have been generated in the directory
that the 'netsh mbn test' command was ran from: TestRadioStateSoftware.htm and
TestRadioStateHardware.htm .

Logs can be collected and decoded using these instructions: MB Collecting Logs.

OID_WWAN_RADIO_STATE

CWwanRadioInstance::OnSysRadioChange

Hardware Lab Kit (HLK) Tests

netsh mbn test feature=radio testpath="C:\data\test\bin"
taefpath="C:\data\test\bin" param="AccessString=internet"

Analyzing Logs

Useful keywords/regexp for filtering traces

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/0aa9981a-e556-4338-a568-b17289dd9742
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/fa0bd189-b332-4651-8eda-e89866d2e2f1
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

Entering CUIRadioManager::_SetSysRadio

Leaving CUIRadioManager::_SetSysRadio

CWwanRadioInstance::_SetSoftwareRadioState

[WwanRadioManager]

PostD0Entry: previousPowerState

CWwanRadioManager::OnSystemRadioStateChange(.)+sysradiostate

RMAPI(.)+OnSystemRadioStateChange

RMAPI(.)+OnSystemRadioStateChange

Wwan-svc(.)+radio

mbbcx(.)+radio

Identify whether this is a global (system-wide) or local (cellular-only) radio issue.
Differentiate device power state (D0-Dx) from radio state. They are different
concepts but highly-correlated.
Ensure necessary ETW providers are included in the log.
Narrow down the area by using the scenario. For example:

If it's related to airplane mode, focus on RmSvc and WwanRadioManager.
If it's related to D0<->Dx, hibernation, or sleep transitions, focus on MBBCx.
If it's related to UI displays or state out-of-sync, start with WwanSvc.

Windows.Devices.Radios is owned by the Radio Management Service which manages all
radio managers and instances. For the WWAN side, the RadioKind is
RadioKind::MobileBroadband.

GetRadiosAsync()
SetStateAsync()

Investigation tips

WinRT API

Windows.Devices.Radios

Windows.Networking.NetworkOperators

https://learn.microsoft.com/en-us/uwp/api/windows.devices.radios

Windows.Networking.NetworkOperators documentation page

The only useful utility under this namespace for radio management is
MobileBroadbandDeviceInformation.CurrentRadioState.

OID_WWAN_RADIO_STATE

See Also

https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.mobilebroadbanddeviceinformation.currentradiostate

MB PIN Operations
Article • 03/14/2023

This topic describes the operations related to access control of subscription information
stored either in the MB device memory or on the Subscriber Identity Module (SIM) card.
This includes enabling, disabling, or changing the Personal Identification Number (PIN),
as well as unlocking via PIN or Personal Unlocking Key (PUK).

User actions to enable/disable/unlock/change PIN

Cellular UX query for PIN1/PUK1 state

Overview

Architecture/Flows

Auto-unlock after resuming from hibernation

This CID is described here: MBIM_CID_MS_PIN_EX

This command returns a list of all the different types of Personal Identification Numbers
(PINs) that are supported by the MB device and additional details for each PIN type,
such as the length of the PIN (minimum and maximum lengths), PIN format, and PIN-
entry mode (enabled/disabled/not-available). This CID also specifies the current mode
of each PIN supported by the function. Functions must report all the PINs they support.
However, PIN1 for multi-mode devices must only be reported once.

MBIM_CID_MS_PIN_EX

MBIM_CID_PIN_LIST

Description

A PIN reported as PIN1 must comply with PIN1 guidelines: For CDMA-based devices this
is a PIN that provides power-on verification or identification functionality, and for GSM-
based devices this is a Subscriber Identity Module (SIM) PIN.

Functions must be able to return this information when the ready-state changes to
MBIMSubscriberReadyStateInitialized or when the ready-state is
MBIMSubscriberReadyStateDeviceLocked (PIN locked). Functions should also return this
information in other ready-states wherever possible.

InformationBuffer of the Query message is empty. InformationBuffer of
MBIM_COMMAND_DONE contains an MBIM_PIN_LIST_INFO.

Set Query Notification

Command N/A Empty N/A

Response N/A MBIM_PIN_LIST_INFO N/A

Types Value

MBIMPinModeNotSupported 0

MBIMPinModeEnabled 1

MBIMPinModeDisabled 2

Types Value

MBIMPinFormatUnknown 0

MBIMPinFormatNumeric 1

MBIMPinFormatAlphaNumeric 2

Query only

Parameters

Data Structures

MBIM_PIN_MODE

MBIM_PIN_FORMAT

Offset Size Field Type Description

0 4 PinMode MBIM_PIN_MODE See above table MBIM_PIN_MODE. This
shows if the lock is enabled or not. It does
not show if the lock state is locked or
unlocked.

4 4 PinFormat MBIM_PIN_FORMAT See above table MBIM_PIN_FORMAT.

8 4 PinLengthMin UINT32 The minimum number of characters in the
PIN. Devices should not specify a value
that is greater than 16. Devices should
specify 0xffffffff, if the PIN length is not
available.

12 4 PinLengthMax UINT32 The maximum number of characters in
the PIN. Devices should not specify a
value that is greater than 16. Devices
should specify 0xffffffff, if the PIN length
is not available.

The InformationBuffer shall be null and InformationBufferLength shall be zero.

The following structure shall be used in the InformationBuffer:

Offset Size Field Type Description

0 16 PinDescPin1 MBIM_PIN_DESC MBIM_PIN_DESC structure
describing PIN1. For GSMbased
devices, this is a Subscriber
Identity Module (SIM) PIN. For
CDMA-based devices, power-on
device lock is reported as PIN1.

16 16 PinDescPin2 MBIM_PIN_DESC MBIM_PIN_DESC structure
describing PIN2. This is a SIM
PIN2 that protects certain SIM
functionality.

MBIM_PIN_DESC

Query

Response

MBIM_PIN_LIST_INFO

Offset Size Field Type Description

32 16 PinDescDeviceSimPin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the device-to-SIM-
card PIN. This is a PIN that locks
the device to a specific SIM.

48 16 PinDescDeviceFirstSimPin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing device-to-very-first-
SIM-card PIN. This is a PIN that
locks the device to the very first
inserted SIM.

64 16 PinDescNetworkPin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the network
personalization PIN. This is a PIN
that allows the device to be
personalized to a network. For
more information about this PIN
type, see 3GPP specification
22.022.

80 16 PinDescNetworkSubsetPin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the network subset
personalization PIN. This is a PIN
that allows the device to be
personalized to a subset of a
network. For more information
about this PIN type, see 3GPP
specification 22.022.

96 16 PinDescServiceProviderPin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the Service Provider
(SP) personalization PIN. This is a
PIN that allows the device to be
personalized to a service
provider. For more information
about this PIN type, see 3GPP
specification 22.022.

112 16 PinDescCorporatePin MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the corporate
personalization PIN. This is a PIN
that allows the device to be
personalized to a specific
company. For more information
about this PIN type, see 3GPP
specification 22.022.

Offset Size Field Type Description

128 16 PinDescSubsidyLock MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the subsidy unlocks
PIN. This is a PIN that allows the
device to be restricted to operate
on a specific network. For more
information about this PIN type,
see 3GPP specification 22.022.

144 16 PinDescCustom MBIM_PIN_DESC MBIM_PIN_DESC structure
describing the custom PIN. This
is a custom vendor-defined PIN
type. It is not included in the
above list.

Status Code Description

MBIM_STATUS_PIN_REQUIRED The PIN list operation failed because a PIN must be entered
before this operation can proceed.

The following tests are run as part of the TestPin HLK test list:

Test Name Description

PinListQueryRadioOn This test attempts a pin list query with the radio
on.

PinListQueryRadioOff This test attempts a pin list query with the radio
off.

NoPinSupport This test verifies a device that does not support
PIN1.

PinExSetEnableDisableWithValidPin This test enables and disables PIN1 with a valid
pin.

PinExSetDisableIncorrectPinWithValidLength This test attempts to enable PIN1 with an
incorrect pin with valid length.

PukEnableDisableThroughIncorrectPinExDisable This test enables PUK1 by entering incorrect
PIN1 multiple times and then disables PUK1.

Status Codes

Testing

Test Name Description

PinExSetChangeWithBothInvalidAndValidPin This test enables PIN1, immediately changes
the PIN, and disables it.

RebootTestMachineToPutPinIntoLockState This test reboots the device to make the
modem enter lock state and prompt valid PIN
entry.

PinExSetEnterWithValidPin This test validates that the device is in lock state
to request PIN code entry.

The TestPowerStates HLK test list also contains one relevant test --
SimPinUnlockAfterHibernate.

Auto-unlock:

Set Pin (WwanPinTypePin1):

Log Analysis

Sample Logs:

462678 [0]0F3C.1280::2020-05-05 13:03:46.378805100 [Microsoft-Windows-WWAN-
SVC-EVENTS][Request=0x53] Received PinInfo, status=WWAN_STATUS_SUCCESS ,
Type=WwanPinTypePin1 State=WwanPinStateEnter Attempts=3, miniport=
{7971731f-33f9-4f1a-9718-087c12e64c5d}
462753 [7]0F3C.2A6C::2020-05-05 13:03:46.379718400 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::maybeUnlockPin:
Attempting auto-PIN-unlock. Interface: {{7971731f-33f9-4f1a-9718-
087c12e64c5d}}
462809 [7]0F3C.2A6C::2020-05-05 13:03:46.380157500 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Error] CWwanPinSM::maybeUnlockPin: Attempt
to auto-unlock PIN succeeded

546408 [3]0F3C.1240::2020/05/02-09:18:09.178460200 [Microsoft-Windows-WWAN-
SVC-EVENTS][Request=0x6C] Sent SET PinAction, Type=2(WwanPinTypePin1),
Operation=0(WwanPinOperationEnter), miniport={7971731f-33f9-4f1a-9718-
087c12e64c5d}, ErrorCode=3407873(WIN=The request will be completed later by
NDIS status indication.)
546425 [1]3DB0.12EC::2020/05/02-09:18:09.178564700
[Microsoft.Windows.CellCore.MBBSettingsUX]{"meta":
{"provider":"Microsoft.Windows.CellCore.MBBSettingsUX","event":"MBCategory::
_SetPinAction. WwanSetInterface succeeded","time":"2020-05-

Pin List:

02T16:18:09.1785647Z","cpu":1,"pid":15792,"tid":4844,"channel":11,"level":4}
}
546644 [2]0F3C.39E4::2020/05/02-09:18:09.426362600 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::processPinActionResponse:
SetPin rsp rcvd (result:0x0) PIN Info (state:1, type:3, attemptsRemaining:3)
IsPin1Blocked 0
546645 [2]0F3C.39E4::2020/05/02-09:18:09.426364800 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::maybeCapturePin: Capturing
PIN for PIN ENTER/ENABLE operation Interface: {{7971731f-33f9-4f1a-9718-
087c12e64c5d}}
546688 [7]3B64.2A80::2020/05/02-09:18:09.426727000 [MbaeApiLogging]
{"NotificationCode":"WwanMsmEventTypePinActionComplete:
Success","AdapterID":"{7971731f-33f9-4f1a-9718-
087c12e64c5d}","NotificationSize":24,"meta":
{"provider":"MbaeApiLogging","event":"CWwanTranslator::ProcessWwanNotificati
on","time":"2020-05-
02T16:18:09.4267270Z","cpu":7,"pid":15204,"tid":10880,"channel":11,"level":5
}}
546702 [0]3B64.242C::2020/05/02-09:18:09.426762000
[Microsoft.Windows.CellCore.MBBSettingsUX]{"meta":
{"provider":"Microsoft.Windows.CellCore.MBBSettingsUX","event":"MBMediaManag
er::ProcessWwanNotification WwanMsmEventTypePinActionComplete","time":"2020-
05-
02T16:18:09.4267620Z","cpu":0,"pid":15204,"tid":9260,"channel":11,"level":4}
}
546710 [7]0F3C.1208::2020/05/02-09:18:09.426809700 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] _PublishSebNotification: Event
Source=WwanNotificationSourceMsm, Code=WwanMsmEventTypePinActionComplete
547064 [2]3DB0.1194::2020/05/02-09:18:09.427921200 [MbaeApiLogging]
{"NotificationCode":"WwanMsmEventTypePinActionComplete:
Success","AdapterID":"{7971731f-33f9-4f1a-9718-
087c12e64c5d}","NotificationSize":24,"meta":
{"provider":"MbaeApiLogging","event":"CWwanTranslator::ProcessWwanNotificati
on","time":"2020-05-
02T16:18:09.4279212Z","cpu":2,"pid":15792,"tid":4500,"channel":11,"level":5}
}
547106 [2]3DB0.0B38::2020/05/02-09:18:09.428040100
[Microsoft.Windows.CellCore.MBBSettingsUX]{"meta":
{"provider":"Microsoft.Windows.CellCore.MBBSettingsUX","event":"MBMediaManag
er::ProcessWwanNotification WwanMsmEventTypePinActionComplete","time":"2020-
05-
02T16:18:09.4280401Z","cpu":2,"pid":15792,"tid":2872,"channel":11,"level":4}
}

465632 [4]0F3C.47F4::2020-05-05 13:03:46.395488200 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: PIN1
(mode:1, format:1, pinlnmin:4, pinlnmax:8)
465633 [4]0F3C.47F4::2020-05-05 13:03:46.395489800 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: PIN2

MobileBroadbandPin Class

OID_WWAN_PIN_EX2

OID_WWAN_PIN_LIST

MB UICC application and file system access

For additional information about PIN operations, see OID_WWAN_PIN.

(mode:1, format:1, pinlnmin:4, pinlnmax:8)
465634 [4]0F3C.47F4::2020-05-05 13:03:46.395491400 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: DEVSIMPIN
(mode:0, format:0, pinlnmin:0, pinlnmax:0)
465635 [4]0F3C.47F4::2020-05-05 13:03:46.395492800 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc:
DEVFIRSTSIMPIN (mode:0, format:0, pinlnmin:0, pinlnmax:0)
465636 [4]0F3C.47F4::2020-05-05 13:03:46.395494200 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: NWPIN
(mode:0, format:0, pinlnmin:0, pinlnmax:0)
465637 [4]0F3C.47F4::2020-05-05 13:03:46.395495800 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: NWSUBSETPIN
(mode:0, format:0, pinlnmin:0, pinlnmax:0)
465641 [5]0F3C.47F4::2020-05-05 13:03:46.395510100 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc:
SVCPROVIDERPIN (mode:0, format:0, pinlnmin:0, pinlnmax:0)
465643 [5]0F3C.47F4::2020-05-05 13:03:46.395513700 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: CORPORATEPIN
(mode:0, format:0, pinlnmin:0, pinlnmax:0)
465644 [5]0F3C.47F4::2020-05-05 13:03:46.395515200 [Microsoft-Windows-WWAN-
SVC-EVENTS]WWAN Service event: [Info] CWwanPinSM::tracePinDesc: SUBSIDYLOCK
(mode:0, format:0, pinlnmin:0, pinlnmax:0)

WinRT API

See Also

https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.mobilebroadbandpin?view=winrt-18362&preserve-view=true

PIN Operations Log filter
Article • 12/15/2021

To make searching log files easier, below is a PIN-operation-specific filter file for the
TextAnalysisTool .

To use this filter:

1. Copy and paste the lines below and save them into a text file named
"WwanPin.tat."

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2015-06-23" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="n" excluding="n" backColor="90ee90" type="matches_text"
case_sensitive="n" regex="n" text="maybeUnlockPin" />
 <filter enabled="n" excluding="n" foreColor="800000" type="matches_text"
case_sensitive="n" regex="n" text="Received PinInfo" />
 <filter enabled="n" excluding="n" backColor="ffb6c1" type="matches_text"
case_sensitive="n" regex="n" text="maybeCapturePin" />
 <filter enabled="n" excluding="n" foreColor="800080" type="matches_text"
case_sensitive="n" regex="n" text="[Microsoft-Windows-WWAN-SVC-EVENTS]" />
 <filter enabled="n" excluding="n" foreColor="00008b" type="matches_text"
case_sensitive="n" regex="n" text="PinAction" />
 <filter enabled="n" excluding="n" backColor="dda0dd" type="matches_text"
case_sensitive="n" regex="n" text="tracePinDesc" />
 <filter enabled="n" excluding="n" foreColor="008000" type="matches_text"
case_sensitive="n" regex="n" text="processPinInfoResponse" />
 <filter enabled="n" excluding="n" foreColor="0000ff" type="matches_text"
case_sensitive="n" regex="n" text="processPinActionResponse" />
 <filter enabled="n" excluding="n" foreColor="dc143c" type="matches_text"
case_sensitive="n" regex="n" text="processPinListResponse" />
 <filter enabled="n" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="NDIS_STATUS_WWAN_PIN_INFO" />
 </filters>
</TextAnalysisTool.NET>

https://github.com/TextAnalysisTool/Releases

MB Provider Operations
Article • 03/14/2023

This topic describes the operations related to home, preferred, multicarrier, and visible
network providers.

For more information about provider operations, see OID_WWAN_HOME_PROVIDER,
OID_WWAN_PREFERRED_PROVIDERS,
OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS, and
OID_WWAN_VISIBLE_PROVIDERS.

MB Registration Operations
Article • 03/14/2023

Miniport drivers use OID_WWAN_REGISTER_STATE to process both query and set
registration operations. For example, these operations may be to register with a network
provider, query the registration state of the device with a provider's network, and send
notifications when registration state changes.

MB Packet Service Operations
Article • 03/14/2023

This topic describes the operations for losing and regaining packet data service, packet
data service handoffs, and voice calls during packet data service connections.

The following diagram shows the process that miniport drivers should follow when they
lose signal strength and packet service for various intervals. The labels in bold are OID
identifiers or transactional flow control.The labels in regular text are the important flags
within the OID structure.

Losing and Regaining Packet Data Service

To regain packet data service after it has been lost, use the following procedure:

1. The miniport driver sends NDIS_WWAN_LINK_STATE to the MB Service.

2. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state

3. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

4. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

5. The miniport driver sends NDIS_WWAN_REGISTER_STATE to the MB Service.

6. The miniport driver sends NDIS_STATUS_WWAN_PACKET_SERVICE to the MB
Service.

7. The miniport driver sends NDIS_STATUS_LINK_STATE to the MB Service.

8. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

The following diagram shows the steps that miniport drivers should follow when packet
service moves between different GSM-based technologies, such as GPRS, EDGE, UMTS,
HSDPA, or TD-SCDMA, or moves between different CDMA-based technologies, such as
1xRTT, EV-DO, or EV-DO RevA. The labels in bold are OID identifiers or transactional
flow control. The labels in regular text are the important flags within the OID structure.

Packet Data Service Handoffs

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state

Be aware that unless the IP address changes in the handoff process, the MB Service
handles the handoff event transparently without disrupting the existing connection.
However, miniport drivers must still notify the MB Service about media disconnect
events if, and only if, the IP address changes.

Miniport drivers and the MB device they manage should be able to handle the layer-2
handoff between different air interfaces automatically, with minimal impact to the MB
Service and other overlaying applications. The only possible impact is the change to the

IP address that might result from the technology handoff. In this case, miniport drivers
should re-establish the MB connection before reporting the packet service change to
the MB Service. Miniport drivers that do not implement DHCP functionality should use
the IP Helper and associated functions. Miniport drivers that do implement DHCP
functionality are not required to use the IP Helper functions.

To hand off packet data service, use the following procedure:

1. The miniport driver sends NDIS_STATUS_WWAN_PACKET_SERVICE to the MB
Service.

2. The miniport driver sends NDIS_WWAN_LINK_STATE to the MB Service.

3. The miniport driver sends NDIS_STATUS_WWAN_PACKET_SERVICE to the MB
Service.

4. The miniport driver calls the DeleteUnicastIpAddressEntry helper function with the
old IP address

5. The miniport driver calls the CreateUnicastIpAddressEntry helper function with the
new IP address

6. The miniport driver sends NDIS_STATUS_LINK_STATE to the MB Service.

7. The miniport driver sends NDIS_STATUS_LINK_STATE to the MB Service.

8. The miniport driver sends NDIS_STATUS_WWAN_PACKET_SERVICE to the MB
Service.

The following diagram represents the process that miniport drivers should follow when
a voice call is placed while packet data service is active. The diagram uses 1xRTT as an
example, but the procedure applies to other air interfaces as well. The process outlined
in the following graphic applies only to miniport drivers that return
WwanVoiceClassSeparateVoiceData in the WwanVoiceClass member in response to an
OID_WWAN_DEVICE_CAPS query request. The labels in bold represent OID identifiers or
transactional flow control. The labels in regular text represent the important flags within
the OID structure.

Voice Calls during Packet Data Service
Connections

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546370(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546227(v=vs.85)

The procedure assumes that accepting an incoming voice call will pre-empt any pre-
existing packet connection. For miniport drivers that return
WwanVoiceClassSimultaneousVoiceData in the WwanVoiceClass member in response
to an OID_WWAN_DEVICE_CAPS query request, the current packet connection should
not be affected.

Be aware that, by design, the MB Service does not support circuit voice nor does it
prohibit the service. The process outlined in the graphic above applies only when the
device can handle both data and circuit voice, but only one at a time. The process
assumes that the voice call takes precedence over any potential pre-existing data
connection. In this case, miniport drivers should suspend the data connection for the

duration of the voice call. Afterwards, miniport drivers should resume the data service by
re-establishing the MB connection automatically.

To handle voice calls during packet data service connections, use the following
procedure:

1. For a successful Packet Data service connection, miniport drivers should send an
NDIS_WWAN_PACKET_SERVICE_STATE notification to the MB service to indicate
the current DataClass followed by an NDIS_STATUS_LINK_STATE notification to the
MB service to indicate the media connect state as MediaConnectStateConnected.

2. When a voice call is placed or answered, miniport drivers should send an
NDIS_STATUS_LINK_STATE notification to the MB service to indicate the media
connect state as MediaConnectStateDisconnected.

3. Miniport drivers should then send an NDIS_STATUS_WWAN_CONTEXT_STATE
notification to the MB service that indicates the VoiceCall state of the device as
WwanVoiceCallStateInProgress.

4. On hangup, miniport drivers should send an
NDIS_STATUS_WWAN_CONTEXT_STATE notification to the MB service that
indicates the VoiceCall state of the device as WwanVoiceCallStateHangup.

5. The device resumes packet connection after the voice call is completed. Miniport
drivers should send an NDIS_STATUS_LINK_STATE notification to the MB service to
indicate the media connect state as MediaConnectStateConnected.

6. Miniport drivers should send an NDIS_WWAN_PACKET_SERVICE_STATE notification
to the MB service that indicates the current DataClass.

For more information about packet service operations, see
OID_WWAN_PACKET_SERVICE.

See Also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state

MB Signal Strength Operations
Article • 03/14/2023

This topic describes the operations to report signal strength.

These operations require access to the network provider, but not to the Subscriber
Identity Module (SIM card).

Be aware that in case of GSM-based devices, miniport drivers should send signal
strength notifications only after the miniport driver has successfully registered with a
network provider. For CDMA-based devices, miniport drivers can send signal strength
notifications before the miniport driver has successfully registered with a network
provider.

The following diagram shows the process that miniport drivers should follow to process
signal strength indications. The MB Service adjusts the signal strength-reporting
threshold and interval, based on the current device signal strength and how long the
device has been idle. These actions are usually performed as part of the power
management features provided by the MB Service. The labels in bold are OID identifiers
or transactional flow control. The labels in regular text are the important flags within the
OID structure.

Signal Strength Indication Semantics

To update signal strength indications, use the following procedure:

1. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

2. The MB Service sends OID_WWAN_SIGNAL_STATE to the miniport driver. The
miniport driver responds with a provisional acknowledgement
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

3. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state

4. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

5. The MB Service sends OID_WWAN_SIGNAL_STATE to the miniport driver. The
miniport driver responds with a provisional acknowledgement
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

6. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

7. The MB Service sends OID_WWAN_SIGNAL_STATE to the miniport driver. The
miniport driver responds with a provisional acknowledgement
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will
send a notification with the requested information in the future.

8. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

9. The miniport driver sends NDIS_WWAN_SIGNAL_STATE to the MB Service.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state

MB Packet Context Management
Article • 03/14/2023

This topic describes the management of packet contexts, which are a specific set of
network configuration parameters for setting up a virtual circuit or flow on top of the
physical MB connection at layer 2. In GSM-based devices, this corresponds to the
concept of a Packet Data Protocol (PDP). In CDMA-based devices, this corresponds to a
network profile.

In most cases, the detailed settings of a packet context are either pre-provisioned by
IHVs and/or network providers of the MB device, or provisioned through the network
over-the-air (OTA) or using SMS. In either case, the end user is generally not required to
provide most of the settings (for example, quality of service (QoS), security codes,
mobile IP, and so on). However, the end user may need to provide the network access
string, username, and password. It is these user configurable settings that constitute the
content of a packet context from the perspective of the MB Service.

The MB driver model does not provide an explicit OID to set up or tear down the layer-2
connection for WWAN. Instead, activating the first packet context results in setting up
the underlying layer-2 connection and deactivating the last packet context will
effectively tear down the underlying layer-2 connection.

The MB driver model builds on these two constraints regarding the number of active
packet contexts at any given time in the following manner:

1. Each packet context can be activated only one time.

2. Only a single packet context can be activated at any given time.

It is mandatory that any miniport driver that conforms to the MB driver model sets the
MaxActivatedContexts member of the WWAN_DEVICE_CAPS structure to one, when
responding to OID_WWAN_DEVICE_CAPS query requests. Even if a miniport driver sets
this value to be greater than one, the MB Service ensures that, at most, only one packet
context is activated at any given time.

Because each packet context can be activated no more than one time, a static packet
context identifier can be used to identify the virtual circuit after being activated. The use
of this static identifier is still valid as long as the first constraint still holds.

For more information about packet context management, see
OID_WWAN_PROVISIONED_CONTEXTS and OID_WWAN_CONNECT.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps

Multiple PDP contexts
Article • 12/15/2021

UWP mobile broadband apps can take advantage of multiple Packet Data Protocol
(PDP) contexts to activate a special PDP context and specify rules to route data traffic.
These apps can create rules for specific destinations or for all data traffic.

When the mobile broadband app needs to exchange data with the network, it checks
the available and connected networks. If the mobile broadband app has a special rule
for any of these networks, it uses the Connection Manager API to open a special PDP
context. If this connection is successful, the PDP context provides routing rules for this
connection and transfers the data using networking APIs. The mobile broadband app
should repeat this if it receives the NetworkStatusChanged event to see whether any
connections have changed and whether it needs to open a PDP context for the new
connection.

You can use multiple PDP contexts to enable premium services.

Differentiated Billing – You can vary the data or billing restrictions by using
multiple PDP contexts. For example, Contoso is a mobile operator that developed a
data backup app for their customers. As a mobile operator, Contoso could create
multiple PDP contexts and let premium subscribers use the app for free. All other
subscribers are charged separately to use it.

Rich Communication Services – A global initiative created by the GSM Association
to provide rich communication services, such as an enhanced phonebook,
enhanced messaging, and enriched calling. Rich Communication Services provide
interoperability across mobile operators and offers new ways to use existing assets
and capabilities to deliver high quality and innovative communication services.

Sponsored Connectivity – This allows users to a specific type of content without it
going against their monthly data usage. The content provider makes an
arrangement to reimburse the mobile operator by paying them directly, doing a
revenue-sharing deal, or some other business arrangement.

Personal Hotspot – Some mobile operators charge different rates when the
connection is being used as a personal hotspot. You can use multiple PDP contexts
to differentiate between the two.

Usage scenarios

https://learn.microsoft.com/en-us/uwp/api/Windows.Networking.Connectivity.NetworkInformation#Windows_Networking_Connectivity_NetworkInformation_NetworkStatusChanged

For more information, see Developing apps using multiple PDP contexts.

Primary Flow

App activates additional PDP contexts:

Additional NetAdapter Initialization

https://learn.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/developing-apps-using-multiple-pdp-contexts

1. Double check and update the "Is Default Profile" condition logic, as it is no longer
applicable.

Decision Logic in WwanSvc for Additional PDP
Context Connections

2. WCM should no longer use the cost property of the default profile.
3. If the new additional pdp context APN request coincides with the default internet

APN, disconnect the current additional PDP context.

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run the test:
Win6_4.MB.GSM.Data.TestMPDP.

1. Logs can be collected and decoded using these instructions: MB Collecting Logs
2. Open the .txt file in TextAnalysisTool
3. Load the Bacis Connectivity filter

Hardware Lab Kit (HLK) Tests

MB Multiple PDP context Troubleshooting
Guide

Sample log

e 04-01 12:39:12.798 P4912 T8420 Microsoft-Windows-WWAN-NDISUIO-EVENTS WWAN
NDISUIO Event: OID request sent to the driver
0 Info Microsoft-Windows-WWAN-NDISUIO-EVENTS
e 04-01 12:39:12.798 P4912 T8420 Windows Mobile Broadband Class Driver Event
Provider [1] Miniport Request called Request=0xFFFFE3862EFF4A80,
OID=0xE010149, OID name=OID_WWAN_MPDP RequestId=0x10F, RequestHandle=0x0,
Type=1, InformationLength=32 0 Info Windows Mobile
Broadband Class Driver Event Provider
w 04-01 12:39:12.798 P4912 T8420 mbbcx [ReqMgr][ReqId=0x04ad]
Request created for OID_WWAN_MPDP [RequestContext=0xFFFFE386247597F0
OidRequest=0xFFFFE3862EFF4A80] SET=0x00000001(TRUE) MbbReqMgrCreateRequest
requestmanager_cpp702 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.798 P4912 T8420 mbbcx [ReqFsm][ReqId=0x04ad]
Transition: MbbRequestStateReady -> MbbRequestStateDispatching
event=MbbRequestEventDispatch MbbReqMgrQueueEvent requestmanager_cpp1002
TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.798 P4912 T8420 mbbcx [ReqMgr][Timer]
MbbTimerTypeRequest already armed at 3fc53, not re-arming
MbbReqMgrTimerArm requestmanager_cpp1269 TRACE_LEVEL_WARNING
w 04-01 12:39:12.798 P4912 T8420 mbbcx [ReqMgr][ReqId=0x04ad],
IsPoweredRequest [0x00000001(TRUE)], IsSerialized[0x00000001(TRUE)],
IsQueueEmpty[0x00000001(TRUE)], DispatchRequest [0x00000000(FALSE)]
MbbReqFsmDispatching requestmanager_cpp1522 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.798 P4912 T8420 mbbcx
MbxDevice::QueuePoweredRequest: WDFREQUEST (0x00001C79D4B06DB8) is sent
MbxDevice::QueuePoweredRequest mbxdevice_cpp1339 TRACE_LEVEL_INFORMATION
e 04-01 12:39:12.798 P4912 T8420 Windows Mobile Broadband Class Driver Event
Provider [1] Miniport REQUEST exited with status=The operation that was
requested is pending completion., Request=0xFFFFE3862EFF4A80 0
Info Windows Mobile Broadband Class Driver Event Provider

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/08497822-4355-478b-9cba-0c0c7b663953

w 04-01 12:39:12.808 P0004 T0376 mbbcx EvtCxPreD0Entry:
previousPowerState: 3
EvtCxPreD0Entry mbxdevice_cpp1583 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.808 P0004 T0376 cxwmbclass EvtDeviceD0Entry:
previousPowerState: 3
EvtDeviceD0Entry power_cpp19 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.808 P0004 T0376 usbbus Entered Enabled=1
MbbBusSetNotificationState businit_c2606 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.808 P0004 T0376 usbbus MbbUsbDeviceStartDataPipes:
Entered
MbbUsbDeviceStartDataPipes datapipe_c228 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.809 P0004 T0376 usbbus MbbUsbDeviceStartDataPipes:
Exited
MbbUsbDeviceStartDataPipes datapipe_c286 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.809 P0004 T0376 mbbcx
MbxDevice::PostD0EntryPostHardwareEnabled: previousPowerState: 3
MbxDevice::PostD0EntryPostHardwareEnabled mbxdevice_cpp1933
TRACE_LEVEL_INFORMATION
e 04-01 12:39:12.810 P0004 T0376 Microsoft-Windows-NDIS Miniport {c2d9b876-
8b20-4cdd-a944-044fd39a97dc}, DeviceState[0x1]
Power 0 Microsoft-Windows-NDIS
e 04-01 12:39:12.812 P0004 T0376 Microsoft-Windows-NDIS Miniport {156ce913-
cc77-487d-8838-4811ce860b0e}, DeviceState[0x1]
Power 0 Microsoft-Windows-NDIS
e 04-01 12:39:12.813 P0004 T0376 Microsoft-Windows-NDIS Miniport {1e58668f-
811b-407d-b288-e1f57a432a24}, DeviceState[0x1]
Power 0 Microsoft-Windows-NDIS
e 04-01 12:39:12.815 P0004 T0376 Microsoft-Windows-NDIS Miniport {468c0f8c-
df7f-4619-85fd-c24ccebdeda3}, DeviceState[0x1]
Power 0 Microsoft-Windows-NDIS
w 04-01 12:39:12.815 P0004 T0376 mbbcx
MbxDevice::EnableWakeReasonReporting
MbxDevice::EnableWakeReasonReporting mbxdevice_cpp2099
TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 cxwmbclass EvtDeviceDisarmWakeFromS0:
The device is disarmed for wake
EvtDeviceDisarmWakeFromS0 power_cpp130 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 mbbcx MbxDevice::DisarmWake: Start
MbxDevice::DisarmWake mbxdevice_cpp1685 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 mbbcx [ReqMgr][ReqId=0x04ae]
Internal Request created [RequestContext=0xFFFFE38624757650]
MbbReqMgrCreateRequest requestmanager_cpp713 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 mbbcx [ReqFsm][ReqId=0x04ae]
Transition: MbbRequestStateReady -> MbbRequestStateDispatching
event=MbbRequestEventDispatch MbbReqMgrQueueEvent requestmanager_cpp1002
TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 mbbcx [ReqMgr][Timer]
MbbTimerTypeRequest already armed at 3fc53, not re-arming
MbbReqMgrTimerArm requestmanager_cpp1269 TRACE_LEVEL_WARNING
w 04-01 12:39:12.815 P0004 T0376 mbbcx [ReqMgr][ReqId=0x04ae],
IsPoweredRequest [0x00000000(FALSE)], IsSerialized[0x00000001(TRUE)],
IsQueueEmpty[0x00000001(TRUE)], DispatchRequest [0x00000001(TRUE)]
MbbReqFsmDispatching requestmanager_cpp1522 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 mbbcx [ReqFsm][ReqId=0x04ae]
Transition: MbbRequestStateDispatching -> MbbRequestStateSendPending

event=MbbRequestEventStart MbbReqMgrQueueEvent requestmanager_cpp1002
TRACE_LEVEL_INFORMATION
e 04-01 12:39:12.815 P0004 T0376 Windows Mobile Broadband Class Driver Event
Provider Sending command with the following parameters:
Caller Request Id: 0x0
Driver Request Id: 0
Service Id: {000004ae-cc33-a289-bbbc-4f8bb6b0133e}
Command Name: REDACTED-EMBEDDED-HEXREDACTED-EMBEDDED-HEXREDACTED-EMBEDDED-
HEXREDACTED-EMBEDDED-HEXBASIC_NOTIFY_DEVICE_SERVICE_UPDATES
Command Id: 19
Payload Length: 324
Payload:
0x0600000034000000640000009800000028000000C000000018000000D80000001C000000F4
00000034000000280100001C000000A289CC33BCBB8B4FB6B0133EC2AAE6DF14000000010000
0002000000030000000400000005000000060000000700000008000000090000000A0000000B
0000000C0000000D0000000F0000001000000013000000140000001500000016000000170000
00533FBEEB14FE44679F9033A223E56C3F050000000100000002000000030000000400000005
000000E550A0C85E82479E82F710ABF4C3351F01000000010000001D2B5FF70AA148B2AA5250
F15767174E0200000001000000030000003D01DCC5FEF54D050D3ABEF7058E9AAF0800000001
0000000300000004000000050000000600000007000000080000000A00000068223D049F6C4E
0F822D28441FB72340020000000100000002000000 0 Info Windows
Mobile Broadband Class Driver Event Provider
e 04-01 12:39:12.815 P0004 T0376 Windows Mobile Broadband Class Driver Event
Provider for OPN Sending command MessageType: 0x3, MessageLength: 372,
MessageTransactionId: 533, TotalFragments: 1, CurrentFragment: 0, ServiceId:
{a289cc33-bcbb-8b4f-b6b0-133ec2aae6df}, CommandId: 19, CommandType: 1,
InformationBufferLength: 324, InformationBuffer:
0x0600000034000000640000009800000028000000C000000018000000D80000001C000000F4
00000034000000280100001C000000A289CC33BCBB8B4FB6B0133EC2AAE6DF14000000010000
0002000000030000000400000005000000060000000700000008000000090000000A0000000B
0000000C0000000D0000000F0000001000000013000000140000001500000016000000170000
00533FBEEB14FE44679F9033A223E56C3F050000000100000002000000030000000400000005
000000E550A0C85E82479E82F710ABF4C3351F01000000010000001D2B5FF70AA148B2AA5250
F15767174E0200000001000000030000003D01DCC5FEF54D050D3ABEF7058E9AAF0800000001
0000000300000004000000050000000600000007000000080000000A00000068223D049F6C4E
0F822D28441FB72340020000000100000002000000 0 Info Windows
Mobile Broadband Class Driver Event Provider for OPN
w 04-01 12:39:12.815 P0004 T0376 usbbus Sending 372 bytes on control
channel
MbbBusSendMessageFragment businit_c1472 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0004 T0376 usbbus SetActivityIdForRequest
succeeded. Set request activityId = 207b1c4a-085c-0001-270f-83205c08d601
SetActivityIdForRequest businit_c1383 TRACE_LEVEL_INFORMATION
e 04-01 12:39:12.815 P0004 T0376 Windows Mobile Broadband Class Driver Event
Provider [1] Send encapsulted command MessageType=0x3, MessageLength=372,
TransactionId=533, TotalFrags=1, CurrentFrag=0, ServiceId={33cc89a2-bbbc-
4f8b-b6b0-133ec2aae6df}, CID=19, CommandType=1, InfoLength=324 0
Info Windows Mobile Broadband Class Driver Event Provider
w 04-01 12:39:12.815 P0004 T0376 mbbcx [Util][ReqId=0x04ae]
[TID=0x00000215] Pending send Fragment 00/01
MbbUtilSendMessageFragments util_cpp1269 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0000 T0000 usbbus CompletionRoutine() for
request 00001C79D4105668 status=STATUS_SUCCESS
SendCompletionRoutine businit_c1398 TRACE_LEVEL_INFORMATION
w 04-01 12:39:12.815 P0000 T0000 mbbcx [Util][ReqId=0x04ae]

[TID=0x00000215] 01/01 fragment completed with status=STATUS_SUCCESS
MbbUtilSendMessageFragmentComplete util_cpp1401 TRACE_LEVEL_INFORMATION
e 04-01 12:39:12.815 P0000 T0000 Windows Mobile Broadband Class Driver Event
Provider Sending command completed with status STATUS_SUCCESS. Command was
sent with the following parameters:

MB DNS Updates
Article • 03/14/2023

This topic describes the operations to notify the MB Service about DNS address updates.

Miniport drivers should set the NameServer registry key to update Windows about DNS address changes. The following table
describes the appropriate registry key, the expected value and an example string for IPv4 and IPv6 networks. If a miniport driver
supports only IPv4 networks, it should set only the IPv4 registry key. Miniport drivers should set the appropriate registry key(s)
before they notify Windows about media connect events by sending NDIS_STATUS_LINK_STATE notifications.

IPv4
/
IPv6

Registry Key Value Example

IPv4 HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\InterfaceGUID\NameServer Space-
separated
DNS
server
IPv4
addresses

10.20.30.41

10.20.30.40

IPv6 HKLM\SYSTEM\CurrentControlSet\Services\Tcpip6\Parameters\Interfaces\InterfaceGUID\NameServer Space-
separated
DNS
server
IPv6
addresses

2001:4898:7001:f000:1:2:3:4

2001:4898:7001:f000:1:2:3:5

These operations should be used only when the miniport driver specifies EnableDhcp to equal zero in its INF file. That is, the
miniport driver does not implement DHCP.

For more information about processing IP address notifications, see Guidelines for MB Miniport driver IP Address Notifications.

MB SMS Operations
Article • 03/14/2023

This topic describes the operations to configure, read/receive, send, and delete
messages using Short Message Service (SMS) capabilities of an MB device.

SMS support is mandatory. Miniport drivers must set the appropriate send and receive
SMS capability flags that they support when processing OID_WWAN_DEVICE_CAPS
query requests in the WwanSmsCaps member of the WWAN_DEVICE_CAPS structure. If
miniport drivers do not support SMS, they should specify WWAN_SMS_CAPS_NONE and
return WWAN_STATUS_SMS_UNKNOWN_ERROR for all SMS-related OIDs.

Miniport drivers should only process SMS operations after OID_WWAN_READY_INFO
returns WwanReadyStateInitialize as the device ready-state. Miniport drivers should
process some SMS operations, such as sending a SMS message, only after the device is
registered on a provider network (though not necessarily data service registration).

The MB Service does not differentiate between different message stores available in the
device. Therefore, miniport drivers must handle all message stores and project a single
virtual message store accessed by means of a virtual index. For example, if the device
has three message stores, the miniport driver must handle all of them collectively and
present them as a single message store to the service.

The MB driver model supports the following SMS Operations:

SMS configuration

Read SMS

Send SMS

Delete SMS

We recommend miniport drivers support SMS configuration, read, send, and delete
operations, as well as notifying the user of any new SMS message received by a device.

For more information about SMS operations, see OID_WWAN_SMS_CONFIGURATION,
OID_WWAN_SMS_READ, OID_WWAN_SMS_SEND, OID_WWAN_SMS_DELETE, and
OID_WWAN_SMS_STATUS.

Relevant Services and Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps

SmsRouterSvc.dll - The service that interacts with WwanSvc to handle sending and
receiving images

MbSmsApi.dll - Implementation of WinRT SMS API

UT_SmsRouter.dll - Is onboarded to Real Device Testing

SMS Architecture/Flows

SMS Block Diagram

SMS App Registration

Send SMS

API Receive Message

App Lifecycle

Service Lifecycle

The following tests are automated and onboarded to the RI-TP. They are run daily and
should pass 100%.

MobilebroadbandExperience\SmsApi

MobilebroadbandExperience\SMSCDMA

MobilebroadbandExperience\SMSDecodingTests

MobilebroadbandExperience\SMSEncodingTests

WWAN\SMS\Service\UnitTests

Testing

Automated SMS Tests

SmsApi Tests have different versions that run on desktop and onecoreuap. Desktop still
uses vnelib.dll (C++ version) because the CDMA part of SMS is not ported to
vnelibrary.dll (C# version). Therefore you will find two versions of functional test lists.

These are all the currently available HLK tests related to MB-SMS:

TestSms
CDMA, GSM

TestSmsStoreFull
CDMA, GSM

TestWake
CDMA: IncomingDataPacket, RegisterStateChange
GSM: IncomingDataPacket, RegisterStateChange

TestSimBad
GSM

TestDeviceCapsEx
CDMA
GSM

TestSIMNotInserted
GSM

Via netsh, you can run the test lists and HLK tests. For more information on using the
netsh tool see netsh mbn and netsh mbn test installation.

Logs can be collected and decoded using these instructions: MB Collecting Logs.

Hardware Lab Kit (HLK) Tests

Running Tests

netsh mbn test feature=sms testpath="C:\data\test\bin"
taefpath="C:\data\test\bin" param="AccessString=internet"

Special Messages

https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/d089c8f6-8973-4cd0-8931-cdc851dd1ee3
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/0045e280-e26a-44fe-88ec-98c6975a713b
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/fe377fdd-5fd6-40c4-a032-37f5d14a4c37
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/836c93b2-d6f4-4b23-b4af-d14d01547f08
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/eab2386a-1936-48d9-bdc2-3c89d5372fc5
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/d10ef539-a40f-4496-8183-c4d57c7eaf40
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/dab51ae1-91fc-4ce8-87e7-954a9128fce7
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/0f3f0b8f-356c-4434-ab35-3208e6e1631f
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/2be175c8-69a0-45a8-ad8a-01efa2cb393c
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/e4ec5199-0841-4864-ac17-b6b71f81cdf3
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/75c812d5-8c7d-4589-8336-7d72f2feb987
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/92b164f7-c0e6-4231-99e7-e51070c4bdf6
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

Operators can provision devices to handle particular messages earlier. This is no longer
available, but the feature has not been completely removed yet. The code
ProvisioningEngine processes the Operator Notifications. For more information see
Operator Notifications and Operator Events.

For more information on emergency alerts through SMS see SmsBroadcastMessage and
SmsBroadcastType.

There are two legacy SMS APIs, sms and smsSend.

cellularMessaging

For more information see UWP SMS.

Developing SMS apps

Operator Messages

Broadcast Messages

UWP Capabilities for SMS

Legacy SMS API

Latest SMS API

Other Relevant Links

https://learn.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/enabling-mobile-operator-notifications-and-system-events
https://learn.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/mobile-operator-notification-event-technical-details
https://learn.microsoft.com/en-us/uwp/api/windows.devices.sms.smsbroadcastmessage
https://learn.microsoft.com/en-us/uwp/api/windows.devices.sms.smsbroadcasttype
https://learn.microsoft.com/en-us/uwp/api/Windows.Devices.Sms
https://learn.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/developing-sms-apps

MB Vendor Specific Operations
Article • 03/14/2023

This topic describes the operations to interface vendor specific operations to the MB
Service.

For more information about vendor specific operations, see
OID_WWAN_VENDOR_SPECIFIC.

USSD Overview
Article • 12/15/2021

Unstructured Supplementary Service Data (USSD) is a communication protocol used by
Global System for Mobile Communications (GSM) devices to communicate with mobile
network operators (typically referred to as simply "MO").

To understand USSD it is helpful to compare it to its most closely-related sibling: short
message service (SMS). USSD and SMS are both GSM standards, meaning they were
introduced as features in the second generation of mobile devices. In contrast with SMS
however, USSD is a session-based connection. While SMS is used for short session-less
messaging, USSD is typically used for command and control of a mobile device. As it is a
necessary to maintain a session, USSD does not support store-and-forward capability as
SMS does. Both USSD and SMS messages are sent with 7-bit GSM-compliant characters,
but USSD maxes out at 184 characters in contrast with 160 for SMS.

USSD messages may be sent from a mobile phone by opening the dialer and typing a
code. Not all codes are supported by every phone or MO. In some cases, the phone
software or operating system may prevent manually sending codes. One required code
that must be implemented is *#06#. This code returns the International Mobile
Equipment Identifier (IMEI) of the modem, but some phones will prevent you from
dialing this directly. If you follow conventional means of locating the IMEI of the modem
through your phone's settings, that number was retrieved using this code.

If the phone hardware can directly handle a code's command like in the IMEI example,
no network session will be initiated. Other codes that require network communication
will open a session and then send a message consisting of a command and any
necessary parameters, if applicable. One example of this is a code which checks your
current balance and plan status with the MO.

USSD in Windows is implemented as a WinRT API surface. The implementation classes
of this interface serve as the state machine for USSD sessions, but ultimately rely on
WWAN Service to do the heavy lifting. These APIs are implemented with a factory
pattern.

A key thing to remember is that the public facing API is defined by the IDL.
Implementation can be confusing because of this, especially if you are unfamiliar with
WinRT. Part of the confusion comes from the seemingly ambiguous use of the word

Implementing USSD

'factory'. A factory can refer to either a class implementation of a static interface or a
true factory that provides an activatable interface to a runtime class.

This topic reviews WinRT concepts and then describes the implementation based on
these concepts. You may always refer to the IDL for further clarification.

Interfaces

Interfaces define the Application Binary Interface (ABI). They describe the functions that
you can call on any class that implements the interface.

Runtime Classes

These are the actual classes. They represent, by name, what is ultimately exposed as
class names to the ABI. Each runtime class may have zero or more interfaces (but must
declare at least one default interface if it has one or more interfaces), zero or more static
interfaces, and an activatable tag if necessary. Each of these interfaces are implemented
in different files as different "Impl" classes yet they will appear to be a single, unified
class to the ABI.

A typical interface appears as instance methods on an existing object.

A static interface appears to the client as static methods on the runtime class itself.

An activatable tag defines the factory interface that will produce an instance of a
runtime class. This is completely obfuscated to the client, appearing as a constructor for
that runtime class.

USSD Implementation

1. The client uses one of the static functions
UssdSession.CreateFromNetworkAccountId or
UssdSession.CreateFromNetworkInterfaceId to create the UssdSession object.

Flow: Open, Send, Receive, Close.

Open, Send

2. Regardless of the API called, a network interface ID is required to initialize a
UssdSession. In the case of *NetworkAccountID, steps are taken to retrieve the
network interface ID from the Account ID. CreateInternal() is called to create a
instance of UssdSession and invoke Initialize() on the newly-created instance.
During the initialization steps, a worker thread is spun up and an event handle to
trigger events for the thread is created. Steps 3 and 4 also take place during the
instance's Initialize().

3. Initialize() is called on the WwanWrapper member object. This function accepts a
static callback function as well as a context to allow the static function to map the
callback to an object context.

4. WwanWrapper opens a handle to WwanService, enumerates interfaces, and
subscribes to USSD notifications by providing a static callback function pointer and
"this" as context.

5. The UssdSession object is returned to the client.

6. The client constructs a new UssdMessage by invoking the constructor with a
message string. WinRT obfuscates the UssdMessageFactory in this process.

7. The client invokes SendMessageAndGetReplyAsync on the session object, passing
the UssdMessage instance.

8. At this time SendMessageAndGetReplyAsync creates a special operation object
called UssdSendMessageAndGetReplyOperation. From the its name, it appears that
the object encapsulates the logic of a single message being sent down the stack
(and waiting for reply), but this is not the case. WinRT requires a special out
parameter for asynchronous operations, which we can see as the 2nd parameter
on the definition for this function.

It is the IUssdSendMessageAndGetReplyOperation, a named interface through
typedef, that satisfies this parameter by promising that this operation will
inevitably return a UssdReply. This interface is not defined in the IDL, but is
implemented by the UssdSendMessageAndGetReplyOperationImpl class. Note that
the header for this class has a special extension:

HRESULT SendMessageAndGetReplyAsync(
 [in] UssdMessage* message,
 [out, retval]
Windows.Foundation.IAsyncOperation<UssdReply>** asyncInfo);

The UssdSendMessageAndGetReplyOperation object allows WinRT to obfuscate
the complexities of this asynchronous operation and all of the
compartmentalization and memory proxying that goes along with it. For more
information, see SendMessageAndGetReplyAsync.

For now, understand that the asynchronous operation described above simply calls
back into the UssdSession object where the logic for this operation is actually
contained. We can visualize for simplicity that the UssdSession itself encapsulates
the work here. We can now assert that, despite the asynchronous nature, only one
UssdMessage may be sent at a time.

What the SendMessageAndGetReplyAsync function actually does:

The UssdSession object changes to a busy state, stores the content of the
UssdMessage, and fires off the asynchronous action.
OnOperationStart() is the entry point for the asynchronous logic. Assume for
this scenario that there is no active session. This function creates a
WWAN_USSD_REQUEST object with RequestType=WwanUssdRequestInitiate.
Steps 9 and 10 occur as actions taken by this function.

9. m_wwanWrapper.SendRequest is invoked to handle the work of passing the
message to WwanService.

10. WwanWrapper uses the WwanService handle to invoke WwanService APIs to carry
out the action.

class UssdSendMessageAndGetReplyOperationImpl :
 public Microsoft::WRL::RuntimeClass<

Windows::Networking::NetworkOperators::IUssdSendMessageAndGetReplyOpera
tion,

Windows::Internal::AsyncBaseFTM<IUssdSendMessageAndGetReplyCompletedHan
dler, Microsoft::WRL::SingleResult>>

Receive

https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.ussdsession.sendmessageandgetreplyasync

After step 10, we are left in a state where a request was sent to WwanService to initialize
a new USSD session and send a USSD message under that session. After some time, the
reply will be available.

11. WwanService will invoke the static callback function provided in step 4 with the
context that was also attached.

12. The context will be used to retrieve the WwanWrapper instance and invoke
NotificationCallback().

13. WwanWrapper will follow the same pattern as step 11, invoking a static callback to
UssdSession, providing the context stored in step 3.

14. Similar to step 12, the context is used to invoke the callback on an instance of
UssdSession.

15. The UssdSession stores the WWAN_USSD_EVENT (under a lock) and notifies the
worker thread to handle the event.

16. HandleOperationReply() takes the existing
UssdSendMessageAndGetReplyOperationImpl object and passes the event data to
its internal handler.

17. The operation will construct and UssdReply and invoke FireCompletion() to mark
the async action as finished.

18. WinRT obfuscates the completion of the asynchronous action to the client. (Either
they have awaited the action or have callback logic.)

More messages can be sent under the same session. If the session was maintained, the
future RequestType will be WwanUssdRequestContinue.

Close

After step 18, the client has received the reply to their UssdMessage. They may or may
not have continued to use the active UssdSession to send additional messages. We will
assume that at some point in the future, the client will manually invoke Close() on the
UssdSession. If the client does not explicitly invoke Close(), it will be called during the
destructor of UssdSession.

19. Client invokes Close() on the UssdSession instance.
20. A WWAN_USSD_REQUEST is created with RequestType=WwanUssdRequestCancel.
21. The request is sent to m_wwanWrapper as in step 9.
22. The request is sent to WwanService as in step 10.

The result of this request is unimportant. For all intents and purposes, the session is
closed. Even in the extreme edge case where the message is somehow never delivered,
a new USSD session will always override an existing session.

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run the test:
Win6_4.MB.GSM.Data.TestUssd.

Collect and decod the logs using the instructions in MB Collecting Logs.

Keywords for filtering

1. OID_WWAN_USSD
2. NDIS_STATUS_WWAN_USSD
3. WWAN_USSD_REQUEST
4. WWAN_USSD_EVENT

Hardware Lab Kit (HLK) Tests

MB USSD Troubleshooting Guide

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/17ae6fea-6244-442d-b977-6367d1ae441e

MB USSD Operations

See Also

MB USSD Operations
Article • 03/14/2023

This topic describes the operations to send and receive messages using the
Unstructured Supplementary Service Data (USSD) capabilities of an MB device.

USSD support is optional and when supported is only available on GSM networks.
Miniport drivers that support USSD must set the WWAN_CTRL_CAPS_USSD capability
flag as part of the WwanControlCaps member of the WWAN_DEVICE_CAPS structure
when processing OID_WWAN_DEVICE_CAPS requests. If miniport drivers do not support
USSD, they must not set this flag and should return
WWAN_STATUS_NO_DEVICE_SUPPORT for all USSD-related OIDs.

The MB driver model supports the following USSD operations: Device initiated
operations:

Sending a USSD message on a newly created USSD session

Sending a USSD message on a newly created USSD session

Sending a USSD message on an existing USSD session

Terminating the USSD session

For more information on device initiated operations, see OID_WWAN_USSD.

Network initiated operations:

Receiving a USSD message on a newly created USSD session

Receiving a USSD message on an existing USSD session

Termination the USSD session

For more information on network initiated operations, see NDIS_STATUS_WWAN_USSD.

The USSD protocol only allows a single USSD session at any time. For device initiated
operations, the RequestType member of the WWAN_USSD_REQUEST structure
indicates the purpose of the request OID:

WwanUssdRequestInitiate is used to create a new USSD session and send the
provided USSD string to the network. If a USSD session already exists, the driver
must fail the request with an event of type WwanUssdEventOtherLocalClient. A
USSD string must be present. For example, the length must be between 1 and 160
bytes.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_ussd_request

WwanUssdRequestContinue is used to send a USSD string on an existing session.
A USSD string must be present. For example, the length must be between 1 and
160 bytes.

WwanUssdRequestCancel is used to terminate the existing session. The driver
must respond with an event of type WwanUssdEventTerminated, even if no
session existed (which may happen during a concurrent release of the session from
the network and the local client). The content of the USSD string must be ignored
for this request; the string length is set to zero to indicate that there is no USSD
string.

For network initiated operations, the EventType member of the WWAN_USSD_EVENT
structure indicates the high level purpose of the indication:

The event WwanUssdEventNoActionRequired is used for network initiated USSD
notifications, or when no further information is needed after a mobile initiated
operation. The event WwanUssdEventActionRequired is used for network initiated
USSD requests, or when further information is needed after a mobile initiated
operation. Both events require a non-empty USSD string to be present. The
SessionState member is used to indicate if the USSD string is the first message of a
USSD session; it must be set to WwanUssdSessionStateNew for the first message
of a network initiated USSD session and to WwanUssdSessionStateExisting in all
other cases.

The event WwanUssdEventActionRequired also indicates that the session is still
open. All other events indicate that the session has been closed.

The events WwanUssdEventNoActionRequired and
WwanUssdEventActionRequired are the only events that contain a USSD string. All
other events must set the USSD string length to 0 to indicate that the string is
absent. The value of the SessionState member is ignored if no string is present.

The event WwanUssdEventTerminated is used to indicate that the USSD session
has been terminated.

The event WwanUssdEventOtherLocalClient is used to indicate that a new USSD
session cannot be established because there is already a session opened. This
includes sessions that are invisible to the MB stack such as a USSD session
termination in the SIM.

The event WwanUssdEventOperationNotSupported is used to indicate that the
previous request is not supported by the driver or device.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_ussd_event

The event WwanUssdEventNetworkTimeOut is used to indicate that the session
was closed due to a session timeout either by the network or locally. The driver or
device is responsible for timing out an inactive USSD session after an
implementation specific timeout.

MB Device Services
Article • 03/14/2023

Windows 7 introduced a NDIS (Network Device Interface Specification) based driver
model for supporting Mobile Broadband (MB) devices. Windows 8 expanded the model
to implement a standardized hardware interface for USB-based Mobile Broadband
devices. This hardware interface specification is referred as the Mobile Broadband
Interface Model (MBIM).

Windows 8 provides an updated class driver that works with devices conforming to the
MBIM specification. This model is referred to as the MB Class Driver. However, no class
driver can support all of the functionality exposed by an MB device. In order to allow
IHV partners to continue to innovate, the MB Class Driver provide mechanisms, such as
the IMbnDeviceService interface to allow IHVs to extend the behavior of the class driver
functionality.

Note Functionality to extend MB devices services is accomplished via a user-mode
application, not a kernel-mode driver extension.

While the class driver introduced in Windows 7 featured limited MB device feature
support, the MB Class Driver in Windows 8 added native support for some additional
features such as USSD, EAP-SIM/AKA and USB selective suspend, and offers an
extensible device representation and control mechanisms. The Mobile broadband WinRT
API overview provides some additional information about extending device services.

The MB Class Driver in Windows 8 enables vertical solution providers to use the Mobile
Broadband API Interfaces to create enhanced user experiences that are outside of those
provided by Windows. The extension mechanism is a way to augment, but not to
replace, the functionality supported in the MB Class Driver itself. For example, an IHV
can provide vendor-specific software that performs firmware updates on the device. Or,
an IHV can provide vendor-specific software that provides value-add services such as
SIM toolkit (STK) or Phonebook. The AppContainer mobile broadband pin, connection
and management sample demonstrates Win32/COM Mobile Broadband APIs within the
AppContainer to access and manage mobile broadband features.

In addition to providing a mechanism to extend the MB Class Driver' functionality,
Windows also provides mechanisms to enable IHVs to deploy and install their value-add
software through Windows Update (WU).

For more information see:

https://learn.microsoft.com/en-us/windows/win32/api/mbnapi/nn-mbnapi-imbndeviceservice
https://learn.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/list-of-mobile-broadband-windows-runtime-apis
https://learn.microsoft.com/en-us/windows/desktop/mbn/mobile-broadband-networks-api-interfaces
https://learn.microsoft.com/en-us/samples/browse/

The "MBIM Service and CID Extensibility" section of the Mobile Broadband
Interface Model (MBIM) specification

https://go.microsoft.com/fwlink/p/?linkid=320791

MB Multimode Multicarrier
Article • 03/14/2023

This topic describes the support for MB multimode multicarrier that has been integrated
into mobile broadband for Windows 8. Windows 8 introduces native support that allows
users of carrier-unlocked mobile broadband devices that support carrier switching (most
mobile broadband users outside the US) to select and connect to any supported carrier
from within the Windows UI.

These features are targeted at IHVs to enable them to implement support for this
scenario. They supplement the USB NCM (MBIM) spec (current version 1.0) that use the
CIDs and device behavior required for supporting the MB multimode multicarrier
scenario.

For more information see the following topics:

MB Provider Operations

OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers

MB Multi-SIM operations
Article • 03/14/2023

Traditionally, non-phone Windows devices have not been configured for multi-SIM modems
because they have fewer physical space restraints than phones. This allows them to truly
harness multiple active radios at the same time instead of having one modem with multiple SIM
cards like a phone does; however, due to the rise of eSIM and scenarios in the enterprise , the
demand for multi-SIM-per-modem support on non-phone devices has increased.

Most typical multi-SIM phone devices have dual SIM slots but are limited to one primary SIM
card supporting data while the other only supports voice features. Such a limitation does not
exist in the non-phone PC model as all SIM cards are used for data connection.

While the framework defined in this specification can theoretically support an unbounded
number of modems and SIM cards, Windows 10, version 1703 and later supports only the dual-
SIM/single-active (DSSA) scenario end to end.

It is possible to support dual-SIM/dual-active functionality with multiple independent modems,
where each modem is a separate device and operates completely independently. However, this
is outside this documentation’s scope, which instead focuses on a WWAN miniport modem that
is capable of presenting multiple and simultaneous cellular stacks to the host. This section
defines the various objects and establishes the terminology used in all MB documentation
related to multi-SIM functionality.

Advancements in hardware have resulted in devices that can maintain simultaneous
registrations with multiple cellular networks. In such devices, there are assumed to be “multiple
instances of the cellular stack” running in parallel which are each able to maintain registration,
monitor signal strengths, perform handovers and listen for incoming pages. Each instance of
this “cellular stack” will be referred to as an executor for the rest of this document. For example,
in a device capable of maintaining registrations with two networks simultaneously the modem
hardware is considered to have two executors.

The executor is a logical representation of the hardware and may in fact be one single hardware
transceiver being multiplexed. Exact hardware specifics are regarded as vendor implementation
details and are out of scope for this specification. For an NDIS miniport driver, executors are

Desktop Multi-Modem Multi-Executor Support

NDIS Modem Interface Specification

Existing Interface and Feature Gaps

exposed as multiple instances of a WWAN miniport adapter. For an MBIM modem, executors
are represented by multiple MBIM functions on an enumerated composite device.

The following two images illustrate the logical view of a dual SIM modem. Each shows a
possible combination of executor and UICC.

The cellular stack inside an executor is considered mostly self-contained except in the case of a
Dual Standby modem implementation where the executor conducting traffic (voice and/or
data) may prevent the other from maintaining registration.

The following diagram illustrates the logical view of a dual standby modem. Traffic on Executor
0, a phone call, causes Executor 1 to lose registration.

The Windows Desktop modem interface model in NDIS 6.7 does not accommodate such an
architecture because it is based upon several implicit assumptions:

The model assumes that there is a single executor within the modem.
The model assumes that there is a single UICC card directly associated with the modem
hardware.
The UICC is treated as if it were a single-application SIM card.

By contrast, the Microsoft Radio Interface Layer (RIL) interface on Windows Mobile explicitly
exposes the multiplicity of these assumptions. The Mobile Broadband interface in Windows
Mobile exposes the ability to register independently through separate miniports and assumes
that some basic configuration of the device has already been accomplished through the RIL
interface. To provide equivalent functionality, Windows Desktop must provide mechanisms to
discover the number of executors and slots, to access executors independently, to define the
mapping between executors and slots, and to define the applications within the mapped UICC
card that each executor will use.

For more information about cellular architecture and the differences between Windows 10
Mobile and Desktop, please see Cellular architecture and implementation.

The following figure shows an abstract model of a modem.

Each modem is identified by a globally unique identifier (GUID) and contains a set of one or
more executors, each of which is capable of independent registration on a cellular network.
Each executor has an associated executor index, an integer, beginning with 0 for the first
executor. In addition, the modem exposes one or more slots that may contain UICC cards. It is
assumed is that the number of slots is greater than or equal to the number of executors. Each

Major Objects and Operations

slot has an associated index, also beginning with 0, and a current state related to the power
state of the slot and availability state of a card in the slot (if any).

To maintain compatibility with existing modems, each executor operates with information
provided by a UICC card in a single slot. The association between executors and slots is defined
by slot mapping, which maps each executor to exactly one slot.

A slot may contain a UICC card; each card contains one or more UICC applications such as a
USIM, CSIM, ISIM, or possibly other telephony and non-telephony applications such as
PKCS#15 or Global Platform applications for an NFC secure element. The addressing and use of
these individual UICC applications is a topic for future specification and out of scope of this
documentation.

The Windows Desktop NDIS interface to the modem is characterized by the exchange of OIDs
and NDIS notifications. In most cases these OIDs are directed to individual executors; however,
a few commands and notifications are scoped to the modem.

For non-Windows Mobile operating systems, a multi-executor modem appears as one device
with multiple physical WWAN miniport instances. Each physical miniport instance represents an
executor that can maintain registration as an NDIS instance. Additional virtual instances may be
created at runtime to manage context-specific packet data and device service sessions.
Executor-specific commands and notifications are exchanged through the WWAN miniport
NDIS physical instance representing that executor. Modem-specific commands (in other words,
those that are not executor-specific) and their corresponding notifications may be sent to or
come from any physical miniport instance.

The following two diagrams show the difference in executor-specific commands and
notifications (the first diagram), where commands and notifications go through and come from
the same executor, and modem-specific commands and notifications (the second diagram),
where commands may go through any executor and come from any executor.

All OID set or query requests issued to a miniport instance are executed against the modem
and executor with which the miniport instance is associated. Likewise, all unsolicited
notifications and unsolicited Device Service events sent from a miniport instance are applicable
to the modem and the executor with which the miniport instance is associated. For example, an
unsolicited NDIS_STATUS_WWAN_REGISTER_STATE or NDIS_STATUS_WWAN_PACKET_SERVICE
notification from a miniport indicates the registration (or packet service state) of the associated
modem and the executor only and is unrelated to the state of other modem(s) or other
executor(s).

When there are multiple modems and/or multiple executors in a device, the physical miniport
adapter associated with that modem and executor combination issues non-context-specific
unsolicited notifications related to a particular modem and executor combination.

In the same way, if a device has multiple modems and/or multiple executors, the physical
miniport adapter instance associated with a particular modem and executor combination can
receive non-context-specific OID query requests related to that modem and executor. The
adapter receiving such a query request processes it according to the OID definition. If so
chosen by miniport driver, this query request can be processed concurrently with any other in-
process OID set or query requests in any instance of adapters associated with that modem and
executor. All instances of a miniport adapter associated with a same modem and executor
report the same state information for that cellular modem and executor (such as radio power
state, registration state, packet service state, etc.).

For a device which has multiple modems and/or multiple executors, the physical miniport
adapter instance associated with a modem and executor combination can receive non-context-
specific OID set requests. The miniport driver shall keep track of the progress of such a request.
If one such set request is in progress in any adapter and has not completed yet, a second such
set request attempt (to any adapter instance associated with the same modem and executor)
shall be queued and processed after the previous requests have completed.

The Windows 10 desktop WMBCLASS driver follows the specification outlined in the previous
paragraph to handle this set request race condition, but if the race condition occurs at the

modem layer the modem should follow the same guidance to queue up conflicting device-wide
commands on the MBIM function if it is still processing another function that is linked to the
same underlying device.

To query the number of devices (executors) and slots in the modem, as well as the number of
executors that may be active concurrently, the host uses OID_WWAN_SYS_CAPS.

To query the capability of an executor, the host uses OID_WWAN_DEVICE_CAPS_EX.

To define the slot that is bound to each executor or query the current mapping, the host uses
OID_WWAN_DEVICE_SLOT_MAPPINGS.

To query the status of a particular slot on the modem, the host uses
OID_WWAN_SLOT_INFO_STATUS.

With the addition of the executor concept to non-Windows Mobile devices in Windows 10,
version 1703 and later, OIDs are now split into two categories: per-device OIDs and per-
executor OIDs. The table below explains which OIDs fall into which category.

Per-device or Per-executor OID name

Per-device OID_WWAN_DRIVER_CAPS

OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS

OID_WWAN_ENUMERATE_DEVICE_SERVICES

OID_WWAN_PRESHUTDOWN

OID_WWAN_VENDOR_SPECIFIC

OID_WWAN_SYS_CAPS

OID_WWAN_DEVICE_SLOT_MAPPINGS

Per-executor OID_WWAN_AUTH_CHALLENGE

OID_WWAN_CONNECT

OID_WWAN_DEVICE_CAPS

OID_WWAN_DEVICE_CAPS_EX

OID_WWAN_DEVICE_SERVICE_COMMAND

OID_WWAN_DEVICE_SERVICE_SESSION

OIDs for Set and Query Requests

Per-device and Per-executor Commands

Per-device or Per-executor OID name

OID_WWAN_DEVICE_SERVICE_SESSION_WRITE

OID_WWAN_DEVICE_SERVICES

OID_WWAN_HOME_PROVIDER

OID_WWAN_NETWORK_IDLE_HINT

OID_WWAN_PACKET_SERVICE

OID_WWAN_PIN

OID_WWAN_PIN_EX

OID_WWAN_PIN_LIST

OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

OID_WWAN_PREFERRED_PROVIDERS

OID_WWAN_PROVISIONED_CONTEXTS

OID_WWAN_RADIO_STATE

OID_WWAN_READY_INFO

OID_WWAN_REGISTER_STATE

OID_WWAN_SERVICE_ACTIVATION

OID_WWAN_SIGNAL_STATE

OID_WWAN_SMS_CONFIGURATION

OID_WWAN_SMS_DELETE

OID_WWAN_SMS_READ

OID_WWAN_SMS_SEND

OID_WWAN_SMS_STATUS

OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS

OID_WWAN_USSD

OID_WWAN_VISIBLE_PROVIDERS

OID_WWAN_SLOT_INFO_STATUS

７ Note

OID_WWAN_RADIO_STATE has been updated for Windows 10, version 1703 as well. See
OID_WWAN_RADIO_STATE for more information.

For non-Windows Mobile operating systems, a multi-executor modem appears as one USB
composite device with multiple MBIM functions. Each MBIM function represents an executor
that can maintain registration. Executor-specific commands and notifications are exchanged
through the MBIM function representing that executor, while modem-specific commands (in
other words, those that are not executor-specific) and their corresponding notifications may be
sent to or come from any MBIM function that belongs to the same underlying USB composite
device.

All CID set or query requests issued to a MBIM function are executed against the modem and
executor with which the miniport instance is associated; likewise, all unsolicited notifications
sent from a MBIM function are applicable to the modem and the executor with which the MBIM
function is associated. In the same way, all unsolicited Device Service events sent from a
miniport instance are applicable to the modem and the executor with which the MBIM function
is associated. For example, an unsolicited MBIM_CID_REGISTER_STATE or
MBIM_CID_PACKET_SERVICE notification from a MBIM function indicates the registration or
packet service state of the associated modem/executor only and is unrelated to the state of
other modem(s) or other executor(s).

When there are multiple modems and/or multiple executors in a device, non-context-specific
unsolicited notifications related to a particular modem and executor combination shall be
issued from the MBIM function associated with the aforementioned modem and executor.

In a device with multiple modems and/or multiple executors, non-context-specific CID query
requests related to a particular modem and executor may be issued to the MBIM function
associated with that modem and executor combination. The function receiving such a query
request shall process it according to the CID definition. If so chosen by the modem firmware,
such a query request may be processed concurrently with any other CID set or query requests
being processed by any MBIM functions associated with that modem and executor. All MBIM
functions associated with the same modem shall report the same state information for that
cellular modem in addition to the executor that they represent.

When there are multiple modems and/or multiple executors in a device, non-executor-specific
CID set requests may be issued to the MBIM function associated with that modem and
executor. The modem shall keep track of the progress of such requests as a whole. If one such
set request is in progress in any adapter and has not completed yet, a second such set request
attempt (to any adapter instance associated with the same modem and executor) shall be
queued and processed after the previous requests have been completed.

The following diagram illustrates the information flow between the WWANSVC and MBIM
functions in two different modems.

MBIM Interface Update for Multi-SIM Operations

This section contains the detailed modem-wide and per-executor CID descriptions for the
defined device services. The definitions reference back to existing public MBIM1.0 specification.
An MBIM-compliant device implements and reports the following device service when queried
by CID_MBIM_DEVICE_SERVICES. The existing well-known services are defined in section 10.1 of
the USB NCM MBIM 1.0 specification. Microsoft extends this to define the following service.

Service Name = Basic Connect Extensions

UUID = UUID_BASIC_CONNECT_EXTENSIONS

UUID Value = 3d01dcc5-fef5-4d05-0d3abef7058e9aaf

The following CIDs are defined for UUID_MS_BasicConnect:

CID Command Code Minimum OS Version

MBIM_CID_MS_SYS_CAPS 5 Windows 10, version 1703

MBIM_CID_MS_DEVICE_CAPS_V2 6 Windows 10, version 1703

MBIM_CID_MS_DEVICE_SLOT_MAPPINGS 7 Windows 10, version 1703

MBIM_CID_MS_SLOT_INFO_STATUS 8 Windows 10, version 1703

All offsets in the following CID sections are calculated from the beginning of the
InformationBuffer MBIM_COMMAND_MSG.

MBIM_CID_MS_SYS_CAPS

Description

This CID retrieves information about the modem. This can be sent on any of the MB instances
exposed as a USB function.

The InformationBuffer on MBIM_COMMAND_MSG contains the response data as
MBIM_MS_SYS_CAPS_INFO.

Not applicable.

Not applicable.

Operation Set Query Notification

Command Not applicable Not applicable Not applicable

Response Not applicable MBIM_MS_SYS_CAPS_INFO Not applicable

The InformationBuffer shall be null and InformationBufferLength shall be zero.

Not applicable.

The following MBIM_SYS_CAPS_INFO structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 NumberOfExecutors UINT32 Number of MBB instances reported by this modem

4 4 NumberOfSlots UINT32 Number of physical UICC slots available on this modem

Query

Set

Unsolicited Event

Parameters

Data Structures

Query

Set

Response

Offset Size Field Type Description

8 4 Concurrency UINT32 Number of MBB instances that may be active
concurrently

12 8 ModemId UINT64 Unique 64-bit identifier for each modem

The NumberOfExecutors field denotes the number of executors that are supported by the
modem in its current configuration. This directly maps to the number of ‘sub-phone’ stacks the
modem supports.

The NumberofSlots field denotes the number of slots that are physically present on the modem.
Each slot reported must be capable of receiving a UICC card (the slots themselves can be a
heterogeneous mix if needed – mini SIM, micro SIM, nano SIM or any standard as defined by
ETSI). The number of slots must be equal to or greater than the number of executors
supported. The ‘greater than’ provision allows use of non-telephony UICC such as for security,
NFC, etc.

The Concurrency field denotes the number of executors (MBB instances) that may be active at
the same time. It range must be 1 ≤ Concurrency ≤ NumberOfExecutors. For example, a dual-
standby modem would have a Concurrency of 1 while a dual-active modem would have a
concurrency of 2

The ModemId field denotes the unique 64-bit identifier for a given modem hardware. An IHV
may implement its own logic to generate a unique 64-bit value for each modem; for instance,
hashing one of the IMEI numbers, randomly generating 64-bit numbers, etc. Once the 64-bit ID
is generated, it should persist across reboots and SIM card removals/insertions.

This CID uses Generic Status Codes (see Use of Status Codes in Section 9.4.5 of the public USB
MBIM standard).

This CID retrieves the capability information related to an executor. Since this CID is an
extension of MBIM_CID_DEVICE_CAPS, only the changes from MBIM_CID_DEVICE_CAPS as
stated in Section 10.5.1 of the public USB MBIM standard are presented here.

This CID continues to be query-only and will return a MBIM_MS_DEVICE_CAPS_INFO_V2
structure in response to MBIM_COMMAND_MSG with the MBIM service
MSUUID_BASIC_CONNECT and CID MBIM_CID_MS_DEVICE_CAPS_V2.

Status Codes

MBIM_CID_MS_DEVICE_CAPS_V2

Description

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

Operation Set Query Notification

Command Not applicable Not applicable Not applicable

Response Not applicable MBIM_MS_DEVICE_CAPS_INFO_V2 Not applicable

The same as Section 10.5.1.4 of the public USB MBIM standard.

Not applicable.

The following MBIM_DEVICE_CAPS_INFO_V2 structure shall be used in the InformationBuffer.
Compared with the MBIM_CID_DEVICE_CAPS structure defined in section 10.5.1 of the public
USB MBIM standard, the following structure has a new field called DeviceIndex. Unless stated
here, the field descriptions in Table 10-14 of the public USB MBIM standard apply here.

Offset Size Field Type Description

0 4 DeviceType MBIM_DEVICE_TYPE

4 4 CellularClass MBIM_CELLULAR_CLASS

8 4 VoiceClass MBIM_VOICE_CLASS

12 4 SimClass MBIM_SIM_CLASS For MBIM modems which support
this CID, SimClass will always be
reported as
MBIMSimClassSimRemovable.

16 4 DataClass MBIM_DATA_CLASS

20 4 SmsCaps MBIM_SMS_CAPS

24 4 ControlCaps MBIM_CTRL_CAPS

28 4 MaxSessions UINT32

32 4 CustomDataClassOffset OFFSET

36 4 CustomDataClassSize SIZE(0..22)

Parameters

Data Structures

Query

Set

Response

Offset Size Field Type Description

40 4 DeviceIdOffset OFFSET

44 4 DeviceIdSize SIZE(0..26)

48 4 FirmwareInfoOffset OFFSET

52 4 FirmwareInfoSize SIZE(0..60)

56 4 HardwareInfoOffset OFFSET

60 4 HardwareInfoSize SIZE(0..60)

64 4 ExecutorIndex UINT32 The executor index. It ranges from 0
to n-1 where n is the number of MBB
instances contained in the MBIM
modem. Its value is always constant
and independent of the enumeration
order.

68 DataBuffer DATABUFFER The data buffer containing the
CustomDataClass, DeviceId,
FirmwareInfo, and HardwareInfo
members.

This CID uses Generic Status Codes (see Use of Status Codes in Section 9.4.5 of the public USB
MBIM standard).

This CID sets or returns the device-slot mappings (in other words the executor-slot mappings).

The InformationBuffer on MBIM_COMMAND_MSG is not used.
MBIM_MS_DEVICE_SLOT_MAPPING_INFO is returned in the InformationBuffer of
MBIM_COMMAND_DONE.

The InformationBuffer of MBIM_COMMAND_MSG contains
MBIM_MS_DEVICE_SLOT_MAPPING_INFO. MBIM_MS_DEVICE_SLOT_MAPPING_INFO is returned
in the InformationBuffer of MBIM_COMMAND_DONE. Regardless of whether the Set CID

Status Codes

MBIM_CID_MS_DEVICE_SLOT_MAPPINGS

Description

Query

Set

succeeds or fails, the MBIM_MS_DEVICE_SLOT_MAPPING_INFO contained in the response
represents the current device-slot mappings.

Not applicable.

Operation Set Query Notification

Command MBIM_MS_DEVICE_SLOT_MAPPING_INFO Not applicable Not
applicable

Response MBIM_MS_DEVICE_SLOT_MAPPING_INFO MBIM_MS_DEVICE_SLOT_MAPPING_INFO Not
applicable

The InformationBuffer shall be null and InformationBufferLength shall be zero.

The following MBIM_MS_DEVICE_SLOT_MAPPING_INFO structure shall be used in the
InformationBuffer.

Offset Size Field Type Description

0 4 MapCount
(MC)

UINT32 Number of mappings, which is always equal to the number
of devices/executors.

4 8 *
MC

SlotMapList OL_PAIR_LIST The i-th pair of this list, where (0 <= i <= (MC-1)) records
the index of the slot which is currently mapped to the i-th
device/executor. The first element in the pair is a 4-byte
field with the Offset into the DataBuffer, calculated from the
beginning (offset 0) of this
MBIM_MS_DEVICE_SLOT_MAPPINGS_INFO structure, to an
UINT32. The second element of the pair is a 4-byte size of
the record element. Since the type of the slot index is
UINT32, the second element in the pair is always 4.

4 + (8
* MC)

4 *
MC

DataBuffer DATABUFFER The data buffer that contains SlotMapList. Since the size of
the slot is 4 bytes and MC is equal to the number of slot
indices, the total size of DataBuffer is 4 * MC.

Unsolicited Events

Parameters

Data Structures

Query

Set

The MBIM_MS_DEVICE_SLOT_MAPPING_INFO used in Set is also used in the InformationBuffer
for Response.

Status Code Description

MBIM_STATUS_BUSY The operation failed because the device is busy. In the
absence of any explicit information from the function to clear
this condition, the host can use subsequent actions by the
function (e.g., notifications or command completions) as a
hint to retry the failed operation.

MBIM_STATUS_FAILURE The operation failed (a generic failure).

MBIM_STATUS_VOICE_CALL_IN_PROGRESS The operation failed because a voice call is in progress.

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters (e.g. slot
numbers out of range or duplicated values in the mapping).

This CID retrieves a high-level aggregated status of a specified UICC slot and the card within it
(if any). It may also be used to deliver an unsolicited notification when the status of one of the
slots changes.

The InformationBuffer of MBIM_COMMAND_MSG contains an MBIM_MS_SLOT_INFO_REQ
structure. The InformationBuffer of the MBIM_COMMAND_DONE message contains an
MBIM_MS_SLOT_INFO structure.

Not applicable.

The Event InformationBuffer contains an MBIM_MS_SLOT_INFO structure. The function sends
this event in the event that the composite slot/card state changes.

Response

Status Codes

MBIM_CID_MS_SLOT_INFO_STATUS

Description

Query

Set

Unsolicited Events

Operation Set Query Notification

Command Not applicable MBIM_MS_SLOT_INFO_REQ Not applicable

Response Not applicable MBIM_MS_SLOT_INFO MBIM_MS_SLOT_INFO

The following MBIM_MS_SLOT_INFO_REQ structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 SlotIndex UINT32 The index of the slot to be queried.

Not applicable.

The following MBIM_MS_SLOT_INFO structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 SlotIndex UINT32 The index of the slot.

4 4 State MBIM_MS_UICC_SLOT_STATE The state of the slot and card (if applicable).

The following MBIM_MS_UICCSLOT_STATE structure describes the possible states of the slot.

States Value Description

UICCSlotStateUnknown 0 The modem is still in the process of initializing so the SIM
slot state is not deterministic.

UICCSlotStateOffEmpty 1 The UICC slot is powered off and no card is present. An
implementation that is unable to determine the presence of
a card in a slot that is powered off reports its state as
UICCSlotStateOff.

UICCSlotStateOff 2 The UICC slot is powered off.

UICCSlotStateEmpty 3 The UICC slot is empty (there is no card in it).

Parameters

Data Structures

Query

Set

Response

States Value Description

UICCSlotStateNotReady 4 The UICC slot is occupied and powered on but the card
within it is not yet ready.

UICCSlotStateActive 5 The UICC slot is occupied and the card within it is ready.

UICCSlotStateError 6 The UICC slot is occupied and powered on but the card is in
an error state and cannot be used until it is next reset.

UICCSlotStateActiveEsim 7 The card in the slot is an eSIM with an active profile and is
ready to accept commands.

UICCSlotStateActiveEsimNoProfiles 8 The card in the slot is an eSIM with no profiles (or no active
profiles) and is ready to accept commands.

Conforming to the correct UICC slot state transitions ensures that the OS handles all changes
properly and displays the correct toast notifications to the user.

For the SIM inserted toast notification, the OS expects the embedded slot (SIM2/Slot 1) to be
selected and the following state transition to occur upon the insertion of a SIM in the physical
slot (SIM1/Slot 0).

Possible values of Slot 0 before SIM insertion Possible values of Slot 0 after SIM insertion

UICCSlotStateEmpty UICCSlotStateActive

UICCSlotStateOffEmpty UICCSlotStateActiveEsim
UICCSlotStateActiveEsimNoProfile

For the SIM removed toast notification, the OS expects the physical slot (SIM1/Slot 0) to be
selected with a SIM inserted and the following state transition to occur upon the removal of the
SIM from the physical slot (SIM1/Slot 0).

Possible values of Slot 0 before SIM removal Possible values of Slot 0 after SIM removal

UICCSlotStateActive UICCSlotStateEmpty

UICCSlotStateActiveEsim
UICCSlotStateActiveEsimNoProfile

UICCSlotStateOffEmpty

This CID uses Generic Status Codes (see Use of Status Codes in Section 9.4.5 of the public USB
MBIM standard).

MBIM_MS_UICCSLOT_STATE transition guidance for multi-sim devices

Status Codes

Most of the MBIM CIDs map or relate to NDIS OIDs, but there are a few commands that are
used by the Windows WMB class driver that do not have an NDIS counterpart. This section
provides clarity on whether those commands are per-modem or per-executor.

Per-device or Per-executor CID Name

Per-device CID_MBIM_MSEMERGENCYMODE

CID_MBIM_MSHOSTSHUTDOWN

Per-executor CID_MBIM_MSIPADDRESSINFO

CID_MBIM_MSNETWORKIDLEHINT

CID_MBIM_MULTICARRIER_CURRENT_CID_LIST

Dual SIM single active (DSSA) is the only form of multi-SIM operation that is fully supported in
Windows 10. DSSA allows for two SIM cards to be used with the modem, with the restriction
that only one SIM can be active at any given time.

Non-NDIS Mapping of Per-executor and Per-modem MBIM
CIDs

Dual SIM Single Active

Architecture/Flow

If DSSA is supported on the device, there are some scenarios where slot switch is performed
either automatically or prompted by the user via notification toasts.

Out-of-Box Experience (OOBE)

During OOBE, WwanSvc may perform a slot remap based on the state of the physical slot.
If the physical slot is empty, then the embedded slot is selected. If the physical slot has a
SIM, the physical slot is selected.

Slot Switch Behavior

SIM Removal

If the SIM is removed from the physical slot and the physical slot is the currently selected
slot, a toast is displayed asking the user if they want to switch to the embedded slot.
If the user selects "Yes" then the slot is switched.

SIM Insert

If auto-switch is enabled via regkey:
If the SIM is inserted in the physical slot while the selected slot is embedded, the slot is
automatically switched to the physical slot and a toast is displayed informing the user
about the switch.
The toast has a button that opens the settings page.

If auto-switch is disabled via regkey
If the SIM is inserted in the physical slot while the selected slot is embedded, a toast is
displayed asking if the user wants switch to the physical slot.
If user selects "Yes" then the slot is switched.

Use this registry key to configure auto-switch. It does not exist by default.

Location: HKLM\Software\Microsoft\Cellular\MVSettings\DeviceSpecific\CellUX
Key: EnableAutoSlotSwitch
Type: REG_DWORD
Value: 1 | 0 (default, disabled)

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run the test:
Win6_4.MB.GSM.Data.TestSlot. This test contains the following four tests:

Test Name Description

QuerySlotMapping This test verifies the test can successfully query devcie slot mapping.

SetSlotMapping This test verifies the test can successfully set device slot mapping.

QuerySlotInfo This test verifies the test can successfully query device slot information.

ValidateSlotInfoState This test validates UICC Slot state against ReadyInfoState.

Alternatively, you can run the TestSlot HLK testlist by netsh-mbn and netsh-mbn-test-
installation.

Hardware Lab Kit (HLK) Tests

netsh mbn test feature=dssa testpath="C:\data\test\bin" taefpath="C:\data\test\bin"
param="AccessString=internet"

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/defddebe-cc40-4d6f-9b0c-ca5ca9a1cb4d
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

This file showing the HLK test results should have been generated in the directory that the
'netsh mbn test' command was ran from: TestSlot.htm .

1. Logs can be collected and decoded using these instructions: MB Collecting Logs
2. Open the .txt file in the TextAnalysisTool
3. Load the DSSA filter

Here is an example log for querying and setting slot mappings:

Log Analysis

 1619 [5]6C6C.0824::01/09/2020-10:57:17.118 [WwanDimCommon]QUERY
OID_WWAN_DEVICE_CAPS_EX (e01012e), RequestId 11, Status 340001
 1673 [5]6C6C.0824::01/09/2020-10:57:17.118 [WwanDimCommon]QUERY OID_WWAN_SYS_CAPS
(e01012d), RequestId 21, Status 340001
 2488 [5]6C6C.2738::01/09/2020-10:57:17.120 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_DEVICE_CAPS_EX (0x4004103f)
 2520 [5]6C6C.2738::01/09/2020-10:57:17.120 [WwanDimCommon]
SSERVICE_CAPS_MULTI_SIM : Supported
 2669 [2]6C6C.2738::01/09/2020-10:57:17.121 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SYS_CAPS_INFO (0x4004102c)
 2679 [2]6C6C.2738::01/09/2020-10:57:17.121 [WwanDimCommon] NumberOfExecutors
0x1
 2680 [2]6C6C.2738::01/09/2020-10:57:17.121 [WwanDimCommon] NumberOfSlots 0x2
 3497 [5]6C6C.0824::01/09/2020-10:57:17.125 [WwanDimCommon]QUERY
OID_WWAN_SLOT_INFO_STATUS (e010130), RequestId 42, Status 340001
 3502 [5]6C6C.0824::01/09/2020-10:57:17.125 [WwanDimCommon] Slot Index : 0
 3531 [5]6C6C.0824::01/09/2020-10:57:17.126 [WwanDimCommon]QUERY
OID_WWAN_SLOT_INFO_STATUS (e010130), RequestId 32, Status 340001
 3536 [5]6C6C.0824::01/09/2020-10:57:17.126 [WwanDimCommon] Slot Index : 1
 6356 [4]6C6C.2738::01/09/2020-10:57:17.133 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 6890 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 6912 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 6926 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
 6934 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] SlotIndex : 0x0
 6935 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] SlotState :
WwanUiccSlotStateActive (0x5)
 6955 [4]6C6C.2738::01/09/2020-10:57:17.134 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 7060 [7]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 7100 [6]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
 7108 [6]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] SlotIndex : 0x1
 7109 [6]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] SlotState :
WwanUiccSlotStateActiveEsimNoProfile (0x8)
 7140 [6]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 7177 [6]6C6C.2738::01/09/2020-10:57:17.135 [WwanDimCommon] ReadyState :

WwanReadyStateInitialized (0x1)
 8424 [4]6C6C.2738::01/09/2020-10:57:17.137 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 10616 [6]6C6C.2738::01/09/2020-10:57:17.145 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
 12731 [4]6C6C.2738::01/09/2020-10:57:17.149 [WwanDimCommon]QUERY
OID_WWAN_SYS_SLOTMAPPINGS (e01012f), RequestId 1e1, Status 340001
 12991 [2]6C6C.2738::01/09/2020-10:57:17.150 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO (0x4004102d)
 13003 [2]6C6C.2738::01/09/2020-10:57:17.150 [WwanDimCommon] Executor Index
0 is mapped to Uicc Slot Index 0
123489 [4]6C6C.2738::01/09/2020-10:57:24.048 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
128251 [2]6C6C.2738::01/09/2020-10:57:24.064 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
128317 [2]6C6C.2738::01/09/2020-10:57:24.064 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
128407 [7]6C6C.2738::01/09/2020-10:57:24.064 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
128445 [7]6C6C.2738::01/09/2020-10:57:24.065 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
129265 [5]6C6C.2738::01/09/2020-10:57:24.067 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
129292 [5]6C6C.2738::01/09/2020-10:57:24.067 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
130122 [7]6C6C.2738::01/09/2020-10:57:24.069 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
155583 [2]6C6C.2738::01/09/2020-10:57:26.637 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
159010 [7]6C6C.2738::01/09/2020-10:57:26.644 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
159034 [7]6C6C.2738::01/09/2020-10:57:26.644 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
161963 [7]6C6C.2738::01/09/2020-10:57:26.655 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
161986 [7]6C6C.2738::01/09/2020-10:57:26.655 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
162110 [2]6C6C.2738::01/09/2020-10:57:26.655 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
162355 [4]6C6C.2738::01/09/2020-10:57:26.656 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
162381 [6]6C6C.2738::01/09/2020-10:57:26.656 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
162441 [4]6C6C.2738::01/09/2020-10:57:26.656 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
194294 [6]6C6C.2738::01/09/2020-10:57:28.722 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200029 [0]6C6C.2738::01/09/2020-10:57:28.738 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200131 [4]6C6C.2738::01/09/2020-10:57:28.738 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200354 [7]6C6C.2738::01/09/2020-10:57:28.739 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200671 [6]6C6C.2738::01/09/2020-10:57:28.739 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200729 [7]6C6C.2738::01/09/2020-10:57:28.739 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
200864 [1]6C6C.2738::01/09/2020-10:57:28.740 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)

201464 [0]6C6C.2738::01/09/2020-10:57:28.741 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
265128 [1]6C6C.2218::01/09/2020-10:57:32.150 [WwanDimCommon]SET
OID_WWAN_SYS_SLOTMAPPINGS (e01012f), RequestId a6, Len 10, Status 340001
265133 [1]6C6C.2218::01/09/2020-10:57:32.150 [WwanDimCommon]
SlotMapListHeader.ElementType : 0xe
265134 [1]6C6C.2218::01/09/2020-10:57:32.150 [WwanDimCommon]
SlotMapListHeader.ElementCount : 0x1
265135 [1]6C6C.2218::01/09/2020-10:57:32.150 [WwanDimCommon] Executor Index 0 is
mapped to Uicc Slot Index 1
265523 [6]6C6C.2738::01/09/2020-10:57:32.152 [WwanDimCommon] ReadyState :
WwanReadyStateOff (0x0)
270760 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO (0x4004102d)
270770 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] Executor Index
0 is mapped to Uicc Slot Index 1
270799 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
270807 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] SlotIndex : 0x0
270808 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] SlotState :
WwanUiccSlotStateEmpty (0x3)
270827 [5]6C6C.2738::01/09/2020-10:57:32.171 [WwanDimCommon] ReadyState :
WwanReadyStateFailure (0x4)
271044 [5]6C6C.2738::01/09/2020-10:57:32.172 [WwanDimCommon] ReadyState :
WwanReadyStateFailure (0x4)
271089 [5]6C6C.2738::01/09/2020-10:57:32.172 [WwanDimCommon] ReadyState :
WwanReadyStateFailure (0x4)
271130 [5]6C6C.2738::01/09/2020-10:57:32.172 [WwanDimCommon] ReadyState :
WwanReadyStateSimNotInserted (0x2)
274729 [7]6C6C.2738::01/09/2020-10:57:32.188 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
283027 [6]6C6C.2738::01/09/2020-10:57:32.211 [WwanDimCommon] ReadyState :
WwanReadyStateSimNotInserted (0x2)
323130 [5]6C6C.2738::01/09/2020-10:57:32.352 [WwanDimCommon] ReadyState :
WwanReadyStateNoEsimProfile (0x7)
403200 [0]6C6C.2738::01/09/2020-10:57:33.748 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
403208 [0]6C6C.2738::01/09/2020-10:57:33.748 [WwanDimCommon] SlotIndex : 0x0
403209 [0]6C6C.2738::01/09/2020-10:57:33.748 [WwanDimCommon] SlotState :
WwanUiccSlotStateActive (0x5)
407008 [5]6C6C.33A8::01/09/2020-10:57:40.355 [WwanDimCommon]SET
OID_WWAN_SYS_SLOTMAPPINGS (e01012f), RequestId 18f, Len 10, Status 340001
407015 [5]6C6C.33A8::01/09/2020-10:57:40.355 [WwanDimCommon]
SlotMapListHeader.ElementType : 0xe
407017 [5]6C6C.33A8::01/09/2020-10:57:40.355 [WwanDimCommon]
SlotMapListHeader.ElementCount : 0x1
407018 [5]6C6C.33A8::01/09/2020-10:57:40.355 [WwanDimCommon] Executor Index 0 is
mapped to Uicc Slot Index 0
407079 [4]6C6C.2738::01/09/2020-10:57:40.355 [WwanDimCommon] ReadyState :
WwanReadyStateOff (0x0)
409570 [2]6C6C.2738::01/09/2020-10:57:40.371 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO (0x4004102d)
409580 [2]6C6C.2738::01/09/2020-10:57:40.371 [WwanDimCommon] Executor Index
0 is mapped to Uicc Slot Index 0
409591 [5]6C6C.2738::01/09/2020-10:57:40.371 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
409600 [5]6C6C.2738::01/09/2020-10:57:40.371 [WwanDimCommon] SlotIndex : 0x1
409601 [5]6C6C.2738::01/09/2020-10:57:40.371 [WwanDimCommon] SlotState :
WwanUiccSlotStateEmpty (0x3)

411302 [7]6C6C.2738::01/09/2020-10:57:40.385 [WwanDimCommon] ReadyState :
WwanReadyStateSimNotInserted (0x2)
416851 [4]6C6C.2738::01/09/2020-10:57:40.510 [WwanDimCommon] StatusCode :
NDIS_STATUS_WWAN_SLOT_INFO (0x4004102e)
416859 [4]6C6C.2738::01/09/2020-10:57:40.510 [WwanDimCommon] SlotIndex : 0x1
416860 [4]6C6C.2738::01/09/2020-10:57:40.510 [WwanDimCommon] SlotState :
WwanUiccSlotStateActiveEsimNoProfile (0x8)
418613 [0]6C6C.2738::01/09/2020-10:57:42.632 [WwanDimCommon] ReadyState :
WwanReadyStateOff (0x0)
434410 [4]6C6C.2738::01/09/2020-10:57:44.558 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
443914 [7]6C6C.2738::01/09/2020-10:57:44.593 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)
529138 [4]6C6C.2738::01/09/2020-10:57:45.270 [WwanDimCommon] ReadyState :
WwanReadyStateInitialized (0x1)

DSSA Log Filter
Article • 12/15/2021

To make searching log files easier, below is a DSSA filter file for the TextAnalysisTool .

To use the DSSA log filter:

1. Copy and paste the lines below and save them into a text file named
"esimdownload.tat."

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2016-06-16" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="y" excluding="n" description="" backColor="add8e6"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]QUERY
OID_WWAN_DEVICE_CAPS_EX" />
 <filter enabled="y" excluding="n" description="" backColor="ffb6c1"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
StatusCode : NDIS_STATUS_WWAN_DEVICE_SLOT" />
 <filter enabled="y" excluding="n" description="" backColor="f0e68c"
type="matches_text" case_sensitive="n" regex="n" text="SET
OID_WWAN_SYS_SLOTMAPPINGS" />
 <filter enabled="y" excluding="n" description="" backColor="90ee90"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]QUERY
OID_WWAN_SYS_CAPS" />
 <filter enabled="y" excluding="n" description="" backColor="ffb6c1"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
Executor Index" />
 <filter enabled="y" excluding="n" description="" backColor="add8e6"
type="matches_text" case_sensitive="n" regex="n" text="CAPS_MULTI_SIM" />
 <filter enabled="y" excluding="n" description="" backColor="f08080"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
StatusCode : NDIS_STATUS_WWAN_SLOT_INFO" />
 <filter enabled="y" excluding="n" description="" backColor="f08080"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
SlotState" />
 <filter enabled="y" excluding="n" description="" backColor="90ee90"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
StatusCode : NDIS_STATUS_WWAN_SYS_CAPS_INFO" />
 <filter enabled="y" excluding="n" description="" backColor="90ee90"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
NumberOfExecutors" />
 <filter enabled="y" excluding="n" description="" backColor="90ee90"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
NumberOfSlots" />
 <filter enabled="n" excluding="n" description="" backColor="afeeee"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
ReadyState" />
 <filter enabled="y" excluding="n" description="" backColor="add8e6"

https://github.com/TextAnalysisTool/Releases

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
StatusCode : NDIS_STATUS_WWAN_DEVICE_CAPS_EX" />
 <filter enabled="y" excluding="n" description="" backColor="f0e68c"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
SlotMapListHeader" />
 <filter enabled="y" excluding="n" description="" backColor="f0e68c"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
Executor Index" />
 <filter enabled="y" excluding="n" description="" backColor="f08080"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]
SlotIndex" />
 <filter enabled="y" excluding="n" description="" backColor="dda0dd"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]QUERY
OID_WWAN_SYS_SLOTMAPPINGS" />
 <filter enabled="y" excluding="n" description="" backColor="dcdcdc"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon]QUERY
OID_WWAN_SLOT_INFO_STATUS" />
 <filter enabled="y" excluding="n" description="" backColor="d3d3d3"
type="matches_text" case_sensitive="n" regex="n" text="[WwanDimCommon] Slot
Index" />
 </filters>
</TextAnalysisTool.NET>

MB Provisioned Context Operations
Article • 03/14/2023

Provisioning is vital for cellular-connectable devices because each mobile operator has different APN configurations for its network.
APN configurations can generally be split into two categories:

1. APN configurations that are known to the OS because there are applications or clients above the OS that requires those
connections.

2. APN configurations that are not made known to the OS because they are internally consumed by the modem for connections
that are not leveraged by the OS and its clients.

Ideally, the modem should only store the APN configurations the OS does not have to know. However, IHV and OEM partners have
traditionally provided the Internet and Purchase APNs, configurations known to the OS, in the modem as well. Before Windows 10,
version 1703’s release, Windows only read the Internet and Purchase APN configurations from the modem to establish Internet
connections. Starting in Windows 10, version 1703, there might be additional cases in which the modem’s APN configuration would
have to be managed by Windows, especially if there are clients in the OS such as user settings or OMA-DM that want to change
cellular configuration. This in turn could also affect the modem’s APN configuration. For example, there might be an IMS stack in
the modem that is using the IMS APN for SMS over IMS. Typically, those connections are not exposed to the OS, but under certain
scenarios the IMS APN configuration may have to be changed. This change could be done through the OS. In order to support this,
starting in Windows 10, version 1703 the OS can configure different types of APNs into the modem.

The USB forum’s MBIM 1.0 and Microsoft NDIS each have an existing CID and OID respectively to allow the OS to set and query the
APN configurations in the modem. For MBIM 1.0 it does this through MBIM_CID_PROVISIONED_CONTEXT while for NDIS it does
this through OID_WWAN_PROVISIONED_CONTEXTS. However, the existing CID and OID were not designed with clear guidance on
how the modem is expected to behave in various situations such as a power cycle or SIM swap. Devices that want to support OS
configuring and updating of modem-provisioned contexts going forward will have to implement the newer version of the CID and
OID in Windows 10, version 1703. To ensure backward compatibility, for IHVs/OEMs that want to support new hardware on OS
versions older than 1703, they will have to continue to support the existing MBIM_CID_PROVISIONED_CONTEXT and
OID_WWAN_PROVISIONED_CONTEXTS. Starting from Windows 10, version 1703, if the device supports the new version of the CID
and OID then the OS will only use the newer version of the command to query and set APN context configuration in the modem.

While MBIM has a command for retrieving and replacing contexts stored in the modem, it does not have a field to “disable” or
“enable” a profile. Therefore, the existing MBIM_CID_PROVISIONED_CONTEXT must be updated for Windows 10, version 1703 to
include this capability. Because MBIM does not have a versioning mechanism, a new MSFT proprietary CID is defined as
MBIM_CID_MS_PROVISIONED_CONTEXT_V2.

Service Name = Basic Connect Extensions

UUID = UUID_BASIC_CONNECT_EXTENSIONS

UUID Value = 3d01dcc5-fef5-4d05-0d3abef7058e9aaf

CID Command Code Minimum OS Version

MBIM_CID_MS_PROVISIONED_CONTEXT_V2 1 Windows 10, version 1703

Although MBIM 1.0 has defined MBIM_CID_PROVISIONED_CONTEXT for the OS and its upper clients to manage provisioned
contexts in the modem, Windows traditionally only queried the context in the modem but did not set it from the OS. Starting in
Windows 10, version 1703, there is increasing need for the OS to be able to configure the contexts in the modem. For example, if
there is an IMS stack in the modem that is opaque to the OS, the OS should be able to specify the IMS APN that the modem should
use. Because each modem IHV can have its own proprietary way to store contexts in the modem, it is impossible for the OS to
manage profiles on the ContextId level the way MBIM_CID_PROVISIONED_CONTEXT might suggest. Instead, from the OS’s
perspective it is more important to prescribe which context to use for each context type. Returning to the IMS example, regardless

MB Interface Update for Provisioned Context Operations

MBIM_CID_MS_PROVISIONED_CONTEXT_V2

Description

of how many existing provisioned contexts are in the modem, if the OS sets a context that has MBIM_CONTEXT_TYPE = IMS then all
IMS traffic initiated by the modem should only be attempted on that context.

MBIM 1.0 specifies that MBIM_CID_PROVISIONED_CONTEXT can only call Query on contexts that match the Provider ID (MCC/MNC
pair) of the inserted SIM card. For Set requests, MBIM_CID_PROVISIONED_CONTEXT can specify the Provider ID of the context that
it wants to be stored. MBIM_CID_MS_PROVISIONED_CONTEXT_V2 specifies a similar but different behavior from MBIM 1.0. For each
Query, the OS continues to expect the modem to only return contexts that match the Provider ID of the inserted SIM card. For Set,
the command will no longer enable the OS to Set contexts that do not match the current Provider ID in the SIM card. It is expected
that the Set request is to create a context for the current Provider ID of the presented SIM card. As an example, the user swaps from
SIM 1 to SIM 2, then back to SIM 1. It is expected that during first SIM swap, the modem should resolve all its contexts before
loading the context for SIM 2. When the user swaps back to SIM 1, SIM 1’s factory default configuration should be restored. It is not
expected for the modem to save runtime configuration across SIM swaps.

The following diagram illustrates a sample flow for when a user swaps from one SIM to another, then back to the first one.

OEMs and IHVs that have preconfigured the modem should keep the original factory configuration in case the OS or user wants to
restore the context settings in the modem to the original settings. Only the original factory contexts for the currently inserted SIM’s
Provider ID should be restored. The original factory setting preconfigured contexts should never be overwritten by the OS’s
configuration. The following diagram is an example flow for when a user chooses to restore factory settings:

It is expected for the modem to fail Query or Set requests when the SIM is missing, locked, or the Provider ID is inaccessible. The
modem should have only one context per CONTEXT_TYPE per Provider ID. If the IHV or OEM decides to preconfigure modem
contexts in the modem, it is important for it to make sure that the contexts are configured correctly for each provider for which it
chooses to do so. In the case that the inserted SIM card has no IHV preconfigured contexts, the modem should not have any
contexts without the OS’s configuration. IHVs and OEMs have to make sure MBIM_MS_CONTEXT_SOURCE =

MbimMsContextSourceModemProvisioned so that the OS will use the modem’s context for connection, if it exists, and not
overwrite it from Windows’s APN database.

How the modem maps handle the context and present it back through the existing MBIM_CID_PROVISIONED_CONTEXT is up to
each IHV and is out of scope of this documentation.

The new MBIM_CID_MS_PROVISONED_CONTEXT_V2 command is almost identical to MBIM 1.0’s existing
MBIM_CID_PROVISIONED_CONTEXT command, but with several additions. The first provides the OS with the ability to enable or
disable the context associated with a context type in the modem. When the context is disabled in the modem, the modem is
expected not to use the stored context for any connection with the network, even those not made aware to the OS. If the OS
requests a connection matching a disabled context in the modem, the modem should fail the request immediately without signaling
to the network. The matching process should match all fields in the MBIM_MS_CONTEXT_V2 structure.

The MBIM_CONTEXT_IP_TYPE structure from MBIM 1.0 is only used for MBIM_CID_CONNECT. In
MBIM_CID_MS_PROVISIONED_CONTEXT_V2, Microsoft has added the IP type as one of the parameters for each context. The
modem should report MBIMContextIPTypeDefault if it is not configured for the given context.

In Windows 10, version 1703, with new hardware that supports MBIM_CID_MS_PROVISIONED_CONTEXT_V2, the legacy
MBIM_CID_PROVISIONED_CONTEXT will not be used from first party components. If there are other legacy client/OS components
that send down MBIM_CID_PROVISIONED_CONTEXT, the modem is expected to return results as it did in versions of Windows
earlier than Windows 10, version 1703.

MBIM_MS_PROVISIONED_CONTEXTS_INFO is returned from both Query and Set complete messages in the InformationBuffer.

For Query, the InformationBuffer is null.

For Set, the InformationBuffer contains an MBIM_MS_SET_PROVISIONED_CONTEXT_V2 structure. In the Set operation, because each
modem IHV can have proprietary ways of managing context storage, the OS no longer specifies the ContextId field and expects the
modem to map the contexts to the appropriate slot. When the OS Sets contexts, it expects the modem to use it for all connections
that match the MBIM_CONTEXT_TYPE of the given context. If the MBIM_CONTEXT_TYPE is not recognized by the modem, it should
still store it even though it may not connect with it.

The Event InformationBuffer contains an MBIM_MS_PROVISIONED_CONTEXTS_INFO_V2 structure. In some cases, the list of
provisioned contexts is updated by the network either Over-The-Air (OTA) or by Short Message Service (SMS) that does not go over
the MBIM_CID_MS_PROVISIONED_CONTEXT_V2 command from the OS. The function must update the list of provisioned contexts
and tag MBIM_MS_CONTEXT_SOURCE = MbimMsContextSourceOperatorProvisioned accordingly. After that, functions must notify
the host about updates using this event with the updated list.

Operation Set Query Notification

Command MBIM_SET_MS_PROVISIONED_CONTEXT_V2 Not applicable Not applicable

Response MBIM_MS_PROVISIONED_CONTEXT_INFO_V2 MBIM_MS_PROVISIONED_CONTEXT_INFO_V2 MBIM_MS_PROVISIONED_CONTEXT_INFO_V2

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

Query

Set

Unsolicited Event

Parameters

Data Structures

Query

Set

The following MBIM_SET_MS_PROVISIONED_CONTEXT_V2 data structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 Operation MBIM_MS_CONTEXT_OPERATIONS Specifies the type of operation for which the SET command is
used. If set to MbimMsContextOperationDelete then the context
for the specified MBIM_CONTEXT_TYPES should be deleted and
all other fields in MBIM_SET_MS_PROVISIONED_CONTEXT_V2
should be ignored. If set to
MbimMsContextOperationRestoreFactory then all OS-created or
modified contexts should be removed, the default factory
preconfigured contexts should be loaded, and all other fields in
MBIM_SET_MS_PROVISIONED_CONTEXT_V2 should be ignored.

4 16 ContextType MBIM_CONTEXT_TYPES Specifies the type of context being represented; for example,
Internet connectivity, VPN (a connection to a corporate
network), or Voice-over-IP (VOIP). For more information, see the
MBIM_CONTEXT_TYPES table.

20 4 IPType MBIM_CONTEXT_IP_TYPES Specifies the type of context being represented; for example,
Internet connectivity, VPN (a connection to a corporate
network), or Voice-over-IP (VOIP). For more information, see the
MBIM_CONTEXT_IP_TYPES table.

24 4 Enable MBIM_MS_CONTEXT_ENABLE Specifies whether the context could be used by the modem. If it
is set to MbimMsContextDisabled, then any OS connection
request that matches the context should be failed without
signaling to the network. For more information, see the
MBIM_MS_CONTEXT_ENABLE table.

28 4 Roaming MBIM_MS_CONTEXT_ROAMING_CONTROL Specifies whether roaming is allowed or not for this context. For
more information, see the
MBIM_MS_CONTEXT_ROAMING_CONTROL table.

32 4 MediaType MBIM_MS_CONTEXT_MEDIA_TYPE Specifies what type of media transport the context is used for.
For more information, see the MBIM_MS_CONTEXT_MEDIA_TYPE
table.

36 4 Source MBIM_MS_CONTEXT_SOURCE Specifies the creation source of the context. For more
information, see the MBIM_MS_CONTEXT_SOURCE table.

40 4 AccessStringOffset OFFSET Offset in the data buffer to a string, AccessString, to access the
network. For GSM-based networks, this would be an Access
Point Name (APN) string such as "data.thephone-company.com".
For CDMA-based networks, this might be a special dial code
such as "#777" or a Network Access Identifier (NAI) such as
"foo@thephone-company.com". This member can be NULL to
request that the network assign the default APN. Note: Not all
networks support this NULL APN convention, so a connect
failure caused by an invalid APN is a possible outcome. The size
of the string should not exceed 100 characters.

44 4 AccessStringSize SIZE(0..200) Size used for AccessString.

48 4 UserNameOffset OFFSET Offset in bytes, calculated from the beginning of this structure,
to a string, UserName, that represents the username to
authenticate. This member can be NULL.

52 4 UserNameSize SIZE(0..510) Size used for UserName .

56 4 PasswordOffset OFFSET Offset in bytes, calculated from the beginning of this structure,
to a string, Password, that represents the username's password.
This member can be NULL.

60 4 PasswordSize SIZE(0..510) Size used for Password.

64 4 Compression MBIM_COMPRESSION Specifies the compression to be used in the data connection for
header and data. This member applies only to GSM-based
devices. The Host sets this member to MBIMCompressionNone
for CDMA-based devices. For more information, see the
MBIM_COMPRESSION table.

Offset Size Field Type Description

68 4 AuthProtocol MBIM_AUTH_PROTOCOL Authentication type to use for the PDP activation. For more
information, see the MBIM_AUTH_PROTOCOL table.

72 4 DataBuffer DATABUFFER The data buffer that contains AccessString, UserName, and
Password.

The following data structures are used in the preceding table.

MBIM_MS_CONTEXT_ROAMING_CONTROL specifies the per-context roaming policy. The OS can specify whether the given context
can be enabled during roaming or not. The modem should not self-activate the context without OS intervention if the roaming
state does not satisfy the specified conditions. In cases in which the modem does not support partners, then all partner
configurations should be treated as equivalent to home.

Type Value Description

MbimMsContextRoamingControlHomeOnly 0 Indicates whether the context is only allowed to be used in the home network or
not.

MbimMsContextRoamingControlPartnerOnly 1 Indicates whether the context is only allowed to be used in partner roaming
networks or not.

MbimMsContextRoamingControlNonPartnerOnly 2 Indicates whether the context is only allowed to be used in non-partner roaming
networks or not.

MbimMsContextRoamingControlHomeAndPartner 3 Indicates whether the context is allowed to be used in home and partner
roaming networks.

MbimMsContextRoamingControlHomeAndNonPartner 4 Indicates whether the context is allowed to be used in home and non-partner
roaming networks.

MbimMsContextRoamingControlPartnerAndNonPartner 5 Indicates whether the context is allowed to be used in partner and non-partner
roaming networks.

MbimMsContextRoamingControlAllowAll 6 Indicates whether the context is allowed to be used in any roaming condition.

MBIM_MS_CONTEXT_MEDIA_TYPE has been added to be able to specify whether the context is used for cellular or iWLAN when Wi-
Fi offload becomes supported in future platforms. For example, if a context is set as cellular and the modem is currently Wi-Fi
offloading then it should not initiate a connection by using that context.

Type Value Description

MbimMsContextMediaTypeCellularOnly 0 Indicates whether the context is only allowed to be used when registered over cellular.

MbimMsContextMediaTypeWifiOnly 1 Indicates whether the context is only allowed to be used when registered over iWLAN (Wi-Fi
offload).

MbimMsContextMediaTypeAll 2 Indicates whether the context is allowed to be used when registered either through Cellular or
Wi-Fi.

MBIM_MS_CONTEXT_ENABLE specifies whether a context is enabled or disabled.

Type Value Description

MbimMsContextDisabled 0 The provisioned context is disabled. The modem should not enable activation on this context from the OS and
itself.

MbimMsContextEnabled 1 The provisioned context is enabled. The context can be enabled if other conditions are met; for example, if
roaming is disallowed then the context should not be enabled during roaming.

MBIM_MS_CONTEXT_SOURCE has been added to give the OS visibility on how the modem context was created. This helps the OS
to behave correctly after various situations such as factory reset, so it can know what should persist and what should be returned to
default state based on various operator requirements.

Type Value Description

MbimMsContextSourceAdmin 0 The context was created by an Enterprise IT admin from the OS.

Type Value Description

MbimMsContextSourceUser 1 The context was created by the user through OS settings.

MbimMsContextSourceOperator 2 The context was created by the operator through OMA-DM or other channels.

MbimMsContextSourceModem 3 The context was created by the IHV or OEM that was included with the modem firmware.

MbimMsContextSourceDevice 4 The context was created by the OS APN database.

MBIM_MS_CONTEXT_OPERATIONS specifies the operations the OS can perform to configure contexts in the modem.

Type Value Description

MbimMsContextOperationDefault 0 Default operation including adding or replacing an existing context in the modem.

MbimMsContextOperationDelete 1 Delete operation requires the modem to delete an existing context in the modem.

MbimMsContextOperationRestoreFactory 2 Restore factory preconfigured context for the Provider ID of currently inserted SIM. All contexts
replaced or created by OS should be removed and replaced. If there is no default
preconfigured OS context for the current inserted SIM Provider ID, then the provisioned
context in the modem should be removed.

The original MBIM_CONTEXT_TYPES from MBIM 1.0 is still valid. Microsoft is adding additional context types as more types of
contexts were introduced since MBIM 1.0 was defined. The following table defines the new types being introduced. IHVs and OEMs
may define other proprietary context types with other unique UUID values that will not be recognizable by the OS for its own
purposes.

Type Value Description

MBIMMsContextTypeAdmin 5f7e4c2e-e80b-40a9-a239-
f0abcfd11f4b

The context is used for administrative purposes such as device
management.

MBIMMSContextTypeApp 74d88a3d-dfbd-4799-9a8c-
7310a37bb2ee

The context is used for certain applications allowlisted by mobile
operators.

MBIMMsContextTypeXcap 50d378a7-baa5-4a50-b872-
3fe5bb463411

The context is used for XCAP provisioning on IMS services.

MBIMMsContextTypeTethering 5e4e0601-48dc-4e2b-acb8-
08b4016bbaac

The context is used for Mobile Hotspot tethering.

MBIMMsContextTypeEmergencyCalling 5f41adb8-204e-4d31-9da8-
b3c970e360f2

The context is used for IMS emergency calling.

The following MBIM_MS_PROVISIONED_CONTEXT_INFO_V2 structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 ElementCount (EC) UINT32 Count of MBIM_MS_CONTEXT_V2 structures that follow in the DataBuffer.

4 8 *
EC

MsProvisionedContextV2RefList OL_PAIR_LIST The first element of the pair is a 4 byte Offset in bytes, calculated from the
beginning (offset 0) of this MBIM_MS_PROVISIONED_CONTEXTS_INFO_V2
structure, to an MBIM_MS_CONTEXT_V2 structure (for more information, see the
MBIM_MS_CONTEXT_V2 table). The second element of the pair is a 4-byte size of
a pointer to the corresponding MBIM_MS_CONTEXT_V2 structure.

4 + 8
* EC

DataBuffer DATABUFFER Array of MBIM_MS_CONTEXT_V2 structuers.

MBIM_MS_CONTEXT_V2, used in the preceding table, provides information about a given context.

Offset Size Field Type Description

0 4 ContextId UINT32 A unique ID for this context.

Response

Offset Size Field Type Description

4 16 ContextType MBIM_CONTEXT_TYPES Specifies the type of context being represented; for example,
Internet connectivity, VPN (a connection to a corporate
network), or Voice-over-IP (VOIP). Devices should specify
MBIMContextTypeNone for empty or un-provisioned contexts.
For more information, see the MBIM_CONTEXT_TYPES table.

20 4 IPType MBIM_CONTEXT_IP_TYPES For more information, see the MBIM_CONTEXT_IP_TYPES table.

24 4 Enable MBIM_MS_CONTEXT_ENABLE Specifies whether the context could be used by the modem. If it
is set to MbimMsContextDisabled, then any OS connection
request that matches the context should be failed without
signaling to the network. For more information, see the
MBIM_MS_CONTEXT_ENABLE table.

28 4 Roaming MBIM_MS_CONTEXT_ROAMING_CONTROL Specifies whether roaming is allowed or not for this context. For
more information, see the
MBIM_MS_CONTEXT_ROAMING_CONTROL table.

32 4 MediaType MBIM_MS_CONTEXT_MEDIA_TYPE Specifies what type of media transport the context is used for.
For more information, see the MBIM_MS_CONTEXT_MEDIA_TYPE
table.

36 4 Source MBIM_MS_CONTEXT_SOURCE Specifies the creation source of the context. For more
information, see the MBIM_MS_CONTEXT_SOURCE table.

40 4 AccessStringOffset OFFSET Offset in data buffer to a string, AccessString, to access the
network. For GSM-based networks, this would be an Access
Point Name (APN) string such as "data.thephone-company.com".
For CDMA-based networks, this might be a special dial code
such as "#777" or a Network Access Identifier (NAI) such as
"foo@thephone-company.com". This member can be NULL, to
request that the network assign the default APN. Note: Not all
networks support this NULL APN convention, so a connect
failure caused by an invalid APN is a possible outcome. The size
of the string should not exceed 100 characters.

44 4 AccessStringSize SIZE(0..200) Size used for AccessString.

48 4 UserNameOffset OFFSET Offset in bytes, calculated from the beginning of this structure,
to a string, UserName, that represents the username to
authenticate. This member can be NULL.

52 4 UserNameSize SIZE(0..510) Sized used for UserName.

56 4 PasswordOffset OFFSET Offset in bytes, calculated from the beginning of this structure,
to a string, Password, that represents the username's password.
This member can be NULL.

60 4 PasswordSize SIZE(0..510) Size used for Password.

64 4 Compression MBIM_COMPRESSION Specifies the compression to be used in the data connection for
header and data. This member applies only to GSM-based
devices. The Host sets this member to MBIMCompressionNone
for CDMA-based devices. For more information, see the
MBIM_COMPRESSION table.

68 4 AuthProtocol MBIM_AUTH_PROTOCOL Authentication type to use for the PDP activation. For more
information, see the MBIM_AUTH_PROTOCOL table.

72 DataBuffer DATABUFFER The data buffer that contains AccessString, UserName, and
Password.

For more information, see the MBIM_MS_PROVISIONED_CONTEXT_V2 table.

For Query and Set operations:

Notification

Status Codes

Status Code Description

MBIM_STATUS_READ_FAILURE The operation failed because the device was unable to retrieve provisioned contexts.

MBIM_STATUS_NO_DEVICE_SUPPORT The operation failed because the device does not support the operation.

For Set operations only:

Status Code Description

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters.

MBIM_STATUS_WRITE_FAILURE The operation failed because the update request was unsuccessful.

The following diagram represents the optimal user experience for GSM-based MB devices. The out-of-box experience requires no
user configuration. It is assumed that the device is configured to automatically select the network to register with. The labels in bold
represent OID identifiers or transactional flow control. The labels in regular text represent the important flags within the OID
structure.

Initialization of devices with a provisioned context

Initialization of a non-SIM-locked GPRS device with a provisioned context

To initialize a non-SIM-locked GSM-based device, implement the following steps:

1. The MB Service sends an asynchronous (non-blocking) OID_WWAN_READY_INFO query request to the miniport driver to
identify the ready state of the device. The miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will send a notification with the requested
information in the future.

2. The miniport driver sends an NDIS_STATUS_WWAN_READY_INFO notification to the MB Service that indicates to the MB
Service that the state of the MB device is WwanReadyStateInitialized.

3. The MB Service sends an asynchronous (non-blocking) OID_WWAN_REGISTER_STATE query request to the miniport driver to
identify the registration state of the device. The miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will send a notification with the requested
information in the future.

4. The miniport driver sends an NDIS_STATUS_WWAN_REGISTER_STATE notification to the MB Service that indicates that the
registration mode of the device is WwanRegistraterModeAutomatic and its current registration state is
WwanRegisterStateSearching.

5. Later, when the device is registered to a network provider, the miniport driver sends an unsolicited
NDIS_STATUS_WWAN_REGISTER_STATE notification to the MB Service that indicates that the current registration state of the
device is WwanRegisterStateHome.

6. The device attempts to attach the packet service. When the packet service state changes to attached, the miniport driver sends
an unsolicited NDIS_STATUS_WWAN_PACKET_SERVICE notification to the MB Service that indicates that the packet service is
attached and current data class is WWAN_DATA_CLASS_GPRS.

7. The MB Service sends an asynchronous (non-blocking) OID_WWAN_HOME_PROVIDER query request to the miniport driver to
retrieve home provider information. The miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that is has received the request, and it will send a notification with the requested
information in the future.

8. The miniport driver sends an NDIS_STATUS_WWAN_HOME_PROVIDER notification to the MB Service that indicates the home
provider details.

9. The MB Service sends an asynchronous (non-blocking) OID_WWAN_PROVISIONED_CONTEXTS query request to the miniport
driver to retrieve the list of provisioned contexts. The miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will send a notification with the requested
information in the future.

10. The miniport driver sends an NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS notification to the MB Service that contains a
list of WWAN_CONTEXT structures.

11. The MB Service sends an asynchronous (non-blocking) OID_WWAN_CONNECT set request to the miniport driver to activate
the Packet Data Protocol (PDP) context. The miniport driver responds with a provisional acknowledgment
(NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and it will send a notification with the requested
information in the future.

12. The miniport driver sends an NDIS_STATUS_WWAN_CONTEXT_STATE notification to the MB Service that indicates that the
PDP context is activated.

13. The miniport driver sends an NDIS_STATUS_LINK_STATE notification to indicate that the media connect state is
MediaConnectStateConnected.

The following diagram illustrates the optimal user experience for CDMA-based devices. The out-of-box experience does not require
user configuration. This scenario assumes that the CDMA-based account has not been activated. Unlike GSM-based devices, a
CDMA-based device automatically starts registration with the network after activation is complete. The labels in bold are OID
identifiers or transactional flow control. The labels in regular text are the important flags within the OID structure.

Initialization of a CDMA Packet Device with a Provisioned Context

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_context

To initialize a CDMA-based packet device with a provisioned context, implement the following steps:

1. The MB Service sends an asynchronous (non-blocking) OID_WWAN_READY_INFO to the miniport driver. The miniport driver
responds with a provisional acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the request, and that
it will send a notification with the requested information in the future.

2. The miniport driver sends NDIS_STATUS_WWAN_FAILURE to the MB Service.

3. The MB Service sends an asynchronous (non-blocking) OID_WWAN_SERVICE_ACTIVATION to the miniport driver. The miniport
driver responds with a provisional acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the request,
and that it will send a notification with the requested information in the future.

4. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

5. The miniport driver sends NDIS_STATUS_WWAN_REGISTER_STATE to the MB Service.

6. The miniport driver sends NDIS_STATUS_WWAN_REGISTER_STATE to the MB Service.

7. The miniport driver sends NDIS_STATUS_WWAN_PACKET_SERVICE to the MB Service.

8. The MB Service sends an asynchronous (non-blocking) OID_WWAN_HOME_PROVIDER to the miniport driver. The miniport
driver responds with a provisional acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the request,
and that it will send a notification with the requested information in the future.

9. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

10. The MB Service sends an asynchronous (non-blocking) OID_WWAN_PROVISIONED_CONTEXTS to the miniport driver. The
miniport driver responds with a provisional acknowledgement (NDIS_STATUS_INDICATION_REQUIRED) that it has received the
request, and that it will send a notification with the requested information in the future.

11. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

12. The MB Service sends an asynchronous (non-blocking) OID_WWAN_PROVISIONED_CONTEXTS to the miniport driver. The
miniport driver responds with a provisional acknowledgment (NDIS_STATUS_INDICATION_REQUIRED) that it has received the
request, and it will send a notification with the requested information in the future.

13. The miniport driver sends NDIS_STATUS_WWAN_SUCCESS to the MB Service.

14. The miniport driver sends NDIS_STATUS_LINK_STATE to the MB Service.

MB Device Readiness

See Also

MB Network Blacklist Operations
Article • 03/14/2023

A device could be required to not register to a network under various scenarios, such as when a specific SIM card is
inserted or if a device does not want to register to a specific network. To address these situations, Windows 10,
version 1703 is adding modem interfaces to enable the OS to configure blacklists for SIM cards and network
providers.

At any time, the OS can configure the MCC/MNC pair in the modem to specify the SIM or network to which the
device is not allowed to register. The interface is flexible enough to allow two different lists, one for SIM providers,
and another for network providers. If the device did not attempt registration because a particular SIM or network
provider was blacklisted, the modem must report the registration status as denied.

A new MBIM command has been created to enable the OS to query and set the MCC and MNC pair with which the
modem should not attempt registration when a matching SIM cards or network provider is present on the device.
For this command, a new MSFT proprietary CID has been defined as MBIM_CID_MS_NETWORK_BLACKLIST.

Service Name = Basic Connect Extensions

UUID = UUID_BASIC_CONNECT_EXTENSIONS

UUID Value = 3d01dcc5-fef5-4d05-0d3abef7058e9aaf

CID Command Code Minimum OS Version

MBIM_CID_MS_NETWORK_BLACKLIST 2 Windows 10, version 1703

Enterprises, users or mobile operators may specify the SIM cards and networks on which they do not want the
modem to register. This command is used for the OS to be able to query and set the blacklists on the modem.
There are two blacklists:

1. A SIM card blacklist – SIM cards whose provider is a member of the blacklist should not be allowed to register
on any network.

2. A network provider blacklist – networks on the blacklist should not be allowed to register regardless of what
SIM card is present on the device.

） Important

Bias-free communication

Microsoft supports a diverse and inclusive environment. This article contains references to terminology that
the Microsoft style guide for bias-free communication recognizes as exclusionary. The word or phrase is used
in this article for consistency because it currently appears in the software. When the software is updated to
remove the language, this article will be updated to be in alignment.

MB Interface Update for Network Blacklist Operations

MBIM_CID_MS_NETWORK_BLACKLIST

Description

https://learn.microsoft.com/en-us/style-guide/bias-free-communication

The modem has to maintain both blacklists per modem and persist across SIM swaps and power cycles. Both
blacklists can be accessed with Query or Set at all times, regardless of the SIM state.

For the Set command it is expected to overwrite the existing blacklists in the modem with the Set command’s
payload.

MBIM_MS_NETWORK_BLACKLIST_INFO is returned from completed Query and Set messages in the
InformationBuffer. For Query, the InformationBuffer is NULL.

For Set, the InformationBuffer contains an MBIM_MS_NETWORK_BLACKLIST_INFO. In the Set operation, a list of
MNC/MCC combinations should be provided to the modem. When the SIM card’s IMSI matches the MNC and MCC
value specified, the modem should deregister from the network and should not try to reregister until a new SIM
card that does not match the MNC/MCC is inserted.

An Unsolicited Event is expected if any of the blacklist states have changed from actuated to not actuated, or vice
versa; for example, if a SIM is inserted whose provider matches the SIM provider blacklist.

Operation Set Query Notification

Command MBIM_MS_NETWORK_BLACKLIST_INFO Not applicable Not applicable

Response MBIM_MS_NETWORK_BLACKLIST_INFO MBIM_MS_NETWORK_BLACKLIST_INFO MBIM_MS_NETWORK_BLACKLIST_INFO

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

The following MBIM_MS_NETWORK_BLACKLIST_INFO structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 BlacklistState MBIM_MS_NETWORK_BLACKLIST_STATE Indicates whether any of the blacklist
conditions are met that result in the modem
not registering to the network. For more
information, see the
MBIM_MS_NETWORK_BLACKLIST_STATE
table.

4 4 ElementCount (EC) UINT32 Count of
MBIM_MS_NETWORK_BLACKLIST_PROVIDER
structures that follow in the DataBuffer.

Query

Set

Unsolicited Event

Parameters

Data Structures

Query

Set

Offset Size Field Type Description

8 8 *
EC

BlacklistProviderRefList OL_PAIR_LIST The first element of the pair is a 4 byte
offset, calculated from the beginning (offset
0) of this
MBIM_MS_NETWORK_BLACKLIST_INFO
structure, to a
MBIM_MS_NETWORK_BLACKLIST_PROVIDER
structure. For more information, see the
MBIM_MS_NETWORK_BLACKLIST_PROVIDER
table. The second element of the pair is a 4-
byte size of a pointer to the corresponding
MBIM_MS_NETWORK_BLACKLIST_PROVIDER
structure.

8 + (8
* EC)

DataBuffer DATABUFFER Array of
MBIM_MS_NETWORK_BLACKLIST_PROVIDER
structures.

The following data structures are used in the preceding table.

MBIM_MS_NETWORK_BLACKLIST_STATE describes the possible states of the two different blacklists.

Type Mask Description

MbimMsNetworkBlacklistStateNotActuated 0h Both blacklist conditions are not met.

MbimMsNetworkBlacklistSIMProviderActuated 1h Inserted SIM is blacklisted as its Provider ID matches the blacklist
for SIM Provider ID.

MbimMsNetworkBlacklistNetworkProviderActuated 2h Available networks are blacklisted since their Provider IDs are all in
the blacklist for network Provider ID.

MBIM_MS_NETWORK_BLACKLIST_PROVIDER specifies the provider of the blacklist.

Offset Size Field Type Description

0 4 MCC UINT32 As specified by 3GPP, MCC is part of IMSI and
specifies the country of the provider.

4 4 MNC UINT32 As specified by 3GPP, MNC is part of IMSI and
specifies the network of the provider.

8 4 NetworkBlacklistType MBIM_MS_NETWORK_BLACKLIST_TYPE Specifies for which type of blacklist the
MCC/MNC pair is used. For more information,
see the MBIM_MS_NETWORK_BLACKLIST_TYPE
table.

MBIM_MS_NETWORK_BLACKLIST_TYPE is used by the preceding data structure. It specifies which of the two
blacklists will be used.

Type Value Description

MbimMsNetworkBlacklistTypeSIM 0 The MCC/MNC pair are used for SIM provider blacklist.

MbimMsNetworkBlacklistTypeNetwork 1 The MCC/MNC pair are used for network provider blacklist.

For more information, see the MBIM_MS_NETWORK_BLACKLIST_INFO table.

Response

For Query and Set operations:

Status Code Description

MBIM_STATUS_READ_FAILURE The operation failed because the device was unable to retrieve provisioned contexts.

MBIM_STATUS_NO_DEVICE_SUPPORT The operation failed because the device does not support the operation.

For Set operations only:

Status Code Description

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters.

MBIM_STATUS_WRITE_FAILURE The operation failed because the update request was unsuccessful.

Status Codes

MB LTE Attach Operations
Article • 03/14/2023

Traditionally, LTE attach has been considered part of registration and Windows has not directly been involved in LTE attach
procedures. However, unlike typical circuit switch network registrations, LTE is a packet switch-only network and requires a
default EPS bearer to be enabled for the device to maintain registration on the LTE network.

To establish a default EPS bearer with the network the device must request a PDP context activation during the LTE attach
procedure, which requires Access Point Name (APN) specification. Per the 3GPP standard, there are four scenarios where a device
can specify APN when it is trying LTE attach:

1. The device specifies a specific LTE attach APN.
2. The device specifies a specific LTE attach APN but the network decides to let the device attach on another APN instead

during roaming.
3. The device does not specify a LTE attach APN and lets network assign one back to the device.
4. The device registered from a 2G/3G network to LTE and there was already at minimum one active PDP context. The network

uses it as the LTE attach APN.

Today, all LTE attach APN information is provided by IHVs and OEMs directly in the modem for each provider for which it has
configuration. However, it is not a fully scalable model for IHVs and OEMs to have all possible LTE attach APN settings for all
operators around the globe. Starting in Windows 10, version 1703, new interfaces are defined for both NDIS OIDs and MBIM
Microsoft proprietary CIDs to support LTE attach APN configuration from the OS.

Starting in Windows 10, version 1703, if the underlying hardware supports LTE attach APN configuration from the OS then the
user will be able to configure the LTE attach APN from Settings. Hardware that has default LTE attach APN configurations must
also make its configuration available by the OS.

This feature is supported by adding in two new OIDs and CIDs. For IHV partners that implement MBIM, only the CID version has
to be supported.

Two new MBIM CIDs have been created to allow for LTE attach APN configuration and for the OS to retrieve the latest LTE attach
status of the device. If IHV partners decide to support OS default LTE attach APN management then both commands must be
supported.

Service Name = Basic Connect Extensions

UUID = UUID_BASIC_CONNECT_EXTENSIONS

UUID Value = 3d01dcc5-fef5-4d05-0d3abef7058e9aaf

CID Command Code Minimum OS Version

MBIM_CID_MS_LTE_ATTACH_CONFIG 3 Windows 10, version 1703

MBIM_CID_MS_LTE_ATTACH_STATUS 4 Windows 10, version 1703

LTE attach contexts can be different , depending on how the network interacts with the device during runtime. For the rest of this
documentation, LTE attach context will be referred to as the current PDP context that is being used for LTE attach and default LTE
attach context will be referred to as what is configured on the device performing LTE attach with when there is no other existing

LTE Attach APN Configuration for MBIM Modems

MB Interface Update for LTE Attach Operations

MBIM_CID_MS_LTE_ATTACH_CONFIG

Description

enabled PDP context. MBIM_CID_MS_LTE_ATTACH_CONFIG enables the OS to Query and Set the default LTE attach context of the
inserted SIM’s provider (MCC/MNC pair).

Although the LTE attach APN could be technically considered as a context, it differs from all other contexts stored in the modem.
For all other contexts activation happens after registration and, based on various conditions, the OS can decide which context is
the best fit for connection. However, the LTE attach context is enabled as part of device registration on the LTE network. The OS is
unable to retrieve any network-related status before the completion of registration; because of this limitation, the OS must be
able to configure LTE attach context for all different roaming conditions of the device to make sure the device can register on the
LTE network regardless of what the roaming status is.

LTE attach context activation with the network does not require an OS-explicit connection request as the OS is not aware of any
modem self-initiated context activation. Default LTE attach context falls into this category. When the OS issues a
MBIM_CID_CONNECT request to enable a PDP context and the given PDP context matches all the following, the modem should
complete the CID activation request with success without bringing up a new over-the-air bearer with the network:

1. There is an existing enabled PDP context that is initiated by the modem and not made available to the OS.
2. The PDP context matches the specified APN in the CID request.
3. The IP type of the enabled PDP context is compatible with the requested IP type in the CID.

This is important as the OS is not aware of all the PDP contexts that were initiated by the modem. This will reduce network noise
and load. Otherwise, the modem should bring up a new over-the-air bearer matching OS APN specification as per a normal
context activation request. The IP type compatibility is specified here:

IP type of the enabled PDP context within the modem Compatible with requested IP type(s) Incompatible with requested IP type

IPv4 Default; IPv4; IPv4v6; IPv4 and v6 IPv6

IPv6 Default; IPv6; IPv4v6; IPv4 and v6 IPv4

IPv4v6 Default; IPv4; IPv6; IPv4v6; IPv4 and v6 None

When the OS issues a MBIM_CID_CONNECT request to deactivate a PDP context then the modem should check the following:

1. Whether the device is LTE attached and the context to be deactivated is the only enabled PDP context to maintain LTE
registration

2. Whether the context to be deactivated is also used by the modem internally for any services that are not exposed to the OS

If either of these are true, then the modem should complete the CID deactivation request but continue to maintain the over-the-
air bearer with the network. Otherwise the modem should deactivate the context as per normal deactivation requests.

All default LTE attach APN configuration provided by the OS is per-provider and matches to the inserted SIM card’s home
Provider ID (MCC/MNC pair). The modem should only provide configured LTE attach context for the current inserted SIM’s
Provider ID when queried. The modem should always return three default LTE attach contexts that matches the inserted SIM’s
Provider ID, one for each roaming condition (home/partner/non-partner).

It is expected that across SIM swaps, the modem should clear its default LTE attach context before applying the configuration for
the next SIM card. If the newly inserted SIM card has no default LTE attach context configuration, then the device should return
NULL empty strings for the APN of the LTE attach context for all roaming conditions while keeping the context enabled. If the
context is disabled, it is expected for the device to not attach on LTE because there is no usable configuration for LTE attach.
When the user swaps back to a SIM card that was previously configured on the device, the modem should restore its factory
default LTE attach configuration for the SIM card. It is not expected for run time configuration to persist across SIM swaps. At any
time, there should only be one default LTE attach APN in the modem per roaming condition (home/partner/non-partner).

The OS will always set all three default LTE attach contexts when a Set command is issued, one for each roaming condition. If the
list provided by the OS does not have exactly three then the Set command should be rejected. If one of the provided default LTE

７ Note

The modem should not bring up a second PDP context if only one of the IP type is enabled over the air. For example, if IPv4
is enabled and the host requests IPv4 and IPv6 then the modem should complete the activation request without bringing up
an IPv6 bearer.

attach contexts is configured by the OS where the roaming condition matches the current registration status, then the modem
should detach from the network and re-perform LTE attach with the newly specified LTE attach context. Otherwise, the device is
expected to use the specified default LTE attach context the next time when roaming conditions match. If the device-specified
default LTE attach context fails to register on LTE network, then the device should fall back to 3G/2G as appropriate. When the
modem cannot differentiate between partner and non-partner networks, the modem should use the non-partner default LTE
attach context for all roaming scenarios. If the OS configures default LTE attach context as IP type = default, then it is expected
for the modem to assign the most appropriate IP type for LTE attach context. However, the OS expects the modem to still return
partner roaming conditions and IP type of LTE attach context that reflects the configuration accurately.

IHVs and OEMs can preconfigure LTE attach context as the default configuration in the modem, but those contexts must be
tagged as MBIM_MS_CONTEXT_SOURCE = MbimMsContextSourceModemProvisioned.

Per the 3GPP standard, the default LTE attach context can be split into two categories: UE-initiated and network-initiated. If the
device is configured with a NULL empty access string, the device is expected not to provide any LTE attach context to the
network and wait for the network to assign one back to the device. Just as prescribed by MBIM 1.0, if the LTE attach context’s IP
type is configured to be default then the modem should select the best IP type based on its internal algorithm.

The following diagram illustrates an example flow of LTE attach configuration.

MBIM_MS_LTE_ATTACH_CONFIG_INFO is returned from completed Query and Set messages in the InformationBuffer. For Query,
the InformationBuffer is NULL.

For Set, the InformationBuffer contains an MBIM_MS_SET_LTE_ATTACH_CONFIG.

The Event InformationBuffer contains an MBIM_MS_LTE_ATTACH_CONFIG_INFO structure. In some cases, the default LTE attach
context is updated by the network either Over-The-Air (OTA) or by Short Message Service (SMS) that does not go over the

Query

Set

Unsolicited Events

MBIM_CID_MS_LTE_ATTACH_CONFIG command from the OS. The function must update default LTE attach contexts and tag
MBIM_MS_CONTEXT_SOURCE = MbimMsContextSourceOperatorProvisioned accordingly. After that, functions must notify the
Host about updates that use this event with the updated list.

Operation Set Query Notification

Command MBIM_SET_MS_LTE_ATTACH_CONFIG Not applicable Not applicable

Response MBIM_MS_LTE_ATTACH_CONFIG_INFO MBIM_MS_LTE_ATTACH_CONFIG_INFO MBIM_MS_LTE_ATTACH_CONFIG_INFO

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

The following MBIM_MS_SET_LTE_ATTACH_CONFIG structure shall be used in the InformationBuffer. The Set command is only
valid if the list contains an element count of three, one for each roaming condition (home/partner/non-partner).

Offset Size Field Type Description

0 4 Operation MBIM_MS_LTE_CONTEXT_OPERATIONS Specifies the type of operation for which the Set
command is used. If set to
MbimMsLteAttachContextOperationRestoreFactory then
all other fields should be ignored. OS-created or -
modified default LTE attach contexts should be removed
and the default factory preconfigured default LTE attach
contexts should be loaded. If the modem does not have
a default configuration, then all roaming condition
default LTE attach contexts should be set to an empty
APN string and IP type = default.

4 4 ElementCount (EC) UINT32 Count of MBIM_MS_LTE_ATTACH_CONTEXT structures
that follow in the DataBuffer. This component is currently
specified to three, one for each roaming condition
(home/partner/non-partner).

8 8 *
EC

MsLteAttachContextRefList OL_PAIR_LIST The first element of the pair is a 4-byte offset, calculated
from the beginning (offset 0) of this
MBIM_MS_LTE_ATTACH_CONFIG_INFO structure, to an
MBIM_MS_LTE_ATTACH_CONTEXT structure (For more
information, see the MBIM_MS_LTE_ATTACH_CONTEXT
table). The second element of the pair is a 4-byte size of
a pointer to the corresponding
MBIM_MS_LTE_ATTACH_CONTEXT structure.

8 + (8
* EC)

DataBuffer DATABUFFER Array of MBIM_MS_LTE_ATTACH_CONTEXT structures.

The following structures are used in the preceding table.

MBIM_MS_LTE_ATTACH_CONTEXT_OPERATIONS describes the types of operations that can be used in the Set command.

Type Value Description

MbimMsLteAttachContextOperationDefault 0 Default operation for overwriting existing default LTE attach contexts in the
modem. The OS will always replace all three default LTE attach context for roaming
conditions.

Parameters

Data Structures

Query

Set

Type Value Description

MbimMsLteAttachContextOperationRestoreFactory 1 Restore factory preconfigured default LTE attach context for the Provider ID of
currently inserted SIM. All default LTE attach contexts replaced or created by the
OS should be removed and replaced. If there is no default preconfigured default
LTE attach context for the current inserted SIM Provider ID with one or more
roaming conditions, then the default LTE attach should return an empty APN
string and IP type = default.

MBIM_MS_LTE_ATTACH_CONTEXT specifies the context to be used for LTE attach configuration.

Offset Size Field Type Description

0 4 IPType MBIM_CONTEXT_IP_TYPE For more information, see the MBIM_CONTEXT_IP_TYPE
table.

4 4 Roaming MBIM_MS_LTE_ATTACH_CONTEXT_ROAMING_CONTROL Indicates which roaming condition applies to this
default LTE attach context. For more information, see
the
MBIM_MS_LTE_ATTACH_CONTEXT_ROAMING_CONTROL
table.

8 4 Source MBIM_MS_CONTEXT_SOURCE Specifies the creation source of the context. For more
information, see the MBIM_MS_CONTEXT_SOURCE
table.

12 4 AccessStringOffset OFFSET Offset in data buffer to a string, AccessString, to access
the network. For GSM-based networks, this would be an
Access Point Name (APN) string such as
"data.thephone-company.com". The size of the string
should not exceed 100 characters. If the AccessString is
empty, then the device expects the network to assign
an access string back to the device. IP type still has to
be specified in this case.

16 4 AccessStringSize SIZE(0..200) Size used for AccessString. This value should be 0 if the
device expects the network to assign an access string
back to the device for LTE attach.

20 4 UserNameOffset OFFSET Offset in bytes, calculated from the beginning of this
structure, to a string, UserName, that represents the
username to authenticate. This member can be NULL.

24 4 UserNameSize SIZE(0..510) Size used for UserName.

28 4 PasswordOffset OFFSET Offset in bytes, calculated from the beginning of this
structure, to a string, Password, that represents the
username's password. This member can be NULL.

32 4 PasswordSize SIZE(0..510) Size used for Password.

36 4 Compression MBIM_COMPRESSION Specifies the compression to be used in the data
connection for header and data. This member applies
only to GSM-based devices. The Host sets this member
to MBIMCompressionNone for CDMA-based devices.
For more information, see the MBIM_COMPRESSION
table.

40 4 AuthProtocol MBIM_AUTH_PROTOCOL Authentication type to use for the PDP activation. For
more information, see the MBIM_AUTH_PROTOCOL
table.

44 DataBuffer DATABUFFER The data buffer that contains AccessString, UserName,
and Password.

MBIM_MS_LTE_ATTACH_CONTEXT_ROAMING_CONTROL indicates which roaming condition applies to this default LTE attach
context.

Type Value Description

Type Value Description

MbimMsLteAttachContextRoamingControlHome 0 Indicates whether the default LTE attach context is allowed to be used on home
network or not.

MbimMsLteAttachContextRoamingControlPartner 1 Indicates whether the context is allowed to be used on partner roaming
networks or not.

MbimMsLteAttachContextRoamingControlNonPartner 2 Indicates whether the context is allowed to be used on non-partner roaming
networks or not.

MBIM_MS_CONTEXT_SOURCE specifies the creation source of the context.

Type Value Description

MbimMsContextSourceAdmin 0 The context was created by an Enterprise IT admin from the OS.

MbimMsContextSourceUser 1 The context was created by user through the OS settings.

MbimMsContextSourceOperator 2 The context was created by the operator through OMA-DM or other channels.

MbimMsContextSourceModem 3 The context was created by the IHV or OEM.

MbimMsContextSourceDevice 4 The context was created by the OS APN database.

The following MBIM_MS_LTE_ATTACH_CONFIG_INFO structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 ElementCount (EC) UINT32 Count of MBIM_MS_LTE_ATTACH_CONTEXT structures that follow in the DataBuffer.
This component is currently specified to three, one for each roaming condition
(home/partner/non-partner).

4 8 *
EC

MsLteAttachContextRefList OL_PAIR_LIST The first element of the pair is a 4-byte offset, calculated from the beginning
(offset 0) of this MBIM_MS_LTE_ATTACH_CONFIG_INFO structure, to an
MBIM_MS_LTE_ATTACH_CONTEXT structure (For more information, see the
MBIM_MS_LTE_ATTACH_CONTEXT table). The second element of the pair is a 4-
byte size of a pointer to the corresponding MBIM_MS_LTE_ATTACH_CONTEXT
structure.

4 + (8
* EC)

DataBuffer DATABUFFER Array of MBIM_MS_LTE_ATTACH_CONTEXT structures.

For more information, see the MBIM_MS_LTE_ATTACH_CONFIG_INFO table.

For Query and Set operations:

Status Code Description

MBIM_STATUS_READ_FAILURE The operation failed because the device was unable to retrieve provisioned contexts.

MBIM_STATUS_NO_DEVICE_SUPPORT The operation failed because the device does not support the operation.

For Set operations only:

Status Code Description

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters.

MBIM_STATUS_WRITE_FAILURE The operation failed because the update request was unsuccessful.

Response

Notification

Status Codes

Per 3GPP requirement, although a device can specify the default LTE attach context to be used when LTE attaching to the network
without any enabled PDP context, there might be situations where the device will LTE-attach on a PDP context that differs from
the default LTE attach context configured on the device. The following is a list of all possible scenarios:

1. The UE specifies a specific LTE attach APN.
2. The UE specifies a specific LTE attach APN but the network decides to let the device attach on another APN instead during

roaming.
3. The UE does not specify a LTE attach APN and lets network assign one back to the device.
4. The UE registered from 2G/3G network to LTE and there was already at minimum one active PDP context. The network uses

it as the LTE attach APN.

When the device default LTE attaches, it should send a notification of MBIM_CID_MS_LTE_ATTACH_STATUS to the OS to provide
details of the PDP context on the latest LTE attachment. Default LTE attach occurs when one of the following scenarios is fulfilled:

1. Device initially attaches to the LTE network.
2. Device hands up from 2G/3G to LTE without any prior enabled PDP context.

The LTE attach context returned from MBIM_CID_LTE_ATTACH_STATUS could be one of the following:

1. Default LTE attach context stored in the modem.
2. Default LTE attach context that was assigned back from the network.

During runtime, the OS should also be able to query what the last used attach information was for default LTE attach. The
modem is expected to return the last known default LTE attach context. If the device was handed off from LTE to 2G/3G network,
it is expected for the modem to return the context that was used for the previous LTE attach. Every time that the device
deregisters from the network, it is expected for the APN to become empty.

The below diagram illustrates an example message flow for LTE attach status.

MBIM_MS_LTE_ATTACH_STATUS is returned from Query complete messages in the InformationBuffer. For Query, the
InformationBuffer is NULL.

MBIM_CID_MS_LTE_ATTACH_STATUS

Description

Query

Set

Set operations are not supported.

The Event InformationBuffer contains an MBIM_MS_LTE_ATTACH_STATUS structure.

Operation Set Query Notification

Command Not applicable Not applicable Not applicable

Response Not applicable MBIM_MS_LTE_ATTACH_STATUS MBIM_MS_LTE_ATTACH_STATUS

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

Set operations are not supported.

The following MBIM_MS_LTE_ATTACH_STATUS structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 LteAttachState MBIM_MS_LTE_ATTACH_STATE Indicates whether the device is currently attached to a LTE network or not.
For more information, see the MBIM_MS_LTE_ATTACH_STATE table.

4 4 IPType MBIM_CONTEXT_IP_TYPES For more information, see the MBIM_CONTEXT_IP_TYPE table.

8 4 AccessStringOffset OFFSET Offset in data buffer to a string, AccessString, to access the network. For
GSM-based networks, this would be an Access Point Name (APN) string
such as "data.thephone-company.com". For CDMA-based networks, this
might be a special dial code such as "#777" or a Network Access Identifier
(NAI) such as "foo@thephone-company.com". This member can be NULL
to request that the network assign the default APN. Note: Not all networks
support this NULL APN convention. Therefore, a connect failure caused by
an invalid APN is a possible outcome. The size of the string should not
exceed 100 characters.

12 4 AccessStringSize SIZE(0..200) Size in bytes used for AccessString.

16 4 UserNameOffset OFFSET Offset in bytes, calculated from the beginning of this structure, to a string,
UserName, that represents the username to authenticate. This member
can be NULL.

20 4 UserNameSize SIZE(0..510) Size in bytes used for UserName.

24 4 PasswordOffset OFFSET Offset in bytes, calculated from the beginning of this structure, to a string,
Password, that represents the username's password. This member can be
NULL.

28 4 PasswordSize SIZE(0..510) Size in bytes used for Password.

32 4 Compression MBIM_COMPRESSION Specifies the compression to be used in the data connection for header
and data. This member applies only to GSM-based devices. The Host sets
this member to MBIMCompressionNone for CDMA-based devices. For
more information, see the MBIM_COMPRESSION table.

Unsolicited Events

Parameters

Data Structures

Query

Set

Response

Offset Size Field Type Description

36 4 AuthProtocol MBIM_AUTH_PROTOCOL Authentication type to use for the PDP activation. For more information,
see the MBIM_AUTH_PROTOCOL table.

40 4 DataBuffer DATABUFFER

The following data structure is used in the preceding table.

MBIM_MS_LTE_ATTACH_STATE indicates whether the device is currently attached to a LTE network or not.

Type Value Description

MbimMsLteAttachStateDetached 0 Indicates the device is not attached to LTE network.

MbimMsLteAttachStateAttached 1 Indicates the device is attached to LTE network.

For more information, see the MBIM_MS_LTE_ATTACH_STATUS table.

For Query and Set operations:

Status Code Description

MBIM_STATUS_READ_FAILURE The operation failed because the device was unable to retrieve provisioned contexts.

MBIM_STATUS_NO_DEVICE_SUPPORT The operation failed because the device does not support the operation.

See Steps for installing HLK .

In HLK Studio connect to device Cellular modem driver and run the test: Win6_4.MB.GSM.Data.TestLteAttach.

Alternatively, run the TestLteAttach HLK testlist by netsh-mbn and netsh-mbn-test-installation.

This file showing the HLK test results should have been generated in the directory that the 'netsh mbn test' command was ran
from: TestLteAttach.htm .

Requirement: A sim with the correct APN setting and one more APN information for manual use.

1. Open Settings->Network & Internet -> Cellular
2. Click Advanced options

Using Cellular Settings:

3. There should at least be an apn which is the setting from the sim information. You can get the APN's detailed information
by clicking the APN and clicking the "view" button.

Using Manual Settings:

3. Follow the "Add an APN" section in Cellular settings to set the APN manually.
4. Attach the APN and check the attached status.

Notification

Status Codes

Hardware Lab Kit (HLK) Tests

netsh mbn test feature=lte testpath="C:\\data\\test\\bin" taefpath="C:\\data\\test\\bin"

Manual Tests

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/aaa1f042-8535-4d09-b19e-082bef24f518
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn
https://support.microsoft.com/windows/cellular-settings-in-windows-10-905568ff-7f31-3013-efc7-3f396ac92cd7

1. Get all the Attach APN profiles under %ProgramData%\Microsoft\WwanSvc\DMProfiles
2. Understand which particular profile will be applied based on creation type priorities
3. Investigate the logs to check why the LTE Attach APN was wrongly configured
4. Collect and decode the logs using the instructions in Collecting Logs
5. Open the .txt file generated in the TextAnalysisTool
6. Load the LTE Attach filter

MB LTE Attach Troubleshooting Guide

Sample log of LTE Attach

10409 [0]0370.0434::2020-03-06 01:16:13.118424000 [WwanDimCommon] ReadyState : WwanReadyStateInitialized (0x1)
14137 [0]0370.0684::2020-03-06 01:16:13.146883200 [WwanProfileManager]INFO: SaveModemConfiguredLteAttachConfig:
added modem configured LTE attach profile
14362 [0]0370.0684::2020-03-06 01:16:13.149255900 [WwanProfileManager]INFO: SaveModemConfiguredLteAttachConfig:
added modem configured LTE attach profile
14476 [1]0370.0434::2020-03-06 01:16:13.149677900 [WwanDimCommon] ReadyState : WwanReadyStateInitialized (0x1)
14503 [0]0370.0684::2020-03-06 01:16:13.151412000 [WwanProfileManager]INFO: SaveModemConfiguredLteAttachConfig:
added modem configured LTE attach profile
14962 [0]0370.0684::2020-03-06 01:16:13.156860700 [Microsoft-Windows-WWAN-SVC-EVENTS]WWAN Service event: [Info]
CWwanDataExecutor::OnLteAttachProfileUpdate: WwanPmGetLteAttachProfileInEffect() didn't find anything, using
Network Assigned.
14963 [0]0370.0684::2020-03-06 01:16:13.156862600 [Microsoft-Windows-WWAN-SVC-EVENTS]WWAN Service event: [Info]
CWwanDataExecutor::OnLteAttachProfileUpdate: LTEAttachConfig has same config as modem has, skip

LTE Attach Log Filter
Article • 12/15/2021

To load a TextAnalysisTool filter for the LTE Attach operation:

1. Copy and paste the lines below and save them into a text file named "lte-
attach.tat."

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2014-04-22" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="SaveModemConfiguredLteAttachConfig" />
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="[WwanProtDim] StatusCode :
NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG (0x4004103d)" />
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="WwanPmSetDMConfigProfile" />
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="CWwanDataExecutor::OnLteAttachProfileUpdate" />
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="ReadyState : WwanReadyStateInitialized" />
 <filter enabled="y" excluding="n" color="ff0000" type="matches_text"
case_sensitive="n" regex="n" text="WwanPmGetLteAttachProfileInEffect" />
 <filter enabled="y" excluding="n" color="0000ff" type="matches_text"
case_sensitive="n" regex="n" text="IsSameLTEAttachAPN" />
 <filter enabled="y" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="[WwanProtDim] ReadyState" />
 <filter enabled="n" excluding="n" type="matches_text" case_sensitive="n"
regex="n" text="LTEAttachConfig" />
 </filters>
</TextAnalysisTool.NET>

MB Protocol Configuration Options
(PCO) operations
Article • 03/14/2023

The purpose of Protocol Configuration Options (PCO) is to transfer the external network
protocol options associated with a packet data protocol (PDP) context activation.
Windows NDIS definitions for PCO values have typically been generic in order to receive
full PCO values from the modem and network in the future. However starting with
Windows 10 version 1709 some modems are only able to pass up operator specific PCO
elements to the OS. This topic defines the behavior of the current operator specific-only
PCO implementation.

There are three scenarios where the PCO value will be passed to the host:

When a new PCO value has arrived on an activated connection
When an app or service queries for the latest PCO value from the modem
When a connection is bridged or activated for the first time and a PCO value
already exists in the modem

For the first scenario, the modem should send an NDIS_STATUS_WWAN_PCO_STATUS
notification to the OS indicating a new PCO value change whenever a new PCO value is
received from the network, with the appropriate NDIS port number to represent the
corresponding PDN. To avoid draining the battery unnecessarily, the modem should
avoid noisy notifications, as described in Modem behavior with Selective Suspend and
Connected Standby.

For the second scenario, when an app or service queries for PCO value from the modem
on an activated PDN connection, the host will send the modem an OID_WWAN_PCO
query request to read the latest cached PCO value in the modem.

For the third scenario, when a connection is activated or bridged on the host, the
modem should send an NDIS_STATUS_WWAN_PCO_STATUS notification when a PCO
value already exists in the modem for the activated or bridged connection the host
requested. The notification should be passed up from the corresponding NDIS port
number of the PDN.

Overview

Flows

The following figure shows the scenario flow:

When Selective Suspend is enabled, the modem can notify the OS whenever it receives a
PCO data structure from the network. However, the modem should avoid unnecessary
device wakeup. Otherwise, noisy PCO notifications from the network will wake the
device up frequently and drain the battery unnecessarily.

When Connected Standby is enabled, the modem shouldn’t notify the OS when it
receives PCO data structures from the network because it will not only wake up the
device, but it will also wake up the OS, which is not necessary. Instead, the modem
should cache all the latest PCO elements from the data structure and notify the OS once
the OS exits Connected Standby. For an MBIM modem, it should cache all PCO data
structures and only send PCO notifications to the OS after the host has subscribed to it.
This will be done using the MBIM_CID_DEVICE_SERVICE_SUBSCRIBE_LIST CID when
system power has returned to full power after coming out of Connected Standby.

Modem behavior with Selective Suspend and
Connected Standby

Based on PCO values received from the network, the modem will be reset in the
following scenarios:

The user completed self-activation after receiving PCO = 5 from the network. A
new PCO value (3, 0 or anything Mobile Operator App can recognize) will be sent
to the OS and the OS will pass it to Mobile Operator App.
The user added more credit to their account after receiving PCO = 3. A new PCO
value (0, or anything Mobile Operator App can recognize) will be sent to the OS
and the OS will pass it to Mobile Operator App.

The host is not aware of the modem being reset, so the activated connections from the
host will not be deactivated and the modem should automatically re-establish
connection with those PDN after resetting. Upon establishing connection and receiving
a new incoming PCO value from the network, the modem will provide an unsolicited
NDIS_STATUS_WWAN_PCO_STATUS notification to the host.

The following diagram illustrates the modem’s reset flow when one of these scenarios
occurs, with Verizon Wireless as the example MO:

For querying the status and payload of a PCO value the modem received from the
operator network, see OID_WWAN_PCO. OID_WWAN_PCO uses the
NDIS_WWAN_PCO_STATUS structure, which in turn contains a WWAN_PCO_VALUE
structure representing the PCO information payload from the network.

Resetting the modem based on PCO values

NDIS interface to the modem

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value

For the status notification sent by a modem miniport driver to inform the OS of the
current PCO state in the modem, see NDIS_STATUS_WWAN_PCO_STATUS.

Service = MBB_UUID_BASIC_CONNECT_EXT_CONSTANT

Service UUID = 3d01dcc5-fef5-4d05-0d3a-bef7058e9aaf

The following CIDs are defined for PCO:

CID Command code Minimum OS Version

MBIM_CID_PCO 9 Windows 10, version 1709

This command is used to query the PCO data cached in modem from the mobile
operator network.

The InformationBuffer contains an MBIM_PCO_VALUE in which the only relevant field is
SessionId. SessionId is reserved for future use and will always be 0 in Windows 10,
version 1709. The SessionId in a query indicates which IP data stream’s PCO value is to
be returned by the function.

Not applicable.

Unsolicited events contain an MBIM_PCO_VALUE and are sent when a new PCO value
has arrived on an activated connection.

Operation Set Query Notification

Command Not applicable MBIM_PCO_VALUE Not applicable

MB CID to the modem

MBIM_CID_PCO

Query

Set

Unsolicited Event

Parameters

Operation Set Query Notification

Response Not applicable MBIM_PCO_VALUE MBIM_PCO_VALUE

Type Value Description

MBIMPcoTypeComplete 0 Specifies that the complete PCO structure will be passed up as
received from the network and the header realistically reflects
the protocol in octet 3 of the PCO structure, defined in the
3GPP TS24.008 spec.

MBIMPcoTypePartial 1 Specifies that the modem will only be passing up a subset of
PCO structures that it received from the network. The header
matches the PCO structure defined in the 3GPP TS24.008 spec,
but the “Configuration protocol” of octet 3 may not be valid.

Offset Size Field Type Description

0 4 SessionId UINT32 The SessionId in a query indicates which IP data
stream’s PCO value is to be returned by the
function.

4 4 PcoDataSize UINT32 The length of PcoData, from 0 to 256. This value
will be 0 in a query.

8 4 PcoDataType UINT32 The PCO data type. For more info, see
MBIM_PCO_TYPE.

12 PcoDataBuffer DATABUFFER The PCO structure from the 3GPP TS24.008 spec.

This CID only uses Generic Status Codes.

See Steps for installing HLK .

Data Structures

MBIM_PCO_TYPE

MBIM-PCO-TYPE

Status Codes

Hardware Lab Kit (HLK) Tests

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx

In HLK Studio connect to the device Cellular modem driver and run the test: TestPco.

PCO

PCO Background Trigger

NDIS_STATUS_WWAN_PCO_STATUS

NDIS_WWAN_PCO_STATUS

WWAN_PCO_VALUE

OID_WWAN_PCO

WinRT API

See Also

https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/c7f8c2c2-ba87-4f51-8666-3fa06dc01451
https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.mobilebroadbandpco
https://learn.microsoft.com/en-us/uwp/api/windows.applicationmodel.background.mobilebroadbandpcodatachangetrigger
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value

MB low level UICC access
Article • 03/14/2023

The Mobile Broadband Interface Model Revision 1.0, or MBIM1, defines an OEM- and IHV-agnostic
interface between a host device and a cellular data modem.

An MBIM1 function includes a UICC smart card and provides access to some of its data and internal
state. However, the smart card may have additional capabilities beyond those that are defined by the
MBIM interface. These additional capabilities include support for a secure element for mobile payment
solutions based upon near-field communication, or for remote provisioning of an entire UICC profile.

In a mobile broadband-enabled Windows device, the MBIM interface is used in addition to the Radio
Interface Layer (RIL) interface. One of the features the RIL provides is an interface for low-level access to
the UICC. This topic describes a set of Microsoft extensions to MBIM that describe this additional
functionality at the MBIM interface.

The Microsoft extensions comprise a set of device service commands (both Set and Query) and
notifications. These extensions do not include any new uses of device service streams.

Service name UUID UUID value

Microsoft Low-Level UICC Access UUID_MS_UICC_LOW_LEVEL C2F6588E-F037-4BC9-8665-F4D44BD09367

The following table specifies the command code for each CID, as well as whether the CID supports Set,
Query, or Event (notification) requests. See each CID’s individual section within this topic for more info
about its parameters, data structures, and notifications.

CID Command code Set Query Notify

MBIM_CID_MS_UICC_ATR 1 N Y N

MBIM_CID_MS_UICC_OPEN_CHANNEL 2 Y N N

MBIM_CID_MS_UICC_CLOSE_CHANNEL 3 Y N N

MBIM_CID_MS_UICC_APDU) 4 Y N N

MBIM_CID_MS_UICC_TERMINAL_CAPABILITY 5 Y Y N

MBIM_CID_MS_UICC_RESET 6 Y Y N

MBIM status codes are defined in Section 9.4.5 of the MBIM standard . In addition, the following
additional failure status codes are defined:

Overview

MBIM service and CID values

Status codes

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

Status Code Value
(hex)

Description

MBIM_STATUS_MS_NO_LOGICAL_CHANNELS 87430001 The logical channel open was not successful because
no logical channels are available on the UICC (either
it does not support them or all of them are in use).

MBIM_STATUS_MS_SELECT_FAILED 87430002 The logical channel open was not successful because
SELECT failed.

MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL 87430003 The logical channel number is invalid (it was not
opened by MBIM_CID_MS_UICC_OPEN_CHANNEL).

Type Value Description

MBIMSubscriberReadyStateNoEsimProfile 7 The card is ready but does not have any enabled profiles.

The UICC may implement either a character-based or record-based interface, or both. Although the
specific mechanism is different, the result is that the UICC responds to each command with two status
bytes (named SW1 and SW2) and a response (which may be empty). A normal success status is indicated
by 90 00. However, if the UICC supports the card application toolkit and the UICC wishes to send a
proactive command to the terminal, a successful return will be indicated by a status of 91 XX (where XX
varies). The MBIM function, or terminal, is responsible for handling this proactive command just as it
would handle a proactive command received during any other UICC operation (sending a FETCH to the
UICC, handling the proactive command, or sending it to the host with MBIM_CID_STK_PAC). When the
MBIM host sends either MBIM_CID_MS_UICC_OPEN_CHANNEL or MBIM_CID_MS_UICC_APDU it should
consider both 90 00 and 91 XX as a normal status.

Commands must be able to return responses that are larger than 256 bytes. This mechanism is
described in Section 5.1.3 of the ISO/IEC 7816-4:2013 standard . In this case, the card will return SW1
SW2 status words of 61 XX, rather than 90 00, where XX is either the number of remaining bytes or 00 if
there are 256 bytes or more remaining. The modem must issue a GET RESPONSE with the same class
byte repeatedly until all the data has been received. This will be indicated by the final status words 90
00. The sequence must be uninterrupted within a specific logical channel. Additional APDUs should be
handled at the modem and should be transparent to the host. If handled in the host, there is no
guarantee that some other APDU may asynchronously reference the card during the sequence of
APDUs.

Sections 5.2.3.3.10 through 5.2.3.3.14 of the IHVRIL specification define a similar interface upon which
this specification is based. Some differences include:

The RIL interface does not provide a way to specify secure messaging. The MBIM command to
exchange APDUs specifies this as an explicit parameter.

MBIM_SUBSCRIBER_READY_STATE

UICC responses and status

Comparison to IHVRIL

https://go.microsoft.com/fwlink/p/?linkid=864596

The RIL interface does not clearly define the interpretation of the class byte within the APDU. The
MBIM specification states that the class byte sent from the host must be present but is not used
(and instead the MBIM function constructs this byte).
The RIL interface uses a separate function to close all UICC channels in a group, whereas the MBIM
interface accomplishes this with variant arguments to a single CID.
The relationship between MBIM error status and UICC status (SW1 SW2) is more clearly defined
than the relationship between RIL errors and UICC status.
The MBIM interface distinguishes failure to allocate a new logical channel from failure to SELECT a
specified application.
The MBIM interface permits sending the modem terminal capability objects to send to the card.

The Answer to Reset (ATR) is the first string of bytes sent by the UICC after a reset has been performed.
It describes the capabilities of the card, such as the number of logical channels that it supports. The
MBIM function must save the ATR when it is received from the UICC. Subsequently, the host may use the
MBIM_CID_MS_UICC_ATR command to retrieve the ATR.

Type Set Query Notification

Command Not applicable Empty Not applicable

Response Not applicable MBIM_MS_ATR_INFO Not applicable

The InformationBuffer of a Query message is empty.

Not applicable.

The InformationBuffer of MBIM_COMMAND_DONE contains the following MBIM_MS_ATR_INFO
structure describing the answer to reset for the UICC attached to this function.

Offset Size Field Type Description

0 4 AtrSize SIZE(0..33) The length of AtrData.

4 4 AtrOffset OFFSET The offset in bytes, calculated from the beginning of this structure,
to a byte array called AtrData that contains the ATR data.

MBIM_CID_MS_UICC_ATR

Parameters

Query

Set

Response

MBIM_MS_ATR_INFO

Offset Size Field Type Description

8 AtrSize DataBuffer DATABUFFER The AtrData byte array.

Not applicable.

The following status codes are applicable.

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not yet fully
initialized.

The host uses the MBIM_CID_MS_UICC_OPEN_CHANNEL command to request that the function open a
new logical channel on the UICC card and select a specified UICC application (specified by its application
ID).

The function implements this MBIM command using a sequence of UICC commands:

1. The function sends a MANAGE CHANNEL command to the UICC, as described by section 11.1.17 of
the ETSI TS 102 221 technical specification , to create a new logical channel. If this command fails,
the function returns the MBIM_STATUS_MS_NO_LOGICAL_CHANNELS status with SW1 SW2 and
takes no further action.

2. If the MANAGE CHANNEL command succeeds, the UICC reports the channel number of the new
logical channel to the function. The function sends a SELECT [by name] command where P1 = 04,
as described by section 11.1.1 of the ETSI TS 102 221 technical specification . If this operation
fails, the function sends a MANAGE CHANNEL command to the UICC to close the logical channel
and returns the MBIM_STATUS_MS_SELECT_FAILED status with SW1 SW2 from the SELECT.

3. If the SELECT command succeeds, the function records the logical channel number and the channel
group specified by the host for future reference. It will then return the logical channel number,
SW1 SW2 from the SELECT, and the response from the SELECT to the host.

Unsolicited events

Status codes

MBIM_CID_MS_UICC_OPEN_CHANNEL

https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594

Operation Set Query Notification

Command MBIM_MS_SET_UICC_OPEN_CHANNEL Not applicable Not applicable

Response MBIM_MS_UICC_OPEN_CHANNEL_INFO Not applicable Not applicable

Not applicable.

The InformationBuffer of MBIM_COMMAND_MSG contains the following
MBIM_MS_SET_UICC_OPEN_CHANNEL structure.

Offset Size Field Type Description

0 4 AppIdSize SIZE(0..32) The size of the application ID (AppId).

4 4 AppIdOffset OFFSET The offset in bytes, calculated from the beginning of this
structure, to a byte array called AppId that defines the
AppId to be SELECTed.

8 4 SelectP2Arg UINT32(0..255) The P2 argument to the SELECT command.

12 4 ChannelGroup UINT32 A tag value that identifies the channel group for this
channel.

16 AppIdSize DataBuffer DATABUFFER The AppId byte array.

The InformationBuffer of MBIM_COMMAND_DONE contains the following
MBIM_MS_UICC_OPEN_CHANNEL_INFO structure.

Offset Size Field Type Description

0 4 Status BYTE[2] SW1 and SW2, in that byte order. For more info, see the notes
following this table.

4 4 Channel UINT32(0..19) The logical channel identifier. If this member is 0, then the
operation failed.

8 4 ResponseLength SIZE(0..256) The response length in bytes.

Parameters

Query

Set

MBIM_MS_SET_UICC_OPEN_CHANNEL

Response

MBIM_MS_UICC_OPEN_CHANNEL_INFO

Offset Size Field Type Description

12 4 ResponseOffset OFFSET The offset in bytes, calculated from the beginning of this
structure, to a byte array called Response that contains the
response from the SELECT.

16 - DataBuffer DATABUFFER The Response byte array data.

If the command returns MBIM_STATUS_MS_NO_LOGICAL_CHANNELS, the Status field shall contain the
UICC status words SW1 and SW2 from the MANAGE CHANNEL command and the remaining fields will
be zero. If the command returns MBIM_STATUS_MS_SELECT_FAILED, the Status field shall contain the
UICC status words SW1 and SW2 from the SELECT command and the remaining fields will be zero. For
any other status, the InformationBuffer shall be empty.

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not yet
fully initialized.

MBIM_STATUS_MS_NO_LOGICAL_CHANNELS The logical channel open failed because no logical channels are
available on the UICC (either it does not support them or all of them
are in use).

MBIM_STATUS_MS_SELECT_FAILED The logical channel open was not successful because SELECT failed.

The host sends MBIM_CID_MS_UICC_CLOSE_CHANNEL to the function to close a logical channel on the
UICC. The host may specify a channel number or may specify a channel group.

If the host specifies a channel number, the function should check whether this channel was opened by a
previous MBIM_CID_MS_UICC_OPEN_CHANNEL. If so, it should send a MANAGE CHANNEL command to

Unsolicited events

Status codes

MBIM_CID_MS_UICC_CLOSE_CHANNEL

the UICC to close the channel, return a status of MBIM_STATUS_SUCCESS, and return the SW1 SW2 from
the MANAGE CHANNEL. If not, it should take no action and return the
MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL failure status.

If the host specifies a channel group, the function determines which (if any) logical channels were
opened with that channel group and sends a MANAGE CHANNEL command to the UICC for each such
channel. It returns a status of MBIM_STATUS_SUCCESS with the SW1 SW2 of the last MANAGE
CHANNEL. If no channels were closed it shall return 90 00.

Operation Set Query Notification

Command MBIM_MS_SET_UICC_CLOSE_CHANNEL Not applicable Not applicable

Response MBIM_MS_UICC_CLOSE_CHANNEL_INFO Not applicable Not applicable

Not applicable.

The InformationBuffer of MBIM_COMMAND_MSG contains the following
MBIM_MS_SET_UICC_CLOSE_CHANNEL structure.

Offset Size Field Type Description

0 4 Channel UINT32(0..19) If nonzero, specifies the channel to be closed. If zero, specifies that
the channel(s) associated with ChannelGroup are to be closed.

4 4 ChannelGroup UINT32 If Channel is zero, this specifies a tag value and all channels with
this tag are closed. If Channel is nonzero, this field is ignored.

The InformationBuffer of MBIM_COMMAND_DONE contains the following
MBIM_MS_UICC_CLOSE_CHANNEL_INFO structure.

Offset Size Field Type Description

0 4 Status BYTE[2] SW1 and SW2 of the last MANAGE CHANNEL executed by the function on behalf
of this command.

Parameters

Query

Set

MBIM_MS_SET_UICC_CLOSE_CHANNEL

Response

MBIM_MS_UICC_CLOSE_CHANNEL_INFO

Not applicable.

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is
missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not
yet fully initialized.

MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL The logical channel number is not valid (in other words, it was
not opened with MBIM_CID_MS_UICC_OPEN_CHANNEL).

The host uses MBIM_CID_MS_UICC_APDU to send a command APDU to a specified logical channel on
the UICC and receive the response. The MBIM function should ensure that the logical channel was
previously opened with MBIM_CID_MS_UICC_OPEN_CHANNEL and fail with status
MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL if it was not.

The host must send a complete APDU to the function. The APDU may be sent with a class byte value
defined in the first interindustry definition in section 4 of the ISO/IEC 7816-4:2013 standard , or in the
extended definition in Section 10.1.1 of the ETSI TS 102 221 technical specification . The APDU may be
sent without secure messaging or with secure messaging. The command header not authenticated. The
host specifies the type of class byte, logical channel number, and secure messaging along with the
APDU.

The first byte of the command APDU is the class byte, coded as defined by section 4 of the ISO/IEC
7816-4:2013 standard or section 10.1.1 of the ETSI TS 102 221 technical specification . The host may
send 0X, 4X, 6X, 8X, CX, or EX class bytes. However, the function does not pass this byte directly to the
UICC. Instead, before sending the APDU to the UICC the function will replace the first byte from the host
with a new class byte (encoded as defined by section 4 of the ISO/IEC 7816-4:2013 standard or
section 10.1.1 of the ETSI TS 102 221 technical specification) based upon the Type, Channel, and
SecureMessaging values specified by the host:

Byte class Description

Unsolicited events

Status codes

MBIM_CID_MS_UICC_APDU

https://go.microsoft.com/fwlink/p/?linkid=864596
https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864596
https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864596
https://go.microsoft.com/fwlink/p/?linkid=864594

Byte class Description

0X 7816-4 interindustry, 1 <= channel <= 3, encodes security in low nibble if relevant

4X 7816-4 interindustry, 4 <= channel <= 19, no secure messaging

6X 7816-4 interindustry, 4 <= channel <= 19, secure (header not authenticated)

8X 102 221 extended, 1<= channel <= 3, encodes security in low nibble if relevant

CX 102 221 extended, 4 <= channel <= 19, no secure messaging

EX 102 221 extended, 4 <= channel <= 19, secure (header not authenticated)

The function shall return the status, SW1 SW2, and response from the UICC to the host.

Operation Set Query Notification

Command MBIM_MS_SET_UICC_APDU Not applicable Not applicable

Response MBIM_MS_UICC_APDU_INFO Not applicable Not applicable

Not applicable.

The InformationBuffer of MBIM_COMMAND_MSG contains the following MBIM_MS_SET_UICC_APDU
structure.

Offset Size Field Type Description

0 4 Channel UINT32(1..19) Specifies the channel on which the
APDU will be sent.

4 4 SecureMessaging MBIM_MS_UICC_SECURE_MESSAGING Specifies whether the APDU is
exchanged using secure messaging.

8 4 Type MBIM_MS_UICC_CLASS_BYTE_TYPE Specifies the type of class byte
definition.

12 4 CommandSize UINT32(0..261) The Command length in bytes.

16 4 CommandOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a byte
array called Command that contains
the APDU.

20 - DataBuffer DATABUFFER The Command byte array.

Parameters

Query

Set

MBIM_MS_SET_UICC_APDU

The MBIM_MS_SET_UICC_APDU structure uses the following MBIM_MS_UICC_SECURE_MESSAGING and
MBIM_MS_UICC_CLASS_BYTE_TYPE data structures.

Type Value Description

MBIMMsUiccSecureMessagingNone 0 No secure messaging.

MBIMMsUiccSecureMessagingNoHdrAuth 1 Secure messaging, command header not authenticated.

Type Value Description

MBIMMsUiccInterindustry 0 Defined according to first interindustry definition in ISO 7816-4.

MBIMMsUiccExtended 1 Defined according to the extended definition in ETSI 102 221.

The InformationBuffer of MBIM_COMMAND_DONE contains the following MBIM_MS_UICC_APDU_INFO
structure.

Offset Size Field Type Description

0 4 Status BYTE[2] The SW1 and SW2 status words resulting from the command.

4 4 ResponseLength SIZE The Response length in bytes.

8 4 ResponseOffset OFFSET The offset in bytes, calculated from the beginning of this
structure, to a byte array called Response that contains the
response from the SELECT.

12 - DataBuffer DATABUFFER The Response byte array.

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_MS_UICC_SECURE_MESSAGING

MBIM_MS_UICC_CLASS_BYTE_TYPE

Response

MBIM_MS_UICC_APDU_INFO

Unsolicited events

Status codes

Status code Description

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is
missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not
yet fully initialized.

MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL The logical channel number is not valid (in other words, it was
not opened with MBIM_CID_MS_UICC_OPEN_CHANNEL).

If the function can send the APDU to the UICC, it returns MBIM_STATUS_SUCCESS along with the SW1
SW2 status words and the response from the UICC (if any). The host must examine the status (SW1 SW2)
to determine whether the APDU command succeeded on the UICC or the reason that it failed.

The host sends MBIM_CID_MS_UICC_TERMINAL_CAPABILITY to inform the modem about the capabilities
of the host. The TERMINAL CAPABILITY APDU, specified in Section 11.1.19 of the ETSI TS 102 221
technical specification , must be sent to the card before the first application is selected (if it is
supported). Therefore, the host cannot directly send the TERMINAL CAPABILITY APDU but rather sends
the MBIM_CID_MS_UICC_TERMINAL_CAPABILITY command containing one or more terminal capability
objects which would be stored persistently by the modem. On the next card insertion or reset, after the
ATR, the modem would SELECT the MF and check whether TERMINAL CAPABILITY is supported. If so, the
modem would send the TERMINAL CAPABILITY APDU with the information specified by the
MBIM_CID_MS_UICC_TERMINAL_CAPABILITY command as well as any modem-generated information.

Operation Set Query Notification

Command MBIM_MS_SET_UICC_TERMINAL_CAPABILITY Empty Not
applicable

Response Not applicable MBIM_MS_TERMINAL_CAPABILITY_INFO Not
applicable

The InformationBuffer shall be null and InformationBufferLength shall be zero.

MBIM_CID_MS_UICC_TERMINAL_CAPABILITY

Parameters

Query

Set

https://go.microsoft.com/fwlink/p/?linkid=864594

The InformationBuffer of MBIM_COMMAND_MSG contains the following
MBIM_MS_SET_UICC_TERMINAL_CAPABILITY structure.

Offset Size Field Type Description

0 4 ElementCount UINT32 The element count of terminal
capability objects.

4 8*EC CapabilityList
OL_PAIR_LIST

An offset-length pair list for each
terminal capability object TLV.

4+8*EC - DataBuffer DATABUFFER A byte array of the actual terminal
capability object TLVs.

Responses will contain the exact SET command with the last sent terminal capability objects to the
modem. Therefore, MBIM_MS_TERMINAL_CAPABILITY_INFO is identical to
MBIM_MS_SET_UICC_TERMINAL_CAPABILITY.

Offset Size Field Type Description

0 4 ElementCount UINT32 The element count of terminal
capability objects.

4 8*EC CapabilityList
OL_PAIR_LIST

An offset-length pair list for each
terminal capability object TLV.

4+8*EC - DataBuffer DATABUFFER A byte array of the actual terminal
capability object TLVs.

Not applicable.

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_MS_SET_UICC_TERMINAL_CAPABILITY

Response

MBIM_MS_TERMINAL_CAPABILITY_INFO

Unsolicited events

Status codes

Status code Description

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is
missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not
yet fully initialized.

MBIM_STATUS_MS_INVALID_LOGICAL_CHANNEL The logical channel number is not valid (in other words, it was
not opened with MBIM_CID_MS_UICC_OPEN_CHANNEL).

The host sends MBIM_CID_MS_UICC_RESET to the MBIM function to reset the UICC or to query the
passthrough state of the function.

When the host requests that the function reset the UICC, it specifies a passthrough action.

If the host specifies the MBIMMsUICCPassThroughEnable passthrough action, the function resets the
UICC and, upon UICC power up, treats the UICC as if it were in a passthrough mode that enables
communication between the host and UICC (even if the UICC has no Telecom UICC file system). The
function does not send any APDUs to the card and does not interfere at any time with the
communication between the host and the UICC.

If the host specifies the MBIMMsUICCPassThroughDisable passthrough action, the function resets the
UICC and, upon UICC power up, treats the UICC as a regular Telecom UICC and expects a Telecom UICC
file system to be present on the UICC.

When the host queries the function to determine the passthrough status, if the function responds with
the MBIMMsUICCPassThroughEnabled status, it means that passthrough mode is enabled. If the function
responds with the MBIMMsUICCPassThroughDisabled status, it means that passthrough mode is
disabled.

Type Set Query Notification

Command MBIM_MS_SET_UICC_RESET Empty Not applicable

Response MBIM_MS_UICC_RESET_INFO MBIM_MS_UICC_RESET_INFO Not applicable

The InformationBuffer shall be null and InformationBufferLength shall be zero.

MBIM_CID_MS_UICC_RESET

Parameters

Query

Set

The MBIM_SET_MS_UICC_RESET structure contains the passthrough action specified by the host.

Offset Size Field Type Description

0 4 PassThroughAction MBIM_MS_UICC_PASSTHROUGH_ACTION For more info, see
MBIM_MS_UICC_PASSTHROUGH_ACTION.

The MBIM_MS_UICC_PASSTHROUGH_ACTION enumeration defines the types of passthrough actions the
host can specify to the MBIM function.

Types Value

MBIMMsUiccPassThroughDisable 0

MBIMMsUiccPassThroughEnable 1

The MBIM_MS_UICC_RESET_INFO structure contains the passthrough status of the MBIM function.

Offset Size Field Type Description

0 4 PassThroughStatus MBIM_MS_UICC_PASSTHROUGH_STATUS For more info, see
MBIM_MS_UICC_PASSTHROUGH_STATUS.

The MBIM_MS_UICC_PASSTHROUGH_STATUS enumeration defines the types of passthrough status the
MBIM function specifies to the host.

Types Value

MBIMMsUiccPassThroughDisabled 0

MBIMMsUiccPassThroughEnabled 1

Not applicable.

Status code Description

MBIM_SET_MS_UICC_RESET

MBIM_MS_UICC_PASSTHROUGH_ACTION

Response

MBIM_MS_UICC_RESET_INFO

MBIM_MS_UICC_PASSTHROUGH_STATUS

Unsolicited events

Status codes

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY The device is busy.

MBIM_STATUS_FAILURE The operation failed.

MBIM_STATUS_NO_DEVICE_SUPPORT The device does not support this operation.

The NDIS equivalent for MBIM_CID_MS_UICC_RESET is OID_WWAN_UICC_RESET.

OID_WWAN_UICC_RESET

MB UICC application and file system access
Article • 03/14/2023

This topic specifies an extension to the Mobile Broadband Interface Model (MBIM) interface to
permit accessing UICC smart card application and file systems. This extension to MBIM exposes
logical access to the UICC's ETSI TS 102 221 technical specification -compliant applications and
filesystems, and is supported in Windows 10, version 1903 and later.

The UICC provides a file system and supports a set of applications that can run concurrently.
These include the USIM for UMTS, CSIM for CDMA, and ISIM for IMS. The SIM is a legacy portion
of the UICC that can be modeled as one of these applications (for GSM).

The following diagram from Section 8.1 of the ETSI TS 102 221 technical specification shows an
example card application structure.

The UICC file system can be regarded as a forest of directory trees. The legacy SIM tree is rooted
at a Master File (MF) and contains up to two levels of subdirectories (Dedicated Files, or DFs)
containing Elemental Files (EFs) that hold various types of information. The SIM defines DFs under
the MF, one of which, DFTelecom, contains information common to multiple access types such as
the common phone book. Additional applications are effectively implemented as separate trees,
each rooted in its own Application Directory File (ADF). Each ADF is identified by an application

Overview

UICC access and security

https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594

identifier that can be up to 128 bits long. A file under the card root (EFDir under the MF in the
diagram) contains the application names and corresponding identifiers. Within a tree (the MF or
an ADF), DFs and EFs might be identified by a path of file IDs, where a file ID is a 16-bit integer.

The following OIDs have been defined to support UICC application and file system access.

OID_WWAN_UICC_APP_LIST
OID_WWAN_UICC_FILE_STATUS
OID_WWAN_UICC_ACCESS_BINARY
OID_WWAN_UICC_ACCESS_RECORD
OID_WWAN_PIN_EX2

Service name UUID UUID value

Microsoft Low-Level UICC Access UUID_MS_UICC_LOW_LEVEL C2F6588E-F037-4BC9-8665-
F4D44BD09367

Microsoft Basic IP Connectivity
Extensions

UUID_BASIC_CONNECT_EXTENSIONS 3D01DCC5-FEF5-4D05-9D3A-
BEF7058E9AAF

The following table specifies the UUID and command code for each CID, as well as whether the
CID supports Set, Query, or Event (notification) requests. See each CID’s individual Section within
this topic for more info about its parameters, data structures, and notifications.

CID UUID Command
code

Set Query Notify

MBIM_CID_MS_UICC_APP_LIST UUID_MS_UICC_LOW_LEVEL 7 N Y N

MBIM_CID_MS_UICC_FILE_STATUS UUID_MS_UICC_LOW_LEVEL 8 N Y N

MBIM_CID_MS_UICC_ACCESS_BINARY UUID_MS_UICC_LOW_LEVEL 9 Y Y N

MBIM_CID_MS_UICC_ACCESS_RECORD UUID_MS_UICC_LOW_LEVEL 10 Y Y N

MBIM_CID_MS_PIN_EX UUID_BASIC_CONNECT_EXTENSIONS 14 Y Y N

This CID retrieves a list of applications in a UICC and information about them. When the UICC in
the modem is fully initialized and ready to register with the mobile operator, a UICC application
must be selected for registration and a query with this CID should return the selected application
in the ActiveAppIndex field in the MBIM_UICC_APP_LIST structure used in response.

NDIS interface extensions

MBIM service and CID values

MBIM_CID_MS_UICC_APP_LIST

Operation Set Query Notification

Command Not applicable Empty Not applicable

Response Not applicable MBIM_UICC_APP_LIST Not applicable

The InformationBuffer of MBIM_COMMAND_MSG is empty.

Not applicable.

The InformationBuffer in MBIM_COMMAND_DONE contains the following MBIM_UICC_APP_LIST
structure.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure that
follows. This field must be set to 1 for
version 1 of this structure.

4 4 AppCount UINT32 The number of UICC application
MBIM_UICC_APP_INFO structures being
returned in this response.

8 4 ActiveAppIndex UINT32(0..NumApp
- 1)

The index of the application selected by the
modem for registration with the mobile
network. This field must be between 0 and
the AppCount - 1. It indexes to the array of
applications returned by this response. If no
application is selected for registration, this
field contains 0xFFFFFFFF.

12 4 AppListSize UINT32 The size of the app list data, in bytes.

8*AppCount AppList OL_PAIR_LIST First element of the pair is a 4-byte field
with the Offset of an app info in the
DataBuffer. Second element of the pair is a
4-byte field with the size of the app info.

AppListSize DataBuffer DATABUFFER An array of AppCount *
MBIM_UICC_APP_INFO structures.

Parameters

Query

Set

Response

MBIM_UICC_APP_LIST (version 1)

Offset Size Field Type Description

0 4 AppType MBIM_UICC_APP_TYPE The type of the UICC application.

4 4 AppIdOffset OFFSET Offset for the application ID in the databuffer.
Only the first AppIdSize bytes are meaningful. If
the application ID is longer than
MBIM_MAXLENGTH_APPID bytes, then
AppIdSize specifies the actual length but only
the first MBIM_MAXLENGTH_APPID bytes are in
this field. This field is valid only when AppType
is not MBIMUiccAppTypeMf,
MBIMUiccAppTypeMfSIM, or
MBIMUiccAppTypeMfRUIM.

8 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as
defined in Section 8.3 of the ETSI TS 102 221
technical specification. AppIdSize may contain a
number greater than 16, but in this case only
the first 16 (MBIM_MAXLENGTH_APPID) bytes
are in the databuffer. This field is set to zero for
the MBIMUiccAppTypeMf,
MBIMUiccAppTypeMfSIM, or
MBIMUiccAppTypeMfRUIM app types.

12 AppNameOffset OFFSET Offset for the application name in the
databuffer. A UTF-8 string specifying the name
of the application. The length of this field is
specified by AppNameLength. If the length is
greater than or equal to
MBIM_MAXLENGTH_APPNAME bytes, this field
contains the first
MBIM_MAXLENGTH_APPNAME - 1 bytes of the
name. The string is always null-terminated.

16 4 AppNameLength SIZE (0..256) The length, in bytes, of the application name.
AppNameLength may contain a number equal
to or greater than 256, but in these cases only
the first 255 (MBIM_MAXLENGTH_APPNAME -
1) bytes are in the databuffer.

20 4 NumPinKeyRefs SIZE (0..8) The number of application PIN key references.
In other words, the number of elements of
PinKeyRef that are valid. Applications on a
virtual R-UIM have no PIN key references.

MBIM_UICC_APP_INFO

Offset Size Field Type Description

24 4 KeyRefOffset OFFSET Offset of the PinKeyRef in the DataBuffer. The
PinKeyRef is a byte array specifying the
application’s PIN key references for different
levels of verification (keys for PIN1, PIN2, and
possibly a universal PIN), as defined in Table 9.3
and Section 9.4.2 of the ETSI TS 102 221
technical specification. In the case of a single-
verification card, or an MBB driver and/or
modem that does not support different
application keys for different applications, the
first byte of the PinKeyRef field must be 0x01
(PIN1) and the second byte must be 0x81
(PIN2), as described in Section 9.5.1 of ETSI TS
102 221.

28 4 KeyRefSize SIZE (0..8) The size of PinKeyRef.

32 DataBuffer DATABUFFER The data buffer containing AppId, AppName,
and PinKeyRef.of a single-verification card, or
an MBB driver and/or modem that does not
support different application keys for different
applications, this field must be 0x01.

Type Value Description

MBIMUiccAppTypeUnknown 0 Unknown type.

MBIMUiccAppTypeMf 1 Legacy SIM directories rooted at the MF.

MBIMUiccAppTypeMfSIM 2 Legacy SIM directories rooted at the DF_GSM.

MBIMUiccAppTypeMfRUIM 3 Legacy SIM directories rooted at the DF_CDMA.

MBIMUiccAppTypeUSIM 4 USIM application.

MBIMUiccAppTypeCSIM 5 CSIM applicaton.

MBIMUiccAppTypeISIM 6 ISIM application.

The following constants are defined for MBIM_CID_MS_UICC_APP_INFO.

const int MBIM_MAXLENGTH_APPID = 32
const int MBIM_MAXLENGTH_APPNAME = 256
const int MBIM_MAXNUM_PINREF = 8

MBIM_UICC_APP_TYPE

Constants

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_SUCCESS Basic MBIM status as defined for all commands.

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_NO_DEVICE_SUPPORT Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_NOT_INITIALIZED Unable to perform the UICC operation because the UICC is not yet
fully initialized.

This CID retrieves information about a specified UICC file.

Operation Set Query Notification

Command Not applicable MBIM_UICC_FILE_PATH Not applicable

Response Not applicable MBIM_UICC_FILE_STATUS Not applicable

The InformationBuffer of MBIM_COMMAND_MSG contains the target EF as an
MBIM_UICC_FILE_PATH structure.

Offset Size Field Type Description

Unsolicited Events

Status Codes

MBIM_CID_MS_UICC_FILE_STATUS

Parameters

Query

MBIM_UICC_FILE_PATH (version 1)

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure that follows. This field
must be 1 for version 1 of this structure.

4 4 AppIdOffset OFFSET The offset, in bytes, calculated from the beginning of this
structure to the buffer containing the application ID.

8 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as defined in Section
8.3 of the ETSI TS 102 221 technical specification . For 2G
cards, this field must be set to zero (0).

12 4 FilePathOffset OFFSET The offset, in bytes, calculated from the beginning of this
structure to the buffer containing the file path. The file path
is an array of 16-bit file IDs. The first ID must be either
0x7FFF or 0x3F00. If the first ID is 0x7FFF, then the path is
relative to the ADF of the application desginated by AppId.
Otherwise, it is an absolute path starting from the MF.

16 4 FilePathSize SIZE (0..8) The size of the file path, in bytes.

20 DataBuffer DATABUFFER The data buffer containing AppId and FilePath.

Not applicable.

The following MBIM_UICC_FILE_STATUS structure is used in the InformationBuffer.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure
that follows. This field must be 1 for
version 1 of this structure.

4 4 StatusWord1 UINT32(0..256) A return parameter specific to the UICC
command.

8 4 StatusWord2 UINT32(0..256) A return parameter specific to the UICC
command.

12 4 FileAccessibility MBIM_UICC_FILE_ACCESSIBILITY The UICC file accessibility.

16 4 FileType MBIM_UICC_FILE_TYPE The UICC file type.

20 4 FileStructure MBIM_UICC_FILE_STRUCTURE The UICC file structure.

Set

Response

MBIM_UICC_FILE_STATUS (version 1)

https://go.microsoft.com/fwlink/p/?linkid=864594

Offset Size Field Type Description

24 4 ItemCount UINT32 The number of items in the UICC file.
For transparent and TLV files, this is set
to 1.

28 4 Size UINT32 The size of each item, in bytes. For
transparent or TLV files, this is the size
of the entire EF. For record-based files,
this represents the total number of
records.

32 16 FileLockStatus MBIM_PIN_TYPE_EX[4] An array of type MBIM_PIN_TYPE_EX
that describes the access condition for
each operation (READ, UPDATE,
ACTIVATE, and DEACTIVATE in that
order) on that file.

The MBIM_UICC_FILE_ACCESSIBILITY enumeration is used in the preceding
MBIM_UICC_FILE_STATUS structure.

Type Value Description

MBIMUiccFileAccessibilityUnknown 0 File shareability unknown.

MBIMUiccFileAccessibilityNotShareable 1 Not shareable file.

MBIMUiccFileAccessibilityShareable 2 Shareable file.

The MBIM_UICC_FILE_TYPE enumeration is used in the preceding MBIM_UICC_FILE_STATUS
structure.

Type Value Description

MBIMUiccFileTypeUnknown 0 File type unknown.

MBIMUiccFileTypeWorkingEf 1 Working EF.

MBIMUiccFileTypeInternalEf 2 Internal EF.

MBIMUiccFileTypeDfOrAdf 3 Dedicated file, a directory that is the parent of other nodes. This may
be a DF or ADF.

MBIM_UICC_FILE_ACCESSIBILITY

MBIM_UICC_FILE_TYPE

MBIM_UICC_FILE_STRUCTURE

The MBIM_UICC_FILE_STRUCTURE enumeration is used in the preceding MBIM_UICC_FILE_STATUS
structure.

Type Value Description

MBIMUiccFileStructureUnknown 0 An unknown file structure.

MBIMUiccFileStructureTransparent 1 A single record of variable length.

MBIMUiccFileStructureCyclic 2 A cyclic set of records, each of the same length.

MBIMUiccFileStructureLinear 3 A linear set of records, each of the same length.

MBIMUiccFileStructureBerTLV 4 A set of data values accessible by tag.

The MBIM_PIN_TYPE_EX enumeration is used in the preceding MBIM_UICC_FILE_STATUS structure.

Type Value Description

MBIMPinTypeNone 0 No PIN is pending to be entered.

MBIMPinTypeCustom 1 The PIN type is a custom type and is none of the other PIN types
listed in this enumeration.

MBIMPinTypePin1 2 The PIN1 key.

MBIMPinTypePin2 3 The PIN2 key.

MBIMPinTypeDeviceSimPin 4 The device to SIM key.

MBIMPinTypeDeviceFirstSimPin 5 The device to very first SIM key.

MBIMPinTypeNetworkPin 6 The network personalization key.

MBIMPinTypeNetworkSubsetPin 7 The network subset personalization key.

MBIMPinTypeServiceProviderPin 8 The service provider (SP) personalization key.

MBIMPinTypeCorporatePin 9 The corporate personalization key.

MBIMPinTypeSubsidyLock 10 The subsidy unlock key.

MBIMPinTypePuk1 11 The Personal Identification Number 1 Unlock Key (PUK1).

MBIMPinTypePuk2 12 The Personal Identification Number 2 Unlock Key (PUK2).

MBIMPinTypeDeviceFirstSimPuk 13 The device to very first SIM PIN unlock key.

MBIMPinTypeNetworkPuk 14 The network personalization unlock key.

MBIMPinTypeNetworkSubsetPuk 15 The network subset personalization unlock key.

MBIMPinTypeServiceProviderPuk 16 The service provider (SP) personalization unlock key.

MBIM_PIN_TYPE_EX

Type Value Description

MBIMPinTypeCorporatePuk 17 The corporate personalization unlock key.

MBIMPinTypeNev 18 The NEV key.

MBIMPinTypeAdm 19 The administrative key.

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the
UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the
UICC is in an error state.

MBIM_STATUS_SHAREABILITY_CONDITION_ERROR The file cannot be selected because it is not shareable
and is currently being accessed by another application.
The status word returned by the SIM is 6985.

This CID sends a specific command to access a UICC binary file, with structure type
MBIMUiccFileStructureTransparent or MBIMUiccFileStructureBerTLV.

Operation Set Query Notification

Command Not applicable MBIM_UICC_ACCESS_BINARY Not applicable

Response Not applicable MBIM_UICC_RESPONSE Not applicable

Unsolicited Events

Status Codes

MBIM_CID_MS_UICC_ACCESS_BINARY

Parameters

Query

Reads a binary file. The InformationBuffer for MBIM_COMMAND_MSG contains an
MBIM_UICC_ACCESS_BINARY structure. An MBIM_UICC_RESPONSE structure is returned in the
InformationBuffer of MBIM_COMMAND_DONE.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure that follows. This
field must be set to 1 for version 1 of this structure.

4 4 AppIdOffset OFFSET The offset, in bytes, from the beginning of this structure
to the buffer containing the application ID.

8 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as defined in
Section 8.3 of the ETSI TS 102 221 technical
specification . For 2G cards, this field must be set to
zero (0).

12 4 FilePathOffset OFFSET The offset, in bytes, calculated from the beginning of this
structure to the buffer containing the file path. The file
path is an array of 16-bit file IDs. The first ID must be
either 0x7FFF or 0x3F00. If the first ID is 0x7FFF, then the
path is relative to the ADF of the application desginated
by AppId. Otherwise, it is an absolute path starting from
the MF.

16 4 FilePathSize SIZE The size of the file path, in bytes.

20 4 FileOffset UINT32 The offset to be used when reading from the file. This
field can be bigger than 256, and it combines both offset
high and offset low as defined in the ETSI TS 102 221
technical specification .

24 4 NumberOfBytes UINT32 The number of bytes to be read. For example, a client
driver could use this function to read a transparent
(binary) file that is larger than 256 bytes, although the
maximum amount that can be read or written in a single
UICC operation is 256 bytes per the ETSI TS 102 221
technical specification . It is the function's responsibility
to split this into multiple APDUs and send back the result
in a single response.

28 4 LocalPinOffset OFFSET The offset, in bytes, calculated from the beginning of this
structure to the buffer containing the password. This is
the local PIN (PIN2) and is used in case the operation
requires local PIN validation.

32 4 LocalPinSize SIZE (0..16) The size of the password, in bytes.

36 4 BinaryDataOffset OFFSET The offset, in bytes, calculated from the beginning of this
structure to the buffer containing the command-specific
data. Binary data is only used for SET operations.

MBIM_UICC_ACCESS_BINARY (version 1)

https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594

Offset Size Field Type Description

40 4 BinaryDataSize SIZE
(0..32768)

The size of the data, in bytes.

44 DataBuffer DATABUFFER The data buffer containing AppId, FilePath, LocalPin, and
BinaryData.

Not applicable.

The following MBIM_UICC_RESPONSE structure is used in the InformationBuffer.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structurethat follows. This
field must be 1 for version 1 of this structure.

4 4 StatusWord1 UINT32(0..256) A return parameter specific to the UICC command.

8 4 StatusWord2 UINT32(0..256) A return parameter specific to the UICC command.

12 4 ResponseDataOffset OFFSET The offset, in bytes, calculated from the beginning of
this structure to the buffer containing the response
data. The response data is only used for QUERY
operations.

16 4 ResponseDataSize SIZE (0..32768) The size of the data, in bytes.

20 DataBuffer DATABUFFER The data buffer containing ResponseData.

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

Set

Response

MBIM_UICC_RESPONSE (version 1)

Unsolicited Events

Status Codes

Status code Description

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the
UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the
UICC is in an error state.

MBIM_STATUS_SHAREABILITY_CONDITION_ERROR The file cannot be selected because it is not shareable
and is currently being accessed by another application.
The status word returned by the SIM is 6985.

MBIM_STATUS_PIN_FAILURE The operation failed due to a PIN error.

This CID sends a specific command to access a UICC linear fixed or cyclic file, with structure type
of MBIMUiccFileStructureCyclic or MBIMUIccFileStructureLinear.

Operation Set Query Notification

Command Not applicable MBIM_UICC_ACCESS_RECORD Not applicable

Response Not applicable MBIM_UICC_RESPONSE Not applicable

Reads contents of a record. The InformationBuffer for MBIM_COMMAND_MSG contains the
following MBIM_UICC_ACCESS_RECORD structure. MBIM_UICC_RESPONSE is returned in the
InformationBuffer of MBIM_COMMAND_DONE.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure that follows. This
field must be set to 1 for version 1 of this structure.

4 4 AppIdOffset OFFSET The offset, in bytes, from the beginning of this
structure to the buffer containing the application ID.

8 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as defined in
Section 8.3 of the ETSI TS 102 221 technical
specification . For 2G cards, this field must be set to
zero (0).

MBIM_CID_MS_UICC_ACCESS_RECORD

Parameters

Query

MBIM_UICC_ACCESS_RECORD (version 1)

https://go.microsoft.com/fwlink/p/?linkid=864594

Offset Size Field Type Description

12 4 FilePathOffset OFFSET The offset, in bytes, calculated from the beginning of
this structure to the buffer containing the file path. The
file path is an array of 16-bit file IDs. The first ID must
be either 0x7FFF or 0x3F00. If the first ID is 0x7FFF,
then the path is relative to the ADF of the application
desginated by AppId. Otherwise, it is an absolute path
starting from the MF.

16 4 FilePathSize SIZE The size of the file path, in bytes.

20 4 RecordNumber UINT32(0..256) The record number. This represents the absolute
record index at all times. Relative record access is not
supported because the modem can perform multiple
accesses on a file (NEXT, PREVIOUS).

24 4 LocalPinOffset OFFSET The offset, in bytes, calculated from the beginning of
this structure to the buffer containing the password.
The lock password is a null-terminated UTF-8 string of
decimal digits.

28 4 LocalPinSize SIZE (0..16) The size of the password, in bytes.

32 4 RecordDataOffset OFFSET The offset, in bytes, calculated from the beginning of
this structure to the buffer containing the command-
specific data. Record data is only used for SET
operations.

36 4 RecordDataSize SIZE (0..256) The size of the data, in bytes.

40 DataBuffer DATABUFFER The data buffer containing AppId, FilePath, LocalPin,
and RecordData.

Not applicable.

An MBIM_UICC_RESPONSE structure is used in the InformationBuffer.

Not applicable.

The following status codes are applicable:

Set

Response

Unsolicited Events

Status Codes

Status code DescriptionStatus code Description

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the
UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the
UICC is in an error state.

MBIM_STATUS_SHAREABILITY_CONDITION_ERROR The file cannot be selected because it is not shareable
and is currently being accessed by another application.
The status word returned by the SIM is 6985.

MBIM_STATUS_PIN_FAILURE The operation failed due to a PIN error.

This CID is used to perform all PIN security operations as defined in Section 9 of the ETSI TS 102
221 technical specification . The CID is similar to MBIM_CID_MS_PIN, but extends it to support
multi-app UICC cards. Only single-verification-capable UICCs are supported. Multi-verification-
capable UICCs that support more than one application PIN are not supported. One application
PIN (PIN1) is assigned to all ADFs/DFs and files on the UICC. However, each application can
specify a local PIN (PIN2) as a level 2 user verification requirement, resulting in the need for
additional validation for every access command. This scenario is what MBIM_CID_MS_PIN_EX
supports.

Just like MBIM_CID_MS_PIN, with MBIM_CID_MS_PIN_EX the device only reports one PIN at a
time. If multiple PINs are enabled and reporting multiple PINs is also enabled, then functions must
report PIN1 first. For example, if subsidy lock reporting is enabled and the SIM's PIN1 is enabled,
then the subsidy lock PIN should be reported in a subsequent query request only after PIN1 has
been successfully verified. An empty PIN is permitted together with MBIMPinOperationEnter. An
empty PIN is specified by setting the PinSize to zero. In this case, a SET command is similar to a
QUERY and returns the state of the PIN referenced. This is fully aligned to the behavior of the
VERIFY command as specified in Section 11.1.9 of the ETSI TS 102 221 technical specification .

Operation Set Query Notification

Command MBIM_SET_PIN_EX MBIM_PIN_APP Not applicable

Response MBIM_PIN_INFO_EX MBIM_PIN_INFO_EX Not applicable

MBIM_CID_MS_PIN_EX

Parameters

Query

https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594

The following MBIM_PIN_APP structure is used in the InformationBuffer.

Offset Size Field Type Description

0 4 Version UINT32 The version number of the structure that follows. This field
must be set to 1 for version 1 of this structure.

4 4 AppIdOffset OFFSET The offset, in bytes, from the beginning of this structure to the
buffer containing the application ID.

8 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as defined in Section
8.3 of the ETSI TS 102 221 technical specification . For 2G
cards, this field must be set to zero (0).

12 DataBuffer DATABUFFER The AppId as defined in the ETSI TS 102 221 technical
specification .

The following MBIM_SET_PIN_EX structure is used in the InformationBuffer.

Offset Size Field Type Description

0 4 PinType MBIM_PIN_TYPE_EX The PIN type. See the MBIM_PIN_TYPE_EX table in
this topic.

4 4 PinOperation MBIM_PIN_OPERATION The PIN operation. See MBIM 1.0.

8 4 PinOffset OFFSET The offset, in bytes, calculated from the beginning
of this structure to a string PIN that represents the
PIN value with which to perform the action, or the
PIN value required to enable or disable PIN
settings. This field applies for all values of
PinOperation.

12 4 PinSize SIZE (0..32) The size, in bytes, used for the PIN.

16 4 NewPinOffset OFFSET The offset, in bytes, calculated from the beginning
of this structure to the NewPin string that
represents the new PIN value to set when
PinOperation is MBIMPinOperationChange or
MBIMPinOperationEnter, for
PinTypeMBIMPinTypePuk1 or
PinTypeMBIMPinTypePuk2.

20 4 NewPinSize SIZE (0..32) The size, in bytes, used for the NewPin.

MBIM_PIN_APP (version 1)

Set

MBIM_SET_PIN_EX

https://go.microsoft.com/fwlink/p/?linkid=864594
https://go.microsoft.com/fwlink/p/?linkid=864594

Offset Size Field Type Description

24 4 AppIdOffset OFFSET The offset, in bytes, calculated from the beginning
of this structure to the buffer containing the
application ID.

28 4 AppIdSize SIZE (0..16) The size of the application ID, in bytes, as defined
in Section 8.3 of the ETSI TS 102 221 technical
specification . For 2G cards, this field must be set
to zero (0).

32 DataBuffer DATABUFFER The data buffer containing the Pin, NewPin, and
AppId.

The following MBIM_PIN_INFO_EX structure is used in the InformationBuffer.

Offset Size Field Type Description

0 4 PinType MBIM_PIN_TYPE_EX The PIN type. See the MBIM_PIN_TYPE_EX table
in this topic.

4 4 PinState MBIM_PIN_STATE The PIN state. See MBIM 1.0.

8 4 RemainingAttempts UINT32 The number of remaining attempts for any PIN-
related operations such as enter, enable, or
disable. Devices that do not support this
information must set this member to
0xFFFFFFFF.

Not applicable.

The following status codes are applicable:

Status code Description

MBIM_STATUS_BUSY Basic MBIM status as defined for all commands.

MBIM_STATUS_FAILURE Basic MBIM status as defined for all commands.

MBIM_STATUS_SIM_NOT_INSERTED Unable to perform the UICC operation because the UICC is missing.

MBIM_STATUS_BAD_SIM Unable to perform the UICC operation because the UICC is in an
error state.

MBIM_STATUS_PIN_DISABLED The operation failed because the PIN is disabled.

Response

Unsolicited Events

Status Codes

https://go.microsoft.com/fwlink/p/?linkid=864594

Status code Description

MBIM_STATUS_PIN_REQUIRED The operation failed because a PIN must be entered to proceed.

MBIM_STATUS_NO_DEVICE_SUPPORT The operation failed because a SET on a corresponding PIN type is
not supported by the device.

MB eSIM Operations
Article • 03/14/2023

The Local Profile Assitant (LPA) component of the Windows operating system is the LPA
Service while the low level UICC access is exposed through the WWAN Service. The LPA
Service handles profile discovery, downloading profiles, and profile management.

The modem needs to support the following MB Low Level UICC access CIDs for eSIM
functionality.

eSIM Architecture

MB Interface Update for eSIM Operations

 MBIM_CID_MS_UICC_ATR
 MBIM_CID_MS_UICC_OPEN_CHANNEL
 MBIM_CID_MS_UICC_CLOSE_CHANNEL
 MBIM_CID_MS_UICC_APDU
 MBIM_CID_MS_UICC_TERMINAL_CAPABILITY
 MBIM_CID_MS_UICC_RESET

eSIM Service Initialization

eSIM Profile Download and Install

eSIM Profile Operations include:

Below is a sample flow for the Enable Profile operation. The other Profile Operations
follow a similar flow except that MBIM_CID_MS_UICC_APDU will contain the Es10c
command for the respective operation.

eSIM Profile Operations

Enable Profile
Disable Profile
Delete Profile
Wipe eSIM
Update NickName

The eSIM Profile Operations expect that card refresh will be performed followed by the
ready state change according to the MB eSIM MBIM ready state guidance.

The following tests in the HLK can be used to verify eSIM functionality:

TestLowLevelUiccAccess

TestReadyInfo

Card Refresh

Hardware Lab Kit (HLK) Tests

https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/104db926-5cc4-47ad-a7d0-ff476b0f57a1
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/c03b0771-5436-4ad5-a5b7-e08adb758a28

TestResetPassthrough

Via netsh, we can run the TestLowLevelUiccAccess HLK testlist. For more information on
using the netsh tool, see netsh-mbn and netsh-mbn-test-installation.

The file showing the HLK test results should have been generated in the directory that
the 'netsh mbn test' command was ran from: TestLowLevelUiccAccess.htm .

1. Required resources: An eSIM and an activation code or a QR code for the profile
download. The profile needs a confirmation code to download.

2. Open Settings->Network & Internet -> Cellular.
3. Click Manage eSIM profiles.
4. Click Add a new profile.
5. Choose Let me enter an activation code I have from my mobile operator and click

Next.
6. Scan the QR code or type in the activation code.
7. Wait until the confirmation page shows up. Fill in the confirmation code and click

Next.
8. Dismiss the dialog and then enable the profile.
9. Change the name of the profile. The new name should be displayed for the profile.

10. Delete the profile.
11. Install the profile again (repeating steps 4-7), but this time with the wrong

confirmation code. For example, when scanning a QR code the code hash displays
for a second before contacting the server. Very quickly click anywhere inside of it
and hit the back key to delete a single character before it talks to the server.

12. You should see an error message and eventually land at the confirmation page
again. Type in the correct confirmation code this time and click Next.

13. Dismiss the dialog and delete the profile.

netsh mbn test feature=esim testpath="C:\data\test\bin"
taefpath="C:\data\test\bin" param="AccessString=internet"

Manual Tests

Test eSIM profile management

Test autoconnect after reboot

https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/b19d12ef-1beb-4ae5-bab5-cfa523c0c3dd
https://learn.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-mbn

1. Make sure Ethernet is unplugged and Wi-Fi is toggled off. With a known good
eSIM profile present on the physical eSIM in the device, browse to Settings ->
Network & Internet -> Cellular -> Manage eSIM profiles -> eSIM profiles, select
the profile, and click Use. Verify that browsing the internet works normally.

2. Reboot the machine, login, and browse to Settings -> Network & Internet ->
Cellular -> Manage eSIM profiles -> eSIM profiles. The profile should show as
Active, systray should show Cellular connection bars, and browsing the internet
should work normally.

3. Back in Manage eSIM profiles, select the profile, and click Stop using. The profile
should disconnect data.

Follow this guide to debug eSIM issues.

1. Collect and decode the logs using the instructions in MB Collecting Logs
2. Open the .txt file generated in TextAnalysisTool
3. Load the eSIM Download and Install Filter

Here is sample success log for Profile Download and Install:

MB eSIM Troubleshooting Guide

Profile Download and Install Failures

 37 24515 None 2020-03-04T08:54:48.6922406 0.0000922 8820
10356 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForLpaNotifications,ulTransactionId=1
 47 25637 None 2020-03-04T08:54:48.7058023 0.0000081 8820
10356 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForEsimNotifications,ulTransactionId=2
 48 25638 None 2020-03-04T08:54:48.7058116 0.0000093 8820
10356 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForAllProfileNotifications,ulTransactionId=3
 87 42955 None 2020-03-04T08:54:50.8459033 0.0000357 8820
3524 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForLpaNotifications,ulTransactionId=1
 96 43009 None 2020-03-04T08:54:50.8470189 0.0000401 8820
3524 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:

Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForEsimNotifications,ulTransactionId=2
104 43039 None 2020-03-04T08:54:50.8473061 0.0000092 8820
10356 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::OnLuiRpcRegisterForAllProfileNotifications,ulTransactionId=3
110 43856 None 2020-03-04T08:55:10.1453397 19.2978242 8820
10356 Microsoft_Windows_Cellcore_LPA_Service RpcDownloadProfile:
Component=LuiApiServer,esimId=89033023**********************06,hr=0,Location
=LuiApiProcessActivationCode,luicontext=2,strActivation=1$******************
*************,ulTransactionId=4
113 43861 None 2020-03-04T08:55:10.1459912 0.0000161 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnInitiateCommonMutualAuthenticat
ion,fsmevent=3,Location=LPA::Lpd::DownloadInstance::InitiateCommonMutualAuth
entication,task=2,taskId=6
115 43863 None 2020-03-04T08:55:10.1461554 0.0000022 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=ProcessActivation,fsmevent=1,Loca
tion=LPA::Lpd::DownloadInstance::ProcessActivationCode,task=3,taskId=6
130 44745 None 2020-03-04T08:55:10.1901431 0.0000464 8820
10356 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bGetEuiccChallenge,fsmevent
=4,Location=LPA::Lpd::DownloadInstance::OnEs10bGetChallengeComplete,task=2,t
askId=6
134 45589 None 2020-03-04T08:55:10.2226549 0.0000204 8820
10356 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bGetUiccInfo1,fsmevent=5,Lo
cation=LPA::Lpd::DownloadInstance::OnEs10bGetUiccInfo1Complete,task=2,taskId
=6
146 46509 None 2020-03-04T08:55:11.7773024 0.0002176 8820
3524 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs9OrEs11InitiateAuthentication
,fsmevent=6,Location=LPA::Lpd::DownloadInstance::OnEs9OrEs11InitiateAuthenti
cation,task=2,taskId=6
153 50421 None 2020-03-04T08:55:12.9320399 0.0008653 8820
3524 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bAuthenticateServer,fsmeven
t=7,Location=LPA::Lpd::DownloadInstance::OnEs10bAuthenticateServerComplete,t
ask=2,taskId=6
164 51032 None 2020-03-04T08:55:13.3763368 0.0001906 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs9AuthenticateClient,fsmevent=
8,Location=LPA::Lpd::DownloadInstance::OnEs9AuthenticateClient,task=2,taskId
=6
176 51183 None 2020-03-04T08:55:14.9352658 0.0000603 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnInstallProfile,fsmevent=11,Loca
tion=LPA::Lpd::DownloadInstance::DownloadAndInstallProfile,task=4,taskId=6
190 54213 None 2020-03-04T08:55:18.1904783 0.0000651 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bPrepareDownload,fsmevent=1
4,Location=LPA::Lpd::DownloadInstance::OnEs10bPrepareDownloadComplete,task=4

,taskId=11
197 54784 None 2020-03-04T08:55:19.5200686 0.0013163 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs9BoundProfileDownloaded,fsmev
ent=15,Location=LPA::Lpd::DownloadInstance::OnEs9BoundProfileDownloaded,task
=4,taskId=11
407 257461 None 2020-03-04T08:55:36.3645723 0.0001640 8820
7812 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bLoadBoundProfilePackage,fs
mevent=16,Location=LPA::Lpd::DownloadInstance::OnEs10bLoadBoundProfilePackag
eComplete,task=4,taskId=11
412 258044 None 2020-03-04T08:55:36.6932923 0.3206194 8820
7812 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs9HandleNotification,fsmevent=
17,Location=LPA::Lpd::DownloadInstance::OnEs9HandleNotification,task=4,taskI
d=11
416 258628 None 2020-03-04T08:55:37.6234007 0.0000315 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bRemoveNotificationFromList
Complete,fsmevent=18,Location=LPA::Lpd::DownloadInstance::OnEs10bRemoveNotif
icationFromListComplete,task=4,taskId=11
426 258790 None 2020-03-04T08:55:37.6239355 0.0000168 8820
1044 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::CompleteLuiRpcOperation,ulTransactionId=4
449 261202 None 2020-03-04T08:55:37.6883598 0.0000121 8820
1044 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::CompleteLuiRpcOperation,ulTransactionId=5
509 326884 None 2020-03-04T08:55:45.5722501 0.0000155 8820
1044 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::CompleteLuiRpcOperation,ulTransactionId=6
522 329627 None 2020-03-04T08:55:45.8306288 0.0000257 8820
1044 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bGetUiccInfo1,fsmevent=5,Lo
cation=LPA::Lpd::DownloadInstance::OnEs10bGetUiccInfo1Complete,task=2,taskId
=27
524 330152 None 2020-03-04T08:55:46.6963292 0.8655163 8820
10356 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs9HandleNotification,fsmevent=
17,Location=LPA::Lpd::DownloadInstance::OnEs9HandleNotification,task=4,taskI
d=27
528 330865 None 2020-03-04T08:55:46.7211677 0.0000375 8820
10356 Microsoft_Windows_Cellcore_LPA_Service DownloadSequenceEvent:
Component=LpaServiceLpd,error=0,eventlabel=OnEs10bRemoveNotificationFromList
Complete,fsmevent=18,Location=LPA::Lpd::DownloadInstance::OnEs10bRemoveNotif
icationFromListComplete,task=4,taskId=27

Profile Operation Failures

1. Collect and decode the logs using the instructions in MB Collecting Logs
2. Open the .txt file generated in TextAnalysisTool
3. Load the eSIM Profile Operations Filter

Here is sample success log for the Enable Profile Operation:

 2 39 None 2020-03-04T09:06:12.6782819 11720 2720
Microsoft_Windows_Cellcore_LPA_Service RpcEnableProfile:
Component=LuiApiServer,esimId=89033023**********************06,hr=0,Location
=LuiApiEnableProfile,luicontext=2,profileId=8935401************6,ulTransacti
onId=5
12 209 None 2020-03-04T09:06:12.6937921 0.0152614 11720 2720
Microsoft_Windows_Cellcore_LPA_Service OpenChannel:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::OpenChannelOperation::Execute
17 1003 None 2020-03-04T09:06:12.7248172 0.0309320 11720 2720
Microsoft_Windows_Cellcore_LPA_Service ChannelOpened:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::OnChannelOperationOpenChannelComplete
,ulChannel=1
18 1343 None 2020-03-04T09:06:12.7271141 0.0022969 11720 2720
Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,20,191,49,17,160,12,90,10,152,83,4,1,0,0,0,0,85,101,129,1,255
,0],vCommandApdu.data().Count=26
19 2067 None 2020-03-04T09:06:12.7489842 0.0218701 11720 2720
Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=[191,49,3,128,1,0],pApduCompleteInfo-
>ApduInfo.Response.Count=6
20 2445 None 2020-03-04T09:06:12.7505212 0.0015370 11720 2720
Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,16,191,45,13,92,11,90,79,159,112,144,145,146,147,148,149,153,
0],vCommandApdu.data().Count=22
23 4341 None 2020-03-04T09:06:12.7651848 0.0000718 11720 2720
Microsoft_Windows_Cellcore_LPA_Service WwapiEsimUpdate:
Component=LpaServiceEsimManager,fIsEsimInterface=True,fIsInterfaceRemoved=Fa
lse,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::EsimManager::ProcessWwapiSimUpdate,readyState=0
24 6343 None 2020-03-04T09:06:12.7870313 0.0218465 11720 4992
Microsoft_Windows_Cellcore_LPA_Service WwapiAsyncResponseFailure:
Component=LpaApduHelper,hr=-1073479677,Location=LPA::ApduHelper::ApduOperati
on::OnWwapiSendApduComplete
27 11067 None 2020-03-04T09:06:13.1843659 0.0000080 11720
2720 Microsoft_Windows_Cellcore_LPA_Service WwapiEsimUpdate:

Component=LpaServiceEsimManager,fIsEsimInterface=True,fIsInterfaceRemoved=Fa
lse,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::EsimManager::ProcessWwapiSimUpdate,readyState=6
28 11070 None 2020-03-04T09:06:13.1843928 0.0000269 11720
2720 Microsoft_Windows_Cellcore_LPA_Service CardResetComplete:
Component=LpaServiceEsimManager,count=0,guidInterface=a549349a-2a86-4703-
bebe-
6f0d034f0ff3,hr=0,Location=LPA::EsimManager::ProcessWwapiSimUpdate,midoperat
ion=True,readyState=6
29 13752 None 2020-03-04T09:06:13.2040341 0.0196413 11720
2720 Microsoft_Windows_Cellcore_LPA_Service OpenChannel:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::OpenChannelOperation::Execute
31 17057 None 2020-03-04T09:06:13.2232087 0.0133736 11720
2720 Microsoft_Windows_Cellcore_LPA_Service WwapiEsimUpdate:
Component=LpaServiceEsimManager,fIsEsimInterface=True,fIsInterfaceRemoved=Fa
lse,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::EsimManager::ProcessWwapiSimUpdate,readyState=6
33 33469 None 2020-03-04T09:06:13.3307557 0.0000034 11720
4992 Microsoft_Windows_Cellcore_LPA_Service WwapiEsimUpdate:
Component=LpaServiceEsimManager,fIsEsimInterface=True,fIsInterfaceRemoved=Fa
lse,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::EsimManager::ProcessWwapiSimUpdate,readyState=6
34 36738 None 2020-03-04T09:06:13.3658938 0.0351381 11720
4992 Microsoft_Windows_Cellcore_LPA_Service ChannelOpened:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::OnChannelOperationOpenChannelComplete
,ulChannel=1
35 37169 None 2020-03-04T09:06:13.3699437 0.0040499 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,6,191,62,3,92,1,90,0],vCommandApdu.data().Count=12
36 41856 None 2020-03-04T09:06:13.4055017 0.0355580 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,62,18,90,16,137,3,48,35,66,67,32,0,0,0,0,4,86,35,54,6],pApduCompleteInf
o->ApduInfo.Response.Count=21
37 42027 None 2020-03-04T09:06:13.4073896 0.0018879 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,3,191,60,0,0],vCommandApdu.data().Count=9
38 44071 None 2020-03-04T09:06:13.4249377 0.0175481 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,60,17,129,15,108,112,97,46,100,115,46,103,115,109,97,46,99,111,109],pAp
duCompleteInfo->ApduInfo.Response.Count=20
39 44341 None 2020-03-04T09:06:13.4353474 0.0104097 11720

4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,3,191,34,0,0],vCommandApdu.data().Count=9
40 45644 None 2020-03-04T09:06:13.4574746 0.0221272 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,34,129,134,129,3,2,1,0,130,3,2,2,0,131,3,3,2,0,132,15,129,1,0,130,4,0,1
3,186,0,131,4,0,0,105,233,133,4,5,127,50,224,134,3,9,2,0,135,3,2,3,0,136,2,4
,208,169,22,4,20,129,55,15,81,37,208,177,212,8,212,195,178,50,230,210,94,121
,91,235,251,170,22,4,20,129,55,15,81,37,208,177,212,8,212,195,178,50,230,210
,94,121,91,235,251,139,1,2,153,2,6,64,4,3,0,0,2,12,20,71,79,45,80,65,45,48,5
2,49,57,32,32,32,32,32,32,32,32,32,32],pApduCompleteInfo-
>ApduInfo.Response.Count=138
41 45763 None 2020-03-04T09:06:13.4628539 0.0053793 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,16,191,45,13,92,11,90,79,159,112,144,145,146,147,148,149,153,
0],vCommandApdu.data().Count=22
42 47274 None 2020-03-04T09:06:13.5033394 0.0404855 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,45,130,1,143,160,130,1,139,227,73,90,10,152,16,66,7,0,0,0,0,0,249,79,16
,160,0,0,5,89,16,16,255,255,255,255,137,0,0,16,0,159,112,1,0,145,9,83,80,71,
116,111,69,122,67,120,146,23,69,90,32,67,111,110,110,101,99,116,32,80,114,11
1,118,105,115,105,111,110,105,110,103,149,1,1,227,78,90,10,152,16,0,0,0,0,0,
0,0,6,79,16,160,0,0,5,89,16,16,255,255,255,255,137,0,160,0,0,159,112,1,0,145
,9,77,105,99,114,111,115,111,102,116,146,28,78,101,116,119,111,114,107,32,83
,105,109,117,108,97,116,111,114,32,45,32,77,105,108,101,110,97,103,101,149,1
,0,227,76,90,10,152,16,0,0,0,0,0,0,0,135,79,16,160,0,0,5,89,16,16,255,255,25
5,255,137,0,160,1,0,159,112,1,0,145,9,77,105,99,114,111,115,111,102,116,146,
26,78,101,116,119,111,114,107,32,83,105,109,117,108,97,116,111,114,32,45,32,
88,79,82,32,54,52,149,1,0,227,77,90,10,152,16,0,0,0,0,0,0,0,104,79,16,160,0,
0,5,89,16,16,255,255,255,255,137,0,160,2,0,159,112,1,0,145,9,77,105,99,114,1
11,115,111,102,116,146,27,78,101,116,119,111,114,107,32,83,105,109,117,108,9
7,116,111,114,32,45,32,88,79,82,32,49,50,56,149,1,0,227,81,90,10,152,83,4,1,
0,0,0,0,85,101,79,16,160,0,0,5,89,16,16,255,255,255,255,137,0,0,17,0,159,112
,1,1,145,4,101,67,84,67,146,36,101,67,84,67,32,80,114,111,102,105,108,101,32
,102,111,114,32,68,117,109,109,121,32,83,117,98,115,99,114,105,112,116,105,1
11,110,115,149,1,2],pApduCompleteInfo->ApduInfo.Response.Count=404
57 47329 None 2020-03-04T09:06:13.5038992 0.0000179 11720
4992 Microsoft_Windows_Cellcore_LPA_Service LuiAsyncResult:
Component=LpaServiceLui,error=Dynamic:
baseType=LPA_ERROR_DETAILS,dwParams=0,error=0,violation=0,hrResult=0,Locatio
n=LPA::Lui::CompleteLuiRpcOperation,ulTransactionId=5
58 47419 None 2020-03-04T09:06:13.5057078 0.0018086 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-

6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,3,191,43,0,0],vCommandApdu.data().Count=9
74 50078 None 2020-03-04T09:06:13.7457319 0.2395537 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,43,130,5,15,160,130,5,11,48,130,5,7,191,47,63,128,1,53,129,2,6,64,12,42
,101,99,116,99,45,108,105,118,101,108,97,98,46,112,114,111,100,46,111,110,10
0,101,109,97,110,100,99,111,110,110,101,99,116,105,118,105,116,121,46,99,111
,109,90,10,152,83,4,1,0,0,0,0,85,101,95,55,64,42,56,96,255,201,144,175,106,1
13,19,175,113,18,210,3,109,79,148,57,237,59,174,37,216,33,105,134,155,220,17
2,95,224,174,24,219,51,85,61,97,207,2,255,147,95,163,16,82,210,218,197,4,207
,189,214,187,212,199,133,250,29,52,5,42,72,48,130,1,221,48,130,1,132,160,3,2
,1,2,2,17,0,128,80,86,187,39,45,44,80,66,120,232,145,219,50,27,96,48,10,6,8,
42,134,72,206,61,4,3,2,48,50,49,19,48,17,6,3,85,4,10,12,10,71,69,77,65,76,84
,79,32,83,65,49,27,48,25,6,3,85,4,3,12,18,71,69,77,65,76,84,79,32,69,85,77,3
2,67,69,32,80,65,85,48,32,23,13,49,57,48,51,50,53,48,48,48,48,48,48,90,24,15
,57,57,57,57,49,50,51,49,50,51,53,57,53,57,90,48,64,49,19,48,17,6,3,85,4,10,
12,10,71,69,77,65,76,84,79,32,83,65,49,41,48,39,6,3,85,4,5,19,32,56,57,48,51
,51,48,50,51,52,50,52,51,50,48,48,48,48,48,48,48,48,48,48,52,53,54,50,51,51,
54,48,54,48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72,206,61,3,1,7,3,6
6,0,4,220,59,239,236,155,254,120,18,18,152,140,158,193,12,233,47,93,241,4,16
4,84,133,39,169,12,11,226,18,112,94,39,144,174,227,237,242,37,73,25,64,210,4
,184,60,17,114,103,226,235,246,229,229,226,54,4,208,245,174,180,198,239,7,98
,176,163,107,48,105,48,31,6,3,85,29,35,4,24,48,22,128,20,220,222,26,105,31,2
33,175,117,221,161,187,146,153,49,139,41,177,212,22,178,48,29,6,3,85,29,14,4
,22,4,20,200,220,224,111,237,248,116,35,250,198,112,246,190,164,149,129,214,
2,198,159,48,14,6,3,85,29,15,1,1,255,4,4,3,2,0,128,48,23,6,3,85,29,32,1,1,25
5,4,13,48,11,48,9,6,7,103,129,18,1,2,1,1,48,10,6,8,42,134,72,206,61,4,3,2,3,
71,0,48,68,2,32,63,48,8,73,147,118,41,144,127,5,77,200,133,217,208,20,34,133
,6,19,182,144,58,15,70,229,67,72,111,167,73,240,2,32,37,234,11,51,98,141,182
,118,16,21,38,167,115,14,72,111,47,143,45,213,157,184,236,156,11,34,63,177,2
07,73,42,251,48,130,2,157,48,130,2,67,160,3,2,1,2,2,16,38,116,211,243,157,55
,39,121,8,126,27,89,53,236,251,82,48,10,6,8,42,134,72,206,61,4,3,2,48,68,49,
24,48,22,6,3,85,4,10,19,15,71,83,77,32,65,115,115,111,99,105,97,116,105,111,
110,49,40,48,38,6,3,85,4,3,19,31,71,83,77,32,65,115,115,111,99,105,97,116,10
5,111,110,32,45,32,82,83,80,50,32,82,111,111,116,32,67,73,49,48,30,23,13,49,
55,48,53,50,53,48,48,48,48,48,48,90,23,13,52,55,48,53,50,52,50,51,53,57,53,5
7,90,48,50,49,19,48,17,6,3,85,4,10,12,10,71,69,77,65,76,84,79,32,83,65,49,27
,48,25,6,3,85,4,3,12,18,71,69,77,65,76,84,79,32,69,85,77,32,67,69,32,80,65,8
5,48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72,206,61,3,1,7,3,66,0,4,1
78,83,182,218,149,17,229,225,138,112,30,182,68,55,158,224,64,192,174,31,121,
186,38,129,24,66,117,75,251,252,97,44,56,126,103,229,223,178,243,184,125,24,
62,148,245,200,21,56,225,114,221,60,21,125,154,123,136,205,30,47,187,198,82,
182,163,130,1,39,48,130,1,35,48,18,6,3,85,29,19,1,1,255,4,8,48,6,1,1,255,2,1
,0,48,23,6,3,85,29,32,1,1,255,4,13,48,11,48,9,6,7,103,129,18,1,2,1,2,48,77,6
,3,85,29,31,4,70,48,68,48,66,160,64,160,62,134,60,104,116,116,112,58,47,47,1
03,115,109,97,45,99,114,108,46,115,121,109,97,117,116,104,46,99,111,109,47,1
11,102,102,108,105,110,101,99,97,47,103,115,109,97,45,114,115,112,50,45,114,
111,111,116,45,99,105,49,46,99,114,108,48,14,6,3,85,29,15,1,1,255,4,4,3,2,1,
6,48,60,6,3,85,29,30,1,1,255,4,50,48,48,160,46,48,44,164,42,48,40,49,19,48,1
7,6,3,85,4,10,12,10,71,69,77,65,76,84,79,32,83,65,49,17,48,15,6,3,85,4,5,19,
8,56,57,48,51,51,48,50,51,48,23,6,3,85,29,17,4,16,48,14,136,12,43,6,1,4,1,12

9,248,2,135,106,4,3,48,29,6,3,85,29,14,4,22,4,20,220,222,26,105,31,233,175,1
17,221,161,187,146,153,49,139,41,177,212,22,178,48,31,6,3,85,29,35,4,24,48,2
2,128,20,129,55,15,81,37,208,177,212,8,212,195,178,50,230,210,94,121,91,235,
251,48,10,6,8,42,134,72,206,61,4,3,2,3,72,0,48,69,2,32,66,41,14,233,224,150,
13,19,243,91,225,69,204,238,251,34,51,242,209,112,206,71,158,159,79,106,47,2
10,84,210,156,187,2,33,0,205,238,69,205,202,163,47,35,70,41,24,250,125,165,2
33,16,22,196,115,13,165,10,153,178,254,108,220,88,138,37,17,163],pApduComple
teInfo->ApduInfo.Response.Count=1300
76 50290 None 2020-03-04T09:06:13.7503562 0.0032197 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,3,191,32,0,0],vCommandApdu.data().Count=9
77 51346 None 2020-03-04T09:06:13.7754287 0.0250725 11720
4992 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=
[191,32,53,130,3,2,2,0,169,22,4,20,129,55,15,81,37,208,177,212,8,212,195,178
,50,230,210,94,121,91,235,251,170,22,4,20,129,55,15,81,37,208,177,212,8,212,
195,178,50,230,210,94,121,91,235,251],pApduCompleteInfo-
>ApduInfo.Response.Count=56
82 51796 None 2020-03-04T09:06:14.9911183 0.0020754 11720
7520 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,6,191,48,3,128,1,53,0],vCommandApdu.data().Count=12
83 52474 None 2020-03-04T09:06:15.0374406 0.0463223 11720
7520 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=[191,48,3,128,1,0],pApduCompleteInfo-
>ApduInfo.Response.Count=6
86 52736 None 2020-03-04T09:06:15.0451263 0.0076479 11720
7520 Microsoft_Windows_Cellcore_LPA_Service SendApdu:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::SendApdu,m_ulChannel=1
,vCommandApdu.data()=
[129,226,145,0,3,191,43,0,0],vCommandApdu.data().Count=9
87 53507 None 2020-03-04T09:06:15.0622867 0.0171604 11720
7520 Microsoft_Windows_Cellcore_LPA_Service SendApduResponse:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::ApduOperation::OnWwapiSendApduComplet
e,pApduCompleteInfo->ApduInfo.Response=[191,43,2,160,0],pApduCompleteInfo-
>ApduInfo.Response.Count=5
90 54169 None 2020-03-04T09:06:45.0792254 0.0166565 11720
2720 Microsoft_Windows_Cellcore_LPA_Service CloseChannel:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-
6f0d034f0ff3,Location=LPA::ApduHelper::CloseChannelOperation::Execute,ulChan
nel=1
91 54435 None 2020-03-04T09:06:45.0965610 0.0173356 11720
2720 Microsoft_Windows_Cellcore_LPA_Service ChannelClosed:
Component=LpaApduHelper,guidInterface=a549349a-2a86-4703-bebe-

MB eSIM MBIM Ready-State Guidance

6f0d034f0ff3,Location=LPA::ApduHelper::OnChannelOperationCloseChannelComplet
e

See Also

Firmware Upgrade for eSIM
Article • 03/14/2023

This document describes the Windows OS changes that support firmware updates for eSIM devices.

Windows Update (WU) is the model used for the firmware patches. In this model, the eSIM device vendor authors a UMDF driver
and adds it to a WU package along with the firmware patch. The package is published to the WU and will be downloaded &
installed on Windows devices containing the card vendor’s eSIM device. Once installed the card vendor’s driver writes the firmware
patch using the Smart Card WinRT API. Microsoft enables this by providing a UMDF driver for the ISO interface of the eSIM and
exposing it as a smart card via the existing Smart Card WinRT API.

The modem ISO interface has a 255-byte limitation as the max Application Protocol Data Unit (APDU) size and is therefore too slow
for full firmware OS updates (TRC/PBL image). For full firmware OS updates, Microsoft provides a separate smart card UMDF driver
which uses the SPB interface of the eSIM as the transport.

The following acronyms are used in this section:

ACPI: Advanced Configuration and Power Interface
APDU: Application Protocol Data Unit
ATR: Answer to Reset
eUICC: Embedded Universal Integrated Circuit Card
FW: Firmware
HCP: Host Controller Protocol
HWID: Hardware ID
ISO: International Organization for Standardization
MF: Master File
MSFT: Microsoft
OEM: Original Equipment Manufacturer
PBL: Primary bootloader
RPC: Remote Procedure Call
ScardSvr: Smart Cards for Windows Service
Scard WinRT: Smart Card Windows Runtime
SC DDI: Smart Card DDI
sHDLC: Simplified High Level Data Link Control
SPB: Simple Peripheral Bus
SPI: Serial Peripheral Interface
TRC: Tamper Resistant Chip
WwanSvc: WWAN Service

Overview

High Level Design for Firmware Patch Update

High Level Design for Firmware OS Update

Firmware Upgrade Architecture

For Windows 10, version 1703 the card vendor will deliver firmware updates on APDUs over the ISO interface. Updates for full
images (PBL HCP) on HCP packets over the SPI interface are planned for the Windows 10, version 1709 time frame.

The ISO UMDF driver is loaded by the WWAN Service when the WWAN Service detects an eSIM based on the ATR information. The
ISO UMDF driver sends APDUs to the eUICC via the modem using the low-level UICC access RPC of the WWAN Service.

The SPI UMDF driver is loaded by PnP based on the hardware ID in the ACPI entry for the eSIM card. The SPI UMDF driver sends
sHDLC frames to the TRC on the card via the SPB IOCTL interface.

On the upper layer both drivers will implement the Smart Card DDI that provides low-level access for interacting with smart cards.
This will expose both the ISO and SPI interfaces of the eSIM as a smart card via the Smart Card WinRT API.

In devices where the SPI interface to eSIM is available, OEMs are expected to add the Microsoft UICC SPI driver HWID to the ACPI
table as a hardware compatible ID. The HWID for the Microsoft UICC SPI driver is ACPI\MSFTUICCSPB.

UMDF drivers will implement the following Smart Card IOCTLs:

Usage DDI

Smart card states IOCTL_SMARTCARD_GET_STATE
IOCTL_SMARTCARD_IS_ABSENT
IOCTL_SMARTCARD_IS_PRESENT
IOCTL_SMARTCARD_POWER

Smart card attributes IOCTL_SMARTCARD_GET_ATTRIBUTE
IOCTL_SMARTCARD_SET_ATTRIBUTE

UMDF drivers

Usage DDI

Smart card communication IOCTL_SMARTCARD_SET_PROTOCOL
IOCTL_SMARTCARD_TRANSMIT

Define the following device properties:

Define Name Type FormatID Value

Device interface guid System.Devices.InterfaceClassGuid --
PKEY_Devices_InterfaceClassGuid

Guid --
VT_CLSID

{026E516E-B814-414B-
83CD-856D6FEF4822},
4,
DEVPROP_TYPE_GUID

{DEEBE6AD-9E01-47E2-
A3B2-A66AA2C036C9}

ReaderKind System.Devices.SmartCards.ReaderKind --
PKEY_Devices_SmartCards_ReaderKind

Byte --
VT_UI1
(should be
INT16 Bug
9550228)

{D6B5B883-18BD-
4B4D-B2EC-
9E38AFFEDA82}, 2,
DEVPROP_TYPE_BYTE

SmartCardReaderKind_Uicc

ReaderName DEVPKEY_Device_ReaderName (0xD6B5B883, 0x18BD,
0x4B4D, 0xB2, 0xEC, 0x9E, 0x38, 0xAF, 0xFE, 0xDA,
0x82, 0x03)

String --
VT_LPWSTR
(For
variants:
VT_BSTR)

{D6B5B883-18BD-
4B4D-B2EC-
9E38AFFEDA82}, 3,
DEVPROP_TYPE_STRING

CustomName

AppAccessRestrictionsFlags System.Devices.SmartCards.ReaderKind --
PKEY_Devices_SmartCards_AppAccessRestrictionsFlags

Byte --
VT_UI1

{D6B5B883-18BD-
4B4D-B2EC-
9E38AFFEDA82}, 4,
DEVPROP_TYPE_BYTE

PrivilegedAppOnly (1)

The ISO UMDF driver sets additional custom dev properties on the Smart Card reader devnode:

Define Name Type FormatID Value

RadioName DEVPKEY_MbbDevice_RadioName : DEVPROP_TYPE_GUID {41e061f2-9999-4b33-bf42-f950cbfd5f2e},
1, DEVPROP_TYPE_GUID

RadioInterfaceGuid

SlotId DEVPKEY_MbbDevice_SlotId DEVPROP_TYPE_UINT32 {c4c66992-3bcc-4f96-9a85-bd807235fbe1},
2, DEVPROP_TYPE_UINT32

SlotId

IsEmbedded DEVPKEY_MbbDevice_IsEmbedded DEVPROP_TYPE_BOOLEAN {7d08a710-b448-4148-8049-
0aa12e5fd2dd}, 3,
DEVPROP_TYPE_BOOLEAN

IsEmbedded

These properties are used to uniquely name the smart card readers and identify the reader that is attached to the correct eSIM card.
For example: IsEmbedded=True and SlotId=1.

Requirements for smart card devices

The TRC Image Update Agent is required to have sharedUserCertificates capability which allows access to the Smart Card WinRT
API. The sharedUserCertificates capability is a restricted capability that is only given to enterprises with certain credentials. Once the
access is granted, the app can connect to the TRC on the device via the Smart Card API and send commands to the card.

It is expected that the firmware patch is carried over APDUs. Because the Smart Card WinRT API only exposes transmitting APDUs
and not channel management functions such as open/close, the UMDF driver will inspect the APDUs and look for a SELECT by AID
command. If the driver finds a SELECT by AID command, it will be interpreted as opening a logical channel using the Wwan RPC API.
The UMDF driver will always validate that the AID is allowlisted, otherwise it will deny the request. Because there is no close or
disconnect IOCTL in the SC DDI, the UMDF driver has no way of knowing when the transmission ends and when to close the logical
channel. To prevent leaking of the logical channels, the UMDF driver will set a 5 minute timer when a logical channel is opened and
will close the channel when the timer expires. The 5 minutes should be long enough as a firmware update is expected to run up to
2.5 minutes maximum. If the UMDF driver detects a new SELECT by AID command, then it will close the previously opened channel
and reset the timer for the new logical channel. Note that 5 minute timeout is measured from the last transmitted APDU. In other
words, transmitting an APDU over an existing channel resets the timer.

To prevent from opening channels against random UICC apps, the ISO UMDF driver will permit app IDs that are required for an
update and restrict access to only these apps. The card vendor helps identify the app IDs and the OEM adds the IDs as registry
entries. It is also expected that the UICC app in the card will perform digital signature checks on the firmware to protect against
malicious apps sending data.

CellCore/PerDevice/eSIM/FwUpdate/AllowedAppIdList

During a full firmware OS update it is important that the UICC apps that are involved are not accessed by the modem. To achieve
this the TRC Image Update Agent will send a special APDU that instructs the eUICC to go in to the TRC/PBL mode. The TRC app will
then ask the modem to go into the passthrough mode and reset the card. The card will boot as an empty MF. Once the update is
done, the modem will be asked to reset the card again. This time both the modem and the card will get back to normal mode.

COSA Setting

Flow Diagrams

Connect

Transmit (Open Channel)

Transmit (send APDU and Close Channel)

Get ATR

Preinstall Apps Using DISM Published

To add a preinstalled app to a desktop image

Preinstallable apps for mobile devices

Preinstall Task

Pass-through mode

Related

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-8.1-and-8/dn387084(v=win.10)?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/windows-hardware/customize/preinstall/preinstallable-apps-for-windows-10-desktop
https://learn.microsoft.com/en-us/windows-hardware/customize/preinstall/preinstallable-apps-for-window-10-for-phones
https://learn.microsoft.com/en-us/windows-hardware/customize/preinstall/preinstall-tasks

MB modem reset operations
Article • 03/14/2023

This section defines MBIM CID commands and data structures, as well as NDIS OID
commands and data structures, for resetting the modem in a mobile broadband (MB)
device. These commands and data structures are available in Windows 10, version 1709
and later.

The host sends MBIM_CID_MS_DEVICE_RESET to the MBIM function to reset the modem
device.

Service name UUID UUID value

Microsoft Basic IP Connectivity
Extensions

UUID_BASIC_CONNECT_EXTENSIONS 3d01dcc5-fef5-4d05-
0d3a-bef7058e9aaf

CID Command code Set Query Notify

MBIM_CID_MS_DEVICE_RESET 10 Y N N

Type Set Query Notification

Command Empty Not applicable Not applicable

Response Empty Not applicable Not applicable

Not applicable.

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

MBIM_CID_MS_DEVICE_RESET

Parameters

Query

Set

Response

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

Not applicable.

The following status codes are applicable. Status is returned as an asynchronous
response to a set operation after reset is complete.

Status code Description

MBIM_STATUS_SUCCESS The operation succeeded.

MBIM_STATUS_BUSY The device is busy.

MBIM_STATUS_FAILURE The operation failed.

MBIM_STATUS_NO_DEVICE_SUPPORT The device does not support this operation.

The NDIS equivalent for MBIM_CID_MS_DEVICE_RESET is OID_WWAN_DEVICE_RESET.

Notification

Status codes

OID_WWAN_DEVICE_RESET

eSIM Download and Install Log Filter
Article • 12/15/2021

To make searching log files easier, below is an eSIM download and install filter file for
the TextAnalysisTool .

To use the eSIM download and install log filter:

1. Copy and paste the lines below and save them into a text file named
"esimdownload.tat."

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2015-08-17" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="RpcDownloadProfile" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="LuiAsyncResult" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="DownloadSequenceEvent" />
 </filters>
</TextAnalysisTool.NET>

https://github.com/TextAnalysisTool/Releases

eSIM Profile Operations Log Filter
Article • 12/15/2021

To make searching log files easier, below is an eSIM Profile Operation filter file for the
TextAnalysisTool .

To use the eSIM Profile Operation log filter:

1. Copy and paste the lines below and save them into a text file named
"esimoperation.tat." This filter is for the "EnableProfile" operation. For other
operations, replace "RpcEnableProfile" with one of the strings below that is specific
to the operation.

2. Load the filter file into the TextAnalysisTool by clicking File > Load Filters.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<TextAnalysisTool.NET version="2015-08-17" showOnlyFilteredLines="True">
 <filters>
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="RpcEnableProfile" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="OpenChannel" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="CloseChannel" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="CardResetComplete" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="LuiAsyncResult" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="WwapiEsimUpdate" />
 <filter enabled="y" excluding="n" description="" type="matches_text"
case_sensitive="n" regex="n" text="SendApdu" />
 </filters>
</TextAnalysisTool.NET>

Enable Profile - RpcEnableProfile
Disable Profile - RpcDisableProfile
Delete Profile - RpcDeleteProfile
Set Nick Name - RpcSetProfileNickname
Reset eSim - RpcWipeEsim

https://github.com/TextAnalysisTool/Releases

MB eSIM MBIM ready state guidance
Article • 03/14/2023

This topic provides guidance on the expected MBIM ready state for eSIM scenarios on
Windows 10, version 1709 and later. Conforming to the correct ready state ensures that
the OS handles all changes properly for that scenario.

Scenario MBIM_MS_UICCSLOT_STATE MBIM_SUBSCRIBER_READY_STATE

eSIM with
MF only (no
profiles)

MBIMMsUICCSlotStateActiveEsimNoProfiles MBIMSubscriberReadyStateNoEsimProfile

eSIM with
no enabled
profiles

MBIMMsUICCSlotStateActiveEsimNoProfiles MBIMSubscriberReadyStateNoEsimProfile

eSIM with
profile
enabled

MBIMMsUICCSlotStateActiveEsim MBIMSubscriberReadyStateInitialized

eSIM in
passthrough
mode

MBIMMsUICCSlotStateActiveEsimNoProfiles MBIMSubscriberReadyStateNotInitialized

When a change in both MBIM_MS_UICCSLOT_STATE and
MBIM_SUBSCRIBER_READY_STATE is needed, the slot state change should precede the
ready state change.

When enabling a new profile or switching between profiles, the ready state should have
the following flow:

） Important

All scenarios and states in this topic assume that the eSIM capable card is mapped
to the default executor, executor 0, and is powered ON.

For more info about MBIM_MS_UICCSLOT_STATE, see the MBIM_MS_UICCSLOT_STATE
table on MB Multi-SIM Operations (MBIM_CID_MS_SLOT_INFO_STATUS).

For more info about MBIM_SUBSCRIBER_READY_STATE, see Section 10.5.2.3 of the
public USB MBIM standard .

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

Access an eSIM in the inactive SIM slot
Article • 05/23/2022

Before the Windows 11, version 22H2 release, all eSIM access related CIDs in the MBIM
interface target the SIM in the active SIM slot in DSSA modems. Active SIM slot refers to
the SIM slot in a DSSA modem whose SIM is mapped to the device for active use for
registration and data connection (or the only SIM slot in a single-SIM modem). As a
result, eSIM functionality is applicable only if an eSIM resides in the active SIM slot in a
DSSA modem. If an eSIM resides in the inactive slot in a DSSA modem, there is no
access to the eSIM.

In the Windows 11, version 22H2 release, MBIMEx 4.0 introduces access to an eSIM in
the inactive SIM slot. MBIMEx 4.0 extends the following CIDs with a slot ID element (and
other necessary information) to support full access to an eSIM in the inactive slot of a
DSSA modem, in addition to the eSIM in the active SIM slot.

MBIM_CID_MS_UICC_ATR
MBIM_CID_MS_UICC_OPEN_CHANNEL
MBIM_CID_MS_UICC_CLOSE_CHANNEL
MBIM_CID_MS_UICC_APDU
MBIM_CID_MS_UICC_TERMINAL_CAPABILITY
MBIM_CID_MS_UICC_RESET
MBIM_CID_SUBSCRIBER_READY_STATUS

Download the MBIMEx 4.0 specification here .

For general information about MBIMEx 4.0, see MBIMEx 4.0 – 5G SA Phase 2 support.

https://download.microsoft.com/download/d/8/a/d8ad97b9-83bd-4ab2-bcea-7500dfaf22b4/MBIMEx%204.0%20spec%20and%20Errata%20to%20MBIMEx%203.0%20Rev%201.46%2020220426.docx

MB Device-based Reset and Recovery
Article • 03/14/2023

Mobile Broadband (MB or MBB) Device-based Reset and Recovery is a technology in
Windows 10, version 1809 and later that introduces a robust reset recovery mechanism
for MBB devices and drivers. This mechanism enables MBB devices to avoid failures that
cause malfunction, loss of connectivity, or unresponsiveness to operational commands,
ultimately making the user experience seamless if errors do occur and reducing the
chance of having to restart the system.

Device-based Reset and Recovery can be implemented with or without firmware
dependencies. IHV or OEM partners can extend the software-based reset mechanisms
available on all Windows PCs with supported device or firmware-level reset mechanisms
to increase the rate of successful recovery.

The Windows MBB service initializes and controls cellular devices using the standard
Mobile Broadband Interface Model (MBIM) interface, which is built on top of the USB
transport extending the NCM specifications. Each command sent to the IHV device is
sent as an MBIM command via the inbox Windows MBB class driver. Once the cellular
modem is initialized using the MBIM protocol exchange, the data path can start
between the host, modem, and the network. Any additional controls sent to the cellular
device continue via the MBIM protocol exchange in parallel.

There are a number of failures that can occur on both the MBIM control path and the
data path. In versions of Windows before Windows 10, version 1809, a simple error
handling mechanism is built in. Whenever a MBIM command is sent and device
becomes unresponsive, the mechanism attempts to reset the device by sending an
MBIM reset command. However, because the failure is often due to an unresponsive
MBIM interface in the first place, this reset does not always work. Furthermore, the
mechanism doesn't address other failures that might occur such as the loss of
connectivity due to data path failures.

MB Device-based Reset and Recovery introduces a centralized framework to detect a
larger set of failures and coordinates recovery with a set of progressively impactful
resets. If the device supports device-level reset, MB Device-based Reset and Recovery
will incorporate the device-level resets after all software-based resets are exhausted. The

MB Device-based Reset and Recovery
architecture overview

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

reset and recovery framework redefines and replaces the existing reset mechanism
based on MBIM command responsiveness.

MB Device-based Reset and Recovery detects and attempts to remedy the following
types of failures:

Area of
failure

Failure description

Control
path

A hang condition detected on MBIM protocol path. For more information about
hang detection, see MB hang detection.
Failures due to MBB responding with incorrect state and/or information.

Data
path

Device-side failure resulting in data path failures. For example, endpoints not
responding to data traffic, corrupted data from PHY, etc.
Modem/network-side failure. For example, the network not responding to IP
traffic, DNS failure, packet loss, etc.

Some failures are not actionable from a recovery perspective, including but not limited
to:

Provisioning- or activation-related issues such as missing COSA settings or MO-
initiated service denial
Control path issues due to driver initialization failure (power- or hardware-related)
or software bugs

However, once an actionable failure is detected, MB Device-based Reset and Recovery
will attempt the following reset mechanisms. The reset options are listed in the order
Windows will perform, from least to most impactful.

Software-based reset options, in the following table are available on all Windows 10,
version 1809 MBB devices and can be disabled or configured by OEM patners.

Reset sequence Reset type Reset mechanism

1 Software only Deactivate and activate the PDP context

2 Software only Toggle Airplane Mode (APM) ON/OFF

3 Sofware only Enable/disable the device at the Plug and Play (PnP) level

The following device-based reset options are enabled by OEMs with MBB
device/firmware capabilities.

Reset sequence Reset type Reset mechanism

Reset sequence Reset type Reset mechanism

4 Device-based Functional-level Device Reset (FLDR)

5 Device-based Platform-level Device Reset (PLDR)

The order of recovery is altered, and in some cases certain reset mechanisms bypassed
altogether, for certain types of failures. For example, if a command timeout occurs while
toggling airplane mode, the OS does not toggle Airplane Mode to fix it. If the MBB
device does not respond to any MBIM commands, then the OS will engage the Device-
based reset mechanisms directly.

For UDE client drivers that enable an MBIM function, Windows 10, version 1809 contains
a new API that can be used to request a reset whenever the UDECx client driver detects
an error. The following section describes these new device-based reset mechanims
including FLDR, PLDR, and UDECx reset for PCI.

Function-level Device Reset is the lightest device-based reset in terms of system impact.
It happens inside the device and is not visible to other devices, and the device stays
connected to the bus throughout the reset and returns to a valid state (in other words,
an initial state) after the process. This can be provided by either the bus driver or by the
firmware. The bus driver implements an FLDR handler if the bus specification defines an
in-band reset mechanism that fits the requirement. Firmware writers might override a
bus-defined FLDR with their own implementation of FLDR that uses out-of-band signals,
such as reset line or power toggling, while still following the requirements of FLDR.

Platform-level Device Reset is for cases where FLDR cannot be used, or as a last-resort
supplement to FLDR. This reset mechanism causes the device to be reported as missing
from the bus (during a power cycle, for example) or affects multiple devices (such as a
shared power rail or reset line among devices). The reset method is specified in the ACPI
table, which might be implemented as toggling a dedicated reset line or power-cycling
the D3 power resource. When PLDR is performed, the OS tears down and rebuilds the
stacks of all affected devices to ensure everything starts from a pristine state.

Device-based resets

Function-level Device Reset (FLDR)

Platform-level Device Reset (PLDR)

For UDE client drivers that enable an MBIM function, Windows 10, version 1809 includes
an API that can be used to request a reset whenever the UDECx client driver detects an
error. The client driver requests a reset by calling a new method,
UdecxWdfDeviceNeedsReset, specifying the reset type that it wants the UDECx to
attempt for the device (if supported). These reset types are PlatformLevelDeviceReset
and FunctionLevelDeviceReset and are values of the UDECX_WDF_DEVICE_RESET_TYPE
enumeration. Once a reset is initiated, UDECx invokes the driver's
EVT_UDECX_WDF_DEVICE_RESET callback function and ensures that no other callback is
invoked during this process. The client driver is expected to perform any reset related
operations such as releasing any resources, then signal reset completion by invoking
UdecxWdfDeviceResetComplete.

The following flow diagram illustrates the UDE device reset process.

Reset recovery for UDE devices

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nf-udecxwdfdevice-udecxwdfdeviceneedsreset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/ne-udecxwdfdevice-_udecx_wdf_device_reset_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nc-udecxwdfdevice-evt_udecx_wdf_device_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nf-udecxwdfdevice-udecxwdfdeviceresetcomplete

WWAN Service organizes actionable failures into RnR triggers:

1. Bad connectivity
2. Radio state set/query failures/time-outs
3. Consecutive OID request time-outs
4. Initialization failures

RnR triggers

RnR Trigger #1 - Bad connectivity

Bad connectivity
Limited Internet connectivity
Lost Internet connectivity
Routes not received correctly
Routes unreachable
Dead gateway
DNS query failing

WCM detects based on various sources (NCSI etc.).

WCM publishes WNF_WCM_INTERFACE_CONNECTION_STATE.

Recovery Process:

Reset PDP context up to three times (see FSM transition diagram)
Toggle APM once
PnP disable and enable MBB device once
Invoke FLDR once if supported
Invoke PLDR once if supported

The process stops as soon as L3 connectivity is good.

struct WCM_WNF_INTERFACE_CONNECTION_STATE_INFO
{
 GUID InterfaceGuid;
 WCM_MEDIA_TYPE MediaType = wcm_media_unknown;
 // ConnectionState is one of the WCM_WNF_INTERFACE_CONNECTIVITY_STATE_*
values
 DWORD ConnectionState = 0;
 // TimeInBadStateMs tracks how long a connection is in a Bad state
 // It will reset back to zero when in a good state
 DWORD TimeInBadStateMs = 0;
 // ConnectivityTriggers is a bitmask of
WCM_WNF_INTERFACE_CONNECTIVITY_TRIGGER_* flags
 DWORD ConnectivityTriggers = 0;
 // fWasConnectedGood will be TRUE if a connection is ever in a good
state over the lifetime of an L2 connection
 // Once it is set to TRUE, it will never go FALSE until the interface
disconnects
 BOOLEAN fWasConnectedGood = FALSE;
 // When processing the WNF, walk the array of
WCM_WNF_INTERFACE_CONNECTION_STATE_INFO structs
 // until you reach the struct with afLastArrayValues == TRUE
 BOOLEAN fLastArrayValue = TRUE;
};

Verification of outcome: L3 connectivity is good.

No response or failure response for setting or querying radio state.
OID_WWAN_RADIO_STATE set or query requests.
Should never happen.
Once it happens, OS and modem may end up in an inconsistent state.
Indicates serious problem(s) in the modem.
CWwanExecutor detects it and internally reports to CWwanResetRecovery.

Recovery process:

Invoke PLDR if supported
Otherwise, invoke PnP disable/enable

Verification of outcome: Send OID_WWAN_RADIO_STATE query and verify response.

TXM times all outstanding OID requests and expects responses for each.
If a “configurable” number of consecutive OID requests receive no response in
time, TXM detects it and internally reports to CWwanResetRecovery.
OIDs may be grouped in high/medium/low latency groups:

OID requests that are have no interaction with MO will have lower latency.
OID requests that result in interaction with MO will have medium latency.
OID_WWAN_CONNECT activation/deactivation request: ~180 seconds.

Recovery process:

Invoke PLDR if supported
Otherwise, invoke PnP disable/enable

Verification of outcome: Send OID_WWAN_RADIO_STATE query and verify response.

Time-out of the device caps or device capsEx query during the initialization upon
MB device arrival
CWwanManager detects and acts on it

Recovery process:

RnR trigger #2 - Radio state set/query failure or time-out

RnR trigger #3 - Time-out of consecutive OID requests

RnR Trigger #4 - Initialization failures

Invoke PLDR if supported
Otherwise, invoke PnP disable/enable

Verification of outcome: none

After PLDR or PnP disable/enable, the device departs and then re-arrives. Initialization
upon arrival follows.

Primary flows

RnR for bad connectivity

PLDR for radio power set failure

PnP disable/enable for radio state set failure

PLDR for time-outs of consecutive OID requests

PnP disable/enable for time-outs of consecutive OID requests

PLDR for initialization failure

PnP disable/enable for initialization failure

To support FLDR on a device, inside the Device() scope there must be a _RST method
defined. When executed, the method must reset only that device, and should not touch
another device. The device must also stay on the bus, connected.

C++

Requirements for MB Device-based Reset and
Recovery

Requirements for FLDR

Device(PCI0)
{
Device(USB0)
{
 Name(_ADR, 0x1d0000)
 Name(_S4D, 0x2)
 Name(_S3D, 0x2)
 …
 Method(_RST, 0x0, NotSerialized)
 {

In PLDR, devices that are affected by the reset of other device are expressed as sharing a
PowerResource for reset. The devices declare their dependency on the PowerResource for
reset, and that PowerResource implements the _RST method.

C++

 //
 // Perform reset of the USB0 device
 //
 }
}
}

Requirements for PLDR

Device(PCI0)
{
PowerResource(URST, 0x5, 0x0)
{
 //
 // Dummy _ON and _OFF methods. All power resources must have these
 // two defined.
 // Method(_ON, 0x0, NotSerialized)
 {
 }
 Method(_OFF, 0x0, NotSerialized)
 {
 }
 Method(_RST, 0x0, NotSerialized)
 {
 //
 // Perform reset of the USB0 and USB1 devices
 //
 }
}
Device(USB0)
{
 Name(_ADR, 0x1d0000)
 Name(_S4D, 0x2)
 Name(_S3D, 0x2)
 …
 Name(_PRR, Package(0x1) { ^URST })
}
Device(USB1)
{
 Name(_ADR, 0x1d0001)
 Name(_S4D, 0x2)
 Name(_S3D, 0x2)
 …
 Name(_PRR, Package(0x1) { ^URST })

Alternatively, PLDR can be achieved by putting the device into the D3Cold power state
and back to D0, essentially power cycling the device. In this case, having _PR3 declared
in the device scope is sufficient to support PLDR. ACPI will use _PR3 to determine reset
dependencies between devices if no _PRR is referenced in the device scope. For more
information, see Resetting and recovering a device.

MB hang detection

UDECX_WDF_DEVICE_RESET_TYPE

UdecxWdfDeviceNeedsReset

}
}

Sample Log

NTS]WWAN Service event: [Info] WwanTimerWrapper::StartTimer: Timer (ID = 0)
Start Completed
[0]0E98.34E4::11/27/2019-05:37:55.622 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info] WwanTxmEvaluateArmTimer: TXM timer armed
for 60 seconds Interface: {{8a664721-db25-4157-8395-5d21e0560fa4}}
[0]0E98.34E4::11/27/2019-05:37:55.622 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info] _sendReq: ASYNC OID (pTx->handle:
00000000000000B0 Code: 1) sent
[0]0E98.34E4::11/27/2019-05:37:55.622 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info] CWwanExecutor::RegWriteStoredRadioState:
Try to set the subkey to 0x0 for ArrivalRadioState Interface: {{8a664721-
db25-4157-8395-5d21e0560fa4}}
[0]0E98.34E4::11/27/2019-05:37:55.623 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info]
CWwanResetRecovery::EvaluateAndTryHighImpactRnRMethod: Attempted to turn
off radio via MBB (reqId 0x10c): request ID 0x1 prev stage 0 APMToggling 0;
PnPDisabling 0; PLDR 0; FLDR 0 Interface: {{8a664721-db25-4157-8395-
5d21e0560fa4}}
[0]0E98.34E4::11/27/2019-05:37:55.623 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info] WwanTimerWrapper::StartTimer: Timer (ID =
6) Start Completed
[0]0E98.34E4::11/27/2019-05:37:55.623 [Microsoft-Windows-WWAN-SVC-
EVENTS]WWAN Service event: [Info] CWwanResetRecovery::fsmEventHandler: exit
with state: 7, event: 4, RnR stage: 2 Potent RnR: 0 Interface: {{8a664721-
db25-4157-8395-5d21e0560fa4}}

Related links

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/working-with-guid-device-reset-interface-standard
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/ne-udecxwdfdevice-_udecx_wdf_device_reset_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nf-udecxwdfdevice-udecxwdfdeviceneedsreset

EVT_UDECX_WDF_DEVICE_RESET

UdecxWdfDeviceResetComplete

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nc-udecxwdfdevice-evt_udecx_wdf_device_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/udecxwdfdevice/nf-udecxwdfdevice-udecxwdfdeviceresetcomplete

MB hang detection
Article • 03/14/2023

Mobile Broadband (MB or MBB) hang detection is a technology in Windows 10, version
1809 and later that assists MBB client drivers in detecting hang conditions in the control
path and recovering from them. It is a part of the Device-based Reset and Recovery
feature that is aimed at recovering from a variety of possible error conditions for MBB
devices and drivers.

The flow diagrams in this topic use USB as the underlying bus, although the reset
mechanism is bus agnostic if the ACPI and bus stack define the interfaces described on
this page.

The following flow diagram applies generically to all NDIS object identifiers (OIDs) and
callbacks to miniport drivers. There might be cases where the recovery part of this
process does not work if NDIS does not fully support reset recovery.

This hang detection and reset flow sequence consists of 3 phases:

1. Hang detection
2. Any potential logging to get the states for further debugging
3. Reset – surprise removal handling

The service layer provides a hint to the driver to initiate a recovery whenever something
wrong is detected at the user layer, since WWANSvc has a state machine managing the
connectivity state of the cellular adapter. To support this, a private interface is defined
that the driver uses to trigger a reset operation. There are a few cases where the driver

Hang detection

originates its own commands down to the device to make sure the state machine is
valid. If any of these commands time out, then the reset/recovery is triggered from the
driver itself without having to communicate the operation back to user mode to initiate
a recovery operation.

For more information about the private interface that UDE client drivers can use to
trigger a reset operation, see MB Device-based Reset and Recovery.

This example uses OID_WWAN_CONNECT as an example for walking through the hang
detection flow.

1. NDIS (via the protocol driver) receives an OID_WWAN_CONNECT.
2. NDIS passes OID_WWAN_CONNECT down to the class driver.
3. The class driver constructs an MBIM message for the Connect request.
4. The class driver sends the MBIM message to the MBIM function via the USB bus.

5. The firmware command times out, which could be because the firmware is hung or
the MBIM command is taking a long time to complete.

6. The class driver returns the NDIS command without the firmware completion with
NDIS_NOTIFICATION_REQUIRED. The result of OID_WWAN_CONNECT is returned
with a solicited notification from the driver via
NDIS_STATUS_WWAN_CONTEXT_STATE with Status set to Timeout, indicating that
the underlying device didn’t respond to the command.

7. NDIS completes the OID request to the protocol driver.
8. The protocol driver returns the call back to the service, which sees that the

command failed.
9. The service triggers a reset operation on the device using the new OID interface.

10. After this point, the FDO calls the bus to surprise-remove and re-enumerate the
MBB device. If the underlying bus is USB, then the FDO will call appropriate
functions to reset the device.

11. If the appropriate ACPI methods are defined in UEFI, then either FLDR or PLDR will
be triggered.

For more information about FLDR and PLDR, see MB Device-based Reset and Recovery.

Once the reset recovery can proceed, the bus causes the Plug and Play (PnP) manager to
generate a surprise-remove IRP, provided the support is present at the ACPI/UEFI level.
NDIS, on receiving the surprise-remove IRP, calls back into WMBCLASS for a surprise-
remove PnP event callback. WMBCLASS handles the surprise-removal operation. At this
point, all the commands, etc. must be completed and the data packets must be returned
successfully back to NDIS. Otherwise, the surprise-removal operation will not complete.
The rest of flow is identical to a real device surprise-remove on a bus, for example USB.

1. NDIS calls the PnP event for surprise-removal.
2. WMBCLASS ignores the return of hung MBIM command and returns the original

NDIS command.
3. WMBCLASS returns the NDIS PnP callback for surprise-removal.

After the surprise-removal, all drivers in the stack including WMBCLASS must release all
resources so that the device object can be removed and re-enumerated by the bus.
Failing to do so, the device will not be re-enumerated and will not be recovered.

Reset (Surprise-Removal)

Recovery

MB Device-based Reset and Recovery

MB Device-based Reset and Recovery Trace

Related links

MB Device Reset and Recovery (RnR)
trace
Article • 03/14/2023

Attempt connection reset
current RnR state
OnConnectionStateInfoChanged
EvaluateAndTryHighImpactRnRMethod
CWwanResetRecovery::Trigger
CWwanResetRecovery::Initialize
CWwanResetRecovery::OnNdisNotification
CWwanResetRecovery::OnWwanNotification
CWwanResetRecovery::OnInterfaceReArrival
CWwanResetRecovery::OnInterfaceRemoval
CWwanResetRecovery::fsmEventHandler:
CWwanResetRecovery::OnWwanNotification
CWwanResetRecovery::fsmEventHandler:
CWwanDeviceEnumerator::
CWwanResetRecovery
SET OID_WWAN_RADIO_STATE (e010103), RequestId
: OID_WWAN_CONNECT (
[NH] Dispatch
WwanNotificationSourceMsm\WwanMsmEventTypeConnectionIStreamUpdated
]RouteManagement::BadConnectionState
WNF_WCM_INTERFACE_CONNECTION_STATE
WNF_PHN_CALL_STATUS
L3ConnnectivityGood
WaitL3ConnnectivityGood
CONTEXT_STATE Resp (Set)
found valid
_ReadRnRPolicies
Opportunistic Internet
Active probe result code on interface

Useful keywords/regexp for filtering traces

Investigation tips

Ensure the necessary ETW providers are included in log:

1. netsh trace start wireless_dbg,provisioning persist=yes
2. repro the scenario
3. netsh trace stop
4. Collect the files generated and attach them to the bug

Follow the RnR trigger guidelines to identify the case that caused the RnR trigger.

MB SAR Platform Support
Article • 03/14/2023

Specific Absorption Rate (SAR) is the capability to change the MBB radio transmitter power in reaction to the proximity of
the MBB antenna to the user. Traditionally, OEMs have implemented proprietary solutions for SAR. This requires the OEM
to implement a device service command that is either only identified between their User Mode Driver (UMDF) and the
modem or requires kernel mode components to directly interact with the modem. Some OEMs may even have a hybrid
solution where they have both UMDF-modem and kernel mode-modem components. As radio radiation awareness has
increased, standardizing the interface for OEM software components to pass through the SAR command to the modem
introduces the following benefits:

1. OEMs can move toward user mode components and makes the system more stable, as errors in user mode are not
fatal to the system compared to kernel mode.

2. Windows provides a platform standard interface and reduces the proprietary implementation from OEMs.
3. Services in the platform that want to take advantage of SAR can retrieve the information from the modem.

Starting in Windows 10, version 1703, Windows supports passing through SAR configuration and modem transmission
status. Windows will continue to leave the SAR business logic to IHVs and OEMs to use as a self-differentiating factor but
will provide an interface to streamline the platform. Two new NDIS OIDs and two new MBIM CIDs have been defined to
support this interface. Devices that want to take advantage of OS support must implement both commands.

This feature is supported by adding in two new OIDs and CIDs. For IHV partners that implement MBIM, only the CID
version needs to be supported.

Overview

７ Note

This topic defines the interface for IHV partners to implement SAR platform support in their modem device drivers. If
you are looking for info about customizing the SAR mapping table for a device, see Customize a Specific
Absorption Rate (SAR) mapping table.

Flow

https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/customize-sar-mapping-table

An MBIM-compliant device implements and reports the following device service when queried by
CID_MBIM_DEVICE_SERVICES. The existing well-known services are defined in section 10.1 of the USB NCM MBIM 1.0
specification. Microsoft extends this to define the following service.

Service Name = Microsoft SAR Control

UUID = UUID_MS_SARControl

UUID Value = 68223D04-9F6C-4E0F-822D-28441FB72340

CID Minimum OS Version

MBIM_CID_MS_SAR_CONFIG Windows 10, version 1703

MBIM_CID_MS_TRANSMISSION_STATUS Windows 10, version 1703

This command sets or returns information about a MB device’s SAR back off mode and level. The MB device must act on
the SAR back off command immediately by overwriting the current Transmit power limits and applying them to the
transmitting antennas. If an antenna’s SAR configuration was not changed by the operating system, it should maintain its
current setting. For example, if the operating system sets antenna 1 to be SAR back off index 1, then antenna 2’s
configuration should be kept the same without any changes.

It is expected for devices that support this command to implement Query so they provide device information to the OS
and its clients. For the Set command, it is between the IHV and the OEM to define which value of each field is acceptable.
The typical expectation is that the SAR back off index is configurable for all antennas as a minimum baseline. If a Set

MB Interface Update for SAR Platform Support

MBIM_CID_MS_SAR_CONFIG

Description

request is sent with fields that are not supported by the device, then MBIM_STATUS_INVALID_PARAMETERS must be
returned as the status code.

After each Query or Set response, the modem should return a MBIM_MS_SAR_CONFIG structure that contains
information for all antennas on the device associated with Mobile Broadband.

The InformationBuffer on MBIM_COMMAND_MSG is not used. MBIM_MS_SAR_CONFIG is returned in the
InformationBuffer of MBIM_COMMAND_DONE.

The InformationBuffer on MBIM_COMMAND_MSG contains a MBIM_MS_SAR_CONFIG. MBIM_MS_SAR_CONFIG is
returned in the InformationBuffer of MBIM_COMMAND_DONE.

Not applicable.

Operation Set Query Notification

Command MBIM_MS_SET_SAR_CONFIG Not applicable Not applicable

Response MBIM_MS_SAR_CONFIG MBIM_MS_SAR_CONFIG Not applicable

The InformationBuffer shall be NULL and InformationBufferLength shall be zero.

The following MBIM_MS_SET_SAR_CONFIG structure shall be used in the InformationBuffer.

Offset Size Field Type Description

0 4 SARMode MBIM_MS_SAR_CONTROL_MODE For more information, see the
MBIM_MS_SAR_CONTROL_MODE table.

4 4 SARBackOffStatus MBIM_MS_SAR_BACKOFF_STATE For more information, see the
MBIM_MS_SAR_BACKOFF_STATE table. If
MBIM_MS_SAR_CONTROL_MODE is set to be device-
controlled, then the OS will not be able set this field.

8 4 ElementCount (EC) UINT32 Count of MBIM_MS_SAR_CONFIG structures that follow
in the DataBuffer.

Query

Set

Unsolicited Events

Parameters

Data Structures

Query

Set

Offset Size Field Type Description

12 8 *
EC

SARConfigStatusRefList OL_PAIR_LIST The first element of the pair is a 4-byte offset, calculated
from the beginning (offset 0) of this
MBIM_MS_SET_SAR_CONFIG structure, to an
MBIM_MS_SAR_CONFIG_STATE structure. For more
information, see the MBIM_MS_SAR_CONFIG_STATE
table. The second element of the pair is a 4-byte size of a
pointer to the corresponding
MBIM_MS_SAR_CONFIG_STATE structure.

12 +
(8 *
EC)

DataBuffer DATABUFFER Array of MBIM_MS_SAR_CONFIG_STATE structures.

The following structures are used in the preceding table.

MBIM_MS_SAR_CONTROL_MODE specifies how the SAR back off mechanism is controlled.

Type Value Description

MBIMMsSARControlModeDevice 0 SAR back off mechanism is controlled by the modem device directly.

MBIMMsSARControlModeOS 1 SAR back off mechanism is controlled and managed by the operating system.

MBIM_MS_SAR_BACKOFF_STATE describes the state of SAR back off.

Type Value Description

MBIMMsSARBackOffStatusDisabled 0 SAR back off is disabled in the modem.

MBIMMsSARBackOffStatusEnabled 1 SAR back off is enabled in the modem.

MBIM_MS_SAR_CONFIG_STATE describes the possible states for SAR backoff for the antennas.

Offset Size Field Type Description

0 4 SARAntennaIndex UINT32 An antenna index that corresponds to the SARBackOffIndex field in this table. It
corresponds to the antenna number and is left to OEM implementation to index each
antenna on the device. Any index is valid for this value. If this value is set to 0xFFFFFFFF
in a Set command, the SARBackOffIndex should be applied to all antennas. If this value
is set to 0xFFFFFFFF in response, it indicates that SARBackOffIndex is applied to all
antennas.

4 4 SARBAckOffIndex UINT32 A back off index that corresponds to the back off table that is defined by the OEM or
modem vendor. The table has individual bands and associated back off parameters.

The following MBIM_MS_SAR_CONFIG structure shall be used in the InformationBuffer. MBIM_MS_SAR_CONFIG specifies
the configuration for SAR.

Offset Size Field Type Description

0 4 SARMode MBIM_MS_SAR_MODE For more information, see the
MBIM_MS_SAR_CONTROL_MODE table.

4 4 SARBackOffStatus MBIM_MS_SAR_BACKOFF_STATE For more information, see the
MBIM_MS_SAR_BACKOFF_STATE table.

Response

Offset Size Field Type Description

8 4 SARWifiIntegration MBIM_MS_SAR_
WIFI_HARDWARE_INTEGRATION

For more information, see the
MBIM_MS_SAR_HARDWARE_WIFI_INTEGRATION table.
This implies the device’s Wi-Fi and Cellular SAR is
integrated at the hardware layer and the device will
automatically adjust SAR control for both radios.

12 4 ElementCount (EC) UINT32 Count of MBIM_MS_SAR_CONFIG_STATE structures that
follow in the DataBuffer.

16 8 *
EC

SARConfigStatusRefList OL_PAIR_LIST The first element of the pair is a 4 byte offset, calculated
from the beginning (offset 0) of this
MBIM_MS_SAR_CONFIG structure, to an
MBIM_MS_SAR_CONFIG_STATE structure. For more
information, see the MBIM_MS_SAR_CONFIG_STATE table.
The second element of the pair is a 4 -byte size of a
pointer to the corresponding
MBIM_MS_SAR_CONFIG_STATE structure.

16 +
(8 *
EC)

DataBuffer DATABUFFER Array of MBIM_MS_SAR_CONFIG_STATE structures.

The following MBIM_MS_SAR_HARDWARE_WIFI_INTEGRATION structure is used in the preceding table. It specifies
whether Wi-Fi and Cellular are integrated at the hardware level.

Type Value Description

MBIMMsSARWifiHardwareIntegrated 0 Wi-Fi and Cellular modem SAR is integrated in the device.

MBIMMsSARWifiHardwareNotIntegrated 1 Wi-Fi and Cellular modem SAR is not integrated in the device.

Not applicable.

Error Code Description

MBIM_STATUS_SUCCESS The request was successfully processed.

MBIM_STATUS_BUSY The device is currently busy.

MBIM_STATUS_FAILURE The request failed.

MBIM_STATUS_NO_DEVICE_SUPPORT Device does not support this command.

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters.

MBIM_STATUS_OPERATION_NOT_ALLOWED The operation failed because the operation is not allowed.

This command is used to enable or disable the notification from the modem on transmit state. It is a per-executor
command as each executor can have different channel transmit state. For example, a dual SIM modem might have one
on LTE and the other on GSM. At the same time, it can be used to provide the transmit status of the modem. This
notification could be used for clients that are interested in whether the modem is transmitting data or not. The modem

Notification

Status Codes

MBIM_CID_MS_TRANSMISSION_STATUS

Description

should provide notification any time there is a start or end of TX traffic. If the duty cycle is too small and cannot be
provided in real time to the host, then the TX state can be kept as active for a set time with a hysteresis timer before it
sends an update of the state. As an example, it might be that there was a short burst of TX and the modem could not
provide the start and end notification in time. The modem should send up notification when the TX traffic starts and
should continue to monitor its TX traffic during the hysteresis timer. If no more TX traffic was generated within the timer’s
timeframe, then it should report that TX traffic has ended.

This is very useful in scenarios where both Wi-Fi and LTE are connected. If both LTE and Wi-Fi are in a transmitting state
and proximity was detected, then Wi-Fi back off may be required. If LTE is not in transmitting state but Wi-Fi is, then Wi-Fi
back off may not be required. This applies to general Wi-Fi/LTE connection and mobile hot spot scenarios.

The Wi-Fi back off mechanism and command is out of scope of this specification.

OEMs that use this command should be aware of the potential power impact as the modem may be sending up
transmission-related notifications at all times, including reduced power states. The OS, by default, will not allow this
notification to awake the AP during Modern Standby to improve power performance.

The InformationBuffer on MBIM_COMMAND_MSG is not used. MBIM_MS_TRANSMISSION_STATUS_INFO is returned in
the InformationBuffer of MBIM_COMMAND_DONE.

The InformationBuffer on MBIM_COMMAND_MSG contains MBIM_MS_SET_TRANSMISSION_STATUS.
MBIM_MS_TRANSMISSION_STATUS_INFO is returned in the InformationBuffer of MBIM_COMMAND_DONE.

Unsolicited events contain MBIM_MS_TRANSMISSION_STATUS_INFO and are sent when there is a change to the active
over-the-air (OTA) channels. For example, if a modem started uploading packet data, it would be required to set up
uplink channels when it uses the network data channel so that it can upload payloads. This would trigger the notification
to be provided to the operating system.

Operation Set Query Notification

Command MBIM_MS_SET_TRANSMISSION_STATUS Not applicable Not applicable

Response MBIM_MS_TRANSMISSION_STATUS_INFO MBIM_MS_TRANSMISSION_STATUS_INFO MBIM_MS_TRANSMISSION_STATUS_INFO

The InformationBuffer on MBIM_COMMAND_MSG is not used. MBIM_MS_TRANSMISSION_STATUS_INFO is returned in
the InformationBuffer of MBIM_COMMAND_DONE.

The following MBIM_MS_SET_TRANSMISSION_STATUS structure shall be used in the InformationBuffer.

Offset Size Field Type Description

Query

Set

Unsolicited Events

Parameters

Data Structures

Query

Set

Offset Size Field Type Description

0 4 ChannelNotification MBIM_MS_TRANSMISSION_STATUS_NOTIFICATION For more information, see the
MBIM_MS_TRANSMISSION_STATUS_NOTIFICATION
table.

4 4 HysteresisTimer UINT32 Hysteresis Indicator that is used by the modem to
determine when to send the
MBIMMsTransmissionStateInactive to the host. This
value is the timer the modem sees as a continuous
no-transmit activity before it sends an OFF
indicator to host. This timer should be set in
seconds, ranging from 1 second to 5 seconds.

The following MBIM_MS_TRANSMISSION_STATUS_NOTIFICATION structure is used in the preceding table. It specifies
whether modem channel transmission is disabled or enabled.

Type Value Description

MBIMMsTransmissionNotificationDisabled 0 Modem channel transmission status notification disabled.

MBIMMsTransmissionNotificationEnabled 1 Modem channel transmission status notification enabled.

The following MBIM_MS_TRANSMISSION_STATUS_INFO structure is used for response.

Offset Size Field Type Description

0 4 ChannelNotification MBIM_MS_TRANSMISSION_STATUS_NOTIFICATION For more information, see the
MBIM_MS_TRANSMISSION_STATUS_NOTIFICATION
table.

4 4 TransmissionStatus MBIM_MS_TRANSMISSION_STATUS For more information, see the
MBIM_MS_TRANSMISSION_STATUS table. This
indicates whether the modem has TX traffic every 5
seconds.

8 4 HysteresisTimer UINT32 Hysteresis Indicator that is used by the modem to
determine when to send the
MBIMMsTransmissionStateInactive to the host. This
value is the timer the modem sees as a continuous
no-transmit activity before it sends an OFF
indicator to host. This timer should be set in
seconds, ranging from 1 second to 5 seconds.

The following MBIM_MS_TRANSMISSION_STATUS structure is used in the preceding table. It indicates whether modem is
having TX traffic every 5 seconds.

Type Value Description

MBIMMsTransmissionStateInactive 0 The modem was not actively transmitting data without any continuous lapse of
transmission for the last HysteresisTimer value.

MBIMMsTransmissionStateActive 1 The modem was actively transmitting data.

For more information, see the MBIM_MS_TRANSMISSION_STATUS_INFO table.

Response

Notification

Status Codes

Error Code DescriptionError Code Description

MBIM_STATUS_SUCCESS The request was successfully processed.

MBIM_STATUS_BUSY The device is currently busy.

MBIM_STATUS_FAILURE The request failed.

MBIM_STATUS_NO_DEVICE_SUPPORT Device does not support this command.

MBIM_STATUS_INVALID_PARAMETERS The operation failed because of invalid parameters.

MBIM_STATUS_OPERATION_NOT_ALLOWED The operation failed because the operation is not allowed.

See Steps for installing HLK .

In HLK Studio connect to the device Cellular modem driver and run the test: Win6_4.MB.GSM.Data.TestSAR.

This test contains the following tests:

Test name Description

QuerySarConfig This test verifies the test can successfully query SAR configurations.

SetSarConfig This test verifies the test can successfully set SAR configurations.

QuerySarTransmissionStatus This test verifies the test can successfully query SAR transmission status.

SetSarTransmissionStatus This test verifies the test can successfully set SAR transmission status.

MobileBroadbandSarManager

Logs can be collected and decoded using these instructions: MB Collecting Logs.

Microsoft-Windows-WWAN-SVC-EVENTS (3cb40aaa-1145-4fb8-b27b-7e30f0454316)

Keywords for filtering:

1. SarConfig
2. CWwanSar::OnNdisNotification
3. LoadSemiStaticOEMSARTable
4. AttemptAutoConfigureSAR
5. PreCheckSemiStaticOEMSARTable
6. WwanIntfOpcodeSarConfig
7. WwanIntfOpcodeSarTransmissionStatus
8. WwanMsmEventTypeSarConfig
9. WwanMsmEventTypeSarTransmissionStatus

MobileBroadband WinRT WPP (56dd9c57-06cc-48ba-b123-876a6495ba13)

Keywords for filtering: MobileBroadbandSarManager

Hardware Lab Kit (HLK) Tests

WinRT API

Log Analysis

Important providers and corresponding keywords

https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/aaa1f042-8535-4d09-b19e-082bef24f517
https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.mobilebroadbandsarmanager

WwanProtDIM (3a07e1ba-3a6b-49bf-8056-c105b54dd7fb)

Keywords for filtering:

1. NDIS_WWAN_SAR_CONFIG_INFO
2. SarMode
3. NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO
4. HysteresisTimer

Customize a Specific Absorption Rate (SAR) mapping table

See Also

https://learn.microsoft.com/en-us/windows-hardware/customize/desktop/customize-sar-mapping-table

MB base stations information query
support
Article • 03/14/2023

The base stations information query interface is used to provide location based services
with cellular base station information, such as Base Station ID, Time Advance, and other
parameters that can be used to compute the geographical position of the mobile
subscriber. The information gathered pertains to the cellular base station currently serving
the subscriber, as well as neighboring cellular base stations.

This topic defines the base stations information query interface for Windows, as the MBIM
1.0 specification does not provide this information through any existing CIDs. This
interface is available in Windows 10, version 1709 and later.

Serving and neighbor cell parameters are retrieved via Query/Response operations. A
notification is also defined in this topic to indicate that the location of the device within
the cellular network has changed.

This command retrieves information about the serving and neighbor cells known to the
modem.

Service: MBB_UUID_BASIC_CONNECT_EXTENSIONS

Service UUID: 3d01dcc5-fef5-4d05-0d3a-bef7058e9aaf

CID Command code Minimum OS version

MBIM_CID_BASE_STATIONS_INFO 11 Windows 10, version 1709

Type Set Query Notification

Command Not applicable MBIM_BASE_STATIONS_INFO_REQ Not applicable

Response Not applicable MBIM_BASE_STATIONS_INFO Not applicable

Overview

MBIM_CID_BASE_STATIONS_INFO

Parameters

The InformationBuffer of MBIM_COMMAND_MSG contains an
MBIM_BASE_STATIONS_INFO_REQ struture. The InformationBuffer of
MBIM_COMMAND_DONE contains an MBIM_BASE_STATIONS_INFO structure.

The MBIM_BASE_STATIONS_INFO_REQ structure shall be used in the InformationBuffer for
queries. It is used to configure aspects of the cell information, such as the maximum
number of neighbor cell measurements, to send in response.

Offset Size Field Type Description

0 4 MaxGSMCount SIZE The maximum number of entries of GSM
neighboring cells returned in the GSM network
measurement reports of MBIM_GSM_NMR. Default
capacity is 15.

4 4 MaxUMTSCount SIZE The maximum number of entries of UMTS
neighboring cells returned in the UMTS measured
results list in MBIM_UMTS_MRL. Default capacity is
15.

8 4 MaxTDSCDMACount SIZE The maximum number of entries of TDSCDMA
neighboring cells returned in the TDSCDMA
measured results list in MBIM_TDSCDMA_MRL.
Default capacity is 15.

12 4 MaxLTECount SIZE The maximum number of entries of LTE neighboring
cells returned in the LTE measured results list of
MBIM_LTE_MRL. Default capacity is 15.

16 4 MaxCDMACount SIZE The maximum number of entries of CDMA cells
returned in the CDMA measured results list in
MBIM_CDMA_MRL. This list includes both serving
and neighboring cells. Default capacity is 12.

Not applicable.

The MBIM_BASE_STATIONS_INFO structure shall be used in the InformationBuffer of
MBIM_COMMAND_DONE for responses.

Query

MBIM_BASE_STATIONS_INFO_REQ

Set

Response

The MBIM_BASE_STATIONS_INFO structure contains information about both serving and
neighboring base stations.

Offset Size Field Type Description

0 4 SystemType MBIM_DATA_CLASS Indicates the system type (or types) for
which serving cell information is valid.
This member is a bitmask of one or
more system types as defined in the
MBIM_DATA_CLASS.

4 4 GSMServingCellOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the GSM serving cell
information. This member can be NULL
when the technology of the serving cell
is not GSM.

8 4 GSMServingCellSize SIZE(0-44) The size, in bytes, used for
MBIM_GSM_SERVING_CELL_INFO.

12 4 UMTSServingCellOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the UMTS serving cell
information. This member can be NULL
when the technology of serving cell is
not UMTS.

16 4 UMTSServingCellSize SIZE(0-60) The size, in bytes, used for
MBIM_UMTS_SERVING_CELL_INFO.

20 4 TDSCDMAServingCellOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the TDSCDMA
serving cell information. This member
can be NULL when the technology of
serving cell is not TDSCDMA.

24 4 TDSCDMAServingCellSize SIZE(0-48) The size, in bytes, used for
MBIM_TDSCDMA_SERVING_CELL_INFO.

28 4 LTEServingCellOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the LTE serving cell
information. This member can be NULL
when the technology of serving cell is
not LTE.

MBIM_BASE_STATIONS_INFO

Offset Size Field Type Description

32 4 LTEServingCellSize SIZE(0-48) The size, in bytes, used for
MBIM_LTE_SERVING_CELL_INFO.

36 4 GSMNmrOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the GSM Network
Measurement report. This member can
be NULL when no GSM neighboring
network is returned in the
measurement report.

40 4 GSMNmrSize SIZE The total size, in bytes, of the buffer
containing the GSM Network
Measurement report in the format of
MBIM_GSM_NMR.

44 4 UMTSMrlOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing UMTS measured
results list. This member can be NULL
when no UMTS neighboring network is
returned in the measurement report.

48 4 UMTSMrlSize SIZE The total size, in bytes, of the buffer
containing the UMTS measured results
list in the format of MBIM_UMTS_MRL.

52 4 TDSCDMAMrlOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing TDSCDMA measured
results list. This member can be NULL
when no TDSCDMA neighboring
network is returned in the
measurement report.

56 4 TDSCDMAMrlSize SIZE The total size, in bytes, of the buffer
containing the TDSCDMA measured
results list in the format of
MBIM_TDSCDMA_MRL.

60 4 LTEMrlOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing the LTE measured
results list. This member can be NULL
when no LTE neighboring network is
returned in the measurement report.

Offset Size Field Type Description

64 4 LTEMrlSize SIZE The total size, in bytes, of the buffer
containing the LTE measured results list
in the format of MBIM_LTE_MRL.

68 4 CDMAMrlOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to the
buffer containing CDMA measured
results list. This member can be NULL
when no CDMA neighboring network is
returned in the measurement report.

72 4 CDMAMrlSize SIZE The total size, in bytes, of the buffer
containing the CDMA measured results
list in the format of MBIM_CDMA_MRL.

76 DataBuffer DATABUFFER The data buffer containing
GSMServingCell, UMTSServingCell,
TDSCDMAServingCell, LTEServingCell,
GSMNmr, UMTSMrl, TDSCDMAMrl,
LTEMrl, and CDMAMrl.

The MBIM_GSM_SERVING_CELL_INFO structure contains information about the GSM
serving cell.

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric (0-9)
string called ProviderId that represents the
network provider identity. This string is a
concatenation of a three-digit Mobile Country
Code (MCC) and a two or three-digit Mobile
Network Code (MNC). This member can be
NULL when no ProviderId information is
returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

GSM cell data structures

MBIM_GSM_SERVING_CELL_INFO

Offset Size Field Type Description

12 4 CellID UINT32 The Cell ID (0-65535). Use 0xFFFFFFFF when
this information is not available.

16 4 TimingAdvance UINT32 The Timing Advance (0-255) in bit periods,
where a bit period is 48/13µs. Use 0xFFFFFFFF
when this information is not available.

20 4 ARFCN UINT32 The Absolute Radio Frequency Channel
Number of the serving cell (0-1023). Use
0xFFFFFFFF when this information is not
available.

24 4 BaseStationId UINT32 The Base Station ID - the base station color
code and the network identity code. Use
0xFFFFFFFF when this information is not
available.

28 4 RxLevel UINT32 The received signal strength of the serving cell
(0-63), where
X = 0, if RSS < -110 dBm

X = 63, if RSS > -47 dBm

X = integer [RSS + 110], if -110 <= RSS <=

-47

Use 0xFFFFFFFF when this information is not
available.

32 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_GSM_NMR structure contains the network measurement report (NMR) of
neighboring GSM cells.

Offset Size Field Type Description

0 4 ElementCount
(EC)

UINT32 The count of NMR entries following this element.

4 DataBuffer DATABUFFER The array of NMR records, each specified as an
MBIM_GSM_NMR_INFO structure.

The MBIM_GSM_NMR_INFO structure contains information about a neighboring GSM cell.

MBIM_GSM_NMR

MBIM_GSM_NMR_INFO

Offset Size Field Type DescriptionOffset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric (0-9)
string called ProviderId that represents the
network provider identity. This string is a
concatenation of a three-digit Mobile Country
Code (MCC) and a two or three-digit Mobile
Network Code (MNC). This member can be
NULL when no ProviderId information is
returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

12 4 CellID UINT32 The Cell ID (0-65535). Use 0xFFFFFFFF when
this information is not available.

16 4 ARFCN UINT32 The Absolute Radio Frequency Channel
Number of the serving cell (0-1023). Use
0xFFFFFFFF when this information is not
available.

20 4 BaseStationId UINT32 The radio base station ID of the serving cell (0-
63). Use 0xFFFFFFFF when this information is
not available.

24 4 RxLevel UINT32 The received signal strength of the serving cell
(0-63), where
X = 0, if RSS < -110 dBm

X = 63, if RSS > -47 dBm

X = integer [RSS + 110], if -110 <= RSS <=

-47

Use 0xFFFFFFFF when this information is not
available.

28 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_UMTS_SERVING_CELL_INFO structure contains information about the UMTS
serving cell.

UMTS cell data structures

MBIM_UMTS_SERVING_CELL_INFO

Offset Size Field Type DescriptionOffset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric
(0-9) string called ProviderId that
represents the network provider identity.
This string is a concatenation of a three-
digit Mobile Country Code (MCC) and a
two or three-digit Mobile Network Code
(MNC). This member can be NULL when
no ProviderId information is returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

12 4 CellID UINT32 The Cell ID (0-268435455). Use
0xFFFFFFFF when this information is not
available.

16 4 FrequencyInfoUL UINT32 The Frequency Info Uplink (0-16383). Use
0xFFFFFFFF when this information is not
available.

20 4 FrequencyInfoDL UINT32 The Frequency Info Downlink (0-16383).
Use 0xFFFFFFFF when this information is
not available.

24 4 FrequencyInfoNT UINT32 The Frequency Info for TDD (0-16383).
Use 0xFFFFFFFF when this information is
not available.

28 4 UARFCN UINT32 The UTRA Absolute Radio Frequency
Channel Number for the serving cell (0-
16383). Use 0xFFFFFFFF when this
information is not available.

32 4 PrimaryScramblingCode UINT32 The Primary Scrambling Code of the
serving cell (0-511). Use 0xFFFFFFFF when
this information is not available.

36 4 RSCP INT32 The Received Signal Code Power of the
serving cell. The range is -120 to -25, in
units of 1dBm. Use 0 when this
information is not available.

Offset Size Field Type Description

40 4 ECNO INT32 The signal to noise ratio of the serving
cell; the ratio of the received energy per
PN chip for the CPICH to the total
received. The range is -50 to 0, in units of
1dBm. Use 1 when this information is not
available.

44 4 PathLoss UINT32 The path loss of the serving cell (46-173).
Use 0xFFFFFFFF when this information is
not available.

48 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_UMTS_MRL structure contains the measured results list (MRL) of neighboring
UMTS cells.

Offset Size Field Type Description

0 4 ElementCount
(EC)

UINT32 The count of MRL entries following this element.

4 DataBuffer DATABUFFER The array of MRL records, each specified as an
MBIM_UMTS_MRL_INFO structure.

The MBIM_UMTS_MRL_INFO structure contains information about a neighboring UMTS
cell.

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric
(0-9) string called ProviderId that
represents the network provider identity.
This string is a concatenation of a three-
digit Mobile Country Code (MCC) and a
two or three-digit Mobile Network Code
(MNC). This member can be NULL when
no ProviderId information is returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

MBIM_UMTS_MRL

MBIM_UMTS_MRL_INFO

Offset Size Field Type Description

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

12 4 CellID UINT32 The Cell ID (0-268435455). Use
0xFFFFFFFF when this information is not
available.

16 4 UARFCN UINT32 The UTRA Absolute Radio Frequency
Channel Number for the serving cell (0-
16383). Use 0xFFFFFFFF when this
information is not available.

20 4 PrimaryScramblingCode UINT32 The Primary Scrambling Code of the
serving cell (0-511). Use 0xFFFFFFFF when
this information is not available.

24 4 RSCP INT32 The Received Signal Code Power of the
serving cell. The range is -120 to -25, in
units of 1dBm. Use 0 when this
information is not available.

28 4 ECNO INT32 The signal to noise ratio of the serving
cell; the ratio of the received energy per
PN chip for the CPICH to the total
received. The range is -50 to 0, in units of
1dBm. Use 1 when this information is not
available.

32 4 PathLoss UINT32 The path loss of the serving cell (46-173).
Use 0xFFFFFFFF when this information is
not available.

36 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_TDSCDMA_SERVING_CELL_INFO structure contains information about the
TDSCDMA serving cell.

Offset Size Field Type Description

TDSCDMA cell data structures

MBIM_TDSCDMA_SERVING_CELL_INFO

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric (0-9)
string called ProviderId that represents the
network provider identity. This string is a
concatenation of a three-digit Mobile Country
Code (MCC) and a two or three-digit Mobile
Network Code (MNC). This member can be
NULL when no ProviderId information is
returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

12 4 CellID UINT32 The Cell ID (0-268435455). Use 0xFFFFFFFF
when this information is not available.

16 4 UARFCN UINT32 The UTRA Absolute Radio Frequency Channel
Number for the serving cell (0-16383). Use
0xFFFFFFFF when this information is not
available.

20 4 CellParameterID UINT32 The Cell parameter ID (0-127). Use 0xFFFFFFFF
when this information is not available.

24 4 TimingAdvance UINT32 The Timing Advance (0-1023). This member is
the same value for all timeslots. Use 0xFFFFFFFF
when this information is not available.

28 4 RSCP INT32 The Received Signal Code Power of the serving
cell. The range is -120 to -25, in units of 1dBm
in Q8 L3 filtered. Use 0xFFFFFFFF when this
information is not available.

32 4 PathLoss UINT32 The path loss of the serving cell (46-158). Use
0xFFFFFFFF when this information is not
available.

36 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_TDSCDMA_MRL structure contains the measured results list (MRL) of
neighboring TDSCDMA cells.

Offset Size Field Type Description

MBIM_TDSCDMA_MRL

Offset Size Field Type Description

0 4 ElementCount
(EC)

UINT32 The count of MRL entries following this element.

4 DataBuffer DATABUFFER The array of MRL records, each specified as an
MBIM_TDSCDMA_MRL_INFO structure.

The MBIM_TDSCDMA_MRL_INFO structure contains information about a neighboring
TDSCDMA cell.

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the
beginning of this structure, to a numeric (0-9)
string called ProviderId that represents the
network provider identity. This string is a
concatenation of a three-digit Mobile Country
Code (MCC) and a two or three-digit Mobile
Network Code (MNC). This member can be
NULL when no ProviderId information is
returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 LocationAreaCode UINT32 The Location Area Code (0-65535). Use
0xFFFFFFFF when this information is not
available.

12 4 CellID UINT32 The Cell ID (0-268435455). Use 0xFFFFFFFF
when this information is not available.

16 4 UARFCN UINT32 The UTRA Absolute Radio Frequency Channel
Number for the serving cell (0-16383). Use
0xFFFFFFFF when this information is not
available.

20 4 CellParameterID UINT32 The Cell parameter ID (0-127). Use 0xFFFFFFFF
when this information is not available.

24 4 TimingAdvance UINT32 The Timing Advance (0-1023). This member is
the same value for all timeslots. Use 0xFFFFFFFF
when this information is not available.

28 4 RSCP INT32 The Received Signal Code Power of the serving
cell. The range is -120 to -25, in units of 1dBm
in Q8 L3 filtered. Use 0xFFFFFFFF when this
information is not available.

MBIM_TDSCDMA_MRL_INFO

Offset Size Field Type Description

32 4 PathLoss UINT32 The path loss of the serving cell (46-158). Use
0xFFFFFFFF when this information is not
available.

36 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_LTE_SERVING_CELL_INFO structure contains information about the LTE serving
cell.

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the beginning
of this structure, to a numeric (0-9) string called
ProviderId that represents the network provider
identity. This string is a concatenation of a three-
digit Mobile Country Code (MCC) and a two or
three-digit Mobile Network Code (MNC). This
member can be NULL when no ProviderId
information is returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 CellID UINT32 The Cell ID (0-268435455). Use 0xFFFFFFFF when
this information is not available.

12 4 EARFCN UINT32 The Radio Frequency Channel Number of the
serving cell (0-65535). Use 0xFFFFFFFF when this
information is not available.

16 4 PhysicalCellID UINT32 The Physical Cell ID (0-503). Use 0xFFFFFFFF when
this information is not available.

20 4 TAC UINT32 The Tracking Area Code (0-65535). Use
0xFFFFFFFF when this information is not available.

24 4 RSRP INT32 The Average Reference Signal Received Power.
The range is -140 to -44, in units of 1dBm. Use
0xFFFFFFFF when this information is not available.

28 4 RSRQ INT32 The Average Reference Signal Received Quality.
The range is -20 to -3, in units of 1dBm. Use
0xFFFFFFFF when this information is not available.

LTE cell data structures

MBIM_LTE_SERVING_CELL_INFO

Offset Size Field Type Description

32 4 TimingAdvance UINT32 The Timing Advance (0-255). Use 0xFFFFFFFF
when this information is not available.

36 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_LTE_MRL structure contains the measured results list (MRL) of neighboring LTE
cells.

Offset Size Field Type Description

0 4 ElementCount
(EC)

UINT32 The count of MRL entries following this element.

4 DataBuffer DATABUFFER The array of MRL records, each specified as an
MBIM_LTE_MRL_INFO structure.

The MBIM_LTE_MRL_INFO structure contains information about a neighboring LTE cell.

Offset Size Field Type Description

0 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the beginning
of this structure, to a numeric (0-9) string called
ProviderId that represents the network provider
identity. This string is a concatenation of a three-
digit Mobile Country Code (MCC) and a two or
three-digit Mobile Network Code (MNC). This
member can be NULL when no ProviderId
information is returned.

4 4 ProviderIdSize SIZE(0-12) The size used for ProviderId.

8 4 CellID UINT32 The Cell ID (0-268435455). Use 0xFFFFFFFF when
this information is not available.

12 4 EARFCN UINT32 The Radio Frequency Channel Number of the
serving cell (0-65535). Use 0xFFFFFFFF when this
information is not available.

16 4 PhysicalCellID UINT32 The Physical Cell ID (0-503). Use 0xFFFFFFFF when
this information is not available.

MBIM_LTE_MRL

MBIM_LTE_MRL_INFO

Offset Size Field Type Description

20 4 TAC UINT32 The Tracking Area Code (0-65535). Use
0xFFFFFFFF when this information is not available.

24 4 RSRP INT32 The Average Reference Signal Received Power.
The range is -140 to -44, in units of 1dBm. Use
0xFFFFFFFF when this information is not available.

28 4 RSRQ INT32 The Average Reference Signal Received Quality.
The range is -20 to -3, in units of 1dBm. Use
0xFFFFFFFF when this information is not available.

32 DataBuffer DATABUFFER The data buffer containing ProviderId.

The MBIM_CDMA_MRL structure contains the measured results list (MRL) of both serving
and neighboring CDMA cells.

Offset Size Field Type Description

0 4 ElementCount
(EC)

UINT32 The count of MRL entries following this element.

4 DataBuffer DATABUFFER The array of MRL records, each specified as an
MBIM_CDMA_MRL_INFO structure.

The MBIM_CDMA_MRL_INFO data structure is designed for the CDMA2000 network type.
There can be more than one CDMA2000 serving cell at the same time. Both serving cells
and neighboring cells will be returned in the same list. The ServingCellFlag field indicates
whether a cell is a serving cell or not.

Offset Size Field Type Description

0 4 ServingCellFlag UINT32 Indicates whether this is a serving cell. A value of 1
indicates a serving cell, while a value of 0 indicates a
neighboring cell. There may be more than one serving
cell at a time (notably while in a call).

4 4 NID UINT32 The Network ID (0-65535). Use 0xFFFFFFFF when this
information is not available.

CDMA cell data structures

MBIM_CDMA_MRL

MBIM_CDMA_MRL_INFO

Offset Size Field Type Description

8 4 SID UINT32 The System ID (0-32767). Use 0xFFFFFFFF when this
information is not available.

12 4 BaseStationId UINT32 The Base Station ID (0-65535). Use 0xFFFFFFFF when
this information is not available.

16 4 BaseLatitude UINT32 The Base Station Latitude (0-4194303). This is encoded
in units of 0.25 seconds, expressed in two’s
complement representation within the low 22 bits of
the DWORD. As a signed value, North latitudes are
positive. Use 0xFFFFFFFF when this information is not
available.

20 4 BaseLongitude UINT32 The Base Station Longitude (0-8388607). This is
encoded in units of 0.25 seconds, expressed in two’s
complement representation within the low 23 bits of
the DWORD. As a signed value, East longitudes are
positive. Use 0xFFFFFFFF when this information is not
available.

24 4 RefPN UINT32 The Base Station PN Number (0-511). Use 0xFFFFFFFF
when this information is not available.

28 4 GPSSeconds UINT32 The GPS seconds, or the time at which this arrived from
the base station. Use 0xFFFFFFFF when this information
is not available.

32 4 PilotStrength UINT32 The Signal strength of the pilot (0-63). Use 0xFFFFFFFF
when this information is not available.

Not applicable.

This CID uses Generic Status Codes (see Use of Status Codes in Section 9.4.5 of the public
USB MBIM standard).

This CID retrieves the status of the cellular information which indicates the location of the
device. It may also be used to deliver an unsolicited notification when the location
information changes.

Unsolicited Event

Status codes

MBIM_CID_LOCATION_INFO_STATUS

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

Service: MBB_UUID_BASIC_CONNECT_EXTENSIONS

Service UUID: 3d01dcc5-fef5-4d05-0d3a-bef7058e9aaf

CID Command code Minimum OS version

MBIM_CID_LOCATION_INFO_STATUS 12 Windows 10, version 1709

Type Set Query Notification

Command Not applicable Not applicable Not applicable

Response Not appliable MBIM_LOCATION_INFO MBIM_LOCATION_INFO

The InformationBuffer of the MBIM_COMMAND_MSG is not used. The InformationBuffer
of the MBIM_COMMAND_DONE contains an MBIM_LOCATION_INFO structure.

Not applicable.

Offset Size Field Type Description

0 4 LocationAreaCode UINT32 The GSM/UMTS area code of the current location.
Return 0xFFFFFFFF when the current system type is
not applicable.

７ Note

MBIM_CID_LOCATION_INFO_STATUS is defined starting in Windows 10, version 1709,
but is not currently supported by the OS. A modem can send this command as a
notification, but the OS does not currently handle it.

Parameters

Query

Set

Response

MBIM_LOCATION_INFO

Offset Size Field Type Description

4 4 TrackingAreaCode UINT32 The LTE tracking area code of the current location.
Return 0xFFFFFFFF when the current system type is
not applicable.

8 4 CellID UINT32 The ID of the cellular tower. Return 0xFFFFFFFF when
CellID is not available.

The event InformationBuffer contains an MBIM_LOCATION_INFO structure.

This event is sent if the value of Location Area Code/Tracking Area Code changes to a valid
value. This event is not sent when CellID changes or when Location Area Code/Tracking
Area Code becomes invalid.

This CID uses Generic Status Codes (see Use of Status Codes in Section 9.4.5 of the public
USB MBIM standard).

The NDIS equivalent for MBIM_CID_BASE_STATIONS_INFO is
OID_WWAN_BASE_STATIONS_INFO.

Unsolicited Events

Status codes

OID_WWAN_BASE_STATIONS_INFO

https://www.usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

MB NITZ support
Article • 03/14/2023

Starting in Windows 10, version 1903, Windows supports Network Identity and Time
Zone (NITZ) at the OS level for mobile broadband (MBB) devices. In previous versions of
Windows, the only network time available at the OS level was Network Time Protocol
(NTP), even though NITZ was supported at the modem level by all 3GPP-compliant
modems. With NITZ support, Windows is able to receive unsolicited NITZ notifications
from modems and publish necessary events to notify consumers of the NITZ
timestamps.

For MBIM functions, no additional NITZ-related setup and provisioning is required. As
long as a data connection is established over a cellular bearer, a modem can notify the
OS any time it has received a NITZ timestamp from the network. Modems can receive
NITZ notifications from the network infrastructure based on the mobile operator's own
defined cadence and schedule, within the 3GPP specifications. NITZ notifications are
unsolicited. Upon receiving the NITZ notification, the OS publishes the notification that
NITZ data is available.

The following OID has been defined to support NITZ.

OID_WWAN_NITZ

Service name UUID UUID value

Microsoft Voice
Extensions

UUID_VOICEEXTENSIONS 8d8b9eba-37be-449b-8f1e-
61cb034a702e

The following table specifies the UUID and command code for each CID, as well as
whether the CID supports Set, Query, or Event (notification) requests. See each CID’s
individual Section within this topic for more info about its parameters, data structures,
and notifications.

Overview

NDIS interface extension

MBIM service and CID values

CID UUID Command code Set Query NotifyCID UUID Command code Set Query Notify

MBIM_CID_NITZ UUID_VOICEEXTENSIONS 10 N Y Y

Operation Set Query Notification

Command Not applicable Not applicable Not applicable

Response Not applicable MBIM_NITZ_INFO MBIM_NITZ_INFO

Queries the current network time. The InformationBuffer of MBIM_COMMAND_MSG is
not used. The following MBIM_NITZ_INFO structure is used in the InformationBuffer of
MBIM_COMMAND_DONE.

Offset Size Field Type Description

0 4 Year UINT32 The year as an integer. For
example, 2014.

4 4 Month UINT32 The month (1..12), where January
== 1.

8 4 Day UINT32 The day of the month, (1..31).

12 4 Hour UINT32 The hour, (0..23).

16 4 Minute UINT32 The minute, (0..59).

20 4 Second UINT32 The second, (0..59).

24 4 TimeZoneOffsetMinutes UINT32 The time zone offset, in minutes,
from UTC. This value includes any
adjustment for the current state of
daylight saving time. This value
should be set to 0xFFFFFFFF when
time zone info is not available.

MBIM_CID_NITZ

Parameters

Query

MBIM_NITZ_INFO

Offset Size Field Type Description

28 4 DaylightSavingTimeOffsetMinutes UINT32 The offset for daylight saving time,
in minutes. This value should be
set to 0xFFFFFFFF when daylight
saving time is not available.

32 4 DataClasses UINT32 Data classes supported by this
network. If this information is not
available, this field should be set to
MBIMDataClassNone.

Not applicable.

The InformationBuffer in MBIM_COMMAND_DONE contains an MBIM_NITZ_INFO
structure.

This unsolicited event provides the current network time and time zone information.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM
specification revision 1.0 .

OID_WWAN_NITZ

See Steps for installing HLK .

In HLK Studio connect to hte device Cellular modem driver and run the test: TestNitzInfo
- GSM.

Set

Response

Unsolicited Events

Status Codes

OID Definitions

Hardware Lab Kit (HLK) Tests

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://microsoft.sharepoint.com/teams/HWKits/SitePages/HWLabKit/Manual%20Controller%20Installation.aspx
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/1b192aa8-6a84-4c5c-8750-a8f2edb98a9e

1. Place the Cobalt device in an RF cage with Cellular disabled.
2. Enable Airplane mode.
3. Disable Ethernet and all other connections.
4. Set the time mode to manual.
5. Set the time to 11:15AM 10/15/2016 UTC.
6. Verify that the time is set to the value given in the system tray.
7. Set the time mode to automatic.
8. Turn on Cellular.
9. Wait for the device to receive the NITZ information from the simulated cellular

base station.
10. Verify that the time is set to the value sent by the simulated base station.

Manual Tests

[NITZ] Time update while roaming on Cellular

MB modem logging with DSS
Article • 03/14/2023

This topic describes a new standard Windows mobile broadband (MBB) logging interface through
Microsoft extensions to the USB MBIM 1.0 specification, available in Windows 10, version 1903 and later.

With this new logging interface, the OS can inform the MBB device to start, stop, and flush the logs to
the OS file system through MBIM CID commands. Given the non-IP nature of the modem's logging
payload, the data channel that the MBB service uses to transmit logging payloads to the OS uses the
MBB Data Service Stream (DSS). DSS is defined in the Mobile Broadband Interface Model (MBIM) 1.0
specification.

The OS abstracts the modem's diagnostic functionalities and configurations across the entire MBB
ecosystem with a set of Windows-specific MBB logging configurations. These MBB logging configs
enable a modem's vendor to map the OS MBB logging requirements to the appropriate internal logging
configurations. The logging configurations abstracted and defined by the OS include the MBB logging
verbosity levels and the maximum flush time.

A modem keeps filling its logging buffer, up to the max buffer size, until the segment is filled and the
MBIM framework transmits the segment to the OS, or it flushes the content of its buffer when the
maximum flush time is reached (even if the segment is not filled). The OS defines a set of standard
Windows MBB logging configuration levels, described later in this topic. Each config level specifies an
OS abstraction of MBB logging details and verbosity.

OS abstraction of MBB config levels is mapped to the appropriate internal modem configuration by
modems. The OS does not provide any additional configuration payloads, such as logging filters or
masks, to modems other than the OS MBB configuration level.

For modems that support MBB logging, all MBB logging config levels except for
MBIMLoggingLevelOem must be present on all BSP variants. In other words, the IHV or OEM must
support PROD or LAB levels of MBB logging in both production and R&D versions of the BSP. LAB levels
of MBB logging can only be disabled from the OS.

This new logging interface's design uses the control channel to set the logging parameters, and uses the
data channel to receive modem logs because the data channel is designed to transfer bulk modem data.
The advantage of this design is that bulk data does not need to be transferred over the control channel,
thus keeping device performance consistent. It also scales well for higher throughput. The data channel
is operated by DSS commands. An example flow for a modem might look like this:

1. The OS sends the MBIM_CID_MODEM_LOGGING_CONFIG CID to the modem to configure logging
parameters such as MaxSegmentSize, MaxFlushTime, and the LoggingLevel.

７ Note

If you are planning for your modem to support MBIM_CID_MODEM_LOGGING_CONFIG , please provide
feedback on this page so that we can best support you. This CID is currently experimental and has
not been tested with a modem yet, as none support it.

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

2. Once the OS receives a successful response from the modem, it sends the
MBIM_CID_DSS_CONNECT DSS command to the modem with a specific GUID for modem logging,
the MBIMDssLinkActivate state, and a unique DSS session ID.

3. Once it receives a success status code, the OS prepares to receive fragments from the modem.
These fragments are called DataServiceSessionRead packets.

4. DataServiceSessionRead packets continue to arrive until the OS issues another
MBIM_CID_DSS_CONNECT command with the same DSS session ID and an
MBIMDSSLinkDeactivate state.

Once the modem writes any logs to the newly created data channel, the modem calls
MbbDeviceReceiveDeviceServiceSessionData, the data from which is available to apps via the WinRT
layer : MobileBroadbandDeviceService. The modem logs should be formatted as printable string data
that can be redirected to an ETW session.

Moddem logging uses the MBIM Data Service Stream (DSS) to transfer the data for logging payloads.
For more information about DSS, see Section 10.5.38 of the MBIM 1.0 specification .

When connecting or disconnecting from DSS, the following GUID is used for modem logging:

GUID Value

ModemFileTransfer GUID 0EBB1CEB-AF2D-484D-8DF3-53BC51FD162C

The following flow diagram illustrates the DSS setup and tear down process.

Modem logging data path

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/mbbcx/nf-mbbcx-mbbdevicereceivedeviceservicesessiondata
https://learn.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.mobilebroadbanddeviceservice
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

The following OID has been defined in Windows 10, version 1903, to support modem logging.

OID_WWAN_MODEM_LOGGING_CONFIG

Service name UUID UUID value

Microsoft Basic IP Connectivity
Extensions

UUID_BASIC_CONNECT_EXTENSIONS 3d01dcc5-fef5-4d05-9d3a-
bef7058e9aaf

NDIS interface extension

MBIM service and CID values

The following table specifies the UUID and command code for each CID, as well as whether the CID
supports Set, Query, or Event (notification) requests. See each CID’s individual Section within this topic
for more info about its parameters, data structures, and notifications.

CID UUID Command
code

Set Query Notify

MBIM_CID_MODEM_LOGGING_CONFIG UUID_BASIC_CONNECT_EXTENSIONS TBD Y Y Y

This CID is used to configure the logs that are collected by the modem and how often they will be sent
from the modem to the host over DSS. Logging must be configured before a logging session is started.
Because this CID is part of connect extensions, it is optional for IHVs to support this CID. If an IHV
supports modem logging via the DSS data channel, it must specify this as a capability. The capability can
be advertised using the MBIM_BASIC_CID_DEVICE_SERVICES CID.

Operation Set Query Notification

Command MBIM_MODEM_LOGGING_CONFIG Not Applicable Not applicable

Response MBIM_MODEM_LOGGING_CONFIG MBIM_MODEM_LOGGING_CONFIG MBIM_MODEM_LOGGING_CONFIG

Queries the current modem logging configuration. The InformationBuffer of MBIM_COMMAND_MSG is
not used. The following MBIM_MODEM_LOGGING_CONFIG structure is used in the InformationBuffer of
MBIM_COMMAND_DONE.

Offset Size Field Type Description

0 4 Version UINT32 The version number of this structure. This
field must be set to 1 for version 1 of this
structure.

4 4 MaxSegmentSize UINT32 Specifies the segment size, in kilobytes, for
each fragment sent by the modem. If the
maximum fragment size supported by the
modem for Device Service Command
exceeds the value set, then this value is set to
the maximum supported segment size.

MBIM_CID_MODEM_LOGGING_CONFIG

Parameters

Query

MBIM_MODEM_LOGGING_CONFIG

Offset Size Field Type Description

8 4 MaxFlushTime UINT32 The time, in milliseconds, indicating the
maximum time the modem waits before
sending a log fragment. If the logs collected
don't reach MaxSegmentSize within the
MaxFlushTime duration since the last log
fragment sent, then a log fragment is sent
regardless of its size. If there is no logging
data, then no notification is sent. If the
device cannot handle smaller flush times,
then the device returns the time that it can
handle in the response. The response to a
query or set contains the currently
configured MaxFlushTime.

12 4 LevelConfig MBIM_LOGGING_LEVEL_CONFIG Configures the level for which logs are
collected. The response to a query or set
contains the currently configured
LevelConfig.

The following MBIM_LOGGING_LEVEL_CONFIG enumeration is used in the preceding
MBIM_MODEM_LOGGING_CONFIG structure.

Type Value Description

MBIMLoggingLevelProd 0 Intended for telemetry collection from a retail or production population.
The resulting log should be capsule-sized and contains key modem or
MBB state or failure information only.

MBIMLoggingLevelLabVerbose 1 Intended for the development of MBB products with low maturity.
Verbose full-stack capture of modems. The resulting modem capture
should enable the IHV to replay and fully recover the capture during the
log.

MBIMLoggingLevelLabMedium 2 Intended for verification and field testing of MBB products with relative
maturity and stability. The level of detail and verbosity provides enough
data points for IHV engineers to triage most MBB failures.

MBIMLoggingLevelLabLow 3 Intended for self-host-level logging. Summary-level capture of full-stack
capture modems. Enables a highlight-level understanding of the modem's
state and OS interactions.

MBIMLoggingLevelOem 4 Reserved for OEM and IHV internal usage.

７ Note

If the modem is not able to provide log data to the OS at the requested MaxSegmentSize and
MaxFlushTimer, it can choose its own values for these parameters and update the OS as a set
response or an unsolicited event. The OS behavior does not change if MaxSegmentSize or
MaxFlushTimer change, as it receives the data packets regardless and dumps them to a file.

Set

A set command is used to set to configure the level, segment size, and maximum flush time for modem
logging. An MBIM_MODEM_LOGGING_CONFIG structure is used in the InformationBuffer.

The InformationBuffer in MBIM_COMMAND_DONE contains an MBIM_MODEM_LOGGING_CONFIG
structure.

Unsolicited events are supported for scenarios where the modem needs to inform the OS about internal
changes. Currently, in Windows 10, version 1903, these scenarios do not occur.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM specification revision 1.0 .

The following table describes how the DSS session behaves during various stages of inactivity:

Scenario DSS session state

System sleep, modem-only sleep, reset and recovery DSS session kept open

System shutdown, restart, hibernation DSS session closed

Response

Unsolicited Events

Status Codes

DSS session behavior during inactivity

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

MB 5G Operations Overview
Article • 03/14/2023

Windows 10, version 1903 is the first version of Windows to support a preview release of
5G mobile broadband driver development by IHV partners. 5G is the friendly name for
New Radio (NR), which was introduced in the 3GPP Release 15 specification . NR is a
comprehensive set of standards that is envisioned to provide true long-term evolution
to existing 4th generation LTE technologies, potentially covering all cellular
communication needs from narrowband to ultra-broadband, and from nominal to
mission-critical latency requirements. As a technology, 5G is expected to develop over a
decade-long time frame.

This section describes the MBIM extensions first released in Windows 10 version 1903,
which enable hardware partners to develop an MBB driver with data-class support for
enhanced mobile broadband (eMBB) over 5G “non-standalone” EPC-based NR
networks. The data-plane support and enablement for 5G throughput and
commercialization requirements are not part of this Windows release and not described
in this section.

MB 5G Operations Terminology

Windows 5G MBIM Interface

NDIS Interface for 5G Data Class Support

MBIMEx 2.0 – 5G NSA support

MBIMEx 3.0 – 5G SA Phase 1 support

In this section

https://www.3gpp.org/release-15

MB 5G Operations Terminology
Article • 03/14/2023

This section uses the following terms:

Term Definition

NR New Radio. NR is the term used in 3GPP when referring to 5G.

MBB Mobile broadband.

EPC Enhanced Packet Core. The term used in 3GPP when referring to the LTE core network.

NGC Next Generation Core. The term used in 3GPP when referring to the 5G core network. The
NR-equivalent of EPC.

DC Dual Connectivity. The network can support both LTE and 5G NR, including dual
connectivity with which devices have simultaneous connections to LTE and NR.

SA Standalone 5G. Refers to any NGC-based NR networks.

NSA Non-standalone 5G. Refers to any EPC-based NR networks.

gNB An NR radio base station that supports the NR air interface as well as connectivity to NGC.

RAT Radio Access Technology.

Windows 5G MBIM Interface
Article • 03/14/2023

As of Windows 10, version 1903, 5G on the whole is still developing. From a network
deployment perspective, 5G is expected to be deployed in two major phases:

In Phase 1, most mobile network operators are expected to deploy 5G with the
addition of 5G radio to the existing LTE radio and EPC core deployments,
commonly known “nonstandalone 5G” networks.

In Phase 2, mobile network operators are expected to replace EPCs and NGCs and
densify the 5G radio deployment in parallel to enable true “standalone”, or NR-
NGC-based 5G networks. Phase 2 interface extensions are not in scope in this topic
or Windows release.

Interface extensions to support basic Phase 1 network requirements, or ”nonstandalone”
EPC-based 5G networks, was introduced in Windows 10, version 1903. In order to be
extensible and fully backward compatible with legacy modems, a new Microsoft MBIM
extension version (2.0) is introduced.

The new Microsoft MBIM extension version is required because the MBIM 1.0 errata
specification has a mechanism to add and advertise optional CIDs, but it lacks a
mechanism to change the existing CIDs (new payloads or modified payload) or to
introduce changes in any aspect that cannot be accommodated by optional CIDs. Each
payload may consist of fixed sized members or dynamic sized (offset/size pairs)
members. If one or more dynamically sized members exist, then the last member has a
variable size buffer.

This spec also adds a new CID for the host to advertise its MBIM Release version and
Extensions Release version to MBIM devices. For legacy drivers that are already in the
field, this CID is optional so backward compatibility is fully maintained. For more details,
see MBIMEx 2.0 – 5G NSA support.

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

NDIS Interface for 5G Data Class
Support
Article • 03/14/2023

NDIS supports a revision number in the NDIS_HEADER. This permits adding new
members to an OID message, which NDIS uses the optional service caps table in
OID_WWAN_DEVICE_CAPS_EX.

The following NDIS OIDs and their data structures have been updated for 5G data class
support.

OID_WWAN_DEVICE_CAPS_EX
OID_WWAN_REGISTER_STATE
OID_WWAN_PACKET_SERVICE
OID_WWAN_SIGNAL_STATE

The equivalent MBIM CID messages for these OIDs are described in MBIMEx 2.0 – 5G
NSA support.

MBIMEx 2.0 – 5G NSA support
Article • 03/14/2023

Because the MBIM 1.0 errata specification lacks a mechanism to change existing CIDs with new or modified
payloads, Windows 10, version 1903 introduces MBIM 1.0 Extension 2.0 to extend the interface to support 5G.

The host learns a device's MBIMEx version through two ways:

1. The MBIM EXTENDED FUNCTIONAL DESCRIPTOR.
2. The optional MBM_CID_VERSION message, if the device supports it and declares support for it.

If these two are different, the higher version dictates the MBIMEx version for the duration that the device stays
enumerated to the host. The higher MBIMEx version is referred to as the device's announced MBIMEx version. A
device's announced MBIMEx version can be lower than its native MBIMEx version, which is the highest MBIMEx
version that the device supports. Devices can learn the host's MBIMEx version explicitly only via the
MBIM_CID_VERSION message.

In any release, the host always queries the device for supported services and CIDs using
MBIM_CID_DEVICE_SERVICES at the beginning of the device initialization sequence.

If a device supports MBIM_CID_VERSION and advertises its support in the MBIM_CID_DEVICE_SERVICES query
response, then a host that does not understand MBIM_CID_VERSION or has an MBIMEx version lower than 2.0
ignores it. Meanwhile, a host that does understand MBIM_CID_VERSION and has a native MBIMEx version of 2.0
or higher sends a MBIM_CID_VERSION message to the device with the host's native MBIMEx version, and the CID
is the first CID that is sent to the device after receiving the MBIM_CID_DEVICE_SERVICES response.

If the first CID that the device receives from the host after it responds to the MBIM_CID_DEVICE_SERVICES query
is MBIM_CID_VERSION, the device knows the host's MBIMEx version.

If the first CID that the device receives from the host after it responds to the MBIM_CID_DEVICE_SERVICES query
is any other CID, then the device assumes that the host's native MBIMEx version is 1.0.

Versioning scheme

７ Note

In this section, the term MBIMEx version refers to the MBIM Extensions release number.

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

If the device doesn't support MBIM_CID_VERSION, it will not respond to the MBIM_CID_DEVICE_SERVICES query
with MBIM_CID_VERSION. Therefore the host will not send a MBIM_CID_VERSION message and assumes that the
device's native MBIMEx version is 1.0.

Feature-wise, a higher MBIMEx version is a superset of all lower MBIMEx versions. A host supports all devices
with an announced MBIMEx version at or below the host's native MBIMEx version. If a device's announced
MBIMEx version is higher than a host's native MBIMEx version, the host is not expected to support the device
and the exact behavior of the host in this situation is undefined.

A device that intends to work with older hosts should initially advertise MBIMEx version 1.0 or the lowest host
MBIMEx version with which the device is intended to work in an MBIM extended functional descriptor.

If the host sends MBIM_CID_VERSION with a higher MBIMEx version than the device initially advertised, then the
device should indicate a higher MBIMEx version in the MBIM_CID_VERSION response up to the smaller of the
host's native MBIMEx version and the device's native MBIMEx version.

The following table shows a compatibility matrix with three hypothetical hosts and three hypothetical devices,
each with its native MBIMEx version stated. The devices advertise MBIMEx version 1.0 initially in the USB
descriptor. The matrix shows how each of the devices behaves with each of the hosts.

Device
(below)
/ Host
(right)

Windows 10, version 1809 or earlier (native
MBIMEx version 1.0)

Windows 10, version 1903 and later (MBIMEx version 2.0)

７ Note

For example, a device supports MBIMEx version 2.0, but is intended to work with older versions of the OS
that do not support MBIMEx 2.0. The device initially advertises MBIMEx version 1.0 in the USB descriptors
and advertises support for the optional MBIM_CID_VERSION. When inserted into a host running Windows
10, version 1803, the host does not understand MBIM_CID_VERSION and does not send
MBIM_CID_VERSION to the device. To the host, the device's MBIMEx version is 1.0. The host continues to
send other CIDs in the initialization sequence. Upon receiving CIDs other than MBIM_CID_VERSION, the
device knows that the host supports MBIMEx version 1.0. Both sides proceed to conform to MBIMEx version
1.0. Later, when the same device is inserted into a host running Windows 10, version 1903 with a native
MBIMEx version of 2.0, the host sends MBIM_CID_VERSION to the device to inform it that the host's native
MBIMEx version is 2.0. The device sends MBIM_CID_VERSION back in response with the device's announced
MBIMEx version 2.0. From there, both sides proceed to conform to MBIMEx version 2.0.

Device
(below)
/ Host
(right)

Windows 10, version 1809 or earlier (native
MBIMEx version 1.0)

Windows 10, version 1903 and later (MBIMEx version 2.0)

4G
device
Native
MBIMEx
version
1.0

Device initially advertises MBIMEx 1.0. No
MBIM_CID_VERSION exchange. Compatible
device and host. Works by default with MBIMEx
version 1.0.

Device initially advertises MBIMEx 1.0. No MBIM_CID_VERSION
exchange. The host works with the device using MBIMEx 1.0.

5G NSA
device
Native
MBIMEx
version
2.0

Device initially advertises MBIMEx 1.0. No
MBIM_CID_VERSION exchange. Device knows
that the host has MBIMEx 1.0 and proceeds
with MBIMEx 1.0.

Device initially advertises MBIMEx 1.0. Host sends
MBIM_CID_VERSION to inform the device that the host supports
MBIMEx 2.0. Device responds with MBIMEx 2.0. Both sides
proceed with MBIMEx 2.0.

The following table lists all existing CIDs that are modified in MBIMEx version 2.0, and their modified payloads.
All unmentioned payloads in these CIDs and all other CIDs not mentioned in the table carry over from MBIMEx
version 1.0 and remain unchanged.

CID Payload

MBIM_CID_REGISTER_STATE MBIM_REGISTRATION_STATE_INFO_V2

MBIM_CID_PACKET_SERVICE MBIM_PACKET_SERVICE_INFO_V2

MBIM_CID_SIGNAL_STATE MBIM_SIGNAL_STATE_INFO_V2

Service name UUID UUID value

Microsoft Basic IP Connectivity
Extensions

UUID_BASIC_CONNECT_EXTENSIONS 3D01DCC5-FEF5-4D05-9D3A-
BEF7058E9AAF

For MBB drivers that support MBIM Microsoft extension 2.0 or above, MBIM_CID_VERSION is a mandatory
command for exchanging MBIM version information between the host and the device. For in-market devices
with drivers that do not recognize this CID, the host will assume and provide backward compatibility.

The host sends this command as a query if it is supported by the device. The query contains the MBIM release
number and MBIM Extensions release number that the host currently supports.

On the device side, the device adjusts its announced MBIM release number and MBIM Extensions release
number based on the rules defined in versioning scheme, then sends them in the response to the host.

This command is defined under the Basic Connect Extensions service.

CID Command code UUID

MBIM_CID_VERSION 15 3d01dcc5-fef5-4d05-0d3abef7058e9aaf

MBIM service

MBIM_CID_VERSION

Operation Set Query Notification

Command Not applicable MBIM_VERSION_INFO Not applicable

Response Not applicable MBIM_VERSION_INFO Not applicable

Informs the device of the host's native MBIM release number and MBIM Extensions release number. The
InformationBuffer contains the following MBIM_VERSION_INFO structure.

Offset Size Field Type Description

0 2 bcdMBIMVersion UINT16 The MBIM release number of the sender in BCD, with an implied
decimal point between bits 7 and 8. For example, 0x0100 == 1.00 ==
1.0 . This is a little-endian constant, so the bytes are 0x00, then 0x01.

2 2 bcdMBIMExtendedVersion UINT16 The MBIM Extensions release number of the sender in BCD, with an
implied decimal point between bits 7 and 8. For example, 0x0100 ==
1.00 == 1.0 . This is a little-endian constant, so the bytes are 0x00,
then 0x01.

Not applicable.

The InformationBuffer in MBIM_COMMAND_DONE contains an MBIM_VERSION_INFO structure.

Not applicable.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM specification revision 1.0 .

This CID is the same as defined on MB Multi-SIM operations, which itself is an extension of
MBIM_CID_MS_DEVICE_CAPS as defined in Section 10.5.1 of the MBIM specification revision 1.0 . For MBIM
Extensions release 2.0, there are new data classes defined in the MBIM_DATA_CLASS table that enable the device
to report its 5G capabilities. MBIMDataClass5G_NSA denotes that the device supports 5G Non-standalone (NSA),
defined in 3GPP TS 37.340 , and MBIMDataClass5G_SA denotes that the device supports 5G Standalone (SA),
also defined in 3GPP TS 37.340.

If the device supports both new data classes, then both bits shall be set.

Parameters

Query

Set

Response

Unsolicited Events

Status Codes

MBIM_CID_MS_DEVICE_CAPS_V2

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3198

Types Mask

MBIMDataClassNone 0h

MBIMDataClassGPRS 1h

MBIMDataClassEDGE 2h

MBIMDataClassUMTS 4h

MBIMDataClassHSDPA 8h

MBIMDataClassHSUPA 10h

MBIMDataClassLTE 20h

MBIMDataClass5G_NSA 40h

MBIMDataClass5G_SA 80h

Reserved 100h-8000h

MBIMDataClass1XRTT 10000h

MBIMDataClass1XEVDO 20000h

MBIMDataClass1XEVDORevA 40000h

MBIMDataClass1XEVDV 80000h

MBIMDataClass3XRTT 100000h

MBIMDataClass1XEVDORevB 200000h

MBIMDataClassUMB 400000h

Reserved 800000-40000000h

MBIMDataClassCustom 80000000h

This command is an extension for the MBIM_CID_REGISTER_STATE CID already defined in the MBIM specification
revision 1.0 . This extension adds a new member called PreferredDataClasses for the response structure.

Operation Set Query Notification

Command MBIM_SET_REGISTRATION_STATE Empty Not applicable

Response MBIM_REGISTRATION_STATE_INFO_V2 MBIM_REGISTRATION_STATE_INFO_V2 MBIM_REGISTRATION_STATE_INFO_V2

The InformationBuffer is null and the InformationBufferLength is zero.

MBIM_DATA_CLASS

MBIM_CID_REGISTER_STATE

Parameters

Query

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

Sets the registration state. The information is the same as described in the MBIM specification revision 1.0 .

The InformationBuffer in MBIM_COMMAND_DONE contains the following MBIM_REGISTRATION_STATE_INFO_V2
structure. Compared with the MBIM_REGISTRATION_STATE_INFO structure defined in Section 10.5.10.6 of the
MBIM specification revision 1.0 , the following structure has a new PreferredDataClasses field. Unless stated
here, field descriptions in table 10-55 of the MBIM specification revision 1.0 apply to this structure.

Offset Size Field Type Description

0 4 NwError UINT32 A network-specific error. Table 10-44 in the MBIM
specification revision 1.0 documents the cause
codes for NwError.

4 4 RegisterState MBIM_REGISTER_STATE See Table 10-46 in the MBIM specification revision
1.0 .

8 4 RegisterMode MBIM_REGISTER_MODE See Table 10-47 in the MBIM specification revision
1.0 .

12 4 AvailableDataClass UINT32 A bitmap of the values in MBIM_DATA_CLASS that
represents the supported data classes on the
registered network, for the cell in which the device is
registered.

This value is set to MBIMDataClassNone if the
RegisterState is not MBIMRegisterStateHome,
MBIMRegisterStateRoaming, or
MBIMRegisterStatePartner.

16 4 CurrentCellularClass MBIM_CELLULAR_CLASS Indicates the current cellular class in use for a multi-
mode function. See Table 10-8 in the MBIM
specification revision 1.0 for more information.

For a single-mode function, this is the same as the
cellular class reported in MBIM_CID_DEVICE_CAPS.
For multi-mode functions, a transition from CDMA
to GSM or vice versa is indicated with an updated
CurrentCellularClass.

Set

Response

MBIM_REGISTRATION_STATE_INFO_V2

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

Offset Size Field Type Description

20 4 ProviderIdOffset OFFSET The offset in bytes, calculated from the beginning of
this structure, to a numeric (0-9) string called
ProviderId that represents the network provider
identity.

For GSM-based networks, this string is a
concatenation of a three-digit Mobile Country Code
(MCC) and a two- or three-digit Mobile Network
Code (MNC). GSM-based carriers might have more
than one MNC, and hence more than one
ProviderId.

For CDMA-based networks, this string is a five-digit
System ID (SID). Generally, a CDMA-based carrier
has more than one SID. Typically, a carrier has one
SID for each market that is usually divided
geographically within a nation by regulations, such
as Metropolitan Statistical Areas (MSA) in the United
States. CDMA-based devices must specify
MBIM_CDMA_DEFAULT_PROVIDER_ID if this
information is not available.

When processing a query request and the
registration state is in automatic register mode, this
member contains the provider ID with which the
device is currently associated (if applicable). When
the registration state is in manual register mode, this
member contains the provider ID to which the
device is requested to register (even if the provider
is unavailable).

When processing a set request and the registration
state is in manual mode, this contains the provider
ID selected by the host with which to register the
device. When the registration state is in automatic
register mode, this parameter is ignored.

CDMA 1xRTT providers must be set to
MBIM_CDMA_DEFAULT_PROVIDER_ID if the provider
ID is not available.

24 4 ProviderIdSize SIZE(0..12) The size, in bytes, for ProviderId.

28 4 ProviderNameOffset OFFSET The offset in bytes, calculated from the beginning of
this structure, to a string called ProviderName that
represents the network provider's name. This
member is limited to, at most,
MBIM_PROVIDERNAME_LEN characters.

For GSM-based networks, if the Preferred
Presentation of Country Initials and Mobile Network
Name (PCCI&N) is longer than twenty characters,
the device should abbreviate the network name.

This member is ignored when the host sets the
preferred provider list. Devices should specify a
NULL string for devices that do not have this
information.

32 4 ProviderNameSize SIZE(0..40) The size, in bytes, for ProviderName.

Offset Size Field Type Description

36 4 RoamingTextOffset OFFSET The offset in bytes, calculated from the beginning of
this structure, to a string called RoamingText to
inform a user that the device is roaming. This
member is limited to, at most, 63 characters. This
text should provide additional information to the
user when the registration state is either
MBIMRegisterStatePartner or
MBIMRegisterStateRoaming. This member is
optional.

40 4 RoamingTextSize SIZE(0..126) The size, in bytes, for RoamingText.

44 4 RegistrationFlag MBIM_REGISTRATION_FLAGS Flags set per Table 10-48 in the MBIM specification
revision 1.0 .

48 4 PreferredDataClass UINT32 A bitmap of the values in MBIM_DATA_CLASS that
represent the enabled data classes on the device.
The device can only operate using the data classes
that are enabled.

Dynamic 4 DataBuffer DATABUFFER The data buffer that contains ProviderId,
ProviderName, and RoamingText.

Notifications contain an MBIM_REGISTRATION_STATE_INFO_V2 structure.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM specification revision 1.0 .

This command is an extension for the existing MBIM_CID_PACKET_SERVICE defined in the MBIM specification
revision 1.0 .

This extension adds a new member called FrequencyRange for the response structure and renamed the
HighestAvailableDataClass member to CurrentDataClass to clarify its purpose.

The CurrentDataClass indicates the Radio Access Technology (RAT) with which the device is currently registered.
It contains a single value from MBIM_DATA_CLASS.

The FrequencyRange indicates the frequency range that the device is currently using. This is valid only if the
CurrentDataClass field indicates that the MBIMDataClass5G_NSA or MBIMDataClass5G_SA bit is set.

Operation Set Query Notification

Command MBIM_SET_PACKET_SERVICE Empty Not applicable

Response MBIM_PACKET_SERVICE_INFO_V2 MBIM_PACKET_SERVICE_INFO_V2 MBIM_PACKET_SERVICE_INFO_V2

Unsolicited Events

Status Codes

MBIM_CID_PACKET_SERVICE

Parameters

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

The InformationBuffer is null and the InformationBufferLength is zero.

Information for set commands is described in the MBIM specification revision 1.0 .

The InformationBuffer in MBIM_COMMAND_DONE contains an MBIM_PACKET_SERVICE_INFO_V2 structure.
Compared with the MBIM_PACKET_SERVICE_INFO structure defined in Section 10.5.10.6 of the MBIM
specification revision 1.0 , this new structure has the CurrentDataClass and FrequencyRange fields. Unless
stated here, the field descriptions in Table 10-55 of the MBIM specification revision 1.0 apply here.

Offset Size Field Type Description

0 4 NwError UINT32 A network-specific error. Table 10-44 in the MBIM
specification revision 1.0 documents the cause codes
for NwError.

4 4 PacketServiceState MBIM_PACKET_SERVICE_STATE See Table 10-53 in the MBIM specification revision
1.0 .

8 4 CurrentDataClass MBIM_DATA_CLASS The current data class in the current cell, specified
according to MBIM_DATA_CLASS. Functions must set
this member to MBIMDataClassNone if the function is
not in the attached packet service state. Except for
HSPA (in other words, HSUPA and HSDPA) and 5G DC,
the function sets this member to a single
MBIM_DATA_CLASS value. For HSPA data services,
functions specify a bitwise OR of MBIMDataClass
HSDPA and MBIMDataClassHSUPA. For cells that
support HSDPA but not HSUPA, only HSDPA is
indicated (implying UMTS data class for uplink data).
Whenever the current data class changes, functions
send a notification indicating the new value of
CurrentDataClass.

12 8 UplinkSpeed UINT64 Contains the uplink bit rate, in bits per second.

20 8 DownlinkSpeed UINT64 Contains the downlink bit rate, in bits per second.

38 4 FrequencyRange MBIM_FREQUENCY_RANGE A bitmask of values in MBIM_FREQUENCY_RANGE that
represents the frequency ranges that the device is
currently using. This is only valid if the
CurrentDataClass is either MBIMDataClass5G_NSA or
MBIMDataClass5G_SA.

The following enumeration is used as a value in the preceding MBIM_PACKET_SERVICE_INFO_V2 structure.

Type Value Description

Query

Set

Response

MBIM_PACKET_SERVICE_INFO_V2

MBIM_FREQUENCY_RANGE

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

Type Value Description

MBIMFrequencyRangeUnknown 0 If the system type is not 5G.

MBIMFrequencyRange1 1 Frequency range 1 (FR1) in 3GPP TS 38.101-1 (Sub-6G).

MBIMFrequencyRange2 2 FR2 in 3GPP TS 38.101-2 (mmWave).

MBIMFrequencyRange1AndRange2 3 If both FR1 and FR2 carriers are connected.

Notifications contain an MBIM_PACKET_SERVICE_INFO_V2 structure.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM specification revision 1.0 .

This CID is an extension to MBIM_CID_SIGNAL_STATE, introducing RSRP and SNR for signal state criteria. This
new extension is only valid if the device indicates support of MBIM Extensions version 2.0. This extension is
mandatory if the modem supports MBIMDataClass5G_(N)SA data classes.

The RSRP and SNR fields are only valid if the corresponding SystemType is either MGBIMDataClassLTE or
MBIMDataClass5G_(N)SA. IF the modem reports RSRP and/or SNR, then the RSSI field shall be set to a value of
99.

If the corresponding SystemType is MBIMDataClass5G_(N)SA, the RSRP field is mandatory and the SNR field is
optional. If the corresponding SystemType is MBIMDataClassLTE, the RSRP and SNR fields are optional and the
RSSI field can be used instead. In this case, the RSRP and SNR fields can be omitted by setting a zero (0) value
for both RsrpSnrOffset and RsrpSnrSize members.

Operation Set Query Notification

Command MBIM_SET_SIGNAL_STATE Empty Not applicable

Response MBIM_SIGNAL_STATE_INFO_V2 MBIM_SIGNAL_STATE_INFO_V2 MBIM_SIGNAL_STATE_INFO_V2

The InformationBuffer is null and the InformationBufferLength is zero.

Information for set commands is described in the MBIM specification revision 1.0 .

Unsolicited Events

Status Codes

MBIM_CID_SIGNAL_STATE

Parameters

Query

Set

Response

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3284
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

The InformationBuffer in MBIM_COMMAND_DONE contains the following MBIM_SIGNAL_STATE_INFO_V2
structure.

Offset Size Field Type Description

0 4 Rssi UINT32 See Table 10.58 in the MBIM specification revision 1.0 .

4 4 ErrorRate UINT32 See Table 10.58 in the MBIM specification revision 1.0 .

8 4 SignalStrengthInterval UINT32 The reporting interval, in seconds.

12 4 RssiThreshold UINT32 The difference in RSSI coded values that triggers a report. Use
0xFFFFFFFF if this does not matter.

16 4 ErrorRateThreshold UINT32 The difference in ErrorRate coded values that trigger a report. Use
0xFFFFFFFF if this does not matter.

20 4 RsrpSnrOffset OFFSET The offset in bytes, calculated from the beginning of this structure, to
the buffer containing RSRP and SNR signaling info. This member can
be NULL when no RSRP and SNR signaling info is available.

24 4 RsrpSnrSize SIZE The size, in bytes, of the buffer containing the RSRP and SNR
signaling info in the format of a MBIM_RSRP_SNR_INFO structure.

4 DataBuffer DATABUFFER An MBIM_RSRP_SNR structure.

The following MBIM_RSRP_SNR structure is used in the DataBuffer of an MBIM_SIGNAL_STATE_INFO_V2
structure.

Offset Size Field Type Description

0 4 ElementCount UINT32 The count of RSRP_SNR entries that follow this element.

4 4 DataBuffer DATABUFFER An array of RSRP_SNR records, each specified as an MBIM_RSRP_SNR_INFO
structure.

An array of the following MBIM_RSRP_SNR_INFO structures is used in the DataBuffer of an MBIM_RSRP_SNR
structure.

Offset Size> Field Type Description

0 4 RSRP UINT32

RSRP value in dBm Coded value (min = 0, max = 126)

Less than -156 0

Less than -155 1

... ...

Less than -138 18

... ...

MBIM_SIGNAL_STATE_INFO_V2

MBIM_RSRP_SNR

MBIM_RSRP_SNR_INFO

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip
https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

Less than -45 111

... ...

Less than -31 125

-31 or greater 126

Unknown or undetectable 127

4 4 SNR UINT32

SNR value in dB Coded value (min = 0, max = 127)

Less than -23 0

Less than -22.5 1

Less than -22 2

Less than -21.5 3

... ...

Less than 39.5 125

Less than 40 126

40 or greater 127

Unknown or undetectable 128

8 4 RSRPThreshold UINT32 Defines the threshold between the old (cached) RSRP value and the
newly calculated RSRP value. If the absolute difference is larger than
the threshold value, the device triggers an unsolicited event. The
unit is 1 dBm. If set to zero, use the default behavior in the device
function. If set to 0xFFFFFFFF, don't use this to trigger the event. If
the given threshold value is not supported by the device, it returns
the max threshold value that it supports.

12 4 SNRThreshold UINT32 Defines the threshold between the old (cached) SNR value and the
newly calculated SNR value. If the absolute difference is larger than
the threshold value, the device triggers an unsolicited event. The
unit is 1 dB. If set to zero, use the default behavior in the device
function. If set to 0xFFFFFFFF, don't use this to trigger the event. If
the given threshold is not supported by the device, it returns the
max threshold value that it supports.

16 4 SystemType MBIM_DATA_CLASS Indicates the system type for which signal state information is valid.
This member is a bitmask of one type as defined in
MBIM_DATA_CLASS.

Notifications contain an MBIM_SIGNAL_STATE_INFO_V2 structure.

This CID only uses generic status codes defined in Section 9.4.5 of the MBIM specification revision 1.0 .

Unsolicited Events

Status Codes

LTE signal bar calculation

https://www.usb.org/sites/default/files/MBIM10Errata1_073013.zip

The OS shall process the registry settings for signal strength calculations in the following order:

Dataclass is CDMA (or its variant) or TDSCDMA

1. If a legacy signal bar mapping table exists under “per_iccid”, use this setting.
2. Else, if a legacy signal bar mapping table exists under “per_device”, use this setting.
3. Else, use the default signal bar mapping table in code.

Dataclass is GSM or WCDMA

1. If a GSM or WCDMA technology specific signal bar mapping table exists under “per_iccid”, use this setting.
2. Else, if a GSM or WCDMA technology specific signal bar mapping table exists under “per_device”, use this

setting.
3. Else, if a legacy signal bar mapping table exists under “per_iccid”, use this setting.
4. Else, if a legacy signal bar mapping table exists under “per_device”, use this setting.
5. Else, use the default signal bar mapping table in code.

a. RSSI >= 17; 5 bars
b. RSSI >= 12; 4 bars
c. RSSI >= 7; 3 bars
d. RSSI >= 4; 2 bars
e. RSSI >= 2; 1 bars
f. else; 0 bars

Dataclass is LTE and RSRP is reported by the modem

1. If a LTE technology specific signal bar mapping table for RSRP exists under “per_iccid”, use this setting.
2. Else, if a LTE technology specific signal bar mapping table for RSRP exists under “per_device”, use this

setting.
3. Else, use the default LTE RSRP signal bar mapping table in code.

Dataclass is LTE and RSSI is reported by the modem

1. If a LTE technology specific signal bar mapping table exists under “per_iccid”, use this setting.
2. Else, if a LTE technology specific signal bar mapping table exists under “per_device”, use this setting.
3. Else, if a legacy signal bar mapping table exists under “per_iccid”, use this setting.
4. Else, if a legacy signal bar mapping table exists under “per_device”, use this setting.
5. Else, use the default signal bar mapping table in code.

Dataclass is NR

1. If a NR technology specific signal bar mapping table for RSRP exists under “per_iccid”, use this setting.
2. Else, if a NR technology specific signal bar mapping table for RSRP exists under “per_device”, use this

setting.
3. Else, use the default NR RSRP signal bar mapping table in code.

Dataclass is NSA

1. If EnableLTEReportingOnNSA is not set or is set to 0:
a. Follow the Dataclass NR flow.

2. If EnableLTEReportingOnNSA is set to 1:
a. Follow the Dataclass LTE flows (RSRP or RSSI).

3. If EnableLTEReportingOnNSA is set to 2:
a. If FrequencyRange is FR1, follow the Dataclass LTE flows (RSRP or RSSI).
b. If FrequencyRange is <> FR1, follow the Dataclass NR flow.

4. If EnableLTEReportingOnNSA is set to 3:
a. If FrequencyRange is FR2, follow the Dataclass LTE flows (RSRP or RSSI).
b. If FrequencyRange is <> FR2, follow the Dataclass NR flow.

5. If EnableLTEReportingOnNSA is set to 4:
a. Calculate signal bar using the LTE and NR flows.
b. Select the strongest.

EnableLTEReportingOnNSA:

0 = "Use 5G signal"

７ Note

If EnableLTESnrReporting is enabled but there is no SNR table for LTE or SNR reporting by the modem, only
RSRP is used. Otherwise, the better of RSRP or SNR is converted to signal bars.

７ Note

If EnableNRSnrReporting is enabled, but no there is no SNR table for NR or SNR reporting by the modem,
only RSRP is used. Otherwise, the better of RSRP or SNR is converted to signal bars.

７ Note

If the LTE signal is not reported by the modem in 1-5, the NR signal is used. If the NR signal is not used, the
LTE signal is applied.

COSA customizations for SignalBar calculation

1 = "Use LTE signal"

2 = "Use LTE signal if camped on 5G frequency range 1"

3 = "Use LTE signal if camped on 5G frequency range 2"

4 = "Use the strongest signal of LTE and 5G"

EnableNRSnrReporting:

0 = "Use only RSRP"

1 = "Use both RSRP and SNR"

EnableLTESnrReporting:

0 = "Use only RSRP"

1 = "Use both RSRP and SNR"

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown. Technology
specific settings take precedence. Each number of bars needs to have a valid signal strength mapping for this
setting to take effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/GERAN/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on GSM. Each number of bars needs to have a valid signal strength mapping for this setting to take
effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/WCDMA/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on WCDMA. Each number of bars needs to have a valid signal strength mapping for this setting to take
effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/LTE/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on LTE. Each number of bars needs to have a valid signal strength mapping for this setting to take
effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/LTERSRP/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown, when device is
camped on LTE. Each number of bars needs to have a valid signal strength mapping for this setting to take
effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/LTERSSNR/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on LTE. Used when EnableLTESnrReporting is set to 1. Each number of bars needs to have a valid signal
strength mapping for this setting to take effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/NRRSRP/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on 5G. Each number of bars needs to have a valid signal strength mapping for this setting to take effect.

Cellular/PerDevice/SignalBarMappingTable/SignalForBars/NRRSSNR/<SignalBar>

Modify the minimum signal strength value corresponding to the number of bars to be shown when device is
camped on 5G. Used when EnableNRSnrReporting is set to 1. Each number of bars needs to have a valid signal
strength mapping for this setting to take effect.

<SignalBar> can be 1-5 values.

If the OEM/MO fails to properly configure the mapping table for RSSI or it’s incomplete, use the default
mapping:

RSSI Bars Displayed

[0,1] 0

[2,3] 1

[4,6] 2

[7,11] 3

[12,16] 4

[17,31] 5

If the OEM/MO fails to properly configure the mapping table for RSRP or it’s incomplete, use the default
mapping:

RSRP Bars Displayed

[0,16] 0

[17,41] 1

[42,51] 2

[52,61] 3

[62,71] 4

[72,126] 5

If the OEM/MO fails to properly configure the mapping table for SNR or it’s incomplete, use the default
mapping:

SNR Bars Displayed

[0,18] 0

[19,38] 1

[39,46] 2

[47,53] 3

[54,72] 4

[73,127] 5

MBIMEx 3.0 – 5G SA Phase 1 support
Article • 03/14/2023

Starting with Windows 11, Windows OS supports the first phase of features for 5G
systems with the next generation core network. These 5G systems are commonly
referred to as 5G SA networks. They contain the new 5G Core Network (5GC) and are
independent of Enhanced Packet Core (EPC) as used in 5G NSA networks and 4G
networks.

The first phase of features for 5G SA enables MBB functionality parity for Windows
MBIM MBB devices on 5G SA networks compared to 5G NSA. These features include
registration with 5GC and basic PDU sessions on default eMBB network slice. Note that
this phase does not support more advanced 5G SA features such as multiple concurrent
network slices and URSP rules.

A new MBIM Extensions Release number 3.0 introduces changes in the MBIM interface
to support the first phase of features for 5G SA. This Extensions Release number is
commonly referred to as MBIMEx 3.0. Download the MBIMEx 3.0 specification here .

An errata for MBIMEx 3.0 introduced in May 2022 updates and clarifies certain aspects
of the original MBIMEx 3.0 specification published in April 2020. Download the MBIMEx
3.0 errata here . The errata is in section 7.1 “Errata for MBIMEx 3.0”.

https://download.microsoft.com/download/8/3/a/83a64106-a1f4-4a03-811f-4dbef2e3bf7a/MBIM%20extensions%20for%205G.docx
https://download.microsoft.com/download/d/8/a/d8ad97b9-83bd-4ab2-bcea-7500dfaf22b4/MBIMEx%204.0%20spec%20and%20Errata%20to%20MBIMEx%203.0%20Rev%201.46%2020220426.docx

MBIMEx 4.0 – 5G SA Phase 2 support
Article • 03/14/2023

Windows 11, version 22H2 previews the 5G SA Phase 2 feature set. Additionally, it
supports all Windows 11 cellular features such as 5G SA Phase 1. The 5G SA Phase 2
feature set includes support for end-to-end URSP handling and multiple concurrent
eMBB network slices.

MBIM Extensions Release number 4.0 introduces support for 5G SA Phase 2 features.
This Extensions Release number is commonly referred to as MBIMEx 4.0. URSP
handling/usage and multiple concurrent eMBB network slices are the main additions in
MBIMEx 4.0. All valid slice types (SST) are supported at the MBIM interface level in
MBIMEx 4.0, but non-eMBB slice functionality is not implied in Windows 11, version
22H2 and is subject to additional host and device-level support and features. Download
the MBIMEx 4.0 specification here . Section 4 “MBIM Interface Extensions for 5G NGC –
Phase 2” contains the MBIMEx 4.0 specification.

MBIMEx 4.0 adds the following new CIDs:

MBIMEx 4.0 modifies the following existing CIDs:

https://download.microsoft.com/download/d/8/a/d8ad97b9-83bd-4ab2-bcea-7500dfaf22b4/MBIMEx%204.0%20spec%20and%20Errata%20to%20MBIMEx%203.0%20Rev%201.46%2020220426.docx

By default, Windows 11, version 22H2 announces MBIMEx 3.0 as the highest supported
MBIMEx version by the host. A special capability is available to change the default to
MBIMEx 4.0 for IHVs and driver developers. Contact your TAM for support if a Microsoft
engineering partner needs the capability for testing and development.

NDIS_STATUS_WWAN_ATR_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_ATR_INFO notification to respond to OID
query requests of OID_WWAN_UICC_ATR.

This notification uses the NDIS_WWAN_ATR_INFO structure.

Version: Windows 10, version 1607

Header: Ntddndis.h (include Ndis.h)

OID_WWAN_UICC_ATR

NDIS_WWAN_ATR_INFO

MB low level UICC access

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_atr_info

NDIS_STATUS_WWAN_AUTH_RESPONSE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_AUTH_RESPONSE notification to inform
the MB Service of a challenge response received from a previous challenge request
issued using an OID_WWAN_AUTH_CHALLENGE query request.

Miniport drivers can also send unsolicited events with this notification.

This NDIS status notification uses the NDIS_WWAN_AUTH_RESPONSE structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_AUTH_CHALLENGE

NDIS_WWAN_AUTH_RESPONSE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_auth_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_auth_response

NDIS_STATUS_WWAN_BASE_STATIONS_I
NFO
Article • 03/14/2023

The NDIS_STATUS_WWAN_BASE_STATIONS_INFO notification is sent by modem
miniport drivers in response to an OID_WWAN_BASE_STATIONS_INFO query request to
provide the MB host with information about both serving and neighboring base
stations.

This notification uses the NDIS_WWAN_BASE_STATIONS_INFO structure.

Version: Windows 10, version 1709 Header: Ndis.h

OID_WWAN_BASE_STATIONS_INFO

NDIS_WWAN_BASE_STATIONS_INFO

MB base stations information query operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info

NDIS_STATUS_WWAN_CONTEXT_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_CONTEXT_STATE notification to send an
event notification when the activation state of a particular context changes.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_CONTEXT_STATE structure.

Miniport drivers must also notify the MB Service when context state changes are not
caused as a result of a set request from the MB Service. For example, miniport drivers
must notify the MB Service if the network deactivates a context. Miniport drivers should
not implement network initiated context activations.

Miniport drivers must notify Windows directly about all applicable context state
changes, such as when processing NDIS_STATUS_WWAN_PACKET_SERVICE or
NDIS_STATUS_WWAN_REGISTER_STATE status notifications.

Miniport drivers of MB devices that support separate voice and data connections must
follow these guidelines:

At the time of initialization, the VoiceCallState must be set to
WwanVoiceCallStateNone.

On the start of the voice call, send an event notification with VoiceCallState set to
WwanVoiceCallStateInProgress. All the other members must reflect their current
state. In case of no active connection during the voice call, the ConnectionId
should be set to "0" .

Once the voice call is completed, send an event notification with VoiceCallState set
to WwanVoiceCallStateHangUp. All the other members must reflect their current
state. In case of no active connection during the voice call hang up, the
ConnectionId should be set to "0". After this event, the VoiceCallState must be set
to WwanVoiceCallStateNone in the miniport driver.

Version Available in Windows 7 and later versions of

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_context_state

Windows.

Header Ndis.h

NDIS_WWAN_CONTEXT_STATE

OID_WWAN_PROVISIONED_CONTEXTS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_context_state

NDIS_STATUS_WWAN_DEVICE_CAPS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_CAPS notification to respond to
OID_WWAN_DEVICE_CAPS query requests.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_CAPS structure.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_DEVICE_CAPS

NDIS_WWAN_DEVICE_CAPS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps

NDIS_STATUS_WWAN_DEVICE_CAPS_EX
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_CAPS_EX notification to inform
the MB service about the completion of a previous OID_WWAN_DEVICE_CAPS_EX query
request.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_CAPS_EX structure.

Version Windows 10, version 1703

Header Ndis.h

OID_WWAN_DEVICE_CAPS_EX

NDIS_WWAN_DEVICE_CAPS_EX

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps_ex

NDIS_STATUS_WWAN_DEVICE_RESET_ST
ATUS
Article • 03/14/2023

The NDIS_STATUS_WWAN_DEVICE_RESET_STATUS notification is sent by a modem
miniport driver to inform the MB host of the reset status of the modem device. This
notification is sent as an asynchronous response to an OID_WWAN_DEVICE_RESET set
request.

This notification uses the NDIS_WWAN_DEVICE_RESET_STATUS structure.

Version: Windows 10, version 1709 Header: Ndis.h

OID_WWAN_DEVICE_RESET

NDIS_WWAN_DEVICE_RESET_STATUS

MB modem reset operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_reset_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_reset_status

NDIS_STATUS_WWAN_DEVICE_SERVICE_
EVENT
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT indication to
notify the MB Service of device service changes.

Miniport drivers can only use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_EVENT structure.

Version Supported starting with Windows 8.

Header Ndis.h

NDIS_WWAN_DEVICE_SERVICE_EVENT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_event

NDIS_STATUS_WWAN_DEVICE_SERVICE_
RESPONSE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE indication
to implement the transaction completion response for
OID_WWAN_DEVICE_SERVICE_COMMAND.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_RESPONSE structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_DEVICE_SERVICE_COMMAND

NDIS_WWAN_DEVICE_SERVICE_RESPONSE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_response

NDIS_STATUS_WWAN_DEVICE_SERVICE_
SESSION
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION indication to
report the completion of a device service session state change originated by
OID_WWAN_DEVICE_SERVICE_SESSION.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_SESSION_INFO structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_DEVICE_SERVICE_SESSION

NDIS_WWAN_DEVICE_SERVICE_SESSION_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_info

NDIS_STATUS_WWAN_DEVICE_SERVICE_
SESSION_READ
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_READ
notification to inform the MB Service that data has been received from an open device
service session.

Miniport drivers can only use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_SESSION_READ structure.

Version Supported starting with Windows 8.

Header Ndis.h

NDIS_WWAN_DEVICE_SERVICE_SESSION_READ

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_read
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_read

NDIS_STATUS_WWAN_DEVICE_SERVICE_
SESSION_WRITE_COMPLETE
Article • 03/14/2023

Miniport drivers use the
NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE notification to
report the status of a write operation on a device service session.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE
structure.

Version Supported starting with Windows 8.

Header Ndis.h

NDIS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_write_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_write_complete

NDIS_STATUS_WWAN_DEVICE_SERVICE_
SUBSCRIPTION
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION
notification to inform the MB Service about a device service subscription in response to
an OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS set request.

Miniport drivers cannot use this notification to send unsolicited events.

This indication uses the NDIS_WWAN_DEVICE_SERVICE_SUBSCRIPTION structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS

NDIS_WWAN_DEVICE_SERVICE_SUBSCRIPTION

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_subscription
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_subscription

NDIS_STATUS_WWAN_DEVICE_SERVICE_
SUPPORTED_COMMANDS
Article • 03/14/2023

Miniport drivers use the
NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS notification to report
the completion of a query of OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS
structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS

NDIS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_supported_commands
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_supported_commands

NDIS_STATUS_WWAN_DEVICE_SLOT_MA
PPING_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO
notification to inform the MB service about the completion of a previous
OID_WWAN_DEVICE_SLOT_MAPPING_INFO query or set request.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_DEVICE_SLOT_MAPPING_INFO structure.

Version Windows 10, version 1703

Header Ndis.h

OID_WWAN_DEVICE_SLOT_MAPPING_INFO

NDIS_WWAN_DEVICE_SLOT_MAPPING_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_slot_mapping_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_slot_mapping_info

NDIS_STATUS_WWAN_HOME_PROVIDE
R
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_HOME_PROVIDER notification to inform
the MB Service about the completion of OID_WWAN_HOME_PROVIDER query requests.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_HOME_PROVIDER structure.

Miniport drivers must comply with the following rules when responding to
OID_WWAN_HOME_PROVIDER query requests:

GSM-Based Devices: The home provider name can be retrieved from the
Subscriber Identity Module (SIM) using several methods, such as from the EFSPN
elementary file in the SIM (EFSPN is defined in the 3GPP TS 31.102 under section
Service Provider Name), or from the operator-specific extensions when the EFSPN
is not provisioned. You should refer to the operator-specific requirements
specifications for obtaining the home provider name, extracting MCC-MNC from
IMSI, and performing a look up in the GSMA SE.13 database. Contact the operator
when retrieving operator-specific home provider names if the EFSPN is not
provisioned. If a SIM is not provisioned with a home provider name through EFSPN
or any other mechanism, miniport drivers should set the provider name to NULL.

For details about a SIM card's file system, see the 3GPP TS 11.11 specification. If
the provider identification is not provisioned in the Subscriber Identity Module
(SIM card), miniport drivers should return WWAN_STATUS_READ_FAILURE.

CDMA-Based Devices: Returning the home provider name is mandatory. It is
recommended that IHVs provide this information in their device as part of network
personalization. If the provider identity is not available, miniport drivers for CDMA-
based providers must set the Provider.ProviderId member of the
NDIS_WWAN_HOME_PROVIDER structure to
WWAN_CDMA_DEFAULT_PROVIDER_ID.

Miniport drivers must return this information when the device ready-state changes to
WwanReadyStateInitialized and format all the members of the WWAN_PROVIDER
structure, as appropriate.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_HOME_PROVIDER

NDIS_WWAN_HOME_PROVIDER

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider

NDIS_STATUS_WWAN_IP_ADDRESS_STA
TE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_IP_ADDRESS_STATE notification to inform
the MB service about changes to the IP configuration for an additional PDP context.

This notification uses the NDIS_WWAN_IP_ADDRESS_STATE structure.

This notification must be sent on the NDIS port associated with the additional PDP
context session.

Miniport drivers should send this notification after an additional PDP context has been
successfully activated and the IP configuration has been acquired for that context. If the
device indicates unsolicited IP configuration changes post-context activation, then
miniport drivers should send an unsolicited indication with this notification with the
updated IP configuration.

Version Available in Windows 8.1 and later versions of
Windows.

Header Ndis.h (include Ndis.h)

NDIS_WWAN_IP_ADDRESS_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ip_address_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ip_address_state

NDIS_STATUS_WWAN_LTE_ATTACH_CO
NFIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG notification to
inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_LTE_ATTACH_CONFIG Query or Set request.

Unsolicited events are sent if the default LTE attach context is updated by the network
either over the air (OTA) or by short message service (SMS). In this case, the miniport
driver must update the default LTE attach contexts and send this notification to the host
OS with the updated list.

This status notification uses the NDIS_WWAN_LTE_ATTACH_CONTEXTS structure.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB LTE Attach Operations

OID_WWAN_LTE_ATTACH_CONFIG

NDIS_WWAN_LTE_ATTACH_CONTEXTS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_contexts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_contexts

NDIS_STATUS_WWAN_LTE_ATTACH_STA
TUS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_LTE_ATTACH_STATUS notification to
inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_LTE_ATTACH_STATUS Query request.

Unsolicited events are sent if a context for LTE attach is activated, which could be when a
SIM is inserted for example. In this case, the miniport driver should send this notification
to the host OS.

This status notification uses the NDIS_WWAN_LTE_ATTACH_STATUS structure.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB LTE Attach Operations

OID_WWAN_LTE_ATTACH_STATUS

NDIS_WWAN_LTE_ATTACH_STATUS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_status

NDIS_STATUS_WWAN_MODEM_CONFIG
_INFO
Article • 03/14/2023

MBB drivers use the NDIS_STATUS_WWAN_MODEM_CONFIG_INFO notification to
inform the MB service about the completion of a previous
OID_WWAN_MODEM_CONFIG_INFO query request.

MBB drivers must only send an unsolicited
NDIS_STATUS_WWAN_MODEM_CONFIG_INFO when the configuration state of the
modem has changed.

This notification uses the NDIS_WWAN_MODEM_CONFIG_INFO structure.

Version Windows 10, version 1709

Header Ndis.h

OID_WWAN_MODEM_CONFIG_INFO

NDIS_WWAN_MODEM_CONFIG_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_config_info

NDIS_STATUS_WWAN_MODEM_LOGGIN
G_CONFIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_MODEM_LOGGING_CONFIG
notification to inform the mobile broadband (MB) service about the completion of a
previous OID_WWAN_MODEM_LOGGING_CONFIG Query or Set request.

Miniport drivers send this notification as an unsolicited event in scenarios where the
modem needs to inform the OS about internal changes. Currently, in Windows 10,
version 1903, these scenarios do not occur.

This notification uses the NDIS_WWAN_MODEM_LOGGING_CONFIG structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB modem logging with DSS

OID_WWAN_MODEM_LOGGING_CONFIG

NDIS_WWAN_MODEM_LOGGING_CONFIG

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_logging_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_logging_config

NDIS_STATUS_WWAN_MPDP_LIST
Article • 03/14/2023

The NDIS_STATUS_WWAN_MPDP_LIST notification is sent by a mobile broadband
miniport driver to inform the MB service about the completion of a previous
OID_WWAN_MPDP query request.

This notification is not sent as an unsolicited event.

This notification uses the NDIS_WWAN_MPDP_LIST structure.

Version: Windows 10, version 1809

Header: Ndis.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_list

NDIS_STATUS_WWAN_MPDP_STATE
Article • 03/14/2023

The NDIS_STATUS_WWAN_MPDP_STATE notification is sent by a mobile broadband
miniport driver to inform the MB service about the completion of a previous
OID_WWAN_MPDP set request.

This notification is not sent as an unsolicited event.

This notification uses the NDIS_WWAN_MPDP_STATE structure.

Version: Windows 10, version 1809

Header: Ndis.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_state

NDIS_STATUS_WWAN_NETWORK_BLAC
KLIST
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_NETWORK_BLACKLIST notification to
inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_NETWORK_BLACKLIST Query or Set request.

Unsolicited events are sent if any of the blacklist states have changed from actuated to
not actuated, or vice versa. For example, if a SIM is inserted whose provider matches the
SIM provider blacklist.

This notification uses the NDIS_WWAN_NETWORK_BLACKLIST structure.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB Network Blacklist Operations

OID_WWAN_NETWORK_BLACKLIST

NDIS_WWAN_NETWORK_BLACKLIST

） Important

Bias-free communication

Microsoft supports a diverse and inclusive environment. This article contains
references to terminology that the Microsoft style guide for bias-free
communication recognizes as exclusionary. The word or phrase is used in this
article for consistency because it currently appears in the software. When the
software is updated to remove the language, this article will be updated to be in
alignment.

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_blacklist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_blacklist
https://learn.microsoft.com/en-us/style-guide/bias-free-communication

NDIS_STATUS_WWAN_NETWORK_PARA
MS_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_NETWORK_PARAMS_STATE notification
to inform the MB Service about changes to network configuration data and/or policy
information.

Drivers send an NDIS_STATUS_WWAN_NETWORK_PARAMS_STATE notification in
response to an OID query request of OID_WWAN_NETWORK_PARAMS.

This notification uses the NDIS_WWAN_NETWORK_PARAMS_INFO structure which
contains a WWAN_NETWORK_PARAMS_INFO structure.

For more information see OID_WWAN_NETWORK_PARAMS.

Requirement Value

Minimum supported client Windows 11

Version Windows Server 2022. NDIS 6.84 and later.

Header Ndis.h

OID_WWAN_NETWORK_PARAMS

NDIS_WWAN_NETWORK_PARAMS_INFO

WWAN_NETWORK_PARAMS_INFO

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_network_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_register_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_network_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_network_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_network_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_register_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_network_params_info

NDIS_STATUS_WWAN_NITZ_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_NITZ_INFO notification to inform the
mobile broadband (MB) service about the completion of a previous OID_WWAN_NITZ
Query request.

Miniport drivers send this notification as an unsolicited event to provide the current
network time and time zone intformation.

This notification uses the NDIS_WWAN_NITZ_INFO structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB modem logging with DSS

OID_WWAN_NITZ

NDIS_WWAN_NITZ_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_nitz_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_nitz_info

NDIS_STATUS_WWAN_PACKET_SERVICE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PACKET_SERVICE notification to inform
the MB Service when packet service availability changes, including to notify of a change
to the type of packet data service currently used.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_PACKET_SERVICE_STATE structure.

CDMA-based miniport drivers can automatically initiate packet-attach service if there is
no resource allocation/release is possible and can send the event notification to the MB
Service.

Miniport drivers should obey the following guidelines for event notifications:

Miniport drivers should set AvailableDataClasses is set to
WWAN_DATA_CLASS_NONE during miniport driver initialization. Thereafter,
miniport drivers must notify the MB Service whenever there is any change to
AvailableDataClasses.

Miniport drivers should set CurrentDataClass to WWAN_DATA_CLASS_NONE
during miniport driver initialization. Thereafter, miniport drivers must notify the MB
Service whenever there is any change to CurrentDataClass . Miniport drivers
should send an NDIS_STATUS_LINK_STATE notification if the change to
CurrentDataClass results in a change of the transmit or receive link speed.

Miniport drivers must notify the MB Service whenever there is any change in
Packet Service attach state.

Miniport drivers should return query results according to the following rules:

Miniport drivers must return WWAN_STATUS_SUCCESS with
WwanPacketServiceStateAttaching whenever the device attempts to packet-
attach.

Miniport drivers should return WWAN_STATUS_SUCCESS with
WwanPacketServiceStateDetaching whenever the device attempts to packet-
detach.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state

When the device is in final state, miniport drivers should return
WWAN_STATUS_SUCCESS along with the appropriate current state (
WwanPacketServiceStateAttached or WwanPacketServiceStateDetached)

Miniport drivers must list all the available data-classes; not just the highest data-
class available. This applies to both query operations as well as event notifications.

Miniport drivers should return set results according to the following rules:

Return WWAN_STATUS_SUCCESS, if set request with
WwanPacketServiceActionAttach, is issued by the Service and the device is
already in the packet-attached state.

Return WWAN_STATUS_SUCCESS, if set request with
WwanPacketServiceActionDetach, is issued by the Service and the device is
already in the packet-detached state.

Never return transient states for the set request. Only the final states
WwanPacketServiceStateAttached or WwanPacketServiceStateDetached must be
returned after the successful completion of the packet service operation with
WWAN_STATUS_SUCCESS

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_PACKET_SERVICE_STATE

OID_WWAN_PACKET_SERVICE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state

NDIS_STATUS_WWAN_PCO_STATUS
Article • 03/14/2023

The NDIS_STATUS_WWAN_PCO_STATUS notification is sent by a modem miniport driver
to inform the OS of the current Protocol Configuration Options (PCO) state in the
modem. Modem miniport drivers will send this notification in the following three
scenarios:

1. When a new PCO value has arrived on an activated connection.
2. When the modem has PCO value readily available when a connection is activated

or bridged by the host.
3. In response to an OID_WWAN_PCO query request from the host.

When a new PCO value has arrived, this notification will be unsolicited and sent with the
latest PCO value from the network. The notification will come up with the NDIS port
number that corresponds to the activated connection’s PDN.

When a connection is activated or bridged from the host, the modem should check
whether it has the PCO value cached or not. If it does, it will send up a notification to the
host with the NDIS port number that corresponds to the PDN that the host has
activated or bridged.

This notification will be used to notify the host that an OID_WWAN_PCO query request
has been completed, with the PCO value included in the notification. The host expects
the modem to pass the complete structure of PCO values on the PDN corresponding to
the port number.

If PCO functionality is supported by the modem but no PCO value is received from the
network when the host sends an OID_WWAN_PCO query request, the modem should
return an NDIS_STATUS_WWAN_PCO_STATUS notification with an empty
WWAN_PCO_VALUE payload.

This notification uses the NDIS_WWAN_PCO_STATUS structure.

７ Note

Currently, in Windows 10, version 1709 and later, some modems are only able to
provide operator specific PCO elements. If a PCO data structure is received by
modem but there is no applicable operator specific PCO element, to avoid
unnecessary device wakeup, the modem should not advertise the PCO notification
to the OS.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status

Version: Windows 10, version 1709 Header: Ndis.h

OID_WWAN_PCO

NDIS_WWAN_PCO_STATUS

WWAN_PCO_VALUE

MB Protocol Configuration Options (PCO) operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value

NDIS_STATUS_WWAN_PIN_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PIN_INFO notification to respond to OID
query and set requests of OID_WWAN_PIN.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_PIN_INFO structure.

Miniport drivers should return information about the Personal Identity Number (PIN)
that the MB device currently expects in response to a query request. Miniport drivers
should return the status notification filled in as described in sections below in response
to a set request.

Responding to WwanPinOperationEnter Requests

When miniport drivers use the NDIS_STATUS_WWAN_PIN_INFO notification to respond
to WwanPinOperationEnter requests, they should implement these procedures:

For successful WwanPinOperationEnter query requests, when the MB device no
longer requires a PIN, miniport drivers must set uStatus to
WWAN_STATUS_SUCCESS and PinType to WwanPinTypeNone.

For failed WwanPinOperationEnter requests, miniport drivers must set uStatus to
WWAN_STATUS_FAILURE and include applicable data as per the following details:

PIN Disabled or PIN Not Expected: For WwanPinOperationEnter set requests,
when the corresponding PIN is either disabled or currently not expected by the
MB device, miniport drivers must set PinType to WwanPinTypeNone. All other
members are ignored.

PIN Not Supported: If the given PIN is not supported by the MB device,
miniport drivers must set uStatus to WWAN_STATUS_NO_DEVICE_SUPPORT.

PIN Retrial: In this mode, the MB device requires the PIN to be re-entered as the
AttemptsRemaining value is still non-zero for this particular type of PIN.
Miniport drivers must set PinType to the same value as that of PinType in
NDIS_WWAN_SET_PIN.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info

PIN Blocking: The PIN is blocked when AttemptsRemaining is zero. If the PIN
unblock operation is not available, miniport drivers must set uStatus to
WWAN_STATUS_FAILURE and PinType to WwanPinTypeNone. All the other
members are ignored.

Note If the MB device supports PIN unblock operations, miniport drivers
should follow the PIN Unblocking step to respond to the request.

PIN Unblocking: The PIN is blocked when AttemptsRemaining is zero. To
unblock the PIN, the MB device may request a corresponding PIN Unlock Key
(PUK), if applicable. In this case, miniport drivers must set PinType to the
corresponding WwanPinTypeXxxPUK with the relevant details.

Blocked PUK: If the number of failed trials exceeds the preset value for entering
the WwanPinTypeXxxPUK, then the PUK becomes blocked. Miniport drivers
must signal this by setting uStatus to WWAN_STATUS_FAILURE and PinType to
WwanPinTypeNone. In case PUK1 is blocked, miniport drivers must send an
NDIS_STATUS_WWAN_READY_INFO with ReadyState set to
WwanReadyStateBadSim.

Responding to WwanPinOperationEnable, WwanPinOperationDisable, or
WwanPinOperationChange Requests

When miniport drivers use the NDIS_STATUS_WWAN_PIN_INFO notification to respond
to WwanPinOperationEnable, WwanPinOperationDisable, and
WwanPinOperationChange, they should implement the following operations:

For successful requests, miniport drivers must set uStatus to
WWAN_STATUS_SUCCESS. For other members in WWAN_PIN_INFO, see the
following circumstances.

Miniport drivers must set uStatus to WWAN_STATUS_SUCCESS for PIN-enable and
PIN-disable operations when the PIN is already in the requested state. Miniport
drivers must set PinType to WwanPinTypeNone. Other members are ignored.

When a PIN mode is changed from disabled to enabled, the PIN state should be
WwanPinStateNone.

If PIN1 is enabled, the PIN state shall become WwanPinStateEnter when power is
cycled to the MB device.

For all other PINs, the PIN state can change from WwanPinStateNone to
WwanPinStateEnter depending on MB device specific conditions.

PIN Not Supported: If a PIN operation is not supported by the MB device, miniport
drivers must set uStatus to WWAN_STATUS_NO_DEVICE_SUPPORT. For example,
enabling and disabling PIN2 is not typically supported by MB devices so the above
error code must be returned. All other members are ignored.

PIN Must be Entered: If a PIN operation requires a PIN to be entered, miniport
drivers must set uStatus to WWAN_STATUS_PIN_REQUIRED and PinType to
WwanPinTypeXxx. Other members are ignored.

PIN Change Operation: If the MB device restricts the change of PIN value only
when it is in enabled state, a request to change in disabled state must be returned
with WWAN_STATUS_PIN_DISABLED.

PIN Retrial: On failure, miniport drivers must set uStatus to
WWAN_STATUS_FAILURE, and PinType to the same value as specified in
NDIS_WWAN_SET_PIN. Other members are ignored except for
AttemptsRemaining. This may occur when an incorrect PIN is entered.

PIN Blocking: The PIN is blocked when the number of AttemptsRemaining is zero.
If the PIN unblock operation is not available, miniport drivers must set uStatus to
WWAN_STATUS_FAILURE and PinType to WwanPinTypeNone. AttemptsRemaining
should be set to 0 and all the other members are ignored.

Note If the MB device supports PIN unblock operations, miniport drivers should
follow the PIN Unblocking step to respond to the request.

Unblocking PIN: The PIN is blocked when AttemptsRemaining is zero. To unblock
the PIN, the MB device may request a corresponding PUK, if applicable. In this
case, miniport drivers must set uStatus to WWAN_STATUS_FAILURE, PinType to the
corresponding WwanPinTypeXxxPUK, PinState to WwanPinStateEnter, and
AttemptsRemaining should have the number of attempts allowed to enter a valid
PUK.

If PIN blocking results in the MB device or SIM becomes blocked, miniport drivers
must send an event notification with ReadyState set to
WwanReadyStateDeviceLocked.

If there is an active PDP context at the time of PIN1 blocking, miniport drivers must
deactivate the PDP context and send notifications to the operating system about
the PDP deactivation and link state change.

Requirements

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_PIN

NDIS_STATUS_WWAN_PIN_INFO

See also

NDIS_STATUS_WWAN_PIN_LIST
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PIN_LIST notification to respond to OID
query requests of OID_WWAN_PIN_LIST.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_PIN_LIST structure.

This INDICATION is a response only notification to OID query requests of
OID_WWAN_PIN_LIST. Unsolicited indications are not expected for this INDICATION.

Any change in the PIN-entry mode caused as a result of an OID_WWAN_PIN enable or
disable operation will not result in an NDIS_STATUS_WWAN_PIN_LIST INDICATION.

Note that the current PinMode for all of the PINs that the device supports must be
updated to reflect the current state by the miniport driver on each query request.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_PIN_LIST

NDIS_WWAN_PIN_LIST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_list

NDIS_STATUS_WWAN_PREFERRED_MUL
TICARRIER_PROVIDERS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS
notification to respond to a previous
OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERSquery request.

Miniport drivers may also use this notification to inform the MB Service about the
update as a result of a OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS set request
from the MB Service. A response to an
OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS set request must contain zero
elements in the PreferredListHeader member. Miniport drivers can also send unsolicited
events with this notification to inform the MB Service that the Preferred Multi-Carrier
Provider List (PMCPL) has changed.

This notification uses the NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS
structure.

Version Supported starting with Windows 8.

Header Ndis.h

NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers

NDIS_STATUS_WWAN_PREFERRED_PRO
VIDERS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PREFERRED_PROVIDERS notification to
inform the MB Service that the Preferred Provider List (PPL) has changed.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_PREFERRED_PROVIDERS structure.

In some cases, the PPL (for GSM-based devices) is updated by the network either Over-
The-Air (OTA) or by Short Message Service (SMS). The miniport driver must update the
PPL accordingly. Afterwards, miniport drivers must notify the MB Service about the
updates using this INDICATION with the updated PPL. For GSM-based networks, the
PreferredListHeader member of the NDIS_WWAN_PREFERRED_PROVIDERS structure
must point to the updated PPL.

Miniport drivers use this INDICATION to inform the MB Service about the update as a
result of a OID_WWAN_PREFERRED_PROVIDERS set request from the MB Service. A
response to an OID_WWAN_PREFERRED_PROVIDERS set request must contain zero
elements in the PreferredListHeader member.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_PREFERRED_PROVIDERS

OID_WWAN_PREFERRED_PROVIDERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_providers

NDIS_STATUS_WWAN_PRESHUTDOWN_
STATE
Article • 03/14/2023

The NDIS_STATUS_WWAN_PRESHUTDOWN_STATE notification is a one-way notification
from the MBB driver to the host. The MBB driver sends up this notification when the
modem has finished all operations required before shutdown.

This notification uses the NDIS_WWAN_PRESHUTDOWN_STATE structure.

Version Supported starting with Windows 10, version
1511.

Header Ndis.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preshutdown_state

NDIS_STATUS_WWAN_PROVISIONED_C
ONTEXTS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS notification to
inform the MB Service about updates to the list of provisioned contexts as a result of a
network update.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_PROVISIONED_CONTEXTS structure.

Miniport drivers must set the ElementType member of the
NDIS_WWAN_PROVISIONED_CONTEXTS structure's ContextListHeader to
WwanStructContext.

In some cases, the list of provisioned contexts is updated by the network either Over-
The-Air (OTA) or by Short Message Service (SMS). The miniport driver must update the
list of provisioned contexts accordingly. Thereafter, miniport drivers must notify the MB
Service about the updates using this INDICATION with the updated list.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_PROVISIONED_CONTEXTS

OID_WWAN_PROVISIONED_CONTEXTS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_provisioned_contexts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_provisioned_contexts

NDIS_STATUS_WWAN_RADIO_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_RADIO_STATE notification to inform the
MB Service when the user changes the hardware radio power, or the device's software-
based radio power state changes in response to an OID query or set request of
OID_WWAN_RADIO_STATE.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_RADIO_STATE structure.

Miniport drivers should return both the current hardware-based and software-based
radio power states in response to a query request

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_RADIO_STATE

OID_WWAN_RADIO_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_radio_state

NDIS_STATUS_WWAN_READY_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_READY_INFO notification to inform the
MB Service of device ready-state changes in response to
OID_WWAN_READY_INFO query requests.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_READY_INFO structure.

Miniport drivers must report all device ready-state changes as an unsolicited event.
When the miniport driver initializes the MB device, the miniport driver must set the
WWAN_READY_INFO ReadyState member to WwanReadyStateOff. Thereafter, miniport
drivers must report any device ready-state change to the MB Service through this
notification. For example, miniport drivers must report a device ready-state change
when the ReadyState member changes from WwanReadyStateOff to
WwanReadyStateDeviceLocked, or WwanReadyStateBadSim, or
WwanReadyStateSimNotInserted, or any other different device ready-state.

Most device ready-state changes happen when the device initializes the radio stack and
the SIM card (if required). A change can also happen during the course of a session
between the MB Service and the miniport driver, such as user changing the SIM card.
The behavior of the MB Service shall change accordingly based on the new device
ready-state.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_READY_INFO

OID_WWAN_READY_INFO

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ready_info

NDIS_STATUS_WWAN_REGISTER_PARA
MS_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_REGISTER_PARAMS_STATE notification to
inform the MB Service about the 5G-specific registration parameters used by the MB
device.

Drivers send an NDIS_STATUS_WWAN_REGISTER_PARAMS_STATE notification in
response to an OID query or set request of OID_WWAN_REGISTER_PARAMS.

This notification uses the NDIS_WWAN_REGISTER_PARAMS_INFO structure which
contains a WWAN_REGISTRATION_PARAMS_INFO structure.

For more information see OID_WWAN_REGISTER_PARAMS.

Requirement Value

Minimum supported client Windows 11

Version Windows Server 2022. NDIS 6.84 and later.

Header Ndis.h

WWAN_REGISTRATION_PARAMS_INFO

NDIS_WWAN_REGISTER_PARAMS_INFO

OID_WWAN_REGISTER_PARAMS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_register_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_register_params_info

NDIS_STATUS_WWAN_REGISTER_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_REGISTER_STATE notification to
communicate changes to the MB device's registration state to the MB Service.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_REGISTRATION_STATE structure.

As the registration state of the device changes, the miniport driver must send
appropriate indications so that the MB Service can reflect the correct state to the user.

Registration state changes due to a number of reasons. It may directly result from set
requests from the MB Service for OID_WWAN_REGISTER_STATE such as a transient state
transition from WwanRegisterStateSearching to WwanRegisterStateHome. It may also
result from automatic operations by the miniport driver in the case of automatic
provider selection. Finally, it may be caused by change of network availability, for
example, losing network coverage may result in transition from
WwanRegisterStateHome to WwanRegisterStateDeregistered.

Except for the changes caused by MB Service OID_WWAN_REGISTER_STATE requests,
the miniport driver shall notify the MB Service whenever the registration state changes
regardless of the underlying cause.

CDMA devices do not support the MB Service initiated registration and deregistration.
However, a device initiated register state change notifications based on the availability
or non-availability of the carrier network must be sent to the MB Service. CDMA devices
must do automatic registration.

For devices that do automatic registration on power-up, irrespective of the current
registration mode--auto or manual, the miniport driver must send the register state
notification on successful registration.

For manual registration, the MB Service shall only initiate registration after the miniport
driver indicates that ReadyState is WwanReadyStateInitialized.

Miniport driver must use the following guidelines while responding to set requests:

Drivers must not respond with transient state for a set requests. Transient state for
registration is WwanRegisterStateSearching.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_registration_state

When RegisterAction is set to WwanRegisterActionManual, if the provider is not
visible when the miniport driver receives the request, the miniport driver shall
return error code WWAN_STATUS_PROVIDER_NOT_VISIBLE. The device must not
switch to automatic registration because of a failure in setting the manual mode. If
the device was earlier set to manually register to another network, this request
should change the device to register to the network specified in the request. The
value of RegisterState in response to the request should be set to
WwanRegisterStateDeregistered.

When RegisterAction is set to WwanRegisterActionManual, if the miniport driver
has already registered with the same network that is been requested, it shall
respond with WWAN_STATUS_SUCCESS.

The driver should attempt to register to the requested data-class in the set
OID_WWAN_REGISTER request. If the miniport driver cannot register to the
requested data-class, it should register to the best possible data-class. This is also
applicable when the device is already registered to a provider (automatic and
manual registration mode) with some other data-class. Any change in the data-
class should also result in NDIS_STATUS_WWAN_PACKET_SERVICE notification.

When RegisterAction is set to WwanRegisterActionManual, and the Radio is OFF,
the miniport driver must program the device to manual registration mode and
complete the request with the transaction notification. The RegisterState should
be set to WwanRegisterStateDeregistered. The device must attempt a manual
registration when the Radio changes to ON state and the event notification must
be sent.

When RegisterAction is set to WwanRegisterActionAutomatic, and the Radio is
OFF, the miniport driver must program the device to automatic registration mode
and must complete the request with the transaction notification. The RegisterState
should be set to WwanRegisterStateDeregistered. The device must do an
automatic registration when the Radio goes to ON state and the event notification
must be sent.

In case of emergency state registration (WwanRegisterStateDenied), the uStatus
should be set to WWAN_STATUS_SUCCESS and
NDIS_STATUS_WWAN_READY_INFO notification must be sent with
EmergencyMode set to WwanEmergencyModeOn.

For using the state WwanRegisterStateDeregistered the miniport driver must use
the following guidelines:

WwanRegisterStateDeregistered is used by the miniport drivers for notifying
the MB Service that the Radio is OFF but the request for RegisterAction is
completed.

WwanRegisterStateDeregistered is used by the miniport drivers for notifying
the MB Service of a network initiated deregistration.

WwanRegisterStateDeregistered is used by the miniport drivers for notifying
the MB Service of the lost connectivity to the network due to no network
coverage.

GSM and CDMA devices must send the register state notification to notify the
availability or non-availability of the carrier for a PS connection. When the MB
device detects the availability of the carrier network, it must send an event
notification with one of the appropriate register states--
WwanRegisterStateHome, WwanRegisterStateRoaming, or
WwanRegisterStatePartner. On losing the carrier network signal, an event
notification with WwanRegisterStateDeregistered must be indicated to the MB
Service.

The miniport driver returns the query result according to the following rules:

When the device is trying to lock on to a provider during registration, the miniport
driver shall set RegisterState as WwanRegisterStateSearching. Both the
ProviderName and RoamingText members should be set to NULL. In case of
Manual register mode, ProviderId must be filled in with the ProviderId from the
last manual registration set request. ProviderId can be set to NULL in case of
automatic register mode.

This is a transient state as the miniport driver will eventually move to a stable state
at the end of registration, for example, WwanRegisterStateHome,
WwanRegisterStatePartner, or WwanRegisterStateRoaming for a successful
registration; or WwanRegisterStateDenied for an emergency state registration.

If the device is not registered with any provider, the miniport driver shall return
WwanRegisterStateDeregistered. Both the ProviderName and RoamingText
members should be set to NULL. In case of Manual register mode, ProviderId must
be filled in with the ProviderId from the last manual registration set request.
ProviderId can be set to NULL in case of automatic register mode.

If the device is registered with the home provider, the miniport driver shall set
RegisterState as WwanRegisterStateHome. The ProviderId member shall be set to

the home provider ID. The ProviderName must be set to the name of home
provider network. The RoamingText member should be set to NULL.

If the device is registered with a roaming provider, the miniport driver shall set
RegisterState as WwanRegisterStatePartner if the provider is a preferred roaming
partner or just WwanRegisterStateRoaming for a roaming partner, respectively. If
the miniport driver does not distinguish the two, it shall set the value to
WwanRegisterStateRoaming. The ProviderId member shall be set to the provider
ID of the current provider the device is registered with and the ProviderName
must be filled in with the current registered provider name. The RoamingText
member should be set to some provider specific string value if exists or to NULL
otherwise.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_REGISTRATION_STATE

OID_WWAN_REGISTER_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_registration_state

NDIS_STATUS_WWAN_SAR_CONFIG
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SAR_CONFIG notification to inform the
mobile broadband (MB) service about the completion of a previous
OID_WWAN_SAR_CONFIG Query or Set request.

Unsolicited events are not applicable.

This notification uses the NDIS_WWAN_SAR_CONFIG_INFO structure.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB SAR Platform Support

OID_WWAN_SAR_CONFIG

NDIS_WWAN_SAR_CONFIG_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_config_info

NDIS_STATUS_WWAN_SAR_TRANSMISSI
ON_STATUS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SAR_TRANSMISSION_STATUS
notification to inform the mobile broadband (MB) service about the completion of a
previous OID_WWAN_SAR_TRANSMISSION_STATUS Query or Set request.

Unsolicited events are sent when there is a change to the active over-the-air (OTA)
channels. For example, if a modem started uploading packet data, it would be required
to set up uplink channels when it uses the network data channel so that it can upload
payloads. This would trigger the notification to be provided to the operating system.

This notification uses the NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO structure.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB SAR Platform Support

OID_WWAN_SAR_TRANSMISSION_STATUS

NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_TRANSMISSION_STATUS_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_transmission_status_info

NDIS_STATUS_WWAN_SET_HOME_PROV
IDER_COMPLETE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SET_HOME_PROVIDER_COMPLETE
notification to inform the MB Service about the completion of
OID_WWAN_HOME_PROVIDER set requests.

This notification uses the NDIS_WWAN_SET_HOME_PROVIDER structure.

Version Supported starting with Windows 8.

Header Ndis.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_home_provider

NDIS_STATUS_WWAN_SERVICE_ACTIVAT
ION
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SERVICE_ACTIVATION notification to
respond to OID set requests of OID_WWAN_SERVICE_ACTIVATION.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_SERVICE_ACTIVATION_STATUS structure.

Miniport drivers must return the service activation status in response to an OID set
request of OID_WWAN_SERVICE_ACTIVATION.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

Remarks

Requirements

NDIS_STATUS_WWAN_SIGNAL_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SIGNAL_STATE notification to send a
signal strength notification when measured signal strength travels outside the threshold
within a pre-defined interval.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_SIGNAL_STATE structure.

By default, miniport drivers must notify the MB Service if the Rssi value changes by at
least +/-5 decibels from the last reported value, or at a maximum frequency of one
indication every 5 seconds. The threshold value is specified in the
SignalState.RssiThreshold member of the NDIS_WWAN_SIGNAL_STATE structure; while
the maximum frequency value is specified in the SignalState.RssiInterval member.

The DeviceCaps.WwanCellularClass member of the NDIS_WWAN_DEVICE_CAPS
structure controls how the Rssi value will be interpreted by the MB Service. If
WwanCellularClass is WwanCellularClassGSM, Rssi is reported as decibels above the
device's sensitivity noise floor. If WwanCellularClass is WwanCellularClassCDMA, Rssi is
reported as compensated RSSI (accounts for noise).

Applications should never poll for signal strength. Only in special situations, such as
startup, an application might use a query request to obtain signal strength.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_SIGNAL_STATE

OID_WWAN_SIGNAL_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state

NDIS_STATUS_WWAN_SLOT_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SLOT_INFO notification to inform the
MB service about the completion of a previous OID_WWAN_SLOT_INFO query request.

Miniport drivers can send a NDIS_STATUS_WWAN_SLOT_INFO notification as an
unsolicited event when the slot/card state changes.

This notification uses the NDIS_WWAN_SLOT_INFO structure.

Version Windows 10, version 1703

Header Ndis.h

OID_WWAN_SLOT_INFO

NDIS_WWAN_SLOT_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_slot_info

NDIS_STATUS_WWAN_SMS_CONFIGURA
TION
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SMS_CONFIGURATION notification to
inform the MB Service about either the completion of a previous
OID_WWAN_SMS_CONFIGURATION query or set request, or an event notification in the
case of change in SMS configuration.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_SMS_CONFIGURATION structure.

The miniport driver must send this unsolicited indication when the MB device's SMS
subsystem is ready for SMS operation.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_SMS_CONFIGURATION

NDIS_WWAN_SMS_CONFIGURATION

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_configuration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_configuration

NDIS_STATUS_WWAN_SMS_DELETE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SMS_DELETE notification to inform the
MB Service about the completion of a previous delete request through
OID_WWAN_SMS_DELETE.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_SMS_DELETE_STATUS structure.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_SMS_DELETE

NDIS_WWAN_SMS_DELETE_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete_status

NDIS_STATUS_WWAN_SMS_RECEIVE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SMS_RECEIVE notification to inform the
MB Service about either the completion of a previous read request through a
OID_WWAN_SMS_READ query request, or the arrival of a new class-0 (flash/alert)
message from the network provider as an event notification.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_SMS_RECEIVE structure.

RequestId is set to "0" by the miniport driver to indicate the arrival of the new class-0
(flash/alert) message. Arrival of new class-0 (flash/alert) messages is dependent on the
current network registration state.

If the request for read results in retrieval of large number of SMS records that can't be
accommodated in a pre-allocated buffer of miniport driver, then the SMS records can be
sent to the MB Service in multiple indications. The uStatus in this case must be set to
WWAN_STATUS_SMS_MORE_DATA for the intermediate transactions and the final
transaction must end with WWAN_STATUS_SUCCESS.

The following diagram represents the usage of the multiple indication method for large
number of SMS record retrieval:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_receive

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_SMS_READ

NDIS_WWAN_SMS_RECEIVE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_receive

NDIS_STATUS_WWAN_SMS_SEND
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SMS_SEND notification to inform the MB
Service about the completion of a previous send request through
OID_WWAN_SMS_SEND.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_SMS_SEND_STATUS structure.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_SMS_SEND

NDIS_WWAN_SMS_SEND_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send_status

NDIS_STATUS_WWAN_SMS_STATUS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SMS_STATUS notification to inform the
MB Service about the following events:

The MB device's message store is full.

A new SMS text message has arrived, with the new message corresponding to
MessageIndex.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_SMS_STATUS structure.

Miniport drivers must use NDIS_STATUS_WWAN_SMS_STATUS to inform the MB Service
about the arrival of all non-class-0 (flash/alert) messages. To inform the MB Service
about class-0 (flash/alert) message arrival, miniport drivers must use
NDIS_STATUS_WWAN_SMS_RECEIVE.

This indication could be a transactional notification for a query request of
OID_WWAN_SMS_STATUS or an unsolicited event.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_SMS_STATUS

NDIS_STATUS_WWAN_SMS_RECEIVE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_status

NDIS_STATUS_WWAN_SUPPORTED_DEV
ICE_SERVICES
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SUPPORTED_DEVICE_SERVICES
notification to inform the MB Service about the completion of
OID_WWAN_ENUMERATE_DEVICE_SERVICES query requests.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_SUPPORTED_DEVICE_SERVICES structure.

Version Supported starting with Windows 8.

Header Ndis.h

OID_WWAN_ENUMERATE_DEVICE_SERVICES

NDIS_WWAN_SUPPORTED_DEVICE_SERVICES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_supported_device_services
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_supported_device_services

NDIS_STATUS_WWAN_SYS_CAPS_INFO
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_SYS_CAPS_INFO notification to inform
the MB service about the completion of a previous OID_WWAN_SYS_CAPS_INFO query
request.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_SYS_CAPS_INFO structure.

Version Windows 10, version 1703

Header Ndis.h

OID_WWAN_SYS_CAPS_INFO

NDIS_WWAN_SYS_CAPS_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sys_caps_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sys_caps_info

NDIS_STATUS_WWAN_UE_POLICY_STATE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_UE_POLICY_STATE notification to inform
the MB Service of device UE policies in response to OID_WWAN_UE_POLICY query
requests.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_STATUS_WWAN_UE_POLICY_STATE structure.

Version: Windows 11, version 21H2

Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_UE_POLICY_STATE

OID_WWAN_UE_POLICY

Requirements

See also

NDIS_STATUS_WWAN_UICC_APP_LIST
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_UICC_APP_LIST notification to inform
the mobile broadband (MB) service about the completion of a previous
OID_WWAN_UICC_APP_LIST Query request.

Unsolicited events are not applicable.

This notification uses the NDIS_WWAN_UICC_APP_LIST structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

OID_WWAN_UICC_APP_LIST

NDIS_WWAN_UICC_APP_LIST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_app_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_app_list

NDIS_STATUS_WWAN_UICC_BINARY_RE
SPONSE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_UICC_BINARY_RESPONSE notification to
inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_UICC_ACCESS_BINARY Query or Set request.

Unsolicited events are not applicable.

This notification uses the NDIS_WWAN_UICC_RESPONSE structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

OID_WWAN_UICC_ACCESS_BINARY

NDIS_WWAN_UICC_RESPONSE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response

NDIS_STATUS_WWAN_UICC_FILE_STATU
S
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_UICC_FILE_STATUS notification to
inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_UICC_FILE_STATUS Query request.

Unsolicited events are not applicable.

This notification uses the NDIS_WWAN_UICC_FILE_STATUS structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

OID_WWAN_UICC_FILE_STATUS

NDIS_WWAN_UICC_FILE_STATUS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_status

NDIS_STATUS_WWAN_UICC_RECORD_RE
SPONSE
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_UICC_RECORD_RESPONSE notification
to inform the mobile broadband (MB) service about the completion of a previous
OID_WWAN_UICC_ACCESS_RECORD Query or Set request.

Unsolicited events are not applicable.

This notification uses the NDIS_WWAN_UICC_RESPONSE structure.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

OID_WWAN_UICC_ACCESS_RECORD

NDIS_WWAN_UICC_RESPONSE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response

NDIS_STATUS_WWAN_UICC_RESET_INF
O
Article • 03/14/2023

The NDIS_STATUS_WWAN_UICC_RESET_INFO status notification is sent by a modem
miniport adapter to inform the MB host of the current passthrough status to a UICC
smart card. This notification is sent in the folloiwng two scenarios:

1. After an OID_WWAN_UICC_RESET query request.
2. After UICC reset is complete following an OID_WWAN_UICC_RESET set request, to

inform the MB host of the passthrough status of the UICC card post-reset.

This notification uses the NDIS_WWAN_UICC_RESET_INFO structure.

Version: Windows 10, version 1709 Header: Ndis.h

OID_WWAN_UICC_RESET

NDIS_WWAN_UICC_RESET_INFO

MB low level UICC access

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_reset_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_reset_info

NDIS_STATUS_WWAN_UICC_TERMINAL_
CAPABILITY_INFO
Article • 03/14/2023

The NDIS_STATUS_WWAN_UICC_TERMINAL_CAPABILITY_INFO status notification is sent
by a modem miniport adapter to inform the MB host of the last terminal capability
objects sent to the modem. This notification is sent in response to
OID_WWAN_UICC_TERMINAL_CAPABILITY query and set requests.

This notification uses the NDIS_WWAN_UICC_TERMINAL_CAPABILITY_INFO structure.

Version: Windows 10, version 1607

Header: Ndis.h

OID_WWAN_UICC_TERMINAL_CAPABILITY

NDIS_WWAN_UICC_TERMINAL_CAPABILITY_INFO

MB low level UICC access

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_uicc_terminal_capability_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_uicc_terminal_capability_info

NDIS_STATUS_WWAN_USSD
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_USSD notification to implement the
transaction completion response for Unstructured Supplementary Service Data (USSD)
operations with the NDIS_WWAN_USSD_REQUEST structure.

Miniport drivers can also send unsolicited events with this notification using the
NDIS_WWAN_USSD_EVENT structure to describe the nature of the USSD event.

Version Supported starting with Windows 8.

Header Ndis.h

NDIS_WWAN_USSD_REQUEST

NDIS_WWAN_USSD_EVENT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ussd_event

NDIS_STATUS_WWAN_VENDOR_SPECIFI
C
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_VENDOR_SPECIFIC notification to
implement the transaction completion response for vendor specific operation or vendor
specific change notifications.

Miniport drivers can also send unsolicited events with this notification.

This notification uses the NDIS_WWAN_VENDOR_SPECIFIC structure.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

NDIS_WWAN_VENDOR_SPECIFIC

OID_WWAN_VENDOR_SPECIFIC

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_vendor_specific
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_vendor_specific

NDIS_STATUS_WWAN_VISIBLE_PROVIDE
RS
Article • 03/14/2023

Miniport drivers use the NDIS_STATUS_WWAN_VISIBLE_PROVIDERS notification to
inform the MB Service about the completion of OID_WWAN_VISIBLE_PROVIDERS query
requests.

Miniport drivers cannot use this notification to send unsolicited events.

This notification uses the NDIS_WWAN_VISIBLE_PROVIDERS structure.

Version Available in Windows 7 and later versions of
Windows.

Header Ndis.h

OID_WWAN_VISIBLE_PROVIDERS

NDIS_WWAN_VISIBLE_PROVIDERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers

Supplemental MB Documentation
Topics
Article • 03/14/2023

The following sections provide supplemental information for developers of MB devices.

HOST Shutdown Device Service

IHV Guidance for Implementing Multimode and Multicarrier Capable MB Devices

Mobile Broadband Device Firmware Update

Mobile Broadband Class Driver Logs: Event Trace Log Tracing

Mobile Broadband Implementation Guidelines for USB Devices

Collecting Mobile Broadband Logs

Analyzing Mobile Broadband Logs

Analyzing Mobile Broadband Logs in Wireshark

TextAnalysisTool Filter Files

HOST Shutdown Device Service
Article • 12/15/2021

This topic provides guidelines for Mobile Broadband Interface Model (MBIM)-compliant
devices to implement and report the described device service when queried by
CID_MBIM_DEVICE_SERVICES.

The information in this topic applies to Windows 8 and later.

The MBIM-compliant device implements and reports the following device service when
queried by CID_MBIM_DEVICE_SERVICES. The existing well-known services are defined
in section 10.1 of the USB NCM Mobile Broadband Interface Model (MBIM) V1.0
specification . Microsoft extends this to define the following service.

Service Name = Microsoft Host Shutdown

UUID = UUID_MS_HOSTSHUTDOWN

UUID Value = 883b7c26-985f-43fa-9804-27d7fb80959c

CID Minimum OS version

CID_MBIM_MSHOSTSHUTDOWN Windows 8

CID_MBIM_MSHOSTPRESHUTDOWN Windows 10, version 1511

This command informs the device that the host is shutting down. The MB device may
lose power.

CID: CID_MBIM_MSHOSTSHUTDOWN

Command Code: 1

Set: Yes

Microsoft Host Shutdown

Defined CIDs for UUID_MS_HOSTSHUTDOWN
device service

CID_MBIM_MSHOSTSHUTDOWN

https://go.microsoft.com/fwlink/p/?linkid=320791

Query: No

Event: No

Set InformationBuffer payload: N/A

Query InformationBuffer payload: N/A

Completion InformationBuffer payload: N/A

Set: InformationBuffer on MBIM_COMMAND_MSG not used. InformationBuffer of
MBIM_COMMAND_DONE not used.

Query: Unsupported

Unsolicited Event: Unsupported

The Mobile Broadband Class Driver sends the host shutdown notification to mobile
broadband devices supporting this device service, on each host state transition into S4
and S5 states.

This notification is to provide mobile broadband devices with an early indication to
allow them to initiate a mobile network deregister message and initiate SIM electrical
de-initialization.

The following information summarizes the list of host sent CIDs/CMDs to the device for
various system transitions and device power state transitions:

MSHOSTSHUTDOWN CID is sent to the device on host state transitioning into S4
and S5.
MBIM_CMD_CLOSE is sent to the device when host puts the device into D3 mode.

S0 S1/S2/S3 S4 S5

D0 MBIM_CMD_OPEN N/A N/A N/A

D1 N/A N/A N/A N/A

D2 N/A N/A N/A N/A

D3 N/A MBIM_CMD_CLOSE MSHOSTSHUTDOWN MSHOSTSHUTDOWN

Remarks

CID_MBIM_MSHOSTPRESHUTDOWN

This command notifies the MBIM modem that the system is undergoing pre-shutdown
and it should finish all its operations, deregister from the network, and store necessary
information to the host for flashless modem cases. The pre-shutdown notification is sent
down when the host is preparing to enter S4 and S5 states and is waiting for all services
to shut down appropriately.

CID: CID_MBIM_MSHOSTPRESHUTDOWN

Command Code: 2

Set: Yes

Query: No

Notification: No

Set InformationBuffer payload: N/A

Query InformationBuffer payload: N/A

Completion InformationBuffer payload: N/A

Parameters:

Set Query Notification

Command CID_MBIM_SET_MSHOSTPRESHUTDOWN N/A N/A

Response Empty N/A N/A

For the Set operation, InformationBuffer and InformationBufferLength are empty.

Status Codes:

Status code Description

MBIM_STATUS_SUCCESS Pre-shutdown operations completed by the modem.

MBIM_STATUS_NO_DEVICE_SUPPORT The device does not support pre-shutdown and no pre-
shutdown operations are needed.

IHV Guidance for Implementing Multimode and Multicarrier
Capable MB Devices
Article • 12/15/2021

This topic provides information about implementing support for multiple Radio Access Technologies (RAT) and multiple operators in
Windows. It supplements the USB NCM Mobile Broadband Interface Model (MBIM) V1.0 specification that outlines the CIDs required for
supporting the multimode multicarrier scenario.

The information in this topic applies to:

Windows 8

This topic provides guidance to IHVs for implementing support for multiple Radio Access Technologies (RAT) and multiple operators in
Windows. A short summary of the most relevant sections of the spec is provided below.

A multimode network has multiple RATs or cellular classes. A multicarrier device is able to support multiple network providers within the
same device. One of the many networks supported can be a multimode network.

In many places in this document it is required that multicarrier providers reported by a multicarrier device as part of CID processing must
be set-able as home providers. This section describes how to determine if a provider is settable as a home provider. The ability to set a
provider as a home provider may depend on many factors that are device dependent such as being visible, having firmware support for the
provider, and having a SIM or equivalent to register with the provider. There may be additional factors. The device should ensure that the
device requirements are met for a multicarrier provider before reporting it as a settable home provider

The capable device will report multiple supported cellular classes in bmCellularClass of MBIM_DEVICE_CAPS as specified in Table 10-13 of
the specification. It will also report support for multiple carriers via the MBIMCtrlCapsMultiCarrier Mask in MBIM_CTRL_CAPS (Table 10-13).

Single-carrier multi-mode devices must behave like GSM devices. Such devices must not set any CDMA related capabilities in their
MBIM_DEVICE_CAPS_INFO.

The home provider can be set as specified in 10.3.6.4.

The visible providers CID contain an Action field that specifies whether the host is expecting:

1. Value 0, where device performs a full scan in the context of current home provider.
2. Value 1, where device is being queried to locate visible multicarrier providers that are settable as home providers. The device may

choose to accomplish this via a full scan, partial scan, or static list. The multicarrier preferred providers should be tagged as
MBIM_PROVIDER_STATE_PREFERRED_MULTICARRIER in the visible providers result as specified in Table 10-34 of the specification.

When devices report a static list of visible multicarrier providers based on location information, programmed using
CID_MBIM_LOCATION_INFO, the list should only contain providers valid for that location. As an extension of the above rule, devices should
not report the currently registered provider if the location represented by its MCC (Mobile Country Code) is different than the location
currently programmed in the device.

The device indicates the current cellular class using the dwCurrentCellularClass field of MBIM_REGISTRATION_STATE in Table 10-48 of the
specification.

Multicarrier devices are required to report the UUID_MULTICARRIER (described below) device service in response to this CID.

Supporting multimode devices with firmware switching

10.4.1 CID_MBIM_DEVICE_CAPS

10.4.6 CID_MBIM_HOME_PROVIDER

10.4.8 CID_MBIM_VISIBLE_PROVIDERS

10.4.9 CID_MBIM_REGISTER_STATE

10.4.30 CID_MBIM_DEVICE_SERVICES

https://go.microsoft.com/fwlink/p/?linkid=320791

Single-carrier multimode devices are not required to report UUID_MULTICARRIER device service in response to this CID.

The device uses this CID to report the current and previously added preferred multicarrier providers. This CID is supported when device
supports MBIMCtrlCapsMultiCarrier. When the host sets a multicarrier preferred provider, it is not required that the provider is settable as
home provider. But when the list is queried by the host, the device should only return multicarrier preferred providers that are settable as
home providers.

The following figure provides a sequence diagram of the steps involved in switching a device from its current mode based on a location
hint specified by the host. The operation requires the use of a device service described below to get/set additional information from the
device. One specific requirement is that the device should ensure that the host has had a chance to recover the pending notification from
the device prior to it falling off the bus. The diagram also specifies the time bounds and performance expectations of the various
operations.

The IHV device will implement and report the following device service when queried by CID_MBIM_DEVICE_SERVICES. The existing well-
known services are defined in the NCM MBIM spec in section 10.1. It is extended it to define the following service.

Service Name UUID UUID Value

Multi-carrier UUID_MULTICARRIER 8b569648- 628d-4653-9b9f- 1025404424e1

Specifically, the following CIDs are defined for UUID_MULTICARRIER device service.

CID Command
Code

Query Set Event Set InformationBuffer
payload

Query
InformationBuffer
payload

Completion InformationBuffe

CID_MBIM_MULTICARRIER_CAPABILITIES 1 Y N N N/A N/A MBIM_MULTICARRIER_CAPABIL

10.4.39 CID_MBIM_MULTICARRIER_PROVIDERS

MULTI-CARRIER DEVICE SERVICE

CID Command
Code

Query Set Event Set InformationBuffer
payload

Query
InformationBuffer
payload

Completion InformationBuffe

CID_MBIM_LOCATION_INFO 2 Y Y N MBIM_LOCATION_INFO N/A MBIM_LOCATION_INFO

CID_MBIM_MULTICARRIER_CURRENT_CID_LIST 3 Y N N N/A UUID MBIM_MULTICARRIERMODE_C

The command returns information about a MB device's multi-carrier capabilities. A device that requires a firmware reboot, and
correspondingly a device removal/arrival should provide the host with a hint using the appropriate flag to enable the host to provide the
appropriate user experience.

Query = InformationBuffer on MBIM_COMMAND_MSG not used. MBIM_MULTICARRIER_CAPABILITIES returned in InformationBuffer
MBIM_COMMAND_DONE

Set = Unsupported

Unsolicited Event = Unsupported

MBIM_MC_FLAGS_NONE 0h No flags set

MBIM_MC_FLAGS_STATIC_SCAN 1h Indicates that the results reported for visible
providers in scan results aren’t obtained from a
full network scan. The result may be obtained
from a hardcoded list.

MBIM_MC_FLAGS_¬¬FW_REQUIRES_REBOOT 2h Indicates that the device requires powering cycle
and rebooting to switch firmware.

Offset Size Field Description

0 4 dwCapabilities Returns the capabilities from
MBIM_MULTICARRIER_FLAGS

The command is used to set/query the current location information of the host. This is useful to the device if it needs to filter the list of
static (no physical scan) visible providers to the ones relevant to the current user location.

Query = InformationBuffer on MBIM_COMMAND_MSG not used. MBIM_LOCATION_INFO returned in InformationBuffer
MBIM_COMMAND_DONE

Set = InformationBuffer on MBIM_COMMAND_MSG contains MBIM_LOCATION_INFO

Unsolicited Event = Unsupported

The country code specified by the host will be based on the Geographical Location GEOID available on Windows. For more information, see
Table of Geographical Locations (Windows).

Offset Size Field Description

0 4 Country Geographical Location based on
GEOID.

This command is used to query the CIDs currently supposed by a device service.

Query = InformationBuffer on MBIM_COMMAND_MSG is a UUID for the device service.
MBIM_MULTICARRIERMODE_CURRENT_CID_LIST returned in InformationBuffer MBIM_COMMAND_DONE

Set = Unsupported

Unsolicited Event = Unsupported

CID_MBIM_MULTICARRIER_CAPABILITIES

CID_MBIM_LOCATION_INFO

CID_MBIM_MULTICARRIER_CURRENT_CID_LIST

https://learn.microsoft.com/en-us/windows/desktop/Intl/table-of-geographical-locations

Offset Size Field Type DescriptionOffset Size Field Type Description

0 4 CidCount UINT32 Number of CIDs supported
for this device service.

4 DataBuffer DATABUFFER CidList: List of CIDs
supported for this device
service. There must be CID
Count number of entries in
this list. Each CID is of type
UINT32.

Mobile Broadband Device Firmware
Update
Article • 09/27/2024

This article provides guidance to Mobile Broadband (MB) module manufacturers
intending to support firmware upgrade devices via Windows Update (WU). The devices
must be compliant with the USB NCM Mobile Broadband Interface Model (MBIM) V1.0
specification released by the USB-IF Device Working Group.

The information in this article applies to:

Windows 8/Windows 10/Windows 11

To support firmware updates on Mobile Broadband using Windows Update, module or
device manufacturers need to comply with the following requirements:

UMDF (User Mode Driver Framework) based driver developed by the module or
device manufacturer, packaged along with the INF file and firmware payload.
Sample INF file and details are provided in the later part of this document
Device firmware to implement the following functionalities:

Firmware ID Device Service (FID). For more information, see FID Device Service.
Firmware to support a firmware update device service. This is a device
manufacturer specific device service that enables a UMDF driver to call into and
execute/download the firmware payload and start the firmware update process.

Operational Overview

The following diagram shows the high level design and interaction between the three
components involved: MBIM device, Windows 8 Operating System and IHV supplied
firmware upgrade driver.

Device Requirements

https://go.microsoft.com/fwlink/p/?linkid=320791
https://go.microsoft.com/fwlink/p/?linkid=320791
https://go.microsoft.com/fwlink/p/?linkid=320791

When the WWAN Service detects the arrival of new MB device, it checks if device
support Firmware ID (FID) Device Service. If it's present, it retrieves the FID, which is
defined to be GUID. The Firmware Device Service specification that the IHV needs
to the support on the device is described below.
WWAN Service (Windows OS) generates “soft device-node” using the FID obtained
above as the device hardware Id. This referred to as “Soft Dev Node” in the
diagram above. The creation of the dev-node will kick start PnP subsystem
(Windows OS) to find the best matched driver. In Windows 8, PnP system will first
attempt to install a driver from the local store, if one is available, and in parallel OS
will attempt to fetch a better matched driver from WU. The inbox NULL driver will
used be used as default if better match driver isn't available to eliminate “Driver
Not Found” issue.
The IHV WU package, based on the FID match, is pulled down to the machine and
installed. It's expected that the FID represents a unique firmware SKU (uniqueness
here's defined by combination device VID/PID/REV and MNO). WU package would
contain an IHV authored UMDF driver as well as a firmware payload.
Once the IHV UMDF is loaded on the soft dev-node it's responsible for controlling
the firmware update flow. It should be noted that the life time of the soft dev-node
is tied to physical presence of the MBIM device. The UMDF driver shall perform the
following steps to performing firmware updates

It's acceptable for the device to reboot multiple times during the firmware
update process, but would cause the UMDF driver to get unloaded/reloaded

The entire firmware upgrade process, including reboots, should take place no
more than 60 seconds.
After the firmware update is completed and device has reverted to MBIM mode,
Windows should be notified. This is done by clearing the previously set
DEVPKEY_Device_PostInstallInProgress property. The
IWDFUnifiedPropertyStore interface describes how to set a property on dev-
node. A previously set property can be cleared using DEVPROP_TYPE_EMPTY.
During OnPrepareHardware UMDF callback, the UMDF driver shall check if the
firmware on the device needs to be updated. This is done by comparing the
version of the firmware on the device against the one that came in via Windows
Update. Additional guidance is provided later in the document regarding
placement location of firmware binary. If firmware update is required, the UMDF
driver should:

Schedule a work-item. The actual firmware upgrade happens in the context
of the work-item.
Once the work-item is successfully scheduled, notify Windows about the start
of firmware update. It's done by setting the
DEVPKEY_Device_PostInstallInProgress property on the soft dev-node in the
context of OnPrepareHardware UMDF callback.
It's important not to block the OnPrepareHardware callback while the
firmware update is in progress. It's expected that OnPrepareHardware
callback is completed within a second or two at the most.

Sample INF file for the WU Package

This section provides a sample INF that is part of the WU package. The key points to
note in INF file are:

The firmware binaries are independent of the UMDF driver.
The firmware binaries are located in the driverstore directory, a path determined
by the operating system and referenced in the INF using DIRID 13. The binaries
can't be executable files containing PE/COFF headers.
%13%\<UniqueBinaryName>.bin

The INF file stores this location in the registry and the UMDF driver reads the
registry value to discover the binary location.
The following sample INF template highlights items that need to be filled by the
IHV.

C++

[Version]
Signature = "$WINDOWS NT$"
Class = Firmware

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wudfddi/nn-wudfddi-iwdfunifiedpropertystore
https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/using-workitems

ClassGuid = {f2e7dd72-6468-4e36-b6f1-6488f42c1b52}
Provider = %Provider%
DriverVer = 06/21/2006,6.2.8303.0
CatalogFile = MBFWDriver.cat
PnpLockdown = 1

[Manufacturer]
%Mfg% = Firmware,NTx86

[Firmware.NTx86]
%DeviceDesc% = Firmware_Install,MBFW\{FirmwareID} ; From Device
Service
;%DeviceDesc% = Firmware_Install,MBFW\{2B13DD42-649C-3442-9E08-
D85B26D7825C}

[Firmware_Install.NT]
CopyFiles = FirmwareDriver_CopyFiles,FirmwareImage_CopyFiles

[Firmware_Install.NT.HW]
AddReg = Device_AddReg

[Device_AddReg]
HKR,,FirmwareBinary,,"%13%\MBIHVFirmware-XYZ-1.0.bin"

[Firmware_Install.NT.Services]
AddService = WUDFRd,0x000001fa,WUDFRD_ServiceInstall

[WUDFRD_ServiceInstall]
DisplayName = %WudfRdDisplayName%
ServiceType = 1
StartType = 3
ErrorControl = 1
ServiceBinary = %12%\WUDFRd.sys
LoadOrderGroup = Base

[Firmware_Install.NT.CoInstallers]
CopyFiles = WudfCoInstaller_CopyFiles

[WudfCoInstaller_AddReg]
HKR,,CoInstallers32,0x00010000,"WUDFCoinstaller.dll"

[Firmware_Install.NT.Wdf]
UmdfService = MBIHVFirmwareDriver,MBIHVFirmwareDriver_Install
UmdfServiceOrder = MBIHVFirmwareDriver

[MBIHVFirmwareDriver_Install]
UmdfLibraryVersion = 1.11
ServiceBinary = %12%\UMDF\MBFWDriver.dll
DriverCLSID = {<DriverClassGuid>} ; From UMDF driver

[FirmwareImage_CopyFiles]
MBIHVFirmware-XYZ-1.0.bin ; Firmware Image

[FirmwareDriver_CopyFiles]
MBFWDriver.dll ; UMDF driver for SoftDevNode

Firmware Identification Device Service (FID Device Service)

The MBIM compliant device will implement and report the following device service
when queried by CID_MBIM_DEVICE_SERVICES. The existing well-known services are
defined in the NCM MBIM spec in section 10.1. Microsoft Corporation extends this to
define the following service.

Service Name = Microsoft Firmware ID

UUID = UUID_MSFWID UUID

Value = e9f7dea2-feaf-4009-93ce-90a3694103b6

Specifically, the following CID is defined for UUID_MSFWID device service:

CID = CID_MBIM_MSFWID_FIRMWAREID

Command Code = 1

Query = Yes

Set = No

Event = No

Set InformationBuffer payload = N/A

Query InformationBuffer payload = N/A

Completion InformationBuffer payload = UUID

[DestinationDirs]
FirmwareImage_CopyFiles = 13 ; Driver Store
FirmwareDriver_CopyFiles = 12,UMDF ;%SystemRoot%\System32\drivers\UMDF

[SourceDisksFiles]
MBIHVFirmware-XYZ-1.0.bin = 1

[SourceDisksNames]
1 = %DiskName%

; ================== Generic ==================================

[Strings]
Provider = "MBIHV"
Mfg = "MBIHV"
DeviceDesc = "MBIHV Mobile Broadband Firmware Device"
DiskName = "Firmware Driver Installation Media"

CID_MBIM_MSFWID_FIRMWAREID

The command returns the MNO or IHV assigned Firmware ID for the device. The UUID is
encoded based on the guidelines in the MBIM specification.

Query = InformationBuffer on MBIM_COMMAND_MSG not used. UUID returned in
InformationBuffer MBIM_COMMAND_DONE.

Set = Unsupported

Unsolicited Event = Unsupported

Code snippets for behavior of UMDF driver

As indicated earlier, the UMDF driver should indicate to the Windows when it starts and
completes firmware upgrade. This section provides code snippets that show how the
driver should notify Windows of these events.

C++

/**
 * This is the IPnpCallbackHardware*:OnPrepareHardware handler
 * in the UMDF driver. This is called every time the firmware
 * update is device is started. Since this handler should be
 * blocked from returning actual the firmware update process
 * should be done in a workitem
 */
HRESULT
CMyDevice::OnPrepareHardware(IWDFDevice* pDevice)
{
 HRESULT hr = S_OK;
 BOOL bFirmwareUpdateInProgress = FALSE;
 BOOL bFirmwareUpdateNeeded = FALSE;
 BOOL bFirmwareUpdateIsDone = FALSE;

 //
 // The snippets below demonstrates the steps for firmware
 // update against a MB device that loads the updated firmware
 // on device boot. So the firmware update driver needs to
 // send the new firmware down to the device and then tell
 // the device to initiate a stop/start. Once the device has
 // reappeared, it would have automatically loaded the
 // new firmware
 //

 //
 // First, determine if firmware update is in progress. This
 // can be based on some registry key that is saved when
 // firmware update is started
 //

 // Assuming this status is returned in bFirmwareUpdateInProgress
 if (bFirmwareUpdateInProgress)
 {
 //
 // If firmware update is in progress, check if its done. For
 // this it may be necessary to access the MB device. Note that
 // if the MB device (& hence the Firmware update device) needs
 // multiple stop/starts to do the firmware update. In that case
 // it will be marked as done at the end of the process
 //

 // Assuming this status is returned in bFirmwareUpdateIsDone
 if (bFirmwareUpdateIsDone)
 {
 //
 // Signal the completion of the firmware update
 // process.
 //
 SignalFirmwareUpdateComplete(pDevice);
 }
 else
 {
 //
 // Take appropriate steps to get notified when
 // firmware update is done. Call SignalFirmwareUpdateComplete
 // when that notification is received
 //
 }
 }
 else
 {
 //
 // Determine if firmware update is needed. This can be
 // based on checking state in the registry of the last
 // firmware version set on the device to the firmware
 // version associated with this driver
 //

 // Assuming this status is returned in bFirmwareUpdateNeeded
 if (bFirmwareUpdateNeeded)
 {
 //
 // Create and queue a workitem to perform the firmware
 // update process. IWDFWorkItem can be used for this
 //

 // Assuming the creation/enquing status
 // is returned in hr

 if (SUCCEEDED(hr))
 {
 //
 // Work item queued. It will do the firmware update
 // Tell the OS that firmware update is in progress

 //
 SignalFirmwareUpdateInProgress(pDevice);
 }
 }
 }

 //
 // If we have a failure, we clear the firmware update
 // in progress state
 //
 if (FAILED(hr))
 {
 SignalFirmwareUpdateComplete(pDevice);
 }
 return S_OK;
}

/**
 * This function tells the OS that firmware update is in progress.
 * It should be called from the firmware update UMDF driver's
 * IPnpCallbackHardware*:OnPrepareHardware handler after it has
 * successfully queued a workitem to perform the firmware update
 */
HRESULT
CMyDevice::SignalFirmwareUpdateInProgress(
 __in IWDFDevice* pDevice
)
{
 HRESULT hr = S_OK;
 IWDFUnifiedPropertyStoreFactory* spPropertyStoreFactory = NULL;
 IWDFUnifiedPropertyStore* spPropStore = NULL;
 WDF_PROPERTY_STORE_ROOT wdfPropRoot = { sizeof(WDF_PROPERTY_STORE_ROOT),
WdfPropertyStoreRootClassHardwareKey };
 DEVPROP_BOOLEAN boolValue = DEVPROP_TRUE;

 do
 {

 hr = pDevice->QueryInterface(IID_PPV_ARGS(&spPropertyStoreFactory));
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to query for property store
factory. Error = 0x%x", hr);
 break;

 }

 hr = spPropertyStoreFactory->RetrieveUnifiedDevicePropertyStore(
 &wdfPropRoot,
 &spPropStore
);
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to query for device property
store. Error = 0x%x", hr);

 break;
 }

 // Set the OS flag
 hr = spPropStore->SetPropertyData(
 reinterpret_cast<const DEVPROPKEY*>
(&DEVPKEY_Device_PostInstallInProgress),
 0, // this property is language neutral
 0,
 DEVPROP_TYPE_BOOLEAN,
 sizeof(DEVPROP_BOOLEAN),
 &boolValue
);
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to set device property for
PostInstallInProgress. Error = 0x%x", hr);
 break;
 }

 //
 // Save some state so that we know we are in the process
 // of firmware update
 //
 } while (FALSE);

 if (spPropStore)
 {
 spPropStore->Release();
 }

 if (spPropertyStoreFactory)
 {
 spPropertyStoreFactory->Release();
 }

 return hr;
}

/**
 * This function tells the OS that firmware update is done
 * It should be called only after the full firmware update process
 * (including any MB device stop/start) has finished
 */
HRESULT
CMyDevice::SignalFirmwareUpdateComplete(
 __in IWDFDevice* pDevice
)
{
 HRESULT hr = S_OK;
 IWDFUnifiedPropertyStoreFactory* spPropertyStoreFactory = NULL;
 IWDFUnifiedPropertyStore* spPropStore = NULL;
 WDF_PROPERTY_STORE_ROOT wdfPropRoot = { sizeof(WDF_PROPERTY_STORE_ROOT),
WdfPropertyStoreRootClassHardwareKey };

 do
 {
 hr = pDevice->QueryInterface(IID_PPV_ARGS(&spPropertyStoreFactory));
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to query for property store
factory. Error = 0x%x", hr);
 break;

 }

 hr = spPropertyStoreFactory->RetrieveUnifiedDevicePropertyStore(
 &wdfPropRoot,
 &spPropStore
);
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to query for device property
store. Error = 0x%x", hr);
 break;
 }

 hr = spPropStore->SetPropertyData(
 reinterpret_cast<const DEVPROPKEY*>
(&DEVPKEY_Device_PostInstallInProgress),
 0, // this property is language neutral
 0,
 DEVPROP_TYPE_BOOLEAN,
 0,
 NULL
);
 if (FAILED(hr))
 {
 Trace(TRACE_LEVEL_ERROR, "Failed to clear device property for
PostInstallInProgress. Error = 0x%x", hr);
 break;
 }

 //
 // Save some state so that we can do quick check on
 // whether firmware update is needed or not
 //

 } while (FALSE);

 if (spPropStore)
 {
 spPropStore->Release();
 }

 if (spPropertyStoreFactory)
 {
 spPropertyStoreFactory->Release();
 }

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 return hr;
}

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Mobile Broadband Implementation
Guidelines for USB Devices
Article • 12/15/2021

This topic provides specific implementation guidance to help mobile broadband device
manufacturers produce compliant USB devices for Windows. It should be used in
conjunction with the USB NCM Mobile Broadband Interface Model (MBIM) V1.0
specification released by the USB-IF Device Working Group.

The information in this topic applies to:

Windows 8
Windows 8.1

MBIM devices may require time to complete initialization when they receive MBIM
OPEN message from the host. The device should wait for its initialization to complete
before responding to the MBIM OPEN message. The device should not respond to the
message with error status like MBIM_STATUS_BUSY and expect the host to poll the
device with MBIM OPEN messages. Responding to MBIM OPEN with a status other than
MBIM_STATUS_SUCCESS terminates the initialization process on the host.

Please refer to IHV Guidance for Implementing Multimode- and Multicarrier- Capable
MB Devices for details.

MBIM_CID_HOME_PROVIDER

MBIM devices must not fail a SET MBIM_CID_HOME_PROVIDER request with the
following listed status codes under the mentioned circumstances. The following statuses
are valid for the QUERY MBIM_CID_HOME_PROVIDER request but are not applicable for
a SET request.

MBIM_STATUS_SIM_NOT_INSERTED - MBIM devices must not fail a SET
MBIM_CID_HOME_PROVIDER request with status as
MBIM_STATUS_SIM_NOT_INSERTED if the SIM for the new home provider is
present but the SIM for the old home provider is not inserted.

Delaying MBIM Open

Multi-carrier\Multi-subscription

https://usb.org/document-library/mobile-broadband-interface-model-v10-errata-1-and-adopters-agreement

MBIM_STATUS_BAD_SIM - MBIM devices must not fail SET
MBIM_CID_HOME_PROVIDER request with MBIM_STATUS_BAD_SIM if the SIM for
the new home provider is good but the SIM for the old home provider is not bad.
MBIM_STATUS_PIN_REQUIRED - MBIM devices must not fail SET
MBIM_CID_HOME_PROVIDER request with MBIM_STATUS_PIN_REQUIRED
regardless of whether the old or new SIM is pin locked.

MBIM_CID_VISIBLE_PROVIDERS

MBIM_STATUS_SIM_NOT_INSERTED - When MBIM_VISIBLE_PROVIDERS_ACTION
is set to MBIMVisibleProvidersActionRestrictedScan the MBIM device must not fail
MBIM_CID_VISIBLE_PROVIDERS request with MBIM_STATUS_SIM_NOT_INSERTED
because the SIM for the current home provider is not present.
MBIM_STATUS_PIN_REQUIRED - When MBIM_VISIBLE_PROVIDERS_ACTION is set
to MBIMVisibleProvidersActionRestrictedScan the MBIM device must not fail
MBIM_CID_VISIBLE_PROVIDERS request with MBIM_STATUS_PIN_REQUIRED
because the SIM for the current home provider is PIN locked.

MBIM devices must follow these guidelines when responding to
MBIMPinOperationEnter requests:

For successful MBIMPinOperationEnter requests, when the device no longer
requires a PIN, the device must set status to MBIM_STATUS_SUCCESS and
MBIM_PIN_INFO::Pin Type to MBIMPinTypeNone.

The device must set status to MBIM_STATUS_SUCCESS for PIN-enable and PIN-
disable operations when the PIN is already in the requested state. The device must
set MBIM_PIN_INFO::PinType to MBIMPinTypeNone. Other members are ignored.

When a PIN mode is changed from Disabled to Enabled, the PIN state should be
MBIMPinStateUnlocked.

If PIN1 is enabled, the PIN state becomes MBIMPinStateLocked when the device is
power cycled.

For all other PINs, the PIN state can change from MBIMPinStateUnlocked to
MBIMPinStateLocked depending on mobile broadband device specific conditions.

PIN Not Supported: If a PIN operation is not supported by the device, the device
must set status to MBIM_STATUS_NO_DEVICE_SUPPORT. For example, enabling

Responding to Pin Operations

and disabling PIN2 is not typically supported by mobile broadband devices so the
above error code must be returned. All other members are ignored.

PIN Must be Entered: If a PIN operation requires a PIN to be entered, the device
must set status to MBIM_STATUS_PIN_REQUIRED and MBIM_PIN_INFO::PinType to
MBIMPinTypeXxx. Other members are ignored.

PIN Change Operation: If the device restricts the change of PIN value only when it
is in enabled state, a request to change in disabled state must be returned with
MBIM_STATUS_PIN_DISABLED.

PIN Retrial: On failure, the device must set status to MBIM_STATUS_FAILURE, and
MBIM_PIN_INFO::PinType to the same value as specified in MBIM_SET_PIN. Other
members are ignored except for MBIM_PIN_INFO::RemainingAttempts. This may
occur when an incorrect PIN is entered.

PIN Blocking: The PIN is blocked when the number of
MBIM_PIN_INFO::RemainingAttempts is zero. If the PIN unblock operation is not
available, the device must set status to MBIM_STATUS_FAILURE and
MBIM_PIN_INFO::PinType to MBIMPinTypeNone.
MBIM_PIN_INFO::RemainingAttempts should be set to 0 and all the other
members are ignored. Note If the device supports PIN unblock operations, the
device should follow the PIN Unblocking step to respond to the request.

Unblocking PIN: The PIN is blocked when MBIM_PIN_INFO::RemainingAttempts is
zero. To unblock the PIN, the device may request a corresponding PUK, if
applicable. In this case, the device must set status to MBIM_STATUS_FAILURE,
MBIM_PIN_INFO::PinType to the corresponding MBIMPinTypeXxxPUK, PinState
to MBIMPinStateLocked, and MBIM_PIN_INFO::RemainingAttempts should have
the number of attempts allowed to enter a valid PUK.

If PIN blocking results in the device or SIM becomes blocked, the device must send
a MBIM_CID_SUBSCRIBER_READY_STATUS notification with ReadyState set to
MBIMSubscriberReadyStateDeviceLocked.

If there is an active PDP context at the time of PIN1 blocking, the device must
deactivate the PDP context and send notifications to the operating system about
the PDP deactivation and link state change.

For successful requests, the device must set status to MBIM_STATUS_SUCCESS.
Other members are ignored.

For failed MBIMPinOperationEnter requests, the device must set status to
MBIM_STATUS_FAILURE and include applicable data as per the following details:

PIN Disabled or PIN Not Expected: For MBIMPinOperationEnter set requests,
when the corresponding PIN is either disabled or currently not expected by the
device, the device must set MBIM_PIN_INFO::PinType to MBIMPinTypeNone.
All other members are ignored.

PIN Not Supported: If the given PIN is not supported by the device, the device
must set status to MBIM_STATUS_NO_DEVICE_SUPPORT.

PIN Retrial: In this mode, the device requires the PIN to be re-entered as the
MBIM_PIN_INFO::RemainingAttempts value is still non-zero for this particular
type of PIN. The device must set MBIM_PIN_INFO::PinType to the same value as
that of MBIM_PIN_INFO::PinType in MBIM_SET_PIN.

PIN Blocking: The PIN is blocked when MBIM_PIN_INFO::RemainingAttempts is
zero. If the PIN unblock operation is not available, the device must set status to
MBIM_STATUS_FAILURE and MBIM_PIN_INFO::PinType to MBIMPinTypeNone.
All the other members are ignored. Note If the device supports PIN unblock
operations, the device should follow the PIN Unblocking step to respond to the
request.

PIN Unblocking: The PIN is blocked when
MBIM_PIN_INFO::RemainingAttempts is zero. To unblock the PIN, the device
may request a corresponding PIN Unlock Key (PUK), if applicable. In this case,
the device must set MBIM_PIN_INFO::PinType to the corresponding
MBIMPinTypeXxxPUK with the relevant details.

Blocked PUK: If the number of failed trials exceeds the preset value for entering
the MBIMPinTypeXxxPUK, then the PUK becomes blocked. The device must
signal this by setting status to MBIM_STATUS_FAILURE and
MBIM_PIN_INFO::PinType to MBIMPinTypeNone. In case PUK1 is blocked, the
device must send a MBIM_CID_SUBSCRIBER_READY_STATUS with ReadyState
set to MBIMSubscriberReadyStateBadSim.

MBIM devices must follow these guidelines when responding to
MBIMPinOperationEnable, MBIMPinOperationDisable, or
MBIMPinOperationChange requests.

MBIM devices that support Auto Packet Service Attach manage the attachment and
detachment of packet service from the mobile network at their discretion. The host may

Auto Packet Service Attach

still send an attach request to such a device on user request. When the device receives
the attach request from the host it should handle as follows:

If the device is not attached and not in the middle of an attach operation and is
capable of attaching then it should initiate a new attach procedure with the mobile
network.
If the device is not attached but in the middle of an auto attach operation then it
should wait for the auto attach operation to complete and complete the attach
request from the host with the status of the auto attach operation.
If the device is already attached then it should complete the attach request from
the host successfully.

When a device loses signal strength the device must indicate
MBIMActivationStateDeactivated followed by MBIMPacketServiceStateDetached
followed by MBIMRegisterStateDeregistered in that order. If the device loses packet
service while it is context activated the device must indicate
MBIMActivationStateDeactivated followed by MBIMPacketServiceStateDetached in
that order. The following sequence diagram shows the interaction between the host and
the device.

Signal Strength Loss and Data Connection Loss

When Basic IP information (as defined in MBIM section 10.5.20.1) is provided via
MBIM_CID_IP_CONFIGURATION, DNS server information (as defined in MBIM section
10.5.20.1) can also be provided via MBIM_CID_IP_CONFIGURATION. When DNS server
information is updated, MBIM_CID_IP_CONFIGURAITON must have the complete Basic
IP information obtained before. DNS server information can be provided solely via
MBIM_CID_IP_CONFIGURATION even if the Basic IP information is not provided via
MBIM_CID_IP_CONFIGURATION. This applies to both IPv4 and IPv6.

For basic IP information (as defined in MBIM section 10.5.20.1), the expected IP Layer
configuration mechanism is from router advertisement (RA). For DNS server information
(as defined in MBIM section 10.5.20.1), the expected IP Layer configuration mechanism
is DHCPv6.

DNS Server Information

IPv6

Basic IP information from RA - If a mobile network provides Basic IP information
(as defined in MBIM section 10.5.20.1) via RA, then MBIM devices must allow RA
packets to be forwarded to the host and must not intercept the RA packets or
provide the Basic IP information present in the RA packets via
MBIM_CID_IP_CONFIGURATION.
DNS server information from RA - The only IP Layer configuration mechanism for
DNS server information (as defined in MBIM section 10.5.20.1) supported by
Windows is DHCPv6. MBIM devices must configure DNS server information, even if
present in RA, via MBIM_CID_IP_CONFIGURATION.
Basic IP information and DNS server information from DHCPv6 - If a mobile
network provides basic IP information and DNS server information (as defined in
MBIM section 10.5.20.1) from DHCPv6, then MBIM devices must allow DHCPv6
packets to be forwarded to the host and must not intercept the DHCPv6 packets or
provide the basic IP information and DNS server information present in the
DHCPv6 packets via MBIM_CID_IP_CONFIGURATION.

MBIM devices must not fail MBIM_CID_RADIO_STATE operations with status of
MBIM_STATUS_SIM_NOT_INSERTED when SIM is not present. Radio operations must not
be failed due to SIM absence.

Data in the byte array fields listed below must be in host-byte order.

MBIM_CID_SIM_AUTH

MBIM_SIM_AUTH_REQ

1. Rand1
2. Rand2
3. Rand3

MBIM_CID_AKA_AUTH

MBIM_AKA_AUTH_REQ

1. Rand
2. Autn

MBIM_CID_RADIO_STATE

Byte-Ordering Requirements for Authentication
CIDs

MBIM_AKA_AUTH_INFO

1. Res
2. IK
3. CK
4. Auts

MBIM_CID_AKAP_AUTH

MBIM_AKAP_AUTH_REQ

1. Rand
2. Autn

MBIM_AKAP_AUTH_INFO

1. Res
2. IK
3. CK
4. Auts

Windows supports configuring Link Maximum Transmission Unit (MTU) only during
device initialization. Windows does not update the Link MTU based on the MTU
reported using MBIM_CID_IP_CONFIGURATION. Devices must communicate the network
supported link MTU using the MBIM_FUNCTIONAL_DESCRIPTOR.wMaxSegmentSize.
Link MTU values reported in this manner should be at least 1280 and at most 1500.

Setting Link MTU

Mobile Broadband Collecting Logs
Article • 03/14/2023

Follow these steps to collect the logs related to mobile broadband on a Windows
Desktop Device:

The steps above generate two files:

1. NetTrace.etl - Contains the traces for the run
2. NetTrace.cab - Contains additional details about the system that will be useful for

debugging

If the repro scenario includes a reboot update the start tracing command as follows:

Please note that PII will be captured in the logs collected using the above method.

Run one of these commands to convert the .etl file to a .txt file that can be used for
analysis:

* tracefmt<ETL file location>
or
* netsh trace convert <ETL file location>

* Open an Administrator Command Prompt window
* Run the below command to start tracing
 * netsh trace start wireless_dbg,provisioning overwrite=yes maxSize=999
level=5
* <Repro the scenario for which you need to collect logs>
* Run the below command to stop tracing
 * netsh trace stop

Collecting logs across a reboot

* netsh trace start wireless_dbg,provisioning overwrite=yes persist=yes
level=5

Decoding Logs

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/tracefmt-commands

Mobile Broadband Analyzing Logs
Article • 03/14/2023

TextAnalysisTool is an extensive text filtering tool that is useful for complex traces with
numerous ETW providers. You can filter logs of interest using the .tat files.

To collect the logs, follow the steps in MobileBroadband Collecting logs.

Use the .tat filters included in the specific feature to filter the logs:

* Copy and paste the lines into a <name>.tat file
* Open the log of interest in TextAnalysisTool
* Load the filter file(<name>.tat) into TextAnalysisTool by clicking File >
Load Filters

https://github.com/TextAnalysisTool/Releases

Analyzing Mobile Broadband Logs in
Wireshark
Article • 10/06/2023

Follow these steps to diagnose the logs related to mobile broadband using Wireshark:

1. Download the ETW (Event Tracing for Windows) reader. Wireshark packages the
ETW reader starting from version 3.5.

2. After you start the Wireshark installer, one of the steps is Choose Components.

Expand Tools, scroll down, and select Etwdump.

3. Launch the ETW reader.

4. Option A. Click the "…" button to choose an ETL file to decode. You can set filter
parameters to only decode events from specific providers. Then click the Start
button to decode the file.

Option B. Start a live session instead of decoding the events from a file. Live
sessions require an empty ETL file and you must specify filter parameters. Then
click the Start button.

5. Wireshark will display the decoded ETW messages and MBIM messages from
either a file or a live session. You may choose to filter relevant messages. The
example below filters out the WWAN-SVC and MBIM messages.

6. Select a specific message to see its details.

The MBIM extended version used to decode the MBIM messages will be chosen
automatically if MBIM_CID_VERSION is found. If MBIM_CID_VERSION is not found in an
ETL file or live session, you can manually choose the MBIM extended version to decode
the MBIM messages. Click Edit->Preferences…->Protocols->MBIM->Preferred MBIM
Extended Version for decoding when MBIM_CID_VERSION not captured.

Mobilebroadband TextAnalysisTool
Filters
Article • 12/15/2021

TextAnalysisTool is an extensive text filtering tool that is useful for complex traces with
numerous ETW providers. You can filter logs of interest using the .tat files.

TextAnalysisTool filters:

Basic Connectivity Log Filter

DSSA Log Filter

eSIM Download and Install Log Filter

eSIM Profile Operations Log Filter

LTE Attach Operation Log Filter

PIN Operations Log Filter

https://github.com/TextAnalysisTool/Releases

netsh mbn test
Article • 12/15/2021

netsh mbn test is a test kit separate from the normal release version. You need to install
the Hardware Lab Kit (HLK) client first to enable this feature.

Install the HLK client to enable the netsh mbn test function in DUT.

Alternatively, you can install HLK Taef Tool in the HLK package (path: installer\HLK-TAEF-
TOOL-[arch-language]) to enable netsh mbn test.

Run the test command on the Device Under Test (DUT) that installed the HLK client.

Example:

You can also use the VHLK client to enable the netsh mbn test function in DUT.

Setup: Install VHLK on a host PC and run the script ConfigureTestSetup.ps1 <DUT's IP>
from the location: C:\Program Files (x86)\Windows Kits\10\Hardware Lab
Kit\Tests\amd64\Net\logo\Wwan

Then you can run the test command on the DUT.

Example:

HLK

netsh mbn test feature=connectivity param="AccessString=internet"

VHLK

netsh mbn test feature=connectivity param="AccessString=internet"

https://learn.microsoft.com/en-us/windows-hardware/test/hlk/getstarted/step-2--install-client-on-the-test-system-s-
https://learn.microsoft.com/en-us/windows-hardware/drivers/taef/
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/getstarted/getstarted-vhlk

WLAN feature information
Article • 12/15/2021

This section contains specific WLAN feature information.

Wi-Fi network preference is as follows.

1. User-defined networks are used first. These are listed in the Wi-Fi CPL as Known
networks. A network becomes a Known network in the following cases.

The user manually taps on the network (including hotspots) in the Wi-Fi CPL.

The user adds the network manually from the Wi-Fi CPL.

Wireless network profiles that are roamed to the phone from Windows PCs.

If multiple user-defined networks are found during the network scan, the most
recently connected network is used.

Note Wireless network profiles that are roamed to the phone from Windows PCs
do not show up in the Known networks list until the phone has connected to the
network once.

2. Hotspots (from a Store application or OEM plug-in) are prioritized next. If multiple
hotspots are found, the following factors are used to decide preference.

Network security. Secure networks (any security type) are preferred over open
networks.

Signal strength.

Note When there are multiple networks that have the same name or SSID, only the first
configured network that uses the name or SSID is accepted.

Windows does not disconnect from a network once it is connected if the signal from the
network is still present, even when a more preferred network becomes available. For
example, if a user connects to a mobile operator hotspot at a store, and walks home
while the signal from the hotspot is still present, the phone will not move to the user's
configured home Wi-Fi network.

Wi-Fi network preference

Also in this section:

Fast Roaming with 802.11k, 802.11v, and 802.11r

Fast Roaming with 802.11k, 802.11v, and
802.11r
Article • 10/04/2024

Improved WLAN roaming experiences are available to devices running Windows 10.
Industry standard implementations that reduce the time needed for a device to roam
from one wireless access point (AP) to another are supported.

Wireless Access Points (APs) that support 802.11k are able to provide Neighbor Reports
to devices running Windows 10. Neighbor Reports contain information about
neighboring access points and allows the device to have a better understanding of its
surroundings. Windows 10 takes advantage of this capability by shortening the list of
channels that the device needs to scan before finding a neighboring AP to roam to.

APs that support 802.11v can now direct Windows 10 devices to roam to another AP
that it deems will provide a better WLAN experience for the device. Windows 10 devices
can now accept and respond to these Basic Service Set (BSS) Transition Management
frames, leading to improved WLAN quality when connected to a network that supports
802.11v.

Fast BSS Transition reduces the time needed for a Windows 10 device to transition to an
AP that supports 802.11r. This time reduction results from fewer frames being
exchanged with the AP prior to data transfer. By decreasing the time before data
transfer when the device roams from one AP to another, the connection quality is
improved for latency sensitive applications, such as an active Skype call. Windows 10
supports Fast BSS Transitions over networks using 802.1X as the authentication method.
Pre-Shared Key (PSK) and Open Networks are currently not supported.

With the combination of 802.11k, 802.11v, and 802.11r, Windows 10 takes advantage of
established industry standards to improve the roaming experience for our users. VoIP
applications can now take advantage of this improved roaming to deliver better call
quality when users are not stationary.

802.11k (Neighbor Reports)

802.11v (BSS Transition Management Frames)

802.11r (Fast BSS Transition)

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Not all Windows 10 devices support 802.11k, 802.11v, and 802.11r. The WLAN Radio
driver must support these features to enable them to work on Windows 10. Please check
with your device manufacturer to determine whether or not your device supports these
features. In addition to device-side support, the network (AP Controllers and APs) must
also support the features for the experience to work. Please check with your network
administrator to see if these features are supported and have been enabled on the
network in question.

Windows 10 continues to support Opportunistic Key Caching (OKC) when 802.11r is not
available on the device or the network.

All three features require AP-side support and don't work unless those features are
enabled on the APs.

Things to note

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

WDI Miniport Driver Design Guide
Article • 09/27/2024

WLAN Device Driver Interface (WDI) is the new Universal Windows driver model for Wi-
Fi drivers, for both Windows 10 for desktop editions (Home, Pro, Enterprise, and
Education) and Windows 10 Mobile. The WLAN device manufacturer writes a WDI
miniport driver to work with the Windows 10 OS implementation. WDI enables device
manufacturers to write less code than the previous Native WLAN driver model. All new
WLAN features introduced in Windows 10 require WDI-based drivers.

Vendor-supplied native WLAN drivers continue to work in Windows 10, but functionality
is limited to the version of Windows for which they were developed.

The WDI requirements and interface specification are documented in this design guide.
The key goals for the new model are:

Improve the quality and reliability of Windows WLAN drivers.
Reduce the complexity of the current driver model, which in turn reduces the
complexity of the IHV driver and reduces the overall cost of IHV driver
development.

The focus of this documentation is to specify the flow and behavior of Wi-Fi operations
between Windows and the IHV driver component. It does not cover software interface
signature (for example, the device driver interface model) and details about how the IHV
component is loaded in Windows.

The following principles guided the overall model and design of this protocol.

1. Minimize the chattiness of the traffic between the host component and the IHV
component/device. This is particularly important for implementations on buses
such as SDIO, which is inherently chatty.

2. Wi-Fi functionality (especially functionality that must be performed with low
latency) is expected to be handled by the device.

） Important

WiFiCx is the new Wi-Fi driver model released in Windows 11. We recommend that
you use WiFiCx to take advantage of the latest features. The WDI driver model is
now in maintenance mode and will only receive high priority fixes.

Design principles

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

3. All regulatory related functionality resides in the IHV component and is controlled
by the IHV.

4. The Windows experience is controlled by the host component and the Windows
operating system.

5. Windows has the ability to resurrect hung devices. It has enough state to
reprogram the IHV component and recover within 10 seconds.

6. Operations that require lot of system memory or fast processors and are not
vendor specific are handled by the host.

Term Description

Device The entire piece of hardware that connects to
the bus. A device can have multiple radios in it
(notably Wi-Fi and Bluetooth).

Wi-Fi adapter The specific part of the device that implements
Wi-Fi functionality as described in this
specification.

Port An object that represents a MAC and PHY state
for a particular connection.

IHV component The IHV-developed software component that
represents the Wi-Fi Adapter/Device to the
host.

Host The host-side Microsoft/operating system
software that interacts with the IHV component
using the interfaces described in this
specification.

Upper Edge Driver (UE) UE refers to the WdiWiFi driver, called WDI in
this documentation. The UE and the Lower
Edge (LE) IHV driver combine into a complete
NDIS miniport driver. The UE implements the
core Wi-Fi logic.

Lower Edge Driver (LE) LE refers to the IHV driver at the lower edge.
The LE and UE combine into a complete NDIS
miniport driver. The LE implements bus and
hardware specific functions.

Functional Level Reset (FLR) Functional Level Reset, as in the PCIe
specification. This term refers to the reset of a

Definitions

ﾉ Expand table

Term Description

function, versus a reset of the complete device
which may have a composite function. The
reset of such scope does not impair the other
functions on the same device.

Platform Level Reset (PLR) Platform Level Reset. This reset method impacts
all functions on a device. It is very popular to
build multiple functions on a device to reduce
the cost and footprint. For example, Bluetooth
is typically built with Wi-Fi on a chip. However,
such a reset method resets all function units on
the device.

Reset Recovery (RR) RR refers to the event sequence of Reset and
Recovery.

For FLR, this includes:

The request to NDIS, which forwards the
request to the bus to reset the Wi-Fi
function.
Recovery of firmware context by the
driver.
Reconnection to the access point if it was
connected before the reset.

For PLR, this includes:

The request to NDIS, which forwards the
request to the bus. The bus interacts with
PnP to surprise-remove the device.
Re-enumeration of the device.
Re-establishing the device stack.
Wi-Fi is restarted and reconnects.

WDI commands The UE sends WDI OIDs and calls LE callbacks.
All of these are called WDI commands.

MAC Address Randomization In order to improve the privacy of Windows 10
users, configured Wi-Fi MAC addresses are
used in some circumstances, such as before
connecting to a particular Wi-Fi network or
when initiating scans in specific conditions. This
only applies to the station port. The system
ensures that randomization is used
appropriately, so important connectivity
scenarios are not broken. The system manages
changes of addresses by issuing
OID_WDI_TASK_DOT11_RESET commands prior

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Term Description

to issuing a scan or connect command. The
reset command parameters include an optional
MAC address argument. If the argument is
present, the MAC address is reset to the
specified value. If it is absent, the MAC address
is left to the current value. When configuring
randomized MAC addresses, the operating
system uses the "locally administered" format
defined for IEEE802 addresses.

ECSA Extended Channel Switch Announcement.

WDI Miniport Driver Reference

Related topics

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/#wireless-networking

Communication model, synchronization,
and abort
Article • 12/15/2021

At a high level, this documentation defines two types of objects:

1. An adapter, which represents the Wi-Fi device.
2. A port, which represents distinct MAC and PHY entities in the adapter.

For more information about these objects, see Wi-Fi device model and objects.
Commands, a set of permissible operations, are defined for each of these objects.
Commands are further categorized into Properties and Tasks.

Property commands are simple commands (such as get signal strength, get current BSS
list, and set packet filter). They complete in a short duration of time and are not
complicated to implement.

Task commands are complex operations that may take several seconds to complete. For
example, a Wi-Fi Scan operation would be categorized as a task in this model.

All commands issued to the IHV component can be completed asynchronously.

The sequence of messages for each type of command is shown in the following figures.

Figure 1 shows the task command sequence.

Sequence of messages

Figure 2 shows the property command flow.

Figure 3 shows the flow for indications.

To keep the IHV component implementation simple, the model defines the following
synchronization rules:

1. Commands are always serialized between Steps 1 and 3 in Figure 1 and Figure 2.
For example, no new commands are issued to the adapter until the indication from
the adapter at Step 3. This also implies that all properties are serialized with each
other.

2. All task commands are serialized between Steps 1 and 4 in Figure 1. For example,
only one task runs on the adapter at a time. However, once a task is started (Step 3
in Figure 1), the adapter may get property command requests. Both Step 3 and
Step 4 must finish before the next task command is sent.

3. Property set commands are of two types – those that can be sent after the task has
started, and those that must be serialized with pending tasks.

4. Data path is not serialized with the command path, except for specific cases
described later in the documentation.

5. The synchronization scope is adapter level scope.
6. A subset of tasks can be aborted after they have been started. This means that if a

higher priority task (A) arrives while a lower priority task (B) is outstanding, B can
be aborted by the host. Rationalization of prioritization decisions is beyond the
scope of this documentation and is dependent on user scenarios.

7. For task commands, Step 4 can come before Step 3 has completed. However, if
Step 4 is indicated, Step 3 cannot fail.

Most tasks can be aborted after they have been started. The purpose of the abort is to
trigger the adapter to finish the task quickly by sending the complete indication (Step 4
in Figure 1). Abort is allowed only in the window between Steps 3 and 4 in Figure 1. On

Synchronization

Abort

receiving the abort, the adapter must complete the task within 50 milliseconds. For most
commands, upon receiving the abort, the adapter does not need to roll back to the
state before the command was started. Race conditions exist between the abort
command being issued and completions arriving to the host component. In this case, if
the IHV component receives an abort for a task it has already completed, no further
action is needed from the IHV component to process the abort operation. Aborting a
task is simply a signal that the IHV component should clean up the task as soon as
possible. Command completion semantics are not changed if an abort is issued. Both
the completion for the abort property command, and the task completion indication
must be appropriately notified in all cases.

Properties are expected to complete in short time so they cannot be aborted.

Task commands have a unique identifier that allows the host to target a specific
command for abort.

Hang detection and recovery
Article • 12/15/2021

After a command is issued to the IHV component, the host starts a timer. If the timer
expires before the IHV component completes (Step 3 message in the figures in
Communication model, synchronization, and abort), the driver assumes that the IHV
component is hung, resets the IHV component, and recovers if the precondition is
correct.

The precondition is that the system will provide ACPI methods to reset the device, either
at a bus or at the device level.

M1-M3 Hang Timeout is 10 seconds.

M3-M4 Task Hang Timeout is 30 seconds, or configurable based on task.

These are maximum upper bounds for the commands and processing that takes longer
than this time is considered an error. It is expected that under a normal mode of
operation (no CPU stress), most tasks and properties finish significantly sooner than the
timeouts specified above. These values are specified with each task/property. The
adapter should ensure that it does not have waits that would cause those execution
times to be exceeded.

UE hang detection and recovery flow UE hang detection: steps 1-14 Reset (surprise
remove): steps 15-20 Timings for diagnose call LE hang detection PLDR

７ Note

Some tasks may be expected to take longer than 30 seconds to complete (for
example, Wi-Fi Direct Discover for the selected registrar bit in certain scenarios). In
these cases, the host-initiated task timeout is adjusted accordingly to allow for 30
seconds longer than the maximum expected runtime of the task.

In this section

UE hang detection and recovery flow
Article • 12/15/2021

This diagram shows the UE hang detection and reset flow.

The diagram consists of main phases:

1. Hang detection
2. Log
3. Reset: surprise-remove handling

It is important to keep in mind that this feature addresses firmware hangs. It does not
solve IHV driver hangs. IHV driver hangs can only be solved with a hard reboot. The
driver must release all handles and other resources before it can be unloaded. If the
driver can't be unloaded, the recovery does not work.

This flow diagram applies generically to all NDIS OIDs and callbacks to miniports. There
may be exceptional cases where if NDIS or the Bus can't fully support reset recovery, the
recovery part of the reset recovery won’t work. Two example cases are during miniport
initialization or during a miniport halt operation.

UE hang detection: steps 1-14

Reset (surprise remove): steps 15-20

Related topics

UE hang detection: Steps 1-14
Article • 12/15/2021

Steps 1 through 14 of UE hang detection are described below. The steps correspond to
the diagram shown in UE hang detection and recovery flow.

This example uses OID_SET_POWER.

1. NDIS receives a system power IRP or the NIC active references drop to 0.

2. NDIS generates an OID_SET_POWER D3 to the WDI driver.

3. WDI sets a timer for a WDI command (M1), including a task before it sends the
WDI OID down to the LE. If the command is a task, an additional timer for the task
is also set. Both timers can time out, but at most, only one can trigger a reset
recovery.

4. WDI sends the WDI command to the LE. The recommendation for the LE is to
remember the WDI OID in the adapter structure if it needs a firmware command to
complete the OID. When the firmware completes the job for the WDI OID, the LE
completes the OID and removes it from the adapter structure. Since WDI serializes
OIDs to the LE, the LE needs only one slot to remember the pending WDI OID. If
the firmware command is hung, the LE can return the OID at any time but no later
than at surprise-remove (it can be in the context of surprise-remove) at Step 17
when the firmware has been disabled. For any other cases, the LE simply completes
the WDI OID when the firmware completes the corresponding job, regardless of if
it is before or after a diagnose callback. If the LE needs to remember the WDI OID
after Diagnose, it needs another slot to remember it. However, for the OIDs
received after Diagnose, the LE should not touch the firmware to avoid cascaded
hangs.

5. The LE sends a command to the firmware.

6. If the firmware command timed out, it may be due to a firmware hanging or taking
too long.

If the firmware is simply taking too long to complete the command after a
time out, the LE can complete the WDI command. The UE handles it
appropriately.
If the firmware is hung, the WDI command is not completed soon. The LE
must complete it at surprise-remove at Step 16 when the hardware has been
reset, so it is safe to complete without special handling for a potential race
condition.

7. The WDI timer fires to generate a WDI Diagnose command. This WDI command is
a call to the LE driver, MiniportWdiAdapterHangDiagnose, rather than a WDI OID.

8. LE collects hardware control register states, and optionally, the full firmware state.

The IHV driver is expected to collect hardware register content which is
limited to 1KB, and return it in the function return. Additionally, in the pre-
production environment, the LE should also try to dump the firmware context
into files so that the IHV can do post-mortem debug thoroughly. The switch
can be implemented as a registry key to control the collection of hardware
registers and the firmware image.
The LE also marks the current command for cancellation. If command
completion races to beat the diagnosis, it is acceptable if the LE does nothing
for this command.
With this command pending, the UE may send further WDI commands as the
consequence of Reset. These are in-flight commands or clean-up commands.
After the diagnose call, the LE should process them without touching the
firmware.

9. WDI receives the control register state.

10. WDI marks the hang WDI command so that it is indicated later by the LE.

11. WDI returns (completes) the NDIS command without the WDI completion. This is
safe because WDI double-buffers NDIS commands.

12. WDI calls NDIS to reset and calls NdisWriteErrorLogEntry with Error Code of
NDIS_ERROR_CODE_HARDWARE_FAILURE (0xc000138a). This results in an event
recorded in the system event log with the module name of LE. The error event ID
automatically pops up as (0xc000138a | 0xffff) – 0n5002. If the LE also uses the
same error code to write error logs, the first DWORD of the data should contain
the high bit set (0x80000000) to easily separate events by the LE. WDI uses
0x00000000 to 0x7fffffff for the first DWORD data.

13. The call returns.

14. NDIS completes the IRP.

After this point, NDIS calls the bus to surprise remove and re-enumerate us. It is
important to note that WDI double-buffers NDIS commands so that it does not have to
wait for the WDI command to return to complete the NDIS command. This eliminates
the need for the LE to do cancel logics, which are notoriously complex to do.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_adapter_hang_diagnose
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiswriteerrorlogentry

The completion of NDIS OID_SET_POWER is necessary to avoid a deadlock of PnP
operations. All PnP and power state changing events are serialized. This means that if a
Set power OID does not return, NDIS is not able to return the Set power IRP, which
means the Reset Recovery locks up with the Surprise-Remove IRP.

MiniportWdiAdapterHangDiagnose

Reset (surprise remove): steps 15-20

UE hang detection and recovery flow

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_adapter_hang_diagnose

Reset (surprise remove): steps 15-20
Article • 12/15/2021

The steps of reset (surprise-remove), which are Steps 15 through 20, are described
below. The steps correspond to the diagram shown in UE hang detection and recovery
flow.

Once the Reset Recovery can proceed, the bus causes PnP to generate a surprise-
remove IRP. When NDIS receives the surprise-remove IRP, it calls back WDI for a
surprise-remove PnP event callback. WDI forwards the surprise-remove as a WDI
command to the LE, where the LE returns the hung WDI command. The rest of flow is
identical to a real device surprise-remove on a bus (for example, USB).

Cleanup commands flow to the LE to facilitate the return of resources. In this state, the
LE should not touch the hardware.

Step Action

15 NDIS calls back the PnP event for surprise-remove.

16 WDI calls back the LE for surprise-remove.

17 The LE returns the hung WDI command. The LE only needs a slot for outstanding WDI
commands because WDI serializes WDI commands to the LE, except Diagnose and Abort.

18 WDI ignores the return of the hung WDI command because it has returned the original
NDIS command.

19 The LE returns WDI surprise-remove.

20 WDI returns NDIS PnP callbacks for surprise-remove.

UE hang detection: steps 1-14

UE hang detection and recovery flow

Related topics

Timings for diagnose call
Article • 12/15/2021

The timing requirements of Diagnose to collect debug information are as follows.

At the level of DiagnoseLevelHardwareRegisters, the LE is expected to collect device
control registers no more than 1KB in the output buffer of the Diagnose call. This is the
setting for a normal release product. It is intended for collecting the vital information of
device control registers. The time limit to collect such information is 25ms.

At the level of DiagnoseLevelFirmwareImageDump or DiagnoseLevelDriverStateDump,
the LE is expected to collect the device control registers and firmware full dump. If time
permits, the LE can also collect the driver state, subject to the time limit. Except the
control registers collected in the Diagnose output buffer, the firmware dump and driver
state should be saved to files with the choice of names in %windir%\system32\drivers.
The time to collect all debug information at either level should be within 25 seconds.
These diagnose levels are meant to be used at the self-host phase.

eDiagnoseLevel

MiniportWdiAdapterHangDiagnose

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-ediagnoselevel
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_adapter_hang_diagnose

LE hang detection
Article • 12/15/2021

Some firmware have a watchdog timer that can detect firmware hangs. Some IHV
drivers (LE) have logic to detect if the firmware is not making forward progress. The UE
allows the LE to indicate such conditions.

The indication should be on the Adapter port (for example, portid=0xFFFF). By default,
the indications trigger the LE to perform the full reset recovery procedure -- calling
diagnose, collecting debug information, and requesting PLDR.

When the LE or firmware watchdog timer detects that the firmware stalled, the
expectations from the UE are as follows.

1. If in D0,
a. The LE indicates NDIS_STATUS_WDI_INDICATION_FIRMWARE_STALLED.
b. At the return from the indication, the LE returns (if any) the stalled WDI

command.
c. The UE starts the Reset Recovery (RR) procedure.

2. If in Dx, this can only happen with firmware detected stall.
a. Firmware raises wake interrupt.
b. On receiving a D0 command, indicates the wake reason of why the firmware

stalled.
c. After returning D0 WDI OID, the LE indicates

NDIS_STATUS_WDI_INDICATION_FIRMWARE_STALLED.
d. Finish the procedure as in D0: 1a, 1b, and 1c.

It is possible that the firmware stops progress in Dx. In this case, Dx is D3Hot for PCIe
NIC and D2 for USB and SDIO. The NIC is armed to wake and expected to maintain
access point association autonomously, or scan NLO if not associated.

When the NIC is in Dx, the communication to the host is blocked because the bus could
be in the power off state. Therefore, the LE is not able to detect stalled firmware. The
firmware itself has to detect the condition and raise the wake line (if the wake portion of
code is still alive) to bring the stack to D0, indirectly via ACPI or bus completing, NDIS
wait_wake_irp. Due to this, NDIS sets D0 to the NIC.

The firmware asserts wake for such a condition. The LE should indicate a wake reason for
the firmware stall. The wake reason WDI_WAKE_REASON_CODE_FIRMWARE_STALLED is
defined as an enum with the other wake reasons.

For Reset Recovery to work in this scenario, at least two portions of the firmware must
still function.

1. The hang detection code.
2. The code to assert wake interrupt.

If there is a lack of either one, the Host side does not know if the firmware is stalled and
RR does not happen. This scenario is not part of the design goal.

Hang detection in Dx

This is informational for IHVs. In addition to UE and LE detected hangs, other OS
components may detect hangs and/or trigger the UE to invoke the Reset Recovery
procedure. Currently, the user mode wlansvc component in Windows 10 may request a
Reset Recovery to UE when it detects a connection with Internet connectivity and
subsequently loses the ability to access a DNS server without disassociation for some
time. In the future, Microsoft may find additional cases to trigger a Reset Recovery to
enhance end user experiences.

NDIS_STATUS_WDI_INDICATION_FIRMWARE_STALLED

WDI_TLV_INDICATION_WAKE_REASON

OS module triggered reset recovery

Related topics

PLDR
Article • 03/14/2023

After the surprise-remove, the drivers (both UE and LE) must release all resources so that
the device object can be removed and re-enumerated (by the bus). If this does not
happen, the device is not re-enumerated, and therefore not recovered.

Recovery of PLDR

WDI message structure
Article • 03/14/2023

All WDI command messages must start with a WDI_MESSAGE_HEADER structure. The
command header is followed by zero or more type-length-value (TLV) structures.

The command message IDs defined for messages sent from the host to the Wi-Fi device
are documented in WDI Task OIDs, WDI Property OIDs, and WDI Status Indications.

The structure of TLVs is defined in the following table. The data in TLVs is in little-endian
byte order.

Field Type Description

Type UINT16 The type of the TLV structure. Unrecognized TLV types must be skipped
without triggering errors.

Length of
the Value
buffer

UINT16 The size of the Value buffer in bytes.

Value BYTE[*] The payload buffer, which may contain a structure, a list of structures, or
other TLVs. If there is more data than expected in a TLV, the additional data
should be skipped without triggering errors.

There are two types of TLV groupings: statically sized TLV lists, and multi-TLV groups.

Statically-sized TLV lists contain several statically sized members. They are analogous to
standard C-style arrays.

In this example, WDI_TLV_UNICAST_ALGORITHM_LIST is defined as a list of
WDI_ALGO_PAIRS.

Type: WDI_TLV_UNICAST_ALGORITHM_LIST

Length: N * sizeof(WDI_ALGO_PAIRS)

Value: WDI_ALGO_PAIRS[N]

This usage is specified in the TLV reference topics with array notation.

TLVs

Statically sized TLV lists

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header

When the size of a given object is not known ahead of time, multi-TLV groups are used.
This usage pattern specifies that N different variably sized TLVs are expected within a
given buffer. The number of entries (N) is not known ahead of time, and is inferred by
the number of matching TLVs in the given buffer.

In this example, the parent buffer is a WDI_MESSAGE_HEADER, which defines the end of
the TLV buffer. Note that WDI_TLV_BSS_ENTRY may be interspersed between other
different TLV types in the parent buffer.

Offset Field Type

0 WDI_MESSAGE_HEADER Message header

sizeof(WDI_MESSAGE_HEADER) TLV₀ (WDI_TLV_BSS_ENTRY) WDI_BSS_ENTRY

TLV₀ + L₀ + sizeof(TLV Header) TLV₁ (WDI_TLV_BSS_ENTRY) WDI_BSS_ENTRY

TLV₁ + L₁ + sizeof(TLV Header) TLV₂ (WDI_TLV_BSS_ENTRY) WDI_BSS_ENTRY

TLV₂ + L₂ + sizeof(TLV Header) TLV₃ (OTHER_TLV_TYPE) Some other TLV type

TLV₃ + L₃ + sizeof(TLV Header) TLV₄ (WDI_TLV_BSS_ENTRY) WDI_BSS_ENTRY

For TLVs that contain other TLVs, the TLV reference topics have a Multiple TLV instances
allowed column. If this column is checked, the specified TLV is allowed to appear
multiple times. For an example of this, see WDI_TLV_CONNECT_PARAMETERS.

Multi-TLV groups

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header

Wi-Fi device model and objects
Article • 12/15/2021

The Wi-Fi device is used by the host in the context of two types of objects: adapter and
port.

The adapter object represents the Wi-Fi functionality in the Wi-Fi device. Commands
and indications on this object are used to indicate state about the Wi-Fi interface. For
systems with multiple Wi-Fi devices, each adapter object represents a different instance.

One Wi-Fi adapter can be used simultaneously for multiple connections e.g.
Infrastructure client and Wi-Fi Direct group owner. The port object is used to represent
the state associated with each such connection. Each port holds the MAC state for the
connection and any phy state specific to that connection.

There can be multiple ports in an adapter. Commands issued on a port should only
affect the state maintained for that port.

The operating system configures each port with an operation mode, such as 802.11
station, Wi-Fi Direct Client, or Wi-Fi Direct Group Owner. The set commands that the
firmware must be prepared to handle on a given port are determined by the operation
mode and the state of the port. A port can be in one of two states: INIT and OP. The
port is initially in the INIT state and transitions to the OP state only when the operating
system issues a command to connect (in the case of infrastructure client) or to start an
AP/GO. The port returns to the INIT state when OID_WDI_TASK_DOT11_RESET is sent to
the IHV component.

Adapter

Port

Port type Required count

Station Port 1

Wi-Fi Direct Device 1 (if supported)

Wi-Fi Direct Role (GO or Client) 1 or 2 (if supported)

The following concurrency requirements for the different port types are as follows.

1. 1 Station Port is always available.
2. 1 Wi-Fi Direct Device port is always available.
3. 2 Wi-Fi Direct Role ports are available in the following configurations.

a. 1 GO
b. 1 Client
c. 1 GO, 1 Client

Port availability requirements

Port concurrency requirements

Wi-Fi device initialization
Article • 12/15/2021

This topic describes the initialization of the Wi-Fi device after power-on. On power-up,
most Wi-Fi devices come up in an uninitialized mode. The Wi-Fi device does not have
sufficient ROM to hold the firmware, so the IHV component/driver programs the device
with firmware as part of device boot-up. The following diagram shows the initialization
sequence in a bus/interconnect independent way.

1. The IHV component is responsible for downloading the firmware to the adapter
when the adapter is powered up. The exact mechanism to download the firmware
is bus dependent. This operation is done in the context of the
MiniportWdiOpenAdapter call. This is an asynchronous operation. The host is
responsible for ensuring that the adapter is fully initialized and ready to process
commands before further commands are sent to it. The exact mechanism is
interconnect dependent.

2. Once the adapter is initialized, the host queries the adapter for various Wi-Fi
properties, set properties, and creates ports (MACs) as part of miniport
initialization.

3. After the ports are created and initialized, the adapter can receive task and
property commands.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_open_adapter

WDI task command priority and existing
state
Article • 03/14/2023

When the adapter is in a particular state, new commands may come down to it that
could affect the existing state (for example, a scan that affects existing connections). The
table below describes how new commands should be prioritized against the existing
state in the adapter. The columns describe how to service the existing state when the
new command comes in.

New command Existing state Connection Quality (EAP) - Priority 1 P2P Listen - Priority 2
Connection Quality Latency (Media Streaming) - Priority 3 Existing Connections - Priority
4 Scan/P2P Discovery (forced) Important (delay scan) Pause Pause Throttle Scan/P2P
Discovery (not forced) Important (skip scan) Maintain Important (skip scan) Throttle
Station Connect, Roam, Disconnect Delay Connect Pause Pause Throttle P2P GO Start,
GO Stop Delay Connect Pause Pause Throttle P2P Client Connect, Disconnect Delay
Connect Pause Pause Throttle P2P Send Action Response Pause Pause Pause Throttle
P2P Send Action Request Delay Send Maintain Pause Throttle

Term Description

Important Prioritize the existing state higher than the new
request.

Maintain Prioritize the existing state and the new
command equally.

Throttle Throttle down the servicing of the existing state
so that it works, but prioritize the new
command higher.

Pause Stop servicing the existing state and attempt to
finish the existing state as soon as possible.

WDI data transfer
Article • 03/14/2023

This section covers WDI data transfer. The following terminology is used in this section.

Term Description

Target WLAN device (target) A physical NIC.

Virtual WLAN device (port) A virtual NIC (for example, P2P role ports).

WDI A Microsoft WLAN component. It is a target-
agnostic component.

Target Interface Layer (TIL) A target-specific software layer that interfaces
with the target through the bus-specific APIs. It
creates and manages DMA channels and
provides bus abstraction.

RX Manager / RxMgr RxMgr performs receive processing steps that
are not offloaded to the target.

RxEngine RxEngine sends and receives data-synchronous
messages to and from the target, interprets RX
descriptor formats, and manages buffers for
direct hardware to software RX DMA.

TX Manager / TxMgr The WDI-compliant driver component that gets
TX frames from the operating system, delivers
them to the TxEngine at the appropriate time,
and returns the completed TX frames back to
the operating system.

TxEngine The target-specific software component that
handles the TX data transfer from host to
target, and handles TX completion messages
from the target.

Target Abstraction Layer (TAL) The "lower-edge" that has a standardized API
to the WDI compliant driver, but has a target-
specific internal implementation. The TAL is a
container layer for individual target-specific
host software components such as TxEngine
and RxEngine.

WDI receive operations and offloads
Article • 03/14/2023

These main categories of operation offloads are configurable.

MSDU-level receive operations
Frame forwarding (forwarding decision and actuation)
Protocol/Task offloads

The following is a list of RX operations and offloads.

Function Description Ownership Notes

Decryption Decrypt the frame contents using the
security type and security key
specified for the sender.

Target In host-implemented
FIPS mode, the
decryption is done
within the host
software. The target's
decryption is bypassed.

A-MPDU
deaggregation

Decompose an RX A-MPDU into
individual MPDUs.

Target

A-MSDU
deaggregation

Decompose an RX A-MSDU into
individual MSDUs.

Target/TAL Each RX MSDU is
placed into a separate
buffer.

MSDU Security
decap and de-
MIC

For security types that involve an
MSDU-level MIC, verify the received
MIC. Decapsulate the security header
and footer.

Target/TAL The operating system
performs
countermeasures if
needed.

Rx decap Replace non-initial A-MSDU subframe
headers with 802.11 headers, using
the 802.11 header fields from the
initial A-MSDU subframe as
appropriate.

Target/TAL During A-MSDU
deaggregation, the
non-initial MSDUs of
the A-MSDU need
their 802.3 header
replaced by a generic
802.11 header. WDI
always expects 802.11
headers.

Function Description Ownership Notes

Rx reordering
logic

For each RX MPDU, determine which
slot of the Rx reordering array it goes
to. Determine when a series of in-
order frames is present. Determine
when to release pending frames even
if their preceding frames have not
arrived.

Target/TAL

Rx discard logic Determine which Rx frames need to
be discarded:

1. If it does not match any of the
receive packet filters.

2. If the frame is encrypted,
discard if:

A cipher key is not
available to decrypt the
packet.
The packet payload fails
to decrypt successfully.
The packet payload fails
the MIC verification.
The packet fails the replay
mechanism defined for
the cipher algorithm (see
Rx PN/replay check).
A privacy exemption is
defined for the packet's
ether type that specifies
an WDI_EXEMPT_
ALWAYS action.

3. If the frame is unencrypted,
discard if:

A cipher key is available
to decrypt the packet and
a privacy exemption is
defined for the packet's
Ethertype that specifies a
WDI_EXEMPT_ON_
KEY_UNAVAILABLE
action.
The
dot11ExcludeUnencrypted
MIB is set to true.

Target/TAL
makes all
discard
decisions.

Function Description Ownership Notes

Rx PN/replay
check

Confirm that each MPDU has a distinct
Packet Number that is larger than
prior PNs.

This is a
mandatory
and always
enabled
offload
except for
streams
associated
with a
reorder
queue and
reordering
queue
management
is not fully
offloaded to
the target.

Chatter offload Avoid interrupting the host for each
deferrable "noise" Rx frame. Instead,
group the Rx noise frames and use a
single interrupt to deliver all such
frames.

Target

Defragmentation Reassemble 802.11 fragments into
their original MSDU.

Target/TAL

Rx reorder
queuing

Store out-of-order Rx MPDUs until the
missing prior MPDUs from the flow
arrive.

Target/TAL

Rx discard
actuation

Discard Rx frames based on the
specifications flagged by the Rx
discard logic run at the target.

Target/TAL

Higher-level
protocol (task)
offloads

Checksum Checksum:
Configurable
offload at
boot-up if
required.

Checksum: The target
passes its checksum
offload capabilities as
part of device caps to
WDI during bring-up.
For information about
capabilities, see
NDIS_TCP_IP_
CHECKSUM_OFFLOAD.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

In this mode, the target may indicate the received frame with either an 802.11 header or
an 802.3 header. The frame must not be decrypted before indication.

If discard logic is offloaded to the target, it must mark received frames for discard if they
meet any of the following criteria.

Frames that have a bad CRC.
Duplicate frames.
Frames that do not match the configured packet filters.

The target must increment the appropriate MAC and PHY statistics for packets that are
either received successfully or discarded by the port.

In addition, the target must perform discard actuation if offloaded.

The target should not strip the QoS flag from the 802.11 header on the RX path when
operating in Host-implemented FIPS mode. The target should indicate the frame
without modifying the QoS header.

For the case of fragmented packets, the payload type reported by the LE for FIPS mode
is always WDI_FRAME_MSDU_FRAGMENT as the host is doing the defragmentation
process. However, in non-FIPS mode, the reported payload type should be
WDI_FRAME_MSDU as the Target/TAL is performing the defragmentation.

NDIS_TCP_IP_CHECKSUM_OFFLOAD

WDI data transfer

WDI_EXEMPTION_ACTION_TYPE

WDI_FRAME_PAYLOAD_TYPE

Receive operations in Host-Implemented FIPS
mode

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_exemption_action_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_frame_payload_type

WDI transmit operations and offloads
Article • 03/14/2023

WDI operates in one of two Tx modes: Port queuing and PeerTID queuing. The target
sets the mode with the TargetPriorityQueueing capability (true = WDI Port queuing,
false = WDI PeerTID queuing).

The host performs the following operations.

TX classification (only when TargetPriorityQueueing = false)
TX queuing (either at a Port level or a PeerTID level)
Transfer scheduling (scheduling frame download to the target)
Host-Target TX flow control

The following is a list of TX operations and offloads.

Processing
step

Description Owner/Applicable
offloads

Notes

High-level
protocol (task)
offloads

Checksum, LSO. Checksum is a
configurable offload at
boot-up. Each frame
has flags to specify the
applicable checksum
operations.

WDI handles LSO
segmentation
transparently from the
TAL/Target if applicable.

Checksum: The target passes to WDI
its checksum offload capabilities as
part of device caps during bringup.
For capability information, see
NDIS_TCP_IP_CHECKSUM_OFFLOAD.

WDI handles LSO segmentation
transparently from the TAL/Target if
applicable.

TX encap Update/replace
the generic
802.11 header
with the
appropriate
type of 802.11
frame header.

Target/TAL The first contiguous buffer of the
frame has space available at
beginning (before the MAC header).
This space is determined by the
BackfillSize specified in the device
parameters.

For Non-EAPOL packets, the first
buffer contains the MAC and
LLC/SNAP headers, but not the
payload. The first contiguous buffer
for an EAPOL packet may contain
part (or all) of the payload.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Processing
step

Description Owner/Applicable
offloads

Notes

TX
classification

Determine the
TID. Determine
the recipient
based on
unicast RA or
DA.

WDI performs
classification when
TargetPriorityQueueing
is false. WDI does not
perform classification if
TargetPriorityQueueing
is true.

TX queue Store TX frames
in separate
queues.

WDI queues TX frames
if needed.

WDI queues TX frames by port
(TargetPriorityQueueing = true) or
by recipient and traffic type
(PeerId,TID) (TargetPriorityQueueing
= false).

TX flow
control

Prevent the
overrunning of
the TIL or
target buffers
with TX frames.

WDI/TIL/Target See the section on Host-Target flow
control.

Transfer
scheduling

Select the TX
queue from
which to
transfer frames
to the TAL/TIL
when there are
multiple
backlogged
queues.

WDI if it needs to
queue TX frames.

A-MSDU
aggregation

Determine
which frames to
group into an
A-MSDU
aggregate
which must be
maintained
during
retransmissions.

TAL/Target

Fragmentation TAL/Target

Processing
step

Description Owner/Applicable
offloads

Notes

WLAN
scheduling

Determine
which recipient
to transmit to
next, which
traffic type to
send, and how
many frames to
send.

Target

Encryption Encrypt the
frame contents
using the
security type
and security
key specified
for the recipient
(or sender, for
multicast
frames). Add
security
encapsulation
where
applicable.

Target For systems supporting FIPS, the
encryption is done within the host
software. The target's encryption is
bypassed.

A-MPDU
aggregation

Determine
which frames to
group into an
A-MPDU
aggregate, and
which can be
modified
during a
retransmission.

Target

Retry Retransmit
MPDUs that are
nacked or not
acked by the
recipient.

Target

If the host provides FIPS for a given connection (host FIPS mode is set to true in
WDI_TLV_CONNECTION_SETTINGS), the host encrypts the packets before they are
submitted to the target. The target transmits the packets without additional changes

Operation in Host-Implemented FIPS mode

that affect the data integrity of the packets. For example, the target must not perform
transmit MSDU aggregation in this mode.

In the more common case where host-FIPS mode is not enabled (target-implemented
encryption mode), the header 802.11 header is followed by the unencrypted payload
data. If the packet requires encryption before transmission, the target encrypts the
packet. It also performs QoS prioritization of packets, and may perform TCP layer offload
operations (such as checksum or large send). For this send processing, the target may
need to add additional headers into the packet (for example, QoS, HT headers, or IV).

The network data is submitted in 802.11 packet format to the port (target device). Each
transmitted frame starts with a 802.11 MAC header. The host sets some of the fields of
the MAC header, while the target sets other fields. The table below describes which
fields of the 802.11 MAC header and cipher headers are populated by the host, and
which should be populated by the target device.

Field name Subfield
name

Target-implemented
encryption mode

Host-implemented FIPS mode

Set
by
host

Set by target Set
by
host

Set by target

Frame
Control

Protocol
Version

X X

Frame
Control

Type X X

Frame
Control

Subtype X X

Frame
Control

To DS X X

Frame
Control

From DS X X

Frame
Control

More
Fragments

X X

Frame
Control

Retry X X

TX Encapsulation: Population of 802.11 TX
Frame Headers

Frame
Control

Pwr Mgmt X X

Frame
Control

More Data X X

Frame
Control

Protected
Frame

X X

Frame
Control

Order X X

Duration/Id X X

Address 1 X X

Address 2 X X

Address 3 X X

Sequence
Control

Fragment
Number

X X

Sequence
Control

Sequence
Number

X X

Address 4 X X

QoS
Control

Added/populated
by target.

Added/populated by target in the
case of 11n QoS association.

HT Control Added/populated
by target.

Added/populated by target.

NDIS_TCP_IP_CHECKSUM_OFFLOAD

WDI data transfer

WDI_TLV_CONNECTION_SETTINGS

WDI_TXRX_CAPABILITIES

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_txrx_target_capabilities

WDI datapath architecture
Article • 03/14/2023

To interoperate with existing WLAN target devices, the current version of the driver
interface does not specify a host-controller interface (HCI) for TX/RX. Instead, it specifies
a request/indication software interface between WDI and the Target Adaptation Layer
(TAL).

The WDI component implements the NDIS datapath interfaces and the target-agnostic
TX/RX functions performed by the host. It also maintains the state of individual virtual
WLAN devices (ports) and peer-specific state.

The TAL provides the TX/RX WLAN functions for which the implementation depends on
the host-controller interface, as well as the controller and bus interface functions.

In addition to the TX/RX function, the TAL provides a Target Interface Layer (TIL) that is
used by the control and data paths. The responsibilities of the TIL are listed in the
following table.

TIL function Description

Management of Host-
Target communication

Example: Allocate and manage the DMA channels required for control
and data paths.

Bus
adaptation/abstraction

Provide a standard host/target communication API that abstracts the
communication differences between different bus types,
software/hardware bus endpoints, and bus DMA engines.

WDI general datapath interfaces
Article • 03/14/2023

802.11 frames are passed between WDI and the TAL in the form of NET_BUFFER_LIST
(NBL) chains. Each NBL represents one MSDU. Through macros, the NBL structure
provides operations on the data buffers and access to metadata, including operating
system populated Wi-Fi TX metadata. The structure is extensible through its context and
MiniportReserved members. MiniportReserved[0] points to a buffer of type
WDI_FRAME_METADATA. This buffer is allocated by WDI in the TX path, and by the TAL
in the RX path via the callback NdisWdiAllocateWiFiFrameMetaData. The TAL uses
MiniportReserved[1] to store any additional frame metadata.

For datapath management request and indication function reference, see WDI Datapath
Management Functions.

NDIS_WDI_DATA_API

NET_BUFFER_LIST

NdisWdiAllocateWiFiFrameMetaData

WDI_FRAME_METADATA

802.11 frame handling and frame metadata

Datapath management requests and
indications

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_frame_metadata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_allocate_wdi_frame_metadata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_wdi_data_api
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_allocate_wdi_frame_metadata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_frame_metadata

WDI RX path
Article • 03/14/2023

The following diagram shows the RX path components.

The RX Manager performs receive processing steps that are not offloaded to the target
or performed by the RxEngine.

RX
function

Description

RX path components

RX Manager (RxMgr)

RX
function

Description

MSDU
discard

Discard MSDUs with errors.

Queuing
and
throttling

Manage the DPC watchdog to prevent a bugcheck from too many indications per
DPC, and too long at dispatch level. Provide backpressure to the RxEngine when
appropriate to help with throttling.

The RxEngine sends and receives data-synchronous messages to and from the target,
interprets RX descriptor formats, and manages buffers for direct hardware to software
RX DMAs.

RX function Description

Host-to-
Target
message
construction

Construct host-to-target data path-related messages.

Target-to-
Host
message
parsing

Parse and process target-to-host data-synchronous messages such as
NdisWdiRxInorderDataIndication.

Interpretation
of target RX
descriptors

Provide an interface (functions) for querying RX frame attributes from the target-
specific descriptor.

RX FIFO
management

Provide a target-accessible FIFO for posting empty RX buffers for the target to fill.
Remove buffers from the FIFO during NdisWdiRxInorderDataIndication
processing, and provide replacement empty buffers.

RX buffer
pool
management

Maintain a pool of buffers for DMA transfer of receive frames.

MPDU
discard

Discard MPDUs with errors. The target indicates the receive frames marked for
discard - for example, due to FCS errors or ARQ duplication errors. This is only
done if it is not implemented by the target.

MPDU
reorder

Store MPDUs in order within an RX reordering array until the missing preceding
MPDUs arrive. This is only done if it is not implemented by the target.

RxEngine

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_rx_inorder_data_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_rx_inorder_data_ind

RX function Description

MPDU PN
chk

This is only done if it is not offloaded to the target.

MSDU
Fragment
Reassembly

This is only done if it is not offloaded to the target.

For RX path request and indication function reference, see WDI RX Path Functions.

NdisWdiRxInorderDataIndication

WDI RX Path Functions

RX path requests and indications

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_rx_inorder_data_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

WDI TX path
Article • 03/14/2023

The following diagram shows the TX path components.

The TAL uses a Target TX Descriptor (TTD) to inform the target of the size and location
of the frame.

Different target WLAN devices may have different definitions of the TTD. Due to this, the
TTD programming is done within the TAL, based on information provided by WDI. To
program a TTD, WDI specifies a NET_BUFFER_LIST (NBL), through which the frame
metadata, such as frame ID, extended TID, applicable task offloads, and encryption
exemption action, is accessible.

TX path components

TX descriptors

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

The TAL transfers the TTD and the TX frame to the target. From the metadata in the TTD
and fields within the frame's header, the target can determine the intended recipient of
the transmit frame and how to transmit it.

Eventually, the target transmits the frame, and notifies the host when the transfer (and
possibly transmission) is done. The target uses a TX completion message that specifies
whether the transmission was successful, and the IDs of the frames whose transmission
was completed.

Transmitting a data frame involves the following steps within the WLAN host TX
software.

1. WDI obtains an NBL from NDIS and performs TX classification (if WDI is operating
in PeerTID queuing mode).

2. The NBL is linked to a TTD obtained by querying the TAL. For efficiency, the TAL
may preallocate TTDs from a lookaside list.

3. The TxMgr queues the transmit frame based on the PeerTID or Port, depending on
the TargetPriorityQueueing mode.

4. The TxMgr provides the NBL and the attached TTD to the TxEngine, which in turn
passes it to the TIL for transfer to the target. The TxEngine/TIL does not queue
frames (for example, prior to making them available for DMA).

5. The TxEngine indicates the updated TX status of frames owned by the
TxEngine/target using transfer completion (and transmit completion indication if
applicable).

6. When a frame is both Transfer Complete (and if required, TX Complete), the TxMgr
looks up the NBL using the frame ID, returns the TTD to the TxEngine's pool, and
send-completes the frame to NDIS.

TX Flow control is necessary to avoid overwhelming the TIL and target resources.

The TxMgr queues and transfers TX frames to the target according to a credit-based
scheme. The target provides the TX Engine with credit-update indications that specify
the resources available for additional frames on the target. The number of credits used

Basic operation

Host - target TX flow control

The target-credit scheme and the pause/resume
mechanism

up by each frame on the target is determined at the time of TTD programming. The
number of frames passed to the TxEngine as part of a send operation from a given
queue is limited by the available credits and the cost of the frames at the head of the
line in FIFO order.

To the TxMgr, credits have an abstract unit. The Target/TxEngine should use whatever
definition of credit is most useful to the specific implementation.

The TAL uses pause/resume indications to stop/resume the flow of TX traffic from a
given port, or destined to a particular receiver with a given TID. If the TxEngine gets a
send request while the available credit is less than the maximum frame cost, the
TxEngine pauses the traffic from the TxMgr (across all ports) until the next credit update
from the target.

When WDI is in port queuing mode (TargetPriorityQueueing equals TRUE),
pause/resume indications are only allowed/defined at a port or adapter level due to the
absence of Peer,TID classification, and queuing.

To avoid the need for temporary queues in the TIL (for example, DMA rate matching
queue), the number of frames that TxMgr passes to TxEngine in a send operation is
limited by a maximum count specified by the TxEngine. This limit may be specific to the
queue the TxMgr is attempting to send from and changes over time as more space is
available in the TIL.

The TxMgr uses a single TX thread to submit frames to the TxEngine. There is a TX
thread actively submitting frames to the TxEngine as long as there are backlogged
queues.

The TxMgr schedules queues in the following manner depending on the queuing mode.

For WDI port queuing (TargetPriorityQueueing equals TRUE), the TxMgr services queues
using Deficit Round Robin (DRR) across all backlogged port queues.

For WDI PeerTID queuing (TargetPriorityQueueing equals FALSE), the TxMgr services
queues according to AC priority without starving any queues, and ensures that any
bottlenecked resources in TIL and target are shared among RA-TID streams in a fair
manner. It prevents slow streams from consuming a disproportionate share of such
resources.

Limiting the maximum frame count for send operations

Host - target TX transfer scheduling

In general, the scheduler uses DRR to choose the Peer-TID queue to transmit from at
any given time. For each queue, DRR associates a quantum parameter that limits the
number of octets to send from the queue in each round. The TxEngine updates this
parameter in each send operation involving the queue to match the expected size of
one or two transmission opportunities.

In general, the DRR scheduler services only the RA-TID queues associated with the
backlogged AC of highest priority. To prevent starvation, the scheduler periodically
performs DRR across all backlogged queues.

Frames injected by the IHV with extended TID in the IHV reserved range map to the
following extended ACs for the purposes of priority scheduling. The table is in order of
increasing priority.

Extended TID Extended AC

17 AC_BK

18 AC_BE

19 AC_VI

20 AC_VO

21 AC_PR0

22 AC_PR1

23 AC_PR2

24 AC_PR3

For WDI port queuing, all injected frames are treated equally regardless of the extended
TID.

MINIPORT_WDI_TX_ABORT
MINIPORT_WDI_TX_DATA_SEND
MINIPORT_WDI_TX_TAL_QUEUE_IN_ORDER

Priority mapping for IHV reserved extended TIDs

TxMgr-TxEngine interface

Requests to TxEngine

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_abort
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_data_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_tal_queue_in_order

MINIPORT_WDI_TX_TAL_SEND
MINIPORT_WDI_TX_TAL_SEND_COMPLETE
MINIPORT_WDI_TX_TARGET_DESC_DEINIT
MINIPORT_WDI_TX_TARGET_DESC_INIT

NDIS_WDI_TX_DEQUEUE_IND
NDIS_WDI_TX_TRANSFER_COMPLETE_IND
NDIS_WDI_TX_SEND_COMPLETE_IND
NDIS_WDI_TX_QUERY_RA_TID_STATE

MINIPORT_WDI_TX_PEER_BACKLOG

NDIS_WDI_TX_SEND_PAUSE_IND
NDIS_WDI_TX_SEND_RESTART_IND
NDIS_WDI_TX_RELEASE_FRAMES_IND
NDIS_WDI_TX_INJECT_FRAME_IND

WDI TX Path Functions

NET_BUFFER_LIST

WDI_TXRX_CAPABILITIES

Indications from TxEngine

TX specific control requests

TX specific control indications

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_tal_send
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_tal_send_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_target_desc_deinit
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_target_desc_init
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_dequeue_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_transfer_complete_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_send_complete_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_query_ra_tid_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_peer_backlog
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_send_pause_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_send_restart_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_release_frames_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_tx_inject_frame_ind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_txrx_target_capabilities

WDI datapath operation sequence
diagrams
Article • 03/14/2023

Control path commands are shown in orange.

Datapath initialization and deinitialization

Datapath operations for port creation/deletion

STA/Wi-Fi Direct client connect

STA/Wi-Fi Direct client disconnect

WDI IHV component model
Article • 03/14/2023

This section provides an overview of the NDIS interfaces for the WDI miniport driver and
the expectations for those interfaces.

The IHV component in the WDI model is an NDIS miniport. It interfaces with the
operating system and its networking stack using existing and new NDIS APIs. A
Microsoft WLAN component sits between the WDI IHV miniport driver and the rest of
the operating system. It provides a mapping between the WDI interfaces and the
existing NDIS/Native WLAN interfaces. WDI commands are packaged as new NDIS OIDs
and WDI indications are packaged as new NDIS indications. The data path interacts via
NET_BUFFER_LIST structures using new handlers.

The figure below shows the overall architecture layout and a sample flow of messages
(PNP actions, OIDs, and sends) from the operating system to the IHV miniport driver for
both the old Native WLAN model and the new WDI WLAN model.

Besides assisting with the Native Wi-Fi interface requirements, the Microsoft WLAN
component also handles most of the common NDIS requirements. For example, it

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

handles the MiniportPause requirements from NDIS and converts them to WDI data and
control path messages to ensure that NDIS requirements are met. However, it also
provides the IHV miniport driver the ability to do additional work. The driver can register
to be notified on MiniportPause call to do any additional cleanup it wants to do during
MiniportPause.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause

WDI IHV driver interfaces
Article • 03/14/2023

The WDI IHV miniport is like any other NDIS miniport driver and it would follow the
development practices and documentation for any NDIS miniport. A Native WLAN
Miniport driver’s responsibilities for the NDIS handlers are split between the MS
Component and the WDI IHV driver. The Microsoft WLAN component takes care of the
NDIS requirements that are applicable for all Wi-Fi miniports so that every IHV does not
have to redo all that work. The mapping of and behavior changes for the NDIS handlers
for the Native WLAN IHV miniport when applied to a WDI IHV miniport are described
below.

Driver installation
DriverEntry
MiniportSetOptions
MiniportInitializeEx
MiniportHaltEx
MiniportDriverUnload
MiniportPause
MiniportRestart
MiniportResetEx
MiniportDevicePnPEventNotify
MiniportShutdownEx
MiniportOidRequest
MiniportCancelOidRequest
NdisMIndicateStatusEx
MiniportDirectOidRequest
MiniportCancelDirectOidRequest
MiniportSendNetBufferLists
MiniportCancelSend
MiniportReturnNetBufferLists
WDI handler: MiniportWdiOpenAdapter
WDI handler: MiniportWdiCloseAdapter

There are no changes to the way the WDI IHV miniport driver is loaded and installed on
the system. The INF and install process is similar to that of an IHV Native WLAN
miniport driver. Like existing NDIS drivers, when the IHV driver needs to be loaded to

Driver installation

work with the IHV's WLAN adapter, the operating system calls the IHV miniport driver's
DriverEntry routine.

The operating system directly calls the WDI IHV miniport driver's DriverEntry routine.
The IHV miniport follows most of the guidelines of a regular NDIS miniport's DriverEntry
routine. The one exception is that instead of calling NdisMRegisterMiniportDriver, the
IHV miniport calls NdisMRegisterWdiMiniportDriver to tell the operating system to
enable the Microsoft WLAN component.

The following are the key parameters of NdisMRegisterWdiMiniportDriver.

NDIS_MINIPORT_DRIVER_CHARACTERISTICS: This is the original NDIS structure
that a Native Wi-Fi miniport uses to register with NDIS. For a WDI model, most of
the handler parameters are optional. The only required handlers are
MINIPORT_OID_REQUEST_HANDLER and MINIPORT_DRIVER_UNLOAD.
MINIPORT_OID_REQUEST_HANDLER is used to pass WDI messages to the IHV
driver. If any other handler is specified, the Microsoft WLAN component generally
calls the handler after it has performed its own processing for the handler.
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS: This is the new set of handlers
that a WDI miniport driver must implement. It is used by the IHV driver to register
additional handlers for the control path, and the full set of handlers for the data
path.

When the IHV miniport calls NdisMRegisterWdiMiniportDriver, the Microsoft WLAN
component updates the handlers of NDIS_MINIPORT_DRIVER_CHARACTERISTICS and
call NDIS's NdisMRegisterMiniportDriver. The updates are done so that the Microsoft
WLAN component can intercept the handlers for which it can provide
assistance/simplification to the WDI IHV miniport driver.

Below is the typical flow of the DriverEntry process for the WDI IHV miniport driver

DriverEntry

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismregisterwdiminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismregisterwdiminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_driver_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver

For more information about DriverEntry, see DriverEntry of NDIS Miniport Drivers.

As shown in the above DriverEntry diagram, if the WDI IHV miniport has registered the
MiniportSetOptions handler, the operating system calls that function in the context of
the miniport driver calling NdisMRegisterWdiMiniportDriver.

If the IHV miniport driver registers any option handlers using NdisSetOptionalHandlers,
those handlers may not be serialized through the WDI layer by the Microsoft
component. Therefore, the IHV component is responsible for handling any
synchronization requirements for those handlers.

The WDI model splits the MiniportInitializeEx behavior into multiple WDI interface calls.

1. Call MiniportWdiAllocateAdapter.

When the operating system finds an instance of the IHV hardware, this is the first
call into the WDI IHV miniport driver. In this call, the WDI miniport performs the

MiniportSetOptions

MiniportInitializeEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-set_options
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismregisterwdiminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissetoptionalhandlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_allocate_adapter

actions that are required to create a software representation
(MiniportAdapterContext) of the device. It also determines information about the
device to fill in the NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES
structure. The actual initialization of the device and the Wi-Fi stack is done later
when the Microsoft component sends WDI commands down to perform specific
initializations.

Using data obtained from the WDI IHV miniport driver, the Microsoft component
calls NdisMSetMiniportAttributes and sets the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES on NDIS. Most fields of
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES are filled with defaults
by the Microsoft component. The IHV driver must populate the
MiniportAdapterContext and InterfaceType fields.

Once this call returns from the IHV miniport driver, it starts receiving WDI
commands via its MiniportOidRequest handler. During this call, the Microsoft
component may not be able to perform reset/recovery operations, so any activity
performed here should be quick and reliable.

2. Call MiniportWdiOpenAdapter.

After MiniportWdiAllocateAdapter, the Microsoft component calls
MiniportWdiOpenAdapter to load the firmware and initialize the hardware.

3. Multiple WDI commands using MiniportOidRequest.

After MiniportWdiOpenAdapter, the Microsoft component sends the following
tasks/properties/calls to the IHV miniport.
a. Call MiniportWdiTalTxRxInitialize to initialize the data path and exchange

handlers.
b. Call OID_WDI_GET_ADAPTER_CAPABILITIES to get the adapter’s capabilities.
c. Call OID_WDI_SET_ADAPTER_CONFIGURATION to configure the adapter.
d. Call OID_WDI_TASK_SET_RADIO_STATE to set the initial radio state if it is not

already in the expected state.
e. Call MiniportWdiTalTxRxStart to set up the data path.
f. Call OID_WDI_TASK_CREATE_PORT to create the initial port.

Other commands may also be sent down to the IHV component as part of the
MiniportInitializeEx processing of the Microsoft Component. However, until
MiniportWdiStartOperation is called, the Microsoft component does not send any
tasks down that need over-the-air communication. Except for
OID_WDI_TASK_OPEN always being sent first, the order of the other
commands/calls may change.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_open_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_allocate_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_open_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_open_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tal_txrx_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tal_txrx_start
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_start_adapter_operation

Using data obtained from the WDI IHV miniport driver, the Microsoft component
calls NdisMSetMiniportAttributes and sets
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES and
NDIS_MINIPORT_ADAPTER_NATIVE_802_11_ATTRIBUTES on NDIS.

4. Call MiniportWdiStartOperation.

This is an optional WDI miniport handler inside
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS that the IHV driver can use to
perform any additional MiniportInitializeEx tasks. It can also be used by the IHV
miniport as a hint that the Microsoft component has finished initializing the
miniport and the miniport can start any needed background activities.

The diagram below shows the flow of MiniportInitializeEx.

If an intermediate operation fails, the Microsoft component undoes the previous
operations and fails the miniport bring up. For example, if
OID_WDI_TASK_CREATE_PORT fails, the data path is cleaned up,
OID_WDI_TASK_CLOSE is sent, and the miniport fails.

MiniportHaltEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff565926(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_start_adapter_operation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics

In a Native Wi-Fi miniport, MiniportHaltEx is used to tell the miniport to stop operations
and clean up the adapter instance. In the WDI model, the Microsoft component handles
the original MiniportHaltEx call and splits it into multiple WDI interface calls.

1. Call MiniportWdiStopOperation.

This is an optional WDI miniport handler inside
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS that the IHV driver can use to
undo the operations it performed in MiniportWdiStartOperation.

2. Multiple WDI Commands using MiniportOidRequest.

After MiniportWdiStopOperation, the Microsoft component sends tasks/properties
to the IHV miniport to clean up the current state of the IHV driver. This cleanup
may include the following.
a. Call OID_WDI_TASK_DISCONNECT/OID_WDI_TASK_STOP_AP to tear down any

existing connections.
b. Call OID_WDI_TASK_DELETE_PORT to delete all created ports.
c. Call MiniportWdiTalTxRxStop to stop the data path.
d. Call MiniportWdiTalTxRxDeinitialize to deinitialize the data path.
e. Call to clean up the hardware state. This is sent to the IHV using the

MiniportWdiCloseAdapter that has been registered by the IHV driver.

3. Once all of the above commands are called, the Microsoft component calls
MiniportWdiFreeAdapter to have the IHV driver delete any software state it may
have.

The diagram below shows the flow of MiniportHaltEx.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_stop_adapter_operation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_start_adapter_operation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_stop_adapter_operation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tal_txrx_stop
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tal_txrx_deinitialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_close_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_free_adapter

The MiniportHaltEx processing is not performed if the device is surprise removed or if
the system is being powered off. For surprise removal, refer to the
MiniportDevicePnPEventNotify handler behavior. For system shutdown, refer to the
MiniportShutdownEx handler behavior.

MiniportDriverUnload is the handler that is called before the WDI IHV miniport is
unloaded. The WDI IHV miniport driver calls the Microsoft component to deregister
itself. The Microsoft component calls NdisMDeregisterMiniportDriver.

The diagram below shows the flow of MiniportDriverUnload.

MiniportDriverUnload

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver

The NDIS MiniportPause requirements are handled by the Microsoft component. As part
of MiniportPause, the Microsoft component stops the data path and waits for it to clean
up. The WDI IHV miniport can optionally register for a MiniportWdiPostAdapterPause
callback that is called by the Microsoft component after it finishes the data path
cleanup.

The diagram below shows the flow of MiniportPause.

MiniportPause

MiniportRestart

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_post_adapter_pause

The NDIS MiniportRestart requirements are handled by the Microsoft component. As
part of MiniportRestart, the Microsoft component undoes the data path pause work that
it performed as part of MiniportPause. The WDI IHV miniport can optionally register for
a MiniportWdiPostAdapterRestart callback that is called by the Microsoft component
after it finishes restarting the data path.

The diagram below shows the flow of MiniportRestart.

MiniportResetEx is not handled by the Microsoft component. The WDI IHV miniport can
optionally register for a MiniportResetEx callback that is called by the Microsoft
component.

MiniportDevicePnPEventNotify is used to notify an NDIS driver of PNP events such as a
device's surprise removal. When NDIS sends this notification, it is first forwarded to the
WDI IHV miniport for processing. After the IHV component has finished processing it,
the Microsoft component performs the appropriate processing for this event. The call
that is forwarded into the IHV component is not serialized with other tasks and
callbacks.

The diagram below shows the flow of MiniportDevicePnPEventNotify.

MiniportResetEx

MiniportDevicePnPEventNotify

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_post_adapter_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_device_pnp_event_notify

MiniportShutdownEx is used to notify an NDIS driver about system shutdown events.
When NDIS sends this notification, it is first handled by the Microsoft component. After
the Microsoft component finishes processing it, it passes the event to the WDI IHV
miniport for processing.

The diagram below shows the flow of MiniportShutdownEx.

MiniportShutdownEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_shutdown

The MiniportOidRequest handler is a required handler that the WDI IHV miniport must
implement. It is used by the Microsoft component to submit WDI commands to the IHV
miniport. It is also used to forward OIDs that the Microsoft component does not handle
to the IHV miniport.

The MiniportOidRequest call into the WDI IHV miniport should be considered as the M1
message for a WDI command. The completion of the OID (either via
NdisMOidRequestComplete or via a return non-PENDING from MiniportOidRequest)
should be considered as the M3 message for a WDI task/command.

For every WDI command, there are two potential fields where an NDIS_STATUS code can
be returned for the operation -- the status code from the MiniportOidRequest call (or
NdisMOidRequestComplete), and the status code in the WDI_MESSAGE_HEADER field
(either on the OID completion or via NdisMIndicateStatusEx). The Microsoft component
always looks at the NDIS_STATUS from the OID completion before it looks at the
WDI_MESSAGE_HEADERStatus field. The expectations of the IHV component for WDI
OID processing are as follows.

1. WDI OIDs are submitted to the IHV component using an
NDIS_OID_REQUESTRequestType of NdisRequestMethod, and the corresponding
message and message length are in the
DATA.METHOD_INFORMATION.InformationBuffer and
DATA.METHOD_INFORMATION.InputBufferLength fields respectively.

2. The IHV component reports an error in the OID completion if there is an error
while processing the command, and sets the Status field of the
WDI_MESSAGE_HEADER to non-success if it has a Wi-Fi level failure.

3. For tasks and properties, the port number for the request is in the
WDI_MESSAGE_HEADERPortId field. The PortNumber in the NDIS_OID_REQUEST
is always set to 0.

4. For completion of the OID, it is acceptable for the MiniportOidRequest to return
NDIS_STATUS_PENDING and complete the OID later (synchronously or
asynchronously) with NdisMOidRequestComplete.

5. If the IHV component completes the OID with NDIS_STATUS_SUCCESS, it must
populate the BytesWritten field of the OID request with the appropriate number of
bytes, including space for the WDI_MESSAGE_HEADER.

6. If the IHV component does not have enough space in the
DATA.METHOD_INFORMATION.OutputBufferLength field to fill the response, it
completes the OID with NDIS_STATUS_BUFFER_TOO_SHORT and populates the
DATA.METHOD_INFORMATION.BytesNeeded field. The Microsoft component may

MiniportOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header

attempt to allocate a buffer of the requested size and submit a new request to the
IHV.

7. If it is a task, the task's M4 (NdisMIndicateStatusEx) must only be indicated if the
task was reported as started successfully -- OID completion is successful and the
Status in the WDI_MESSAGE_HEADER in OID completion was success.

The diagram below shows an example of an NDIS OID request that maps to a single
WDI command. When the OID request is submitted by the operating system, the
Microsoft component converts it to a WDI OID request and submits the WDI OID
request to the IHV miniport. When the IHV miniport completes the OID, the Microsoft
component appropriately completes the original OID request.

If the OriginalOidRequest maps to multiple WDI OidRequests and one of the WDI
requests fails, the OriginalOidRequest also fails. If a subset of the intermediate
operations already finished, the Microsoft component attempts to undo the operations
that support clean up.

The diagram below shows an example of an NDIS OID request that is handled
completed by the Microsoft component. When the OID request is submitted by the
operating system, the Microsoft component processes and completes the OID. This OID
is not passed to the WDI IHV miniport.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header

OIDs that are not understood by the Microsoft component are forwarded directly to the
IHV component for processing.

The behavior of MiniportOidRequest is unchanged for the WDI IHV miniport driver (as
compared to a Native Wi-Fi miniport). The calls are serialized and the IHV miniport can
either complete it synchronously or asynchronously with a call to
NdisMOidRequestComplete.

This is an optional handler that is used by a WDI IHV miniport that needs to handle OIDs
that are not mapped to WDI messages. This handler is not used for any WDI OIDs. WDI
OIDs must complete quickly and there is no need for the IHV miniport driver to attempt
to cancel a pending OID. Cancellation of WDI tasks is handled using the appropriate
cancel task OID request. For unmapped OIDs, the expected behavior is defined by NDIS.

MiniportCancelOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

NdisMIndicateStatusEx is used by the WDI IHV miniport to send indications to the
Microsoft component. The indications may be unsolicited indications such as TKIP MIC
failures, or solicited indications for the completion (M4) for a task.

The diagram below shows an example of a WDI indication that has a corresponding
NDIS/Native Wi-Fi indication. When the indication is submitted by the IHV miniport to
the Microsoft component, the Microsoft component converts it to an existing indication
and forwards it to the operating system.

The diagram below shows an example of a WDI indication that has no corresponding
NDIS/Native Wi-Fi indication. This is handled by the Microsoft component.

The diagram below shows an indication that is not recognized by the Microsoft
component. The indication is forwarded as-is to the operating system.

NdisMIndicateStatusEx

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

The behavior of NdisMIndicateStatusEx is unchanged for the WDI IHV miniport driver (as
compared to a Native Wi-Fi miniport).

This is an optional handler that is registered by a WDI IHV miniport driver if it needs to
handle Direct OIDs that are not mapped to WDI messages. All existing Direct OIDs for
Wi-Fi Direct are mapped to WDI messages, so this handler is not required to support
that functionality. Unsupported Direct OIDs are not serialized by the Microsoft
component.

This is an optional handler that is used by a WDI IHV miniport that needs to handle
Direct OIDs that are not mapped to WDI messages. For unmapped OIDs, the expected
behavior is defined by NDIS.

This handler is not used in a WDI IHV miniport driver and should not be provided. The
Microsoft component uses the data path handlers registered through
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS to submit send packets to the IHV
miniport.

This handler is not used in a WDI IHV miniport driver and should not be provided.

MiniportDirectOidRequest

MiniportCancelDirectOidRequest

MiniportSendNetBufferLists

MiniportCancelSend

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics

This handler is not used in a WDI IHV Miniport driver and should not be provided. The
Microsoft component uses the data path handlers registered through
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS to return received packets to the
IHV miniport.

The MiniportWdiOpenAdapter handler is used by the Microsoft component to initiate
the Open Task operation on the IHV driver. This call must complete quickly and if the
open operation has been successfully started, the IHV must return
NDIS_STATUS_SUCCESS on this call and call the OpenAdapterComplete handler that is
passed into the NDIS_WDI_INIT_PARAMETERS parameter of
MiniportWdiAllocateAdapter.

The MiniportWdiCloseAdapter handler is used by the Microsoft component to initiate the
Close Task operation on the IHV driver. This call must complete quickly and if the open
operation has been successfully started, the IHV must return NDIS_STATUS_SUCCESS on
this call and call the CloseAdapterComplete handler that is passed into the
NDIS_WDI_INIT_PARAMETERS parameter of the MiniportWdiAllocateAdapter.

MiniportReturnNetBufferLists

WDI handler: MiniportWdiOpenAdapter

WDI handler: MiniportWdiCloseAdapter

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_open_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_open_adapter_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_wdi_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_allocate_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_close_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_close_adapter_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_wdi_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_allocate_adapter

WDI NDIS interface restrictions
Article • 03/14/2023

The WDI IHV miniport driver has access to all of the functionality provided by NDIS and KMDF. It is recommended
that the IHV driver use the KMDF primitives for talking to the rest of the operating system whenever possible. While
the model does not restrict the IHV miniport from calling any of the NDIS APIs, some NDIS APIs are called by the
Microsoft WLAN component so the IHV driver should not call them.

The WDI IHV miniport driver needs to be aware of the following restrictions on NDIS interfaces.

Function Restrictions Alternative

NdisMRegisterMiniportDriver Disallowed NdisMRegisterWdiMiniportDriver

NdisMDeregisterMiniportDriver Disallowed NdisMDeregisterWdiMiniportDriver

NdisMSetMiniportAttributes Disallowed with MiniportAttributes types:
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
NDIS_MINIPORT_ADAPTER_NATIVE_802_11_ATTRIBUTES

None. These are queried using WDI
commands.

NdisMIndicateReceiveNetBufferLists Disallowed The WDI data path receive handler
to indicate received packets.

NdisMSendNetBufferListsComplete Disallowed The WDI data path send handler to
complete sent packets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismregisterwdiminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismderegisterminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismderegisterwdiminiportdriver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff565926(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete

Native WLAN to WDI OID mapping
Article • 03/14/2023

The following table contains the mappings between Native 802.11 WLAN OIDs to WDI commands. This is not a static mapping
and, depending on the current state, additional or fewer WDI commands may be sent down.

Note
Due to long DDI names, you may need to scroll the table horizontally to see all content. There is a scrollbar at the bottom of the
page.

DDI Query Set/Method/Function

MIBS

OID_DOT11_BEACON_PERIOD Handled by Microsoft Saved and set with OID_WDI_TASK_START_AP

OID_DOT11_COUNTRY_STRING Unsupported Not applicable

OID_DOT11_CURRENT_CHANNEL Handled by Microsoft Unsupported

OID_DOT11_CURRENT_FREQUENCY Handled by Microsoft Unsupported

OID_DOT11_CURRENT_REG_DOMAIN Unsupported Not applicable

OID_DOT11_DTIM_PERIOD Handled by Microsoft Saved and set with OID_WDI_TASK_START_AP

OID_DOT11_FRAGMENTATION_THRESHOLD Unsupported Unsupported

OID_DOT11_LONG_RETRY_LIMIT Unsupported Unsupported

OID_DOT11_MULTI_DOMAIN_CAPABILITY_ENABLED Unsupported Unsupported

OID_DOT11_OPERATIONAL_RATE_SET Handled by Microsoft Unsupported

OID_DOT11_REG_DOMAINS_SUPPORT_VALUE Unsupported Not applicable

OID_DOT11_RTS_THRESHOLD Unsupported Not applicable

OID_DOT11_SHORT_RETRY_LIMIT Unsupported Unsupported

Operational

OID_DOT11_CURRENT_OPERATION_MODE Handled by Microsoft OID_WDI_TASK_CHANGE_OPERATION_MODE

OID_DOT11_MULTICAST_LIST Handled by Microsoft OID_WDI_SET_MULTICAST_LIST

OID_DOT11_NIC_POWER_STATE Handled by Microsoft OID_WDI_TASK_DOT11_RESET,
OID_WDI_TASK_SET_RADIO_STATE

OID_DOT11_NIC_SPECIFIC_EXTENSION Not applicable OID_WDI_IHV_REQUEST

OID_DOT11_RESET_REQUEST Not applicable OID_WDI_TASK_DOT11_RESET

OID_DOT11_SCAN_REQUEST Not applicable OID_WDI_TASK_SCAN

Virtual Wi-Fi

OID_DOT11_CREATE_MAC Not applicable OID_WDI_TASK_CREATE_PORT,
OID_WDI_TASK_DOT11_RESET

OID_DOT11_DELETE_MAC Not applicable OID_WDI_TASK_DOT11_RESET,
OID_WDI_TASK_DELETE_PORT

OID_DOT11_VIRTUAL_STATION_CAPABILITY No planned support

ExtSTA/ExtAP

OID_DOT11_ACTIVE_PHY_LIST Handled by Microsoft based on
WDI_TLV_ASSOCIATION_RESULT

OID_DOT11_ASSOCIATION_PARAMS Not applicable Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_AUTO_CONFIG_ENABLED Handled by Microsoft Handled by Microsoft

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-beacon-period
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-country-string
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-channel
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-frequency
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-reg-domain
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-dtim-period
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-fragmentation-threshold
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-long-retry-limit
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-multi-domain-capability-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-operational-rate-set
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-reg-domains-support-value
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-rts-threshold
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-short-retry-limit
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-operation-mode
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-multicast-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-nic-power-state
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-nic-specific-extension
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-reset-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-scan-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-create-mac
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-delete-mac
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-virtual-station-capability
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-active-phy-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-association-params
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-auto-config-enabled

DDI Query Set/Method/Function

OID_DOT11_CIPHER_DEFAULT_KEY Not applicable OID_WDI_SET_ADD_CIPHER_KEYS

OID_DOT11_CIPHER_DEFAULT_KEY_ID Handled by Microsoft OID_WDI_SET_DEFAULT_KEY_ID

OID_DOT11_CIPHER_KEY_MAPPING_KEY Not applicable OID_WDI_SET_ADD_CIPHER_KEYS

OID_DOT11_CONNECT_REQUEST Not applicable OID_WDI_SET_PRIVACY_EXEMPTION_LIST,
OID_WDI_TASK_CONNECT

OID_DOT11_CURRENT_PHY_ID Handled by Microsoft Handled by Microsoft

OID_DOT11_DESIRED_BSS_TYPE Handled by Microsoft Handled by Microsoft

OID_DOT11_DESIRED_BSSID_LIST Handled by Microsoft Handled by Microsoft

OID_DOT11_DESIRED_COUNTRY_OR_REGION_STRING Unsupported Unsupported

OID_DOT11_DESIRED_PHY_LIST Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_DESIRED_SSID_LIST Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_DISCONNECT_REQUEST Not applicable OID_WDI_TASK_DISCONNECT

OID_DOT11_ENABLED_AUTHENTICATION_ALGORITHM Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_ENABLED_MULTICAST_CIPHER_ALGORITHM Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_ENABLED_UNICAST_CIPHER_ALGORITHM Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_ENUM_ASSOCIATION_INFO Handled by Microsoft Not applicable

OID_DOT11_ENUM_BSS_LIST Not applicable Handled by Microsoft

OID_DOT11_EXCLUDE_UNENCRYPTED Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_EXCLUDED_MAC_ADDRESS_LIST Handled by Microsoft Handled by Microsoft

OID_DOT11_EXTSTA_CAPABILITY Handled by Microsoft Not applicable

OID_DOT11_FLUSH_BSS_LIST Not applicable Handled by Microsoft

OID_DOT11_HARDWARE_PHY_STATE Handled by Microsoft Not applicable

OID_DOT11_HIDDEN_NETWORK_ENABLED Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_IBSS_PARAMS No planned support

OID_DOT11_MEDIA_STREAMING_ENABLED Handled by Microsoft OID_WDI_SET_CONNECTION_QUALITY

OID_DOT11_PMKID_LIST Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_PORT_STATE_NOTIFICATION Not applicable Unsupported

OID_DOT11_POWER_MGMT_REQUEST Handled by Microsoft OID_WDI_SET_CONNECTION_QUALITY

OID_DOT11_PRIVACY_EXEMPTION_LIST Not applicable OID_WDI_SET_PRIVACY_EXEMPTION_LIST

OID_DOT11_QOS_PARAMS Handled by Microsoft Handled by Microsoft

OID_DOT11_SAFE_MODE_ENABLED Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_STATISTICS OID_WDI_GET_STATISTICS Not applicable

OID_DOT11_SUPPORTED_COUNTRY_OR_REGION_STRING Unsupported Not applicable

OID_DOT11_SUPPORTED_MULTICAST_ALGORITHM_PAIR Handled by Microsoft

OID_DOT11_SUPPORTED_UNICAST_ALGORITHM_PAIR Handled by Microsoft

OID_DOT11_UNICAST_USE_GROUP_ENABLED Handled by Microsoft Saved and set with OID_WDI_TASK_CONNECT

OID_DOT11_UNREACHABLE_DETECTION_THRESHOLD Unsupported Unsupported

ExtAP

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-cipher-default-key
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-cipher-default-key-id
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-cipher-key-mapping-key
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-connect-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-current-phy-id
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-desired-bss-type
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-desired-bssid-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-desired-country-or-region-string
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-desired-phy-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-desired-ssid-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-disconnect-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enabled-authentication-algorithm
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enabled-multicast-cipher-algorithm
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enabled-unicast-cipher-algorithm
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enum-association-info
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enum-bss-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-exclude-unencrypted
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-excluded-mac-address-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-extsta-capability
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-flush-bss-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-hardware-phy-state
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-hidden-network-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-ibss-params
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-media-streaming-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-pmkid-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-port-state-notification
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-power-mgmt-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-privacy-exemption-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-qos-params
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-safe-mode-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-statistics
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-supported-country-or-region-string
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-supported-multicast-algorithm-pair
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-supported-unicast-algorithm-pair
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-unicast-use-group-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-unreachable-detection-threshold

DDI Query Set/Method/Function

OID_DOT11_ADDITIONAL_IE No planned support

OID_DOT11_AVAILABLE_CHANNEL_LIST No planned support

OID_DOT11_AVAILABLE_FREQUENCY_LIST No planned support

OID_DOT11_DISASSOCIATE_PEER_REQUEST Not applicable OID_WDI_TASK_DISCONNECT

OID_DOT11_ENUM_PEER_INFO No planned support

OID_DOT11_INCOMING_ASSOCIATION_DECISION Not applicable OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE

OID_DOT11_START_AP_REQUEST Not applicable OID_WDI_TASK_START_AP

OID_DOT11_WPS_ENABLED Handled by Microsoft Handled by Microsoft

Wi-Fi Direct

OID_DOT11_WFD_ADDITIONAL_IE Not applicable OID_WDI_SET_ADVERTISEMENT_INFORMATION

OID_DOT11_WFD_CONNECT_TO_GROUP_REQUEST Not applicable OID_WDI_SET_PRIVACY_EXEMPTION_LIST,
OID_WDI_TASK_CONNECT

OID_DOT11_WFD_DESIRED_GROUP_ID Not applicable Saved and set with OID_WDI_TASK_CONNECT /
OID_WDI_TASK_START_AP

OID_DOT11_WFD_DEVICE_CAPABILITY Not applicable OID_WDI_SET_ADVERTISEMENT_INFORMATION

OID_DOT11_WFD_DEVICE_INFO Not applicable OID_WDI_SET_ADVERTISEMENT_INFORMATION

OID_DOT11_WFD_DEVICE_LISTEN_CHANNEL Not applicable Unsupported

OID_DOT11_WFD_DISCONNECT_FROM_GROUP_REQUEST Not applicable OID_WDI_TASK_DISCONNECT

OID_DOT11_WFD_DISCOVER_REQUEST Not applicable OID_WDI_TASK_P2P_DISCOVER

OID_DOT11_WFD_ENUM_DEVICE_LIST Not applicable Handled by Microsoft

OID_DOT11_WFD_FLUSH_DEVICE_LIST Not applicable Handled by Microsoft

OID_DOT11_WFD_GET_DIALOG_TOKEN Not applicable Handled by Microsoft

OID_DOT11_WFD_GROUP_JOIN_PARAMETERS Not applicable Saved and set with OID_WDI_TASK_CONNECT /
OID_WDI_TASK_START_AP

OID_DOT11_WFD_GROUP_OWNER_CAPABILITY Not applicable OID_WDI_SET_ADVERTISEMENT_INFORMATION

OID_DOT11_WFD_GROUP_START_PARAMETERS Not applicable Saved and set with OID_WDI_TASK_CONNECT /
OID_WDI_TASK_START_AP

OID_DOT11_WFD_LISTEN_STATE_DISCOVERABILITY Not applicable OID_WDI_SET_P2P_LISTEN_STATE

OID_DOT11_WFD_SECONDARY_DEVICE_TYPE_LIST Not applicable OID_WDI_SET_ADVERTISEMENT_INFORMATION

OID_DOT11_WFD_SEND_GO_NEGOTIATION_CONFIRMATION Not applicable OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME

OID_DOT11_WFD_SEND_GO_NEGOTIATION_REQUEST Not applicable OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME

OID_DOT11_WFD_SEND_GO_NEGOTIATION_RESPONSE Not applicable OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME

OID_DOT11_WFD_SEND_INVITATION_REQUEST Not applicable OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME

OID_DOT11_WFD_SEND_INVITATION_RESPONSE Not applicable OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME

OID_DOT11_WFD_SEND_PROVISION_DISCOVERY_REQUEST Not applicable OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME

OID_DOT11_WFD_SEND_PROVISION_DISCOVERY_RESPONSE Not applicable OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME

OID_DOT11_WFD_START_GO_REQUEST Not applicable OID_WDI_TASK_START_AP

OID_DOT11_WFD_STOP_DISCOVERY Not applicable Converts to OID_WDI_ABORT_TASK

Wi-Fi Power

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-additional-ie
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-available-channel-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-available-frequency-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-disassociate-peer-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-enum-peer-info
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-incoming-association-decision
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-start-ap-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wps-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-additional-ie
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/-oid-dot11-wfd-connect-to-group-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-desired-group-id
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-device-capability
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-device-info
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-device-listen-channel
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-disconnect-from-group-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-discover-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-enum-device-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-flush-device-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-get-dialog-token
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/-oid-dot11-wfd-group-join-parameters
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-group-owner-capability
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-group-start-parameters
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-listen-state-discoverability
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-secondary-device-type-list
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-go-negotiation-confirmation
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-go-negotiation-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-go-negotiation-response
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-invitation-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-invitation-response
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/-oid-dot11-wfd-send-provision-discovery-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-send-provision-discovery-response
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-start-go-request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-wfd-stop-discovery

DDI Query Set/Method/Function

OID_DOT11_POWER_MGMT_MODE_AUTO_ENABLED Not applicable OID_WDI_SET_CONNECTION_QUALITY

OID_DOT11_POWER_MGMT_MODE_STATUS WDI_GET_AUTO_POWER_SAVE Not applicable

OID_DOT11_OFFLOAD_NETWORK_LIST Not applicable OID_WDI_SET_NETWORK_LIST_OFFLOAD

NDIS

OID_GEN_CURRENT_LOOKAHEAD Not applicable Unsupported

OID_GEN_CURRENT_PACKET_FILTER Not applicable OID_WDI_SET_RECEIVE_PACKET_FILTER

OID_GEN_INTERRUPT_MODERATION Handled by Microsoft Unsupported

OID_GEN_LINK_PARAMETERS Not applicable Unsupported

OID_GEN_MAXIMUM_TOTAL_SIZE Handled by Microsoft Not applicable

OID_GEN_RCV_OK Handled by Microsoft Not applicable

OID_GEN_RECEIVE_BLOCK_SIZE Handled by Microsoft Not applicable

OID_GEN_RECEIVE_BUFFER_SPACE Handled by Microsoft Not applicable

OID_GEN_STATISTICS Handled by Microsoft Not applicable

OID_GEN_TRANSMIT_BLOCK_SIZE Handled by Microsoft Not applicable

OID_GEN_TRANSMIT_BUFFER_SPACE Handled by Microsoft Not applicable

OID_GEN_VENDOR_DESCRIPTION Handled by Microsoft Not applicable

OID_GEN_VENDOR_DRIVER_VERSION Handled by Microsoft Not applicable

OID_GEN_VENDOR_ID Handled by Microsoft Not applicable

OID_GEN_XMIT_OK Handled by Microsoft Not applicable

OID_GEN_PORT_AUTHENTICATION_PARAMETERS Handled by Microsoft Not applicable

Ethernet

OID_802_3_ADD_MULTICAST_ADDRESS Unsupported Unsupported

OID_802_3_DELETE_MULTICAST_ADDRESS Unsupported Unsupported

OID_802_3_PERMANENT_ADDRESS Handled by Microsoft Not applicable

OID_802_3_CURRENT_ADDRESS Handled by Microsoft Not applicable

OID_802_3_MULTICAST_LIST Handled by Microsoft OID_WDI_SET_MULTICAST_LIST

OID_802_3_MAXIMUM_LIST_SIZE Handled by Microsoft Not applicable

OID_802_3_MAC_OPTIONS Handled by Microsoft Not applicable

OID_802_3_RCV_ERROR_ALIGNMENT Handled by Microsoft Not applicable

OID_802_3_XMIT_ONE_COLLISION Handled by Microsoft Not applicable

OID_802_3_XMIT_MORE_COLLISIONS Handled by Microsoft Not applicable

NDIS Power

OID_PNP_QUERY_POWER Handled by Microsoft Not applicable

OID_PNP_SET_POWER Not applicable OID_WDI_SET_POWER_STATE,
OID_WDI_SET_NETWORK_LIST_OFFLOAD,
OID_WDI_TASK_OPEN (hibernate),
OID_WDI_TASK_CLOSE (hibernate)

OID_PM_ADD_PROTOCOL_OFFLOAD Not applicable OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD

OID_PM_ADD_WOL_PATTERN Not applicable OID_WDI_SET_ADD_WOL_PATTERN

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-powermgmt-mode-auto-enabled
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-power-mgmt-mode-status
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-offload-network-list
https://learn.microsoft.com/en-us/previous-versions/ff569075(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff569082(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff569081(v=vs.85)

DDI Query Set/Method/Function

OID_PM_CURRENT_CAPABILITIES Handled by Microsoft

OID_PM_GET_PROTOCOL_OFFLOAD Not applicable OID_WDI_GET_PM_PROTOCOL_OFFLOAD

OID_PM_HARDWARE_CAPABILITIES Handled by Microsoft Not applicable

OID_PM_PARAMETERS Handled by Microsoft Handled by Microsoft

OID_PM_PROTOCOL_OFFLOAD_LIST Handled by Microsoft Not applicable

OID_PM_REMOVE_PROTOCOL_OFFLOAD Not applicable OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD

OID_PM_REMOVE_WOL_PATTERN Not applicable OID_WDI_SET_REMOVE_WOL_PATTERN

OID_PM_WOL_PATTERN_LIST Handled by Microsoft Not applicable

OID_PACKET_COALESCING_FILTER_MATCH_COUNT WDI_GET_RECEIVE_
COALESCING_MATCH_COUNT

Not applicable

OID_RECEIVE_FILTER_SET_FILTER Not applicable OID_WDI_SET_RECEIVE_COALESCING

OID_RECEIVE_FILTER_CLEAR_FILTER Not applicable OID_WDI_SET_CLEAR_RECEIVE_COALESCING

TCP Task Offload

OID_TCP_TASK_OFFLOAD Unsupported Unsupported

WDI tracing with WDILib
Article • 03/14/2023

The WDILib component currently supports tracing using WPP. The trace provider's GUID
is {21ba7b61-05f8-41f1-9048-c09493dcfe38}. The following instructions can be used to
collect and view the traces.

To collect traces, run the following command line from an Administrator command
prompt.

PowerShell

You can create a batch cmd file that contains the netsh trace command line. This allows
you to expand the command to include IHV WPP events if desired.

PowerShell

You can use 'wireless_dbg' to enable the rest of the operating system-side traces.
Additional useful options are 'capture=yes' to enable packet traces and 'persistent=yes'
to keep tracing enabled across reboots until it is stopped. This means you do not have
to remember to enable tracing across reboots.

Start tracing

netsh trace start wireless_dbg provider={21ba7b61-05f8-41f1-9048-
c09493dcfe38} level=0xff keywords=0xff

@echo off
Setlocal
Rem
Rem Example trace script enabling both WDI and IHV WPP events
Rem

Rem
Rem replace IHV_WPP_GUID with your IHV driver GUID and desired trace flags
Rem
Set IHV_WPP_GUID={0160d072-248f-11e2-be71-082e5f28d97c} 0xff
Set WDI_WPP_GUID={21ba7b61-05f8-41f1-9048-c09493dcfe38} level=0xff
keywords=0xff

Rem
Rem Start the trace
Rem
netsh trace start wireless_dbg provider=%WDI_WPP_GUID%
provider=%IHV_WPP_GUID% globallevel=0xff

Alternatively, the trace provider GUID can be incorporated into the trace commands
used for collecting the IHV component tracing.

Once a repro is obtained, the tracing is stopped and traces saved with the following
command.

PowerShell

This saves the traces in %TEMP%\NetTraces\NetTrace.etl.

Traces are converted to text with any WPP to Text conversion tools. One option is to use
Netsh.

PowerShell

In this example, C:\TMF contains the TMFs (generated from the wdiwifi.PDB by running
tracepdb.exe). If the TMFs are not generated, the converted traces do not show up
correctly.

The converted text file (NetTrace.txt) can be viewed using any text viewer. If the viewer
has the ability to add filters, using '[ERROR]', '[Wdi', and '[MSG ' filters may help scope
the traces down to interesting lines.

To trace on phones, save the following text as wdiguids.txt, including the trace providers
you want to trace.

Text

Stop tracing

netsh trace stop

Convert WPP traces to text

netsh trace convert NetTrace.etl tmfpath=C:\TMF

Analyze traces

Tracing on phones

Using TShell, connect to the device, copy the files over, and begin tracing.

PowerShell

0C5A3172-2248-44FD-B9A6-8389CB1DC56A wlansvc
D905AC1D-65E7-4242-99EA-FE66A8355DF8 WlanAPI
abe47285-c002-46d1-95e4-c4aec3c78f50 WFD WPS Provider
9CC9BEB7-9D24-47C7-8F9D-CCC9DCAC29EB WFD WPS Provider
7D7180B3-A452-4FFF-8D1F-7B32B248AB70 DAF WFD Provider
19e464a4-7408-49bd-b960-53446ae47820 DAS
e176aa66-5cc8-4321-9624-f9c1d2b7bf06 UPnP
71975d00-46bb-4236-bd4f-41a8c72fadfc DAF UPnP Provider
2B175479-BBE4-4262-AA71-19AFB22A46F5 UPnP
4D946A46-275B-4C9D-B835-0B2160559256 WPS
C100BECE-D33A-4A4B-BF23-BBEF4663D017 WCN
20644520-D1C2-4024-B6F6-311F99AA51ED MSMSEC
ED092A80-0125-4403-92AC-4C06632420F8 MSMSEC
253F4CD1-9475-4642-88E0-6790D7A86CDE MSMSEC
7076BF7A-DB99-4A63-8AFE-0BB2AB92997A 1X
5F31090B-D990-4E91-B16D-46121D0255AA EAPHOST
D905AC1C-65E7-4242-99EA-FE66A8355DF8 NWifi
e49b27dd-b2f0-4571-8c6a-3271a3a3a6b9 VNE wlanvmp
11111111-0000-0000-0000-000000000000 VNE UserMode
c02edc8d-d627-46c9-abd9-c8b78f88c223 VWifiBus
914598a6-28f0-42ac-bf3d-a29c6047a739 VWifiFlt
ad8fe36a-0581-4571-a143-5a3f93e30160 Bluewire devicepairing.dll
14E44EEB-E037-45a5-9CA6-472258724563 Bluewire devicepairingfolder.dll
05516000-0670-11e0-8e5c-f4ce462d9187 ProximityCommon.dll
ProximityService.dll
05516002-0670-11e0-8e5c-f4ce462d9187 ProximityUxHost
3475aabe-44ba-49eb-bfd8-de32e88b4f35
Windows.Networking.NearFieldProximity.dll
8C3E3B78-4E27-48ea-B52C-7BCDC9CC2DA9 WMP
C9C074D2-FF9B-410F-8AC6-81C7B8E60D0F MediaEngineCtrlGuid
3496b396-5c43-45e7-b38e-d509b79ae721 WFDPAL
c7491fe4-66f4-4421-9954-b55f03db3186 WiFiDisplay
F9A92EFE-77C3-4D19-8B00-1EE9E7CBE8C1 UX
802ec45b-1e99-4b83-9920-87c98277ba9d Miradisp
f860141e-94e0-418e-a8a6-2321623c3018 Vlib
0160d072-248f-11e2-be71-082e5f28d97c WIFI Driver
07C9AAA5-FF6B-44CF-A417-C3BE5A719C0B WIFI Driver
21ba7b61-05f8-41f1-9048-c09493dcfe38 WDI Driver
D710D46C-235D-4798-AC20-9F83E1DCD557 EapMethod Ttls
E21E2366-917F-4CCC-BFE4-0FD23CB31209 TTLS WPP
7076bf7a-db99-4a63-8afe-0bb2ab92997a OneX WPP
3A9B0DE9-2A69-413E-9074-444C0E3A81D9 EAP SIM WPP
5F31090B-D990-4E91-B16D-46121D0255AA Eaphost WPP
6EB8DB94-FE96-443F-A366-5FE0CEE7FB1C Eaphost
E5C16D49-2464-4382-BB20-97A4B5465DB9 WifiNetworkmanager
5CA18737-22AC-4050-85BC-B8DBB9F7D986 WifiNetworkmanager wpp
CC3DF8E3-4111-48d0-9B21-7631021F7CA6 Dhcpv4 Client
07a29c3d-26a4-41e2-856a-095b3eb8b6ef Dhcpv6 Client

Run your scenario. To stop tracing and collect the logs, reconnect to TShell (if needed)
and run the following commands.

PowerShell

open-device 127.0.0.1
cmdd "mkdir \data\test\wlan"
putd wdiguids.txt \data\test\wlan
cmdd tracelog.exe '-start wdiwpp -f \data\test\wlan\wdiwpp.etl -cir 256 -rt
-ls -ft 1'
cmdd tracelog.exe '-enable wdiwpp -guid \data\test\wlan\wdiguids.txt -level
0x7fffffff -flag 0x7fffffff'

cmdd tracelog.exe '-flush wdiwpp'
cmdd tracelog.exe '-stop wdiwpp'
getd \data\test\wlan\wdiwpp.etl
cmdd 'tracelog -flush WiFiDriver -f C:\data\systemdata\etw\wifidriver.etl'
getd 'C:\data\systemdata\etw\wifidriver.etl'
cmdd 'tracelog -flush WiFiSession'
getd 'C:\Data\SystemData\ETW\WiFi.etl.001'
getd 'C:\Data\SystemData\ETW\WiFi.etl.002'
getd 'C:\Data\SystemData\ETW\WiFi.etl.003'

WDI information collection for bugs
Article • 03/14/2023

Bugs in any non-trivial software are inevitable. In the driver development phase, bugs
and debugging activities are expected to be a non-trivial part of the endeavor. Bugs
may require joint company efforts, as they can be in the operating system, WDI UE, or
WDI LE. It is crucial to collect relevant information to quickly narrow in on root causes.
The information to collect varies widely depending on the nature of the bugs. Iterations
of reproduction of a bug to collect further information are sometimes necessary, but it is
critical to reduce these iterations as much as possible. Here are some rules to start with.

The operating system generates a crash dump. There are different types of crash dumps,
such as mini-dumps and full dumps. While a mini-dump is small, it is often only good
for triage. In order to root cause an issue, a full dump is almost always necessary.
Enabling full dumps during the driver development and self-hosting phases is
recommended. To enable full dumps:

1. From the desktop, right-click on This PC and choose Properties.
2. On the Advanced tab, go to the Startup and Recovery section and click on the

Settings... button.
3. In the Write debugging information section, choose Kernel memory dump

(rather than Automatic memory dump).

When an operating system crash occurs, a memory dump file is generated at
%windir%\memory.dmp.

Developers or QA should have kernel debuggers attached if possible. A kernel debugger
can quickly tell what is wrong and which direction to investigate further. The kd
command '!analyze –v' is useful as the first command to run after a bug check. This
command points to the location inside a module where the crash occurred and the
reason (bug check code) for the crash.

OS crash without kernel debugger attached

OS crash with kernel debugger attached

When Reset Recovery is invoked

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/-analyze

The Reset Recovery feature of WDI builds in the ability to collect live kernel dumps when
Reset Recovery is invoked. The kernel dump enables developers to investigate the root
causes post-mortem. Live kernel dumps are collected under
%windir%\LiveKernelDumps.

The current Reset Recovery triggers are listed below. More triggers may be added in the
future.

The UE detects a timeout of a WDI command (M3) sent to the LE.
The UE detects a timeout of a WDI task (M4) sent to the LE.
The LE detects and indicates a firmware hang.
User mode requests a Reset Recovery. This is currently only for loss of internet
connectivity. When the NIC is connected and has internet connectivity, wlansvc
starts the internet loss state machine. If internet connectivity is lost and not
regained within 35 seconds, wlansvc requests that WDI initiates a Reset Recovery.
The 35 second timeout is subject to change in the future.

WDI calls NDIS to log an Error event to the system event log when it receives a Reset
Recovery trigger. The event is in the LE name and the ID is 5002. The last two DWORDs
are [TriggerType, ActiveWdiCommand]. The current trigger types are listed below.

COMMAND_TIMER_ELAPSED (1)
TASK_TIMER_ELAPSED (2)
RESET_RECOVERY_OID_REQUEST (3)
RESET_RECOVERY_FIRMWARE_STALLED (4)

ActiveWdiCommand may be 0 (no active command) if the trigger type is
RESET_RECOVERY_OID_REQUEST or RESET_RECOVERY_FIRMWARE_STALLED.

This screenshot is an example view of eventvwr showing system.evtx. The trigger type is
3 and there is no active command.

Reset Recovery triggers

Events for Reset Recovery triggers

If there is no crash but Wi-Fi does not function as expected, collect and analyze a trace
log. To see if the issue is confined to the WDI UE and LE, a wlan_dbg trace should be
included to see the operating system events for the context. Wlan_dbg contains WPP
events that require operating system private symbols. The original etl trace should be
reserved and included in communication.

Sometimes, the Wi-Fi NIC does not go to low power (device_power_state_Dx). Other
times, the device wakes up frequently. A SleepStudy report is helpful in first level triage.
SleepStudy events are always on, but only collected if CS sessions are longer than 10
minutes. The events are also persistent (for example, you can inspect the study
postmortem). To generate a SleepStudy, run the following command line in an
Administrator command prompt.

CMD

A report file named SleepStudy-report.html is generated. It should be opened outside
%windiir%\system. The report breaks down what modules are keeping the system out of

When Wi-Fi malfunctions

Connected Standby issues

Powercfg /SleepStudy

very low power state (DRIPS). It can also further break down which components are
keeping the Wi-Fi NIC up (out of Dx).

WDI non-TLV versioning
Article • 03/14/2023

Data structures that are passed between WDI and the IHV miniport and contain a
NDIS_OBJECT_HEADER (such as NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS)
follow the standard NDIS versioning model. The miniport must check the Revision and
Size fields to ensure the fields it cares about are present, and ignore any extra fields or
data without error. Ensure that newer revisions or larger sizes of such structures are not
excluded.

All data structures without an NDIS_OBJECT_HEADER (such as
WDI_FRAME_METADATA) follow the TLV versioning model, where WDI and the miniport
use the size/revision determined by the lowest WdiVersion value from
NDIS_WDI_INIT_PARAMETERS and NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS.

For example, if WDI sets WdiVersion in NDIS_WDI_INIT_PARAMETERS to
WDI_VERSION_1_0, and the miniport sets WdiVersion in
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS to WDI_VERSION_2_0, then both
WDI and the miniport should use the structure sizes and definitions compatible with
WDI_VERSION_1_0 for all structures without NDIS_OBJECT_HEADER fields. However, in
the same situation but with structures that have an NDIS_OBJECT_HEADER field, WDI
and the miniport may use a larger or newer structure as long as the Revision and Size
fields are correctly set.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_frame_metadata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_wdi_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_wdi_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

User-initiated feedback with IHV trace
logging overview
Article • 12/15/2021

This topics in this section outline the steps required for collecting verbose IHV trace logs
during user-initiated feedback (UIF) reports submitted via the Feedback tool. There are
two separate scenarios in which the Feedback tool will collect logs. The first scenario is a
snapshot of the system at the time when the user initiates the feedback. During this
time, Windows collects the WMI auto-loggers and some other snapshot data. The
second scenario involves the user reproducing the issue. During this feedback, Windows
starts loggers with more verbose logging and larger file sizes to capture as much data as
possible for the repro. This section describes the expectations for IHVs for each of these
feedback scenarios.

In this section:

Logging scenarios
User-initiated feedback - normal mode
User-initiated feedback - repro mode

Logging scenarios
Article • 12/15/2021

The events saved in IHV log files, for both repro mode and the auto-logger, should be
appropriately throttled via flags/level/keywords to ensure that at least the past 30
minutes of the log events are always saved. Practically, you should target the 30 minute
time period to cover one scan/WFD discovery, one connect/roam event, one disconnect
event, several power transitions, and 10 minutes' worth of send and receive data.
Because the IHV repro mode log is much larger than the normal IHV auto-logger, more
verbose logging is expected.

The following scenarios might help you when logging:

Getting connected
Power transitions
Radio management
Roaming
Hang/recovery
Transition from Connected to Limited

User-initiated feedback with IHV trace logging

Related links

User-initiated feedback - normal mode
Article • 12/15/2021

In the normal user-initiated feedback (UIF) scenario, a user experiences a problem with
Wi-Fi and submits a feedback report. This report collects a snapshot of the Wi-Fi
subsystem, including Wi-Fi WMI auto-loggers, network statistics, etc. To collect IHV-
specific logs, Microsoft provides a WMI auto-logger session with no initial ETW
providers. Each IHV adds their set of ETW providers under the Microsoft-provided WMI
auto-logger session registry entry. When the UIF report is submitted, the IHV auto-
logger ETL is collected and sent to Microsoft for analysis. This log file is implemented
using a circular buffer with a somewhat limited size (<= 1MB). The events saved in this
log file should be appropriately throttled via flags/level/keywords to ensure that at least
the past 30 minutes of the log events are always saved.

Microsoft provides a WMI auto-logger session with no initial ETW providers. When the
IHV's drivers are installed, they must add the required WMI provider registry keys under
the Microsoft-provided WMI auto-logger session key. The IHV should not change any of
the auto-logger session registry values. However, all ETW provider options are available
to the IHV including enable level, match any, match all, etc. This logging session always
runs and has a limited circular buffer, so IHVs should set the provider EnableLevels
appropriately.

The WMI auto-logger session is added to the HKLM registry hive with the following
path:

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession

The resulting ETL log file is located here:

%SystemDrive%\System32\LogFiles\WMI\WifiDriverIHVSession.etl

IHVs need to update their driver INF files to add the following registry key values so they
can get verbose IHV logs during UIF normal mode. The following snippets provide a
template for adding a single ETW provider to the auto-logger session. An IHV may add
as many providers as they see fit. In addition, the enable level values are IHV-specific per

Microsoft-provided WMI auto-logger session

IHV driver INF changes

ETW provider, so they don't have to necessarily be the same as the Microsoft-defined
values (TRACE_LEVEL_CRITICAL, TRACE_LEVEL_ERROR, etc.).

Because the IHV auto-logger session is initialized with no ETW providers, it is disabled
by default. IHVs are required to enable this session by updating the "Start" value to 1 in
their driver's INF file, as shown in this example:

INF

The following snippet shows how to add IHV ETW providers in the INF file:

INF

This example illustrates a Native Wi-Fi custom level setting (enable all) with all Native
Wi-Fi keywords:

INF

Enable the IHV auto-logger session

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession,St
art,%REG_DWORD%,1

Add IHV ETW providers

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,Enabled,%REG_DWORD%,1
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,,EnableLevel,%REG_DWORD%,<IHV_LogEnableLevelValue>
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,MatchAnyKeyword,%REG_QWORD%,<IHV_MatchAnyKewordValue>

[The following is optional]
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,MatchAllKeyword,%REG_QWORD%,<IHV_MatchAllKewordValue>

[Strings]
REG_DWORD = 0x00010001
REG_QWORD = 0x000B0001

Example values

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
{0BD3506A-9030-4f76-9B88-3E8FE1F7CFB6},Enabled,%REG_DWORD%,1
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\

User-initiated feedback with IHV trace logging

User-initiated feedback - repro mode

{0BD3506A-9030-4f76-9B88-3E8FE1F7CFB6},,EnableLevel,%REG_DWORD%,0x04
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
{0BD3506A-9030-4f76-9B88-
3E8FE1F7CFB6},MatchAnyKeyword,%REG_QWORD%,0x000FFFFF

Standard EnableLevel values:
0x5 - Verbose
0x4 - Informational
0x3 - Warning
0x2 - Error
0x1 - Critical
0x0 – LogAlways

Related links

User-initiated feedback - repro mode
Article • 12/15/2021

User-initiated feedback (UIF) repro mode permits the system to collect more verbose
logging while the user reproduces the bug. Like UIF normal mode, this is also
accomplished by creating a new WMI logging session with IHV-defined ETW providers.
After the repro mode is complete, the verbose logs are gathered and sent to Microsoft
for analysis. There are IHV extension points for enabling or disabling verbose firmware
logs. Repro logs are intended to be more verbose to be able to track down the reason
the customer is having a problem. Therefore, the log file size for the repro mode log is
set at a maximum size of 10MB. The IHV should use more verbose settings for ETW
provider flags/level/keywords values.

The current UIF repro mode model requires that Microsoft is notified of all provider
GUIDs, levels, and flags before the IHV feedback logs are included. Adding the providers
to the registry, as indicated in this topic, enables an IHV to test the logs for appropriate
levels.

Microsoft provides a WMI auto-logger session with no initial ETW providers. When the
IHV's drivers are installed, they must add the required WMI provider registry keys under
the Microsoft-provided WMI auto-logger session key. The IHV should not change any of
the auto-logger session registry values. However, all ETW provider options are available
to the IHV including enable level, match any, match all, etc.

The WMI auto-logger session is added to the HKLM registry hive with the following
path:

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSessionRepro

Microsoft-provided WMI auto-logger session

） Important

The auto-logger is never enabled as an auto-logger. These values are used to
validate the repro mode IHV logging described in Testing the repro mode logs. In
addition, we might ask users to submit these logs manually by using the netsh
tool. The provider GUIDs, level, and flags must also be submitted to Microsoft,
along with a sample of the logs, so they will be included in repro mode UIFs (see
Submitting IHV providers to Microsoft.

The resulting ETL log file is located here:

%SystemDrive%\System32\LogFiles\WMI\WifiDriverIHVSessionRepro.etl

IHVs need to update their driver INF files to add the following registry key values so they
can get verbose IHV logs during UIF normal mode. The following snippets provide a
template for adding a single ETW provider to the auto-logger session. An IHV may add
as many providers as they see fit. In addition, the enable level values are IHV-specific per
ETW provider, so they don't have to necessarily be the same as the Microsoft-defined
values (TRACE_LEVEL_CRITICAL, TRACE_LEVEL_ERROR, etc.).

The following snippet shows how to add IHV ETW providers in the INF file:

INF

This example shows WDI UE informational level setting with all keywords:

INF

IHV driver INF changes

Add IHV ETW providers

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,Enabled,%REG_DWORD%,1
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,,EnableLevel,%REG_DWORD%,<IHV_LogEnableLevelValue>
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,MatchAnyKeyword,%REG_QWORD%,<IHV_MatchAnyKewordValue>

[The following is optional]
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
<IHVProviderGUID_1>,MatchAllKeyword,%REG_QWORD%,<IHV_MatchAllKewordValue>

[Strings]
REG_DWORD = 0x00010001
REG_QWORD = 0x000B0001

Example values

HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
{21ba7b61-05f8-41f1-9048-c09493dcfe38},Enabled,%REG_DWORD%,1
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
{21ba7b61-05f8-41f1-9048-c09493dcfe38},,EnableLevel,%REG_DWORD%,0xFF
HKLM,SYSTEM\CurrentControlSet\Control\WMI\Autologger\WifiDriverIHVSession\
{21ba7b61-05f8-41f1-9048-

An IHV can register for the ETW control callback in its ETW logging code. This enables
the IHV to be notified when ETW providers are enabled, disabled, or a capture control is
initiated. This way, the IHV can turn on or off verbose firmware logs for repro mode.

The following snippet shows how to register for the ETW callback. This is only important
if the IHV needs to take special action during the start and end of the UIF repro mode
(like starting or stopping verbose firmware logging). If multiple ETW providers are used,
IHVs might consider only implementing one callback to initiate firmware logging. All
firmware logging must be routed to the IHV's ETW trace provider. The diagnostic tools
for UIF will only collect traces for the IHV's ETW provider.

There are two ways to enable the ETW callback, depending on how you implemented
ETW logging.

1. Manifested ETWs with autogenerated code via MC.exe . See Writing an
Instrumentation Manifest for more details.
a. The header in the following snippet (etwtracingevents.h) is an autogenerated

ETW event header that was created via MC.exe . It is assumed that the ETW
events have already been generated, so this topic will not focus on this part.

b. MCGEN_PRIVATE_ENABLE_CALLBACK_V2 must be defined before including the
autogenerated ETW header. Otherwise, the callback will not be called.

2. Registering for the ETW callback via the EventRegister API.

c09493dcfe38},MatchAnyKeyword,%REG_QWORD%,0x000FFFFF

Standard EnableLevel values:
0x5 - Verbose
0x4 - Informational
0x3 - Warning
0x2 - Error
0x1 - Critical
0x0 – LogAlways

ETW control callback

７ Note

If the ETW providers are shared between normal and repro mode, the IHV should
key off the IHV-defined EnableLevel, defined in the INF file, to start/stop verbose
firmware logs.

ETW callback function

https://learn.microsoft.com/en-us/windows/desktop/WES/writing-an-instrumentation-manifest
https://learn.microsoft.com/en-us/windows/win32/api/evntprov/nf-evntprov-eventregister

a. The ETW callback provider must be passed to the EventRegister function when
registering the trace provider.

This snippet shows the prototype for the ETW callback function.

C++

The following code is only required if you used autogenerated ETW events using the
MC.exe tool.

C++

The ControlCode parameter of the ETW callback indicates when the provider is enabled
or disabled. The values are defined in <evntrace.h> and have the following values:

C++

This flag enables the ETW provider and indicates that the UIF repro mode session has
started. This should be used to initiate verbose firmware logging and/or packet logging.

#include <evntprov.h>
extern
VOID
EtwEventControlCallback(
 In LPCGUID SourceId,
 In ULONG ControlCode,
 In UCHAR Level,
 In ULONGLONG MatchAnyKeyword,
 In ULONGLONG MatchAllKeyword,
 _In_opt_ PEVENT_FILTER_DESCRIPTOR FilterData,
 _Inout_opt_ PVOID CallbackContext
);

#define MCGEN_PRIVATE_ENABLE_CALLBACK_V2 EtwEventControlCallback

#include "etwtracingEvents.h" // Generated from manifest - This must come
 // after MCGEN_PRIVATE_ENABLE_CALLBACK_V2 is
 // defined

#define EVENT_CONTROL_CODE_DISABLE_PROVIDER 0
#define EVENT_CONTROL_CODE_ENABLE_PROVIDER 1
#define EVENT_CONTROL_CODE_CAPTURE_STATE 2

EVENT_CONTROL_CODE_ENABLE_PROVIDER

This flag disables the ETW provider and indicates that the UIF repro mode session has
ended. The IHV's implementation should flush and reset firmware logs at this point if
the Level parameter matches the IHV-specified UIF repro mode level in the INF file (0xFF
in the following section's sample).

This flag requests that the provider logs its state information. This is generally called to
flush the in-memory logs to disk. The IHV's implementation should flush and reset
firmware logs at this point if the Level parameter matches the IHV-specified UIF repro
mode level in the INF file (0xFF in the following section's sample).

The following is a sample ETW callback implementation that can be used as a template
to enable verbose driver and firmware logging for UIF repro mode scenarios.

After the EVENT_CONTROL_CODE_CAPTURE_STATE is invoked, the UIF diagnostics tool
invokes the ETW callback two more times with the
EVENT_CONTROL_CODE_ENABLE_PROVIDER control code. Therefore, to avoid re-
enabling the firmware logging, the state machine moves from the
ReproModeStateCaptured state to the ReproModeStateFinal state before moving back to
the ReproModeStateNotStarted state. The EVENT_CONTROL_CODE_DISABLE_PROVIDER
control code is only used to disable the provider. This is not part of the UIF process, but
still needs to be honored.

IHVs should change the IHV_ETW_REPRO_MODE_LEVEL value in the following example
to match the repro mode level set in the INF file.

C++

EVENT_CONTROL_CODE_DISABLE_PROVIDER

EVENT_CONTROL_CODE_CAPTURE_STATE

Sample code

７ Note

IHVs need to flush any pending firmware logs for both the
EVENT_CONTROL_CODE_CAPTURE_STATE and
EVENT_CONTROL_CODE_DISABLE_PROVIDER control codes.

#define IHV_ETW_REPRO_MODE_LEVEL 0xFF // This value must match the repro
mode
 // EnableLevel INF value

typedef enum _EtwReproModeState
{
 ReproModeStateNotStarted = 0,
 ReproModeStateStarted,
 ReproModeStateCaptured,
 ReproModeStateFinal
} EtwReproModeState;

static EtwReproModeState g_eReproModeLoggingEnabled =
ReproModeStateNotStarted;

VOID
EtwEventControlCallback(
 In LPCGUID SourceId,
 In ULONG ControlCode,
 In UCHAR Level,
 In ULONGLONG MatchAnyKeyword,
 In ULONGLONG MatchAllKeyword,
 _In_opt_ PEVENT_FILTER_DESCRIPTOR FilterData,
 _Inout_opt_ PVOID CallbackContext
)
{
 UNREFERENCED_PARAMETER(SourceId);
 UNREFERENCED_PARAMETER(MatchAnyKeyword);
 UNREFERENCED_PARAMETER(MatchAllKeyword);
 UNREFERENCED_PARAMETER(FilterData);
 UNREFERENCED_PARAMETER(CallbackContext);

 switch(ControlCode)
 {
 case EVENT_CONTROL_CODE_ENABLE_PROVIDER:
 if (Level == IHV_ETW_REPRO_MODE_LEVEL)
 {
 switch(g_eReproModeLoggingEnabled)
 {
 case ReproModeStateNotStarted:
 //
 // Enable verbose Firmware logs.
 //
 g_eReproModeLoggingEnabled = ReproModeStateStarted;
 break;

 case ReproModeStateCaptured:
 //
 // The diagnostic tools will invoke the callback
after
 // the capture with
EVENT_CONTROL_CODE_ENABLE_PROVIDER
 // twice.
 //
 g_eReproModeLoggingEnabled = ReproModeStateFinal;
 break;

 case ReproModeStateFinal:

To test the IHV repro mode logs, the following commands can be used to start and stop
capture.

 //
 // The state machine is now complete, reset the
state.
 //
 g_eReproModeLoggingEnabled =
ReproModeStateNotStarted;
 break;

 case ReproModeStateStarted:
 default:
 break;
 }
 }
 break;

 case EVENT_CONTROL_CODE_DISABLE_PROVIDER:
 if (g_eReproModeLoggingEnabled == ReproModeStateStarted)
 {
 //
 // Merge verbose firmware logs into ETW log (if not done
already).
 // Disable verbose firmware logs
 //
 g_eReproModeLoggingEnabled = ReproModeStateNotStarted;
 }
 break;

 case EVENT_CONTROL_CODE_CAPTURE_STATE:
 if (Level == IHV_ETW_REPRO_MODE_LEVEL &&
 g_eReproModeLoggingEnabled == ReproModeStateStarted)
 {
 //
 // Merge verbose firmware logs into ETW log (if not done
already).
 // Disable verbose firmware logs
 //
 g_eReproModeLoggingEnabled = ReproModeStateCaptured;
 }
 break;
 }
}

Testing the repro mode logs

７ Note

The resulting ETL file will contain some OS logs.

netsh wlan IHV startlogging
netsh wlan IHV stoplogging

These commands are also used by customers to manually collect logs from a device.

The final step for IHVs to submit repro mode user-initiated feedback is to contact
Microsoft and supply the requested provider GUIDs, levels, and flags along with sample
log data for review. Once the logging is approved, the providers will be added to the
user-initiated feedback system.

User-initiated feedback with IHV trace logging

User-initiated feedback - normal mode

Submitting IHV providers to Microsoft

７ Note

Any modifications to the provider GUIDs, levels, or flags after submission will have
no effect on the UIF logs.

Related links

WDI TLV generator/parser topics
Article • 03/14/2023

The TLV generator and parser shared library allows IHV drivers to correctly parse TLVs
into strongly typed C/C++ structures, or conversely generate a TLV byte blob from the
structures. It also handles the versioning semantics so the IHV does not need to.

In this section:

TLV parser interface overview

TLV generator interface overview

TLV generator/parser memory interface

TLV generator/parser special members

Adding the WDI TLV generator/parser to your driver

TLV generator/parser XML semantics and syntax

TLV versioning

TLV dumpers

WDI TLV parser interface overview
Article • 03/14/2023

An entry point within the driver receives a message or indication that contains TLVs.
After the code extracts the message ID and determines if it is an ID that it wants to
handle, it calls the generic parse routine and passes the TLV blob (after advancing past
the WDI_MESSAGE_HEADER) to parse the TLVs into a C-structure.

C

After checking the return for errors, the code can cast the output buffer (pParsed) into a
concrete type, such as in the below example.

C

After the caller is finished with the parsed data, the caller must return the memory back
to the parser. The parser needs to know the original message ID used to allocate so it
frees the correct data.

C

In this model, the caller has already determined the correct specific TLV to parse and is
possibly using a stack local to avoid allocations on the heap. The caller creates the local
and calls a specific parse routine. The API does not need the message ID, and the
parameter is strongly typed with one less level of indirection.

Callee allocation model

ndisStatus = Parse(
 cbBufferLength,
 pvBuffer,
 messageId,
 &Context,
 &pParsed);

((WDI_INDICATION_BSS_ENTRY_LIST_PARAMETERS*)pParsed)

FreeParsed(messageId, pParsed);
pParsed = NULL;

Caller allocation model

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_message_header

C

After the caller is finished using the structure, the caller should give the parser a chance
to clean up any allocation it made during parsing, and wipe the structure so it is ready
to be reused. The parameter is strongly typed, so the callee does not need any
additional parameters.

C

After calling the CleanupParse API, all data in the structure is invalid.

Some messages do not have any associated data. For completeness of the API,
appropriately named Parse methods are provided. These methods validate that the byte
stream is empty. Typedefs are provided for the parameter type, but callers can also pass
NULL for the out parameter if they use the Caller Allocation Model. In all cases, the
Parser avoids any allocations by returning a constant empty parse structure. Callers
should never write into this returned empty structure (hence the only field is named
_Reserved). These messages are documented as "No additional data. The data in the
header is sufficient".

Most messages have a different format for their M1 versus their M0, M3, or M4. To
accommodate for this, such messages have different parse and generate APIs. For M1
messages, the APIs follow the naming convention of Parse<MessageName>ToIhv or
Generate<MessageName>ToIhv. For M0, M3, or M4 messages, the APIs follow the
naming convention of Parse<MessageName>FromIhv or
Generate<MessageName>FromIhv. However, to simplify code in the IHV miniport,
defines are added to alias Parse<MessageName> to Parse<MessageName>ToIhv and
Generate<MessageName> to Generate<MessageName>FromIhv. IHV code only needs
to be aware of this aliasing if it needs to parse its own M3, or generate an M1.

WDI_GET_ADAPTER_CAPABILITIES_PARAMETERS adapterCapabilitiesParsed;

ndisStatus = ParseWdiGetAdapterCapabilities(
 cbBufferLength,
 pvBuffer,
 &Context
 &adapterCapabilitiesParsed);

CleanupParsedWdiGetAdapterCapabilities(&adapterCapabilitiesParsed);

Message direction

The TLV parser generator can return several different NDIS_STATUS codes. For more
information, look at the WPP trace logs. The logs should always indicate the root cause.
Here is a list of the most common error codes and what they mean.

NDIS_STATUS_INVALID_DATA When parsing, this indicates that a fixed sized
TLV is of the incorrect size. For lists, this means
the overall size is not an even multiple of the
individual element size, or there are more
elements than there should be. This could also
mean a list contained 0 elements, when 1 or
more is required. If 0 elements is desired, then
Optional_IsPresent should be set to false (the
TLV header should not be in the byte stream).

NDIS_STATUS_BUFFER_OVERFLOW When generating, this indicates that due to the
number of elements in an array (list), it
overflows the 2 byte Length field within the TLV
header. You should reduce the number of
elements. This can also occur when an outer
TLV has too many (or too large of) inner TLVs,
again overflowing the 2 byte Length field of
the header.

When parsing, this indicates a TLV header's
Length field is larger than the outer TLV or the
byte stream.

NDIS_STATUS_FILE_NOT_FOUND When parsing, this indicates that a required TLV
is not present in the byte stream. It is usually a
bug with the generator of the byte stream.

NDIS_STATUS_RESOURCES When generating, this indicates that the
allocator failed.

NDIS_STATUS_UNSUPPORTED_REVISION When parsing or generating, the Context
parameter is NULL, or the PeerVersion is less
than WDI_VERSION_MIN_SUPPORTED.

Error codes

WDI TLV generator interface overview
Article • 03/14/2023

In this model, there is only one function call to generate a TLV byte array from your data
structure.

c++

The second parameter can be very helpful. Sometimes, the TLV buffer is packed into a
bigger data structure, and this parameter allows you to pre-reserve space at the
beginning of the buffer for that header. The correct value for cbHeaderLength is often
sizeof(WDI_MESSAGE_HEADER) .

For messages that have no associated data, there are still overloaded Generate APIs, but
the first parameter is optional and may simply be passed in as
(EmptyMessageStructureType*)NULL .

When you are done with the TLV data contained in pOutput, you must call back into the
library to release the buffer.

c++

C++ overloaded function model

WDI_INDICATION_BSS_ENTRY_LIST_PARAMETERS BssEntryList = ...;
BYTE* pOutput = NULL;
ULONG length = 0;
NDIS_STATUS ndisStatus = NDIS_STATUS_SUCCESS;

ndisStatus = Generate(
 &BssEntryList,
 cbHeaderLength,
 &Context,
 &length,
 &pOutput);

 FreeGenerated(pOutput);
 pOutput = NULL;

C-style function model

In this model, there is a specific Generate routine for each top-level message or
structure because C does not support overloaded functions. Otherwise, it behaves the
same as the C++ model.

C

When you are done with the TLV byte array, call back to release the memory in the same
way as the C++ model.

C

ndisStatus = GenerateWdiGetAdapterCapabilities(
 &adapterCapabilities,
 (ULONG)sizeof(WFC_COMMAND_HEADER),
 &Context,
 &length,
 &pOutput);

 FreeGenerated(pOutput);
 pOutput = NULL;

WDI TLV generator/parser memory
interface
Article • 03/14/2023

The parser and generator internally use C++ with new/delete. This simplifies several
implementation details. This means that consumers of the library must provide
overloaded operator implementations of these APIs when linking to the library. This is
the only C++ dependency that your code must take.

All APIs that do any allocations take a parameter Context typed as PCTLV_CONTEXT
which has 2 fields: a ULONG_PTR named AllocationContext and a ULONG named
PeerVersion. The AllocationContext field is passed through to the overloaded new
operator. This allows consumers of the APIs to customize the allocation in various ways.
For more information about the TLV_CONTEXT parameter, see WDI TLV versioning.

Warning Although you may be tempted to skip calling the library’s cleanup routines
(such as FreeParsed, CleanupParsed, and FreeGenerated), do not skip calling them! It
might work on some code paths, but will lead to hard-to-diagnose memory leaks.

Here is a sample overloaded operator.

C++

/*++
Module Name:
 sample.cpp
Abstract:
 Contains sample code to override C++ new/delete for use with TLV
parser/generator library
Environment:
 Kernel mode
--*/
#include "precomp.h"

#define TLV_POOL_TAG (ULONG) '_VLT'

void* __cdecl operator new(size_t Size, ULONG_PTR AllocationContext)
/*++
 Override C++ allocation operator.
--*/
{
 PVOID pData = ExAllocatePoolWithTag(NonPagedPoolNx, Size, TLV_POOL_TAG);
 UNREFERENCED_PARAMETER(AllocationContext);
 if (pData != NULL)
 {
 RtlZeroMemory(pData, Size);

 }
 return pData;
}

void __cdecl operator delete(void* pData)
/*++
 Override C++ delete operator.
--*/
{
 if (pData != NULL)
 {
 ExFreePoolWithTag(pData, TLV_POOL_TAG);
 }
}

WDI TLV generator/parser special
members
Article • 03/14/2023

For any TLV that has optional child TLV members, the parent has one field named
Optional. Within that field, there is one Boolean field for each optional child named
<child_name>_IsPresent, which is set to TRUE by the parser if the child is present, and
FALSE otherwise. Similarly, the generation APIs expect the field to be TRUE if it should
be present in the TLV byte stream, and FALSE otherwise.

C++

When multiple children of the same type appear within the same parent (for example,
<container />'s isCollection attribute), the parser and generator use a special structure
to represent the array: ArrayOfElements. For C++ clients, this is a strongly typed
template structure with clean up on destruction semantics. For C clients, explicitly
named structures are created (for example, ArrayOfElementsOfUINT8). However, these
structures are not automatically cleaned up because C does not support destructors, so
users of the C APIs must be careful not to introduce memory leaks (or double-frees).

Optional members

WDI_SET_FIRMWARE_CONFIGURATION_PARAMETERS fwConfig = { 0 };
NDIS_STATUS status;
status = ParseWdiSetAdapterConfiguration(
 pNdisRequest->DATA.METHOD_INFORMATION.InputBufferLength -
 sizeof(WDI_MESSAGE_HEADER),
 (PUINT8)pNdisRequest->DATA.METHOD_INFORMATION.InformationBuffer +
 sizeof(WDI_MESSAGE_HEADER),
 0,
 &fwConfig);

if (status == NDIS_STATUS_SUCCESS)
{
 if (fwConfig.Optional.MacAddress_IsPresent)
 {
 // Safe to use fwConfig.MacAddress
 fwConfig.MacAddress;
 }
}

Array members

There are two important fields within ArrayOfElements: ElementCount and pElements.
ElementCount is the count of elements within the array. pElements is a C-Style array of
the elements. The elements can be iterated over as shown in this sample.

C++

The third field, MemoryInternallyAllocated, is used internally by the parser/generator. It
should not be modified by the IHV.

for (UINT32 i = 0;
 i < pConnectTaskParameters->ConnectParameters.
 MulticastCipherAlgorithms.ElementCount;
 i++)
{
 // Safe to use pElements[i]
 pConnectTaskParameters->ConnectParameters.MulticastCipherAlgorithms.
 pElements[i];
}

Adding the WDI TLV generator/parser
to your driver
Article • 03/14/2023

To add the WDI TLV generator/parser to your driver, follow these steps.

1. Add this include after dot11wdi.h and wditypes.hpp.

#include "TlvGeneratorParser.hpp"

2. Add this library to the linker.

TLVGeneratorParser.lib

3. Define, create, and write your memory APIs (overloaded operator new/delete).

4. Start calling the APIs.

WDI TLV generator/parser XML
semantics
Article • 03/14/2023

TLV (Type-Length-Value) is a protocol design where each bit of data is contained in a
stream of bytes that has a standard Type and Length header.

The TLV generator/parser XML file is a list of messages, containers (TLVs), and property
groups (structs). This topic covers the XML syntax.

<message />
Attributes
Content
Example

<containerRef />
Attributes
Content
Example

<containers />
<container />

Attributes
Contents
Example

<groupRef />
Attributes
Content
Examples

<namedType />
Attributes
Content
Example

<aggregateContainer />
Attributes
Content
Example

<propertyGroups />
Primitive Field Types (<bool/> <uint8/> <uint16/> <uint32/> <int8/> <int16/>
<int32/>)

Attributes
Contents

<propertyGroup />
Attributes
Contents
Example

Describes a single top-level WDI message. There are only parser/generator functions for
these message entries.

commandId - Symbolic constant that must be defined in dot11wdi.h.
type - Type name to be exposed to the code (you use this type when calling into
parser/generator functions).
description - Description of the command.
direction – Indicates whether this message describes the TLV stream as it goes
from WDI to the IHV miniport as part of an M1 (called "ToIhv"), describes the TLV
stream as it goes from the IHV miniport to WDI as an M0, M3, or M4 (called
"FromIhv"), or it goes in both directions (called "Both"). See Message Direction in
WDI TLV parser interface overview.

List of container references (<containerRef />). These are the different TLVs that make
up the message. They are references to types defined in the <containers /> section.

XML

<message />

Attributes

Content

Example

<message commandId="WDI_SET_P2P_LISTEN_STATE"
 type="WDI_SET_P2P_LISTEN_STATE_PARAMETERS"
 description="Parameters to set listen state."
 direction="ToIhv">
 <containerRef id="WDI_TLV_P2P_CHANNEL_NUMBER"
 name="ListenChannel"
 optional="true"
 type="WFDChannelContainer" />
 <containerRef id="WDI_TLV_P2P_LISTEN_STATE"
 name="ListenState"
 type="P2PListenStateContainer" />
</message>

Reference to a <container /> defined in the <containers /> section.

id - TLV ID that must be defined in wditypes.h.
name - The name of the variable in the parent structure.
optional - Specifies whether or not it is an optional field. False by default.
Generated code enforces "optional-ness".
multiContainer – Specifies whether or not the generated code should expect
multiple TLVs of the same type. False by default. If false, generated code enforces
that only one is present.
type - Reference to a specific element’s "name" attribute in the <containers />
section.
versionAdded - Part of versioning. Indicates that this TLV container should not
appear in byte streams to/from peers with a version less than the one indicated in
this attribute.
versionRemoved - Part of versioning. Indicates that this TLV container should not
appear in byte streams to/from peers with a version greater than or equal to the
one indicated in this attribute.

None.

XML

<containerRef />

<containerRef /> Attributes

<containerRef /> Content

<containerRef /> Example

<containerRef id="WDI_TLV_P2P_CHANNEL_NUMBER"
 name="ListenChannel"
 optional="true"
 type="WFDChannelContainer"/>

<containers />

Describes all containers/TLVs used in WDI messages. Containers can be considered TLV
buckets. There are 2 types: <container /> and <aggregateContainer /> .

TLV Container for a single structure reference or named type. It is statically sized, but
may be a C-style array as long as it is statically sized.

name - ID that is referenced by WDI messages/other containers.
description - Friendly description of what the container is for.
type – Type name to be exposed to the code.
isCollection - Specifies whether or not generated code should expect many of
the same size element within the same TLV (C-style array). The default is false (only
expect one element of the given type).
isZeroValid - Only valid when isCollection is true. Determines whether a zero
element array is allowed. This is useful when the TLV stream needs to distinguish
between an optional TLV that is not present versus one that is present but has zero
length (like SSIDs). Since this distinction is rare, the default is false.

One of <groupRef /> or <namedType /> .

XML

Reference to a property group (structure) defined in the <propertyGroups /> section.

<container />

<container /> Attributes

<container /> Contents

<container /> Example

<container name="P2PListenStateContainer"
 description="Container for P2P Listen State setting."
 type="WDI_P2P_LISTEN_STATE_CONTAINER">
 <namedType name="ListenState"
 type="WDI_P2P_LISTEN_STATE"
 description="P2P Listen State."/>
</container>

<groupRef />

name - Name of the structure in the parent structure.
ref - Reference to a named structure in a <propertyGroups /> section.
description – Friendly descriptor of what the structure is used for.

None.

XML

Reference to a raw type exposed by wditypes.hpp or dot11wdi.h. Uses default serializer
(memcpy), so use at your own risk because of padding issues.

name - Name of the structure in the parent structure.
type - Type name to use in the actual code.
description – Friendly description of what the structure is used for.

None.

XML

<groupRef /> Attributes

<groupRef /> Content

<groupRef /> Examples

<container name="WFDChannelContainer"
 description="Container for a Wi-Fi Direct channel."
 type="WDI_P2P_CHANNEL_CONTAINER">
 <groupRef name="Channel"
 ref="WFDChannelStruct"
 description="Wi-Fi Direct Channel." />
</container>

<namedType />

<namedType /> Attributes

<namedType /> Content

<namedType /> Example

TLV Container for many different containers. This is used for handling nested TLVs.

name - ID that is referenced by WDI messages/other containers.
description – Friendly description of what the container is for.
type - Type name to be exposed to the code.

List of <containerRef /> .

XML

<container name="P2PListenStateContainer"
 description="Container for P2P Listen State setting."
 type="WDI_P2P_LISTEN_STATE_CONTAINER">
 <namedType name="ListenState"
 type="WDI_P2P_LISTEN_STATE"
 description="P2P Listen State."/>
</container>

<aggregateContainer />

<aggregateContainer /> Attributes

<aggregateContainer /> Content

<aggregateContainer /> Example

<aggregateContainer
 name="P2PInvitationRequestInfoContainer"
 type="WDI_P2P_INVITATION_REQUEST_INFO_CONTAINER"
 description="Generic container for Invitation Request-related
containers.">
 <containerRef
 id="WDI_TLV_P2P_INVITATION_REQUEST_PARAMETERS"
 type="P2PInvitationRequestParamsContainer"
 name="RequestParams" />
 <containerRef
 id="WDI_TLV_P2P_GROUP_BSSID"
 type="MacAddressContainer"
 name="GroupBSSID"
 optional="true" />
 <containerRef
 id="WDI_TLV_P2P_CHANNEL_NUMBER"
 type="WFDChannelContainer"
 name="OperatingChannel"
 optional="true" />

Describes all structures used in all containers. Structures can either be used by a
<container /> , or referenced by another <propertyGroup /> (nested structures). They
are defined independently of TLVs containers so they can be re-used. They do not have
a TLV header.

These definitions are necessary as they help to solve padding issues with structures and
gives the code generator instructions on how to interpret the data.

These are the available primitive types, and are converted/marshalled appropriately by
the generated code.

name - Field name in the parent structure.
description – Friendly description of what the property is for.
count - How many of the given property there are. Default is one. Values greater
than one make this property into a statically sized array in the code.

None

 <containerRef
 id="WDI_TLV_P2P_GROUP_ID"
 type="P2PGroupIDContainer"
 name="GroupID" />
</aggregateContainer>

<propertyGroups />

７ Note

Order matters here. All data offsets are implied based on the property group
description, and data is written/parsed in the order it is defined here. These
structures have to be defined here.

Primitive Field Types (<bool/> <uint8/>
<uint16/> <uint32/> <int8/> <int16/> <int32/>)

Attributes for Primitive Field Types

Contents for Primitive Field Types

An individual structure.

name - ID that is referenced by WDI messages/other containers.
description – Friendly description of what the property group is for.
type - Type name to be exposed to the code.

There are several possible property types (struct fields).

<bool/> <uint8/> <uint16/> <uint32/> <int8/> <int16/> <int32/>

<groupRef />

<namedType />

XML

<propertyGroup />

<propertyGroup /> Attributes

<propertyGroup /> Contents

<propertyGroup /> Example

<propertyGroup name="P2PDiscoverModeStruct"
 type="WDI_P2P_DISCOVER_MODE"
 description="Structure definition for P2P Discover Mode
Parameters">
 <namedType name="DiscoveryType"
 type="WDI_P2P_DISCOVER_TYPE"
 description="Type of discovery to be performed by the port."/>
 <bool name="ForcedDiscovery"
 description="A flag indicating that a complete device discovery is
required. If this flag is not set, a partial discovery may be performed." />
 <namedType name="ScanType"
 type="WDI_P2P_SCAN_TYPE"
 description="Type of scan to be performed by port in scan
phase." />
 <bool name="ScanRepeatCount"
 description="How many times the full scan procedure should be
repeated. If set to 0, scan should be repeated until the task is aborted by
the host."/>
</propertyGroup>
<propertyGroup name="P2PDeviceInfoParametersStruct"
 type="WDI_P2P_DEVICE_INFO_PARAMETERS"
 description="Structure definition for P2P Device Information
Parameters.">

 <uint8 count="6"
 name="DeviceAddress"
 description="Peer's device address." />
 <uint16 name="ConfigurationMethods"
 description="Configuration Methods supported by this device." />
 <groupRef name="DeviceType"
 description="Primary Device Type."
 ref="WFDDeviceType" />
</propertyGroup>

WDI TLV versioning
Article • 03/14/2023

To maintain backwards compatibility, both WDI and the miniport use the TLV stream as
a versioning boundary. The producer of the TLV byte stream must always generate a
backwards compatible TLV and not include any newly added fields. This is accomplished
by adding a PeerVersion to the Context parameter. This field should be initialized by the
caller to the WdiVersion received during initialization.

Here is the type definition of the Context parameter, which is passed into every Parse
and Generate API.

C++

AllocationContext is unmodified by the Parse and Generate APIs and continues to be
passed through to the miniport-provided operator new callback. For more information,
see WDI TLV generator/parser memory interface.

If a WDI-based single-binary driver runs against an older version of WDI, the generator
in the miniport uses the PeerVersion to generate the older byte stream. Conversely, the
parser consumes the older byte stream based on the PeerVersion and converts it into
the new data structures.

If a miniport driver does not use the TLV parser generator library and instead writes their
own TLV parser and generator, and the desire is to have a single binary running only
older OS versions (and thus old versions of WDI), they must include this capability also.
Their parser must accept the TLV grammar produced by older WDI, and their generator
must only generate TLVs according to the older grammar.

The XML has been augmented to support this versioning with two attributes allowed on
containerRefs: versionAdded and versionRemoved. This is what drives the parser and
generator to adjust the byte stream according to the peer version.

Note The parser and generator assume that they are always linked with
WDI_VERSION_LATEST. The miniport should always pass WDI_VERSION_LATEST for
NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS::WdiVersion when calling

typedef struct _TLV_CONTEXT
{
 ULONG_PTR AllocationContext;
 ULONG PeerVersion;
} TLV_CONTEXT, *PTLV_CONTEXT;
typedef const TLV_CONTEXT * PCTLV_CONTEXT;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics

NdisMRegisterWdiMiniportDriver rather than using a specific version, like
WDI_VERSION_1_0, as they will become out of date and cause problems with the TLV
parser generator because the other end might send a byte stream that is unexpected.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nf-dot11wdi-ndismregisterwdiminiportdriver

WDI TLV dumpers
Article • 03/14/2023

The parser generator library has routines to decode TLV byte arrays into trace
statements.

C++

If you only need WPP tracing, use the Trace APIs as they are optimized to have the
smallest impact to code size as well as log size (fewer strings in the ETL file). If you need
a more general purpose dumper, use the Dump APIs as they include WPP tracing and
also include a callback routine. The stub driver has an example of using this callback
routine to redirect the output to the kernel debugger via DebugPrint APIs.

Unlike the Parse and Generate APIs, the dumper is very permissive. It attempts to make
sense of the TLV bytes as best as it can, regardless of the canonical form for a given

 typedef _Function_class_(TlvDumperCallback) void(__stdcall
*TlvDumperCallback)(_In_ UINT_PTR Context, _In_z_ _Printf_format_string_
PCSTR Format, ...);

 void __stdcall TraceUnknownTlvByteStream(
 In ULONG PeerVersion,
 In ULONG BufferLength,
 _In_reads_bytes_(BufferLength) UINT8 const * pBuffer);

 void __stdcall TraceMessageTlvByteStream(
 In ULONG MessageId,
 In BOOLEAN fToIhv,
 In ULONG PeerVersion,
 In ULONG BufferLength,
 _In_reads_bytes_(BufferLength) UINT8 const * pBuffer);

 void __stdcall DumpUnknownTlvByteStream(
 In ULONG PeerVersion,
 In ULONG BufferLength,
 _In_reads_bytes_(BufferLength) UINT8 const * pBuffer,
 _In_opt_ ULONG_PTR Context,
 _In_opt_ TlvDumperCallback pCallback);

 void __stdcall DumpMessageTlvByteStream(
 In ULONG MessageId,
 In BOOLEAN fToIhv,
 In ULONG PeerVersion,
 In ULONG BufferLength,
 _In_reads_bytes_(BufferLength) UINT8 const * pBuffer,
 _In_opt_ ULONG_PTR Context,
 _In_opt_ TlvDumperCallback pCallback);

message or TLV. This means the dumper might correctly decode and dump something
that the parser rejects.

Warning If the dumper successfully decodes the bytes into a human readable format, it
does not mean the bytes are a well-formed TLV.

Like the Parse APIs, the pBuffer pointer and BufferLength parameters should exclude any
headers and point directly at the first TLV.

The Message variants of the APIs include the message ID and the message direction to
better disambiguate the TLV. This is helpful because the same TLV ID can be decoded in
different ways depending upon context. For example, WDI_TLV_BSSID can directly
contain a WDI_MAC_ADDRESS when part of OID_WDI_TASK_SCAN, or it can contain a
list of WDI_MAC_ADDRESS when part of WDI_TLV_P2P_ATTRIBUTES.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

WDI_TLV_ACCESS_NETWORK_TYPE
Article • 03/14/2023

WDI_TLV_ACCESS_NETWORK_TYPE is a TLV that contains an Access Network Type.

0x100

The size (in bytes) of a UINT8.

Type Description

UINT8 The Access Network Type to be used in probe requests for the network being connected
to.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ACTION_FRAME_BODY
Article • 03/14/2023

WDI_TLV_ACTION_FRAME_BODY is a TLV that contains the body of an Action Frame.

0xBE

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the body of an Action Frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ACTION_FRAME_DEVICE_CON
TEXT
Article • 03/14/2023

WDI_TLV_ACTION_FRAME_DEVICE_CONTEXT is a TLV that contains an Action Frame
device context.

0xAC

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains an Action Frame device context.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ADAPTER_NLO_SCAN_MODE
Article • 03/14/2023

WDI_TLV_ADAPTER_NLO_SCAN_MODE is a TLV that indicates whether scans should be
performed in active or passive mode.

0x125

The size (in bytes) of a UINT32.

Type Description

UINT32 WDI_SCAN_TYPE value that indicates whether scans should be performed in active or
passive mode.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_scan_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ADAPTER_RESUME_REQUIRED
Article • 03/14/2023

WDI_TLV_ADAPTER_RESUME_REQUIRED is a TLV that specifies if adapter resume is
required.

0xB7

The size (in bytes) of a UINT8.

Type Description

UINT8 Specifies if adapter resume is required.
Valid values are 0 (not required) and 1
(required). If set to 1, the firmware requires OS
assistance to resume its context.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_ADDITIONAL_BEACON_IES
Article • 03/14/2023

WDI_TLV_ADDITIONAL_BEACON_IES is a TLV that contains additional beacon IEs.

0x98

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The array of beacon IEs. The Wi-Fi Direct port must add these additional IEs to the
beacon packets when it is acting as a Group Owner. These are ignored when the Wi-Fi
Direct port is operating in device or client mode.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ADDITIONAL_IES
Article • 03/14/2023

WDI_TLV_ADDITIONAL_IES is a TLV that contains additional Information Element (IE)
settings.

0x8A

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ADDITIONAL_BEACON_IES X An array of
beacon IEs.
The Wi-Fi
Direct port
must add
these
additional IEs
to the beacon
packets when
it is acting as a
Group Owner.
This is ignored
when the Wi-
Fi Direct port
is operating in
device or
client mode.

WDI_TLV_ADDITIONAL_PROBE_RESPONSE_IES X An array of
probe
response IEs.
The Wi-Fi
Direct port
must add
these
additional IEs
to the probe
response
packets when
it is acting as a
Wi-Fi Direct
device or
Group Owner.
This is ignored
when the Wi-
Fi Direct port
is operating in
client mode.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ADDITIONAL_PROBE_REQUEST_DEFAULT_IES X An array of
additional
probe request
IEs. This offset
is relative to
the start of the
buffer that
contains this
structure. The
Wi-Fi Direct
port must add
these
additional IEs
to the probe
request
packets that it
transmits.
Note that a
Wi-Fi Direct
discover
request may
override the
default probe
request IEs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_ADDITIONAL_PROBE_REQUES
T_DEFAULT_IES
Article • 03/14/2023

WDI_TLV_ADDITIONAL_PROBE_REQUEST_DEFAULT_IES is a TLV that contains additional
probe request IEs.

0x70

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of probe request IEs. The Wi-Fi Direct
port must add these additional IEs to
transmitted probe request packets.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Note A Wi-Fi Direct Discover
Request may override the default
probe request IEs.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_ADDITIONAL_PROBE_RESPON
SE_IES
Article • 03/14/2023

WDI_TLV_ADDITIONAL_PROBE_RESPONSE_IES is a TLV that contains probe response IEs.

0x93

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The array of probe response IEs. The Wi-Fi Direct port must add these additional IEs to
the probe response packets when it is acting as a Wi-Fi Direct device or Group Owner.
This member is ignored when the Wi-Fi Direct port is operating in client mode.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ALLOWED_BSSIDS_LIST
Article • 03/14/2023

WDI_TLV_ALLOWED_BSSIDS_LIST is a TLV that contains a list of BSSIDs that are allowed
to be used for association.

0xC2

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] A list of BSSIDs that are allowed to be used for association.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ANQP_ELEMENTS
Article • 03/14/2023

WDI_TLV_ANQP_ELEMENTS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ANQP_QUERY_PARAMETERS
Article • 03/14/2023

WDI_TLV_ANQP_QUERY_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_ANQP_QUERY_STATUS
Article • 03/14/2023

WDI_TLV_ANQP_QUERY_STATUS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_AP_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_AP_ATTRIBUTES is a TLV that contains the attributes of an access point.

0x23

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_AP_CAPABILITIES The access
point
capabilities.

WDI_TLV_UNICAST_ALGORITHM_LIST The supported
unicast
algorithms.

WDI_TLV_MULTICAST_DATA_ALGORITHM_LIST The supported
multicast data
algorithms.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_AP_BAND_CHANNEL
Article • 03/14/2023

WDI_TLV_AP_BAND_CHANNEL is a TLV that specifies access point band and channel
information.

Note This TLV was added in Windows 10, version 1511, WDI version 1.0.10.

0x127

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_BANDID Specifies the identifier for
the band.

WDI_TLV_CHANNEL_INFO_LIST X Specifies a list of channels to
start the access point on.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

OID_WDI_TASK_START_AP

See also

WDI_TLV_AP_CAPABILITIES
Article • 03/14/2023

WDI_TLV_AP_CAPABILITIES is a TLV that contains the capabilities of an access point.

0x16

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The scan SSID list size.

UINT32 The desired SSID list size.

UINT32 The privacy exemption list size.

UINT32 The association table size.

UINT32 The key mapping table size.

UINT32 The default key table size.

UINT32 The maximum length of the WEP key value.

UINT8 Specifies whether the AP supports radar
detection.
Valid values are 0 (not supported) and 1
(supported).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_ASSOCIATION_PARAMETERS_
REQUESTED_TYPE
Article • 03/14/2023

WDI_TLV_ASSOCIATION_PARAMETERS_REQUESTED_TYPE is a TLV that contains the
requested Association Parameter TLV types.

0xBB

The size (in bytes) of the array of UINT16 elements. The array must contain 1 or more
elements.

Type Description

UINT16[] The list of Association Parameters TLV types that are requested. Valid TLV types are
WDI_TLV_PMKID (0x9F) and WDI_TLV_EXTRA_ASSOCIATION_REQUEST_IES (0x40).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ASSOCIATION_REQUEST_DEVI
CE_CONTEXT
Article • 07/16/2024

WDI_TLV_ASSOCIATION_REQUEST_DEVICE_CONTEXT is a TLV that contains vendor-
specific information that is passed down to the port if the host decides to send a
response to an incoming association request.

0x72

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Vendor-specific information that is passed down to the port if the host decides to send
a response to an incoming association request.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

ﾉ Expand table

Requirements

ﾉ Expand table

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

WDI_TLV_ASSOCIATION_REQUEST_FRA
ME
Article • 03/14/2023

WDI_TLV_ASSOCIATION_REQUEST_FRAME is a TLV that contains the association request
that was used for the association.

0x2E

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the association request that was used for the
association. This does not include the 802.11 MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ASSOCIATION_REQUEST_IES
Article • 03/14/2023

WDI_TLV_ASSOCIATION_REQUEST_IES is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ASSOCIATION_RESPONSE_FRA
ME
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESPONSE_FRAME is a TLV that contains the received
association response.

0x2F

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the received association response. This does
not include the 802.11 MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ASSOCIATION_RESPONSE_IES
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESPONSE_IES is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ASSOCIATION_RESPONSE_PAR
AMETERS
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESPONSE_PARAMETERS is a TLV that contains association
response parameters for OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE.

0x97

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies whether or not to accept the
association request.
Valid values are 0 (do not accept) and 1
(accept).

UINT16 Specifies the reason code. If accept request is
set to 0, this field provides a reason code to
send back to the peer adapter.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_ASSOCIATION_RESPONSE_RES
ULT_PARAMETERS
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESPONSE_RESULT_PARAMETERS is a TLV that contains
association response result parameters.

0x76

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The MAC address of the peer adapter.

UINT8 A bit value that indicates whether the request
from the peer station is a reassociation request.
Valid values are 0 and 1. A value of 1 indicates
that it is a reassociation request.

UINT8 A bit value that indicates whether the response
from the peer station is a reassociation
response.
Valid values are 0 and 1. A value of 1 indicates
that it is a reassociation response.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

WDI_AUTH_ALGORITHM The authentication algorithm for the
association.

WDI_CIPHER_ALGORITHM The unicast cipher algorithm for the
association.

WDI_CIPHER_ALGORITHM The multicast cipher algorithm for the
association.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm

WDI_TLV_ASSOCIATION_RESULT
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESULT is a TLV that contains the results of an association.

0x35

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the BSS.

WDI_TLV_ASSOCIATION_RESULT_PARAMETERS The association result
parameters.

WDI_TLV_ASSOCIATION_REQUEST_FRAME X The association
request that was
used for association.
This does not include
the 802.11 MAC
header.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_RESPONSE_FRAME X The association
response that was
received. This does
not include the
802.11 MAC header.

WDI_TLV_AUTHENTICATION_RESPONSE_FRAME X The authentication
response that was
received with a
failure code. This
does not include the
802.11 MAC header.
It should only be
included if the
connection attempt
failed during
authentication
exchange.

WDI_TLV_BEACON_PROBE_RESPONSE X The latest beacon or
probe response
frame received by the
port. This does not
include the 802.11
MAC header.

WDI_TLV_ETHERTYPE_ENCAP_TABLE X The Ethertype
encapsulations for
the association.

WDI_TLV_PHY_TYPE_LIST The list of PHY
identifiers that the
802.11 station uses
to send or receive
packets on the BSS
network connection.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Requirements

Header Wditypes.hpp

WDI_TLV_ASSOCIATION_RESULT_PARA
METERS
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESULT_PARAMETERS is a TLV that contains parameters for an
association result.

0x2D

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the completion status of the association attempt as
defined in WDI_ASSOC_STATUS.

UINT32 The 802.11 status code sent by the peer in response to an
authentication or association request from this port.

UINT8 Specifies whether the port sent an 802.11 association or an 802.11
reassociation request to the AP. This value should be set to 1 if a
reassociation request was used.

WDI_AUTH_ALGORITHM The authentication algorithm that the port negotiated with the peer
during association.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_assoc_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

WDI_CIPHER_ALGORITHM The unicast cipher algorithm that the port negotiated with the peer
during association.

WDI_CIPHER_ALGORITHM The multicast data cipher algorithm that the port negotiated with
the peer during association.

WDI_CIPHER_ALGORITHM The multicast management cipher algorithm that the port
negotiated with the peer during association.

UINT8 Specifies if the port has associated with a peer that supports
distribution system (DS) services for ISO Layer 2 bridging on any
station in the BSS network, including mobile stations and APs. This
value should be set to 1 if this is supported.

UINT8 Specifies whether the port has performed port authorization during
the association operation.

UINT8 Specifies whether 802.11 WMM QoS protocol has been negotiated
for this association. This value should be set to 1 if it has been
negotiated.

WDI_DS_INFO Specifies whether the port is connected to the same DS as its
previous association.

UINT32 When a (re)association fails with an 802.11 reason code of 30, this
value indicates the value of the association comeback time
requested by the peer.

WDI_BAND_ID (UINT32) The band ID on which the association is established.

UINT32 The IHV association status. If the association failed, this can contain
an IHV-defined status code. This is only used for debugging
purpose.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_ds_info

WDI_TLV_AUTH_ALGO_LIST
Article • 03/14/2023

WDI_TLV_AUTH_ALGO_LIST is a TLV that contains a list of authentication algorithms.

0x3C

The size (in bytes) of the array of WDI_AUTH_ALGORITHM structures. The array must
contain 1 or more elements.

Type Description

WDI_AUTH_ALGORITHM[] An array of authentication algorithms.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_AUTHENTICATION_RESPONSE
_FRAME
Article • 03/14/2023

WDI_TLV_ASSOCIATION_RESPONSE_FRAME is a TLV that contains an authentication
response frame.

0x124

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the authentication response that was received
with a failure code. This does not include the 802.11 MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BAND_CAPABILITIES
Article • 03/14/2023

WDI_TLV_BAND_CAPABILITIES is a TLV that contains the capabilities of a band.

0x1A

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The identifier for the band.

UINT8 Specifies whether the band is enabled or not.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_BAND_CHANNEL
Article • 03/14/2023

WDI_TLV_BAND_CHANNEL is a TLV that contains the channels to scan for a specified
band.

0x2C

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_BANDID Specifies the identifier for the
band.

WDI_TLV_CHANNEL_INFO_LIST Specifies a list of channels to scan.
If the list is empty, the port must
scan on all channels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_BAND_ID_LIST
Article • 03/14/2023

WDI_TLV_BAND_ID_LIST is a TLV that contains a list of band IDs.

0xB6

The size (in bytes) of the array of WDI_BAND_ID (UINT32) elements. The array must
contain 1 or more elements.

Type Description

WDI_BAND_ID[] An array of band IDs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BAND_INFO
Article • 03/14/2023

WDI_TLV_BAND_INFO is a TLV that contains band information.

0x27

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_BAND_CAPABILITIES The capabilities of the
band.

WDI_TLV_PHY_TYPE_LIST A list of valid PHY types
in this band.

WDI_TLV_CHANNEL_LIST A list of valid channel
numbers in this band.

WDI_TLV_CHANNEL_WIDTH_LIST A list of channel widths
in MHz

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_BANDID
Article • 03/14/2023

WDI_TLV_BANDID is a TLV that contains a band ID.

0x39

The size (in bytes) of a UINT32.

Type Description

UINT32 The identifier for the band.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BEACON_FRAME
Article • 03/14/2023

WDI_TLV_BEACON_FRAME is a TLV that contains a beacon frame.

0xA

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the beacon frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BEACON_IES
Article • 03/14/2023

WDI_TLV_BEACON_IES is a TLV that contains beacon IEs from an association.

0x78

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The beacon IEs from an association.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BEACON_PROBE_RESPONSE
Article • 03/14/2023

WDI_TLV_BEACON_PROBE_RESPONSE is a TLV that contains the latest beacon or probe
response frame received by the port.

0x30

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the latest beacon or probe response frame
received by the port. This does not include the 802.11 MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BITMAP_PATTERN
Article • 03/14/2023

WDI_TLV_BITMAP_PATTERN is a TLV that contains the byte array of a pattern.

0x68

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the byte array of the pattern. Length =
(Pattern length + 7)/8.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_BITMAP_PATTERN_AND_MASK
Article • 03/14/2023

WDI_TLV_BITMAP_PATTERN_AND_MASK is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_BITMAP_PATTERN_MASK
Article • 03/14/2023

WDI_TLV_BITMAP_PATTERN_MASK is a TLV that contains the bitmap pattern mask.

0xE4

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the byte array of the pattern mask. The mask
must have 1 bit per pattern byte, therefore the mask length should equal (pattern
length + 7) / 8.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_BSS_ENTRY
Article • 03/14/2023

WDI_TLV_BSS_ENTRY is a TLV that contains BSS entry information.

0x8

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the BSS.

WDI_TLV_PROBE_RESPONSE_FRAME X The probe response frame. If no probe response frame has
been received, this is empty.

WDI_TLV_BEACON_FRAME X The beacon frame. If no beacon has been received, this is
empty.

WDI_TLV_BSS_ENTRY_SIGNAL_INFO The signal information (received signal strength and link
quality) of the BSS.

WDI_TLV_BSS_ENTRY_CHANNEL_INFO The logical channel number and band ID for the BSS entry.

WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT X Device context about the peer. This context is provided from
the IHV component and can be used to store per-BSS entry
state that the IHV component wants to maintain. To avoid
lifetime management issues, the IHV component must not
use pointers in this field.

WDI_TLV_BSS_ENTRY_AGE_INFO X (Note: This
TLV is
mandatory if
the BSS list
is
maintained
by the IHV
component.)

The age information for this BSS entry, including the
timestamp of when this entry was most recently discovered.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance
mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We
recommend that you use WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_DISCOVERED_SERVICE_ENTRY X X The list of services found on the remote device, including the
service information retrieved with a GAS query if the
discovery request specified
WDI_P2P_SERVICE_DISCOVERY_TYPE_SERVICE_INFORMATION
as the discovery type.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_BSS_ENTRY_AGE_INFO
Article • 03/14/2023

WDI_TLV_BSS_ENTRY_AGE_INFO is a TLV that contains age information for a BSS entry.

0xBA

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT64 Timestamp of when this BSS entry was most
recently discovered. The timestamp should be
obtained with NdisGetCurrentSystemTime or
KeQuerySystemTime.

UINT8 Specifies whether this information is live (found
during a currently running scan) or is coming
from the IHV component's BSS list cache.
Valid values are 0 (live) or 1 (cached).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetcurrentsystemtime
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-kequerysystemtime
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_BSS_ENTRY_CHANNEL_INFO
Article • 03/14/2023

WDI_TLV_BSS_ENTRY_CHANNEL_INFO is a TLV that contains BSS entry channel
information.

0x3A

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_CHANNEL_NUMBER
(UINT32)

The logical channel number on which the peer was
discovered.

UINT32 The band ID for the BSS entry.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT
Article • 03/14/2023

WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT is a TLV that contains device context for the BSS
entry.

0xD

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the context data. This context is provided by
the IHV component and can be used to store per-BSS entry state that the IHV
component wants to maintain. To avoid lifetime management issues, the IHV
component must not use pointers in this TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSS_ENTRY_PHY_INFO
Article • 03/14/2023

WDI_TLV_BSS_ENTRY_PHY_INFO is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSS_ENTRY_SIGNAL_INFO
Article • 03/14/2023

WDI_TLV_BSS_ENTRY_SIGNAL_INFO is a TLV that contains signal information for a BSS
entry.

0xB

The sum (in bytes) of the sizes of all contained elements.

Type Description

INT32 The received signal strength indicator (RSSI) value of the beacon or probe response
from the peer. This value is specified in units of decibels referenced to 1.0 milliwatts
(dBm)

UINT32 The link quality specified by a value from 0 to 100. A value of 100 specifies the highest
link quality.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSS_SELECTION_PARAMETERS
Article • 03/14/2023

WDI_TLV_BSS_SELECTION_PARAMETERS is a TLV that contains
WDI_BSS_SELECTION_FLAGS that are used by host for BSS selection.

0x10F

The size (in bytes) of a UINT32.

Type Description

UINT32 WDI_BSS_SELECTION_FLAGS that are used by the host for BSS selection.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_bss_selection_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_bss_selection_flags
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSSID
Article • 03/14/2023

WDI_TLV_BSSID is a TLV that contains the BSSID of a BSS.

0x2

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS A Wi-Fi MAC address that specifies a BSSID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_BSSID_INFO
Article • 03/14/2023

WDI_TLV_BSSID_INFO is a TLV that contains BSSID information.

0x120

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 AP reachability. Valid values are 1 (not reachable), 2 (unknown), and 3 (reachable).

UINT8 Security. If this is set to 1, it indicates that the AP identified by this BSSID supports the
same security provisioning as used by the STA in its current association. If this is set to 0,
it indicates that either this AP does not support the same security provisioning, or the
security information is not available at this time.

UINT8 Key scope bit. If it is set to 1, it indicates the AP indicated by this BSSID has the same
authenticator as the AP sending the report. If this bit is set to 0, it indicates a distinct
authenticator or the information is not available.

UINT8 This is set to 1 if dot11SpectrumManagementRequired is true.

UINT8 This is set to 1 if dot11QosOptionImplemented is true.

UINT8 An AP sets the APSD subfield to 1 within the Capability Information field when
dot11APSDOptionImplemented is true, and sets it to 0 otherwise.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 This is set to 1 if dot11RadioMeasurementActivated is true.

UINT8 This is set to 1 if dot11DelayedBlockAckOptionImplemented is true.

UINT8 This is set to 1 if dot11ImmediateBlockAckOptionImplemented is true.

UINT8 This is set to 1 if the AP represented by this BSSID includes an MDE in its Beacon frames.

UINT8 This is set to 1 to indicate that the AP represented by this BSSID is an HT AP, including
the HT Capabilities element in its Beacon.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_CANCEL_PARAMETERS
Article • 03/14/2023

WDI_TLV_CANCEL_PARAMETERS is a TLV that contains parameters for
OID_WDI_ABORT_TASK.

0x2B

The sum (in bytes) of the sizes of all contained elements.

Type Description

NDIS_OID Specifies the OID from the original task being aborted.

UINT32 Specifies the transaction ID from the original task.

WDI_PORT_ID (UINT16) Specifies the port ID from the original task.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CHANNEL_INFO_LIST
Article • 03/14/2023

WDI_TLV_CHANNEL_INFO_LIST is a TLV that contains a list of channels.

0x41

The size (in bytes) of the array of WDI_CHANNEL_NUMBER (UINT32) structures. The
array must contain 1 or more elements.

Type Description

UINT32[] An array of Wi-Fi channels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CHANNEL_LIST
Article • 03/14/2023

WDI_TLV_CHANNEL_LIST is a TLV that contains one or more channel numbers.

0x4

The size (in bytes) of the array of WDI_CHANNEL_MAPPING_ENTRY structures. The
array must contain 1 or more structures.

Type Description

WDI_CHANNEL_MAPPING_ENTRY[] An array of channel mapping entries.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_channel_mapping_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_channel_mapping_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CHANNEL_NUMBER
Article • 03/14/2023

WDI_TLV_CHANNEL_NUMBER is a TLV that contains a channel number.

0x121

The size (in bytes) of a UINT8.

Type Description

UINT8 The channel number.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CHANNEL_WIDTH_LIST
Article • 03/14/2023

WDI_TLV_CHANNEL_WIDTH_LIST is a TLV that contains a list of channel widths.

0xF5

The size (in bytes) of the array of UINT32 elements. The array must contain 1 or more
elements.

Type Description

UINT32[] A list of channel widths, specified in MHz.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CHECKSUM_OFFLOAD_CAPABI
LITIES
Article • 03/14/2023

WDI_TLV_CHECKSUM_OFFLOAD_CAPABILITIES is a TLV that contains checksum offload
capabilities for IPv4 and IPv6.

0xCB

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_IPV4_CHECKSUM_OFFLOAD Parameters for IPv4
checksum offload.

WDI_TLV_IPV6_CHECKSUM_OFFLOAD Parameters for IPv6
checksum offload.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_CHECKSUM_OFFLOAD_V4_RX_
PARAMETERS (0xD2)
Article • 03/14/2023

WDI_TLV_CHECKSUM_OFFLOAD_V4_RX_PARAMETERS is a TLV that contains parameters
for Rx checksum offload for IPv4.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xD2

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation settings. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 Specifies if offload of checksum with IP options
is supported.

UINT32 Specifies if offload of checksum with TCP
options is supported.

UINT32 Specifies if TCP checksum offload is enabled.

UINT32 Specifies if UDP offload is enabled.

UINT32 Specifies if IP checksum is enabled.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CHECKSUM_OFFLOAD_V4_TX_
PARAMETERS (0xD1)
Article • 03/14/2023

WDI_TLV_CHECKSUM_OFFLOAD_V4_TX_PARAMETERS is a TLV that contains parameters
for Tx checksum offload for IPv4.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xD1

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation settings. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 Specifies if offload of checksum with IP options
is supported.

UINT32 Specifies if offload of checksum with TCP
options is supported.

UINT32 Specifies if TCP checksum offload is enabled.

UINT32 Specifies if UDP offload is enabled.

UINT32 Specifies if IP checksum is enabled.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CHECKSUM_OFFLOAD_V6_RX_
PARAMETERS (0xDD)
Article • 03/14/2023

WDI_TLV_CHECKSUM_OFFLOAD_V6_RX_PARAMETERS is a TLV that contains for Rx
checksum offload for IPv6.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xDD

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation type. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 Specifies if offload of checksum of packets with
IP extension headers is supported.

UINT32 Specifies if offload of checksum with TCP
options is supported.

UINT32 Specifies if TCP checksum offload is enabled.

UINT32 Specifies if UDP offload is enabled.

Minimum supported client Windows 10

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CHECKSUM_OFFLOAD_V6_TX_
PARAMETERS (0xDC)
Article • 03/14/2023

WDI_TLV_CHECKSUM_OFFLOAD_V6_TX_PARAMETERS is a TLV that contains for Tx
checksum offload for IPv6.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xDC

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation type. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 Specifies if offload of checksum of packets with
IP extension headers is supported.

UINT32 Specifies if offload of checksum with TCP
options is supported.

UINT32 Specifies if TCP checksum offload is enabled.

UINT32 Specifies if UDP offload is enabled.

Minimum supported client Windows 10

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CIPHER_KEY_BIP_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_BIP_KEY is a TLV that contains BIP cipher algorithm key data for
OID_WDI_SET_ADD_CIPHER_KEYS.

0x51

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies BIP cipher algorithm key data.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_BIP_GMAC_256_K
EY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY is a TLV that contains BIP GMAC 256 cipher
algorithm key data for OID_WDI_SET_ADD_CIPHER_KEYS.

0x165

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies BIP GMAC 256 cipher algorithm key data.

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_CCMP_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_CCMP_KEY is a TLV that contains CCMP cipher algorithm key data
for OID_WDI_SET_ADD_CIPHER_KEY.

0x50

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies CCMP cipher algorithm key data.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_GCMP_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_GCMP_KEY (0x12F) is an unused TLV.

0x12F

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_GCMP_256_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_GCMP_256_KEY is a TLV that contains GCMP 256 cipher algorithm
key data for OID_WDI_SET_ADD_CIPHER_KEYS.

0x164

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies GCMP 256 cipher algorithm key data.

Minimum supported client Windows 10, Version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_ID
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_ID is a TLV that contains a cipher key ID for
OID_WDI_SET_ADD_CIPHER_KEYS and OID_WDI_SET_DELETE_CIPHER_KEYS.

0x4D

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the cipher key ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_IHV_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_IHV_KEY is a TLV that contains an IHV key.

0x118

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the IHV key.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_RECEIVE_SEQUEN
CE_COUNT
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_RECEIVE_SEQUENCE_COUNT is a TLV that contains the receive
sequence count.

0x4F

The size (in bytes) of the array of UINT8 elements.

Type Description

UINT8[6] Specifies the initial 48-bit value of Packet Number (PN), which is used for replay
protection.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_TKIP_INFO
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_TKIP_INFO is a TLV that contains TKIP information.

0x4B

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_CIPHER_KEY_TKIP_KEY Specifies the TKIP key
material.

WDI_TLV_CIPHER_KEY_TKIP_MIC Specifies the TKIP
MIC material.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_TKIP_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_TKIP_KEY is a TLV that contains TKIP key material.

0x49

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the TKIP key material.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_TKIP_MIC
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_TKIP_MIC is a TLV that contains the TKIP MIC material.

0x4A

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the TKIP MIC material.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CIPHER_KEY_TYPE_INFO
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_TYPE_INFO is a TLV that contains cipher key type information for
OID_WDI_SET_ADD_CIPHER_KEYS and OID_WDI_SET_DELETE_CIPHER_KEYS.

0x4E

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_CIPHER_ALGORITHM Specifies the cipher algorithm that uses the key.

WDI_CIPHER_KEY_DIRECTION Specifies whether the key should be used for transmit only,
receive only, or both.

UINT8 Specifies whether the port should delete the key on a roam. If
this value is set to 0, the key must be deleted when the port
disconnects from the BSS network or connects to the BSS
network. If this value is set to 1, the key should be deleted on an
explicit delete or on a reset request.

WDI_CIPHER_KEY_TYPE Specifies the type of key being published.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_key_direction
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_key_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CIPHER_KEY_WEP_KEY
Article • 03/14/2023

WDI_TLV_CIPHER_KEY_WEP_KEY is a TLV that contains a WEP key.

0x58

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the WEP key.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_COALESCING_FILTER_MATCH_
COUNT
Article • 03/14/2023

WDI_TLV_COALESCING_FILTER_MATCH_COUNT is a TLV that contains the number of
packets that have matched receive filters on the network port.

0x66

The size (in bytes) of the a UINT64.

Type Description

UINT64 The number of packets that have matched receive filters on the network port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_COMMUNICATION_CAPABILIT
IES
Article • 03/14/2023

WDI_TLV_COMMUNICATION_CAPABILITIES is a TLV that specifies the communication
capabilities.

0xE

The size (in bytes) of a UINT32.

Type Description

UINT32 The maximum command size in bytes.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_COMMUNICATION_CONFIGUR
ATION_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_COMMUNICATION_CONFIGURATION_ATTRIBUTES is a TLV that contains the
host-adapter communication protocol configuration attributes.

0x20

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_COMMUNICATION_CAPABILITIES X The
communication
capabilities.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_CONFIGURED_CIPHER_KEY
Article • 03/14/2023

WDI_TLV_CONFIGURED_CIPHER_KEY is a TLV that contains a list of configured ciphers to
be set in OID_WDI_GET_PM_PROTOCOL_OFFLOAD. Drivers must return any GTK or iGTK
keys that are currently configured. This TLV is a value of the
WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY TLV.

0x147

The size (in bytes) of the following values.

Type Description

WDI_CIPHER_KEY_TYPE The type of key being returned.

WDI_CIPHER_ALGORITHM Specifies the cipher algorithm that uses this key.

WDI_TLV_CIPHER_KEY_GCMP_256_KEY Contains GCMP_256 cipher algorithm key data. This
is only present if the cipher algorithm is
WDI_CIPHER_ALGO_GCMP_256.

UINT8[6] The initial 48-bit value of the Packet Number (PN),
which is used for replay protection. Optional if
CipherAlgorithm is WDI_CIPHER_ALGO_WEP40,
WDI_CIPHER_ALGO_WEP104, or
WDI_CIPHER_ALGO_WEP.

TLV<LIST<UINT8>> Present if and only if CipherAlgorithm is
WDI_CIPHER_ALGO_CCMP. Contains CCMP cipher
algorithm key data.

TLV<LIST<UINT8>> Present if and only if CipherAlgorithm is
WDI_CIPHER_ALGO_GCMP. Contains GCMP cipher
algorithm key data.

WDI_TLV_CIPHER_KEY_TKIP_INFO Present if and only if CipherAlgorithm is
WDI_CIPHER_ALGO_TKIP.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_key_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm

Type Description

WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY Present ony if cipher algorithm is
WDI_CIPHER_ALGO_BIP_GMAC_256.

TLV<LIST<UINT8>> Present if and only if CipherAlgorithm is
WDI_CIPHER_ALGO_BIP.

TLV<LIST<UINT8>> Present if and only if CipherAlgorithm is
WDI_CIPHER_ALGO_WEP40,
WDI_CIPHER_ALGO_WEP104, or
WDI_CIPHER_ALGO_WEP.

TLV<LIST<UINT8>> Present if and only if CipherAlgorithm is in the
range of WDI_CIPHER_ALGO_IHV_START to
WDI_CIPHER_ALGO_IHV_END.

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_CONFIGURED_MAC_ADDRESS
Article • 03/14/2023

WDI_TLV_CONFIGURED_MAC_ADDRESS is a TLV that contains a custom MAC address.

0x99

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS The MAC address that should be used for the port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CONNECT_BSS_ENTRY
Article • 03/14/2023

WDI_TLV_CONNECT_BSS_ENTRY is a TLV that contains a list of candidate connect BSS
entries.

0x34

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the BSS.

WDI_TLV_PROBE_RESPONSE_FRAME X The probe response frame. If
no probe response has been
received, this would be
empty.

WDI_TLV_BEACON_FRAME X The beacon frame. If no
beacon has been received,
this would be empty.

WDI_TLV_BSS_ENTRY_SIGNAL_INFO The signal information for
this BSS entry.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSS_ENTRY_CHANNEL_INFO The channel information for
this BSS entry.

WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT X The IHV provided context
data about this peer.

WDI_TLV_PMKID X The 16 byte PMKID value for
this BSS entry.

WDI_TLV_EXTRA_ASSOCIATION_REQUEST_IES X The IE to be included in the
(re)association request frame
for this BSSID. If present, this
should be included in
addition to the common IE.

WDI_TLV_FT_INITIAL_ASSOC_PARAMETERS X The initial Mobility Domain
association parameters.

WDI_TLV_FT_REASSOC_PARAMETERS X The fast transition
parameters (MDIE, R0KH-ID,
PMKR0Name, SNonce). This
is only present for Fast
Transition (not during initial
mobility domain association).

WDI_TLV_BSS_SELECTION_PARAMETERS X WDI_BSS_SELECTION_FLAGS
that provide information
used by the host for BSS
selection.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_bss_selection_flags

WDI_TLV_CONNECT_PARAMETERS
Article • 03/14/2023

WDI_TLV_CONNECT_PARAMETERS is a TLV that contains parameters for
OID_WDI_TASK_CONNECT and OID_WDI_TASK_ROAM.

0x33

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CONNECTION_SETTINGS The settings for the
connection.

WDI_TLV_SSID X List of SSIDs that the
port is allowed to
connect to.

WDI_TLV_HESSID_INFO X List of HESSIDs that the
port is allowed to
connect to. This is an
additional requirement
to the SSID list.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_AUTH_ALGO_LIST The list of
authentication
algorithms that the
connection can use.

WDI_TLV_MULTICAST_CIPHER_ALGO_LIST The list of multicast
cipher algorithms that
the connection can use.

WDI_TLV_UNICAST_CIPHER_ALGO_LIST The list of unicast
cipher algorithms that
the connection can use.

WDI_TLV_EXTRA_ASSOCIATION_REQUEST_IES X The IE blobs that must
be included in the
association requests
sent by the port. This is
applicable to any BSSID
that the device would
associate with. It should
be used in addition to
the BSSID specific IEs.

WDI_TLV_PHY_TYPE_LIST X The list of PHYs that are
allowed to be used for
the association. If not
specified, any
supported PHY can be
used. If specified, the
device must only use
the listed PHYs.

WDI_TLV_DISALLOWED_BSSIDS_LIST X The list of BSSIDs that
are not allowed to be
used for association. If
specified, the adapter
must not associate to
any AP that is in this
list.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ALLOWED_BSSIDS_LIST X The list of BSSIDs that
are allowed to be used
for association. If WDI
specifies
255.255.255.255 then
all BSSIDs are allowed.

WDI_TLV_OWE_DH_IE X Diffie-Hellman
Extension IE blob that
must be included in the
association request sent
by the station when
auth type is OWE. This
is applicable to any
BSSID that the device
would associate with
and should be included
in addition to the other
associated req vendor
IEs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_CONNECTION_QUALITY_PARA
METERS
Article • 03/14/2023

WDI_TLV_CONNECTION_QUALITY_PARAMETERS is a TLV that contains the desired Wi-Fi
Connection Quality Hint.

0xA3

The size (in bytes) of a UINT32.

Type Description

UINT32 The desired Wi-Fi Connection Quality Hint, as defined in
WDI_CONNECTION_QUALITY_HINT.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_connection_quality_hint
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_CONNECTION_SETTINGS
Article • 03/14/2023

WDI_TLV_CONNECTION_SETTINGS is a TLV that contains connection settings for
OID_WDI_TASK_CONNECT.

0x3F

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies if this is a first-time connection request (value of 0) or a
roaming connection (value of 1).

UINT8 Specifies if this is a connection to a network with hidden/non-broadcast
SSIDs. This value is 1 when connecting to a hidden network.

UINT8 This sets the dot11ExcludeUnencrypted MIB. When this value is false (0)
and the cipher algorithm is WEP, the port must connect to APs that do
not set the privacy field in management frames.

UINT8 Specifies if MFP is enabled (1) or disabled (0). The station must advertise
its 802.11w capabilities in the association request if and only if this value
is set to 1 (enabled).

UINT8 Specifies if host-FIPS mode is enabled (1) or disabled (0).

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

WDI_ASSOC_STATUS
(UINT32)

Specifies the roaming needed reason. If this is triggered due to
NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED, this contains the
reason from the roam indication.

WDI_ROAM_TRIGGER
(UINT32)

Specifies whether this roam is a critical roam because the AP has set the
Disassociation Imminent bit in its BSS Transition Request action frame.

UINT8 Specifies if 802.11v BSS transition is supported. If this bit is set to 1, the
Station must set the BSS Transition field of the Extended capabilities
element (Bit 19) to 1 in the association request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_assoc_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_roam_trigger

WDI_TLV_COUNTRY_REGION_LIST
Article • 03/14/2023

WDI_TLV_COUNTRY_REGION_LIST is a TLV that contains a list of country or region codes.

0x12

The size (in bytes) of the array of WDI_COUNTRY_REGION_LIST elements. The array must
contain 1 or more elements.

Note WDI_COUNTRY_REGION_LIST is not a WDI structure. It is defined in the WDI TLV
parser generator, and is used for documentation purposes only.

Type Description

WDI_COUNTRY_REGION_LIST[] An array of country or region codes.

WDI_COUNTRY_REGION_LIST consists of the following elements.

Type Description

UINT8[3] A country or region code.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_CREATE_PORT_MAC_ADDRESS
Article • 03/14/2023

WDI_TLV_CREATE_PORT_MAC_ADDRESS is a TLV that contains a MAC address for
OID_WDI_TASK_CREATE_PORT.

0xD9

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS The MAC address to be used for port creation.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

WDI_TLV_CREATE_PORT_PARAMETERS
Article • 03/14/2023

WDI_TLV_CREATE_PORT_PARAMETERS is a TLV that contains parameters for
OID_WDI_TASK_CREATE_PORT.

0x28

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT16 A bitwise OR value of the operation modes the host may configure on the port being
created. The operation modes are defined in WDI_OPERATION_MODE.

UINT32 The NDIS_PORT_NUMBER that will be associated with the created port. Unless the
adapter wants to handle non-WDI OIDs, it does not need to do anything with this field.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_operation_mode

WDI_TLV_CURRENT_CHANNEL_PARAME
TERS
Article • 03/14/2023

WDI_TLV_CURRENT_CHANNEL_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_DATAPATH_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_DATAPATH_ATTRIBUTES is a TLV that contains datapath attributes.

0xB8

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_DATAPATH_CAPABILITIES X The datapath
capabilities.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_DATAPATH_CAPABILITIES
Article • 03/14/2023

WDI_TLV_DATAPATH_CAPABILITIES is a TLV that contains datapath capabilities.

0xB9

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_INTERCONNECT_TYPE (UINT32) Interconnect type.

UINT8 Maximum number of peers.

UINT8 Specifies transmit capability: Target priority
queuing.
Valid values are 0 and 1. If set to 0, WDI
classifies Tx frames by Peer and TID and utilizes
the full scheduler to select TX queues to
transfer. It is recommended that this is set to
false unless the target is capable of
classification and Peer-TID queueing. If set to 1,
WDI classifies Tx frames by Peer and TID and
only provides queuing at a port level. WDI
schedules backlogged port queues using a
global DRR.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_interconnect_type

Type Description

UINT16 Specifies transmit capability: Maximum number
of Scatter Gather elements in frame.
WDI coalesces frames as necessary such that
the IHV miniport does not receive a frame that
requires more scatter gather elements than
specified by this capability. For best
performance, it is suggested that this capability
is set higher than the typical frame as the
coalescing requires a memory copy. If this
capability is not greater than max frame size
divided by page size, WDI may be unable to
successfully coalesce the frame and it may be
dropped.

UINT8 Specifies transmit capability: Explicit Send
Complete flag required.
Valid values are 0 and 1. If set to 0, the
target/TAL generates a TX send complete for all
frames. If set to 1, the target/TAL generates TX
send completion indication only for frames that
have this flag set in the frame’s metadata.

UINT16 Specifies transmit capability: Minimum effective
frame size.
When dequeuing frames, the TxMgr treats
frames smaller than this value as having an
effective size of this value.

UINT16 Specifies transmit capability: Frame size
granularity.
This value is equal to the granularity of memory
allocation per frame. For the purposes of
dequeuing, the TxMgr treats a frame as having
an effective size equal to the frame size plus
the least amount of padding such that the
effective size is an integer multiple of this value.
This value must be set to a power of two.

UINT8 Specifies transmit capability: Rx Tx forwarding.
Valid values are 0 and 1. If set to 1, the target is
capable of forwarding received frames.

UINT32 Specifies transmit capability: Maximum
throughput, in units of 0.5 Mbps.
This value is used for the allocation of
descriptors and buffers.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_DEFAULT_TX_KEY_ID_PARAME
TERS
Article • 03/14/2023

WDI_TLV_DEFAULT_TX_KEY_ID_PARAMETERS is a TLV that contains the default key ID for
packet transmission on a port for OID_WDI_SET_DEFAULT_KEY_ID.

0x54

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the default key ID for packet transmission on a port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DELETE_CIPHER_KEY_INFO
Article • 03/14/2023

WDI_TLV_DELETE_CIPHER_KEY_INFO is a TLV that contains information to identify a
single cipher key to remove with OID_WDI_SET_DELETE_CIPHER_KEYS.

0x53

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_PEER_MAC_ADDRESS X Specifies the peer MAC address. At
least one of
WDI_TLV_PEER_MAC_ADDRESS or
WDI_TLV_CIPHER_KEY_ID must be
present.

WDI_TLV_CIPHER_KEY_ID X Specifies the cipher key ID. At least
one of
WDI_TLV_PEER_MAC_ADDRESS or
WDI_TLV_CIPHER_KEY_ID must be
present.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CIPHER_KEY_TYPE_INFO Specifies the cipher key type
information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_DELETE_PEER_STATE_PARAME
TERS
Article • 03/14/2023

WDI_TLV_DELETE_PEER_STATE_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_DELETE_PORT_PARAMETERS
Article • 03/14/2023

WDI_TLV_DELETE_PORT_PARAMETERS is a TLV that contains parameters for
OID_WDI_TASK_DELETE_PORT.

0x2A

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT16 Specifies the port number to delete.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_DEVICE_SERVICE_PARAMS_DA
TA_BLOB
Article • 03/14/2023

WDI_TLV_DEVICE_SERVICE_PARAMS_DATA_BLOB is a TLV that contains information
about a device service received from the IHV driver. This TLV is used in the
NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT status indication.

0x141

The size, in bytes, of a (UINT8 * (the number of elements in the list)) .

Type Description

TLV<List<UINT8>> [Optional] The information received from the IHV driver.

Minimum supported client: Windows 10, version 1809

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DEVICE_SERVICE_PARAMS_GUI
D
Article • 03/14/2023

WDI_TLV_DEVICE_SERVICE_PARAMS_GUID is a TLV that contains a GUID that identifies
the device service to which this status indication belongs. This TLV is used in the
NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT status indication.

0x140

The size, in bytes, of a GUID.

Type Description

GUID The GUID that identifies the device service to which this status indication belongs (as
defined by the IHV/OEM).

Minimum supported client: Windows 10, version 1809

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DEVICE_SERVICE_PARAMS_OP
CODE
Article • 03/14/2023

WDI_TLV_DEVICE_SERVICE_PARAMS_OPCODE is a TLV that contains the opcode specific
to the device service. This TLV is used in the
NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT status indication.

0x13F

The size, in bytes, of a UINT8.

Type Description

TLV<UINT8> The opcode specific to the device service.

Minimum supported client: Windows 10, version 1809

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DISALLOWED_BSSIDS_LIST
Article • 03/14/2023

WDI_TLV_DISALLOWED_BSSIDS_LIST is a TLV that contains a list of BSSIDs that are not
allowed to be used for association.

0xC3

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] A list of BSSIDs that are not allowed to be used for association. If this is
specified, the adapter must not associate to any AP that is not in this list

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DISASSOCIATION_INDICATIO
N_PARAMETERS
Article • 03/14/2023

WDI_TLV_DISASSOCIATION_INDICATION_PARAMETERS is a TLV that contains
disassociation indication parameters for
NDIS_STATUS_WDI_INDICATION_DISASSOCIATION.

0xBC

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The MAC address of the peer associated with the disassociation
indication.

WDI_ASSOC_STATUS
(UINT32)

The trigger for the disassociation indication.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_assoc_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_DISASSOCIATION_PARAMETE
RS
Article • 03/14/2023

WDI_TLV_DISASSOCIATION_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_DISCONNECT_DEAUTH_FRAM
E
Article • 03/14/2023

WDI_TLV_DISCONNECT_DEAUTH_FRAME is a TLV that contains the received
deauthentication frame.

0x37

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the received deauthentication frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DISCONNECT_DISASSOCIATIO
N_FRAME
Article • 03/14/2023

WDI_TLV_DISCONNECT_DISASSOCIATION_FRAME is a TLV that contains the received
disassociation frame.

0x38

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the received disassociation frame. This does
not include the 802.11 MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DISCONNECT_PARAMETERS
Article • 03/14/2023

WDI_TLV_DISCONNECT_PARAMETERS is a TLV that contains parameters for
OID_WDI_TASK_DISCONNECT.

0x36

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The MAC address of the peer to disassociate.

UINT16 The reason for the host-triggered disassociation. This value is provided in
little endian byte order and should be appropriately copied into the
reason code of the outgoing frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_DOT11_RESET_PARAMETERS
Article • 03/14/2023

WDI_TLV_DOT11_RESET_PARAMETERS is a TLV that contains parameters for
OID_WDI_TASK_DOT11_RESET.

0xA2

The size (in bytes) of a UINT8.

Type Description

UINT8 If (and only if) this is set to 1, all MIB attributes for the port being reset are set to their
default values.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ENABLE_WAKE_EVENTS
Article • 03/14/2023

WDI_TLV_ENABLE_WAKE_EVENTS is a TLV that contains the enabled wake events.

0x60

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the enabled wake-on-LAN packet patterns using the flags as documented in
NDIS_PM_PARAMETERS.EnabledWoLPacketPatterns.

UINT32 Specifies the enabled protocol offloads using the flags as documented in
NDIS_PM_PARAMETERS.EnabledProtocolOffloads.

UINT32 Specifies the wake-up flags using the flags as documented in
NDIS_PM_PARAMETERS.WakeUpFlags.

UINT32 Specifies the media-specific wake up events using the flags as documented in
NDIS_PM_PARAMETERS.MediaSpecificWakeUpEvents.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

WDI_TLV_ETHERTYPE_ENCAP_TABLE
Article • 03/14/2023

WDI_TLV_ETHERTYPE_ENCAP_TABLE is a TLV that contains the Ethertype encapsulations
for the association.

0x31

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_ETHERTYPE_ENCAPSULATION_ENTRY[] An array of
WDI_ETHERTYPE_ENCAPSULATION_ENTRY
elements that specifies the Ethertype
encapsulations for the association.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_ethertype_encapsulation_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_ethertype_encapsulation_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_EXTRA_ASSOCIATION_REQUES
T_IES
Article • 03/14/2023

WDI_TLV_EXTRA_ASSOCIATION_REQUEST_IES is a TLV that contains Information
Elements (IEs) that must be included in association requests sent by the port.

0x40

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the IEs that must be included in association
requests sent by the port. These are applicable to any BSSID that the device associates
with. They should be used in addition to the common and BSSID specific IEs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FIRMWARE_VERSION
Article • 03/14/2023

WDI_TLV_FIRMWARE_VERSION is a TLV that contains the firmware version.

0xF4

The size (in bytes) of the array of char elements. The array must contain 1 or more
elements.

Type Description

char[] The firmware version, stored as a null-terminated ASCII string.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_AUTH_REQUEST
Article • 03/14/2023

WDI_TLV_FT_AUTH_REQUEST is a TLV that contains the Fast Transition authentication
request byte blob.

0x119

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the Fast Transition authentication request
byte blob.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_AUTH_RESPONSE
Article • 03/14/2023

WDI_TLV_FT_AUTH_RESPONSE is a TLV that contains the Fast Transition authentication
response byte blob.

0x10E

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the Fast Transition authentication response
byte blob.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_FTE
Article • 03/14/2023

WDI_TLV_FT_FTE is a TLV that contains a Fast Transition Element.

0x10B

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] A Fast Transition Element that contains the R0KHID and SNonce.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_INITIAL_ASSOC_PARAMETE
RS
Article • 03/14/2023

WDI_TLV_FT_INITIAL_ASSOC_PARAMETERS is a TLV that contains initial association
parameters for Fast Transition.

0x105

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_TLV_FT_MDE The MDIE of the BSS entry.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_MDE
Article • 03/14/2023

WDI_TLV_FT_MDE is a TLV that contains the MDIE of a BSS entry.

0x10D

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The MDIE of a BSS entry.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_PMKR0NAME
Article • 03/14/2023

WDI_TLV_FT_PMKR0NAME is a TLV that contains a PMKR0Name or PMKR1Name
(802.11r).

0x107

The size (in bytes) of a WDI_TYPE_PMK_NAME structure.

Type Description

WDI_TYPE_PMK_NAME A PMKR0Name or PMKR1Name (802.11r).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_type_pmk_name
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ns-wditypes-_wdi_type_pmk_name
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_R0KHID
Article • 03/14/2023

WDI_TLV_FT_R0KHID is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_R1KHID
Article • 03/14/2023

WDI_TLV_FT_R1KHID is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_REASSOC_PARAMETERS
Article • 03/14/2023

WDI_TLV_FT_REASSOC_PARAMETERS is a TLV that contains reassociation parameters for
Fast Transition.

0x106

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_TLV_FT_MDE The MDIE of the BSS entry.

WDI_TLV_FT_PMKR0NAME The PMKR0Name. This is needed during Fast Transition. The STA
needs to send the PMKR0Name during the authentication request
to the AP.

WDI_TLV_FT_FTE The Fast Transition Element that contains the R0KHID and SNonce.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_RSNIE
Article • 03/14/2023

WDI_TLV_FT_RSNIE is a TLV that contains the Fast Transition RSN IE byte blob.

0x10C

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the Fast Transition RSN IE byte blob.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FT_SNONCE
Article • 03/14/2023

WDI_TLV_FT_SNONCE is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FTM_NUMBER_OF_MEASURE
MENTS
Article • 03/14/2023

WDI_TLV_FTM_NUMBER_OF_MEASUREMENTS is a TLV that contains the number of
measurements used to provide the round trip time (RTT) for a Fine Timing Measurement
(FTM) request.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15B

The size (in bytes) of a UINT16.

Type Description

UINT16 The number of measurements used to provide the RTT.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FTM_REQUEST_TIMEOUT
Article • 03/14/2023

WDI_TLV_FTM_REQUEST_TIMEOUT is a TLV that contains the maximum time, in
milliseconds, to complete a Fine Timing Measurement (FTM).

This TLV is used in the task parameters of OID_WDI_TASK_REQUEST_FTM.

0x161

The size (in bytes) of a UINT32.

Type Description

UINT32 The maximum time, in milliseconds, to complete the FTM. The timeout is set to 150 ms
multiplied by the number of targets.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FTM_RESPONSE
Article • 03/14/2023

WDI_TLV_FTM_RESPONSE is a TLV that contains Fine Timing Measurement (FTM) response information from a
BSS target.

This TLV is used in the payload data of an NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE task
completion indication.

0x163

The sum (in bytes) of the sizes of all contained TLVs.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID WDI_MAC_ADDRESS The BSSID of the target to
which this FTM response
belongs.

WDI_TLV_FTM_RESPONSE_STATUS WDI_FTM_RESPONSE_STATUS The FTM response status.
If success, the rest of the
fields in this TLV are
present.

WDI_TLV_RETRY_AFTER UINT16 A duration, in seconds,
that should pass before
trying to request a new
FTM from this target.

WDI_TLV_FTM_NUMBER_OF_MEASUREMENTS UINT16 The number of
measurements used to
provide the round trip
time (RTT). If the FTM
response status was a
success, this field is
mandatory.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in
maintenance mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in
Windows 11. We recommend that you use WiFiCx to take advantage of the latest features.

TLV type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_ftm_response_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSS_ENTRY_SIGNAL_INFO INT32 The received signal
strength indicator (RSSI)
from the FTM target. This
is in units of decibels
referenced to 1.0
milliwatts (dBm). If the
FTM response status was
a success, this field is
mandatory.

Same as row above UINT32 The link quality value of
the FTM target, ranging
from 0 through 100. A
value of 100 specifies the
highest link quality. If the
FTM response status was
a success, this field is
mandatory.

WDI_TLV_RTT UINT32 The measured roundtrip
time (RTT), in
picoseconds. If the FTM
response status was a
success, this field is
mandatory.

WDI_TLV_RTT_ACCURACY UINT32 The accuracy, or expected
degree of closeness, of
the provided RTT
measurement to the true
value. The unit is in
picoseconds. For more
information, see the
WDI_TLV_RTT_ACCURACY.

WDI_TLV_RTT_VARIANCE UINT64 If more than one
measurement was used
to calculate the RTT, this
field provides the
statistical variance of the
measurements used.

WDI_TLV_LCI_REPORT_STATUS WDI_LCI_REPORT_STATUS If an LCI report was
requested, this field
provides the status result.
If successful, the
following fields are
present and mandatory.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_lci_report_status

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_LCI_REPORT_BODY TLV<LIST<UINT8>> The Location
Configuration
Information (LCI) report,
as defined in Section
9.4.2.22.10 of the 802-11-
2016 standard ,
including the LCI
subelement and other
Optional subelements
available. In other words,
this is the measurement
report section of the
Measurement Report
element (as per Section
9.4.2.22 from the 802-11-
2016 standard).

Minimum supported client: Windows 10, version 1903 Minimum supported server: Windows Server 2016
Header: Wditypes.hpp

Requirements

https://standards.ieee.org/standard/802_11-2016.html
https://standards.ieee.org/standard/802_11-2016.html

WDI_TLV_FTM_RESPONSE_STATUS
Article • 03/14/2023

WDI_TLV_FTM_RESPONSE_STATUS is a TLV that contains the Fine Timing Measurement
(FTM) response status from a target BSS.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x159

The size (in bytes) of a UINT32.

Type Description

WDI_FTM_RESPONSE_STATUS The FTM response status.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_ftm_response_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_FTM_TARGET_BSS_ENTRY
Article • 03/14/2023

WDI_TLV_FTM_TARGET_BSS_ENTRY is a TLV that contains information for a BSS target
with which Fine Timing Measurement (FTM) procedures should be completed.

This TLV is used in the task parameters for OID_WDI_TASK_REQUEST_FTM.

0x162

The sum (in bytes) of the sizes of all contained TLVs.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID WDI_MAC_ADDRESS The BSSID of
the target BSS.

WDI_TLV_PROBE_RESPONSE_FRAME TLV<LIST<UINT8>> X The probe
response frame.
If no probe
response has
been received,
this field is
empty.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

TLV type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BEACON_FRAME TLV<LIST<UINT8>> X The beacon
frame. If no
beacon has
been received,
this field is
empty.

WDI_TLV_BSS_ENTRY_SIGNAL_INFO INT32 The received
signal strength
indicator (RSSI)
value of the
beacon or probe
response from
the peer. This is
in units of
decibels
referenced to
1.0 milliwatts
(dBm).

UINT32 The link quality
value ranging
from 0 through
100. A value of
100 specifies the
highest link
quality.

WDI_TLV_BSS_ENTRY_CHANNEL_INFO UINT32 The logical
channel number
of the target
BSS.

UINT32 The Band ID of
the target BSS.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT TLV<LIST<UINT8>> IHV component-
provided
context data
about this peer.
This can be usd
to store per-BSS
entry state that
the IHV
component
wants to
maintain. To
avoid lifetime
management
issues, the IHV
component
must not use
pointers in this
field.

WDI_TLV_REQUEST_LCI_REPORT UINT8 Possible values:
0: LCI
report not
needed.
1: LCI
report
should be
requested.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

Requirements

WDI_TLV_GET_AUTO_POWER_SAVE
Article • 03/14/2023

WDI_TLV_GET_AUTO_POWER_SAVE is a TLV that contains auto power save information
for OID_WDI_GET_AUTO_POWER_SAVE.

0xB3

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The firmware current AutoPSM state.

UINT8 Reserved.

UINT16 Reserved.

UINT16 The beacon interval in milliseconds.

UINT8 The listen interval, in the unit of the beacon interval (for
example, 1).

UINT8 The listen interval in the last low power state (for example,
5). If there is no last low power state, set to 255.

WDI_POWER_SAVE_LEVEL (UINT32) The power mode.

WDI_POWER_SAVE_LEVEL (UINT32) The power mode in Dx.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_power_save_level
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_power_save_level
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

WDI_POWER_MODE_REASON_CODE
(UINT32)

The reason for entering the Power Save state and listen
interval.

UINT64 Milliseconds since start.

UINT64 Milliseconds in power save mode.

UINT64 Number of received multicast packets, including
broadcast.

UINT64 Number of sent multicast packets, including broadcast.

UINT64 Number of received unicast packets.

UINT64 Number of sent unicast packets.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_power_mode_reason_code

WDI_TLV_HESSID
Article • 03/14/2023

WDI_TLV_HESSID is a TLV that contains a list of HESSIDs.

0xC8

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] A list of HESSIDs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_HESSID_INFO
Article • 03/14/2023

WDI_TLV_HESSID_INFO is a TLV that contains HESSID information, which includes a list
of HESSIDs, the Access Network Type, and Hotspot Indication Element.

0xFF

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ACCESS_NETWORK_TYPE The Access Network Type
to be used in probe
requests for the network
being connected to.

WDI_TLV_HESSID The list of HESSIDs that
the port is allowed to
connect to.

WDI_TLV_HOTSPOT_INDICATION_ELEMENT The Hotspot Indication
Element to be used in the
Association Request.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_HOTSPOT_DOMAIN_PARTNER
Article • 03/14/2023

WDI_TLV_HOTSPOT_DOMAIN_PARTNER is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_HOTSPOT_INDICATION_ELEME
NT
Article • 03/14/2023

WDI_TLV_HOTSPOT_INDICATION_ELEMENT is a TLV that contains a Hotspot Indication
Element that is used in a Association Request.

0x101

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] A Hotspot Indication Element that is used in a Association Request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_IHV_DATA
Article • 03/14/2023

WDI_TLV_IHV_DATA is a TLV that contains IHV-specific information that is used by the
IHV extensibility module.

0xBD

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] IHV specific information that is used by the IHV extensibility module.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_IHV_NON_WDI_OIDS_LIST
Article • 03/14/2023

WDI_TLV_IHV_NON_WDI_OIDS_LIST is a TLV that contains a list of non-WDI OIDs that
the adapter wants to advertise to the operating system.

0x104

The size (in bytes) of the array of UINT32 elements. The array must contain 1 or more
elements.

Type Description

UINT32[] A list of non-WDI OIDs that the adapter wants to advertise to the operating system.
The adapter should not assume that the operating system has already filtered non-
WDI OIDs to match this list.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_IHV_TASK_DEVICE_CONTEXT
Article • 03/14/2023

WDI_TLV_IHV_TASK_DEVICE_CONTEXT is a TLV that contains IHV-provided device
context for NDIS_STATUS_WDI_INDICATION_IHV_TASK_REQUEST.

0xE0

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The IHV-provided device context information that is forwarded to the IHV task.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_IHV_TASK_REQUEST_PARAMET
ERS
Article • 03/14/2023

WDI_TLV_IHV_TASK_REQUEST_PARAMETERS is a TLV that contains the requested priority
for NDIS_STATUS_WDI_INDICATION_IHV_TASK_REQUEST.

0xDF

The size (in bytes) of a UINT32.

Type Description

UINT32 The IHV-requested priority for this task. See WDI_IHV_TASK_PRIORITY for valid priority
values.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_ihv_task_priority
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_INCOMING_ASSOCIATION_RE
QUEST_INFO
Article • 03/14/2023

WDI_TLV_INCOMING_ASSOCIATION_REQUEST_INFO is a TLV that contains information
about the incoming association request.

0x8F

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_INCOMING_ASSOCIATION_REQUEST_PARAMETERS The
parameters
for the
incoming
association
request.

WDI_TLV_ASSOCIATION_REQUEST_FRAME The
association
request
frame.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_REQUEST_DEVICE_CONTEXT X The vendor-
specific
information
that is
passed
down to the
port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_INCOMING_ASSOCIATION_RE
QUEST_PARAMETERS
Article • 03/14/2023

WDI_TLV_INCOMING_ASSOCIATION_REQUEST_PARAMETERS is a TLV that contains
association request parameters.

0x7D

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The MAC address of the sender.

UINT8 A bit that indicates whether or not it is a reassociation request. A value of
1 indicates that it is a reassociation request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_INDICATION_CAN_SUSTAIN_A
P
Article • 03/14/2023

WDI_TLV_INDICATION_CAN_SUSTAIN_AP is a TLV that contains the reason for a Can
Sustain AP indication.

0xE7

The size (in bytes) of a UINT32.

Type Description

UINT32 The Can Sustain AP reason. See WDI_CAN_SUSTAIN_AP_REASON for possible reason
values.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_can_sustain_ap_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_CAN_SUSTAIN_AP

See also

WDI_TLV_INDICATION_STOP_AP
Article • 03/14/2023

WDI_TLV_INDICATION_STOP_AP is a TLV that contains the reason for a Stop AP
indication.

0xE6

The size (in bytes) of a UINT32.

Type Description

UINT32 The Stop AP reason. See WDI_STOP_AP_REASON for possible reason values.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

NDIS_STATUS_WDI_INDICATION_STOP_AP

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_stop_ap_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_INDICATION_WAKE_PACKET
Article • 03/14/2023

WDI_TLV_INDICATION_WAKE_PACKET is a TLV that contains a wake packet for
NDIS_STATUS_WDI_INDICATION_WAKE_REASON. When the wake reason is
WDI_WAKE_REASON_CODE PACKET, the status must include the wake packet
encapsulated in a WDI_TLV_INDICATION_WAKE_PACKET.

0x9D

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The wake packet. The size is the size of the flat memory version of the packet that will
be indicated in the normal receive path.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_INDICATION_WAKE_PACKET_P
ATTERN_ID
Article • 03/14/2023

WDI_TLV_INDICATION_WAKE_PACKET_PATTERN_ID is a TLV that contains the ID of the
pattern that matches a wake packet.

0xB0

The size (in bytes) of a UINT32.

Type Description

UINT32 The ID of the pattern that matches the wake packet. The ID is defined when the pattern
is added with OID_WDI_SET_ADD_WOL_PATTERN.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_INDICATION_WAKE_REASON
Article • 03/14/2023

WDI_TLV_INDICATION_WAKE_REASON is a TLV that contains a wake reason for
NDIS_STATUS_WDI_INDICATION_WAKE_REASON.

0x9C

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the wake reason.

Valid wake reason values are:

Wake reason Value Description

WDI_WAKE_REASON_CODE_PACKET 0x0001 A received packet matches the wake pattern.

WDI_WAKE_REASON_CODE_MEDIA_DISCONNECT 0x0002 Media disconnection.

WDI_WAKE_REASON_CODE_MEDIA_CONNECT 0x0003 Media connection.

WDI_WAKE_REASON_CODE_NLO_DISCOVERY 0x1000 NLO discovery.

WDI_WAKE_REASON_CODE_AP_ASSOCIATION_LOST 0x1001 Access point association lost.

WDI_WAKE_REASON_CODE_GTK_HANDSHAKE_ERROR 0x1002 GTK handshake error.

WDI_WAKE_REASON_CODE_4WAY_HANDSHAKE_REQUEST 0x1003 4-Way Handshake request.

WDI_WAKE_REASON_CODE_EAPID_REQUEST 0x1004 Reserved for future use.

WDI_WAKE_ REASON _CODE_INCOMING_M1 0x1005 Use
WDI_WAKE_REASON_CODE_4WAY_HANDSHAKE_REQUEST
instead.

WDI_WAKE_REASON_CODE_FIRMWARE_STALLED 0x1010 Firmware hang is detected (for example, by the watchdog
timer) and wake logic is still functioning to wake the host.

WDI_WAKE_REASON_CODE_GTK_HANDSHAKE_REQUEST 0x1020 Group Key rekey request.

Minimum supported client Windows 10

TLV Type

Length

Values

Requirements

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_INTERFACE_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_INTERFACE_ATTRIBUTES is a TLV that contains the attributes of an interface.

0x21

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_INTERFACE_CAPABILITIES The capabilities of the interface.

WDI_TLV_FIRMWARE_VERSION An ASCII string that specifies the
firmware version.

WDI_TLV_IHV_NON_WDI_OIDS_LIST X List of non-WDI OIDs that the
adapter wants to advertise to the
operating system. The adapter
should not assume that the
operating system has already
filtered non-WDI OIDs to match
this list.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_INTERFACE_CAPABILITIES
Article • 03/14/2023

WDI_TLV_INTERFACE_CAPABILITIES is a TLV that contains the capabilities of the Wi-Fi
interface.

0xF

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The maximum transfer unit (MTU) size.

UINT32 The multicast list size for the adapter.

UINT16 The backfill size in bytes. This value cannot be
greater than 256 bytes.

WDI_MAC_ADDRESS The permanent MAC address for the adapter. If the
device supports multiple permanent MAC
addresses, the first MAC address that will be used
by the device should be returned.

UINT32 The maximum supported send rate for this adapter
in kbps.

UINT32 The maximum supported receive rate for this
adapter in kbps.

UINT8 Specifies whether the radio is enabled by
hardware. Valid values are 0 (disabled) and 1
(enabled).

UINT8 Specifies whether they radio is enabled by
software. Valid values are 0 (disabled) and 1
(enabled).

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

Type Description

UINT8 Specifies whether the interface supports PLR. Valid
values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether the interface supports FLR. Valid
values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether sending and receiving action
frames is supported. Valid values are 0 (not
supported) and 1 (supported).

UINT8 The supported number of RX spatial streams.

UINT8 The supported number of TX spatial streams.

UINT8 The number of channels that the adapter can work
in concurrently, regardless of operation mode.

UINT8 Specifies whether antenna diversity is supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies whether eCSA is supported. Valid values
are 0 (not supported) and 1 (supported).

UINT8 Specifies whether the adapter supports MAC
address randomization. Valid values are 0 (not
supported) and 1 (supported).

WDI_MAC_ADDRESS A bit mask that specifies for each address bit
whether it can be randomized (0) or should keep
the same value as the permanent address (1). The
default is all zeros.

WDI_BLUETOOTH_COEXISTENCE_SUPPORT
(UINT32)

The supported level of Wi-Fi - Bluetooth
coexistence.

UINT8 Specifies non-WDI OID support. Valid values are:
0 : Not supported. OIDs that the Microsoft
component does not understand are not
forwarded to the adapter.
1 : Supported. OIDs that the Microsoft
component does not understand are
forwarded to the adapter.

These OIDs will not contain WDI headers. To
identify the adapter's port that the request came in
on, use NdisPortNumber in the
NDIS_OID_REQUEST and match it to the one in
WDI_TASK_CREATE_PORT.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_bluetooth_coexistence_support

Type Description

UINT8 Specifies whether the Fast Transition is supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies whether Mu-MIMO is supported. Valid
values are 0 (not supported) and 1 (supported).

UINT8 Specifies if the interface cannot support Miracast
Sink. Valid values are 0 (supported) and 1 (not
supported).

UINT8 Specifies if 802.11v BSS transition is supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies if the device supports IP docking
capability. Valid values are 0 (not supported) and 1
(supported).
Added in Windows 10, version 1607, WDI version
1.0.21.

UINT8 Specifies if the device supports SAE authentication.
Valid values are 0 (not supported) and 1
(supported).
Added in Windows 10, version 1903, WDI version
1.1.8.

UINT8 Specifies if the device supports Multiband
Operation (MBO). Valid values are 0 (not
supported) and 1 (supported).
Added in Windows 10, version 1903, WDI version
1.1.8.

UINT8 Specifies if the adapter implements beacon report
measurements. Valid values are 0 (the adapter
does not implement beacon report measurements)
and 1 (the adapter implements its own 11k beacon
report).
Added in Windows 10, version 1903, WDI version
1.1.8.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Requirements

Header Wditypes.hpp

WDI_TLV_IPV4_CHECKSUM_OFFLOAD
Article • 03/14/2023

WDI_TLV_IPV4_CHECKSUM_OFFLOAD is a TLV that contains checksum offload
capabilities for IPv4.

0xCF

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CHECKSUM_OFFLOAD_V4_TX_PARAMETERS Parameters
for Tx
checksum
offload for
IPv4.

WDI_TLV_CHECKSUM_OFFLOAD_V4_RX_PARAMETERS Parameters
for Rx
checksum
offload for
IPv4.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_IPV4_LSO_V2 (0xD3)
Article • 03/14/2023

WDI_TLV_IPV4_LSO_V2 is a TLV that contains Large Send Offload V2 parameters for IPv4.

0xD3

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation type. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 The maximum offload size. Specified by the
maximum number of bytes of TCP user data
per packet.

UINT32 The minimum segment count. Specified by the
minimum number of segments that should be
present after segmentation.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_IPV6_CHECKSUM_OFFLOAD
Article • 03/14/2023

WDI_TLV_IPV6_CHECKSUM_OFFLOAD is a TLV that contains checksum offload
capabilities for IPv6.

0xD0

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CHECKSUM_OFFLOAD_V6_TX_PARAMETERS Parameters
for Tx
checksum
offload for
IPv6.

WDI_TLV_CHECKSUM_OFFLOAD_V6_RX_PARAMETERS Parameters
for Rx
checksum
offload for
IPv6.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_IPV6_LSO_V2 (0xD4)
Article • 03/14/2023

WDI_TLV_IPV6_LSO_V2 is a TLV that contains Large Send Offload V2 parameters for IPv6.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xD4

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Encapsulation type. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 The maximum offload size. Specified by the
maximum number of bytes of TCP user data
per packet.

UINT32 The minimum segment count. Specified by the
minimum number of segments that should be
present after segmentation.

UINT32 Specifies if offload of checksum of packets with
IP extension headers is supported.

UINT32 Specifies if offload of checksum with TCP
options is supported.

Minimum supported client Windows 10

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_KCK_CONTENT
Article • 03/14/2023

WDI_TLV_KCK_CONTENT is a TLV that contains an IEEE 802.11 key confirmation key
(KCK).

0x168

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies an IEEE 802.11 key confirmation key (KCK).

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.pp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_KEK_CONTENT
Article • 03/14/2023

WDI_TLV_KEK_CONTENT is a TLV that contains an IEEE 802.11 key encryption key (KEK).

0x169

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies an IEEE 802.11 key encryption key (KEK).

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_LCI_REPORT_BODY
Article • 03/14/2023

WDI_TLV_LCI_REPORT_BODY is a TLV that contains the Location Configuration Report
(LCI) for a Fine Timing Measurement (FTM) request.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x160

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The LCI report.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_LCI_REPORT_STATUS
Article • 03/14/2023

WDI_TLV_LCI_REPORT_STATUS is a TLV that contains the status result of a Location
Configuration Information (LCI) report, if one was requested during a Fine Timing
Measurement (FTM) request.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15F

The size (in bytes) of a UINT32.

Type Description

WDI_LCI_REPORT_STATUS The status of the LCI report.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_lci_report_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_LINK_QUALITY_BAR_MAP
Article • 03/14/2023

WDI_TLV_LINK_QUALITY_BAR_MAP is a TLV that contains the mapping of signal quality
to Wi-Fi signal strength bars.

0xD8

The size (in bytes) of the array of WDI_LINK_QUALITY_BAR_MAP_PARAMETERS elements.
The array must contain 1 or more elements.

Note WDI_LINK_QUALITY_BAR_MAP_PARAMETERS is not a WDI structure. It is defined
in the WDI TLV parser generator, and is used for documentation purposes only.

Type Description

WDI_LINK_QUALITY_BAR_MAP_PARAMETERS[] An array of signal strength bar mapping
parameters.

WDI_LINK_QUALITY_BAR_MAP_PARAMETERS consists of the following elements.

Type Description

UINT8 The lower limit link quality (0-100) for the current signal strength bar.

UINT8 The upper limit of link quality (0-100) for the current signal strength bar.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 The signal strength bar number.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

WDI_TLV_LINK_STATE_CHANGE_PARAM
ETERS
Article • 03/14/2023

WDI_TLV_LINK_STATE_CHANGE_PARAMETERS is a TLV that contains link state change
parameters for NDIS_STATUS_WDI_INDICATION_LINK_STATE_CHANGE.

0x56

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS Specifies the MAC address of the remote peer.

UINT32 Specifies the current TX link speed. This is a value, in kilobits per second,
that is the current TX link speed for this virtualized port. The conversion is
1 kbps = 1000 bps.

UINT32 Specifies the current RX link speed. This is a value, in kilobits per second,
that is the current RX link speed for this virtualized port. The conversion is
1 kbps = 1000 bps.

UINT8 Specifies the current link quality. This is a value between 0 and 100 that is
the current link quality for this virtualized port.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_LOW_LATENCY_CONNECTION
_QUALITY_PARAMETERS
Article • 03/14/2023

WDI_TLV_LOW_LATENCY_CONNECTION_QUALITY_PARAMETERS is a TLV that contains
low latency connection quality parameters.

0xF6

The size (in bytes) of the array of all contained elements.

Type Description

UINT8 Specifies the maximum number of milliseconds that the port can be on a different
channel during Active Scan or other multi-channel operations. The only instance in which
this off-channel can be higher is if the adapter needs to do a passive scan.

UINT8 Specifies the link quality threshold for
NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED. When the link quality is below this
threshold, it is acceptable for the adapter to send
NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

OID_WDI_SET_CONNECTION_QUALITY

NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED

See also

WDI_TLV_LSO_V1_CAPABILITIES (0xCC)
Article • 03/14/2023

WDI_TLV_LSO_V1_CAPABILITIES is a TLV that contains Large Send Offload V1 capabilities.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES.

0xCC

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The encapsulation type. Valid values are:
WDI_ENCAPSULATION_IEEE_802_11

UINT32 The maximum offload size. Specified by the
maximum number of bytes of TCP user data
per packet.

UINT32 The minimum number of segments that a large
TCP packet must be divisible by before the
transport can offload it to the hardware for
segmentation.

UINT32 Specifies whether or not TCP options are
supported for this offload.

UINT32 Specifies whether or not IP options are
supported for this offload.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_LSO_V2_CAPABILITIES
Article • 03/14/2023

WDI_TLV_LSO_V2_CAPABILITIES is a TLV that contains Large Send Offload V2 capabilities.

0xCD

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_IPV4_LSO_V2 Large Send Offload V2
capabilities for IPv4.

WDI_TLV_IPV6_LSO_V2 Large Send Offload V2
capabilities for IPv6.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_MAC_STATISTICS
Article • 03/14/2023

WDI_TLV_MAC_STATISTICS is a TLV that contains per-peer MAC statistics for
OID_WDI_GET_STATISTICS.

0xA6

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The MAC address of the peer that these counts
are set for. For multicast and broadcast packets,
this value is set to FF-FF-FF-FF-FF-FF-FF.

UINT64 The number of MSDU packets and MMPDU
frames that the IEEE MAC layer of the 802.11
station successfully transmitted.

UINT64 The number of MSDU packets and MMPDU
frames that the IEEE MAC layer of the 802.11
station successfully received. This member
should not be incremented for received packets
that failed cipher decryption or MIC validation.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT64 The number of unencrypted received MPDU
frames that the MAC layer discarded when the
IEEE 802.11 dot11ExcludeUnencrypted
management information base (MIB) object is
enabled.
For more information about this MIB object,
see OID_DOT11_EXCLUDE_UNENCRYPTED.
MPDU frames are considered unencrypted
when the Protected Frame subfield of the
Frame Control field in the IEEE 802.11 MAC
header is set to zero.

UINT64 The number of received MSDU packets that the
802.11 station discarded because of MIC
failures.

UINT64 The number of received MPDU frames that the
802.11 station discarded because of the TKIP
replay protection procedure.

UINT64 The number of encrypted MPDU frames that
the 802.11 station failed to decrypt because of
a TKIP ICV error.

UINT64 The number of received MPDU frames that the
802.11 discarded because of an invalid AES-
CCMP format.

UINT64 The number of received MPDU frames that the
802.11 station discarded because of the AES-
CCMP replay protection procedure.

UINT64 The number of received MPDU frames that the
802.11 station discarded because of errors
detected by the AES-CCMP decryption
algorithm.

UINT64 The number of encrypted MPDU frames
received for which a WEP decryption key was
not available on the 802.11 station.

UINT64 The number of encrypted MPDU frames that
the 802.11 station failed to decrypt because of
a WEP ICV error.

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/oid-dot11-exclude-unencrypted

Type Description

UINT64 The number of received encrypted packets that
the 802.11 station successfully decrypted.
For the WEP and TKIP cipher algorithms, the
port must increment this counter for each
received encrypted MPDU that was successfully
decrypted. For the AES-CCMP cipher algorithm,
the port must increment this counter on each
received encrypted MSDU packet that was
successfully decrypted.

UINT64 The number of encrypted packets that the
802.11 station failed to decrypt.
For the WEP and TKIP cipher algorithms, the
port must increment this counter for each
received encrypted MPDU that was not
successfully decrypted. For the AES-CCMP
cipher algorithm, the port must increment this
counter on each received encrypted MSDU
packet that was not successfully decrypted. The
port must not increment this counter for
packets that are decrypted successfully, but are
discarded for other reasons. For example, the
port must not increment this counter for
packets that are discarded because of TKIP MIC
failures or TKIP/CCMP replays.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_MULTICAST_CIPHER_ALGO_LIS
T
Article • 03/14/2023

WDI_TLV_MULTICAST_CIPHER_ALGO_LIST is a TLV that contains a list of multicast cipher
algorithms.

0x3D

The size (in bytes) of the array of WDI_CIPHER_ALGORITHM structures. The array must
contain 1 or more elements.

Type Description

WDI_CIPHER_ALGORITHM[] An array of multicast cipher algorithms.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_MULTICAST_DATA_ALGORITH
M_LIST
Article • 03/14/2023

WDI_TLV_MULTICAST_DATA_ALGORITHM_LIST is a TLV that contains an array of
multicast data algorithm pairs.

0x14

The size (in bytes) of the array of WDI_ALGO_PAIRS elements. The array must contain 1
or more elements.

Note WDI_ALGO_PAIRS is not a WDI structure. It is defined in the WDI TLV parser
generator, and is used for documentation purposes only.

Type Description

WDI_ALGO_PAIRS[] An array of authentication and cipher algorithm pairs.

WDI_ALGO_PAIRS consists of the following elements.

Type Description

UINT8 Authentication algorithm as defined in WDI_AUTH_ALGORITHM.

UINT8 Cipher algorithm as defined in WDI_CIPHER_ALGORITHM.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_MULTICAST_LIST
Article • 03/14/2023

WDI_TLV_MULTICAST_LIST is a TLV that contains an array of multicast MAC addresses.

0x6A

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] An array of multicast MAC addresses.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

WDI_TLV_MULTICAST_MGMT_ALGORIT
HM_LIST
Article • 03/14/2023

WDI_TLV_MULTICAST_MGMT_ALGORITHM_LIST is a TLV that contains an array of
multicast management algorithm pairs.

0x15

The size (in bytes) of the array of WDI_ALGO_PAIRS elements. The array must contain 1
or more elements.

Note WDI_ALGO_PAIRS is not a WDI structure. It is defined in the WDI TLV parser
generator, and is used for documentation purposes only.

The size (in bytes) of the array of algorithm pairs.

Type Description

WDI_ALGO_PAIRS[] An array of authentication and cipher algorithm pairs.

WDI_ALGO_PAIRS consists of the following elements.

Type Description

UINT8 Authentication algorithm as defined in WDI_AUTH_ALGORITHM.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 Cipher algorithm as defined in WDI_CIPHER_ALGORITHM.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm

WDI_TLV_NEIGHBOR_REPORT_ENTRY
Article • 03/14/2023

WDI_TLV_NEIGHBOR_REPORT_ENTRY is a TLV that contains a neighbor report.

0x123

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the AP in the
neighbor report.

WDI_TLV_BSSID_INFO The BSSID information of the
AP.

WDI_TLV_OPERATING_CLASS The operating class of the AP
indicated by this BSSID.

WDI_TLV_CHANNEL_NUMBER The last known operating
channel of the AP indicated by
this BSSID.

WDI_TLV_PHY_TYPE The PHY type of the AP
indicated by this BSSID.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_NETWORK_LIST_OFFLOAD_CO
NFIG
Article • 03/14/2023

WDI_TLV_NETWORK_LIST_OFFLOAD_CONFIG is a TLV that contains Network List Offload
(NLO) configuration.

0xDA

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Reserved field.

UINT32 The delay (in seconds) before the scan schedule starts.

UINT32 The period (in seconds) to scan in the first phase.

UINT32 The number of iterations in the fast scan phase.

UINT32 The period (in seconds) to scan in the slow scan phase. This phase lasts indefinitely until
a new NLO command is set.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_NETWORK_LIST_OFFLOAD_PA
RAMETERS
Article • 03/14/2023

WDI_TLV_NETWORK_LIST_OFFLOAD_PARAMETERS is a TLV that contains Network List
Offload (NLO) parameters for OID_WDI_SET_NETWORK_LIST_OFFLOAD.

0x59

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_NETWORK_LIST_OFFLOAD_CONFIG Specifies NLO
configuration.

WDI_TLV_SSID_OFFLOAD X X Specifies offload SSIDs.
When this element is
absent, the firmware
should stop NLO
scanning.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_NETWORK_OFFLOAD_CHANN
ELS
Article • 03/14/2023

WDI_TLV_NETWORK_OFFLOAD_CHANNELS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_NEXT_DIALOG_TOKEN
Article • 03/14/2023

WDI_TLV_NEXT_DIALOG_TOKEN is a TLV that contains the dialog token to be used in the
next Action frame.

0xE1

The size (in bytes) of a UINT8.

Type Description

UINT8 The dialog token to be used in the next Action frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

OID_WDI_GET_NEXT_ACTION_FRAME_DIALOG_TOKEN

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_OFFLOAD_SCOPE
Article • 03/14/2023

WDI_TLV_OFFLOAD_SCOPE is a TLV that contains the scope for network offloads.

0x143

The size (in bytes) of the below values.

Type Description

UINT8 Specifies whether checksum offload parameters are applicable on all ports.
Possible values:

0: Not applicable
1: Applicable

UINT8 Specifies whether LsoV1 offload parameters are applicable on all ports.
Possible values:

0: Not applicable
1: Applicable

UINT8 Specifies whether LsoV2 offload parameters are applicable on all ports.
Possible values:

0: Not applicable
1: Applicable

UINT8 Specifies whether RSC offload parameters are applicable on all ports.
Possible values:

0: Not applicable
1: Applicable

TLV Type

Length

Values

Minimum supported client: Windows 10, version 1709

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

Requirements

WDI_TLV_OPERATING_CLASS
Article • 03/14/2023

WDI_TLV_OPERATING_CLASS is a TLV that contains the frequency band for a channel.

0xFA

The size (in bytes) of a UINT8.

Type Description

UINT8 The frequency band for a channel.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_OPERATION_MODE
Article • 03/14/2023

WDI_TLV_OPERATION_MODE is a TLV that contains the desired operation mode.

0x95

The size (in bytes) of a UINT32.

Type Description

UINT32 The desired operation mode, as defined in WDI_OPERATION_MODE.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_operation_mode
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_OS_POWER_MANAGEMENT_F
EATURES
Article • 03/14/2023

WDI_TLV_OS_POWER_MANAGEMENT_FEATURES is a TLV that contains flags for OS
power management features. This enables IHVs to indicate to the OS that they support
an advanced power management feature called Nic Auto Power Saver (NAPS). NAPS
permits the wireless adapter to enter DX in situations where network activity is idle.

0x144

The size (in bytes) of the following values.

Type Description

WDI_OS_POWER_MANAGEMENT_FLAGS A bitwise OR of
WDI_OS_POWER_MANAGEMENT_FLAGS values that
defines supported NAPS enablement scenarios.

Minimum supported client: Windows 10, version 1803

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_os_power_management_flags

WDI_TLV_OWE_DH_IE
Article • 03/14/2023

WDI_TLV_OWE_DH_IE is a Diffie-Hellman Extension IE blob that must be included in the
association request sent by the station when auth type is OWE. This is applicable to any
BSSID that the device would associate with and should be included in addition to the
other associated req vendor IEs.

0x16A

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that contains the IEs that must be included in association
requests sent by the port. These are applicable to any BSSID that the device associates
with. They should be used in addition to the common and BSSID specific IEs.

Minimum supported client Windows 10, version 2004

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_P2P_ACTION_FRAME_DEVICE_
CONTEXT
Article • 03/14/2023

WDI_TLV_P2P_ACTION_FRAME_DEVICE_CONTEXT is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_ACTION_FRAME_IES
Article • 03/14/2023

WDI_TLV_P2P_ACTION_FRAME_IES is a TLV that contains action frame IEs.

0x90

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the set of IEs that are sent to the remote
device.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_ACTION_FRAME_RESPON
SE_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_ACTION_FRAME_RESPONSE_PARAMETERS is a TLV that contains Wi-Fi
Direct Action Frame response parameters.

0xAD

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_ACTION_FRAME_TYPE The type of Response Frame to be sent.

WDI_MAC_ADDRESS The device address of the target peer Wi-Fi Direct device.

UINT8 The Wi-Fi Direct Dialog Token for this transaction.

UINT32 The send timeout. Specifies the maximum time, in
milliseconds, to send this action frame.

UINT32 The post-ACK dwell time. Specifies the time to remain on
listen channel, in milliseconds, after the incoming packet is
acknowledged.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_action_frame_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_ADVERTISED_PREFIX_ENT
RY
Article • 03/14/2023

WDI_TLV_P2P_ADVERTISED_PREFIX_ENTRY is a TLV that contains a Wi-Fi Direct
advertised prefix entry.

0x110

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_NAME Name of the service, in
UTF-8, with a maximum
size of 255 bytes.

WDI_TLV_P2P_SERVICE_NAME_HASH Hash of Service Name.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_P2P_ADVERTISED_SERVICE_EN
TRY
Article • 03/14/2023

WDI_TLV_P2P_ADVERTISED_SERVICE_ENTRY is a TLV that contains an advertised service
entry.

0xFC

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_NAME Name of the service, in UTF-8, up to
255 bytes.

WDI_TLV_P2P_SERVICE_NAME_HASH Hash of Service Name.

WDI_TLV_P2P_SERVICE_INFORMATION X Service Information for this service.

WDI_TLV_P2P_SERVICE_STATUS Service Status of this service.

WDI_TLV_P2P_ADVERTISEMENT_ID An ID that uniquely identifies the
service instance.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CONFIG_METHODS Configuration methods as defined in
WDI_WPS_CONFIGURATION_METHOD.
Only PIN display, PIN keypad, and
WFDS are applicable.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_wps_configuration_method

WDI_TLV_P2P_ADVERTISED_SERVICES
Article • 03/14/2023

WDI_TLV_P2P_ADVERTISED_SERVICES is a TLV that contains a list of advertised services.

0xEF

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_ADVERTISED_SERVICE_ENTRY X X A list of
advertised
services.

WDI_TLV_P2P_ADVERTISED_PREFIX_ENTRY X X A list of
advertised
prefixes that
are derived
from the list
of advertised
services.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENTRY X X Added in
Windows 10,
version 1607,
WDI version
1.0.21.

A list of
advertised
ASP2 services.

WDI_TLV_P2P_SERVICE_UPDATE_INDICATOR The service
update
indicator to
include in
ANQP
responses if
the driver
supports
responding to
service
information
discovery
ANQP
requests.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_ADVERTISEMENT_ID
Article • 03/14/2023

WDI_TLV_P2P_ADVERTISEMENT_ID is a TLV that contains an ID that uniquely identifies a
service instance.

0xEA

The size (in bytes) of a UINT32.

Type Description

UINT32 An ID that uniquely identifies a service instance.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENT
RY
Article • 03/14/2023

WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENTRY is a TLV that contains an ASP2 Advertised Service
Entry.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x12E

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_TYPE Service Type of the service (UTF-8), up to 21 bytes.

WDI_TLV_P2P_SERVICE_TYPE_HASH Hash of Service Type.

WDI_TLV_P2P_INSTANCE_NAME Instance Type of the service (UTF-8), up to 63 bytes.

WDI_TLV_P2P_INSTANCE_NAME_HASH Hash of "Instance Name, Service Type".

WDI_TLV_P2P_SERVICE_INFORMATION X Service Information for the service.

WDI_TLV_P2P_SERVICE_STATUS Service Status of the service.

WDI_TLV_P2P_ADVERTISEMENT_ID An ID that uniquely identifies the service instance.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in
maintenance mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model
released in Windows 11. We recommend that you use WiFiCx to take advantage of the latest
features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CONFIG_METHODS Configuration methods as defined in
WDI_WPS_CONFIGURATION_METHOD. Only
WDI_WPS_CONFIGURATION_METHOD_DISPLAY,
WDI_WPS_CONFIGURATION_METHOD_KEYPAD, and
WDI_WPS_CONFIGURATION_METHOD_WFDS_DEFAULT
are applicable.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_wps_configuration_method

WDI_TLV_P2P_ASP2_SERVICE_INFORMA
TION_DISCOVERY_ENTRY
Article • 03/14/2023

WDI_TLV_P2P_ASP2_SERVICE_INFORMATION_DISCOVERY_ENTRY is a TLV that contains
an ASP2 Service Information Discovery Entry.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x12D

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_NAME Name of the service
(UTF-8), up to 21 bytes.

WDI_TLV_P2P_INSTANCE_NAME Instance name of the
service (UTF-8), up to 63
bytes.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_INFORMATION X Request service
information to be used
for the ANQP query
request to download
service information for
this Service.

WDI_TLV_P2P_SERVICE_UPDATE_INDICATOR X Service Update indicator
to be used for the ANQP
query request.

WDI_TLV_P2P_SERVICE_TRANSACTION_ID X Service transaction ID to
be used for the ANQP
query request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_P2P_ATTRIBUTES is a TLV that contains Wi-Fi Direct attributes.

0x25

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CAPABILITIES The Wi-Fi Direct
capabilities.

WDI_TLV_P2P_INTERFACE_ADDRESS_LIST An array of Wi-Fi
Direct interface MAC
addresses.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_P2P_BACKGROUND_DISCOVE
R_MODE
Article • 03/14/2023

WDI_TLV_P2P_BACKGROUND_DISCOVER_MODE is a TLV that contains Wi-Fi Direct
Background Discover Mode parameters.

0xCE

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_DISCOVER_TYPE The type of discovery to be performed by the port.

WDI_P2P_SERVICE_DISCOVERY_TYPE The type of Service Discovery to be performed by the port.
The only valid values are
WDI_P2P_SERVICE_DISCOVERY_TYPE_NO_SERVICE_DISCOVERY
and
WDI_P2P_SERVICE_DISCOVERY_TYPE_SERVICE_NAME_ONLY.

UINT32 The device visibility timeout. Specifies the maximum timeout
(in milliseconds) for reporting a device entry. This is required
for background scan only.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_discover_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_service_discovery_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_P2P_CAPABILITIES
Article • 03/14/2023

WDI_TLV_P2P_CAPABILITIES is a TLV that contains Wi-Fi Direct capabilities.

0x17

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies the concurrent Group Owner count.

UINT8 Specifies the concurrent Client count.

UINT32 Specifies the supported WPS version.

UINT8 Specifies whether Service discovery is supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Wi-Fi Direct Service Names Discovery support.
Specifies whether, when given a list of service name
hashes, the adapter can probe for service hashes
and indicate the responses as they arrive.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Wi-Fi Direct Service Information Discovery support.
Specifies whether, when given a list of service name
hashes, the adapter can perform probes and ANQP
queries to get full service information.
Valid values are 0 (not supported) and 1
(supported).

TLV Type

Length

Values

Type Description

UINT32 Specifies the maximum supported number of
Service Name Advertisements bytes (to be sent in
the beacon and probe responses). This sets a hard
limit on the number of services that can be
advertised.

UINT32 Specifies the maximum supported number of
Service Information Advertisement bytes the
adapter can respond to using the GAS protocol. This
is only valid if the device supports responding to
Service Advertisement queries. This value is for
firmware optimization so that the firmware does not
wake up the host to respond to every query. The
operating system does not limit the number of
service advertisements if the firmware has a
limitation because there is a fallback in the
operating system. If the firmware cannot handle the
ANQP query response, it should pass up the request
and the operating system handles it.

UINT8 Background discovery of Wi-Fi Direct devices and
services. Specifies whether the adapter can
periodically query for Wi-Fi Direct devices and
service names so any new devices show up within 5
minutes of becoming visible.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies whether Client Discoverability is
supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies whether infrastructure management is
supported.
Valid values are 0 (not supported) and 1
(supported).

UINT8 The maximum size of the secondary adapter type
list.

UINT8[6] The device address in network byte order.

UINT32 The discovery filter list size.

UINT8 The GO client table size.

Type Description

UINT32 The maximum size, in bytes, of vendor specific
extension IEs that can be added to WFD
management frames.

UINT8 Specifies whether the adapter supports
OID_WDI_P2P_LISTEN_STATE_PASSIVE_AVAILABILITY.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Specifies whether the adapter supports indicating
updates to the GO operating channel(s).
Valid values are 0 (not supported) and 1
(supported).

UINT8 Added in Windows 10, version 1511, WDI version
1.0.10.
Specifies whether the adapter supports operating a
GO on the 5GHz band.

Valid values are 0 (not supported) and 1
(supported).

UINT8 Added in Windows 10, version 1607, WDI version
1.0.21.
Specifies if the adapter, when provided with a list of
ASP2 Service name instances, can probe for service
hashes and indicate the responses as they arrive.
Valid values are 0 (not supported) and 1
(supported).

UINT8 Added in Windows 10, version 1607, WDI version
1.0.21.
Specifies if the adapter, when given a set of service
name instances, can perform probes and ANQP
queries to get the full service information. Valid
values are 0 (not supported) and 1 (supported).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_CHANNEL_ENTRY_LIST
Article • 03/14/2023

WDI_TLV_P2P_CHANNEL_ENTRY_LIST is a TLV that contains a channel number list.

0xF9

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_OPERATING_CLASS The frequency band for
the channels.

WDI_TLV_CHANNEL_INFO_LIST The channel number list.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_CHANNEL_INDICATE_REA
SON
Article • 03/14/2023

WDI_TLV_P2P_CHANNEL_INDICATE_REASON is a TLV that contains a reason for sending
an indication.

0x102

The size (in bytes) of a UINT32.

Type Description

UINT32 The reason for sending an indication. See WDI_P2P_CHANNEL_INDICATE_REASON for
possible reasons.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_channel_indicate_reason
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_CHANNEL_LIST_ATTRIBUT
E
Article • 03/14/2023

WDI_TLV_P2P_CHANNEL_LIST_ATTRIBUTE is a TLV that contains channel list attributes.

0xD5

The sum (in bytes) of the sizes of all contained elements.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_COUNTRY_REGION_LIST The
country/region
list.

WDI_TLV_P2P_CHANNEL_ENTRY_LIST X The list of
channels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_P2P_CHANNEL_NUMBER
Article • 03/14/2023

WDI_TLV_P2P_CHANNEL_NUMBER is a TLV that contains Wi-Fi Direct channel number
information.

0x82

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8[3] The country or region code where the operating class and channel
number are valid.

UINT8 The operating class/frequency band for the channel number.

WDI_CHANNEL_NUMBER
(UINT32)

The channel number for the Wi-Fi Direct Device or Group.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_CONFIG_METHODS
Article • 03/14/2023

WDI_TLV_P2P_CONFIG_METHODS is a TLV that contains Wi-Fi Direct configuration
methods.

0xEB

The size (in bytes) of a UINT16.

Type Description

UINT16 Configuration methods as defined in WDI_WPS_CONFIGURATION_METHOD. Only PIN
display, PIN keypad, and WFDS are applicable.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_wps_configuration_method
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_DEVICE_ADDRESS
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_ADDRESS is a TLV that contains the device address of the Group
Owner.

0x91

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS The device address of the Group Owner.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_DEVICE_CAPABILITY
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_CAPABILITY is a TLV that contains Wi-Fi Direct device capabilities.

0x84

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 A bitmap of the Wi-Fi Direct device capabilities as defined in Table 12 of the Wi-Fi
Direct technical specification.

UINT8 A bitmap of the Wi-Fi Direct capabilities in the above device capability bitmap that are
currently set by the operating system.

UINT32 A bitmask that indicates which WPS versions are enabled.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_DEVICE_FILTER_LIST
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_FILTER_LIST is a TLV that contains a list of Wi-Fi Direct devices and
Group Owners to search for during Wi-Fi Direct device discovery.

0xCE

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] A list of Wi-Fi Direct devices and Group Owners to search for during Wi-
Fi Direct device discovery.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_DEVICE_INFO
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_INFO is a TLV that contains Wi-Fi Direct device information.

0x96

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_DEVICE_INFO_PARAMETERS The device information,
including Wi-Fi Direct
device address, supported
configuration methods,
and primary device type.

WDI_TLV_P2P_DEVICE_NAME The device name for this
device.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_P2P_DEVICE_INFO_PARAMETE
RS
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_INFO_PARAMETERS is a TLV that contains Wi-Fi Direct device
information parameters.

0x86

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8[6] The Wi-Fi Direct Device Address of the peer.

UINT16 The configuration methods supported by the device.

UINT16 Primary device type: Main type category identifier.

UINT8[4] Primary device type: OUI assigned to this device type.

UINT16 Primary device type: Subcategory type identifier.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_P2P_DEVICE_NAME
Article • 03/14/2023

WDI_TLV_P2P_DEVICE_NAME is a TLV that contains a device name.

0x92

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the device name for the device.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_DISCOVER_MODE
Article • 03/14/2023

WDI_TLV_P2P_DISCOVER_MODE is a TLV that contains Wi-Fi Direct discovery mode
information for OID_WDI_TASK_P2P_DISCOVER.

0xA9

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_DISCOVER_TYPE (UINT32) The type of discovery to be performed by the port.

UINT8 A flag that indicates if a complete device discovery is
required. Valid values are 0 (not required) and 1
(required). If this flag is set to 0, a partial discovery may
be performed.

WDI_P2P_SCAN_TYPE (UINT32) The type of scan to be performed by the port in scan
phase.

WDI_P2P_SERVICE_DISCOVERY_TYPE
(UINT32)

The type of Service Discovery to be performed.

UINT8 The scan repeat count. Specifies if the full scan procedure
should be repeated. If set to 0, the scan should be
repeated until the task is aborted by the host.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_discover_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_scan_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_service_discovery_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT32 The time between scans. If the scan repeat count is not
set to 1, this time specifies how long (in milliseconds)
device should wait before repeating the scan procedure
after completing a full scan of the requested channels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_DISCOVERED_SERVICE_EN
TRY
Article • 03/14/2023

WDI_TLV_P2P_DISCOVERED_SERVICE_ENTRY is a TLV that contains a discovered service
entry.

0x112

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_NAME The name of the service, in UTF-8, up to
255 bytes.

WDI_TLV_P2P_SERVICE_INFORMATION X The Service Information for the service.

WDI_TLV_P2P_SERVICE_STATUS The Service Status of the service.

WDI_TLV_P2P_ADVERTISEMENT_ID An ID that uniquely identifies the
service instance.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CONFIG_METHODS The Configuration Methods as defined
in
WDI_WPS_CONFIGURATION_METHOD.
Only PinDisplay, PinKeypad and WFDS
are applicable.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_wps_configuration_method

WDI_TLV_P2P_DISCOVERY_CHANNEL_SE
TTINGS
Article • 03/14/2023

WDI_TLV_P2P_DISCOVERY_CHANNEL_SETTINGS is a TLV that contains Wi-Fi Direct
discovery channel settings.

0xE8

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_P2P_LISTEN_DURATION The cycle duration
and listen time.

WDI_TLV_BAND_CHANNEL X The list of channels to
scan.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_P2P_GO_INTERNAL_RESET_PO
LICY
Article • 03/14/2023

WDI_TLV_P2P_GO_INTERNAL_RESET_POLICY is a TLV that contains the policy used by the
firmware for operating channel selection after a Wi-Fi Direct GO Reset is
stopped/restarted.

0xB2

The size (in bytes) of a UINT32.

Type Description

WDI_P2P_GO_INTERNAL_RESET_POLICY
(UINT32)

If an Wi-Fi Direct GO Reset is stopped/restarted by the
IHV component on its own (for example, for Bluetooth
co-ex spatial stream downgrade), this configuration
defines the policy to be adopted by the firmware for
operating channel selection after the reset.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_go_internal_reset_policy
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_P2P_GO_NEGOTIATION_CONFI
RMATION_INFO
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_INFO is a TLV that contains Wi-Fi
Direct GO Negotiation Confirmation information.

0x88

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_PARAMETERS The Wi-Fi
Direct GO
Negotiation
Confirmation
parameters.

WDI_TLV_P2P_GROUP_ID X The Wi-Fi
Direct Group
ID.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER X The listen
channel of
the remote
device. The
GO
negotiation
confirmation
frame must
be sent on
this channel
whenever
this is
specified.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_GO_NEGOTIATION_CONFI
RMATION_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_PARAMETERS is a TLV that contains
incoming GO Negotiation Confirmation parameters.

0xAA

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The Wi-Fi Direct Status Code, as defined by the Wi-Fi Direct specification.

UINT8 Wi-Fi Direct Group capability bitmask. The bitmask matches those defined in Table 13-
Group Capability Bitmap definition of the Wi-Fi Direct technical specification.

UINT8 The bits in the Group capability bitmap above that are set by the operating system.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_P2P_GO_NEGOTIATION_REQU
EST_INFO
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_REQUEST_INFO is a TLV that contains Wi-Fi Direct
Group Owner negotiation request information.

0x6D

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_GO_NEGOTIATION_REQUEST_PARAMETERS The Wi-Fi
Direct
Group
Owner
negotiation
request
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER X The listen
channel of
the remote
device.
Whenever
this is
specified,
the GO
negotiation
request
frame must
be sent on
this
channel.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_GO_NEGOTIATION_REQU
EST_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_REQUEST_PARAMETERS is a TLV that contains Wi-Fi
Direct Group Owner negotiation request parameters.

0x6E

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies the local Wi-Fi Direct GO Intent. Valid values are between 0 and
15.

UINT8 Specifies the tie-breaker field of GO Intent.

UINT16 Specifies the GO Configuration Timeout in milliseconds.

UINT16 Specifies the Client Configuration Timeout in milliseconds.

WDI_MAC_ADDRESS Intended interface address. Specifies the local MAC address for future Wi-
Fi Direct connections.

UINT8 Specifies the Wi-Fi Direct Group capability bitmask. The bitmask matches
those defined in Table 13-Group Capability Bitmap definition of the Wi-Fi
P2P technical specification.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 Specifies the bits set by the operating system in the Group capability
bitmap above.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_GO_NEGOTIATION_RESPO
NSE_INFO
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_INFO is a TLV that contains Wi-Fi Direct
Group Owner negotiation response information.

0x6F

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_PARAMETERS Specifies
the Wi-Fi
Direct
Group
Owner
negotiation
response
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_GROUP_ID X Specifies
the Group
ID for local
Wi-Fi Direct
GO.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_GO_NEGOTIATION_RESPO
NSE_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_PARAMETERS is a TLV that contains
incoming GO Negotiation Response parameters.

0x71

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies the Wi-Fi Direct Status Code, as defined by the Wi-Fi Direct
specification.

UINT8 Specifies the local Wi-Fi Direct GO Intent. This is a value between 0 and
15.

UINT8 Specifies the tie-breaker field of the GO Intent.

UINT16 Specifies the GO Configuration Timeout in milliseconds.

UINT16 Specifies the Client Configuration Timeout in milliseconds.

WDI_MAC_ADDRESS Intended interface address. Specifies the local MAC Address for future Wi-
Fi Direct connection.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 Specifies the Wi-Fi Direct Group capability bitmask. The bitmask matches
those defined in Table 13-Group Capability Bitmap definition of the Wi-Fi
P2P technical specification.

UINT8 Specifies the bits set by the operating system in the Group capability
bitmap above.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_GROUP_BSSID
Article • 03/14/2023

WDI_TLV_P2P_GROUP_BSSID is a TLV that contains the Group BSSID for local Wi-Fi
Direct GO.

0x73

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS Specifies the Group BSSID for local Wi-Fi Direct GO.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_GROUP_ID
Article • 03/14/2023

WDI_TLV_P2P_GROUP_ID is a TLV that contains the Group ID for Wi-Fi Direct GO.

0x75

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_P2P_DEVICE_ADDRESS Specifies the device
address of the Wi-Fi Direct
GO.

WDI_TLV_SSID Specifies the Group SSID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_GROUP_OWNER_CAPABIL
ITY
Article • 03/14/2023

WDI_TLV_P2P_GROUP_OWNER_CAPABILITY is a TLV that contains Wi-Fi Direct Group
Owner capability information.

0x77

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies the Wi-Fi Direct Group capability bitmask. The bitmask matches those defined
in Table 13-Group Capability Bitmap definition of the Wi-Fi P2P technical specification.

UINT8 Specifies the bits set by the operating system in the Group capability bitmap above.

UINT32 Maximum client count for this Group Owner.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_P2P_INCLUDE_LISTEN_CHANN
EL
Article • 03/14/2023

WDI_TLV_P2P_INCLUDE_LISTEN_CHANNEL is a TLV that specifies whether the probe
request should include the Listen Channel attribute during discovery.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x128

The size (in bytes) of a UINT8.

Type Description

UINT8 This parameter specifies whether the probe request should include the Listen Channel
attribute during discovery. Valid values are 0 (do not include) and 1 (include).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_INCOMING_FRAME_INFO
RMATION
Article • 03/14/2023

WDI_TLV_P2P_INCOMING_FRAME_INFORMATION is a TLV that contains incoming Wi-Fi
Direct action frame information.

0x79

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_INCOMING_FRAME_PARAMETERS Specifies the
incoming frame
parameters.

WDI_TLV_P2P_ACTION_FRAME_IES Specifies the IEs
section of the
received public
action frame.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ACTION_FRAME_DEVICE_CONTEXT X Specifies the vendor-
specific information
that is passed back
down if the host
decides to send a
response to this
incoming message.
To avoid lifetime
management issues,
the IHV component
must not use
pointers in this field.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_INCOMING_FRAME_PARA
METERS
Article • 03/14/2023

WDI_TLV_P2P_INCOMING_FRAME_PARAMETERS is a TLV that contains incoming Wi-Fi
Direct action frame parameters.

0x7A

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_ACTION_FRAME_TYPE The type of the incoming action frame.

WDI_MAC_ADDRESS The MAC address of the remote peer.

UINT8 The Wi-Fi Direct Dialog Token for the transaction.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_action_frame_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_INSTANCE_NAME
Article • 03/14/2023

WDI_TLV_P2P_INSTANCE_NAME is a TLV that contains the Instance Name of the service.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x12B

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The Instance Name of the service in UTF-8, up to 63 bytes long.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_INSTANCE_NAME_HASH
Article • 03/14/2023

WDI_TLV_P2P_INSTANCE_NAME_HASH is a TLV that contains the hash of "Instance
Name, Service Type".

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x12C

The size (in bytes) of a WDI_P2P_SERVICE_NAME_HASH structure.

Type Description

WDI_P2P_SERVICE_NAME_HASH The hash of "Instance Name, Service Type".

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_INTERFACE_ADDRESS_LIS
T
Article • 03/14/2023

WDI_TLV_P2P_INTERFACE_ADDRESS_LIST is a TLV that contains an address list for a Wi-
Fi Direct interface.

0x18

The size (in bytes) of the array of WDI_MAC_ADDRESS structures. The array must
contain 1 or more structures.

Type Description

WDI_MAC_ADDRESS[] An array of Wi-Fi MAC addresses.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_INVITATION_REQUEST_IN
FO
Article • 03/14/2023

WDI_TLV_P2P_INVITATION_REQUEST_INFO is a TLV that contains Wi-Fi Direct Invitation
Request information.

0x7B

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_INVITATION_REQUEST_PARAMETERS The Wi-Fi
Direct
Invitation
Request
parameters.

WDI_TLV_P2P_GROUP_BSSID X The Group
BSSID.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER X The operating
channel for
Wi-Fi Direct
GO.

WDI_TLV_P2P_GROUP_ID The Group ID
for target Wi-
Fi Direct GO.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_INVITATION_REQUEST_PA
RAMETERS
Article • 03/14/2023

WDI_TLV_P2P_INVITATION_REQUEST_PARAMETERS is a TLV that contains Wi-Fi Direct
Invitation Request parameters.

0x7C

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT16 The Group Owner Configuration Timeout in
milliseconds.

UINT16 The Client Configuration Timeout in
milliseconds.

UINT8 The invitation flags as defined by the Wi-Fi
Direct specification.

UINT8 A bit that indicates whether or not the
outgoing Invitation Request is an invitation to a
local Group Owner.
Valid values are 0 and 1. This bit is set to 1 if it
is an invitation to a local GO.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_INVITATION_RESPONSE_I
NFO
Article • 03/14/2023

WDI_TLV_P2P_INVITATION_RESPONSE_INFO is a TLV that contains Wi-Fi Direct Invitation
Response information.

0x7E

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_INVITATION_RESPONSE_PARAMETERS The Wi-Fi
Direct
Invitation
Response
parameters.

WDI_TLV_P2P_GROUP_BSSID X The Group
BSSID for
local Wi-Fi
Direct GO.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER X The
operating
channel for
Wi-Fi Direct
GO.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_INVITATION_RESPONSE_P
ARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_INVITATION_RESPONSE_PARAMETERS is a TLV that contains Wi-Fi Direct
Invitation Response parameters.

0x80

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The Wi-Fi Direct Status Code, as specified by the Wi-Fi Direct specification..

UINT16 The GO Configuration Timeout, in milliseconds.

UINT16 The Client Configuration Timeout, in milliseconds.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_LISTEN_CHANNEL
Article • 03/14/2023

WDI_TLV_P2P_LISTEN_CHANNEL is a TLV that contains Wi-Fi Direct channel information.

0x114

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8[3] The country or region code where the operating class and channel
number are valid.

UINT8 The operating class/frequency band for the channel number.

WDI_CHANNEL_NUMBER
(UINT32)

The channel number for the Wi-Fi Direct Device or Group.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_LISTEN_DURATION
Article • 03/14/2023

WDI_TLV_P2P_LISTEN_DURATION is a TLV that contains Wi-Fi Direct listen duration
information.

0xE9

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The duration, in milliseconds, of the listen cycle. The adapter is in listen state during this
time.

UINT32 The duration, in milliseconds, that the adapter is expected to actively listen during the
listen cycle. This duration must be less than listen cycle duration.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_LISTEN_STATE
Article • 03/14/2023

WDI_TLV_P2P_LISTEN_STATE is a TLV that contains a Wi-Fi Direct listen state.

0x81

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_LISTEN_STATE The desired Wi-Fi Direct listen state.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_listen_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PERSISTENT_GROUP_ID
Article • 03/14/2023

WDI_TLV_P2P_PERSISTENT_GROUP_ID is a TLV that contains a Group ID of a Persistent
Group to be used for a connection.

0xF1

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_P2P_DEVICE_ADDRESS The device address of
the Group Owner.

WDI_TLV_SSID The Group SSID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_INFO
Article • 03/14/2023

WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_INFO is a TLV that contains Wi-Fi Direct Provision Discovery Request
information.

0x83

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_PARAMETERS The Wi-Fi Direct Provision Discovery Request
parameters.

WDI_TLV_P2P_GROUP_ID X The Group ID for the target Wi-Fi Direct GO. The
Group ID is optional. In the case of Wi-Fi Direct
services, this is the Group ID for the local Wi-Fi
Direct GO that the remote side should join.

WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES X The Wi-Fi Direct Provision Service attributes.

WDI_TLV_P2P_PERSISTENT_GROUP_ID X The Group IP for the Persistent Group to be used
for the connection. This field is valid if the
Persistent Group flag in
WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES
is set to 1.

WDI_TLV_P2P_SERVICE_SESSION_INFO X Service Session information. This field is valid if
WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES
is present.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance mode
and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We recommend
that you use WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PROVISION_DISCOVERY_
REQUEST_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_PARAMETERS is a TLV that contains
Wi-Fi Provision Discovery Request parameters.

0x85

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Wi-Fi Direct Group capability bitmask. The bitmask matches those defined in Table 13-
Group Capability Bitmap definition of the Wi-Fi Direct technical specification.

UINT8 The bits in the Group capability bitmap above that are set by the operating system.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_INF
O
Article • 03/14/2023

WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_INFO is a TLV that contains Wi-Fi Direct Provision Discovery Response
information.

0x87

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_PARAMETERS The provision discovery response parameters.

WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES X The Provision Service attributes.

WDI_TLV_P2P_GROUP_ID X The Group ID if Wi-Fi Direct Service is supported.

WDI_TLV_P2P_PERSISTENT_GROUP_ID X The Group IP for the Persistent Group to be used
for the connection. This field is valid if the
Persistent Group flag in
WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES
is set to 1.

WDI_TLV_P2P_SERVICE_SESSION_INFO X The Service Session information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance mode
and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We recommend
that you use WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PROVISION_DISCOVERY_
RESPONSE_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_PARAMETERS is a TLV that contains
provision discovery response parameters.

0x113

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The Wi-Fi Direct Group capability bitmask. The bitmask matches those defined in Table
13-Group Capability Bitmap definition of the Wi-Fi P2P technical specification.

UINT8 The bits set by the operating system in the above Group capability bitmap.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_PROVISION_SERVICE_ATT
RIBUTES
Article • 03/14/2023

WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES is a TLV that contains Wi-Fi Direct
Provision Service attributes.

0xC6

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Wi-Fi Direct Status Code, as defined by the Wi-Fi Direct specification.

WDI_MAC_ADDRESS Local MAC Address for future Wi-Fi Direct connection.

UINT8 Connection Capability bitmask.

UINT32 Feature Capability bitmask.

UINT32 Advertisement ID for the Service Instance.

WDI_MAC_ADDRESS Service address for the Service instance.

UINT32 Session ID that uniquely identifies the Session to the Service.

WDI_MAC_ADDRESS Session address that uniquely identifies the Session to the Service.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT16 GO Configuration Timeout in milliseconds.

UINT16 Client Configuration Timeout in milliseconds.

UINT8 A flag indicating if a Persistent Group will be used for the connection. The
flag is set to 1 if a Persistent Group will be used.

UINT8 A flag indicating if this frame is part of a follow-on provision discovery.
The flag is set to 1 if it is part of a follow-on provision discovery.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_RESPONSE_FRAME_PARA
METERS
Article • 03/14/2023

WDI_TLV_P2P_RESPONSE_FRAME_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SECONDARY_DEVICE_TYP
E_LIST
Article • 03/14/2023

WDI_TLV_P2P_SECONDARY_DEVICE_TYPE_LIST is a TLV that contains a list of secondary
device types.

0x94

The size (in bytes) of the array of WDI_P2P_DEVICE_TYPE elements. An array length of 0
is allowed.

Note WDI_P2P_DEVICE_TYPE is not a WDI structure. It is defined in the WDI TLV parser
generator, and is used for documentation purposes only.

Type Description

WDI_P2P_DEVICE_TYPE[] An array of Wi-Fi Direct device types.

WDI_P2P_DEVICE_TYPE consists of the following elements.

Type Description

UINT16 The main type category ID.

UINT8[4] The OUI that is assigned to this device type.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT16 The subcategory ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SEND_ACTION_FRAME_RE
SULT
Article • 03/14/2023

WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT is a TLV that contains information about
an Action Frame that was sent to a peer.

0xAF

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT_PARAMETERS The Wi-Fi
Direct send
Action
Frame
result
parameters.

WDI_TLV_P2P_ACTION_FRAME_IES The set of
IEs sent to
the remote
device.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SEND_ACTION_FRAME_RE
SULT_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT_PARAMETERS is a TLV that contains Wi-Fi
Direct send Action Frame result parameters.

0xAE

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS The device address of the target Wi-Fi Direct device.

UINT8 The Wi-Fi Direct Dialog Token for this transaction.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SEND_ACTION_REQUEST_
FRAME_PARAMETERS
Article • 03/14/2023

WDI_TLV_P2P_SEND_ACTION_REQUEST_FRAME_PARAMETERS is a TLV that contains
parameters for sending a Wi-Fi Direct action request frame with
OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME.

0x8B

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_P2P_ACTION_FRAME_TYPE The type of request to send.

WDI_MAC_ADDRESS The MAC address of the target peer device.

UINT8 The Direct Dialog Token for the transaction.

UINT32 The send timeout. The maximum time, in milliseconds, to send
the action frame.

UINT32 The post-ACK dwell time. The time, in milliseconds, to remain
on the listen channel after the incoming packet is
acknowledged.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_action_frame_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SEND_REQUEST_ACTION_
FRAME_RESULT
Article • 03/14/2023

WDI_TLV_P2P_SEND_REQUEST_ACTION_FRAME_RESULT is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SEND_RESPONSE_ACTIO
N_FRAME_RESULT
Article • 03/14/2023

WDI_TLV_P2P_SEND_RESPONSE_ACTION_FRAME_RESULT is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SERVICE_INFORMATION
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_INFORMATION is a TLV that contains Wi-Fi Direct Service
Information.

0xEE

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The Service Information for the service.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_INFORMATION_
DISCOVERY_ENTRY
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_INFORMATION_DISCOVERY_ENTRY is a TLV that contains a
Service Information Discovery Entry.

0x117

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_NAME Name of the service
(UTF-8), up to 255 bytes.

WDI_TLV_P2P_SERVICE_NAME_HASH Hash of Service Name.

WDI_TLV_P2P_SERVICE_INFORMATION X Request service
information to be used
for the ANQP query
request to download
service information for
this Service.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SERVICE_UPDATE_INDICATOR X Service Update indicator
to be used for the ANQP
query request.

WDI_TLV_P2P_SERVICE_TRANSACTION_ID X Service transaction ID to
be used for the ANQP
query request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_P2P_SERVICE_INFORMATION_
ENTRY
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_INFORMATION_ENTRY is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_NAME
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_NAME is a TLV that contains the name of a service.

0xEC

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The name of the service, in UTF-8, up to 255 bytes.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_NAME_HASH
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_NAME_HASH is a TLV that contains the hash of a service name.

0xED

The size (in bytes) of a WDI_P2P_SERVICE_NAME_HASH structure.

Type Description

WDI_P2P_SERVICE_NAME_HASH The hash of a WFDS Service Name.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_SESSION_INFO
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_SESSION_INFO is a TLV that contains Service Session
information.

0xF0

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Service Session Information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_STATUS
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_STATUS is a TLV that contains the Service Status of a service.

0xFB

The size (in bytes) of a UINT8.

Type Description

UINT8 The Service Status of a service.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_TRANSACTION_I
D
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_TRANSACTION_ID is a TLV that contains the Service transaction
ID to be used for the ANQP query request.

0x116

The size (in bytes) of a UINT8.

Type Description

UINT8 The Service transaction ID to be used for the ANQP query request.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_TYPE
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_TYPE is a TLV that contains the Service Type of the service.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x129

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The Service Type of the service in UTF-8, up to 21 bytes long.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_TYPE_HASH
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_TYPE_HASH is a TLV that contains the hash of Service Type.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x12A

The size (in bytes) of a WDI_P2P_SERVICE_NAME_HASH structure.

Type Description

WDI_P2P_SERVICE_NAME_HASH The hash of Service Type.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_p2p_service_name_hash
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_SERVICE_UPDATE_INDICA
TOR
Article • 03/14/2023

WDI_TLV_P2P_SERVICE_UPDATE_INDICATOR is a TLV that contains a Wi-Fi Direct service
update indicator.

0x115

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT16 The service update indicator to include in ANQP responses if the driver supports
responding to service information discovery ANQP requests.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_P2P_WPS_ENABLED
Article • 03/14/2023

WDI_TLV_P2P_WPS_ENABLED is a TLV that specifies if Wi-Fi Protected Setup is enabled.

0xF7

The size (in bytes) of a UINT8.

Type Description

UINT8 Specifies if Wi-Fi Protected Setup is enabled.
Valid values are 0 (not enabled) and 1
(enabled).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_P2P_WPS_ENABLED

WDI_TLV_PACKET_FILTER_PARAMETERS
Article • 03/14/2023

WDI_TLV_PACKET_FILTER_PARAMETERS is a TLV that contains packet filter parameters for
OID_WDI_SET_RECEIVE_PACKET_FILTER.

0x47

The size (in bytes) of a UINT32.

Type Description

WDI_PACKET_FILTER_TYPE (UINT32) Specifies the desired Wi-Fi packet filter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_packet_filter_type

WDI_TLV_PEER_MAC_ADDRESS
Article • 03/14/2023

WDI_TLV_PEER_MAC_ADDRESS is a TLV that contains the MAC address of the peer.

0x4C

The size (in bytes) of a WDI_MAC_ADDRESS structure.

Type Description

WDI_MAC_ADDRESS Specifies the Wi-Fi MAC address of the peer.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PHY_CAPABILITIES
Article • 03/14/2023

WDI_TLV_PHY_CAPABILITIES is a TLV that contains PHY capabilities.

0x1B

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_PHY_TYPE Specifies the PHY types.

UINT8 Specifies whether or not the PHY supports CF Poll.

UINT32 Specifies the MPDU maximum length.

UINT32 Specifies the operating temperature class.

UINT32 Specifies the antenna diversity support.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type

WDI_TLV_PHY_DATA_RATE_LIST
Article • 03/14/2023

WDI_TLV_PHY_DATA_RATE_LIST is a TLV that contains a list of data rates.

0x13

The size (in bytes) of the array of WDI_DATA_RATE_LIST elements. The array must contain
1 or more elements.

Note WDI_DATA_RATE_LIST is not a WDI structure. It is defined in the WDI TLV parser
generator, and is used for documentation purposes only.

Type Description

WDI_DATA_RATE_LIST[] An array of data rates. Each data rate in the array must contain data rate
flags and a data rate value.

WDI_DATA_RATE_LIST consists of the following elements.

Type Description

UINT8 The data rate flags as defined in WDI_DATA_RATE_FLAGS.

UINT16 The data rate value.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_data_rate_flags

WDI_TLV_PHY_INFO
Article • 03/14/2023

WDI_TLV_PHY_INFO is a TLV that contains PHY information.

0x26

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_PHY_CAPABILITIES The phy
capabilities.

WDI_TLV_PHY_TX_POWER_LEVEL_LIST A list of TX
power levels.

WDI_TLV_PHY_DATA_RATE_LIST A list of data
rates.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PHY_LIST
Article • 03/14/2023

WDI_TLV_PHY_LIST is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PHY_STATISTICS
Article • 03/14/2023

WDI_TLV_PHY_STATISTICS is a TLV that contains per-PHY statistics for
OID_WDI_GET_STATISTICS.

0xA7

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_PHY_TYPE The type for this PHY.

UINT64 The number of MSDU packets and MMPDU
frames that the IEEE PHY layer of the 802.11
station has successfully transmitted.

UINT64 The number of multicast or broadcast MSDU
packets and MMPDU frames that the IEEE PHY
layer of the 802.11 station has successfully
transmitted.

UINT64 The number of MSDU packets and MMPDU
frames that the 802.11 station failed to transmit
after exceeding the retry limits defined by the
802.11 IEEE dot11ShortRetryLimit or
dot11LongRetryLimit MIB counters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT64 The number of MSDU packets and MMPDU
frames that the 802.11 station successfully
transmitted after one or more attempts.

UINT64 The number of MSDU packets and MMPDU
frames that the 802.11 station successfully
transmitted after more than one retransmission
attempts.
For MSDU packets, the port must increment
this counter for each packet that was
transmitted successfully after one or more of its
MPDU fragments required retransmission.

UINT64 The number of MSDU packets and MMPDU
frames that the 802.11 station failed to transmit
because of a timeout as defined by the IEEE
802.11 dot11MaxTransmitMSDULifetime MIB
object.

UINT64 The number of MPDU frames that the 802.11
station transmitted and acknowledged through
a received 802.11 ACK frame.

UINT64 The number of times that the 802.11 station
received a Clear To Send (CTS) frame in
response to a Request To Send (RTS) frame. If
this cannot be maintained per port, it can be
maintained per channel.

UINT64 The number of times that the 802.11 station did
not receive a CTS frame in response to an RTS
frame. If this cannot be maintained per port, it
can be maintained per channel.

UINT64 The number of times that the 802.11 station
expected and did not receive an
Acknowledgment (ACK) frame. If this cannot be
maintained per port, it can be maintained per
channel.

Type Description

UINT64 The number of MSDU packets and MMPDU
frames that the 802.11 station has successfully
received.
For MSDU packets, the port must increment
this counter for each packet whose MPDU
fragments were received and passed frame
check sequence (FCS) verification and replay
detection. The port must increment this
member regardless of whether the received
MSDU packet or MPDU fragment fail MAC-
layer cipher decryption.

UINT64 The number of multicast or broadcast MSDU
packets and MMPDU frames that the 802.11
station has successfully received.
For MSDU packets, the port must increment
this counter for each packet whose MPDU
fragments were received and passed FCS
verification and replay detection. The port must
increment this member regardless of whether
the received MSDU packet or MPDU fragment
fail MAC-layer cipher decryption.

UINT64 The number of MSDU packets or MMPDU
frames received by the 802.11 station when a
promiscuous packet filter is enabled. If this
cannot be maintained per port, it can be
maintained per channel.

UINT64 The number if MSDU packets and MMPDU
frames that the 802.11 station discarded
because of a timeout as defined by the IEEE
802.11 dot11MaxReceiveLifetime MIB object. If
this cannot be maintained per port, it can be
maintained per channel.

UINT64 The number of duplicate MPDU frames that the
802.11 station received. The 802.11 station
determines duplicate frames through the
Sequence Control field of the 802.11 MAC
header. If this cannot be maintained per port, it
can be maintained per channel.

UINT64 The number of MPDU frames received by the
802.11 station for MSDU packets or MMPDU
frames.

Type Description

UINT64 The number of MPDU frames received by the
802.11 station for MSDU packets or MMPDU
frames when a promiscuous packet filter was
enabled.

UINT64 The number of MPDU frames that the 802.11
station received with FCS errors. If this cannot
be maintained per port, it can be maintained
per channel.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_PHY_SUPPORTED_RX_DATA_R
ATES_LIST
Article • 03/14/2023

WDI_TLV_PHY_SUPPORTED_RX_DATA_RATES_LIST is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_PHY_SUPPORTED_TX_DATA_R
ATES_LIST
Article • 03/14/2023

WDI_TLV_PHY_SUPPORTED_TX_DATA_RATES_LIST is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_PHY_TX_POWER_LEVEL_LIST
Article • 03/14/2023

WDI_TLV_PHY_TX_POWER_LEVEL_LIST is a TLV that contains a list of power levels.

0x1C

The size (in bytes) of the array of UINT32 elements. The array must contain 1 or more
elements.

Type Description

UINT32[] An array of UINT32 elements that specifies power levels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PHY_TYPE
Article • 03/14/2023

WDI_TLV_PHY_TYPE is a TLV that contains a PHY type.

0x122

The size (in bytes) of a UINT32.

Type Description

WDI_PHY_TYPE (UINT32) The PHY type.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PHY_TYPE_LIST
Article • 03/14/2023

WDI_TLV_PHY_TYPE_LIST is a TLV that contains an array of PHY types.

0x19

The size (in bytes) of the array of WDI_PHY_TYPE values. The array must contain 1 or
more values.

Type Description

WDI_PHY_TYPE[] An array of PHY type values.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PHY_TYPE_LIST (unused)
Article • 03/14/2023

WDI_TLV_PHY_TYPE_LIST (0x69) is an unused TLV.

0x69

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_PHY_TYPE_LIST

TLV Type

Requirements

See also

WDI_TLV_PLDR_SUPPORT
Article • 03/14/2023

WDI_TLV_PLDR_SUPPORT is a TLV that specifies if PLDR (Platform Level Reset) is
supported.

Note This TLV was added in Windows 10, version 1511, WDI version 1.0.10.

0x11A

The size (in bytes) of a UINT8.

Type Description

UINT8 Specifies if PLDR is supported. This value is set to 0 if the device or bus does not support
reset functionality (usually by querying the ACPI or PCI methods). A non-zero value
specifies that reset functionality is supported.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

PLDR

See also

WDI_TLV_PM_CAPABILITIES (0x42)
Article • 03/14/2023

WDI_TLV_PM_CAPABILITIES is a TLV that contains power management capabilities.

0x42

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the power management supported flags.
Valid flags are:

NDIS_PM_WAKE_PACKET_INDICATION_SUPPORTED
NDIS_PM_SELECTIVE_SUSPEND_SUPPORTED (0x00000002)

UINT32 Specifies the supported Wake-on-LAN patterns.
Valid patterns are:

NDIS_PM_WOL_BITMAP_PATTERN_SUPPORTED (0x00000001)
NDIS_PM_WOL_MAGIC_PACKET_SUPPORTED (0x00000002)
NDIS_PM_WOL_IPV4_TCP_SYN_SUPPORTED (0x00000004)
NDIS_PM_WOL_IPV6_TCP_SYN_SUPPORTED (0x00000008)
NDIS_PM_WOL_IPV4_DEST_ADDR_WILDCARD_SUPPORTED
(0x00000200)
NDIS_PM_WOL_IPV6_DEST_ADDR_WILDCARD_SUPPORTED
(0x00000800)
NDIS_PM_WOL_EAPOL_REQUEST_ID_MESSAGE_SUPPORTED
(0x00010000)

UINT32 Specifies the total number of Wake-on-LAN patterns.

UINT32 Specifies the maximum Wake-on-LAN pattern size.

UINT32 Specifies the maximum Wake-on-LAN pattern offset.

TLV Type

Length

Values

Type Description

UINT32 Specifies the maximum Wake-on-LAN packet save buffer.

UINT32 Specifies the supported protocol offloads.
Valid offloads are:

NDIS_PM_PROTOCOL_OFFLOAD_ARP_SUPPORTED (0x00000001)
NDIS_PM_PROTOCOL_OFFLOAD_NS_SUPPORTED (0x00000002)
NDIS_PM_PROTOCOL_OFFLOAD_80211_RSN_REKEY_SUPPORTED
(0x00000080)

UINT32 Specifies the number of ARP offload IPv4 addresses.

UINT32 Specifies the number of NS offload IPv6 addresses.

NDIS_DEVICE_POWER_STATE Specifies the minimum magic packet wake-up.

NDIS_DEVICE_POWER_STATE Specifies the minimum pattern wake-up.

NDIS_DEVICE_POWER_STATE Specifies the minimum link change wake-up.

UINT32 Specifies the supported wake-up events.
Valid events are:

NDIS_PM_WAKE_ON_MEDIA_CONNECT_SUPPORTED (0x00000001)
NDIS_PM_WAKE_ON_MEDIA_DISCONNECT_SUPPORTED
(0x00000002)

UINT32 Specifies the media-specific wake-up events.
Valid events are:

NDIS_WLAN_WAKE_ON_NLO_DISCOVERY_SUPPORTED
(0x00000001)
NDIS_WLAN_WAKE_ON_AP_ASSOCIATION_LOST_SUPPORTED
(0x00000002)
NDIS_WLAN_WAKE_ON_GTK_HANDSHAKE_ERROR_SUPPORTED
(0x00000004)
NDIS_WLAN_WAKE_ON_4WAY_HANDSHAKE_REQUEST_SUPPORTED
(0x00000008)

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state

WDI_TLV_PM_PROTOCOL_OFFLOAD_802
11RSN_REKEY
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY is a TLV that contains RSN Rekey
protocol offload parameters. If TCK/iGTK key info is configured, drivers must return it
when queried in OID_WDI_GET_PM_PROTOCOL_OFFLOAD via this TLV.

0x63

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_TLV_RSN_KEY_INFO Rsn Eapol key parameters.

LIST<WDI_TLV_CONFIGURED_CIPHER_KEY> A list of configured ciphers to be set in
OID_WDI_GET_PM_PROTOCOL_OFFLOAD. Drivers
must return any GTK or iGTK keys that are currently
configured.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PM_PROTOCOL_OFFLOAD_GET
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_OFFLOAD_GET is a TLV that contains a protocol offload ID for
OID_WDI_GET_PM_PROTOCOL_OFFLOAD.

0xA8

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the protocol offload ID. This is an OS-provided value that identifies the
offloaded protocol. Before the OS sends an Add request down or completes the request
to the overlying driver, the OS sets ProtocolOffloadId to a value that is unique among
the protocol offloads on a network adapter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv
4ARP
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv4ARP is a TLV that contains IPv4 ARP protocol
offload parameters.

0x61

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the protocol offload ID. This is an OS-provided value that
identifies the offloaded protocol. Before the OS sends an Add request
down or completes the request to the overlying driver, the OS sets
ProtocolOffloadId to a value that is unique among the protocol offloads
on a network adapter.

UINT8[4] Specifies an optional IPv4 address to match with the Source Protocol
Address (SPA) field of the ARP request. If the incoming ARP request has an
SPA value that matches this IPv4 address, the network adapter sends an
ARP response when it is in a low power state. If this is set to zero, the
network adapter should respond to ARP requests from any remote IPv4
address.

UINT8[4] Specifies the host IPv4 address the network adapter uses for the Source
Protocol Address (SPA) field when sending an ARP response.

WDI_MAC_ADDRESS Specifies the MAC address that the network adapter must use for the
Source Hardware Address (SHA) field of the ARP response packet that it
generates. However, it should use the current MAC address of the network
adapter as the source address in the MAC header.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv
6NS
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv6NS is a TLV that contains IPv6 NS protocol
offload parameters.

0x62

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the protocol offload ID. This is an OS-provided value that
identifies the offloaded protocol. Before the OS sends an Add request
down or completes the request to the overlying driver, the OS sets
ProtocolOffloadId to a value that is unique among the protocol offloads
on a network adapter.

UINT8[16] Specifies an optional IPv6 address to match with the Source Address field
in the IPv6 header of the NS message. If the incoming NS message has a
Source Address value that matches this IPv6 address, the network adapter
sends a neighbor advertisement (NA) message when it is in a low power
state. If this is set to zero, the network adapter should respond to NS
messages from any remote IPv6 address.

UINT8[16] Specifies the solicited node IPv6 address.

UINT8[16] Specifies one or two IPv6 addresses to match the Target Address field of
an incoming NS message. If there is only one address, that address is
stored in Target address 1, and Target address 2 is filled with zeros. If one
of these addresses matches the Target Address field of an incoming NS
message, the network adapter sends an NA message in response.

UINT8[16] See description of Target address 1.

TLV Type

Length

Values

Type Description

WDI_MAC_ADDRESS Specifies the MAC address that the network adapter must use for the
target link-layer address (TLLA) field of the NA message that it generates.
However, it should use the current MAC address of the network adapter
as the source address in the MAC header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

WDI_TLV_PM_PROTOCOL_RSN_OFFLOA
D_KEYS
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_RSN_OFFLOAD_KEYS is a TLV that contains currently
configured Rsn Eapol key information. This TLV is used in the
NDIS_STATUS_WDI_INDICATION_CIPHER_KEY_UPDATED status indication.

0x149

Type Description

WDI_RSN_OFFLOAD_KEYS_CONTAINER The currently configured Rsn Eapol key information.

Minimum supported client: Windows 10, version 1803

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PM_PROTOCOL_OFFLOAD_RE
MOVE
Article • 03/14/2023

WDI_TLV_PM_PROTOCOL_OFFLOAD_REMOVE is a TLV that contains the protocol offload
ID to be removed with OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD.

0x6C

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the protocol offload ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PMKID
Article • 03/14/2023

WDI_TLV_PMKID is a TLV that contains a PMKID value.

0x9F

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] A 16-byte PMKID value.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PORT_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_PORT_ATTRIBUTES is a TLV that contains port attributes.

0x29

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_MAC_ADDRESS Specifies the MAC address associated with the port.

UINT16 Specifies the port number.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address

WDI_TLV_POWER_MANAGMENT_CAPAB
ILITIES
Article • 03/14/2023

WDI_TLV_POWER_MANAGMENT_CAPABILITIES is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_POWER_STATE
Article • 03/14/2023

WDI_TLV_POWER_STATE is a TLV that contains a power state.

0x44

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies a power state.
Valid values are:

0x0001: Exit low power (D0)
0x0003: Enter low power (D2)
0x0004: Enter power off (D3, may not
actually be powered off on some
platforms)

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_PRIVACY_EXEMPTION_ENTRY
Article • 03/14/2023

WDI_TLV_PRIVACY_EXEMPTION_ENTRY is a TLV that contains a privacy exemption entry.

0x48

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT16 Specifies the IEEE EtherType in big-endian byte order.

WDI_EXEMPTION_ACTION_TYPE Specifies the action type of the exemption.

WDI_EXEMPTION_PACKET_TYPE Specifies the type of packet that the exemption applies to.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ne-dot11wdi-_wdi_exemption_action_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_exemption_packet_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PROBE_RESPONSE_FRAME
Article • 03/14/2023

WDI_TLV_PROBE_RESPONSE_FRAME is a TLV that contains a probe response frame.

0x9

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the probe response frame.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_PROTOCOL_OFFLOAD_ID
Article • 03/14/2023

WDI_TLV_PROTOCOL_OFFLOAD_ID is a TLV that contains the protocol offload identifier.

0x166

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] Specifies the the protocol offload identifier.

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RADIO_STATE
Article • 03/14/2023

WDI_TLV_RADIO_STATE is a TLV that contains the state of the radio in hardware and
software.

0xA1

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The current state of the radio in hardware.
Valid values are 0 and 1.

UINT8 The current state of the radio in software.
Valid values are 0 and 1.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RADIO_STATE_PARAMETERS
Article • 03/14/2023

WDI_TLV_RADIO_STATE_PARAMETERS is a TLV that contains radio state parameters for
OID_WDI_TASK_SET_RADIO_STATE.

0xA0

The size (in bytes) of a UINT8.

Type Description

UINT8 The desired radio state.
Valid values are 0 (the radio is turned off) and 1
(the radio is enabled).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RECEIVE_COALESCE_OFFLOAD
_CAPABILITIES
Article • 03/14/2023

WDI_TLV_RECEIVE_COALESCE_OFFLOAD_CAPABILITIES is a TLV that contains Rx coalesce
offload capabilities.

0xCE

The size (in bytes) of the below values.

Type Description

UINT8 Specifies whether or not Rx coalesce is enabled
for IPv4.
Valid values are 0 (not enabled) and 1
(enabled).

UINT8 Specifies whether or not Rx coalesce is enabled
for IPv6.
Valid values are 0 (not enabled) and 1
(enabled).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_RECEIVE_COALESCING_CAPABI
LITIES
Article • 03/14/2023

WDI_TLV_RECEIVE_COALESCING_CAPABILITIES is a TLV that contains hardware assisted
receive filter capabilities.

0x9A

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Enabled filter types. A bitwise OR of flags that specify the types of receive filters
that are enabled. The following flags are valid.
NDIS_RECEIVE_FILTER_VMQ_FILTERS_ENABLED
Specifies that VMQ filters are enabled.
NDIS_RECEIVE_FILTER_PACKET_COALESCING_FILTERS_ENABLED
Specifies that NDIS packet coalescing receive filters are enabled.

UINT32 Enabled queue types. A bitwise OR of flags that specify the types of receive
queues that are enabled. The following flag is valid.
NDIS_RECEIVE_FILTER_VM_QUEUES_ENABLED
Specifies that virtual machine (VM) queues are enabled. VM queues are used
when the miniport driver is enabled to use the VMQ interface.

UINT32 The number of VM queues that the network adapter supports.

UINT32 Supported VM queue properties. A bitwise OR of flags that specify the VM
queue properties that the network adapter supports. The following flags are
valid.
NDIS_RECEIVE_FILTER_MSI_X_SUPPORTED
The network adapter assigned an MSI-X table entry for each receive queue.
Network adapters must not use one MSI-X table entry for multiple receive
queues. This flag is mandatory for miniport drivers that support the VMQ or
SR-IOV interface.
NDIS_RECEIVE_FILTER_VM_QUEUE_SUPPORTED

TLV Type

Length

Values

Type Description

The network adapter provides the minimum requirements to support VM
queue packet filtering. The miniport driver must set this flag if it is enabled to
use the VMQ or SR-IOV interface.

For more information about VMQ requirements for VM queue packet filtering,
see Setting and Clearing VMQ Filters.

For more information about SR-IOV requirements for VM queue packet
filtering, see Setting a Receive Filter on a Virtual Port.
NDIS_RECEIVE_FILTER_LOOKAHEAD_SPLIT_SUPPORTED
The network adapter supports VM queues that split an incoming received
packet at the lookahead offset. This offset is equal to or greater than the
requested lookahead size. The network adapter uses DMA to transfer the
lookahead and post-lookahead data to separate shared memory segments.

NDIS_RECEIVE_FILTER_DYNAMIC_PROCESSOR_AFFINITY_CHANGE_SUPPORTED
The network adapter supports the ability to dynamically change one of the
following processor affinity attributes:

The processor affinity of a VM queue in the VMQ interface. The processor
affinity is changed through an OID set request of
OID_RECEIVE_FILTER_QUEUE_PARAMETERS.
The processor affinity of a nondefault virtual port (VPort), which was
created in the SR-IOV interface and is attached to the PCI Express (PCIe)
physical function (PF) of the network adapter. The processor affinity is
changed through an OID set request of
OID_NIC_SWITCH_VPORT_PARAMETERS.

NDIS_RECEIVE_FILTER_INTERRUPT_VECTOR_COALESCING_SUPPORTED
The network adapter supports interrupt coalescing for received packets on any
of the following:

Multiple VM queues in the VMQ interface.
Multiple VPorts that are attached to the PF in the SR-IOV interface.

If this flag is set, the network adapter must coalesce receive interrupts for VM
queues or VPorts that have the same processor affinity.
NDIS_RECEIVE_FILTER_IMPLAT_MIN_OF_QUEUES_MODE
Indicates that the number of VM queues available is the minimum number of
queues available from any member of a Load Balancing Failover (LBFO) team.
This flag applies to LBFO filters only. This flag is not set for miniports.
NDIS_RECEIVE_FILTER_IMPLAT_SUM_OF_QUEUES_MODE
Indicates that the number of VM queues available is the sum of all the queues
available from every member of an LBFO team. This flag applies to LBFO filters

Note Starting with NDIS 6.30, splitting packet data into separate
lookahead buffers is no longer supported. Miniport drivers that
support this version of NDIS must not set this flag.

Type Description

only. This flag is not set for miniports.
NDIS_RECEIVE_FILTER_PACKET_COALESCING_SUPPORTED_ON_DEFAULT_QUEUE
The network adapter supports NDIS packet coalescing. Packet coalescing is
only supported on the default receive queue of the network adapter. This
receive queue has an identifier of NDIS_DEFAULT_RECEIVE_QUEUE_ID.

UINT32 Supported filter tests. A bitwise OR of flags that specify the test operations that
a miniport driver supports. The following flags are valid.
NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_EQUAL_SUPPORTED
The network adapter supports testing the selected header field to determine
whether it is equal to a given value.

NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_MASK_EQUAL_SUPPORTED
The network adapter supports masking (that is, a bitwise AND) of the selected
header field to determine whether the result is equal to a specified value.
NDIS_RECEIVE_FILTER_TEST_HEADER_FIELD_NOT_EQUAL_SUPPORTED
The network adapter supports testing the selected header field to determine
whether it is not equal to a specified value.

UINT32 Supported headers. A bitwise OR of flags that specify the types of network
packet headers that a miniport driver can inspect. The following flags are valid.
NDIS_RECEIVE_FILTER_MAC_HEADER_SUPPORTED
The network adapter can inspect the media access control (MAC) header of a
network packet. The SupportedMacHeaderFields member defines the various
fields from the MAC header that can be inspected.
NDIS_RECEIVE_FILTER_ARP_HEADER_SUPPORTED
The network adapter can inspect the Address Resolution Protocol (ARP) header
of a network packet. The SupportedArpHeaderFields member defines the
various fields from the ARP header that can be inspected.
NDIS_RECEIVE_FILTER_IPV4_HEADER_SUPPORTED
The network adapter can inspect the IP version 4 (IPv4) header of a network
packet. The SupportedIPv4HeaderFields member defines the various fields
from the IPv4 header that can be inspected.
NDIS_RECEIVE_FILTER_IPV6_HEADER_SUPPORTED
The network adapter can inspect the IP version 6 (IPv6) header of a network
packet. The SupportedIPv6HeaderFields member defines the various fields
from the IPv6 header that can be inspected.
NDIS_RECEIVE_FILTER_UDP_HEADER_SUPPORTED
The network adapter can inspect the User Datagram Protocol (UDP) header of a
network packet. The SupportedIPv6HeaderFields member defines the various
fields from the UDP header that can be inspected.

Note If the miniport driver supports the VMQ or SR-IOV
interfaces, it must set this flag.

Type Description

UINT32 Supported MAC header fields. A bitwise OR of flags that specify the types of
MAC header fields that a miniport driver can inspect. The following flags are
valid.
NDIS_RECEIVE_FILTER_MAC_HEADER_DEST_ADDR_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
destination MAC address in the MAC header.

NDIS_RECEIVE_FILTER_MAC_HEADER_SOURCE_ADDR_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
source MAC address in the MAC header.
NDIS_RECEIVE_FILTER_MAC_HEADER_PROTOCOL_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
EtherType identifier in the MAC header. For example, the EtherType identifier
for IPv4 packets is 0x0800.
NDIS_RECEIVE_FILTER_MAC_HEADER_VLAN_ID_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
VLAN identifier in the MAC header.
NDIS_RECEIVE_FILTER_MAC_HEADER_PRIORITY_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
priority tag in the MAC header.
NDIS_RECEIVE_FILTER_MAC_HEADER_PACKET_TYPE_SUPPORTED
The network adapter supports inspecting and filtering that are based on the
packet type field of the IEEE 802.2 subnetwork access protocol (SNAP) header
in an 802.3 MAC header.

UINT32 The maximum number of MAC header filters that the miniport driver supports.

UINT32 Maximum queue groups. This value is reserved.

UINT32 Maximum queues per queue group. This value is reserved.

UINT32 The minimum size, in bytes, that the network adapter supports for lookahead
packet buffers.

Note Starting with NDIS 6.30, miniport drivers that support the
VMQ or SR-IOV interface must set this flag.

Note Starting with NDIS 6.30, splitting packet data into separate
lookahead buffers is no longer supported. Miniport drivers that
support this version of NDIS must set this member to zero.

Type Description

UINT32 The maximum size, in bytes, that the network adapter supports for lookahead
packet buffers.

UINT32 Supported ARP header fields. A bitwise OR of flags that specify the types of
ARP header fields that a miniport driver can inspect. The following flags are
valid.
NDIS_RECEIVE_FILTER_ARP_HEADER_OPERATION_SUPPORTED
The network adapter supports receive filtering on the ARP operation field.
NDIS_RECEIVE_FILTER_ARP_HEADER_SPA_SUPPORTED
The network adapter supports receive filtering on the ARP source protocol
address (SPA) field.
NDIS_RECEIVE_FILTER_ARP_HEADER_TPA_SUPPORTED
The network adapter supports receive filtering on the ARP target protocol
address (TPA) field.

UINT32 Supported IPv4 header fields. A bitwise OR of flags that specify the types of
IPv4 header fields that a miniport driver can inspect. The following flag is valid.
NDIS_RECEIVE_FILTER_IPV4_HEADER_PROTOCOL_SUPPORTED
The network adapter supports receive filtering on the IPv4 protocol field.

UINT32 Supported IPv6 header fields. A bitwise OR of flags that specify the types of
IPv6 header fields that a miniport driver can inspect. The following flag is valid.
NDIS_RECEIVE_FILTER_IPV6_HEADER_PROTOCOL_SUPPORTED
The network adapter supports receive filtering on the IPv6 protocol field.

UINT32 Supported UDP header fields. A bitwise OR of flags that specify the types of
IPv6 header fields that a miniport driver can inspect. The following flag is valid.
NDIS_RECEIVE_FILTER_UDP_HEADER_DEST_PORT_SUPPORTED
The network adapter supports receive filtering on the UDP destination port
field.

Note Starting with NDIS 6.30, splitting packet data into separate
lookahead buffers is no longer supported. Miniport drivers that
support this version of NDIS must set this member to zero.

Note If the received UDP packet contains IPv4 options or IPv6
extension headers, the network adapter can automatically drop
the received packet and treat it as if it failed the UDP filter test.

Type Description

UINT32 The maximum number of tests on packet header fields that can be specified for
a single packet coalescing filter. For more information about packet coalescing,
see NDIS Packet Coalescing.

UINT32 The maximum number of packet coalescing receive filters that are supported
by the network adapter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

NDIS_RECEIVE_FILTER_CAPABILITIES

Note Network adapters that support packet coalescing must
support five or more packet header fields that can be specified
for a single packet coalescing filter. If the adapter does not
support packet coalescing, the miniport driver must set this
value to zero.

Note Network adapters that support packet coalescing must
support ten or more packet coalescing filters. If the adapter does
not support packet coalescing, the miniport driver must set this
value to zero.

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

WDI_TLV_RECEIVE_COALESCING_CONFI
G
Article • 03/14/2023

WDI_TLV_RECEIVE_COALESCING_CONFIG is a TLV that contains receive coalescing
configuration.

0xDB

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 A unique queue ID to queue packets matching this filter.

UINT32 A filter ID with a value from 1 to the number of filters supported.

UINT32 The maximum coalescing delay in milliseconds.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

OID_WDI_SET_RECEIVE_COALESCING

TLV Type

Length

Values

Requirements

See also

WDI_TLV_RECEIVE_FILTER_FIELD (0x65)
Article • 03/14/2023

WDI_TLV_RECEIVE_FILTER_FIELD is a TLV that contains a receive filter test criterion for
one field in a network header.

0x65

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies a bitwise OR of flags. The possible flag value is
WDI_RECEIVE_FILTER_FIELD_MAC_HEADER_VLAN_UNTAGGED_OR_ZERO.
If this flag is set, the network adapter must only indicate received
packets that pass the following criteria:

The packet's MAC address matches the specified MAC header
field test.
The packet either does not contain a VLAN tag or has a VLAN tag
with an ID of zero.

NDIS_FRAME_HEADER
(UINT32)

Frame header. Specifies the type of the frame header.

NDIS_RECEIVE_FILTER_TEST
(UINT32)

Receive filter test. Specifies the type of test that the receive filter
performs.

UINT32 Header field. Specifies the protocol-specific header field type with the
union as documented in the
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS.HeaderField.

UINT8[16] Field value. Specifies the value that the miniport adapter compares to
the corresponding header field value in incoming packets. The location
of the header field value is determined by the field type that is specified
in the header field element. This value is in network byte order and is
specified with the union as documented in the
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS.FieldValue.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_frame_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_receive_filter_test
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

Type Description

UINT8[16] Test result value. If the receive filter test element is set to
ReceiveFilterTestMaskEqual, the network adapter first calculates a result
from the value in the field value member and the header field value as
specified by the header field member. The adapter then compares the
calculated result with result value. This value is specified with the union
as documented in the
NDIS_RECEIVE_FILTER_FIELD_PARAMETERS.ResultValue.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

WDI_TLV_REPLAY_COUNTER
Article • 03/14/2023

WDI_TLV_REPLAY_COUNTER is a TLV that contains a UINT64 value that represents a
replay counter.

0x164

The size (in bytes) of a UINT64.

Type Description

UINT64 A replay counter

Minimum supported client Windows 10, version 2004

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_REQUEST_LCI_REPORT
Article • 03/14/2023

WDI_TLV_REQUEST_LCI_REPORT is a TLV that contains information for whether a
Location Configuration Information (LCI) report should be requested from a target BSS
during a Fine Timing Measurement (FTM) request.

This TLV is used in WDI_TLV_FTM_TARGET_BSS_ENTRY.

0x158

The size (in bytes) of a UINT8.

Type Description

UINT8 Possible values:
0: LCI report not needed.
1: LCI report should be requested.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RETRY_AFTER
Article • 03/14/2023

WDI_TLV_RETRY_AFTER is a TLV that contains the duration, in seconds, that should pass
before trying to request a new Fine Timing Measurement (FTM) from a target BSS.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15A

The size (in bytes) of a UINT16.

Type Description

UINT16 The duration, in seconds, that should pass before trying to request a new Fine Timing
Measurement (FTM) from the target BSS.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_ROAMING_NEEDED_PARAMET
ERS
Article • 03/14/2023

WDI_TLV_ROAMING_NEEDED_PARAMETERS is a TLV that contains the reason for a roam
trigger. This is used in the NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED payload.

0x55

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_ASSOC_STATUS Specifies the reason for a roam trigger. When a OID_WDI_TASK_ROAM is
triggered, this reason is forwarded to it.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_assoc_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RSN_KEY_INFO
Article • 03/14/2023

WDI_TLV_RSN_KEY_INFO is a TLV that contains Rsn Eapol key parameters. This TLV is a
value of the WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY TLV.

0x148

The size (in bytes) of the following values.

Type Description

UINT32 A UINT32 value that specifies the protocol offload ID. This is an OS-provided value
that identifies the offloaded protocol. Before the OS sends an Add request down or
completes the request to the overlying driver, the OS sets ProtocolOffloadId to a
value that is unique among the protocol offloads on a network adapter.

UINT64 A UINT64 value that specifies the replay counter.

UINT8[16] A UINT8 array that specifies the IEEE 802.11 key confirmation key (KCK).

UINT8[16] A UINT8 array that specifies the IEEE 802.11 key encryption key (KEK).

Minimum supported client: Windows 10, version 1803

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_RTT
Article • 03/14/2023

WDI_TLV_RTT is a TLV that contains the measured roundtrip time (RTT), in picoseconds,
for a Fine Timing Measurement (FTM) request.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15C

The size (in bytes) of a UINT32.

Type Description

UINT32 The RTT.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_RTT_ACCURACY
Article • 03/14/2023

WDI_TLV_RTT_ACCURACY is a TLV that contains the accuracy, or expected degree of
closeness, of a roundtrip time (RTT) measurement to the true value for a Fine Timing
Measurement (FTM) request. The unit is in picoseconds.

For example, if the current RTT is 66712.82 picoseconds (10 meters away from the target
AP), but it is known through hardware profiling that the measurement could be off by
+/-1 meter, then the RTT accuracy is 6671.28 picoseconds. It is the responsibility of the
IHV to provide as specific an accuracy as possible based on the profiling of its hardware
and the matching conditions when the actual FTM is taken. There are multiple variables
affecting FTM accuracy and multiple possibilities for which of these variables can be
measured and considered. The reason a more specific accuracy is desirable is because
this is useful information that upper layers can consume, such as preferring
measurements with higher accuracy when computing a position or to vary the
computed position error based off the FTM accuracies. When profiling, a minimum 90%
CDF should be used.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15D

The size (in bytes) of a UINT32.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type DescriptionType Description

UINT32 The RTT.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

Requirements

WDI_TLV_RTT_VARIANCE
Article • 03/14/2023

WDI_TLV_RTT_VARIANCE is a TLV that contains the statistical variance of the
measurements used to calculate roundtrip time (RTT) during a Fine Timing
Measurement (FTM) request, if more than one measurement was used.

This TLV is used in WDI_TLV_FTM_RESPONSE.

0x15E

The size (in bytes) of a UINT64.

Type Description

UINT64 The statistical variance of the measurements used to calculate the RTT.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_ANTI_CLOGGING_TOKEN
Article • 03/14/2023

WDI_TLV_SAE_ANTI_CLOGGING_TOKEN is a TLV that contains the anti-clogging token
for a Simultaneous Authentication of Equals (SAE) Commit request.

This TLV is used in WDI_TLV_SAE_COMMIT_REQUEST.

0x155

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The anti-clogging token.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_COMMIT_REQUEST
Article • 03/14/2023

WDI_TLV_SAE_COMMIT_REQUEST is a TLV that contains parameters for a Simultaneous
Authentication of Equals (SAE) Commit request.

This TLV is used in the command parameters for OID_WDI_SET_SAE_AUTH_PARAMS.

0x150

The sum (in bytes) of the sizes of all contained TLVs.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SAE_FINITE_CYCLIC_GROUP UINT16 The Finite
Cyclic Group
used for SAE
authentication.

WDI_TLV_SAE_SCALAR TLV<LIST<UINT8>> The Finite
Field Element
(FFE).

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SAE_ELEMENT TLV<LIST<UINT8>> The Encoded
Field Element
(EFE).

WDI_TLV_SAE_ANTI_CLOGGING_TOKEN TLV<LIST<UINT8>> The anti-
clogging
token as
requested by
the BSSID.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

Requirements

WDI_TLV_SAE_COMMIT_RESPONSE
Article • 03/14/2023

WDI_TLV_SAE_COMMIT_RESPONSE is a TLV that contains the Simultaneous
Authentication of Equals (SAE) Commit response frame.

This TLV is used in the payload data of
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED.

0x14D

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The SAE Commit response frame.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_CONFIRM
Article • 03/14/2023

WDI_TLV_SAE_CONFIRM is a TLV that contains the Confirm field for a Simultaneous
Authentication of Equals (SAE) Confirm request.

This TLV is used in WDI_TLV_SAE_CONFIRM_REQUEST.

0x157

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The Confirm field.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_CONFIRM_REQUEST
Article • 03/14/2023

WDI_TLV_SAE_CONFIRM_REQUEST is a TLV that contains parameters for a
Simultaneous Authentication of Equals (SAE) Confirm request.

This TLV is used in the command parameters for OID_WDI_SET_SAE_AUTH_PARAMS.

0x151

The sum (in bytes) of the sizes of all contained TLVs.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SAE_SEND_CONFIRM UINT16 The Send
Confirm field,
used as an
anti-replay
counter.

WDI_TLV_SAE_CONFIRM TLV<LIST<UINT8>> The Confirm
field.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

WDI_TLV_SAE_CONFIRM_RESPONSE
Article • 03/14/2023

WDI_TLV_SAE_CONFIRM_RESPONSE is a TLV that contains the Simultaneous
Authentication of Equals (SAE) Confirm response frame.

This TLV is used in the payload data of
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED.

0x14E

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The SAE Confirm response frame.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_ELEMENT
Article • 03/14/2023

WDI_TLV_SAE_ELEMENT is a TLV that contains the Encoded Field Element (EFE) for a
Simultaneous Authentication of Equals (SAE) Commit request.

This TLV is used in WDI_TLV_SAE_COMMIT_REQUEST.

0x154

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] A part of the EFE.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_FINITE_CYCLIC_GROUP
Article • 03/14/2023

WDI_TLV_SAE_FINITE_CYCLIC_GROUP is a TLV that contains the Finite Cyclic Group
used in a Commit request for Simultaneous Authentication of Equals (SAE)
authentication.

This TLV is used in WDI_TLV_SAE_COMMIT_REQUEST.

0x152

The size (in bytes) of a UINT16.

Type Description

UINT16 The Finite Cyclic Group used for SAE authentication.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_INDICATION_TYPE
Article • 03/14/2023

WDI_TLV_SAE_INDICATION_TYPE is a TLV that contains the type of information needed
to continue SAE authentication with a target BSSID, or notification that authentication
cannot continue.

This TLV is used in the payload data of
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED.

0x14B

The size (in bytes) of a UINT32.

Type Description

WDI_SAE_INDICATION_TYPE The type of information needed to continue SAE authentication
with a target BSSID, or notification that authentication cannot
continue.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_indication_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_REQUEST_TYPE
Article • 03/14/2023

WDI_TLV_SAE_REQUEST_TYPE is a TLV that contains the type of Simultaneous
Authentication of Equals (SAE) request frame to send to a target BSSID.

This TLV is used in the command parameters of OID_WDI_SET_SAE_AUTH_PARAMS.

0x14F

The size (in bytes) of a UINT32.

Type Description

WDI_SAE_REQUEST_TYPE The type of SAE request frame to send to the BSSID.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_request_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_SCALAR
Article • 03/14/2023

WDI_TLV_SAE_SCALAR is a TLV that contains the Finite Field Element (FFE) for a
Simultaneous Authentication of Equals (SAE) Commit request.

This TLV is used in WDI_TLV_SAE_COMMIT_REQUEST.

0x153

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] The FFE.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_SEND_CONFIRM
Article • 03/14/2023

WDI_TLV_SAE_SEND_CONFIRM is a TLV that contains the Send Confirm field for a
Simultaneous Authentication of Equals (SAE) Confirm request. The Send Confirm field is
used as an anti-replay counter.

This TLV is used in WDI_TLV_SAE_CONFIRM_REQUEST.

0x156

The size (in bytes) of a UINT16.

Type Description

UINT16 The Send Confirm field.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAE_STATUS
Article • 03/14/2023

WDI_TLV_SAE_STATUS is a TLV that contains Simultaneous Authentication of Equals
(SAE) authentication failure error status.

This TLV is used in the command parameters of OID_WDI_SET_SAE_AUTH_PARAMS and
in the payload data of NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED.

0x14C

The size (in bytes) of a UINT32.

Type Description

WDI_SAE_STATUS The SAE authentication failure error status.

Minimum supported client: Windows 10, version 1903 Minimum supported server:
Windows Server 2016 Header: Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SAFE_MODE_PARAMETERS
Article • 03/14/2023

WDI_TLV_SAFE_MODE_PARAMETERS is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_SCAN_DWELL_TIME
Article • 03/14/2023

WDI_TLV_SCAN_DWELL_TIME is a TLV that contains scanning dwell time settings.

0x7

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the time in milliseconds to dwell on active channels. This is a hint and if the
adapter decides to use its own dwell time, it must meet the Maximum Scan Time
requirement.

UINT32 Specifies the time in milliseconds to dwell on passive channels. This is a hint and if the
adapter decides to use its own dwell time, it must meet the Maximum Scan Time
requirement.

UINT32 Specifies the time in milliseconds for total scan. If the adapter limits its dwell times to
below the values specified above, it can ignore the Maximum Scan Time parameter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_SCAN_MODE
Article • 03/14/2023

WDI_TLV_SCAN_MODE is a TLV that contains scan mode parameters.

0x6

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The number of times the full scan procedure should be repeated. If this
value is set to 0, the scan should be repeated until the task is aborted by
the host.

WDI_SCAN_TYPE Specifies the type of scan that should be performed. If
WDI_SCAN_TYPE_ACTIVE is set, the device must only scan active channels.

UINT8 Specifies if live updates are needed and discovered entries must be
reported when they are found, with the recommended throttling logic
above. This value is always true when the Microsoft component manages
the BSS list cache.

WDI_SCAN_TRIGGER Specifies the trigger for the scan.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_scan_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_scan_trigger
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_SEND_ACTION_FRAME_REQUE
ST_PARAMETERS
Article • 03/14/2023

WDI_TLV_SEND_ACTION_FRAME_REQUEST_PARAMETERS is a TLV that contains
parameters for OID_WDI_TASK_SEND_REQUEST_ACTION_FRAME.

0xBF

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_CHANNEL_NUMBER
(UINT32)

The channel on which to send the action frame and also to linger on
as specified in the post-ACK dwell time.

WDI_BAND_ID (UINT32) The ID of the band on which to send the action frame.

WDI_MAC_ADDRESS The MAC address of the target access point or peer adapter.

UINT32 The send timeout. Specifies the maximum time (in milliseconds) to
send this Action Frame.

UINT32 The post-acknowledgment dwell time. Specifies the time (in
milliseconds) to remain on listen channel after the incoming packet is
acknowledged.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_SEND_ACTION_FRAME_RESPO
NSE_PARAMETERS
Article • 03/14/2023

WDI_TLV_SEND_ACTION_FRAME_RESPONSE_PARAMETERS is a TLV that contains
parameters for OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME.

0xE2

The sum (in bytes) of the sizes of all contained elements.

Type Description

WDI_CHANNEL_NUMBER
(UINT32)

The channel on which to send the action frame and also to linger on
as specified in the post-ACK dwell time.

WDI_BAND_ID (UINT32) The ID of the band on which to send the action frame.

WDI_MAC_ADDRESS The MAC address of the target access point or peer adapter.

UINT32 The send timeout. Specifies the maximum time (in milliseconds) to
send this Action Frame.

UINT32 The post-acknowledgment dwell time. Specifies the time (in
milliseconds) to remain on listen channel after the incoming packet is
acknowledged.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_SET_AUTO_POWER_SAVE
Article • 03/14/2023

WDI_TLV_SET_AUTO_POWER_SAVE is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_SET_CIPHER_KEY_INFO
Article • 03/14/2023

WDI_TLV_SET_CIPHER_KEY_INFO is a TLV that contains cipher key mapping key information for
OID_WDI_SET_ADD_CIPHER_KEYS.

0x52

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_PEER_MAC_ADDRESS X Specifies the MAC address of the peer
that this key is associated with. If not
present, assume this is a default key.
At least one of peer MAC Address or
cipher key ID must be present. This
field must be present when key type is
set to
WDI_CIPHER_KEY_TYPE_PAIRWISE_KEY,
and may be present when key type is
set to
WDI_CIPHER_KEY_TYPE_GROUP_KEY.

WDI_TLV_CIPHER_KEY_ID X Specifies the ID for this cipher key. At
least one of peer MAC address or
cipher key ID must be present. This
field is not required for pairwise keys.

WDI_TLV_CIPHER_KEY_TYPE_INFO Specifies the cipher key type
information.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in
maintenance mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model
released in Windows 11. We recommend that you use WiFiCx to take advantage of the latest
features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CIPHER_KEY_RECEIVE_SEQUENCE_COUNT X Specifies the initial 48-bit value of
Packet Number (PN), which is used for
replay protection. This is optional if
the cipher algorithm is
WDI_CIPHER_ALGO_WEP40,
WDI_CIPHER_ALGO_WEP104, or
WDI_CIPHER_ALGO_WEP.

WDI_TLV_CIPHER_KEY_CCMP_KEY X Specifies the CCMP cipher algorithm
key data. This is only present if the
cipher algorithm is
WDI_CIPHER_ALGO_CCMP.

WDI_TLV_CIPHER_KEY_GCMP_256_KEY X Contains GCMP_256 cipher algorithm
key data. This is only present if the
cipher algorithm is
WDI_CIPHER_ALGO_GCMP_256.

WDI_TLV_CIPHER_KEY_TKIP_INFO X Specifies the TKIP information. This is
only present if the cipher algorithm is
WDI_CIPHER_ALGO_TKIP.

WDI_TLV_CIPHER_KEY_BIP_KEY X Specifies the BIP key. This is only
present if the cipher algorithm is
WDI_CIPHER_ALGO_BIP.

WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY X Contains GMAC_256 cipher algorithm
key data. This is only present if cipher
algorithm is
WDI_CIPHER_ALGO_BIP_GMAC_256.

WDI_TLV_CIPHER_KEY_WEP_KEY X Specifies the WEP key. This is only
present if the cipher algorithm is
WDI_CIPHER_ALGO_WEP40,
WDI_CIPHER_ALGO_WEP104, or
WDI_CIPHER_ALGO_WEP

WDI_TLV_CIPHER_KEY_IHV_KEY X Specifies the IHV cipher key. This is
only present if
WDI_TLV_CIPHER_KEY_TYPE_INFO is
in the range
WDI_CIPHER_ALGO_IHV_START to
WDI_CIPHER_ALGO_IHV_END.

Minimum supported client Windows 10

Requirements

Minimum supported server Windows Server 2016

Header Wditypes.hpp

WDI_TLV_SET_CLEAR_RECEIVE_COALESC
ING
Article • 03/14/2023

WDI_TLV_SET_CLEAR_RECEIVE_COALESCING is a TLV that contains a filter ID for
OID_WDI_SET_CLEAR_RECEIVE_COALESCING.

0x9B

The size (in bytes) of a UINT32.

Type Description

UINT32 The ID of the filter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_SET_ENCAPSULATION_OFFLO
AD_V4_PARAMETERS
Article • 03/14/2023

WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V4_PARAMETERS is a TLV that is used by
OID_WDI_SET_ENCAPSULATION_OFFLOAD to indicate if IPv4 offloading should be
started.

0xFD

The size (in bytes) of a UINT8.

Type Description

UINT8 Specifies if IPv4 offloading should be started. This value is set to NDIS_OFFLOAD_SET_ON
if enabled, and set to NDIS_OFFLOAD_SET_OFF if disabled.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

NDIS_OFFLOAD_PARAMETERS

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

WDI_TLV_SET_ENCAPSULATION_OFFLO
AD_V6_PARAMETERS
Article • 03/14/2023

WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V6_PARAMETERS is a TLV that is used by
OID_WDI_SET_ENCAPSULATION_OFFLOAD to indicate if IPv6 offloading should be
started.

0xFE

The size (in bytes) of a UINT8.

Type Description

UINT8 Specifies if IPv6 offloading should be started. This value is set to NDIS_OFFLOAD_SET_ON
if enabled, and set to NDIS_OFFLOAD_SET_OFF if disabled.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

NDIS_OFFLOAD_PARAMETERS

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

WDI_TLV_SET_POWER_DX_REASON
Article • 03/14/2023

WDI_TLV_SET_POWER_DX_REASON is a TLV that contains the reason for a set power Dx.

0x103

The size (in bytes) of a UINT32.

Type Description

UINT32 The reason for a set power Dx.
Valid values are:

WDI_SET_POWER_DX_REASON_SELETIVE_SUSPEND
(1)

When this value is set, it implies waking on any
interesting external events without explicit
WDI_TLV_ENABLE_WAKE_EVENTS. This is an idle
low power where the device functions
transparently to end users as if it were in D0. See
WDI USB remote wake sequence for more
information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_SET_RECEIVE_COALESCING
Article • 03/14/2023

WDI_TLV_SET_RECEIVE_COALESCING is a TLV that contains received packet coalescing
parameters for OID_WDI_SET_RECEIVE_COALESCING.

0x64

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_RECEIVE_COALESCING_CONFIG Specifies
coalescing filter
configuration.

WDI_TLV_RECEIVE_FILTER_FIELD X X Specifies a receive
filter field.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_SSID
Article • 03/14/2023

WDI_TLV_SSID is a TLV that contains an SSID.

0x3B

The size (in bytes) of the array of UINT8 elements. An array length of 0 is allowed.

Type Description

UINT8[] An array of UINT8 elements that specifies an SSID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SSID_LIST
Article • 03/14/2023

WDI_TLV_SSID_LIST is an unused TLV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SSID_OFFLOAD
Article • 03/14/2023

WDI_TLV_SSID_OFFLOAD is a TLV that contains an SSID and hints about the SSID.

0x9E

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_SSID The SSID.

WDI_TLV_UNICAST_ALGORITHM_LIST The unicast
algorithm list.

WDI_TLV_CHANNEL_LIST The channel list.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_START_AP_PARAMETERS
Article • 03/14/2023

WDI_TLV_START_AP_PARAMETERS is a TLV that contains the parameters for
OID_WDI_TASK_START_AP.

0xAB

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The beacon period. If non-zero, this parameter
specifies the beacon interval.

UINT32 The DTIM period. If non-zero, this parameter
specifies the number of beacon intervals
between transmissions of beacon frames that
contain a TIM element with a DTIM Count field
that equals zero. This value is transmitted in the
DTIM Period field of beacon frames.

UINT8 This parameter sets the
dot11ExcludeUnencrypted MIB. Valid values are
0 and 1.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Description

UINT8 This parameter specifies if the device supports
802.11b speeds. Valid values are 0 (not
supported) and 1 (supported). When this value
is set to 1, the access point should allow clients
using 11b rates to connect to it.

UINT8 Added in Windows 10, version 1511, WDI
version 1.0.10.
This parameter specifies whether to allow
legacy SoftAP clients to connect. Valid values
are 0 (not allowed) and 1 (allowed).

UINT8 Added in Windows 10, version 1511, WDI
version 1.0.10.
MustUseSpecifiedChannels. This parameter
specifies whether the AP can only be started on
the channels specified in
OID_WDI_TASK_START_AP task parameters with
WDI_TLV_AP_BAND_CHANNEL. Valid values
are 0 and 1. If it is set to 1, the AP can only be
started from the specified list. If it is not set, the
list is meant to be a recommendation of
channels that the firmware can pick from, and it
may pick another channel if it is not possible to
start the AP on any of the specified channels.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

OID_WDI_TASK_START_AP

Requirements

See also

WDI_TLV_STATION_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_STATION_ATTRIBUTES is a TLV that contains the attributes of a station.

0x22

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_STATION_CAPABILITIES The station
capabilities.

WDI_TLV_UNICAST_ALGORITHM_LIST X The supported
unicast
algorithms.

WDI_TLV_MULTICAST_DATA_ALGORITHM_LIST X The supported
multicast data
algorithms.

WDI_TLV_MULTICAST_MGMT_ALGORITHM_LIST X The supported
multicast
management
algorithms.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_STATION_CAPABILITIES
Article • 03/14/2023

WDI_TLV_STATION_CAPABILITIES is a TLV that contains the capabilities of a station.

0x11

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 The scan SSID list size.

UINT32 The desired BSSID list size.

UINT32 The desired SSID list size.

UINT32 The privacy exemption list size.

UINT32 The key mapping table size.

UINT32 The default key table size.

UINT32 The maximum length of the WEP key value.

UINT32 The maximum number per STA default key tables.

UINT8 Supported QoS flags. Specifies whether the device supports WMM.
Valid values are 0 (not supported) and 1 (supported).

TLV Type

Length

Values

Type Description

UINT8 Specifies whether host-FIPS mode is implemented.

If the field is set to DOT11_EXTSTA_ATTRIBUTES_SAFEMODE_OID_SUPPORTED with no
other bits set, the driver implements the 802.11 safe mode of operation.

If the field is set to DOT11_EXTSTA_ATTRIBUTES_SAFEMODE_CERTIFIED, the NIC has
received a validation certificate from the National Institute of Standards and Technology
(NIST) under Federal Information Processing Standards (FIPS) Publication 140-2,
Security Requirements for Cryptographic Modules. In this mode, the hardware is
responsible for ensuring compliance to FIPS standard.

If the field is set to zero (0), FIPS mode is not implemented by the NIC.

UINT8 Specifies whether 802.11w MFP capability is supported.
Valid values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether auto power save is supported.
Valid values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether the adapter maintains the Station BSS List cache.
Valid values are 0 (no) and 1 (yes).

UINT8 Specifies whether the adapter may attempt association to a BSSID that is not specified
in the Preferred BSSID list during a Station connect.
Valid values are 0 (no) and 1 (yes).

UINT32 The maximum supported Network Offload List size.

UINT8 Specifies whether or not the adapter can track HESSIDs associated with SSIDs and
connect/roam only to those APs that match the specified SSID+HESSID.
Valid values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether the adapter can offload connectivity to networks belonging to
specific HESSIDs.

UINT8 Specifies whether disconnected standby is supported.
Valid values are 0 (not supported) and 1 (supported).

UINT8 Specifies whether the driver supports the Fine Time Measurement (FTM) protocol as an
initiator.
Valid values are 0 (not supported) and 1 (supported).

UINT8 The maximum number of target STAs that can be queried per FTM request task.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/windot11/ns-windot11-dot11_extsta_attributes#revision--dot11_extsta_attributes_revision_2-or-higher

Type Description

UINT8 Specifics whether the driver supports the FIPS mode.

If the field is set to DOT11_EXTSTA_ATTRIBUTES_SAFEMODE_OID_SUPPORTED with no
other bits set, the driver implements the 802.11 safe mode of operation.

If the field is set to DOT11_EXTSTA_ATTRIBUTES_SAFEMODE_CERTIFIED the NIC has
received a validation certificate from the National Institute of Standards and Technology
(NIST) under Federal Information Processing Standards (FIPS) Publication 140-2,
Security Requirements for Cryptographic Modules. In this mode the hardware is
responsible for ensuring compliance to FIPS standard.

If the field is set to zero (0), FIPS mode is not implemented by the NIC.

Operating system support for FIPS is anticipated in a future release of Windows.

NOTE that FIPS mode requires the driver to indicate support for
WDI_AUTH_ALGO_WPA3 auth and WDI_CIPHER_ALGO_GCMP_256 cipher pairs in the
unicast and multicast algo pairs. It must also indicate support for
WDI_AUTH_ALGO_WPA3 auth and WDI_CIPHER_ALGO_BIP_GMAC_256 cipher in the
Multicast Management algo pairs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_STATUS
Article • 03/14/2023

WDI_TLV_STATUS is a TLV that contains a status value.

0x1

The size (in bytes) of an NDIS_STATUS.

Type Description

NDIS_STATUS The NDIS_STATUS value.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_SUPPORTED_GUIDS
Article • 03/14/2023

WDI_TLV_SUPPORTED_GUIDS is a TLV that contains a supported NDIS GUID.

Note This TLV was added in Windows 10, version 1607, WDI version 1.0.21.

0x130

The size (in bytes) of a NDIS_GUID structure.

Type Description

NDIS_GUID A supported NDIS GUID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_GET_ADAPTER_CAPABILITIES

WDI_TLV_TCP_OFFLOAD_CAPABILITIES
Article • 03/14/2023

WDI_TLV_TCP_OFFLOAD_CAPABILITIES is a TLV that contains TCP/IP offload capabilities.

Capability values are reported as documented in NDIS_TCP_IP_CHECKSUM_OFFLOAD.
Use NDIS_OFFLOAD_NOT_SUPPORTED and NDIS_OFFLOAD_SUPPORTED when
indicating capabilities through OID_WDI_GET_ADAPTER_CAPABILITIES. For a connection
with FIPS mode, offloads are turned OFF by the UE.

0xCA

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CHECKSUM_OFFLOAD_CAPABILITIES Checksum
offload
capabilities.

WDI_TLV_LSO_V1_CAPABILITIES Large Send
Offload V1
capabilities.

WDI_TLV_LSO_V2_CAPABILITIES Large Send
Offload V2
capabilities.

WDI_TLV_RECEIVE_COALESCE_OFFLOAD_CAPABILITIES Receive
Offload
capabilities.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_OFFLOAD_SCOPE Indicates
whether
offloads apply
to the STA port
only or on all
ports.
Currently
applicable to
802.11ad
adapters only.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_TCP_RSC_STATISTICS_PARAME
TERS
Article • 03/14/2023

WDI_TLV_TCP_RSC_STATISTICS_PARAMETERS is a TLV that contains TCP RSC statistics for
OID_WDI_TCP_RSC_STATISTICS.

0xF3

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT64 The total number of packets that were coalesced.

UINT64 The total number of bytes that were coalesced.

UINT64 The total number of coalescing events, which is the total number of packets that were
formed from coalescing packets.

UINT64 The total number of RSC abort events, which is the number of exceptions other than the
IP datagram length being exceeded. This count should include the cases where a packet
is not coalesced because of insufficient hardware resources.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_TCP_SET_OFFLOAD_PARAMETE
RS
Article • 03/14/2023

WDI_TLV_TCP_SET_OFFLOAD_PARAMETERS is a TLV that contains TCP offload
capabilities of a miniport adapter for OID_WDI_SET_TCP_OFFLOAD_PARAMETERS.

0xF2

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The IPv4 checksum setting of the miniport adapter.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_TX_RX_DISABLED - Disabled.
NDIS_OFFLOAD_PARAMETERS_TX_ENABLED_RX_DISABLED -
Enabled for transmit and disabled for receive.
NDIS_OFFLOAD_PARAMETERS_RX_ENABLED_TX_DISABLED -
Enabled for receive and disabled for transmit.
NDIS_OFFLOAD_PARAMETERS_TX_RX_ENABLED - Enabled for
transmit and receive.

TLV Type

Length

Values

Type Description

UINT8 The IPv4 checksum setting for TCP packets.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_TX_RX_DISABLED - Disabled.
NDIS_OFFLOAD_PARAMETERS_TX_ENABLED_RX_DISABLED -
Enabled for transmit and disabled for receive.
NDIS_OFFLOAD_PARAMETERS_RX_ENABLED_TX_DISABLED -
Enabled for receive and disabled for transmit.
NDIS_OFFLOAD_PARAMETERS_TX_RX_ENABLED - Enabled for
transmit and receive.

UINT8 The IPv4 checksum setting for UDP packets.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_TX_RX_DISABLED - Disabled.
NDIS_OFFLOAD_PARAMETERS_TX_ENABLED_RX_DISABLED -
Enabled for transmit and disabled for receive.
NDIS_OFFLOAD_PARAMETERS_RX_ENABLED_TX_DISABLED -
Enabled for receive and disabled for transmit.
NDIS_OFFLOAD_PARAMETERS_TX_RX_ENABLED - Enabled for
transmit and receive.

UINT8 The IPv6 checksum setting for TCP packets.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_TX_RX_DISABLED - Disabled.
NDIS_OFFLOAD_PARAMETERS_TX_ENABLED_RX_DISABLED -
Enabled for transmit and disabled for receive.
NDIS_OFFLOAD_PARAMETERS_RX_ENABLED_TX_DISABLED -
Enabled for receive and disabled for transmit.
NDIS_OFFLOAD_PARAMETERS_TX_RX_ENABLED - Enabled for
transmit and receive.

Type Description

UINT8 The IPv6 checksum setting for UDP packets.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_TX_RX_DISABLED - Disabled.
NDIS_OFFLOAD_PARAMETERS_TX_ENABLED_RX_DISABLED -
Enabled for transmit and disabled for receive.
NDIS_OFFLOAD_PARAMETERS_RX_ENABLED_TX_DISABLED -
Enabled for receive and disabled for transmit.
NDIS_OFFLOAD_PARAMETERS_TX_RX_ENABLED - Enabled for
transmit and receive.

UINT8 The Large Send Offload version 1 (LSOV1) setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_LSOV1_ENABLED - LSOV1 is
enabled.
NDIS_OFFLOAD_PARAMETERS_LSOV1_DISABLED - LSOV1 is
disabled.

UINT8 The Internet Protocol Security (IPsec) offload setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_IPSECV1_DISABLED - IPsec
offload is disabled.
NDIS_OFFLOAD_PARAMETERS_IPSECV1_AH_ENABLED - The
IPsec offload Authentication Header (AH) feature should be
enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV1_ESP_ENABLED - The
IPsec offload Encapsulating Security Payload (ESP) feature should
be enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV1_AH_AND_ESP_ENABLED
- The IPsec offload AH and ESP features are enabled for transmit
and receive.

Type Description

UINT8 The IPv4 Large Send Offload version 2 (LSOV2) setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_LSOV2_ENABLED - LSOV2 for
IPv4 is enabled.
NDIS_OFFLOAD_PARAMETERS_LSOV2_DISABLED - LSOV2 for
IPv4 is disabled.

UINT8 The IPv6 Large Send Offload version 2 (LSOV2) setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_LSOV2_ENABLED - LSOV2 for
IPv6 is enabled.
NDIS_OFFLOAD_PARAMETERS_LSOV2_DISABLED - LSOV2 for
IPv6 is disabled.

UINT8 The IPv4 connection offload setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.

UINT8 The IPv6 connection offload setting.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.

UINT8 Indicates Receive Segment Coalescing state for IPv4.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The RSC state is
unchanged.
NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED - The RSC state is
enabled.
NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED - The RSC state is
disabled.

Type Description

UINT8 Indicates Receive Segment Coalescing state for IPv6.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The RSC state is
unchanged.
NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED - The RSC state is
enabled.
NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED - The RSC state is
disabled.

UINT32 The value is a bitwise OR of flags. This must be set to 0. There are no
flags currently defined.

UINT8 The Internet protocol security (IPsec) offload version 2 setting of a
miniport adapter that supports both IPv6 and IPv4. This specifies the
setting for both IPv6 and IPv4 support.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_DISABLED - IPsec
offload version 2 is disabled.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_AH_ENABLED - The
IPsec offload version 2 Authentication Header (AH) feature
should be enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_ESP_ENABLED - The
IPsec offload version 2 Encapsulating Security Payload (ESP)
feature should be enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_AH_AND_ESP_ENABLED
- The IPsec offload version 2 AH and ESP features are enabled for
transmit and receive.

Type Description

UINT8 The Internet protocol security (IPsec) offload version 2 setting of a
miniport adapter that supports IPv4 and does not support IPv6. If the
miniport driver supports IPv6, the IPsecV2 member specifies the IPv4
setting and this member is not used.
Valid values are:

NDIS_OFFLOAD_PARAMETERS_NO_CHANGE - The miniport
driver should not change the current setting.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_DISABLED - IPsec
offload version 2 is disabled.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_AH_ENABLED - The
IPsec offload version 2 Authentication Header (AH) feature
should be enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_ESP_ENABLED - The
IPsec offload version 2 Encapsulating Security Payload (ESP)
feature should be enabled for transmit and receive.
NDIS_OFFLOAD_PARAMETERS_IPSECV2_AH_AND_ESP_ENABLED
- The IPsec offload version 2 AH and ESP features are enabled for
transmit and receive.

UINT8 Encapsulated Packet Task Offload. A protocol driver sets this field to
one of the following values.

NDIS_OFFLOAD_SET_NO_CHANGE (0) - The NVGRE task offload
state is unchanged.
NDIS_OFFLOAD_SET_ON (1) - Enables NVGRE task offloads.
NDIS_OFFLOAD_SET_OFF (2) - Disables NVGRE task offloads.

UINT8 Encapsulation types. This field is effective only when the Encapsulated
Packet Task Offload is set to NDIS_OFFLOAD_SET_ON. If the
Encapsulated Packet Task Offload member is not set to
NDIS_OFFLOAD_SET_ON, this member is zero. A protocol driver must
set Encapsulation Types to the bitwise OR of the flags corresponding to
encapsulation types that it requires. It can select from the following
flags.

NDIS_ENCAPSULATION_TYPE_GRE_MAC (0x00000001) -
Specifies GRE MAC encapsulation (NVGRE).

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Requirements

Header Wditypes.hpp

NDIS_OFFLOAD_PARAMETERS

OID_WDI_SET_TCP_OFFLOAD_PARAMETERS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

WDI_TLV_TKIP_MIC_FAILURE_INFO
Article • 03/14/2023

WDI_TLV_TKIP_MIC_FAILURE_INFO is a TLV that contains TKIP-MIC failure information.

0x57

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 Specifies which cipher key type detected that the TKIP-MIC failure
occurred. If this value is 1, the TKIP-MIC failure was detected through a
default cipher key. If this value is 0, the TKIP-MIC failure was detected
through a key mapping cipher key.

UINT32 Specifies the index of the cipher key in the default key array. Valid value
range is from 0 through 3.

WDI_MAC_ADDRESS Specifies the MAC address of the peer that transmitted the packet that
failed MIC verification.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Wditypes.hpp

WDI_TLV_UNICAST_ALGORITHM_LIST
Article • 03/14/2023

WDI_TLV_UNICAST_ALGORITHM_LIST is a TLV that contains an array of unicast data
algorithm pairs.

0x13

The size (in bytes) of the array of WDI_ALGO_PAIRS elements. The array must contain 1
or more elements.

Note WDI_ALGO_PAIRS is not a WDI structure. It is defined in the WDI TLV parser
generator, and is used for documentation purposes only.

Type Description

WDI_ALGO_PAIRS[] An array of authentication and cipher algorithm pairs.

WDI_ALGO_PAIRS consists of the following elements.

Type Description

UINT8 Authentication algorithm as defined in WDI_AUTH_ALGORITHM.

UINT8 Cipher algorithm as defined in WDI_CIPHER_ALGORITHM.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

Requirements

WDI_TLV_UNICAST_CIPHER_ALGO_LIST
Article • 03/14/2023

WDI_TLV_UNICAST_CIPHER_ALGO_LIST is a TLV that contains a list of unicast cipher
algorithms.

0x3E

The size (in bytes) of the array of WDI_CIPHER_ALGORITHM structures. The array must
contain 1 or more elements.

Type Description

WDI_CIPHER_ALGORITHM[] An array of unicast cipher algorithms.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_UNREACHABLE_DETECTION_T
HRESHOLD
Article • 03/14/2023

WDI_TLV_UNREACHABLE_DETECTION_THRESHOLD is a TLV that contains the
unreachable detection threshold.

0xB1

The size (in bytes) of a UINT32.

Type Description

UINT32 The unreachable detection threshold. Specifies the maximum amount of time, in
milliseconds, before the 802.11 station determines that it has lost connectivity to a peer
device. The station must include missed beacons in making this connectivity loss
determination but can also use any other heuristics it desires.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_VENDOR_SPECIFIC_IE
Article • 03/14/2023

WDI_TLV_VENDOR_SPECIFIC_IE is a TLV that contains a list of vendor-specific IEs.

0x5

The size (in bytes) of the array of UINT8 elements. The array must contain 1 or more
elements.

Type Description

UINT8[] An array of UINT8 elements that specifies the vendor-specific IEs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TLV_VIRTUALIZATION_ATTRIBUTES
Article • 03/14/2023

WDI_TLV_VIRTUALIZATION_ATTRIBUTES is a TLV that contains virtualization attributes.

0x24

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_VIRTUALIZATION_CAPABILITIES The
virtualization
capabilities.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_VIRTUALIZATION_CAPABILITIE
S
Article • 03/14/2023

WDI_TLV_VIRTUALIZATION_CAPABILITIES is a TLV that contains virtualization capabilities.

0x10

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT8 The number of supported ExtSTA ports.

UINT8 The number of supported Wi-Fi Direct Group ports. This count should only include Role
ports. If this value is non-zero, it is assumed that a Wi-Fi Direct Device port is available.

UINT8 The number of supported legacy ExtAP ports.

UINT8 The maximum number of supported simultaneous AP/WFD Group Owners.

UINT8 The maximum number of separate channels that the device can operate in and maintain
data connections on simultaneously. This limit should not include temporary
multichannel operations like scans and Wi-Fi Direct negotiations.

UINT8 The maximum number of supported simultaneous STA/WFD clients.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_BITMAP_PATTE
RN
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_BITMAP_PATTERN is a TLV that contains a wake-on-LAN
pattern.

0x5B

The sum (in bytes) of the sizes of all contained TLVs.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_WAKE_PACKET_BITMAP_PATTERN_ID Specifies the wake-
on-LAN pattern ID.

WDI_TLV_BITMAP_PATTERN Specifies the wake-
on-LAN pattern.

WDI_TLV_BITMAP_PATTERN_MASK Specifies the wake-
on-LAN pattern
mask. The length is
(PatternLength +
7)/8.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_BITMAP_PATTE
RN_ID
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_BITMAP_PATTERN_ID is a TLV that contains a wake-on-LAN
pattern ID.

The pattern ID is an OS-provided value that identifies the wake-on-LAN pattern and is
set to a value that is unique among the wake-on-LAN patterns on a network adapter.
The pattern ID is set before the OS sends an add to the underlying drivers or completes
the request to the overlying driver.

0xE3

The size (in bytes) of a UINT32.

Type Description

UINT32 The wake-on-LAN pattern ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

OID_WDI_SET_ADD_WOL_PATTERN

TLV Type

Length

Values

Requirements

See also

WDI_TLV_WAKE_PACKET_EAPOL_REQUE
ST_ID_MESSAGE
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_EAPOL_REQUEST_ID_MESSAGE is a TLV that contains the wake-
on-LAN pattern ID of a EAPOL request ID message.

0x5F

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the wake-on-LAN pattern ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_IPv4_TCP_SYN
C
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_IPv4_TCP_SYNC is a TLV that contains wake-on-LAN IPv4 TCP
sync packet information.

0x5D

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the wake-on-LAN pattern ID.

UINT8[4] Specifies the IPv4 source address in the TCP SYN packet.

UINT8[4] Specifies the IPv4 destination address in the TCP SYN packet.

UINT16 Specifies the TCP source port number in the TCP SYN packet.

UINT16 Specifies the TCP destination port number in the TCP SYN packet.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_IPv6_TCP_SYN
C
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_IPv6_TCP_SYNC is a TLV that contains wake-on-LAN IPv6 TCP
sync packet information.

0x5E

The sum (in bytes) of the sizes of all contained elements.

Type Description

UINT32 Specifies the WoL pattern ID.

UINT8[16] Specifies the IPv6 source address in the TCP SYN packet.

UINT8[16] Specifies the IPv6 destination address in the TCP SYN packet.

UINT16 Specifies the TCP source port number in the TCP SYN packet.

UINT16 Specifies the TCP destination port number in the TCP SYN packet.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_MAGIC_PACKE
T
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_MAGIC_PACKET is a TLV that contains a pattern ID of a magic
packet for OID_WDI_SET_ADD_WOL_PATTERN.

0x5C

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the wake-on-LAN magic packet pattern ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WAKE_PACKET_PATTERN_REM
OVE
Article • 03/14/2023

WDI_TLV_WAKE_PACKET_PATTERN_REMOVE is a TLV that contains the wake packet
pattern ID to be removed with OID_WDI_SET_REMOVE_WOL_PATTERN.

0x6B

The size (in bytes) of a UINT32.

Type Description

UINT32 Specifies the wake packet pattern ID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

TLV Type

Length

Values

Requirements

WDI_TLV_WFD_ASSOCIATION_STATUS
Article • 03/14/2023

WDI_TLV_WFD_ASSOCIATION_STATUS is a TLV that contains the status code to be set
when an association request is denied.

0x126

The size (in bytes) of a UINT8.

Type Description

UINT8 The DOT11_WFD_STATUS_CODE to be set when an association request is denied.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Wditypes.hpp

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

TLV Type

Length

Values

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI USB Selective Suspend Topics
Article • 03/14/2023

To save power, a USB device (such as a Wi-Fi NIC on USB) may go to low power state
when idle. WDI supports the LE by utilizing NDIS native support for USB Selective
Suspend.

In this section:

WDI NDIS idle detection

WDI and WLAN Selective Suspend capability

WDI USB suspend sequence

WDI USB resume sequence

WDI USB remote wake sequence

WDI NDIS idle detection
Article • 03/14/2023

This following diagram shows a simple state diagram of NDIS idle detection, which is
used to drive USB selective suspend.

If the WDI device/driver supports USB selective suspend, NDIS detects its idle state to
send the device into low power state (D2).

WDI and WLAN Selective Suspend
capability
Article • 03/14/2023

To enable USB Selective Suspend support, the LE must report the capability. NDIS
defines keywords for this feature. For more information, see Standardized INF Keywords
for NDIS Selective Suspend.

*SelectiveSuspend : {Enable, Disable}

*SSIdleTimeout : idle timeout in seconds

WDI enables support based on the following sources.

Device INF: This is written to the next item at device setup from the above
keyword.
Registry settings: This is set from the INF or the Advanced property sheet for the
device in Device Manager.
Power management capabilities in the return from
OID_WDI_GET_ADAPTER_CAPABILITIES.
Idle handlers in NDIS_MINIPORT_DRIVER_WDI_CHARACTERISTICS.

MiniportWdiIdleNotification

MiniportWdiCancelIdleNotification

The WDI driver exposes two callback functions for the LE.

IdleNotificationComplete

IdleNotificationConfirm

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_ndis_miniport_driver_wdi_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_idle_notification_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-ndis_wdi_idle_notification_confirm

WDI Selective Suspend capability
registration
Article • 03/14/2023

The following is a flow diagram for registering the USB Selective Suspend capability.

AdapterCap(PM(ss)), *SelectiveSuspend, LeIdleNotificationHandler, and
LeCancelIdleNotificationHandler must be true or valid for WDI to register that WLAN
supports Selective Suspend.

When WDI decides that Selective Suspend can be supported, WDI also registers an
optional handler to NDIS.

MiniportWdiCancelIdleNotification

MiniportWdiIdleNotification

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_cancel_idle_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_idle_notification

WDI USB suspend sequence
Article • 03/14/2023

When NDIS detects idle for longer than the Selective Suspend idle timeout
(SSIdleTimeout), NDIS calls the UE. The UE may veto the idle notification by returning
NDIS_STATUS_BUSY. If the UE does not veto the idle notification, the UE calls the LE with
LeIdleNotificationHander, and the LE may veto or accept.

The UE accepts idle notifications when there is no pending data, commands, or timers
that may expire to send data or commands down to the LE.

When WDI receives a D2 OID, it processes the OID as if it is a regular D2, except that it
sends the WDI OID with the reason code set to
WDI_SET_POWER_DX_REASON_SELETIVE_SUSPEND.

The following flow diagram shows the suspend sequence.

MiniportWdiIdleNotification

WDI_TLV_SET_POWER_DX_REASON

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_idle_notification

WDI USB resume sequence
Article • 03/14/2023

When the operating system needs to use the NIC, it cancels the idle state and resumes
the NIC to the D0 working state. NDIS initiates the resume.

The following flow diagram shows the resume sequence.

WDI USB remote wake sequence
Article • 03/14/2023

When the device receives external events, it wakes the stack. The following flow diagram
shows the remote wake sequence.

WDI design guide topics
Article • 03/14/2023

This section describes requirements and recommendations for supporting features in
the WLAN driver.

WDI low latency connection quality

WDI Extended channel switch announcement

WDI IHV extensible types

Develop and validate WDI drivers for Reset Recovery

WDI low latency connection quality
Article • 03/14/2023

A port can be configured for low latency mode operation if there is an application
running on the system that needs low latency data traffic (for example, VoIP
applications). When in this mode of operation, the driver should modify any behavior
(such as scanning or better AP roaming) that would cause it to move off of the channel
of the port that is configured for low latency mode. It should also follow the specified
guidance for the NDIS_STATUS_WDI_INDICATION_LINK_STATE_CHANGE indication. The
host provides WDI_TLV_LOW_LATENCY_CONNECTION_QUALITY_PARAMETERS that the
port should use when it is in this mode. This specifies the maximum time that the port
should be off channel and the minimum link quality value that the connection must fall
down to before initiating a low latency roam (including sending
NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED).

For scans, the host provides the maximum channel dwell time (there are different values
for active and passive channels) and the adapter should not go above the maximum
time. The host also throttles unnecessary scans. However, the adapter can throttle the
scan further if the WDI_SCAN_TRIGGER is WDI_SCAN_TRIGGER_BACKGROUND or
WDI_SCAN_TRIGGER_ROAM. If the adapter performs its own scans in this mode, it is
recommended that it includes the SSID it is looking for (unless it is after a resume from
sleep) to reduce the dwell time on a channel. In addition, it should avoid scanning
multiple channels in single off-channel scan so that it is under the overall off-channel
time limit.

The host considers NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED a strong
request from the adapter to roam, so when in this mode, the adapter should be careful
about how often this indication is sent up. If the adapter performs its own roaming/AP
selection decisions, it must employ appropriate mechanisms (such as neighbor reports
or PMKIDs) to find and select/rank APs.

To optimize the association process, the adapter should use the cached BSS entry for
TSF timer synchronization during join if possible. The cached entry should be good
enough for TSF timer synchronization, which is fresh enough most of time because it
was obtained from a recent probe request. TSF synchronization can be done later, even
when the driver decides to pick an AP that does not have an up-to-date cached probe
response. The driver can disable Wi-Fi power save until it receives the next beacon,
which usually occurs within 100ms.

When operating in multi-channel concurrency mode, it is recommended that the
adapter employ ECSA or other mechanisms for enabling seamless/no jitter experience

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_scan_trigger

when performing channel multiplexing.

WDI Extended channel switch
announcement (ECSA)
Article • 03/14/2023

To minimize the cases where the Wi-Fi Direct port causes the system to operate in Multi-
Channel mode, multi-channel uses cases are not as performant as single channel use
cases. We recommend that the device (driver/firmware) implements ECSA. This feature
should exist completely on the IHV side.

Here are the suggested driver/firmware changes.

Support bi-directional ECSA on the Wi-Fi Direct port.
When the device is the Group Owner and is in Multi-Channel mode:

The driver must detect if the remote peer supports ECSA.
If the remote peer supports ECSA, engage ECSA to move the peer into the
channel configuration that yields a single channel.

When the device is the Client and is in Multi-Channel mode:
If an ECSA request comes from the remote peer, then support it.

Send channel change notifications to the operating system with
NDIS_STATUS_WDI_INDICATION_P2P_GROUP_OPERATING_CHANNEL.

WDI IHV extensible types
Article • 03/14/2023

The WDI model allows the IHV to support custom PHY type, authentication algorithms,
and cipher algorithms. The IHV extension PHY type is used mainly for reporting
purposes and does not change the operating system behavior. The IHV extension
authentication and cipher algorithms are used with the IHV extensibility module and IHV
profiles. When these are used for a connection, the host does not perform any matching
for security settings before forwarding the candidate BSS list to the adapter.

Develop and validate WDI drivers for
Reset Recovery
Article • 03/14/2023

The UE has a built-in hook for stressing reset and recovery by simulating firmware
hangs. It exercises the UE and LE but not the actual firmware, which likely remains
functional in the simulation. The code is in M1 UE. It is ideal if the IHV has mechanisms
to inject firmware hangs. This exercises Reset Recovery on modules below the LE,
specifically Bus, ACPI, and UEFI. There have been hard-to-debug issues in these lower
layers regarding to Reset Recovery where the lower layer failed to actually reset the
firmware.

OID_WDI_TASK_CHANGE_OPERATION_
MODE
Article • 03/14/2023

OID_WDI_TASK_CHANGE_OPERATION_MODE configures the operation mode for the
port.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Port No 4 1

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_OPERATION_MODE The desired operation
mode.

NDIS_STATUS_WDI_INDICATION_CHANGE_OPERATION_MODE_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

Task completion indication

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_TASK_CLOSE
Article • 03/14/2023

OID_WDI_TASK_CLOSE requests that the IHV component closes the adapter. This
includes disabling interrupts and shutting down hardware. During a halt, this task is
passed to the IHV through the CloseAdapterHandler handler registered by the IHV.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Adapter No 1 5

None

NDIS_STATUS_WDI_INDICATION_CLOSE_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task parameters

Task completion indication

Requirements

OID_WDI_TASK_CONNECT
Article • 03/14/2023

OID_WDI_TASK_CONNECT requests that the IHV component connects to an Access
Point or to a Wi-Fi Direct GO.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The abort must be followed
by a dot11 reset.

4 10

As part of the connect, the IHV component must synchronize with, authenticate to, and
associate to the BSS. The host provides the BSS entries that the IHV component can
attempt to connect to. Once the IHV component has successfully connected to one of
those entries, it should complete the connect process. If it is unable to connect to any of
the BSS entries, it should complete the connect process with a failure.

The IHV component does not need to perform a scan to find candidate BSS entries. It
can use the list provided by the host for the connect. It can attempt to connect to each
one, one after another. The host sorts the networks by RSSI, but the IHV component can
use its own order for connection. If the adapter does not specify "Connect BSS Selection
Override", it must only use the entries provided by the host for the connect. The host
may issue an abort on an outstanding connect. On receiving the abort, the port must
end the connection attempts and report a completion to the host.

If the adapter specifies "Connect BSS Selection Override", it can perform scans on its
own to find candidate BSS entries. It can connect to any BSS entry it finds as long as it
meets the parameters configured by the host. It should optimize this selection to ensure
that it meets any configured connection quality requirements. This could include
optimizing roam scan, optimize AP selection, optimize association process, and
minimize the security handshake needed. During a scan, if the device needs additional
association parameters for a found BSS entry (for example, PMKID for roaming), it can
send a NDIS_STATUS_WDI_INDICATION_ASSOCIATION_PARAMETERS_REQUEST

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

indication to get the parameters. When available, the host configures these parameters
with OID_WDI_SET_ASSOCIATION_PARAMETERS.

If the connect fails or is aborted, the port should not reset any settings that may have
been configured outside of the connect command. It must support the host issuing a
second connect call on the same port.

The status of the connect attempt for each BSS entry must be reported by the port at
the end of the association attempt. This includes the successful attempt and also any
failed attempts. At any time, the port must be associated with no more than one Access
Point or Wi-Fi Direct GO.

While a connect is ongoing, the port must maintain any connections established on
other ports (for example, Infrastructure or Wi-Fi Direct). However, the port may reduce
the amount of medium access provided to the other ports to finish the connection.
During the connect, the host can submit packet send requests on other ports.

If the authentication algorithm that is used for the connection requires 802.1x port
authorization for network access, the host authorizes the port after the association
operation has completed successfully.

The 802.11 station uses the PMKID cache for pre-authentication to access points that
have enabled the Robust Security Network Association (RSNA) authentication algorithm.
If the 802.11 station is associating or reassociating to a BSSID that has a provided
PMKID, the 802.11 station must use the PMKID data in the RSN information element
(RSN IE) of its Association or Reassociation frame.

If the port declares support for Host FIPS mode in WDI_TLV_STATION_ATTRIBUTES,
HostFIPSModeEnabled may be set to 1 in the connection parameters.

If HostFIPSModeEnabled is set to 1, the following rules apply.

The port must follow the guidelines for sending/receiving data frames in Send
operations in FIPS mode and Receive operations in FIPS mode.
The port must not declare support for any QoS protocol in the association request
sent to a non-HT access point. QoS support is required for HT connections.
The port must not negotiate TSpec and must not perform transmit MSDU
aggregation.
The port must ensure that the SPP A-MSDU capable bit (bit 10) of the RSN
capabilities IE it transmits is set to zero. Only PP A-MSDU are supported in this
mode.

The connection parameters must not have MFPEnabled and HostFIPSModeEnabled both
set to 1. Management Frame Protection (802.11w) requires the port to encrypt/decrypt

certain management and action frames, so it cannot be enabled for a connection using
Host FIPS mode. In addition, Wake on Wireless LAN features are not applicable in Host-
FIPS mode.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CONNECT_PARAMETERS The connection parameters.

WDI_TLV_CONNECT_BSS_ENTRY X The preferred list of candidate
connect BSS entries. The port
should attempt to connect to any
of these BSS entries until the list is
exhausted or the connection
completed successfully. The port
can reprioritize the entries if
needed. If the adapter has set the
Connect BSS Selection Override bit,
then it can pick a BSS that is not in
this list as long as it follows the
Allowed/Disallowed list.

NDIS_STATUS_WDI_INDICATION_CONNECT_COMPLETE

NDIS_STATUS_WDI_INDICATION_ASSOCIATION_RESULT

NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task parameters

Task completion indication

Unsolicited indication

Requirements

OID_WDI_TASK_CREATE_PORT
Article • 03/14/2023

OID_WDI_TASK_CREATE_PORT requests that a new 802.11 entity is created by the IHV
component.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Adapter No 6 1

The operation mode of the created port is set to WDI_OPERATION_MODE_STA unless it
has been specified in the task parameters.

If the MAC is to function as a Wi-Fi Direct device port, uOpmodeMask contains
WDI_OPERATION_MODE_P2P_DEVICE. In this case, the IHV component driver must
assign the MAC address reserved for the Wi-Fi Direct Device to this port and return it in
the request completion indication.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_CREATE_PORT_PARAMETERS Parameters for
port creation.

Task parameters

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_CREATE_PORT_MAC_ADDRESS X This TLV is used
when the UE
recreates the
non-primary port
during resume
from hibernation.
When this TLV is
present, the
firmware must
use this MAC
address to create
the port. This
MAC address is
guaranteed to be
the MAC address
that the firmware
created for the
port type prior to
hibernation.

The goal is to use
the same NDIS
port number and
MAC address in
order to match
the states of the
upper layers.
Note that the
WFC_PORT_ID
can be different
at recreation, but
the port ID
should not collide
with any port ID
of an existing
port. This
information is
only used
between the UE
and LE/firmware.

NDIS_STATUS_WDI_INDICATION_CREATE_PORT_COMPLETE

Task completion indication

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_TASK_DELETE_PORT
Article • 03/14/2023

OID_WDI_TASK_DELETE_PORT requests that the IHV component releases all resources
(including MAC and PHY) allocated to the specified port.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Adapter No 6 1

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_DELETE_PORT_PARAMETERS The delete port
parameters.

NDIS_STATUS_WDI_INDICATION_DELETE_PORT_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task parameters

Task completion indication

Requirements

OID_WDI_TASK_DISCONNECT
Article • 03/14/2023

OID_WDI_TASK_DISCONNECT is used to terminate a connection with a peer.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Port No 2 1

This command is used to disconnect from an Access Point or a Wi-Fi Direct GO, and also
to disconnect clients of the port. When the disconnect is received, the port must
disassociate and deauthenticate from the peer and clear the state associated with that
peer. However, it must not reset any of the connection parameters that are not specific
to this peer. The task must be completed only after the disconnect activity has been
completed.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_DISCONNECT_PARAMETERS The disconnect
parameters.

NDIS_STATUS_WDI_INDICATION_DISCONNECT_COMPLETE

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

Task completion indication

Unsolicited indication

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_DISASSOCIATION When the port gets disconnected
from the network, it sends the disassociation indication to the OS. The disconnect may
be triggered by a command from the OS, or may be triggered from the network.
Network triggered disconnects may be explicit from received disassociation or
deauthentication packets, or may be implicit when the port cannot detect the presence
of the peer it is connected to.

Before the disassociation indication is sent, the port must clear the state associated with
the peer. This includes any keys and 802.1x port authorization information associated
with the peer. The port must not trigger a roam on its own.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_TASK_DOT11_RESET
Article • 03/14/2023

OID_WDI_TASK_DOT11_RESET requests that the IHV component resets the MAC and
PHY state on a specified port.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Port No 1 1

Prior to issuing a dot11 reset command, the WDI driver stops issuing new commands to
IHV component and aborts any task in progress on the port. It also flushes its Rx and TX
queues.

The dot11 reset combines the semantics of the 802.11 MLME and PLME reset primitive.
When the IHV component receives a dot11 reset request, it should perform the
following tasks.

Reset the port’s MAC entity to its initial state.
Reset the port’s MIB attributes so they are set to their default values, if
bSetDefaultMIB is true.
Reset the TX/Rx state machines for the PHY entity and set it to Rx state only to
ensure no more frames are transmitted.
Flush the adapter’s Rx queue and complete the send for each packet in the TX
queues.
If the MAC address parameter is present, reset the port’s MAC address to the
specified value.
Set the port state to INIT before completing the dot11 reset operation.

If the port being reset was operating as a STA, AP, or a Wi-Fi Direct Client or GO, the
host would have triggered the disconnect task to request the IHV component to send
disassociation to the peers before the reset. As such, the IHV component does not need
to do it again.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_DOT11_RESET_PARAMETERS Parameters for the
dot11 reset.

WDI_TLV_CONFIGURED_MAC_ADDRESS X The MAC address that
should be used for the
port.

NDIS_STATUS_WDI_INDICATION_DOT11_RESET_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task parameters

Task completion indication

Requirements

OID_WDI_TASK_IHV
Article • 03/14/2023

OID_WDI_TASK_IHV is used to start an IHV-initiated task.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

Priority depends on IHV-
requested settings.

10

The task is initiated by the sending
NDIS_STATUS_WDI_INDICATION_IHV_TASK_REQUEST, and is prioritized based on the
value requested by the IHV.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_IHV_TASK_DEVICE_CONTEXT X The context data provided by the IHV
component. This is forwarded from
NDIS_STATUS_WDI_INDICATION_IHV_
TASK_REQUEST.

NDIS_STATUS_WDI_INDICATION_IHV_TASK_COMPLETE

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

Task completion indication

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_OPEN
Article • 03/14/2023

OID_WDI_TASK_OPEN requests that the IHV component initializes the adapter.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Adapter No 1 2

Adapter initialization includes downloading firmware to the adapter, and setting up
interrupts and other hardware resources. During initialization, this task is passed to the
IHV using the OpenAdapterHandler handler registered by the IHV. On resume from low
power state, this is passed to the IHV using OID_WDI_TASK_OPEN.

None

NDIS_STATUS_WDI_INDICATION_OPEN_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task parameters

Task completion indication

Requirements

OID_WDI_TASK_P2P_DISCOVER
Article • 03/14/2023

OID_WDI_TASK_P2P_DISCOVER is issued to the device to perform Wi-Fi Direct discovery.

Object Abort capable Default priority (host driver policy) Normal execution time (seconds)

Port Yes. The port must be in a clean state after the abort. 6 15

The command contains properties which define either a specific set of Wi-Fi Direct devices to search for, or wildcard discovery.

Wi-Fi Direct discovery is mutually exclusive from standard Wi-Fi scanning. While this task is running, broadcast probe requests shall not
be sent without a "DIRECT-" SSID, or a specific GO SSID. These probe requests must also include all necessary Wi-Fi Direct IEs.

The host may have search criteria which is not provided as part of the task parameters down to the device. The host may use the task
abort mechanism if it has matched the required criteria, therefore it is important that the device can abort Wi-Fi Direct Discovery tasks
quickly so as not to degrade scenario performance.

When the task has been completed (either normally or due to an abort), the port should be in a good state such that another discover
request can be issued on that port.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_DISCOVER_MODE Discovery mode information, such as scan type, count, and time
between scans.

WDI_TLV_SCAN_DWELL_TIME Scanning dwell time settings.

WDI_TLV_P2P_DISCOVERY _CHANNEL_SETTINGS X X Scan duration and list of channels to scan. When specified, the
listen settings override those specified in
WDI_TLV_SCAN_DWELL_TIME. If this list is empty, the port must
scan on all supported channels and use the listen settings from
WDI_TLV_SCAN_DWELL_TIME.

WDI_TLV_SSID X X A list of SSIDs that the port should scan for. There can be multiple
SSIDs in this list and one of them can be a wildcard. When doing an
active scan on a channel, the port must send a probe request for
each SSID in the list. If this list is empty, the port must scan for all
SSIDs.

WDI_TLV_P2P_SERVICE_NAME_HASH X X A list of Service Hash names to be queried. Required if
WDI_P2P_SERVICE_DISCOVERY_TYPE_SERVICE_NAME_ONLY or
WDI_P2P_SERVICE_DISCOVERY_TYPE_ASP2_SERVICE_NAME_ONLY is
specified.

WDI_TLV_VENDOR_SPECIFIC_IE X One or more IEs that must be included in the probe requests sent
by the port. These IEs are not used for passive scan.

WDI_TLV_P2P_SERVICE_INFORMATION_DISCOVERY_ENTRY X X An optional list of Service Information Discovery Entries to be
queried. This is required if
WDI_P2P_SERVICE_DISCOVERY_TYPE_SERVICE_INFORMATION is
specified. The driver is expected to perform a P2P service discovery
over probe request/response using the service name hash. For each
service entry that contains service information, the driver is
expected to perform an ANQP query request/response to query the
service information.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance mode and will only
receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to take
advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_ASP2_SERVICE_INFORMATION_DISCOVERY_ENTRY X X Added in Windows 10, version 1607, WDI version 1.0.21.

An optional list of ASP2 Service Information Discovery Entries to be
queried. This is required if
WDI_P2P_SERVICE_DISCOVERY_TYPE_ASP2_SERVICE_INFORMATION
is specified. The driver is expected to perform a P2P service
discovery over probe request/response using the service name
hash. For each service entry that contains service information, the
driver is expected to perform an ANQP query request/response to
query the service information.

WDI_TLV_P2P_INCLUDE_LISTEN_CHANNEL X Added in Windows 10, version 1607, WDI version 1.0.21.

Specifies whether the probe request should include the Listen
Channel attribute during discovery.

NDIS_STATUS_WDI_INDICATION_P2P_DISCOVERY_COMPLETE

NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Unsolicited indication

Requirements

OID_WDI_TASK_P2P_SEND_REQUEST_AC
TION_FRAME
Article • 03/14/2023

OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME is issued to the device to send a
Wi-Fi Direct Public Action Frame Request.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

3 5

This command is different than OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME,
which is a significantly more time-sensitive operation.

When the device receives an acknowledgment for a request frame, it shall dwell on the
same channel for 100ms and indicate any Wi-Fi Direct Public Action Frames it receives
to the host.

While the maximum timeout has not expired, the device shall retry sending the Wi-Fi
Direct Public Action frame to the remote device on the remote device’s listen channel.

The task is complete either when the local device receives an acknowledgment from the
remote device for the action frame that was sent, the timeout expires, or the host aborts
the operation. The device may indicate task completion after the same-channel dwell
time has expired.

The host may decide to abort this operation and continue/retry the Wi-Fi Direct action
frame exchange, so it is important that the device is able to abort this operation quickly.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Validation

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

For miniport drivers that support WDI version 1.1.8 and later, additional validation of the
P2P IEs on outgoing P2P Action Frames has been added. This validation addresses a
common problem in which the Configuration Timeout attribute of the P2P IE has not
been converted form units of milliseconds, as provided to the LE in
OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME and
OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME, to units of tens of milliseconds,
which is the IE format.

The Wi-Fi Direct and Wi-Fi Direct Services HLK tests will fail for drivers supporting WDI
version 1.1.8 and later if the Configuration Timeout attribute of the P2P IE is not
encoded correctly on an outgoing action frame. For WDI versions 1.1.7 and earlier, the
tests will print a warning to the test output.

The WDI interface itself is unchanged and continues to use units of milliseconds just as
it did in versions 1.1.7 and earlier.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SEND_ACTION_
REQUEST_FRAME_PARAMETERS

Parameters such as
action frame type,
device address of
target peer adapter,
and dialog token.

WDI_TLV_P2P_GO_
NEGOTIATION_REQUEST_INFO

X GO Negotiation
Request Parameters.
THe port shall only
examine this structure
if
wfdRequestFrameType
is a GO Negotiation
request.

WDI_TLV_P2P_INVITATION_REQUEST_INFO X Invitation Request
Parameters. The port
shall only examine this
structure if
wfdRequestFrameType
is an Invitation
request.

Task parameters

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_PROVISION_
DISCOVERY_REQUEST_INFO

X Provision Discovery
Request Parameters.
The port shall only
examine this structure
if
wfdRequestFrameType
is an Provision
Discovery request.

WDI_TLV_BSS_ENTRY The device discovery
entry as returned by
the Wi-Fi Direct
Discovery task from
the port.

This is provided so the
port does not need to
remember its
discovery database in
order to send Wi-Fi
Direct Action Frame
Requests to remote
Wi-Fi Direct devices
without requiring a
discovery.

WDI_TLV_VENDOR_SPECIFIC_IE X One or more IEs that
must be included in
the frame sent by the
port.

NDIS_STATUS_WDI_INDICATION_P2P_SEND_REQUEST_ACTION_FRAME_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_P2P_SEND_RESPONSE_A
CTION_FRAME
Article • 03/14/2023

OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME is issued to the IHV component to
send a Wi-Fi Direct Public Action Frame Request to a peer.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

3 5

When port receives an acknowledgment for a request frame, it shall dwell on the same
channel for 100ms and indicate any Wi-Fi Direct Public Action Frames it receives to the
host.

This task is time sensitive. The Wi-Fi Direct specification requires that sending Wi-Fi Direct
action responses are only serviced within 100 milliseconds of receiving this packet.

While the maximum timeout has not expired, the port shall retry sending the Wi-Fi Direct
to the remote device on the appropriate channel as defined by the following table. The
table defines the explicit channel requirements for where to send the packets when the
command is issued. The general rule is that the response packet shall be sent out on the
same channel as the prior request.

Response Action Frame Type Target Transmit Channel

GO Negotiation Response Local Listen Channel

GO Negotiation Confirmation Remote Listen Channel

Invitation Response Local Listen or Local GO Operational Channel

Provision Discovery Response Local Listen Channel or Remote GO Operational Channel

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

The task is complete either when local device receives an acknowledgment from the
remote device for the action frame that was sent, the timeout expires, or the host aborts
the operation. The device may indicate task completion after the same-channel dwell time
has expired.

The host may decide to abort this operation and continue/retry the Wi-Fi Direct action
frame exchange, so it is important that the device is able to abort this operation quickly.

For miniport drivers that support WDI version 1.1.8 and later, additional validation of the
P2P IEs on outgoing P2P Action Frames has been added. This validation addresses a
common problem in which the Configuration Timeout attribute of the P2P IE has not
been converted form units of milliseconds, as provided to the LE in
OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME and
OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME, to units of tens of milliseconds,
which is the IE format.

The Wi-Fi Direct and Wi-Fi Direct Services HLK tests will fail for drivers supporting WDI
version 1.1.8 and later if the Configuration Timeout attribute of the P2P IE is not encoded
correctly on an outgoing action frame. For WDI versions 1.1.7 and earlier, the tests will
print a warning to the test output.

The WDI interface itself is unchanged and continues to use units of milliseconds just as it
did in versions 1.1.7 and earlier.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_ACTION_FRAME_RESPONSE_PARAMETERS Parameters such as
action frame type,
device address of
target peer adapter,
and dialog token.

Validation

Task parameters

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_INFO X GO Negotiation
Response Parameters.
The port shall only
examine this structure
if
wfdRequestFrameType
is a GO Negotiation
Response.

WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_INFO X GO Negotiation
Confirmation
Parameters. The port
shall only examine this
structure if
wfdRequestFrameType
is a GO Negotiation
Confirmation.

WDI_TLV_P2P_INVITATION_RESPONSE_INFO X Invitation Response
Parameters. The port
shall only examine this
structure if
wfdRequestFrameType
is an Invitation
Response.

WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_INFO X Provision Discovery
Response Parameters.
The port shall only
examine this structure
if
wfdRequestFrameType
is an Provision
Discovery Response.

WDI_TLV_P2P_INCOMING_FRAME_INFORMATION Information that was
indicated from the
previously received
P2P Action Frame. The
received indication is
provided back to the
port.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_VENDOR_SPECIFIC_IE X One or more IEs that
must be included in
the frame sent by the
port.

NDIS_STATUS_WDI_INDICATION_P2P_SEND_RESPONSE_ACTION_FRAME_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_REQUEST_FTM
Article • 03/14/2023

OID_WDI_TASK_REQUEST_FTM is issued to the LE to initiate Fine Timing Measurement
(FTM) procedures with the listed BSS targets. The number of targets is less than or equal
to the value of FTMNumberOfSupportedTargets, obtained from the station attributes.

This task should be completed as soon as all the FTM sessions with the targets are
completed, the timeout has expired, or the host has aborted the operation.

When this task is completed, the driver should send an
NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE status indication that contains
a list of FTM responses for each of the targets requested.

After this task is completed, the port should be in a good state and should be ready to
process a new FTM request, because the host might immediately re-attempt the task with
a new set of targets.

If the LE maintains a station BSS list cache, it can use this cache to obtain the parameters
needed to issue FTM request to the targets and ignore the provided data. However, if the
target BSSID is not found in the cache the LE needs to use the provided data to attempt
the FTMs.

For each target, it is indicated if a Location Configuration Information (LCI) report should
be requested. If indicated, the LE should request one from the target.

TLV Type Multiple
TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_FTM_REQUEST_TIMEOUT UINT32 The
maximum
time, in
milliseconds,
to complete
the FTM.
The timeout
is set to 150
ms
multiplied
by the
number of
targets.

WDI_TLV_FTM_TARGET_BSS_ENTRY WDI_FTM_TARGET_BSS_ENTRY X A list of the
BSS targets
with which
FTM
procedures
should be
completed.

NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE

Minimum supported client Windows 10, version 1903

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_ROAM
Article • 03/14/2023

OID_WDI_TASK_ROAM requests that the adapter tries to roam from the currently
connected AP to a new one.

Object Abort capable Default priority
(host driver policy)

Normal execution
time (seconds)

Port Yes. If aborted after disassociation, it
must be followed by a dot11 reset.

4 10

The Microsoft component provides the list of preferred BSS entries that the adapter
should consider for roaming.

When this command issued, if its currently associated, the adapter would need to
disassociate from the currently connected AP and then roam to the new AP. In this case
it would first indicate disassociation for the old AP, then indicate association result for
the new AP and then complete the task.

It can also determine not to perform the roam and stay connected to the current AP. In
this case it would only complete the task without any association or disassociation
indications.

The scan and AP selection requirements for this task are same as for
OID_WDI_TASK_CONNECT.

TLV Multiple
TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CONNECT_PARAMETERS Connection parameters.

WDI_TLV_CONNECT_BSS_ENTRY X The preferred list of candidate
connect BSS entries. The port
should attempt to connect to these
BSS entries until the list is
exhausted, or the connection
completed successfully. The port
can reprioritize the entries if
needed. If the adapter has set the
Connect BSS Selection Override bit,
then it can pick a BSS that is not in
this list as long as it follows the
Allowed/Disallowed list
requirements.

NDIS_STATUS_WDI_INDICATION_ROAM_COMPLETE

NDIS_STATUS_WDI_INDICATION_ASSOCIATION_RESULT

NDIS_STATUS_WDI_INDICATION_DISASSOCIATION

NDIS_STATUS_WDI_INDICATION_FT_ASSOC_PARAMS_NEEDED

NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Unsolicited indications

Requirements

OID_WDI_TASK_SCAN
Article • 03/14/2023

OID_WDI_TASK_SCAN requests a survey of BSS networks. The port performs a scan
according to the requirements of the IEEE 802.11 specification.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be
in a clean state after
the abort.

6 (background scan)

5 (user-initiated scan)

4

A task started message containing a WDI_TLV_STATUS is indicated once the port has
started the scan and is ready to receive other commands.

Once a scan is started when enabled by LiveUpdatesNeeded, the port must provide
incremental updates (using unsolicited indications of
NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST) about discovered BSS entries. BSS
entries that had previously been discovered but were not found by the port in the
current scan should not be reported by the port. For power and performance reasons,
the port should throttle indications and send updates to the host only when it has
discovered 3 or more, or when it has discovered less than 3 entries but has not reported
them to the host for more than 500 milliseconds. After the scan is completed, if the
adapter does not manage BSS entries, it does not need to remember the BSS entries
that it has discovered. Once the scan operation has finished, the port must send the task
complete notification to the operating system and stop reporting BSS entries to the
host. The scan command is used for finding legacy (non-Wi-Fi Direct networks) and the
port should not include the Wi-Fi Direct IEs in the probe requests.

If the adapter does not manage BSS entries, the host remembers the BSS entries
reported by the port from a scan for a finite period of time. It times out its cached
entries and flushes them. If the adapter manages the BSS entries, it caches and times

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

them out. The host may send the OID_WDI_SET_FLUSH_BSS_ENTRY command to
explicitly flush the entries.

The host tracks BSS entries using their BSSID. If the port reports two BSS entries for the
same BSSID, the host overwrites one with another.

While the scan is ongoing, the port must maintain the existing connections (for example,
Infrastructure or Wi-Fi Direct). If connections already exist, the port should scan a subset
of channels at a time and in between subsets, provide the other connections access to
the medium. During the scan, the host can submit packet send requests to any port on
the adapter.

In the indicated BSS entries, the port can include device specific context information.
This context information is passed back to the device if the port is asked to connect to
that BSS entry. However, this context may be cleared by the host automatically if the
BSS entry is flushed.

The scan command can be aborted. On receiving the abort command, the port should
stop trying to find new BSS networks and complete the scan task as soon as possible.
When the task has been completed (either normally or due to an abort), the port should
be in a good state such that another scan can be issued on that port.

The adapter must not violate regulatory restrictions when performing a scan.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID BSSID of the network to scan for. If this
is the broadcast MAC address, the
station scans for all BSSIDs.

WDI_TLV_SSID X A list of SSID list that the port should
scan for. There can be multiple SSIDs
in this list and one of them can be a
wildcard. When doing an active scan
on a channel, the port must send a
probe request for each SSID in the list.
If this list is empty, the port must scan
for all SSIDs.

Task parameters

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_VENDOR_SPECIFIC_IE X One or more IEs that must be included
in the probe requests sent by the port.
These IEs are not used for passive scan.

WDI_TLV_SCAN_MODE Scan mode parameters.

WDI_TLV_SCAN_DWELL_TIME Dwell time parameters.

WDI_TLV_BAND_CHANNEL X X A list of recommended channels to
scan. The adapter can perform a scan
on a subset or superset of the channel
list as long as it meets the Maximum
Scan Time requirements. If this list is
empty, the port must scan on all
supported channels.

NDIS_STATUS_WDI_INDICATION_SCAN_COMPLETE

NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST

This notification is used by the device to tell the host about updates to the BSS entries.
It can be sent at any time.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Unsolicited indication

Requirements

OID_WDI_TASK_SEND_AP_ASSOCIATION
_RESPONSE
Article • 03/14/2023

OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE requests that the IHV component
sends an Association Response to a peer device that has recently sent an association
request.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

3 1

If the send fails for any reason, an empty
NDIS_STATUS_WDI_INDICATION_SEND_AP_ASSOCIATION_RESPONSE_COMPLETE is
expected, with the correct status included in the populated header.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_RESPONSE_PARAMETERS Association
response
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_VENDOR_SPECIFIC_IE X Additional IEs
that the port
must append to
Association
Response IE set
before sending
response to peer
adapter.

WDI_TLV_INCOMING_ASSOCIATION_REQUEST_INFO Information
about the
incoming
association
request.

WDI_TLV_WFD_ASSOCIATION_STATUS X The Status value
to set when the
association
request is
denied.

NDIS_STATUS_WDI_INDICATION_SEND_AP_ASSOCIATION_RESPONSE_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_SEND_REQUEST_ACTIO
N_FRAME
Article • 03/14/2023

OID_WDI_TASK_SEND_REQUEST_ACTION_FRAME requests that the device sends an
Action Frame Request to another device.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

3 5

This command is different from OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME,
which is a significantly more time-sensitive operation.

When the device receives an acknowledgment for a request frame, it shall dwell on the
same channel for the Post-ACK Dwell time as specified in the Task Parameters, and shall
indicate to the host any Action Frames it receives and doesn’t handle itself.

As long as the maximum timeout has not expired, the device shall retry sending the
Public Action frame to the remote device on the remote device’s listen channel.

The task is complete either when local device receives an acknowledgment from the
remote device for the action frame that was sent, the timeout expires, or the host aborts
the operation. The device may indicate task completion after the same-channel dwell
time has expired.

The host may decide to abort this operation and continue/retry the public action frame
exchange, so it is important that the device is able to abort this operation quickly.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional DescriptionTLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SEND_ACTION_FRAME_REQUEST_PARAMETERS Parameters
for sending
an Action
Frame
Request.

WDI_TLV_ACTION_FRAME_BODY The Action
Frame
body.

NDIS_STATUS_WDI_INDICATION_SEND_REQUEST_ACTION_FRAME_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_SEND_RESPONSE_ACTI
ON_FRAME
Article • 03/14/2023

OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME requests that the IHV component
sends Response Action Frames.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The port must be in a clean
state after the abort.

3 5

This task is time sensitive and must be serviced within 100 milliseconds of receiving this
packet.

While the maximum timeout has not expired, the port shall retry sending the frame to
the remote device on the specified channel.

The task is complete either when local device receives an acknowledgment from the
remote device for the action frame that was sent, the timeout expires, or the host aborts
the operation. The device may indicate task completion after the same-channel dwell
time has expired.

The host may decide to abort this operation and continue/retry the action frame
exchange, so it is important that the device is able to abort this operation quickly.

TLV Multiple
TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SEND_ACTION_FRAME_RESPONSE_PARAMETERS Parameters
for sending
an Action
Frame
Response.

WDI_TLV_ACTION_FRAME_BODY The Action
Frame
body.

NDIS_STATUS_WDI_INDICATION_SEND_RESPONSE_ACTION_FRAME_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_SET_RADIO_STATE
Article • 03/14/2023

OID_WDI_TASK_SET_RADIO_STATE is used to set the Wi-Fi radio state for the adapter.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Adapter No 1 1

The task must be completed only after the disconnect activity has been completed.

The IHV component may also send unsolicited indications about radio state changes to
the host.

Before the host turns off the radio, it disconnects all peers and stops any Group Owner
that is running. The adapter is not expected to remember the station/GO profile
information across a radio OFF/ON transition.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_RADIO_STATE_PARAMETERS The desired state of the radio.
If this set to 1, the radio is
enabled. If this is set to 0, the
radio is turned off.

NDIS_STATUS_WDI_INDICATION_SET_RADIO_STATE_COMPLETE

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

Task completion indication

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_RADIO_STATUS This indication is used to report
changes in the radio state for the adapter. This is sent both when a software radio
change is triggered by the host and when a hardware radio state change is detected by
the adapter.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Unsolicited indication

Requirements

OID_WDI_TASK_START_AP
Article • 03/14/2023

OID_WDI_TASK_START_AP requests that the IHV component configures a port to start a
Wi-Fi Direct Group Owner on the specified port.

Object Abort capable Default priority (host
driver policy)

Normal execution
time (seconds)

Port Yes. The abort must be followed
by a dot11 reset.

4 1

During initialization, the driver sets the GO on 5GHz band capability in
WDI_TLV_P2P_CAPABILITIES to indicate whether it can start the access point on the 5
GHz band.

If GO on 5 GHz band support is set, the adapter should start the AP on the Advertised
Operating channel, and if that fails, it should try the list specified in the AP band channel
list parameter. The operating system will provide a hint to the driver about whether this
AP would provide internet connectivity by setting the
DOT11_WFD_GROUP_CAPABILITY_CROSS_CONNECTION_SUPPORTED flag in
WDI_TLV_P2P_GROUP_OWNER_CAPABILITY.

If MustUseSpecifiedChannel in WDI_TLV_START_AP_PARAMETERS is specified, the AP
may return one of the following errors if it is unable to start the AP on the specified
band/channel(s).

NDIS_STATUS_DOT11_AP_CHANNEL_CURRENTLY_NOT_AVAILABLE: Unable to start the
AP on the specified channel(s) right now . Retry on the specified channel(s) later.

NDIS_STATUS_DOT11_AP_BAND_CURRENTLY_NOT_AVAILABLE: Unable to start the AP
on the specified band(s) right now. Retry on the specified band(s) later.

NDIS_STATUS_DOT11_AP_CHANNEL_NOT_ALLOWED: Unable to start the AP on the
specified channel(s) due to regulatory reasons.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_DOT11_AP_BAND_NOT_ALLOWED: Unable to start the AP on the
specified band(s) due to regulatory reasons.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SSID The SSID to be used by the
AP.

WDI_TLV_START_AP_PARAMETERS Additional parameters for
this task.

WDI_TLV_AUTH_ALGO_LIST The list of authentication
algorithms that the
connection can use.

WDI_TLV_MULTICAST_CIPHER_ALGO_LIST The list of multicast cipher
algorithms that the
connection can use.

WDI_TLV_UNICAST_CIPHER_ALGO_LIST The list of multicast cipher
algorithms that the
connection can use.

WDI_TLV_P2P_CHANNEL_NUMBER X If specified, this defines
the operating channel
determined in group
formation. This may only
be specified when the
operating mode is Wi-Fi
Direct GO.

Task parameters

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_AP_BAND_CHANNEL X X Added in Windows 10,
version 1511, WDI version
1.0.10.
Optional list of bands and
channels to start the
access point on. If
MustUseSpecifiedChannels
is set to 1, the AP can only
be started from this list. If
it is not set, this list is
meant to be a
recommendation of
channels that the firmware
can pick from, and it may
pick another channel if it is
not possible to start the
AP on any of the specified
channels.

NDIS_STATUS_WDI_INDICATION_START_AP_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Task completion indication

Requirements

OID_WDI_TASK_STOP_AP
Article • 03/14/2023

OID_WDI_TASK_STOP_AP requests that the IHV component disconnects all connected
clients on the specified port and stops beaconing and responding to probe requests. AP
configuration and MIB attributes are preserved.

Object Abort
capable

Default priority (host driver
policy)

Normal execution time
(seconds)

Port No 2 1

None

NDIS_STATUS_WDI_INDICATION_STOP_AP_COMPLETE

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Task parameters

Task completion indication

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_ABORT_TASK
Article • 03/14/2023

OID_WDI_ABORT_TASK is a property that is sent down to cancel a specific pending task.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

This command follows property semantics. It should be treated as a signal, should be handled
as quickly as possible, and should be completed independently of task completion. The IHV
component must then attempt to complete the pending task as soon as possible.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_CANCEL_PARAMETERS Information for the command
that is being cancelled.

Contains a status of NDIS_STATUS_SUCCESS. There is no additional payload.

Original input task command:

Field Subfield Type Value

NDIS_OID_REQUEST Oid NDIS_OID OID(WDI_TASK_SCAN)

--- InputBufferLength UINT32 0x210 (example)

--- InformationBuffer PVOID Pointer to memory block containing
WDI_MESSAGE_HEADER + TLV payload

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model
is in maintenance mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver
model released in Windows 11. We recommend that you use WiFiCx to take advantage of
the latest features.

Command parameters

Command result

Examples

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Field Subfield Type Value

WDI_MESSAGE_HEADER PortId UINT16 0x0001 (example)

--- Reserved UINT16 N/A

--- WiFiStatus NDIS_STATUS N/A

--- TransactionId UINT32 0x1111 (example)

--- IhvSpecificId UINT32 N/A

TLV Payload TLV Payload Various Payload data

Abort task input command (with message header):

Field Subfield Type Value

NDIS_OID_REQUEST Oid NDIS_OID OID(WDI_ABORT_TASK)

--- InputBufferLength UINT32 sizeof(WDI_MESSAGE_HEADER) +
sizeof(WDI_TLV_CANCEL_PARAMETERS)

--- InformationBuffer PVOID Pointer to memory block containing
WDI_MESSAGE_HEADER + TLV payload

WDI_MESSAGE_HEADER PortId UINT16 0x0001 (example)

--- Reserved UINT16 N/A

--- WiFiStatus NDIS_STATUS N/A

--- TransactionId UINT32 0x2222 (example)

--- IhvSpecificId UINT32 0

WDI_TLV_CANCEL_PARAMETERS OriginalTaskOid NDIS_OID OID(WDI_TASK_SCAN)

--- OriginalPortId UINT16 0x0001 (example)

--- OriginalTransactionId UINT32 0x1111 (example)

Abort task command result:

Field Subfield Type Value

NDIS_OID_REQUEST Oid NDIS_OID OID(WDI_TASK_SCAN)

--- OutputBufferLength UINT32 sizeof(WDI_MESSAGE_HEADER)

--- InformationBuffer PVOID Pointer to memory block containing
WDI_MESSAGE_HEADER

WDI_MESSAGE_HEADER PortId UINT16 0x0001 (example)

Field Subfield Type Value

--- Reserved UINT16 N/A

--- WiFiStatus NDIS_STATUS NDIS_STATUS_SUCCESS

--- TransactionId UINT32 0x2222 (example)

--- IhvSpecificId UINT32 N/A

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_GET_ADAPTER_CAPABILITIES
Article • 03/14/2023

OID_WDI_GET_ADAPTER_CAPABILITIES is a read-only property that is issued from the host to the
adapter during initialization and requests the adapter’s capabilities.

Scope Set serialized with task Normal execution time (seconds)

Adapter Set not supported 1

No additional parameters. The data in the header is sufficient.

If the adapter supports Wi-Fi Direct, both WDI_TLV_AP_ATTRIBUTES and
WDI_TLV_P2P_ATTRIBUTES must be specified.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_COMMUNICATION_CONFIGURATION_ATTRIBUTES X Host-adapter communication
protocol configuration
attributes.

WDI_TLV_INTERFACE_ATTRIBUTES Interface attributes.

WDI_TLV_STATION_ATTRIBUTES Station attributes.

WDI_TLV_AP_ATTRIBUTES X Access point attributes.

WDI_TLV_VIRTUALIZATION_ATTRIBUTES X Virtualization attributes.

WDI_TLV_P2P_ATTRIBUTES X The Wi-Fi Direct attributes.

WDI_TLV_DATAPATH_ATTRIBUTES X Datapath attributes.

WDI_TLV_BAND_INFO X X Band information.

WDI_TLV_PHY_INFO X X PHY information.

WDI_TLV_PM_CAPABILITIES X Power management
capabilities.

WDI_TLV_COUNTRY_REGION_LIST X Country or region codes.

WDI_TLV_RECEIVE_COALESCING_CAPABILITIES X Hardware assisted receive
filter capabilities.

Get property parameters

Get property results

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_TCP_OFFLOAD_CAPABILITIES X TCP/IP offload capabilities.

WDI_TLV_SUPPORTED_GUIDS X X Added in Windows 10, version
1607, WDI version 1.0.21.

A list of GUIDs that are passed
on to NDIS when WDI is
queried for
OID_GEN_SUPPORTED_GUIDS.

WDI_TLV_OS_POWER_MANAGEMENT_FEATURES Added in Windows 10, version
1803, WDI version 1.1.6.

Used to enable advanced OS
power management features.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_GET_AUTO_POWER_SAVE
Article • 03/14/2023

OID_WDI_GET_AUTO_POWER_SAVE gets the power save state of the port.

Scope Set serialized with task Normal execution time (seconds)

Port Not applicable 1

There is a trade-off between power saving and latency. When auto power save mode is
set to be enabled with the OID_WDI_SET_CONNECTION_QUALITY command, the
firmware tries to interact with the connected access point to go to power save mode as
much as appropriate to save power. The firmware is also responsible for detecting if the
connected access point confirms to the 802.11 specification and follows the power save
mode protocol. If the access point does not conform (does not support power save
mode correctly), the firmware should not go into power save mode, even when Auto
Power Save is set to enabled. When Auto Power Save is set to disabled, the firmware
focuses on low latency of sending and receiving packets. Examples of this are when
streaming mode is on, and when the system is using AC power so low latency is
preferred to saving power.

No additional parameters. The data in the header is sufficient.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_GET_AUTO_POWER_SAVE Auto power save
information.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Get property parameters

Get property results

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_GET_BSS_ENTRY_LIST
Article • 03/14/2023

OID_WDI_GET_BSS_ENTRY_LIST is used to ask the adapter to indicate the list of BSS
networks that have been cached by the port.

Scope Set serialized with task Normal execution time (seconds)

Port Set not supported 1

This is only used for an adapter that perform BSS list caching. When acting as a client,
the port must report the BSS entry for the access point. In addition, if the port is
performing background scans, it should report BSS entries that it has discovered in its
scan.

When this request is received by the adapter, it must send
NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST indications to the Microsoft
component. These indications must contain the BSS entries that match the Get
parameters. The adapter can send one or more
NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST indications, but they must be
completed before the property completes.

The Microsoft component uses the list of indicated entries to report the BSS list to the
operation system. It is also used to populate parameters for roam and connect tasks.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_SSID The SSID that the host needs the BSS
list update for.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Get property parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

No additional data. The data in the header is sufficient.

NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Get property results

Unsolicited indication

Requirements

OID_WDI_GET_NEXT_ACTION_FRAME_DI
ALOG_TOKEN
Article • 03/14/2023

OID_WDI_GET_NEXT_ACTION_FRAME_DIALOG_TOKEN requests the DialogToken to be
used in the next Action frame.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

No additional parameters. The data in the header is sufficient.

TLV Multiple TLV instances allowed Optional Description

WDI_TLV_NEXT_DIALOG_TOKEN A dialog token.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Get property parameters

Get property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_GET_PM_PROTOCOL_OFFLOA
D
Article • 03/14/2023

OID_WDI_GET_PM_PROTOCOL_OFFLOAD requests a list of protocol offloads for power
management.

Scope Set serialized with task Normal execution time (seconds)

Port Not applicable 1

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_PM_PROTOCOL_OFFLOAD_GET Protocol
offload ID.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv4ARP X IPv4 ARP
protocol
offload
parameters.

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv6NS X IPv6 NS
protocol
offload
parameters.

WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY X RSN Rekey
protocol
offload
parameters.

Get property parameters

Get property results

Requirements

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD

OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD

See also

OID_WDI_GET_RECEIVE_COALESCING_M
ATCH_COUNT
Article • 03/14/2023

OID_WDI_GET_RECEIVE_COALESCING_MATCH_COUNT requests the number of packets
that have matched receive filters on the network port.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

No additional parameters. The data in the header is sufficient.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_COALESCING_FILTER_MATCH_COUNT The number of
packets that have
matched receive
filters on the network
port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Get property parameters

Get property results

Requirements

OID_WDI_GET_STATISTICS
Article • 03/14/2023

OID_WDI_GET_STATISTICS requests that the IHV component returns MAC and PHY layer
statistics.

Scope Set serialized with task Normal execution time (seconds)

Port Set not supported 1

The MAC statistics must all be maintained per port. PHY statistics must also be
maintained per port unless exempted. If PHY statistics cannot be maintained per port (as
allowed by exemption), the statistics can be maintained per "channel" (PHY statistics for
two ports operating on the same channel can be combined).

No additional parameters. The data in the header is sufficient.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_MAC_STATISTICS X Per-peer MAC
statistics.

WDI_TLV_PHY_STATISTICS X Per-port PHY
statistics.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Get property parameters

Get property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_GET_SUPPORTED_DEVICE_SER
VICES
Article • 03/14/2023

OID_WDI_GET_SUPPORTED_DEVICE_SERVICES queries the IHV driver for all of its
supported device services (with each device service identified by a GUID). If no device
services are supported, LE should fail the command with STATUS_NOT_SUPPORTED.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

WLAN will provide a pipeline for any user mode component (UMDF driver or UM
service) to communicate with the IHV WLAN driver. Among other things, this pipeline
can be used for engaging SAR scenarios by being the platform to send information
between the OEM sensors and the IHV firmware. The definition/format of the data to be
sent to the IHV/LE driver and what the commands must do is not specified by UE. All
contracts with the IHV must be defined by the OEM, and the device service WDI
commands (and the corresponding user mode WLAN APIs) will just serve as a generic
pipeline.

No additional parameters. The data in the header is sufficient.

TLV Multiple
TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Get property parameters

Get property results

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_DEVICE_SERVICE_GUID_LIST The list of device services
that the underlying IHV
driver exposes to UM
components.

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

Header Dot11wdi.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/wdi-tlv-device-service-guid-list

OID_WDI_IHV_REQUEST
Article • 03/14/2023

OID_WDI_IHV_REQUEST is used to forward information that an IHV extensibility module
has sent to the miniport.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

This command is not serialized with any tasks. It is serialized with other properties and
with the M1-M3 of a task.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_IHV_DATA X The information from the IHV
extensibility module.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_IHV_DATA X The response to be sent to the IHV
extensibility module. The data value is
forwarded as-is to the IHV extensibility
module.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Command parameter

Response result

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_SET_ADAPTER_CONFIGURATION
Article • 03/14/2023

OID_WDI_SET_ADAPTER_CONFIGURATION configures the adapter. It is an optional property and can only be sent
before any ports are created.

Scope Set serialized with task Normal execution time (seconds)

Adapter Yes 1

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CONFIGURED_MAC_ADDRESS X MAC address.

WDI_TLV_UNREACHABLE_DETECTION_THRESHOLD X Unreachable detection threshold.

WDI_TLV_P2P_GO_INTERNAL_RESET_POLICY X Policy used by the firmware for operating channel
selection after a Wi-Fi Direct GO Reset is
stopped/restarted.

WDI_TLV_BAND_ID_LIST X List of band IDs.

WDI_TLV_LINK_QUALITY_BAR_MAP Mapping of signal quality to Wi-Fi signal strength
bars. This field should be ignored by the adapter and
it should use the behavior specified in
NDIS_STATUS_WDI_INDICATION_LINK_STATE_CHANGE
for doing Link Quality notifications.

WDI_TLV_ADAPTER_NLO_SCAN_MODE X Indicates whether the NLO scans should be performed
in active or passive mode.

WDI_TLV_PLDR_SUPPORT Added in Windows 10, version 1511, WDI version
1.0.10.
Specifies if PLDR is supported.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance
mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We
recommend that you use WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_ADD_CIPHER_KEYS
Article • 03/14/2023

OID_WDI_SET_ADD_CIPHER_KEYS adds or overwrites cipher keys in the key table of a
port. This is a set-only property.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

Cipher keys that are marked as Static should not be cleared on a roam. They can only be
cleared on a OID_WDI_TASK_DOT11_RESET or if they are overwritten with a new
OID_WDI_SET_ADD_CIPHER_KEYS.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_SET_CIPHER_KEY_INFO X The cipher keys to be added or
overwritten in the key table of
the port.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Dot11wdi.h

OID_WDI_SET_DELETE_CIPHER_KEYS

See also

OID_WDI_SET_ADD_PM_PROTOCOL_OFF
LOAD
Article • 03/14/2023

OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD adds a list of one or more protocol
offloads for power management.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

This property provides information to enable the device/firmware to implement these
protocols while the main CPU is asleep. In this state, the firmware and device handles
the offloaded tasks without waking up the host.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv4ARP X IPv4 ARP
protocol
offload
parameters.

WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv6NS X IPv6 NS
protocol
offload
parameters.

WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY X RSN Rekey
protocol
offload
parameters.

No additional data. The data in the header is sufficient.

Set property parameters

Set property results

Requirements

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_GET_PM_PROTOCOL_OFFLOAD

OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD

See also

OID_WDI_SET_ADD_WOL_PATTERN
Article • 03/14/2023

OID_WDI_SET_ADD_WOL_PATTERN adds a wake-on-LAN (WOL) pattern to the firmware.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

The host defines the packet pattern types to add to the firmware. The firmware detects
matching packets that arrive in Dx. If detected, the firmware asserts the wake interrupt.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_WAKE_PACKET_BITMAP_PATTERN X X WOL
pattern
information.

WDI_TLV_WAKE_PACKET_MAGIC_PACKET X Pattern ID
of the
magic
packet.

WDI_TLV_WAKE_PACKET_IPv4_TCP_SYNC X X WOL IPv4
TCP sync
packet
information.

WDI_TLV_WAKE_PACKET_IPv6_TCP_SYNC X X WOL IPv4
TCP sync
packet
information.

WDI_TLV_WAKE_PACKET_EAPOL_REQUEST_ID_MESSAGE X WOL
pattern ID
of a EAPOL
request ID
message.

Set property parameters

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_REMOVE_WOL_PATTERN

Set property results

Requirements

See also

OID_WDI_SET_ADVERTISEMENT_INFOR
MATION
Article • 03/14/2023

OID_WDI_SET_ADVERTISEMENT_INFORMATION configures the Information Elements
(IEs) and other advertisement settings to be included in the probe request, probe
response, and beacons sent by the specified port. This request is only applicable to Wi-
Fi Direct ports.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

When this command is received by the device, it shall update any relevant Wi-Fi Direct
IEs, and append any necessary additional IEs in future outgoing messages sent by this
port.

WDI can provide a pre-configured set of prefix hashes for the advertised services. If a
peer sends a hash, the driver first tries to match with a service name hash as defined in
WDI_TLV_P2P_ADVERTISED_PREFIX_ENTRY. If a match is found from the prefix hashes,
the driver searches for the service(s) in WDI_TLV_P2P_ADVERTISED_SERVICE_ENTRY
that have the prefix and responds with those. If a match is not found, the driver tries to
match the requested service name hash in
WDI_TLV_P2P_ADVERTISED_SERVICE_ENTRY.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_ADDITIONAL_IES X Additional IEs to
be included.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_DEVICE_INFO X Wi-Fi Direct
device
information.

WDI_TLV_P2P_DEVICE_CAPABILITY X Wi-Fi Direct
device
capabilities.

WDI_TLV_P2P_GROUP_OWNER_CAPABILITY X Wi-Fi Direct
Group Owner
capability
information

WDI_TLV_P2P_SECONDARY_DEVICE_TYPE_LIST X List of Wi-Fi
Direct secondary
device types.

WDI_TLV_P2P_ADVERTISED_SERVICES X Wi-Fi Direct
advertised
services.

No additional data. The data in the header is sufficient.

NDIS_STATUS_WDI_INDICATION_ACTION_FRAME_RECEIVED The adapter must indicate
ANQP Action Frame requests for the Service Information if it receives an ANQP request
(or any other unknown action frame) from a peer.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property results

Unsolicited indication

Requirements

OID_WDI_SET_ASSOCIATION_PARAMET
ERS
Article • 03/14/2023

OID_WDI_SET_ASSOCIATION_PARAMETERS specifies parameters that the adapter can
use during association to a set of BSSIDs.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

This command replaces the previously configured list of BSSID-specific association
parameters.

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_CONNECT_BSS_ENTRY X The BSS entries and
parameters.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Dot11wdi.h

OID_WDI_SET_CLEAR_RECEIVE_COALESC
ING
Article • 03/14/2023

OID_WDI_SET_CLEAR_RECEIVE_COALESCING is used by the host to remove a packet
filter for packet coalescing.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_SET_CLEAR_RECEIVE_COALESCING The packet filter
ID to be
removed.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_RECEIVE_COALESCING

Set property parameters

Set property results

Requirements

See also

OID_WDI_SET_CONNECTION_QUALITY
Article • 03/14/2023

OID_WDI_SET_CONNECTION_QUALITY provides a hint to the IHV component to enforce connection quality for a
given virtualized port. This hint allows the port to optimize channel usage in different scenarios.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

Note This property specifies data path quality of service hints, which may cause conflicts with other properties or
tasks that are issued to the adapter.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_CONNECTION_QUALITY_PARAMETERS The desired Wi-Fi connection quality hint.

WDI_TLV_LOW_LATENCY_CONNECTION_QUALITY_PARAMETERS X The behavior for low latency connection
quality. This is only required if the connection
quality is set to
WDI_CONNECTION_QUALITY_LOW_LATENCY.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance
mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We
recommend that you use WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_connection_quality_hint
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_DEFAULT_KEY_ID
Article • 03/14/2023

OID_WDI_SET_DEFAULT_KEY_ID sets the default key ID for packet transmission on a port.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_DEFAULT_TX_KEY_ID_PARAMETERS The default key ID
for packet
transmission on the
port.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_DELETE_CIPHER_KEYS
Article • 03/14/2023

OID_WDI_SET_DELETE_CIPHER_KEYS deletes cipher keys from the device's cipher key
table.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_DELETE_CIPHER_KEY_INFO X The cipher keys to be
deleted from the device's
key table.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_ADD_CIPHER_KEYS

See also

OID_WDI_SET_ENCAPSULATION_OFFLO
AD
Article • 03/14/2023

OID_WDI_SET_ENCAPSULATION_OFFLOAD is sent by the OS to indicate that the lower
edge driver (LE) should start doing the TCP Checksum/LSO offloads.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

When this message is received, the LE should indicate its current encapsulation offload
configuration with NDIS_STATUS_WDI_INDICATION_TASK_OFFLOAD_CURRENT_CONFIG.
For receive operations, the LE should not start the checksum offload until after it
receives the OID_WDI_SET_ENCAPSULATION_OFFLOAD message.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V4_PARAMETERS Specifies if
IPv4
offloading
should be
started.

WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V6_PARAMETERS Specifies if
IPv6
offloading
should be
started.

No additional data. The data in the header is sufficient.

Set property parameters

Set property results

Requirements

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_END_DWELL_TIME
Article • 03/14/2023

OID_WDI_SET_END_DWELL_TIME is typically sent during an Action Frame exchange,
either when WDI has to wait some time before sending a followup Action Frame, or
when the protocol sequence is complete. This command can be sent on the device port
or station port.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

On receipt of this command, the firmware can choose to stop dwelling on the channel
that had been specified when WDI sent the command to send the Action Frame. If the
Dwell Time had already expired, the firmware should ignore this command.

No additional parameters. The data in the header is sufficient.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_FAST_BSS_TRANSITION_P
ARAMETERS
Article • 03/14/2023

OID_WDI_SET_FAST_BSS_TRANSITION_PARAMETERS is sent in response to
NDIS_STATUS_WDI_INDICATION_FT_ASSOC_PARAMS_NEEDED. It has the parameters
required to send the (Re)Association request. The command is sent to the driver as a
direct OID.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_STATUS If this status is success, the rest of the fields (RSNIE,
MDE, FTE) are present. This indicates that there are
no problems or errors with the Authentication
response (for example, MIC check failure) and the
IHV can proceed with the reassociation request.

WDI_TLV_FT_RSNIE X The RSN IE byte blob.

WDI_TLV_FT_MDE X The MDE byte blob.

WDI_TLV_FT_FTE X The FTE byte blob.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_SET_FLUSH_BSS_ENTRY
Article • 03/14/2023

OID_WDI_SET_FLUSH_BSS_ENTRY is sent to the device to flush the list of BSS entries
maintained by the adapter. This command can only be sent on the station port.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

No additional parameters. The data in the header is sufficient.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_MULTICAST_LIST
Article • 03/14/2023

OID_WDI_SET_MULTICAST_LIST specifies the multicast address list for a given port. This
command can be set at any time.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

The IHV component should only fail the command if the list size exceeds the limit
specified in WDI_TLV_INTERFACE_ATTRIBUTES.

After the host enables multicast packet filtering on the port using
OID_WDI_SET_RECEIVE_PACKET_FILTER, the device must indicate received multicast
frames with a destination address matching an address in the port’s multicast list to the
host. The device must clear the multicast list as part of processing of
OID_WDI_TASK_DOT11_RESET. When the command is sent with no multicast list
specified, the driver must clear its multicast list. In this case, no packets should be
indicated up unless OID_WDI_SET_RECEIVE_PACKET_FILTER has the
WDI_PACKET_FILTER_ALL_MULTICAST bit set.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_MULTICAST_LIST X List of multicast MAC addresses.
The list must not be empty.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property parameters

Set property results

Requirements

OID_WDI_SET_NEIGHBOR_REPORT_ENT
RIES
Article • 03/14/2023

OID_WDI_SET_NEIGHBOR_REPORT_ENTRIES sends the list of neighbor reports received
from the AP to the LE. This is sent as soon as the UE receives the neighbor report from
the currently connected AP.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

TLV Multiple TLV instances
allowed

Optional Description

WDI_TLV_NEIGHBOR_REPORT_ENTRY X The list of
neighbor reports.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_NETWORK_LIST_OFFLOA
D
Article • 03/14/2023

OID_WDI_SET_NETWORK_LIST_OFFLOAD sets a list of preferred SSIDs for the firmware
to scan for APs.

Scope Set serialized with task Normal execution time (seconds)

Primary port Yes 1

There are two types of Network List Offload (NLO). One type is offload to NICs on
Always On Always Connected (AOAC) systems. The other is Instant Connect NLO which,
in Windows 8 and Windows 8.1, was only used for non-AOAC systems to quickly
reconnect Wi-Fi at resume from hibernation. For Instant Connect, the list is sent down
before the system goes into hibernation. Going forward, Instant Connect is used for
resume from hibernation on AOAC systems that support it.

WDI handles Instant Connect NLO and uses a combination of targeted scans to fulfill the
request from the OS. IHV drivers do not need to handle this Instant Connect OS request.

When the OS resumes from hibernation, the OS sends an Instant Connect NLO. WDI
makes a union of all channel hints for a targeted scan OID. IHV drivers should support
such a targeted scan as defined in OID_WDI_TASK_SCAN. The following section applies
to Network List Offload to capable NICs on AOAC systems.

The OS does not request periodic background scans when in CS. A NLO scan is the
preferred method in CS because the screen is off when users do not need to see all

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Instant Connect

Network List Offload

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

visible APs. SSIDs that users have auto-connect profiles set to auto-connect are the only
useful APs. The list of SSIDs to offload from the OS has a preferred authentication and
cipher pair, and up to four channel hints. When the list has a least one SSID, the
firmware should start to do a NLO scan autonomously, following the schedule of fast
scan and slow scan phases. The WDI compliant driver translates the operating system
request to a firmware request. The firmware is expected to do a NLO scan according the
schedule for the APs. The APs should support the preferred authentication and cipher
pair associated with the SSIDs.

The request to the firmware has a list of channel hints for all offload SSIDs. The WDI
compliant driver combines them for the firmware. For example, if SSID1[auth1, cipher1]
has channel hints of 1 and 6, and SSID2[auth2, cipher2] has channel hints of 6 and 11,
the request to the firmware is a list of SSIDs { SSID1[auth1, cipher1], SSID2[auth2,
cipher2] } and list of channels to scan { 1, 6, 11 }.

In each scan period, the firmware scans for SSIDs that match the criteria on the list of
channels, but not necessary constrained on the list of channels. The discovered AP
information should be cached for the host to retrieve. The firmware indicates NLO
discovery when at least one BSSID matches the SSID, algorithm, and cipher, but the
channel match is not required.

Each OID_WDI_SET_NETWORK_LIST_OFFLOAD that the UE sends to the LE represents a
fresh NLO scan request. Any previous such requests or states are renewed. LE scans for
NLO and only indicates once for a found AP per request. The UE replumbs (12 times; this
is subject to change) NLO at Dx transitions if a found AP is not connected successfully
(due to reasons such as: an AP is found but devices move around, the AP signal fades,
and the connection fails; or prolong EAP authentication fails partway through). The LE
and firmware should delay the NLO scan schedule based on the delay configuration in
WDI_TLV_NETWORK_LIST_OFFLOAD_CONFIG. This is a number that the UE uses to
conform to the schedule of the operating system's original NLO command.

The default scan type for NLO is WDI_SCAN_TYPE_AUTO. When actively scanning a
channel, the firmware should use the wildcard SSID. Visible APs should be compared
with SSIDs on the offload list to decide a match. This is to reduce privacy exposure.

Indicating NLO discovery has two cases.

1. When the NIC is in D2, it must do the following steps.

Trigger the wake interrupt and wait for set power to D0 before continuing to
the following steps.
Indicate that the firmware woke the stack with the reason of NLO discovery.
Return D0 command.

Indicate NLO discovery with all of the found AP information.

2. When the NIC is in D0, it must do the following step.

Indicate NLO discovery with all of the found AP information.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_NETWORK_LIST_OFFLOAD_PARAMETERS The NLO
parameters.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property parameters

Set property results

Requirements

OID_WDI_SET_P2P_LISTEN_STATE
Article • 03/14/2023

OID_WDI_SET_P2P_LISTEN_STATE sets the Wi-Fi Direct listen state on the port.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

There are different levels of listen state, and the port is expected to adhere to
concurrency requirements across ports.

This property is only applicable to virtualized Wi-Fi Direct Adapter Port interfaces.

When the listen state is active, the port is expected to park the radio on a social channel
for a certain period of time.

If the adapter has a virtualized port operating on a non-social channel, the port may
become discoverable on that channel. If this behavior is used, the port must be very
highly available to allow other adapters to quickly discover it when in the scan phase of
Wi-Fi Direct discovery. This is provided as a trade-off to avoid channel hopping in low
latency scenarios.

Note This property specifies a radio time slice requirement to the port, which may
cause conflicts with other properties or tasks issued to the port.

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_LISTEN_STATE Desired listen state.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER X The host’s desired listen channel
when enabling the Wi-Fi Direct
listen state. If this option is not
specified, the port may select a
listen channel on its own.

WDI_TLV_P2P_LISTEN_DURATION Cycle duration and listen time.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property results

Requirements

OID_WDI_SET_P2P_START_BACKGROUND_DISCOVER
Y
Article • 03/14/2023

OID_WDI_SET_P2P_START_BACKGROUND_DISCOVERY instructs the adapter to periodically perform Wi-Fi Direct
discovery in the background

Scope Set serialized with task Normal execution time (seconds) Affects data throughput/latency

Port No 1 Yes

The adapter is required to scan the specified channels at regular intervals and be able to find a device that
becomes discoverable within the device visibility timeout (typically 5 minutes). The behavior is similar to the
regular Wi-Fi Direct Discovery scan (as defined in OID_WDI_TASK_P2P_DISCOVER), but it is not time-bound, and
the adapter may schedule the scans at some later point in time. The adapter must perform at least one scan within
each device visibility timeout. If the device visibility timeout is 0, the adapter should continue to scan regularly
using its own cycle time. If a DISCOVER or SCAN task request is made during this time, the adapter should suspend
the background discovery for the duration of the task and continue when the task is finished. Upon completing a
background scan, the device should send the NDIS_STATUS_WDI_INDICATION_P2P_DISCOVERY_COMPLETE
indication (with transaction ID equal to 0) to let the operating system know that it has completed a scan. The
adapter must send this indication every time it completes a background scan.

If the channel list is provided, the adapter should only scan on the specified channels. Otherwise, it should scan all
channels. If the firmware happened to discover a device outside of the specified channels, it should still send the
information to the operating system.

When Listen Duration and channels (WDI_TLV_P2P_DISCOVERY_CHANNEL_SETTINGS) are specified, they refer to
the listen times for the remote devices. Based on all the values of Listen Duration and channels, the adapter needs
to come up with a schedule to scan the requested channels in the most efficient manner. The operating system
may also specify multiple instances of Listen Duration and channels. In this case, the adapter should first come up
with the scan schedule for those entries which have non-zero values of Listen Duration and Channel list. Then, the
adapter should use default values in the following cases:

1. If the Listen duration is 0, the adapter should use the default scan times for the specified channels.
2. If the channel list is empty, the adapter should scan all of the channels in that band using the listen and cycle

times specified for that band. The scan times would not apply to any channels that have separate listen
durations specified by the operating system.

When the NIC is in D0, the adapter indicates the responses to the probe requests for the specific service name(s)
as NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST notifications to the operating system. WDI caches the
response information for the OS for the higher layer services, and notifies them as necessary.

When the NIC is in D2, it suspends background discovery until it goes back to D0.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance
mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We
recommend that you use WiFiCx to take advantage of the latest features.

Set property parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_BACKGROUND_DISCOVER_MODE Wi-Fi Direct Background Discover Mode parameters.

WDI_TLV_P2P_DISCOVERY_CHANNEL_SETTINGS X X List of recommended channels to scan.

WDI_TLV_P2P_DEVICE_FILTER_LIST X List of Wi-Fi Direct devices and Group Owners to search for
during Wi-Fi Direct device discover.

WDI_TLV_P2P_SERVICE_NAME_HASH X X List of Service Hash names to be queried. This is required if
WDI_P2P_SERVICE_DISCOVERY_TYPE_SERVICE_NAME_ONLY
is specified.

WDI_TLV_VENDOR_SPECIFIC_IE X One or more IEs that must be included in the probe
requests sent by the port.

No additional data. The data in the header is sufficient.

NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property results

Unsolicited indication

Requirements

OID_WDI_SET_P2P_STOP_BACKGROUND
_DISCOVERY
Article • 03/14/2023

OID_WDI_SET_P2P_STOP_BACKGROUND_DISCOVERY instructs the adapter to cancel the
background discovery and stop any active scans in progress.

Scope Set serialized with
task

Normal execution time
(seconds)

Affects data
throughput/latency

Port No 1 No

No additional parameters. The data in the header is sufficient.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_P2P_WPS_ENABLED
Article • 03/14/2023

OID_WDI_SET_P2P_WPS_ENABLED requests that the adapter enables or disables Wi-Fi
Protected Setup (WPS) on the NIC.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_P2P_WPS_ENABLED Specifies whether to enable
or disable WPS.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_POWER_STATE
Article • 03/14/2023

OID_WDI_SET_POWER_STATE sets the power state of the device.

Scope Set serialized with task Normal execution time (seconds)

Adapter Yes 10

A NIC comes up in D0 (device fully powered) when the system boots or when the NIC is
plugged in to the system. When the condition is right (on AOAC platforms, this is when
NIC Active reference is 0 on the NIC), the operating system prepares and puts the NIC in
D0. When users are not present, the host goes to low power state to save power. The
host may set the NIC into a lower power state where the NIC can keep connections
autonomously for the host. The NIC wakes up the host for external events that the host
expresses interest in.

OID_WDI_SET_POWER_STATE sets the device into D0, D1, D2, and D3. The D states are
device class and platform specific. A Wi-Fi NIC usually supports only a subset of the
states. For example, for Wi-Fi devices on SD bus, the supported set consists of D0, D2,
and D3. The meaning of D2 and D3 are device-specific as well. For a Wi-Fi NIC on SDIO
bus, it is defined to be able to wake from D2, but in D3, the NIC is halted.

A PCIe bus NIC supports D0 and D3, where D3 can be D3Hot or D3Cold. On the host
software stack, there is only D3. D3hot or D3Cold depends on the host scenarios and
underlying platform support. For example, in connected standby scenarios, the host
offloads wake events to the NIC and sets the NIC in D3, which is D3hot with platform
support to keep the NIC powered so that the NIC can watch for external events for the
host. In the hibernation scenario, the host sets the NIC in D3 and the platform turns off
the power to the NIC so the NIC does not use any power.

For an AOAC system that supports hibernation, the following is a summary of important
system power states. On an AOAC system, a system sleep state is a connected standby
state. This is the state where NICs are set to low power (D2 for SDBus NICs, D3 for PCIe
NICs) and armed to wake. If the driver is suspended to the hard drive, it is the driver’s
responsibility to resume firmware states as the driver does not go through
reinitialization again (for example, DriverEntry is not called).

Sleep Hibernation Hybrid
shutdown

Full shutdown

Sleep Hibernation Hybrid
shutdown

Full shutdown

Request by Power button
(default)

shutdown /h shutdown /s
/hybrid

shutdown /s

UI Start > Power >
Sleep

-- Start > Power >
Shutdown

--

System state Connected
standby

Hibernation Hybrid shutdown Power off

Driver state Alive - armed to
wake

Suspend to hard
drive

Suspend to hard
drive

Power off

For an AOAC system where hibernation is not required or supported, here is the
summary of driver power states.

Sleep Full shutdown

Request by Power button (default) shutdown /s

UI Start > Power > Sleep Start > Power > Shutdown

System state Connected standby Power off

Driver state Alive - armed to wake Power off

Set power commands cannot fail. The firmware should never fail such commands. The
Microsoft component ensures that there are no outstanding tasks or commands when it
sends any set power command. While the set power command is outstanding, the
Microsoft component also guarantees that no other commands or tasks are sent to the
IHV component.

Power
state

Description

D0 (fully
powered)

The NIC is fully powered and ready to receive commands. The host never requests
changes between low power states. For example, if the host wants to set the NIC
power state from D2 to D3, it first sets the power state to D0, and then to D3.

D2 and
armed
for wake
(SDBus
NICs)

In D2, the host never sends requests to the firmware except the Set D0 command. See
later sections in this topic for relevant flow charts.

Power
state

Description

D3:
power
off
(SDBus
NICs),
armed
for wake
(PCIe
NICs)

For SDBus NICs, this state is powered off. For PCIe bus NICs, the operating system
may arm NICs for wakes (D3Hot) or may turn off the power (D3Cold). Note that from
the driver stack perspective, there is only D3 state. Multiple components are involved
to enable the D3Hot state, including the ACPI table and the processing of NDIS
system power IRPs that come from the operating system depending on end-user
actions or inactions, such as hibernation, Connection Standby, and hybrid shutdown.

Dx for
non-
default
ports

Dx is either D2 or D3. When the NIC is put into Dx all non-default ports are reset,
which means all non-default ports are disconnected in Dx.

TLV Multiple TLV
instances
allowed

Optional Description

WDI_TLV_POWER_STATE The power state.
This applies to the
primary port.

WDI_TLV_ENABLE_WAKE_EVENTS X This field may only
appear when the
NIC is being put
into low power
and is armed to
wake on any of
the specified
events (such as D2
on SD IO).

WDI_TLV_SET_POWER_DX_REASON X The set power
reason.

Set property parameters

Set property results

TLV Multiple
TLV
instances
allowed

Optional DescriptionTLV Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ADAPTER_RESUME_REQUIRED X If the value is true, it signals
to the OS that the firmware
needs assistance in resuming
its context. This should only
occur when the driver is
suspended to storage. The
IHV component must reset
the software state because
the operating system issues a
series of Wi-Fi commands to
bring the firmware context
and IHV component context
up to date.

A NIC specifies the set of events that it can detect to wake the stack. The operating
system plumbs down a subset or full set of the events to the NIC with the low power
command. Some wake event parameters are set much earlier than the Dx command.
Others are set right before the Dx command to the firmware. All events only become
enabled with the Dx command.

In this interface, the event that is set to enabled is plumbed down in the optional
WDI_TLV_ENABLE_WAKE_EVENTS TLV as part of the OID_WDI_SET_POWER command
for device power state Dx. The TLV is absent if the operating system does not want to
arm the NIC to wake.

When the firmware receives a Dx command with WDI_TLV_ENABLE_WAKE_EVENTS, it
may detect a wake event before it completes the Dx command. It should buffer the
event, finish processing the command, and then assert the wake interrupt.

Each and every wake by the Wi-Fi NIC should be followed by a wake reason for why the
NIC wakes the stack. A NIC wakes the stack by asserting the wake interrupt line, which is
typically serviced by the bus or ACPI methods. The methods wake the CPU and required
components to handle the wake event, and complete the Wi-Fi Wait Wake IRP for the
stack. Subsequently, the operating system issues a D0 request to the driver and
firmware. This request is a power OID to the driver that sends a D0 command to the
firmware. The firmware holds the indication of the wake reason until it receives and
completes the D0 command.

Enable wake events

Note If the NIC receives the D0 command for some other reason (for example, the NIC
does not wake the host), the NIC should not indicate a wake reason.

If there is no WDI_TLV_ENABLE_WAKE_EVENTS present, the operating system does not
need the NICs to run at low power. The NICs may be completely powered off. If
suspended to a hard drive, the NICs drivers are expected to resume firmware context at
resume.

The following diagrams show interactions and sequences of transitions between D0 and
Dx (D2 or D3) for the NIC. In this context, the "Miniport" represents the host or WDI
compliant driver.

No enabled wake events

Power state interaction and transition examples

D0 to Dx (armed to wake)

Stop [DnIO|UpIO]: DnIO are messages (controls and data) to lower layer. UpIO are
messages to upper layer.

Reject new requests from above layer (fail fast).
Stop initiating IO from this layer (except this Dx command).
Allow lower layer to inject TXs needed to go into Dx.
Flush queues.

AwaitInflight: Waiting for IO calls to return, including DMA in progress. Flush
queues.

Dx is any non-D0 state. For SDBus Wi-Fi, this is D2. For PCIe bus, this is D3Hot.
Firmware shall not lose power.

If the NIC is armed to wake, it can't be D3Cold. Firmware must continue running in
Dx.

Dx (armed to wake) to D0 transition

D0 to D3 (not armed to wake) transition

Stop [DnIO|UpIO]: DnIO are messages (controls and data) to lower layer. UpIO are
messages to upper layer.

Reject new requests from above layer (fail fast).
Stop initiating IO from this layer (except this Dx command).
Allow lower layer to inject TXs needed to go into Dx.
Flush queues.

AwaitInflight: Waiting for IO calls to return, including DMA in progress. Flush
queues.

D3 without PmParameters. The NIC may (D3Cold) or may not be powered off (for
example, a shared power rail with a D0 device).

Dx (not armed to wake) to D0 transition

D2 notArmToWake: Kept power, no reinitialization required.
D3 notArmtoWake: Might be Hot or Cold. Cold requires that context be restored.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

OID_WDI_SET_PRIVACY_EXEMPTION_LIS
T
Article • 03/14/2023

OID_WDI_SET_PRIVACY_EXEMPTION_LIST is used by the host to provide the list of
exemptions for packet description. The adapter applies these exemptions to packets it
receives that match the IEEE EtherType value specified for the exemption.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_PRIVACY_EXEMPTION_ENTRY X X List of privacy
exemption entries.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Set property parameters

Set property results

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_RECEIVE_COALESCING
Article • 03/14/2023

OID_WDI_SET_RECEIVE_COALESCING is used by the host to add a packet filter for packet
coalescing.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

When the host receives a request from the OS to set packet coalescing filters, it uses this
command to add a packet filter for packet coalescing. To clear a packet filter for packet
coalescing, see OID_WDI_SET_CLEAR_RECEIVE_COALESCING.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_SET_RECEIVE_COALESCING The packet coalescing
parameters to be set.

No additional parameters. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_CLEAR_RECEIVE_COALESCING

Set property parameters

Set property results

Requirements

See also

OID_WDI_SET_RECEIVE_PACKET_FILTER
Article • 03/14/2023

OID_WDI_SET_RECEIVE_PACKET_FILTER defines a bitmask filter for data packets to be
indicated for a given virtualized port.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

If set, the port shall only notify the host of packets which match the provided filter.
These filters are similar to the required 802.11 filters provided to
OID_GEN_CURRENT_PACKET_FILTER.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_PACKET_FILTER_PARAMETERS The bitmask filter
for data packets.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Set property parameters

Set property results

Requirements

OID_WDI_SET_REMOVE_PM_PROTOCOL_
OFFLOAD
Article • 03/14/2023

OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD removes the protocol offload
specified by the protocol offload ID.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_PM_PROTOCOL_OFFLOAD_REMOVE Protocol
offload ID.

No additional parameters. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_GET_PM_PROTOCOL_OFFLOAD

OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD

Set property parameters

Set property results

Requirements

See also

OID_WDI_SET_REMOVE_WOL_PATTERN
Article • 03/14/2023

OID_WDI_SET_REMOVE_WOL_PATTERN removes a wake-on-LAN (WOL) pattern from
the firmware.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_WAKE_PACKET_PATTERN_REMOVE WOL
pattern ID.

No additional parameters. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_SET_ADD_WOL_PATTERN

Set property parameters

Set property results

Requirements

See also

OID_WDI_SET_SAE_AUTH_PARAMS
Article • 03/14/2023

OID_WDI_SET_SAE_AUTH_PARAMS is sent by WDI in response to an
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED indication from the driver. It
contains the parameters required to send the Simultaneous Authentication of Equals (SAE)
Commit or Confirm request, or an error message indicating a failure to perform SAE with
the BSSID.

This command is sent as a Direct OID request to the driver.

For more information about SAE authentication, see WPA3 SAE authentication.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID WDI_MAC_ADDRESS The BSSID of
the AP.

WDI_TLV_SAE_REQUEST_TYPE WDI_SAE_REQUEST_TYPE The type of
SAE request
frame to send
to the BSSID.

WDI_TLV_SAE_COMMIT_REQUEST WDI_SAE_COMMIT_REQUEST X The SAE
Commit
request
parameters.

WDI_TLV_SAE_CONFIRM_REQUEST WDI_SAE_CONFIRM_REQUEST X The SAE
Confirm
request
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

Command parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_request_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SAE_STATUS WDI_SAE_STATUS X SAE
authentication
failure error
status.

Minimum supported client: Windows 10, version 1903

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_status

OID_WDI_SET_TCP_OFFLOAD_PARAMET
ERS
Article • 03/14/2023

OID_WDI_SET_TCP_OFFLOAD_PARAMETERS is sent down to the device from the OS to
set the TCP offload parameters.

Scope Set serialized with task Normal execution time (seconds)

Port Yes 1

This command is sent in some cases such as when there is a need to turn off the
offloads due to a performance issue.

The lower edge driver (LE) must use the contents of
WDI_TLV_TCP_SET_OFFLOAD_PARAMETERS to update the currently reported TCP
offload capabilities. After the update, the LE must report the current task offload
capabilities with NDIS_STATUS_WDI_INDICATION_TASK_OFFLOAD_CURRENT_CONFIG.
This status indication ensures that all of the overlying protocol drivers are updated with
the new capabilities information.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_TCP_SET_OFFLOAD_PARAMETERS The TCP offload
parameters to be
set.

No additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Set property parameters

Set property results

Requirements

Header Dot11wdi.h

OID_WDI_TCP_RSC_STATISTICS
Article • 03/14/2023

OID_WDI_TCP_RSC_STATISTICS is a get command that queries the RSC statistics of the
hardware.

Scope Set serialized with task Normal execution time (seconds)

Port No 1

No additional parameters. The data in the header is sufficient.

TLV Multiple TLV
instances allowed

Optional Description

WDI_TLV_TCP_RSC_STATISTICS_PARAMETERS TCP RSC
statistics of the
hardware.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Get property parameters

Get property results

Requirements

NDIS_STATUS_WDI_INDICATION_ACTIO
N_FRAME_RECEIVED
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_ACTION_FRAME_RECEIVED to
indicate that an Action Frame has been received.

Object

Port

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the source.

WDI_TLV_BSS_ENTRY_CHANNEL_INFO The logical channel
number and band ID for
the BSS entry.

WDI_TLV_ACTION_FRAME_BODY The incoming Action
Frame body.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_SET_ADVERTISEMENT_INFORMATION

See also

NDIS_STATUS_WDI_INDICATION_AP_AS
SOCIATION_REQUEST_RECEIVED
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_AP_ASSOCIATION_REQUEST_RECEIVED to indicate that
a Wi-Fi Association Request Frame has been received for an operational Wi-Fi Direct
Group Owner. The host may issue an
OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE for this request.

Object

Port

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_INCOMING_ASSOCIATION_REQUEST_INFO The incoming
Association
Request
information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_ASSOC
IATION_PARAMETERS_REQUEST
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_ASSOCIATION_PARAMETERS_REQUEST to request
association parameters for a set of BSSIDs from the host.

Object

Port

This indication can be sent by the adapter when it finds a BSS entry that is a candidate
for association based on the current settings. Upon receiving this indication, the host
checks if the association parameters are available, and if so, sends them with
OID_WDI_SET_ASSOCIATION_PARAMETERS.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_PARAMETERS_REQUESTED_TYPE The list of
requested
association
parameters.

WDI_TLV_BSS_ENTRY X X The list of
BSSIDs.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_CONNECT

See also

NDIS_STATUS_WDI_INDICATION_ASSOC
IATION_RESULT
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_ASSOCIATION_RESULT to indicate
association results.

Object

Port

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_RESULT X A list of association
results.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_CONNECT

OID_WDI_TASK_ROAM

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_BSS_E
NTRY_LIST
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST to inform the
host about updates to the BSS entries. This is an unsolicited indication and can be sent
at any time.

Object

Port

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_BSS_ENTRY X X The list of updated
BSSIDs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_SCAN

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_TASK_P2P_DISCOVER

OID_WDI_SET_P2P_START_BACKGROUND_DISCOVERY

NDIS_STATUS_WDI_INDICATION_CAN_S
USTAIN_AP
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_CAN_SUSTAIN_AP to indicate that
the port is ready to receive a OID_WDI_TASK_START_AP request, after previously
indicating NDIS_STATUS_WDI_INDICATION_STOP_AP.

Object

Port

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_INDICATION_CAN_SUSTAIN_AP The reason the adapter
can now sustain 802.11
AP functionality.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_CHAN
GE_OPERATION_MODE_COMPLETE
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_CHANGE_OPERATION_MODE_COMPLETE to indicate
the completion of OID_WDI_TASK_CHANGE_OPERATION_MODE.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_CIPHE
R_KEY_UPDATED
Article • 03/14/2023

Miniport drivers send this indication to indicate that the cipher key(s) have been
updated.

This indication is sent only while the driver has not offload the RSN GTK rekey (via the
WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY filed in the
OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD command). If the driver is currently in the
offload state for the Rsn GTK Rekey, then it should not indicate via this method and
should allow the updated key information to be queried via the
OID_WDI_GET_PM_PROTOCOL_OFFLOAD command when it comes out of the offload
state.

For example, the driver would send this notification if it or the firmware receives a new
GTK/iGTK in the WNM-Sleep mode response.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_PM_PROTOCOL_RSN_OFFLOAD_KEYS The currently
configured Rsn
Eapol key
information.

Minimum supported client: Windows 10, version 1803

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

NDIS_STATUS_WDI_INDICATION_CLOSE_
COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_CLOSE_COMPLETE to indicate the
completion of OID_WDI_TASK_CLOSE.

Object

Adapter

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_CONN
ECT_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_CONNECT_COMPLETE to indicate
the completion of OID_WDI_TASK_CONNECT.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_CREAT
E_PORT_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_CREATE_PORT_COMPLETE to
indicate the completion of OID_WDI_TASK_CREATE_PORT.

Object

Port

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_PORT_ATTRIBUTES The attributes of the
created port.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_DELETE
_PORT_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_DELETE_PORT_COMPLETE to
indicate the completion of OID_WDI_TASK_DELETE_PORT.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_DEVICE
_SERVICE_EVENT
Article • 03/14/2023

The NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT status indication is used
by an IHV miniport driver to pass on unsolicited information about a device to a user
mode client.

Device service indications must be sent by the miniport driver only when in the D0
power state, and it must not cause the device to wake from Dx. WDI will drop this
indication without forwarding it up the stack if it receives it when in Dx.

This indication is currently handled only on the default port (station).

The miniport driver should send a separate notification for every device service GUID
and opcode pair whenever necessary.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_DEVICE_SERVICE_PARAMS_DATA_BLOB X The information
received from the IHV
miniport driver.

WDI_TLV_DEVICE_SERVICE_PARAMS_GUID The GUID that
identifies the device
service to which this
indication belongs (as
defined by the
IHV/OEM).

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_DEVICE_SERVICE_PARAMS_OPCODE The opcode specific to
the device service.

Minimum supported client: Windows 10, version 1809

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

Requirements

NDIS_STATUS_WDI_INDICATION_DISASS
OCIATION
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_DISASSOCIATION to indicate that
a port disconnected from the network.

Object

Port

The disconnect may be triggered by a command from the operating system or triggered
from the network. Network triggered disconnect may be explicit from received
disassociation or deauthentication packets, or may be implicit when the port cannot
detect the presence of the peer it is connected to.

Before the disassociation indication is sent, the port must clear the state associated with
this peer. This includes any keys and 802.1x port authorization information associated
with this peer. The port must not trigger a roam on its own.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_DISASSOCIATION_INDICATION_PARAMETERS The
disassociation
indication
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_DISCONNECT_DEAUTH_FRAME X The
deauthentication
frame that was
received. This
does not include
the 802.11 MAC
header.

WDI_TLV_DISCONNECT_DISASSOCIATION_FRAME X The
disassociation
frame that was
received. This
does not include
the 802.11 MAC
header.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_DISCONNECT

OID_WDI_TASK_ROAM

Requirements

See also

NDIS_STATUS_WDI_INDICATION_DISCO
NNECT_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_DISCONNECT_COMPLETE to
indicate the completion of OID_WDI_TASK_DISCONNECT.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_DOT11_
RESET_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_DOT11_RESET_COMPLETE to
indicate the completion of OID_WDI_TASK_DOT11_RESET.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_FIRMW
ARE_STALLED
Article • 03/14/2023

NDIS_STATUS_WDI_INDICATION_FIRMWARE_STALLED is used to indicate that the
firmware stalled.

Object

Adapter

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_FT_ASS
OC_PARAMS_NEEDED
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_FT_ASSOC_PARAMS_NEEDED to
request parameters for 802.11r roaming.

Object

Port

During OID_WDI_TASK_ROAM, WDI provides the parameters to send the 802.11
Authentication Request (PmkR0Name, R0KH-ID, SNonce, MDIE). Upon receiving the
Authentication response, the LE requests additional needed parameters for the
reassociation request, such as PMKR1Name and R1KH-ID. The LE also sends the
parameters received in the Authentication Response (ANonce, SNonce, and R1KHID).

For a connection where Initial Mobility Domain is successfully done, the LE should only
perform 11r roams (Fast roams). The LE can use the candidate list provided by the
operating system, or use their own for the roams. If the LE uses its own candidate list, it
must use the parameters (MDE, FTE, and PMKR0Name) provided in any one of the
candidates suggested by the operating system to do a 11r roam. 11r is disabled
whenever the connection is in FIPS mode. 11r fast roaming is currently only supported
for FT over 1x authentication type.

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_BSSID The BSSID of the AP.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_FT_AUTH_REQUEST The authentication
request byte blob.

WDI_TLV_FT_AUTH_RESPONSE The authentication
response byte blob.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_ROAM

Requirements

See also

NDIS_STATUS_WDI_INDICATION_IHV_EV
ENT
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_IHV_EVENT to pass IHV specific
information to the IHV extensibility module.

Object

Port

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_IHV_DATA X The event to be sent to the IHV
extensibility module.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_IHV_TA
SK_COMPLETE
Article • 03/14/2023

NDIS_STATUS_WDI_INDICATION_IHV_TASK_COMPLETE indicates the completion of
OID_WDI_TASK_IHV.

Object

Port

This indication contains no additional data. The data in the header is sufficient. The
completion status from the message is not forwarded to anyone.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_IHV_TA
SK_REQUEST
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_IHV_TASK_REQUEST to request
that the Microsoft component queue an IHV task.

Object

Port

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_IHV_TASK_REQUEST_PARAMETERS The IHV-requested
priority for this task. Refer
to the
WDI_IHV_TASK_PRIORITY
enum for valid values.

WDI_TLV_IHV_TASK_DEVICE_CONTEXT X The IHV-provided context
information that is
forwarded to
OID_WDI_TASK_IHV.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_ihv_task_priority
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Dot11wdi.h

OID_WDI_TASK_IHV

See also

NDIS_STATUS_WDI_INDICATION_LINK_S
TATE_CHANGE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_LINK_STATE_CHANGE to indicate
any of the following situations:

The link speed changed.
The link quality changed by more than a threshold value. The threshold is 1 if the
connection quality hint is set to WDI_CONNECTION_QUALITY_LOW_LATENCY
(defined in WDI_CONNECTION_QUALITY_HINT). Otherwise, the threshold is 5.

Object

Port

This information from this indication is used by the host to keep track of metadata
about the current link, and it may be propagated to the user.

In Station and P2P Client cases, the Peer MAC Address is set to the BSSID of the
connected network. In AP/P2P GO cases, the Peer MAC Address is set to the MAC
address of a given connected device.

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_LINK_STATE_CHANGE_PARAMETERS The link state
change
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_connection_quality_hint
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

NDIS_STATUS_WDI_INDICATION_NLO_D
ISCOVERY
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_NLO_DISCOVERY to indicate
Network List Offload (NLO) discovery.

Object

Port

The firmware detects APs for SSIDs pushed down in NLO. NLO is used in non-AOAC
systems for fast connection when resuming from system sleep. It is also used in AOAC
systems to scan APs for SSIDs that are pushed to the firmware.

The OS does not request periodic background scans when in CS. NLO scan is the
preferred method in CS because the screen is off when users don’t need to see all visible
APs but those for SSIDs that users have auto-connect profiles to auto connect to. The
list of SSIDs to offload from the OS has a preferred authentication and cipher pair and
up to 4 channel hints. When the list has at least one SSID, the firmware should start an
NLO scan autonomously following the schedule of fast scan and slow scan phases. The
class driver translates the OS request to a firmware request. The firmware is expected to
do NLO scan according the schedule for the APs that support the preferred
authentication and cipher pair associated with the SSIDs.

In each scan period, the firmware scans for SSIDs that match the criteria on the list of
channels but not necessary constrained on the list of channels. The discovered AP
information should be cached for indication.

When any matches are found, the firmware indicates NLO discovery and caches the list
of discovered AP information for the host to retrieve.

The indication of NLO discovery happens in the following two cases.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

When the NIC is in Dx:

1. Trigger the wake interrupt and wait for set power to D0 to continue the
following steps.

2. Indicate NLO discovery.
3. Indicate that the firmware woke the stack with the reason of NLO discovery.

When the NIC is in D0:
Indicate NLO discovery.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_BSS_ENTRY X A list of BSSIDs. The list must at least
contain the entry that triggered this
discovery status.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_OPEN_
COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_OPEN_COMPLETE to indicate the
completion of OID_WDI_TASK_OPEN.

Object

Adapter

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

NDIS_STATUS_WDI_INDICATION_P2P_ACTION_FRA
ME_RECEIVED
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_P2P_ACTION_FRAME_RECEIVED to indicate that a Wi-Fi
Direct Action Frame has been received.

Object

Port

The host may issue an OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME for this request.

The port must indicate these packets in any of the following situations:

The port is in listen state.
The port has a GO in operational state.
The port is dwelling on a remote listen channel when an
OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME or
OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME has been recently issued.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_INCOMING_FRAME_INFORMATION The incoming Wi-Fi Direct Action Frame information.
This information is forwarded back to the port when
the host issues
OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver model is in maintenance
mode and will only receive high priority fixes. WiFiCx is the Wi-Fi driver model released in Windows 11. We
recommend that you use WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME

NDIS_STATUS_WDI_INDICATION_P2P_DI
SCOVERY_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_P2P_DISCOVERY_COMPLETE to
indicate the completion of OID_WDI_TASK_P2P_DISCOVER.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_P2P_G
ROUP_OPERATING_CHANNEL
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_P2P_GROUP_OPERATING_CHANNEL to indicate which
operating channel a given Wi-Fi Direct port is operating on.

For a Wi-Fi Direct Client port, this must be indicated during the connect (before the
connect completion).

For a Wi-Fi Direct GO port, this must be indicated during OID_WDI_TASK_START_AP
(before the OID completion).

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER The operating
channel the given
Wi-Fi Direct port is
operating on.

WDI_TLV_P2P_CHANNEL_INDICATE_REASON The reason for
sending the
indication.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Dot11wdi.h

NDIS_STATUS_WDI_INDICATION_P2P_O
PERATING_CHANNEL_ATTRIBUTES
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_P2P_OPERATING_CHANNEL_ATTRIBUTES to indicate
the preferred operating channel to start a GO, the preferred listen channel if asked to
enter listen state, and the full set of supported channels at any point of time. The
indication is sent once when adapter initializes, and then sent each time one of these
parameters changes due to events such as roaming or connecting or disconnecting
from an access point.

Object

Port

The operating channel and channel list values are local settings and do not account for
the actual channel negotiation during GO negotiation/invitation. The driver is still
expected to negotiate the channel when GO negotiation/invitation is performed.

It is expected that the listen channel reported by the driver is honored if listen state is
turned on. It is expected that this indication is fired if the host configured a listen
channel that is different from the preferred listen channel reported earlier via this
indication.

Type Multiple TLV
instances
allowed

Optional Description

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_P2P_CHANNEL_NUMBER The Wi-Fi Direct
Operating channel
attribute.

WDI_TLV_P2P_CHANNEL_LIST_ATTRIBUTE The full set of
channels supported
by the local adapter.

WDI_TLV_P2P_LISTEN_CHANNEL The Wi-Fi Direct
Listen channel
attribute.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

NDIS_STATUS_WDI_INDICATION_P2P_SE
ND_REQUEST_ACTION_FRAME_COMPLE
TE
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_P2P_SEND_REQUEST_ACTION_FRAME_COMPLETE to
indicate information about the Request Action frame sent by
OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME.

Object

Port

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT This TLV is
only
required if
the status is
success.

Information about
the Request Action
frame that was sent
to the peer.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Dot11wdi.h

NDIS_STATUS_WDI_INDICATION_P2P_SE
ND_RESPONSE_ACTION_FRAME_COMPL
ETE
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_P2P_SEND_RESPONSE_ACTION_FRAME_COMPLETE to
indicate information about the Response Action frame sent by
OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME.

Object

Port

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT This TLV is
only
required if
the status is
success.

Information about
the Response Action
frame that was sent
to the peer.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header Dot11wdi.h

NDIS_STATUS_WDI_INDICATION_RADIO
_STATUS
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_RADIO_STATUS to indicate
changes in the adapter's radio state. This unsolicited indication is sent when a software
radio change is triggered by the host, and when a hardware radio state change is
detected by the adapter.

Object

Port

Type Multiple TLV
instances allowed

Optional Description

WDI_TLV_RADIO_STATE The current state of the radio in
hardware and software.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

WDI_TASK_SET_RADIO_STATE

NDIS_STATUS_WDI_INDICATION_REQUE
ST_FTM_COMPLETE
Article • 03/14/2023

Miniport drivers send the NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE
status indication to the host as a task completion indication for
OID_WDI_TASK_REQUEST_FTM. This notification contains a list of Fine Timing
Measurement (FTM) responses received from each requested target.

Type TLV Multiple
TLV
instances
allowed

Optional Description

WDI_STATUS A field in the header. The
general
completion
status of
the event.

WDI_TLV_FTM_RESPONSE Multiple
TLV<WDI_TLV_FTM_RESPONSE>

X A list of
FTM
responses
for each
target.

Minimum supported client: Windows 10, version 1903

Minimum supported server: Windows Server 2016

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Header: Dot11wdi.h

NDIS_STATUS_WDI_INDICATION_ROAM
_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_ROAM_COMPLETE to indicate the
completion of OID_WDI_TASK_ROAM.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_ROAM

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_ROAMI
NG_NEEDED
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_DISASSOCIATION to indicate that
the host should try to find a better peer to connect to. This notification is used when the
link quality with the currently connected peer falls below a certain threshold. On sending
this notification, the host may trigger a roam scan and/or a roam operation. The
Microsoft component does not perform a disconnect before it starts the roam
operation.

Object

Port

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ROAMING_NEEDED_PARAMETERS The reason for the roam
trigger. When a
OID_WDI_TASK_ROAM is
triggered, this reason is
forwarded to it.

Minimum supported client Windows 10

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_ROAM

See also

NDIS_STATUS_WDI_INDICATION_SAE_AU
TH_PARAMS_NEEDED
Article • 03/14/2023

The Wi-Fi adapter sends this indication to request parameters for Simultaneous
Authentication of Equals (SAE) authentication.

When the miniport driver is requested to perform SAE authentication with a target BSSID, it
needs to request information at various stages of authentication. Initially, it requests
parameters for the Commit request frame, then the Confirm request frame if successful. If
the driver encounters an irrecoverable timeout or error, it also indicates that to the OS.

This indication is sent during the SAE authentication process. For more information, see
WPA3-SAE authentication.

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_BSSID WDI_MAC_ADDRESS The BSS ID of
the AP.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is the
Wi-Fi driver model released in Windows 11. We recommend that you use WiFiCx to
take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/ns-dot11wdi-_wdi_mac_address
https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

TLV Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_SAE_INDICATION_TYPE WDI_SAE_INDICATION_TYPE The type of
information
needed to
continue SAE
authentication
with the
BSSID, or
notification
that
authentication
cannot
continue.

WDI_TLV_SAE_COMMIT_RESPONSE TLV<LIST<UINT8>> X The SAE
Commit
Response
frame.

WDI_TLV_SAE_CONFIRM_RESPONSE TLV<LIST<UINT8>> X The SAE
Confirm
Response
frame.

WDI_TLV_SAE_STATUS WDI_SAE_STATUS X The SAE
authentication
failure error
status.

Minimum supported client: Windows 10, version 1903

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_indication_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_sae_status

NDIS_STATUS_WDI_INDICATION_SCAN_
COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_SCAN_COMPLETE to indicate the
completion of OID_WDI_TASK_SCAN.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_SCAN

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_SEND_
AP_ASSOCIATION_RESPONSE_COMPLET
E
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_SEND_AP_ASSOCIATION_RESPONSE_COMPLETE to
indicate information about the AP association response sent by
OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE.

Object

Port

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_RESPONSE_RESULT_PARAMETERS The
association
response
parameters.

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_ASSOCIATION_RESPONSE_FRAME The
received
association
response.
This does
not include
the 802.11
MAC
header.

WDI_TLV_BEACON_IES The beacon
IEs from the
association.

WDI_TLV_PHY_TYPE_LIST The list of
PHY types.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

NDIS_STATUS_WDI_INDICATION_SEND_
REQUEST_ACTION_FRAME_COMPLETE
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_SEND_REQUEST_ACTION_FRAME_COMPLETE to
indicate the completion of OID_WDI_TASK_SEND_REQUEST_ACTION_FRAME.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_SEND_REQUEST_ACTION_FRAME

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_SEND_
RESPONSE_ACTION_FRAME_COMPLETE
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_SEND_RESPONSE_ACTION_FRAME_COMPLETE to
indicate the completion of OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_SET_RA
DIO_STATE_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_SET_RADIO_STATE_COMPLETE to
indicate the completion of OID_WDI_TASK_SET_RADIO_STATE.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_SET_RADIO_STATE

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_START_
AP_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_START_AP_COMPLETE to indicate
the completion of OID_WDI_TASK_START_AP.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_START_AP

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_STOP_
AP
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_STOP_AP to indicate that the
adapter cannot sustain 802.11 Access Point (AP) functionality on any of the PHYs. The
adapter should send this indication only after the NIC has stopped any APs that are
operating on the available PHYs. The host blocks all OID_WDI_TASK_START_AP requests
until the adapter sends NDIS_STATUS_WDI_INDICATION_CAN_SUSTAIN_AP.

Object

Port

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_INDICATION_STOP_AP The reason the adapter cannot
sustain 802.11 AP functionality
on any of the PHYs.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

OID_WDI_TASK_START_AP

NDIS_STATUS_WDI_INDICATION_CAN_SUSTAIN_AP

See also

NDIS_STATUS_WDI_INDICATION_STOP_
AP_COMPLETE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_STOP_AP_COMPLETE to indicate
the completion of OID_WDI_TASK_STOP_AP.

Object

Port

This indication contains no additional data. The data in the header is sufficient.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

OID_WDI_TASK_STOP_AP

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_TASK_
OFFLOAD_CURRENT_CONFIG
Article • 03/14/2023

Miniport drivers use
NDIS_STATUS_WDI_INDICATION_TASK_OFFLOAD_CURRENT_CONFIG to indicate when
there is a change in the TCP offload capabilities of the hardware.

Object

Port

When there is a change in the TCP offload capabilities of the hardware, the LE sends this
unsolicited indication to the UE, with the new TCP checksum/LSO capabilities. Use the
values NDIS_OFFLOAD_SET_OFF and NDIS_OFFLOAD_SET_ON for members in
WDI_TLV_TCP_OFFLOAD_CAPABILITIES for indicating changes in offload capabilities.
When the UE sends down a OID_WDI_SET_TCP_OFFLOAD_PARAMETERS, the LE should
update the offload capabilities and then send this indication so that the OS is updated
with the latest offload capabilities information.

Type Multiple TLV
instances
allowed

Optional Description

WDI_TLV_TCP_OFFLOAD_CAPABILITIES X The TCP/IP checksum
and Large Send Offload
capabilities.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Payload data

Requirements

See also

OID_WDI_SET_TCP_OFFLOAD_PARAMETERS

NDIS_STATUS_WDI_INDICATION_TKIP_
MIC_FAILURE
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_TKIP_MIC_FAILURE to indicate
when a received packet that was successfully decrypted by the TKIP cipher algorithm
fails the message integrity code (MIC) verification.

Object

Port

Type Multiple TLV instances
allowed

Optional Description

WDI_TLV_TKIP_MIC_FAILURE_INFO The TKIP MIC failure
information.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

） Important

This topic is part of the WDI driver model released in Windows 10. The WDI driver
model is in maintenance mode and will only receive high priority fixes. WiFiCx is
the Wi-Fi driver model released in Windows 11. We recommend that you use
WiFiCx to take advantage of the latest features.

Payload data

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/netcx/wifi-wdf-class-extension-wificx

NDIS_STATUS_WDI_INDICATION_WAKE_
REASON
Article • 03/14/2023

Miniport drivers use NDIS_STATUS_WDI_INDICATION_WAKE_REASON to indicate the
reason for a wake when the NIC wakes the host. The wake reason is used for debugging
purposes and has no functional effect.

Object

Port

When the host goes to low power state, it offloads a few functions to the NIC and arms
the NIC for wake. When a wake event occurs, the NIC asserts the wake interrupt line to
wake the host. The host then brings the NIC into D0 (running power state). The NIC
must indicate the wake reason once it enters D0.

If the wake reason is a wake packet, the NIC should also include the wake packet and
the wake pattern ID that matches the packet. The packet is encapsulated as
WDI_TLV_INDICATION_WAKE_PACKET. The wake reason should also include
WDI_TLV_INDICATION_WAKE_PACKET_PATTERN_ID to specify the pattern ID which
matches the packet.

Type Multiple
TLV
instances
allowed

Optional Description

WDI_TLV_INDICATION_WAKE_REASON The wake reason.

WDI_TLV_INDICATION_WAKE_PACKET X The wake packet.

WDI_TLV_INDICATION_WAKE_PACKET_PATTERN_ID X The ID of the
pattern that
matches the wake
packet. The ID is
obtained from the
Add command of
the pattern.

Payload data

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Dot11wdi.h

Requirements

WDI_BAND_ID
Article • 03/03/2023

The WDI_BAND_ID data type is a UINT32 value that defines a band ID.

c++

Possible band ID values are as follows:

Name Value Description

WDI_BAND_ID_ANY 0xFFFFFFFF All bands

WDI_BAND_ID_2400 1 2.4 GHz

WDI_BAND_ID_5000 2 5 GHz

WDI_BAND_ID_60000 3 60 GHz

WDI_BAND_ID_900 4 900 MHz

WDI_BAND_ID_CUSTOM_START 0x80000000 Specifies the start of the range that is used to
define a band ID reported by an IHV.

WDI_BAND_ID_CUSTOM_END 0x81000000 Specifies the end of the range that is used to
define a band ID reported by an IHV.

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

typedef UINT32 WDI_BAND_ID;

Remarks

Requirements

WDI_CHANNEL_NUMBER
Article • 03/03/2023

The WDI_CHANNEL_NUMBER data type is a UINT32 value that defines a channel
number.

c++

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Wditypes.hpp

typedef UINT32 WDI_CHANNEL_NUMBER;

Requirements

WDI_EXTENDED_TID
Article • 03/03/2023

The WDI_EXTENDED_TID data type is a UINT8 value that defines a traffic identifier (TID).

c++

Possible values are as follows:

Value Description

0-15 802.11 TIDs

16
(WDI_EXT_TID_NON_QOS)

Non-QoS data

17-24 Reserved for use with IHV-injected frames. Frames with extended
TID in the interval 17-24 are considered higher priority than those
with a smaller extended TID in the same interval 17-24.

25-30 Unused values

31
(WDI_EXT_TID_UNKNOWN)

Unknown/unspecified

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

typedef UINT8 WDI_EXTENDED_TID;

Remarks

Requirements

WDI_FRAME_ID
Article • 03/03/2023

The WDI_FRAME_ID data type is a UINT16 value that defines a frame ID. This is only an
identifier. It does not convey information about the ordering of frames.

c++

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

typedef UINT16 WDI_FRAME_ID;

Requirements

WDI_PEER_ID
Article • 03/03/2023

The WDI_PEER_ID data type is a UINT16 value that defines a peer ID.

c++

If you want to specify any peer (wildcard), you can use the WDI_PEER_ANY (0xFFFF)
value.

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

typedef UINT16 WDI_PEER_ID;

Remarks

Requirements

WDI_PORT_ID
Article • 03/03/2023

The WDI_PORT_ID data type is a UINT16 value that defines a port ID.

c++

If you want to specify any port (wildcard), you can use the WDI_PORT_ANY (0xFFFF)
value.

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h

typedef UINT16 WDI_PORT_ID;

Remarks

Requirements

TAL_TXRX_HANDLE
Article • 12/15/2021

The TAL_TXRX_HANDLE data type is an NDIS_HANDLE value.

c++

Minimum supported client: Windows 10

Minimum supported server: Windows Server 2016

Header: Dot11wdi.h (include Ndis.h)

typedef NDIS_HANDLE TAL_TXRX_HANDLE, *PTAL_TXRX_HANDLE;

Requirements

Features not carried over in WDI
Article • 03/14/2023

The following features are available in the previous Native WLAN driver model, but are
not available in WDI.

Soft AP
IBSS
Netmon

The following Soft AP required features are ported to Wi-Fi Direct.

Added 802.11b.
Moved all tethering requirements for Soft AP to Wi-Fi Direct.

WPA3-SAE authentication
Article • 12/15/2021

WPA3-SAE, also known as WPA3-Personal, is supported in Windows with WDI version
1.1.8 and later. Frame content generation and parsing for SAE (Secure Authentication of
Equals) authentication is done within Windows, but the OS requires driver support for
sending and receiving WPA3-SAE authentication frames.

Miniport drivers indicate SAE support by doing the following:

1. Set SAE supported capability.
The driver sets the SAEAuthenticationSupported capability in
WDI_TLV_INTERFACE_ATTRIBUTES during the call to
OID_WDI_GET_ADAPTER_CAPABILITIES.

2. Set MFP capability.
The driver sets the MFPCapable capability in WDI_TLV_STATION_ATTRIBUTES
during the call to OID_WDI_GET_ADAPTER_CAPABILITIES.

3. Add the WDI_AUTH_ALGO_WPA3_SAE auth method.
The driver includes WDI_AUTH_ALGO_WPA3_SAE in the list of auth-cipher
combinations returned in the call to OID_WDI_GET_ADAPTER_CAPABILITIES. This
should be added in the following sections:

WDI_TLV_STATION_ATTRIBUTES : : WDI_TLV_UNICAST_ALGORITHM_LIST
WDI_TLV_STATION_ATTRIBUTES : :
WDI_TLV_MULTICAST_DATA_ALGORITHM_LIST

SAE connections are initiated with OID_WDI_TASK_CONNECT or OID_WDI_TASK_ROAM.
WDI specifies WDI_AUTH_ALGO_WPA3_SAE as the auth method when the driver is
required to do SAE authentication. If WDI provides the PMKID in the BSS list in the
Connect/Roam task, then the driver skips SAE authentication and performs Open
Authentication instead, followed by a reassociation request with the PMKID.

WPA3-SAE capabilities

WPA3-SAE authentication flow

Connection initiation

Authentication flow

The driver first selects a BSS to which to connect or roam and, if WDI did not provide the
PMKID for that BSS, the driver requests Commit parameters from WDI with
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED. In this initial indication,
the driver sets the indication type to
WDI_SAE_INDICATION_TYPE_COMMIT_REQUEST_PARAMS_NEEDED. In response, WDI
sends OID_WDI_SET_SAE_AUTH_PARAMS to the driver with one of the following options.

Send Commit request (WDI_SAE_REQUEST_TYPE_COMMIT_REQUEST)
Fail SAE authentication (WDI_SAE_REQUEST_TYPE_FAILURE)

On receiving a Commit response, the driver sends
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED with the type set to
WDI_SAE_INDICATION_TYPE_COMMIT_RESPONSE. In response, WDI sends
OID_WDI_SET_SAE_AUTH_PARAMS with one of the following requests:

Send Commit request (WDI_SAE_REQUEST_TYPE_COMMIT_REQUEST)
Send Confirm request (WDI_SAE_REQUEST_TYPE_CONFIRM_REQUEST)

Initial request for SAE parameters

Upon receiving a Commit response

Fail SAE authentication (WDI_SAE_REQUEST_TYPE_FAILURE)

On receiving a Confirm response, the driver sends
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED with the type set to
WDI_SAE_INDICATION_TYPE_CONFIRM_RESPONSE. WDI then sends
OID_WDI_SET_SAE_AUTH_PARAMS with the SAE status field set to success or failure. If
SAE authentication fails in the driver due to timeouts or other reasons, the driver sends
an NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED indication with the
type se to WDI_SAE_INDICATION_TYPE_ERROR and the failure reason specified in
WDI_TLV_SAE_STATUS.

These are handled by the driver.

The device connects to an SAE network using one of the following options.

This is normally the first association attempt to an SAE network. The driver sets the SAE
AKM in the RSN IE in the Association Request frame.

If WDI provided a PMKID for the BSS entry in the connect/roam task, then the driver
does the following:

1. The driver performs an Open authentication followed by inclusion of the PMKID in
the (Re)association request.

2. If the device does not receive a response from the AP within a short time, or if the
AP returns an association error in the response, the driver skips SE authentication
with this AP and either moves to another AP, or falls back to doing full SAE
authentication with this AP.

SAE connection completes once the SAE authentication/association is complete. As
before, the driver sends the following indications on conclusion of the connect or roam
task:

Upon receiving a Confirm response

Timeouts and retransmissions

WPA3-SAE association

(Re)Association following SAE exchange

(Re)Association using PMKID

NDIS_STATUS_WDI_INDICATION_ASSOCIATION_RESULT
NDIS_STATUS_WDI_INDICATION_CONNECT_COMPLETE

If the driver needs to resend a Commit frame due to a timeout, it can either resend the
original Scalar/Element values that were provided by WDI, or request a new set of
Scalar/Element values from WDI with an
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED indication.

If the driver needs to resend a Confirm frame due to a timeout, it should request a new
set of SendConfirm and Confirm values from WDI with an
NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED indication, setting the
type to WDI_SAE_INDICATION_TYPE_CONFIRM_REQUEST_RESEND_REQUEST.

Error handling

Resending the SAE Commit request frame

Resending the SAE Confirm response frame

WDI doc change history
Article • 03/14/2023

Documentation updated to WDI version 1.1.9.

Topic Description

WDI message structure Modified TLV structure and aggregate container to allow for variable-size KCK/KEK.

OID_WDI_TASK_REQUEST_FTM ScanTrigger enum value added.

Description updated for LE with BSS list cache.

WDI_AUTH_ALGORITHM Added new WDI_AUTH_ALGORITHM WDI_AUTH_ALGO_OWE.

WDI_CIPHER_ALGORITHM WDI_CIPHER_ALGO_GCMP_256 new cipher added.

WDI_CIPHER_ALGO_BIP_GMAC_256 new cipher added.

WDI_TLV_CONFIGURED_CIPHER_KEY Added entries for WDI_TLV_CIPHER_KEY_GCMP_256_KEY and
WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY.

WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY Newly added TLV type.

WDI_TLV_CIPHER_KEY_GCMP_256_KEY Newly added TLV type.

WDI_TLV_CONNECT_PARAMETERS Added reference for new TLV type WDI_TLV_OWE_DH_IE.

WDI_TLV_FTM_RESPONSE BandwidthUsed field added.

PropegationProperty field added.

RTT field changed to signed integer.

WDI_TLV_KCK_CONTENT Newly added TLV type.

WDI_TLV_KEK_CONTENT Newly added TLV type.

WDI_TLV_OWE_DH_IE Newly added TLV type.

WDI_TLV_PROTOCOL_OFFLOAD Newly added TLV type.

WDI_TLV_REPLAY_COUNTER Newly added TLV type.

WDI_TLV_STATION_CAPABILITIES Host-WPA3-FIPS mode added.

Documentation updated to WDI version 1.1.8.

Topic Description

WDI_TLV_STATION_CAPABILITIES Added support for the driver to indicate support for Fine Timing
Measurement (FTM).

OID_WDI_TASK_REQUEST_FTM Newly added task OID that enables WDI to request that the adapter
initiate FTM procedures to obtain roundtrip time (RTT) and the Location
Configuration Information (LCI) report from BSS targets.

WDI_TLV_FTM_REQUEST_TIMEOUT Newly added TLV for FTM request.

WDI_TLV_FTM_TARGET_BSS_ENTRY Newly added TLV for FTM request.

Windows 10, version 2004

Windows 10, version 1903

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm

Topic Description

WDI_TLV_REQUEST_LCI_REPORT Newly added TLV for FTM request.

NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE Newly added status indication sent by the host as a task completion
indication for OID_WDI_TASK_REQUEST_FTM. Contains a list of FTM
responses from BSS targets.

WDI_TLV_FTM_RESPONSE Newly added TLV for FTM response.

WDI_TLV_FTM_RESPONSE_STATUS Newly added TLV for FTM response.

WDI_TLV_RETRY_AFTER Newly added TLV for FTM response.

WDI_TLV_FTM_NUMBER_OF_MEASUREMENTS Newly added TLV for FTM response.

WDI_TLV_RTT Newly added TLV for FTM response.

WDI_TLV_RTT_ACCURACY Newly added TLV for FTM response.

WDI_TLV_RTT_VARIANCE Newly added TLV for FTM response.

WDI_TLV_LCI_REPORT_STATUS Newly added TLV for FTM response.

WDI_TLV_LCI_REPORT_BODY Newly added TLV for FTM response.

WDI_TLV_INTERFACE_CAPABILITIES Added new capabilities for the driver to indicate support for Multiband
Operation (MBO) and beacon report offloading.

WDI_ASSOC_STATUS Added WDI_ASSOC_STATUS_ASSOCIATION_DISALLOWED status.

WPA3-SAE authentication New overview of WPA3-SAE (Secure Authentication of Equals)
authentication.

WDI_TLV_INTERFACE_CAPABILITIES Added new capability for the driver to indicate support for SAE
authentication.

WDI_AUTH_ALGORITHM Added definition for WDI_AUTH_ALGO_WPA3_SAE.

NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED Newly added status indication sent by the driver to request SAE
authentication parameters from WDI.

WDI_TLV_SAE_INDICATION_TYPE Newly added TLV for SAE authentication parameters requests.

WDI_TLV_SAE_COMMIT_RESPONSE Newly added TLV for SAE authentication parameters requests.

WDI_TLV_SAE_CONFIRM_RESPONSE Newly added TLV for SAE authentication parameters requests.

WDI_TLV_SAE_STATUS Newly added TLV for SAE authentication parameters requests and for
setting SAE authentication parameters.

OID_WDI_SET_SAE_AUTH_PARAMS Newly added property OID that contains the parameters required to
send the SAE Commit or Confirm request, or an error message
indicating a failure to perform SAE with the BSSID.

WDI_TLV_SAE_REQUEST_TYPE Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_COMMIT_REQUEST Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_FINITE_CYCLIC_GROUP Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_SCALAR Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_ELEMENT Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_ANTI_CLOGGING_TOKEN Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_CONFIRM_REQUEST Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_SEND_CONFIRM Newly added TLV for setting SAE authentication parameters.

WDI_TLV_SAE_CONFIRM Newly added TLV for setting SAE authentication parameters.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_assoc_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_auth_algorithm

Topic Description

OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME Added additional validation of P2P IEs on outgoing action frames.

OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME Added additional validation of P2P IEs on outgoing action frames.

Documentation updated to WDI version 1.1.7.

Topic Description

WDI_PHY_TYPE Added support for 802.11ax PHY.

WDI_CONNECTION_QUALITY_HINT Changed the name of the
WDI_CONNECTION_QUALITY_HIGH_CHANNEL_AVAILABILITY value to
WDI_CONNECTION_QUALITY_HIGH_THROUGHPUT. No change to the
description of this value.

NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT Added support for unsolicited device service notifications.

Documentation updated to WDI version 1.1.6.

Topic Description

WDI_TLV_OS_POWER_MANAGEMENT_FEATURES Added this TLV to OID_WDI_GET_ADAPTER_CAPABILITIES to indicate which OS
power management (PM) features that the driver supports.

WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY Updated this TLV to specify that drivers must now return GTK/iGTK key info, if
configured, when queried in OID_WDI_GET_PM_PROTOCOL_OFFLOAD.

NDIS_STATUS_WDI_INDICATION_CIPHER_KEY_UPDATED Added this indication for drivers to provide notifications of GTK/iGTK key
updates when the keys are updated, while the driver is not in the Offload state.

MINIPORT_WDI_TX_SUSPECT_FRAME_LIST_ABORT Updated TxSuspectFrameListAbortHandle to TxSuspectFrameListAbort.

Documentation updated to WDI version 1.1.5.

Topic Description

WDI_TLV_TCP_OFFLOAD_CAPABILITIES Added new WDI_TLV_OFFLOAD_SCOPE parameter to
indicate whether offloads specified apply to the STA
port only or to all ports.

NDIS_STATUS_WDI_INDICATION_SEND_AP_ASSOCIATION_RESPONSE_COMPLETE Changed the WDI_TLV_PHY_TYPE_LIST parameter to
make it required.

User-initiated feedback with IHV trace logging Added a new section describing how to add IHV
logging to user-initiated feedback scenarios.

Documentation updated to WDI version 1.0.21.

Topic Description

Windows 10, version 1809

Windows 10, version 1803

Windows 10, version 1709

Windows 10, version 1607

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_connection_quality_hint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_suspect_frame_list_abort

Topic Description

OID_WDI_TASK_P2P_DISCOVER Added new task parameters:

WDI_TLV_P2P_ASP2_SERVICE_INFORMATION_DISCOVERY_ENTRY
WDI_TLV_P2P_INCLUDE_LISTEN_CHANNEL

OID_WDI_GET_ADAPTER_CAPABILITIES Added new get property result: WDI_TLV_SUPPORTED_GUIDS

WDI_CIPHER_ALGORITHM Added new value: WDI_CIPHER_ALGO_GCMP

WDI_PHY_TYPE Added new value: WDI_PHY_TYPE_DMG

WDI_P2P_SERVICE_DISCOVERY_TYPE Added new values:

WDI_P2P_SERVICE_DISCOVERY_TYPE_ASP2_SERVICE_NAME_ONLY
WDI_P2P_SERVICE_DISCOVERY_TYPE_ASP2_SERVICE_INFORMATION

WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENTRY

WDI_TLV_P2P_ASP2_SERVICE_INFORMATION_DISCOVERY_ENTRY

WDI_TLV_P2P_INCLUDE_LISTEN_CHANNEL

WDI_TLV_P2P_INSTANCE_NAME

WDI_TLV_P2P_INSTANCE_NAME_HASH

WDI_TLV_P2P_SERVICE_TYPE

WDI_TLV_P2P_SERVICE_TYPE_HASH

WDI_TLV_SUPPORTED_GUIDS

Newly added TLVs.

WDI_TLV_P2P_ADVERTISED_SERVICES Added contained TLV: WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENTRY

WDI_TLV_INTERFACE_CAPABILITIES Added a new value that specifies if the device supports IP docking
capability.

WDI_TLV_P2P_CAPABILITIES Added a new value that specifies if ASP2 Service Names Discovery is
supported.

Added a new value that specifies if ASP2 Service Information Discovery is
supported.

Topic Description

MINIPORT_WDI_TX_TARGET_DESC_DEINIT Added note that the IHV miniport is not permitted to make any
indication in the context of this call.

MINIPORT_WDI_TX_TARGET_DESC_INIT Added note that the IHV miniport is not permitted to make any
indication in the context of this call.

Documentation updated to WDI version 1.0.10.

Topic Description

OID_WDI_TASK_START_AP Added a new task parameter: WDI_TLV_AP_BAND_CHANNEL.

OID_WDI_SET_ADAPTER_CONFIGURATION Added a new task parameter: WDI_TLV_PLDR_SUPPORT.

March 2016

Windows 10, version 1511

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_phy_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wditypes/ne-wditypes-_wdi_p2p_service_discovery_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_target_desc_deinit
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/dot11wdi/nc-dot11wdi-miniport_wdi_tx_target_desc_init

Topic Description

WDI_TLV_AP_BAND_CHANNEL Newly added TLV type.

WDI_TLV_P2P_CAPABILITIES Added a new value that specifies whether the adapter supports
operating a GO on the 5GHz band.

WDI_TLV_PLDR_SUPPORT Newly added TLV type.

WDI_TLV_START_AP_PARAMETERS Added a new value that specifies whether to allow legacy SoftAP
clients to connect.

Added a new value that specifies whether the AP can only be
started on the channels specified in OID_WDI_TASK_START_AP task
parameters with WDI_TLV_AP_BAND_CHANNEL.

Initial version.

Windows 10

Native 802.11 IHV Extensions Topics
Article • 12/15/2021

This section describes how an independent hardware vendor (IHV) can add functionality
to the Native 802.11 framework. For more information about the Native 802.11
framework, see Native 802.11 Software Architecture.

This section includes the following topics:

Overview of IHV Extensibility

Installing Native 802.11 IHV Extensions

Native 802.11 IHV Extensions DLL

Native 802.11 IHV UI Extensions DLL

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Overview of IHV Extensibility
Article • 12/15/2021

The Native 802.11 framework provides support for an independent hardware vendor
(IHV) to add functionality to the Native 802.11 framework.

For example, the IHV can provide support for any of the following:

Proprietary or non-standard authentication algorithms for port-based network
access. For more information, see Extending Support for 802.11 Authentication
Algorithms.

Proprietary or non-standard cipher algorithms for data encryption. For more
information, see Extending Support for 802.11 Cipher Algorithms.

Proprietary PHY configurations. For more information, see Extending Support for
802.11 PHY Configurations.

In order to extend the Native 802.11 functionality, the IHV must provide the following
components:

A Native 802.11 miniport driver that supports the Extensible Station (ExtSTA)
operation mode. For more information about this mode, see Extensible Station
Operation Mode. For more information about ways the ExtSTA operation mode
can extend Native 802.11 functionality, see Extending Native 802.11 Functionality.

An IHV Extensions DLL, which processes the security packets exchanged through
the proprietary authentication algorithms that the IHV supports. The IHV
Extensions DLL is also responsible for cipher key derivation through these
authentication algorithms, as well as the validation of user data that pertains to the
security extensions supported by the IHV.

For more information about the IHV Extensions DLL, see Native 802.11 IHV
Extensions DLL.

An IHV User Interface (UI) Extensions DLL, which extends the Native 802.11 user
interface to configure connectivity and security settings that are validated and
processed by the IHV Extensions DLL.

For more information about the IHV UI Extensions DLL, see Native 802.11 IHV UI
Extensions DLL.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extending-support-for-802-11-authentication-algorithms
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extending-support-for-802-11-cipher-algorithms
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extending-support-for-802-11-phy-configurations
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extensible-station-operation-mode
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extending-native-802-11-functionality

For more information about the modules provided by the IHV, see Native 802.11
Software Architecture.

To provide a secure execution environment, the IHV should do the following:

1. Do not log any sensitive information, such as encryption keys, in event or debug
logs.

2. Use CryptProtectMemory to protect sensitive encryption keys stored in memory,
and SecureZeroMemory to clear memory when done with the keys.

3. Treat the IHV extension portions of the network profile as untrusted data that may
have been manipulated by an attacker. IHV extension portions of profiles are
opaque to the 802.11 Auto Configuration Module (ACM) and Media Specific
Module (MSM) and will not be validated. (See Native 802.11 Software Architecture
for descriptions of these modules and configuration control paths.) This IHV
extension data should be appropriately parsed to prevent any buffer overflows or
attacks that could lead to a local escalation of privileges.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/windows/win32/api/dpapi/nf-dpapi-cryptprotectmemory
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa366877(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/configuration-through-a-network-profile
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Installing Native 802.11 IHV Extensions
Article • 06/17/2022

To install the Native 802.11 IHV Extensions DLL and Native 802.11 IHV UI Extensions DLL,
the independent hardware vendor (IHV) must make the following changes to the
DDInstall section within the INF file that is used for the installation of the IHV's wireless
LAN (WLAN) adapter.

Add a CopyFiles directive, with an associated file-list-section, to the INF file. The
name of each DLL developed by the IHV must be within the file-list-section.

For example, if the IHV is installing IhvExt.dll and IhvUIExt.dll, the INF file would
have the following CopyFiles directive and file-list-section:

For more information about the CopyFiles directive, see INF CopyFiles Directive.

Make sure that a DestinationDirs section declares the destination of the file-list-
section used in the CopyFiles directive.

In the previous example, the DestinationDirs section would have the following
values:

For more information about the DestinationDirs section, see INF DestinationDirs
Section.

Make sure that an AddReg directive, with an associated add-registry-section, is
added to the INF file for each WLAN adapter. For more information about the
AddReg directive, see INF AddReg Directive.

CopyFiles = Sample-File-List-Section

[Sample-File-List-Section]
IhvExt.dll,,,2
IhvUIExt.dll,,,2

[DestinationDirs]
DefaultDestDir = 13
Sample-File-List-Section = 13

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-copyfiles-directive
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addreg-directive

Within the add-registry-section, the following keys must be declared.

HKR, Ndi\IHVExtensions, ExtensibilityDLL, 0, destination-file-name
This key identifies the name of the IHV Extensions DLL. For example, to associate
the IhvExt.dll with the management of the WLAN adapter, the following key would
be declared.

HKR, Ndi\IHVExtensions, UIExtensibilityCLSID, 0, CLSID
This key identifies the COM class identifier (CLSID), which was registered on the
target system for the IHV UI Extensions DLL. The CLSID value must be enclosed in
quotation marks. This key associates the IHV UI Extensions DLL with the IHV
Extensions DLL installed through the ExtensibilityDLL key.

Note The UIExtensibilityCLSID key is required only if the IHV installs an IHV UI
Extensions DLL.

HKR, Ndi\IHVExtensions, AdapterOUI, 0x00010001, OUI
This key identifies the IEEE-assigned organizationally unique identifier (OUI), which
identifies the IHV. The OUI value must be declared as a 24-bit hexadecimal value.

The AdapterOUI key is used to verify that the OUI of the WLAN adapter matches
the value of the OUI attribute of the IHV XML element. For more information
about the IHV element and the Native 802.11 XML schema, refer to the Microsoft
Windows SDK documentation.

For more information about the INF file and its sections, see Creating an INF File.

HKR,Ndi\IHVExtensions, ExtensibilityDLL, 0, %13%\IhvExt.dll

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files

Native 802.11 IHV Extensions DLL Topics
Article • 12/15/2021

This section discusses the IHV Extensions DLL and has the following topics:

Native 802.11 IHV Extensions DLL Overview

Native 802.11 IHV Extensibility functions

Native 802.11 IHV Handler functions

Native 802.11 IHV Extensions DLL Implementation Guidelines

DLL Start/Stop Operations

802.11 WLAN Adapter Management

Network Profile Management

Interaction with the User

Pre-Association Operations

Post-Association Operations

Send and Receive Operations

Notification Operations

Virtual Station

Native 802.11 IHV Extensions DLL
Overview
Article • 12/15/2021

Through an IHV Extensions DLL, the independent hardware vendor (IHV) can support
the following:

Proprietary or non-standard authentication algorithms. Through this support, the
IHV Extensions DLL sends and receives all security packets related to the
authentication algorithm.

The IHV Extensions DLL can also support standard authentication algorithms for
network configurations that are not supported by the operating system. For
example, the DLL can support the Wi-Fi Protected Access with preshared keys
(WPA-PSK) authentication algorithm over independent basic service set (IBSS)
networks, which is a configuration not supported by Windows Vista.

Proprietary or non-standard cipher algorithms. Through this support, the IHV
Extensions DLL is responsible for deriving the cipher key and downloading the keys
to the Native 802.11 miniport driver.

The IHV Extensions DLL can also support standard cipher algorithms for network
configurations that are not supported by the operating system. For example, the
DLL can support the Temporal Key Integrity Protocol (TKIP) over IBSS networks,
which is a configuration not supported by Windows Vista.

Verification of proprietary extensions to a network profile. For example, the IHV
Extensions DLL is responsible for the validation of user settings for IHV-defined
security options.

Configuration of the Native 802.11 miniport driver. For example, prior to starting a
connection operation with the miniport driver, the operating system will call the
Dot11ExtIhvPerformPreAssociate function so that the IHV Extensions DLL can
configure the driver with proprietary extensions related to the connection to a BSS
network.

Interface to the IHV UI Extensions DLL. Through this interface, the IHV Extensions
DLL can request user input or notification. For more information about the IHV UI
Extensions DLL, see Native 802.11 IHV UI Extensions DLL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate

The Native 802.11 IHV Extensibility Host process loads the IHV Extensions DLL into its
process space upon the first arrival and detection of a wireless LAN (WLAN) adapter for
which the DLL was installed. For more information about the Native 802.11 IHV
Extensibility Host process and Native 802.11 framework, see Native 802.11 Software
Architecture.

The Native 802.11 IHV Extensibility Host process provides an API through its IHV
Extensibility functions. Through this API, the IHV Extensions DLL can interface the Native
802.11 miniport driver or IHV UI Extensions DLL. For more information about the IHV
Extensibility functions, see Native 802.11 IHV Extensibility Functions.

Similarly, the IHV Extensions DLL provides an API through its IHV Handler functions. The
Native 802.11 IHV Extensibility Host process uses this API for various operations, such as
initiating pre- or post-association operations. For more information about the IHV
Handler functions, see Native 802.11 IHV Handler Functions.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Native 802.11 IHV Extensibility functions
Article • 12/15/2021

The Native 802.11 IHV Extensibility functions are provided by the operating system and
are called by the IHV Extensions DLL to do the following:

Allocate and free buffers that are used within the Native 802.11 framework.
Send packets, such as a packet defined by an authentication algorithm, through
the IHV's wireless LAN (WLAN) adapter.
Configure the IHV's WLAN adapter with various security settings for any
authentication and cipher algorithms supported by the IHV Extensions DLL.
Interface with the IHV UI Extensions DLL (if installed) to process event notifications.
For example, the IHV Extensions DLL could notify the IHV UI Extensions DLL about
the various stages involved in a basic service set (BSS) network connection.

For more information about the IHV UI Extensions DLL, see Native 802.11 IHV UI
Extensions DLL.

The following table lists the Native 802.11 IHV Extensibility Functions that can be called
by the IHV Extensions DLL. Each IHV Extensibility function can only be called under these
conditions.

Called After Service Initialization
The IHV Extensibility function can only be called after the Dot11ExtIhvInitService
IHV Handler function has been called to initialize the IHV Extensions DLL. Also, the

） Important

The Native 802.11 Wireless LAN interface is deprecated in Windows 10 and later.
Please use the WLAN Device Driver Interface (WDI) instead. For more information
about WDI, see WLAN Universal Windows driver model.

７ Note

The IHV Extensions DLL calls each Native 802.11 IHV Extensibility function through
a function pointer associated with a member of the DOT11EXT_APIS structure.
When the operating system calls the Dot11ExtIhvInitService IHV Handler function,
it passes the list of pointers to the IHV Extensibility functions through the
pDot11ExtAPI parameter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-wireless-lan4
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_apis
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service

Extensions DLL cannot call the IHV Extensibility function after the
Dot11ExtIhvDeinitService IHV Handler function has been called.
Called after Adapter Initialization
The IHV Extensibility function can only be called after the Dot11ExtIhvInitAdapter
IHV Handler function has been called to initialize the interface to the IHV's WLAN
adapter.
The IHV Extensibility function requires a handle, which identifies the WLAN
adapter. When Dot11ExtIhvInitAdapter is called, the IHV Extensions DLL is passed
this handle through the hDot11SvcHandle parameter.
The Extensions DLL cannot call the IHV Extensibility function after the
Dot11ExtIhvDeinitAdapter IHV Handler function has been called.
Called after Pre-Association
The IHV Extensibility function can only be called after the
Dot11ExtIhvPerformPreAssociate IHV Handler function has been called to initiate a
pre-association operation with a basic service set (BSS) network.
The IHV Extensibility function requires a handle, which identifies the BSS network
connection. When Dot11ExtIhvPerformPreAssociate is called, the IHV Extensions
DLL is passed this handle through the hConnection parameter.
The Extensions DLL cannot call the IHV Extensibility function after the
Dot11ExtIhvDeinitAdapter or Dot11ExtIhvAdapterReset IHV Handler functions have
been called.
Called after Post-Association
The IHV Extensibility function can only be called after the
Dot11ExtIhvPerformPostAssociate IHV Handler function has been called to initiate
a post-association operation with a basic service set (BSS) network.
The IHV Extensibility function requires a handle, which identifies the security
session with the BSS network connection. When Dot11ExtIhvPerformPostAssociate
is called, the IHV Extensions DLL is passed this handle through the
hSecuritySessionID parameter.
The Extensions DLL cannot call the IHV Extensibility function after the
Dot11ExtIhvDeinitAdapter or Dot11ExtIhvAdapterReset IHV Handler functions have
been called.

Function Called after
service
initialization

Called after
adapter
initialization

Called
after pre-
association

Called
after post-
association

Dot11ExtAllocateBuffer X

Dot11ExtFreeBuffer X

Dot11ExtGetProfileCustomUserData X

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_allocate_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_free_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_get_profile_custom_user_data

Function Called after
service
initialization

Called after
adapter
initialization

Called
after pre-
association

Called
after post-
association

Dot11ExtNicSpecificExtension X

Dot11ExtStartOneX X

Dot11ExtStopOneX X

Dot11ExtPostAssociateCompletion X

Dot11ExtPreAssociateCompletion X

Dot11ExtProcessOneXPacket X

Dot11ExtQueryVirtualStationProperties X

Dot11ExtReleaseVirtualStation X

Dot11ExtRequestVirtualStation X

Dot11ExtSendNotification X

Dot11ExtSendUIRequest X

Dot11ExtSetAuthAlgorithm X

Dot11ExtSetCurrentProfile X

Dot11ExtSetDefaultKey X

Dot11ExtSetDefaultKeyId X

Dot11ExtSetEtherTypeHandling X

Dot11ExtSetExcludeUnencrypted X

Dot11ExtSetKeyMappingKey X

Dot11ExtSetMulticastCipherAlgorithm X

Dot11ExtSetProfileCustomUserData X

Dot11ExtSetUnicastCipherAlgorithm X

Dot11ExtSetVirtualStationAPProperties X

For more information about IHV Handler functions, see Native 802.11 IHV Handler
Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_onex_start
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_onex_stop
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_process_onex_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_query_virtual_station_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_release_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_request_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_current_profile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_exclude_unencrypted
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_key_mapping_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_multicast_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_profile_custom_user_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_unicast_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_virtual_station_ap_properties

Native 802.11 IHV Handler functions
Article • 12/15/2021

The Native 802.11 IHV Handler functions are provided by the IHV Extensions DLL and
are called by the operating system to do the following:

Allocate and free buffers that are used within the Native 802.11 framework.
Send packets, such as a packet defined by an authentication algorithm, through
the IHV's wireless LAN (WLAN) adapter.
Receive packets based on a specified list of IEEE EtherType values and privacy
exemption rules.
Configure the IHV's WLAN adapter with various security settings for any
proprietary authentication and cipher algorithms.
Interface with the IHV UI Extensions DLL (if installed) to process event notifications.
For example, the IHV Extensions DLL could notify the UI Extensions DLL about the
various stages involved in a basic service set (BSS) network connection.

For more information about the IHV UI Extensions DLL, see Native 802.11 IHV UI
Extensions DLL.

This section describes the following Native 802.11 IHV Handler functions.

Dot11ExtIhvAdapterReset
Dot11ExtIhvControl
Dot11ExtIhvCreateDiscoveryProfiles

） Important

The Native 802.11 Wireless LAN interface is deprecated in Windows 10 and later.
Please use the WLAN Device Driver Interface (WDI) instead. For more information
about WDI, see WLAN Universal Windows driver model.

７ Note

With the exception of Dot11ExtIhvGetVersionInfo and Dot11ExtIhvInitService, the
operating system calls the IHV Handler functions through a function pointer
associated with a member of the DOT11EXT_IHV_HANDLERS structure. When the
operating system calls the Dot11ExtIhvInitService IHV Handler function, the IHV
Extensions DLL returns the list of pointers to the IHV Handler functions through the
pDot11IHVHandlers parameter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_control
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_create_discovery_profiles
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-wireless-lan4
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_get_version_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_handlers

Dot11ExtIhvDeinitAdapter
Dot11ExtIhvDeinitService
Dot11ExtIhvGetVersionInfo
Dot11ExtIhvInitAdapter
Dot11ExtIhvInitService
Dot11ExtIhvInitVirtualStation
Dot11ExtIhvIsUIRequestPending
Dot11ExtIhvOneXIndicateResult
Dot11ExtIhvPerformCapabilityMatch
Dot11ExtIhvPerformPostAssociate
Dot11ExtIhvPerformPreAssociate
Dot11ExtIhvProcessSessionChange
Dot11ExtIhvProcessUIResponse
Dot11ExtIhvQueryUIRequest
Dot11ExtIhvReceiveIndication
Dot11ExtIhvReceivePacket
Dot11ExtIhvSendPacketCompletion
Dot11ExtIhvStopPostAssociate
Dot11ExtIhvValidateProfile

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_get_version_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_onex_indicate_result
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_capability_match
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_session_change
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_query_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_validate_profile

Native 802.11 IHV Extensions DLL
Implementation Guidelines
Article • 12/06/2022

The IHV Extensions DLL is implemented as a run-time dynamic-link library (DLL). For
more information about DLLs, see About Dynamic-Link Libraries.

Refer to the following guidelines when implementing an IHV Extensions DLL.

The structures and function prototypes referenced by the IHV Extensions DLL are
declared in Wlanihv.h.

The IHV Extensions DLL must implement the Dot11ExtIhvGetVersionInfo and
Dot11ExtIhvInitService functions. Also, these functions must be exported through
the module-definition (.def) file used to build the DLL. The operating system
resolves the address for these functions through the GetProcAddress function.

The IHV Extensions DLL must implement all of the IHV Handler functions. The DLL
returns a list of function pointers to these functions when the operating system
calls the Dot11ExtIhvInitService function.

For more information about the IHV Handler functions, see Native 802.11 IHV
Handler Functions.

For Windows Vista, the IHV Extensions DLL must support the interface version of
zero. When Dot11ExtIhvGetVersionInfo is called, the DLL must define the minimum
and maximum supported interface versions to be zero.

https://learn.microsoft.com/en-us/windows/win32/dlls/about-dynamic-link-libraries
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_get_version_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_get_version_info

DLL Start/Stop Operations Topics
Article • 12/15/2021

This section discusses how the operating system starts and stops the IHV Extensions
DLL, and includes the following topics:

DLL Start Operations

DLL Stop Operations

DLL Start Operations
Article • 12/15/2021

Immediately after loading the IHV Extensions DLL, the operating system calls the
following IHV Handler functions in this sequence.

1. The operating system calls the Dot11ExtIhvGetVersionInfo IHV Handler function to
determine the interface versions supported by the IHV Extensions DLL. This
function is passed a pointer to a DOT11_IHV_VERSION_INFO structure, which the
DLL formats with the minimum and maximum interface versions that it supports.
Note For Windows Vista, the IHV Extensions DLL must set the dwVerMin and
dwVerMax members of the DOT11_IHV_VERSION_INFO structure to zero.

2. If the IHV Extensions DLL supports an interface version that is supported by the
operating system, the operating system calls the Dot11ExtIhvInitService IHV
Handler function to initialize the DLL.

The IHV Extensions DLL must follow these guidelines when Dot11ExtIhvInitService is
called.

The pDot11ExtAPI parameter contains a pointer to a DOT11EXT_APIS structure,
which is formatted with the addresses of the IHV Extensibility functions supported
by the operating system. The IHV Extensions DLL must copy the DOT11EXT_APIS
structure, which is referenced by the pDot11ExtAPI parameter, to a globally-
declared DOT11EXT_APIS structure.

The pDot11IHVHandlers parameter contains a pointer to a
DOT11EXT_IHV_HANDLERS structure, which the IHV Extensions DLL formats with
the addresses of the IHV Handler functions that it supports. Note The DLL must
not set any of the members of the DOT11EXT_IHV_HANDLERS structure to NULL.

The IHV Extensions DLL should perform any internal initialization and resource
allocation in preparation for calls to its IHV Handler functions after the DLL returns
from Dot11ExtIhvInitService.

For more information about the IHV Extensibility functions, see Native 802.11 IHV
Extensibility Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_get_version_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11_ihv_version_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_apis
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_handlers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_service

For more information about the IHV Handler functions, see Native 802.11 IHV Handler
Functions.

DLL Stop Operations
Article • 12/06/2022

The operating system stops and unloads the IHV Extensions DLL whenever.

The last wireless LAN (WLAN) adapter managed by the DLL is either removed or
disabled.

The host computer is reset or shut down.

The operating system follows this sequence when stopping and unloading the IHV
Extensions DLL.

1. The operating system first calls the Dot11ExtIhvDeinitAdapter IHV Handler function
for every WLAN adapter managed by the IHV Extensions DLL. For more
information about this operation, see 802.11 WLAN Adapter Removal.

After the call to Dot11ExtIhvDeinitAdapter, the IHV Extensions DLL must not call
any IHV Extensions function related to adapter-specific operations, such as
Dot11ExtNicSpecificExtension.

2. The operating system then calls the Dot11ExtIhvDeinitService IHV Handler function.
When this function is called, the IHV Extensions DLL must free all allocated
resources and prepare itself for unloading.

After the call to Dot11ExtIhvDeinitService, the IHV Extensions DLL must not call any
IHV Extensions function.

3. Finally, the operating system calls the DllMain function in the IHV Extensions DLL
with the fdwReason parameter set to DLL_PROCESS_DETACH. For more information
about DllMain and DLLs, see About Dynamic-Link Libraries.

For more information about the IHV Extensibility functions, see Native 802.11 IHV
Extensibility Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_service
https://learn.microsoft.com/en-us/windows/win32/dlls/about-dynamic-link-libraries

802.11 WLAN Adapter Management
Topics
Article • 12/15/2021

This section discusses wireless LAN (WLAN) adapter management by the IHV Extensions
DLL, and includes the following topics:

802.11 WLAN Adapter Arrival

802.11 WLAN Adapter Removal

802.11 WLAN Adapter Reset

802.11 WLAN Adapter Communication Channel

802.11 WLAN Adapter Arrival
Article • 12/15/2021

When the operating system detects a wireless LAN (WLAN) adapter for which an IHV
Extensions DLL has been installed, the operating system calls the Dot11ExtIhvInitAdapter
IHV Handler function. The operating system calls this function whenever a WLAN
adapter becomes available and enabled for use, such as when a PCMCIA adapter is
inserted.

When the Dot11ExtIhvInitAdapter function is called, the IHV Extensions DLL does the
following:

Allocates an array for the WLAN adapter context data, as well as any resources the
DLL needs for the WLAN adapter.

Registers a list of IEEE EtherTypes for the security packets received and consumed
by the IHV Extensions DLL.

Configures the adapter with any proprietary settings defined by the IHV.

The IHV Extensions DLL must follow these guidelines when Dot11ExtIhvInitAdapter is
called.

The hDot11SvcHandle parameter contains a unique handle value assigned by the
operating system for the WLAN adapter. The IHV Extensions DLL must save this
handle value and pass it to the hDot11SvcHandle parameter of the IHV Extensibility
functions related to the adapter-specific processing, such as
Dot11ExtSetKeyMappingKey.

Typically, the DLL saves this handle value within a member of its WLAN adapter
context array.

The IHV Extensions DLL must return a unique handle value for the WLAN adapter
through the phIhvExtAdapter parameter. The operating system passes the handle
value to the hIhvExtAdapter parameter of the IHV Handler functions related to the
adapter-specific processing, such as Dot11ExtIhvReceiveIndication.

Typically, the DLL returns the address of the WLAN adapter context array as the
handle value.

The IHV Extensions DLL calls Dot11ExtSetEtherTypeHandling to register a list of
the IEEE EtherTypes for the security packets that the DLL will receive. The IHV

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_key_mapping_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling

Extensions DLL can also specify a list of EtherTypes that will be excluded from
payload decryption. For more information about registering EtherTypes, see IEEE
EtherType Handling.

After EtherTypes are registered, the operating system calls the
Dot11ExtIhvReceivePacket IHV Handler function for every packet whose EtherType
matches an entry in the list.

The operating system configures the adapter with standard 802.11 parameters
through set requests of the Native 802.11 object identifiers (OIDs). For more
information about these OIDs, see Native 802.11 Wireless LAN OIDs.

However, the DLL can configure the adapter with proprietary parameters through
calls to the Dot11ExtNicSpecificExtension function. Through this function call, the
DLL can communicate directly with the Native 802.11 miniport driver that manages
the WLAN adapter and issue query or set requests to the driver based on a
proprietary format defined by the IHV.

For more information about the interface through which the DLL and WLAN
adapter communicate, see 802.11 WLAN Adapter Communication Channel.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-oids
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension

802.11 WLAN Adapter Removal
Article • 12/15/2021

When a wireless LAN (WLAN) adapter is removed or disabled, the operating system calls
Dot11ExtIhvDeinitAdapter to notify the IHV Extensions DLL of the adapter's removal. The
operating system also calls the Dot11ExtIhvDeinitAdapter function for every adapter
managed by the IHV Extensions DLL before the operating system unloads the DLL.

When Dot11ExtIhvDeinitAdapter is called, the IHV Extensions DLL must follow these
guidelines.

The IHV Extensions DLL must free any allocated resources for the WLAN adapter.
In particular, all memory allocated through calls to Dot11ExtAllocateBuffer must be
freed through calls to Dot11ExtFreeBuffer.

The handle used by the operating system to reference the WLAN adapter is no
longer valid when Dot11ExtIhvDeinitAdapter is called. The operating system passes
its handle to the IHV Extensions DLL through the hDot11SvcHandle parameter
when Dot11ExtIhvInitAdapter is called.

Within the call to the Dot11ExtIhvDeinitAdapter function and after returning from
the call, the DLL must not use the handle value when calling any IHV Extensibility
function that declares an hDot11SvcHandle parameter, such as
Dot11ExtSendPacket.

If the IHV Extensions DLL had a pending pre-association operation, which was
initiated through a call to the Dot11ExtIhvPerformPreAssociate IHV Handler
function, the operating system regards the operation as canceled through the call
to the Dot11ExtIhvDeinitAdapter function. Within the call, the DLL must cancel the
pre-association operation internally but must not call
Dot11ExtPreAssociateCompletion to complete the pre-association operation.

For more information about the pre-association operation, see Pre-Association
Operations.

If the IHV Extensions DLL had a pending post-association operation, which was
initiated through a call to the Dot11ExtIhvPerformPostAssociate IHV Handler
function, the operating system cancels the operation by calling the
Dot11ExtIhvStopPostAssociate function before it calls Dot11ExtIhvDeinitAdapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_allocate_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_free_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter

For more information about the post-association operation, see Post-Association
Operations.

The operating system calls the Dot11ExtIhvDeinitAdapter function for every adapter
managed by the IHV Extensions DLL before the operating system unloads the DLL.
In this situation, the operating system calls the Dot11ExtIhvDeinitService IHV
Handler function after the last WLAN adapter has been halted through a call to
Dot11ExtIhvDeinitAdapter.

For more information about this operation, see DLL Stop Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_service

802.11 WLAN Adapter Reset
Article • 12/15/2021

The operating system calls Dot11ExtIhvAdapterReset whenever it becomes necessary to
restore the wireless LAN (WLAN) adapter to its initialized state. The operating system
calls this function whenever one of the following events occurs.

The WLAN adapter performs a disconnection operation. For more information
about this operation, see Disconnection Operations.

The operating system resets the Native 802.11 miniport driver, which manages the
adapter, through a set request of OID_DOT11_RESET_REQUEST.

When Dot11ExtIhvAdapterReset is called, the IHV Extensions DLL must follow these
guidelines.

The IHV Extensions DLL must restore its state to the same state it was in after the
Dot11ExtIhvInitAdapter function was called. If the DLL configured proprietary
settings on the WLAN adapter, it must restore these settings to the same state
they were in after Dot11ExtIhvInitAdapter was called.

If the IHV Extensions DLL had a pending pre-association operation, which was
initiated through a call to the Dot11ExtIhvPerformPreAssociate IHV Handler
function, the DLL must call Dot11ExtPreAssociateCompletion to cancel the
operation. In this situation, the DLL sets the dwWin32Error parameter of
Dot11ExtPreAssociateCompletion to ERROR_CANCELLED.

For more information about the pre-association operation, see Pre-Association
Operations.

If the DLL had a pending post-association operation, which was initiated through a
call to the Dot11ExtIhvPerformPostAssociate IHV Handler function, the DLL must
call Dot11ExtPostAssociateCompletion to cancel the operation. In this situation,
the DLL sets the dwWin32Error parameter of Dot11ExtPostAssociateCompletion to
ERROR_CANCELLED.

For more information about the post-association operation, see Post-Association
Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/disconnection-operations
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-reset-request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion

802.11 WLAN Adapter Communication
Channel
Article • 12/15/2021

The operating system provides a pass-through communication channel between the IHV
Extensions DLL and the Native 802.11 miniport driver. The IHV Extensions DLL accesses
the communication channel for the following operations.

Sending/Receiving Proprietary Configuration Data
The IHV Extensions DLL sends NDIS 6.0 or later object identifier (OID) method requests
to the Native 802.11 miniport driver through calls to the Dot11ExtNicSpecificExtension
function. Internally, this function issues a method request of
OID_DOT11_NIC_SPECIFIC_EXTENSION to the miniport driver. For more information
about NDIS OID method requests, see NDIS_OID_REQUEST.

Typically, the IHV Extensions DLL calls Dot11ExtNicSpecificExtension to do the following:

Set proprietary configuration parameters for the miniport driver or WLAN adapter.

Query proprietary configuration parameters or status data from the miniport driver
or WLAN adapter.

Receiving Notifications/Indications
The IHV Extensions DLL asynchronously receives notifications from the Native 802.11
miniport driver through calls to the Dot11ExtIhvReceiveIndication IHV Handler function.
The operating system calls this function whenever the miniport driver makes a media-
specific indication through a call to NdisMIndicateStatusEx. For more information about
this type of indication, see NDIS_STATUS_MEDIA_SPECIFIC_INDICATION.

Sending 802.11 Packets
The IHV Extensions DLL sends 802.11 packets to the Native 802.11 miniport driver
through calls to the Dot11ExtSendPacket function. The miniport driver queues the
packet on the WLAN adapter for transmission. When the packet has been transmitted,
the operating system calls the Dot11ExtIhvSendPacketCompletion IHV Handler function.
For more information about sending packets by the IHV Extensions DLL, see Send
Operations.

Typically, the IHV Extensions DLL calls Dot11ExtSendPacket to send security packets
during the post-association operation. The security packets are based on the
authentication algorithm supported by the DLL and enabled on the WLAN adapter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-nic-specific-extension
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet

Receiving 802.11 Packets
The IHV Extensions DLL receives 802.11 packets from the Native 802.11 miniport driver
through calls to the Dot11ExtIhvReceivePacket function. The operating system calls this
function for every received packet that has an IEEE EtherType that matches an entry in
the list of EtherTypes registered by the DLL through a call to
Dot11ExtSetEtherTypeHandling. For more information about receiving packets by the
IHV Extensions DLL, see Receive Operations.

The following points apply to the communication channel between the IHV Extensions
DLL and the Native 802.11 miniport driver.

Configuration, notification, or indication data transferred over this channel has a
format defined by the independent hardware vendor (IHV), which is opaque to the
operating system.

All data received through this channel is serialized and delivered in the order the
data was sent by the IHV Extensions DLL or Native 802.11 miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling

Network Profile Management
Article • 12/06/2022

This section discusses the management and processing of network profiles by the IHV
Extensions DLL. Network profiles define the attributes for the connection operation to a
basic service (BSS) network.

The IHV Extensions DLL is responsible for verifying or creating proprietary extensions to
a network profile. These extensions are XML data fragments, with each fragment
declared within an IHV element of the Native 802.11 XML schema. The data within the
<IHV> and </IHV> tags of the IHV element is in a format defined by the IHV.

This section includes the following topics:

Network Profile Overview

Creating Network Profile Extensions

Validating Network Profile Extensions

Network Profile Overview
Article • 12/06/2022

A network profile defines the attributes for a connection to a basic service set (BSS)
network. Network profiles consist of XML data fragments. For Windows Vista, a network
profile contains the following XML fragments.

Profile Name (required)
The name of the network profile, which is the service set identifier (SSID) of the BSS
network.

Standard 802.11 Connectivity Settings (required)
This XML fragment consists of standard 802.11 settings for network connectivity, such as
the BSS network type (infrastructure or independent) or type of wireless LAN (WLAN)
security. The operating system processes the standard connectivity settings and
configures the wireless WLAN adapter with them.

IHV Connectivity Extensions (optional)
This XML fragment consists of the extensions to network connectivity as defined by the
IHV. The operating system passes the connectivity extensions to the IHV Extensions DLL
for processing. The DLL is responsible for configuring the WLAN adapter with the
proprietary extensions.

Standard 802.11 Security Settings (optional)
This XML fragment consists of the standard 802.11 authentication and cipher settings,
such as the type of authentication and cipher algorithm to use on the BSS network
connection. The operating system processes the standard security settings and
configures the WLAN adapter with them.

IHV Security Extensions (optional)
This XML fragment consists of the extensions to network security as defined by the IHV.
The IHV extensions can specify either of the following:

Standard security settings.

For the WLAN adapter that is managed by the IHV Extensions DLL, the DLL is
responsible for the security algorithms, such as the Robust Security Network
Association (RSNA) authentication algorithm or the AES-CCMP cipher algorithm.
The operating system is no longer responsible. In this situation, the IHV Extensions
DLL can either process the algorithms or provide proprietary methods for
offloading the processing to the WLAN adapter.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/rsna-overview
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/aes-ccmp

Proprietary security settings.

The IHV Extensions DLL can provide support for security algorithms not supported
by the operating system, such as non-standard or proprietary algorithms. The DLL
is responsible for processing the algorithms or provide proprietary methods for
offloading the processing to the WLAN adapter.

Creating Network Profile Extensions
Article • 12/15/2021

After the underlying wireless LAN (WLAN) adapter completes a scan operation, it returns
a list of the detected basic service set (BSS) network to the operating system. The
operating system calls the Dot11ExtIhvCreateDiscoveryProfiles function for every BSS
network for which the user has not created a network profile. When this function is
called, the IHV Extensions DLL can return temporary connectivity and security profile
fragments that could be used to connect to the BSS network.

For more information about the scan operation, see Native 802.11 Scan Operations.

When Dot11ExtIhvCreateDiscoveryProfiles is called, the IHV Extensions DLL must follow
these guidelines.

The operating system passes to the pConnectableBssid parameter a list of IEEE
802.11 Beacon and Probe Response frames received during the last scan operation.
This list is formatted as a DOT11_BSS_ENTRY structure. Each Beacon or Probe
response within the list was sent by an access point (AP) with the same service set
identifier (SSID).

Note For Windows Vista, the IHV Extensions DLL supports only infrastructure basic
service set (BSS) networks.

The IHV Extensions DLL must parse each of the fixed-length fields and variable-
length information elements (IEs) in order to create the appropriate profile
fragments.

The connectivity and security profile fragment must contain valid settings that can
be used to connect to each of the APs, whose BSS identifiers (BSSIDs) are
referenced through the pConnectableBssid parameter.

Each connectivity and security profile fragment contains the XML data for the
profile extensions defined by the IHV. The XML data within the profile fragment
must be delimited by <IHV> and </IHV> tags.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_create_discovery_profiles
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-scan-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_create_discovery_profiles

Validating Network Profile Extensions
Article • 12/15/2021

The operating system calls IHV Handler functions to validate IHV-defined connectivity
and security settings under the following conditions.

The user creates a new network profile that contains settings for the IHV-defined
connectivity and/or security profile extensions. In this situation, the operating
system calls the Dot11ExtIhvValidateProfile IHV Handler function to validate the
user settings.

The WLAN adapter completes a scan operation and returns its results to the
operating system. The operating system calls the
Dot11ExtIhvPerformCapabilityMatch IHV Handler function to determine whether a
detected basic service set (BSS) network matches the IHV-defined connectivity and
security settings from a network profile.

The operating system passes a list of the 802.11 Beacon and Probe Response
frames from the BSS network to the pConnectableBssid parameter of the
Dot1ExtIhvPerformCapabilityMatch function. The operating system also passes
the connectivity and security profile extensions to the pIhvConnProfile and
pIhvSecProfile parameters, respectively.

If all of the entries in the list of 802.11 Beacon and Probe Response frames
advertise the connectivity and security attributes defined in the profile fragments,
the Dot11ExtIhvPerformCapabilityMatch function returns ERROR_SUCCESS.

The operating system initiates a pre-association operation by calling the
Dot11ExtIhvPerformPreAssociate function. In this situation, the IHV Extensions DLL
must verify that the connectivity and security settings are valid. If the settings are
valid, the function returns ERROR_SUCCESS and the DLL proceeds with the pre-
association operation. Otherwise, the function returns an appropriate error code as
defined in Winerror.h.

For more information about the pre-association operation, see Pre-Association
Operations.

For more information about the IHV Handler functions, see Native 802.11 IHV Handler
Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_validate_profile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_capability_match
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_capability_match
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate

Interaction with the User
Article • 12/15/2021

The IHV Extensions DLL does not provide a user interface (UI) component. Instead, it
interfaces with the IHV UI Extensions DLL to display the appropriate UI pages to the
user. For more information about the IHV UI Extensions DLL, see Native 802.11 IHV UI
Extensions DLL.

This section discusses the ways in which the IHV Extensions DLL requests user
interaction, and includes the following topics:

Requesting User Interaction

Processing Session Changes

Requesting User Interaction
Article • 12/15/2021

At any time after the call to Dot11ExtIhvInitAdapter, the IHV Extensions DLL can request
interaction with the user by calling the Dot11ExtSendUIRequest function. The operating
system forwards all user interaction requests to the IHV UI Extensions DLL, which will
process the request and display the appropriate user interface (UI) pages to the user.

When the request has been completed, the operating system calls the
Dot11ExtIhvProcessUIResponse function to forward the results from the IHV UI
Extensions DLL for the user interaction. For more information about the IHV UI
Extensions DLL, see Native 802.11 IHV UI Extensions DLL.

For example, the IHV Extensions DLL can request user interaction for any of the
following.

Notify the user regarding the stages of a pre or post-association operation.

Prompt the user to enter his/her credentials for authentication during the post-
association operation.

When it calls the Dot11ExtSendUIRequest function, the IHV Extensions DLL passes a
pointer to a DOT11EXT_IHV_UI_REQUEST structure to the pIhvUIRequest parameter. The
DOT11EXT_IHV_UI_REQUEST structure specifies the request, such as the globally unique
ID (GUID), which identifies the UI request as well as the COM class ID (CLSID) of the
target UI page that will handle this request.

When the IHV UI Extensions DLL has completed the user notification, the operating
system calls the Dot11ExtIhvProcessUIResponse function. If the user had entered any data
through the notification, the operating system passes a pointer to the buffer, which
contains the data, to the pvResponseBuffer parameter.

The operating system might periodically query the status of pending notification
requests. In this situation, the operating system calls the Dot11ExtIhvIsUIRequestPending
and passes the GUID of the UI request to the guidUIRequest parameter.

When calling Dot11ExtSendUIRequest, the IHV Extensions DLL must follow these
guidelines.

The IHV Extensions DLL does not need to serialize the calls to
Dot11ExtSendUIRequest. The DLL can have more than one pending UI request at

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request

any time.

The UI request for a particular GUID is completed only when
Dot11ExtIhvProcessUIResponse is called for that GUID. In this situation, the IHV
Extensions DLL must not free any allocated resources for the UI request until
Dot11ExtIhvProcessUIResponse is called.

All pending UI requests are canceled whenever Dot11ExtIhvAdapterReset or
Dot11ExtIhvDeinitAdapter is called. All pending UI requests are also canceled
whenever Dot11ExtIhvProcessSessionChange is called with the uEventType
parameter set to WTS_SESSION_LOGOFF.

In these situations, the IHV Extensions DLL must free all allocated resources for
each pending UI request.

The operating system can initiate user interaction itself whenever the connection state
changes on the basic service set (BSS) network. In this situation, the operating system
calls the Dot11ExtIhvQueryUIRequest function. The IHV Extensions DLL allocates a buffer
and formats it as a DOT11EXT_IHV_UI_REQUEST structure. The DLL sets the members of
the DOT11EXT_IHV_UI_REQUEST structure to reference a UI page that is appropriate for
the change in connection status. The operating system is responsible for displaying the
UI page.

Note The IHV Extensions must allocate the buffer that contains the
DOT11EXT_IHV_UI_REQUEST structure through Dot11ExtAllocateBuffer. The DLL must
not free the buffer after returning from Dot11ExtIhvQueryUIRequest.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_session_change
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_query_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_allocate_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_query_ui_request

Processing Session Changes
Article • 12/15/2021

If the user's session changes state, such as when the user logs in or out, the operating
system notifies the IHV Extensions DLL about the session change by calling the
Dot11ExtIhvProcessSessionChange function. The operating system passes the reason for
the session change to the uEventType parameter.

If the uEventType parameter is set to WTS_SESSION_LOGOFF, the user has logged off of
the current session. In this situation, all pending user interface (UI) requests must be
canceled internally by the IHV Extensions DLL, and the DLL must free any allocated
resources for each pending UI request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_session_change

Pre-Association Operations Topics
Article • 12/15/2021

This section discusses the pre-association operation and how it is performed by the IHV
Extensions DLL. This section has the following topics:

Pre-Association Operation Overview

Pre-Association Operation Guidelines

Pre-Association Operation Overview
Article • 12/15/2021

After the user has selected a profile for a basic service set (BSS) network connection, the
operating system calls the Dot11ExtIhvPerformPreAssociate function to initiate a pre-
association operation. When this function is called, the IHV Extensions DLL does the
following:

Verifies the IHV-defined extensions to the connectivity and security profile.

If the IHV Extensions DLL determines that the profile is incorrect, it returns the
appropriate error code as defined in Winerror.h. In this situation, the operating
system notifies the user that the network profile cannot be used.

Initiates the pre-association operation based on the IHV-defined extensions to the
connectivity and security profiles.

After the pre-association operation is initiated, it must be completed
asynchronously from the call to Dot11ExtIhvPerformPreAssociate.

The IHV Extension DLL completes the pre-association operation through a call to
Dot11ExtPreAssociateCompletion. Following this call, the operating system initiates the
connection operation by issuing a set request of OID_DOT11_CONNECT_REQUEST to the
Native 802.11 miniport driver, which manages the WLAN adapter.

The following figure shows the steps involved during the pre-association operation.

When Dot11ExtIhvPerformPreAssociate is called, the operating system passes the IHV-
defined extensions to the connectivity and security profile through the following
parameters.

pIhvProfileParams
This parameter is passed a pointer to a DOT11EXT_IHV_PROFILE_PARAMS structure,
which specifies the attributes of the basic service set (BSS) network to which the network

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/oid-dot11-connect-request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihvtypes/ns-wlanihvtypes-_dot11ext_ihv_profile_params

profile will be applied. For example, the DOT11EXT_IHV_PROFILE_PARAMS structure
specifies the service set identifier (SSID) and type of the BSS network.

pIhvConnProfile
This parameter is passed a pointer to a DOT11EXT_IHV_CONNECTIVITY_PROFILE
structure that contains the settings for the connectivity profile. The operating system
only passes the extensions to the connectivity profile defined by the IHV and selected by
the user.

pIhvSecProfile
This parameter is passed a pointer to a DOT11EXT_IHV_SECURITY_PROFILE structure
that contains the settings for the security profile. The operating system only passes the
extensions to the security profile defined by the IHV and selected by the user.

pConnectableBssid
This parameter is passed a pointer to a DOT11_BSS_LIST structure, which contains one or
more 802.11 Beacon or Probe Response frames for the service set identifier (SSID) of the
BSS network with which the DLL will perform the pre-association operation.

When performing the pre-association operation, the IHV Extensions DLL can do the
following:

Call the Dot11ExtNicSpecificExtension function to issue proprietary configuration
requests for network connectivity to the Native 802.11 miniport driver.

Through the pIhvConnProfile and pIhvProfileParams parameters, the IHV Extensions
DLL can determine which proprietary connectivity settings were selected by the
user.

Through the pConnectableBssid parameter, the IHV Extensions DLL can determine
the attributes of the BSS network and can configure proprietary network settings
accordingly.

Configure the WLAN adapter with the proprietary authentication and cipher
algorithms to be used over the BSS network connection.

Through the pszXmlFragmentIhvSecurity parameter, the IHV Extensions DLL can
determine which proprietary security algorithms were selected by the user.

The following IHV Extensibility functions can be called to set the security
algorithms.

Dot11ExtSetAuthAlgorithm
Dot11ExtSetUnicastCipherAlgorithm
Dot11ExtSetMulticastCipherAlgorithm

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_connectivity_profile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_security_profile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlclient/ns-wlclient-_dot11_bss_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_unicast_cipher_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_multicast_cipher_algorithm

Call the Dot11ExtSendUIRequest function to request that the IHV UI Extensions
DLL prompt the user for security parameters, such as the user's credentials.

Call the Dot11ExtSetEtherTypeHandling function to register a list of the IEEE
EtherTypes for the security packets that the DLL will receive. After the list is
registered, the operating system calls the Dot11ExtIhvReceivePacket IHV Handler
function for every packet whose EtherType matches an entry in the list.

The IHV Extensions DLL can also specify a list of EtherTypes that will be excluded
from payload decryption. For more information about registering EtherTypes, see
IEEE EtherType Handling.

Call the Dot11ExtSetProfileCustomUserData function to save data in the registry
that is specific to the user and current BSS network profile.

Call the Dot11ExtGetProfileCustomUserData function to retrieve data from the
registry that is specific to the user and current BSS network profile.

For more information about the IHV Extensibility functions, see Native 802.11 IHV
Extensibility Functions.

For more information about connection operations with BSS networks, see Connection
Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_profile_custom_user_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_get_profile_custom_user_data
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/connection-operations

Pre-Association Operation Guidelines
Article • 12/15/2021

The IHV Extensions DLL must follow these guidelines when performing the pre-
association operation.

When the Dot11ExtIhvPerformPreAssociate function is called, the IHV Extensions
DLL must do the following:

Verify the IHV extensions for the connectivity and security profile. If the profile
parameters are invalid, the Dot11ExtIhvPerformPreAssociate function returns an
appropriate error code as defined in Winerror.h.
Create and begin a new thread for the completion of the pre-association
operation. Because the pre-association operation must be completed
asynchronously from the call to Dot11ExtIhvPerformPreAssociate, the IHV
Extensions DLL must call Dot11ExtPreAssociateCompletion from this thread
after the operation completes.
Return ERROR_SUCCESS from the function call. At this point, the operating
system is notified that the network profile is valid and the pre-association
operation is in progress.

The IHV Extensions DLL can call the Dot11ExtNicSpecificExtension function to
configure the wireless LAN (WLAN) adapter. This function can be called either from
within the call to Dot11ExtIhvPerformPreAssociate or from the thread that handles
the pre-association operation after Dot11ExtIhvPerformPreAssociate returns.

Calls to the Dot11ExtSetProfileCustomUserData,
Dot11ExtGetProfileCustomUserData, and Dot11ExtSetCurrentProfile must not be
made from within the call to Dot11ExtIhvPerformPreAssociate. These functions can
only be called after Dot11ExtIhvPerformPreAssociate returns ERROR_SUCCESS.

After the IHV Extensions DLL calls Dot11ExtPreAssociateCompletion to complete
the pre-association operation, the handle for the connection session is no longer
valid. The operating system passes this handle through the hConnectSession
parameter of Dot11ExtIhvPerformPreAssociate. The DLL must not use this handle
value when calling any IHV Extensibility functions that declare an hConnectSession
parameter.

For more information about the IHV Extensibility functions, see Native 802.11 IHV
Extensibility Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_nic_specific_extension
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_profile_custom_user_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_get_profile_custom_user_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_current_profile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate

If the Dot11ExtIhvAdapterReset function is called, the IHV Extensions DLL must
cancel the pre-association operation by calling Dot11ExtPreAssociateCompletion.
For more information about the reset operation, see 802.11 WLAN Adapter Reset.

If the Dot11ExtIhvDeinitAdapter function is called, the IHV Extensions DLL must
cancel the pre-association operation internally. However, it must not call any of the
IHV Extensibility functions that can be called only after adapter initialization,
including Dot11ExtPreAssociateCompletion.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion

Post-Association Operations Overview
Article • 12/15/2021

When the wireless LAN (WLAN) adapter successfully completes an association operation
with an access point (AP), the operating system creates a data port for the association.
The operating system then initiates a post-association operation on the data port by
calling the Dot11ExtIhvPerformPostAssociate function.

Note For Windows Vista, the IHV Extensions DLL supports only infrastructure basic
service set (BSS) networks.

When performing the post-association operation, the IHV Extensions DLL can do the
following:

Allocate any resources needed for the new data port.

Perform proprietary security processing for the data port, including sending and
receiving packets for the authentication algorithm configured during the pre-
association operation. For more information about this operation, see Pre-
Association Operations.

Derive cipher keys and download them to the WLAN adapter.

When the WLAN adapter completes a disassociation operation with the AP, the
operating system terminates the post-association operation on the data port by calling
the Dot11ExtIhvStopPostAssociate function. Following this call, the operating system
deletes the data port for the association.

The following topics describe what the IHV Extensions DLL must do to perform or stop a
post-association operation.

Performing a Post-Association Operation

Stopping a Post-Association Operation

Interface to the Native 802.11 802.1X Module

For more information about the association operation, see Association Operations.

For more information about the disassociation operation, see Disassociation Operations.

For more information about the procedures involved in port management, see Port-
Based Network Access.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/association-operations
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/disassociation-operations
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/port-based-network-access

Performing a Post-Association
Operation
Article • 12/15/2021

When the wireless LAN (WLAN) adapter successfully completes an 802.11 association
operation with an access point (AP), the Native 802.11 miniport driver notifies the
operating system by making an NDIS_STATUS_DOT11_ASSOCIATION_COMPLETION
indication. For more information about the association operation, see Association
Operations.

Note For Windows Vista, the IHV Extensions DLL supports only infrastructure basic
service set (BSS) networks.

After the operating system receives the
NDIS_STATUS_DOT11_ASSOCIATION_COMPLETION indication, it calls the
Dot11ExtIhvPerformPostAssociate function to notify the IHV Extensions DLL of the
following:

The creation of a new data port for the association with the AP. The IHV Extensions
DLL is passed the current state of the data port through the pPortState parameter
of the Dot11ExtIhvPerformPostAssociate function. For more information about the
port state parameter, see DOT11_PORT_STATE.

The parameters of the association between the wireless LAN (WLAN) adapter and
the AP. The IHV Extensions DLL is passed the association parameters through the
pDot11AssocParams parameter of the Dot11ExtIhvPerformPostAssociate function.
For more information about the association parameters, see
DOT11_ASSOCIATION_COMPLETION_PARAMETERS.

When Dot11ExtIhvPerformPostAssociate is called, the IHV Extensions DLL initiates a post-
association operation with the AP to authenticate the data port. Through this operation,
the IHV Extensions DLL can do the following:

Allocate any resources needed for the new data port.

Perform proprietary security processing on the data port for the association. The
IHV Extensions DLL can determine the current state of the data port from
pPortState parameter of the Dot11ExtIhvPerformPostAssociate function.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ndis-status-dot11-association-completion
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/association-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlclient/ns-wlclient-_dot11_port_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/windot11/ns-windot11-dot11_association_completion_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate

Call the Dot11ExtSendUIRequest function to request the IHV UI Extensions DLL to
prompt the user for security parameters, such as the user's credentials.

Authenticate with the AP using the authentication algorithm enabled through
Dot11ExtSetAuthAlgorithm. The IHV Extensions DLL calls
Dot11ExtSetAuthAlgorithm during the pre-association operation. For more
information about this operation, see Pre-Association Operations.

Send security packets to the AP through calls to the Dot11ExtSendPacket function.

When the security packet has been sent, the operating notifies the IHV Extensions
DLL through a call to the Dot11ExtIhvSendPacketCompletion function.

For more information about sending security packets, see Send Operations.

Receive security packets from the AP. The operating system calls the
Dot11ExtIhvReceivePacket function for each security packet received by the WLAN
adapter.

Each received security packet is serialized and indicated in the order they were
received from the WLAN adapter. The operating system only calls the
Dot11ExtIhvReceivePacket function to indicate received security packets that match
an entry in the list of IEEE EtherTypes, which were specified by the IHV Extensions
DLL through a call to the Dot11ExtSetEtherTypeHandling function.

For more information about receiving security packets, see Receive Operations.

Configure the WLAN adapter with the cipher keys that are derived through the
authentication algorithm. The following IHV Extensibility functions can be called to
download the cipher keys to the WLAN adapter.

Dot11ExtSetDefaultKey
Dot11ExtSetDefaultKeyId
Dot11ExtSetKeyMappingKey

Configure the WLAN adapter to exclude unencrypted packets through a call to the
Dot11ExtSetExcludeUnencrypted IHV Extensibility function.

After the data port has been authenticated, the IHV Extensions DLL must call
Dot11ExtPostAssociateCompletion to complete the post-association operation.

The following figure shows the steps involved during the post-association operation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_auth_algorithm
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_key_mapping_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_exclude_unencrypted
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion

The IHV Extensions DLL must follow these guidelines when performing the post-
association operation.

The IHV Extensions DLL must call Dot11ExtPostAssociateCompletion
asynchronously from the call to Dot11ExtIhvPerformPostAssociate.

After completing the post-association operation, the IHV Extensions DLL can call
Dot11ExtPostAssociateCompletion whenever the authentication status of the data
port changes.

If the Dot11ExtIhvAdapterReset function is called, the IHV Extensions DLL must
cancel all pending post-association operations by calling
Dot11ExtPostAssociateCompletion. For more information about the reset
operation, see 802.11 WLAN Adapter Reset.

If the Dot11ExtIhvDeinitAdapter function is called, the IHV Extensions DLL must
cancel all pending post-association operations internally. However, it must not call
any of the IHV Extensibility functions that can be called only after adapter
initialization, including Dot11ExtPostAssociateCompletion. For more information
about the IHV Extensibility functions, see Native 802.11 IHV Extensibility Functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion

Stopping a Post-Association Operation
Article • 12/15/2021

The operating system terminates the post-association operation by calling the
Dot11ExtIhvStopPostAssociate IHV Handler function whenever one of the following
occurs.

The wireless LAN (WLAN) adapter completes a disassociation operation with the
AP. In this situation, the Native 802.11 station, which manages the adapter, makes
a media-specific NDIS_STATUS_DOT11_DISASSOCIATION indication. For more
information about the disassociation operation, see Disassociation Operations.

The WLAN adapter is disabled or removed. In this situation, the operating system
calls the Dot11ExtIhvStopPostAssociate function before it calls the
Dot11ExtIhvDeinitAdapter function.

The operating system calls the Dot11ExtIhvStopPostAssociate function to notify the IHV
Extensions DLL that the data port created for the association with an AP is down. The
operating system calls this function regardless of whether the DLL has completed the
post-association operation through a call to Dot11ExtPostAssociateCompletion.

When Dot11ExtIhvStopPostAssociate is called, the IHV Extensions must release all of the
resources allocated for the data port. If the post-association operation was not
completed with a call to Dot11ExtPostAssociateCompletion, the IHV Extensions DLL
must cancel the operation internally but must not call
Dot11ExtPostAssociateCompletion.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ndis-status-dot11-disassociation
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/disassociation-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_deinit_adapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion

Interface to the Native 802.11 802.1X
Module
Article • 12/15/2021

After the operating system receives an
NDIS_STATUS_DOT11_ASSOCIATION_COMPLETION indication from the Native 802.11
miniport driver, it calls the Dot11ExtIhvPerformPostAssociate function to initiate a post-
association operation by the IHV Extensions DLL.

While it performs the post-association operation or after the operation has completed,
the IHV Extensions DLL can use the extensible authentication protocol (EAP) algorithms
that are supported by the operating system to authenticate the user with the access
point (AP). In this situation, the IHV Extensions DLL interfaces with the 802.1X module of
the Native 802.11 framework for the processing of EAP packets that are sent by the AP
in the EAP over LAN (EAPOL) format.

For more information about the EAPOL format, refer to Clause 7 of the IEEE 802.1X-2001
standard.

For more information about the 802.1X module and the Native 802.11 framework, see
Native 802.11 Software Architecture.

When interfacing the 802.1X module for user authentication, the IHV Extensions DLL
must follow these guidelines:

For Windows Vista, the IHV Extensions DLL can initiate 802.1X authentication
operations through the 802.1X module only for infrastructure basic service set
(BSS) network connections.

The IHV Extensions DLL must register with the operating system to receive EAPOL
packets. In this situation, the DLL must call the Dot11ExtSetEtherTypeHandling
function and add the IEEE EAPOL EtherType (0x888E) to the list of registered
EtherTypes that are passed in through the pusRegistration parameter. After the
EtherType is registered, the operating system forwards received EAPOL packets to
the IHV Extensions DLL through calls to the Dot11ExtIhvReceivePacket IHV Handler
function.

For more information about registering EtherTypes, see IEEE EtherType Handling.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet

While it is performing the post-association operation, the IHV Extensions DLL
initiates the 802.1X authentication operation by calling the Dot11ExtStartOneX
function. When this function is called, the operating system does the following:

Display the properties page for the configuration of the 802.1X authentication.
This information includes the EAP algorithm used for the authentication.
Prompt the user for credentials.
Send an EAPOL-Start packet to the AP to initiate the 802.1X authentication.

The IHV Extensions DLL can call Dot11ExtStartOneX either within the call to
Dot11ExtIhvPerformPostAssociate or after the function call returns.

The IHV Extensions DLL can call the Dot11ExtStartOneX function only after the
Native 802.11 miniport driver has completed an association operation with the AP.
In this situation, the IHV Extensions DLL must not call the Dot11ExtStartOneX
function under any of the following conditions:

Before the operating system calls Dot11ExtIhvPerformPostAssociate. The
operating system calls this function after the miniport driver has successfully
completed an association operation. For more information about this operation,
see Association Operations.
After the operating system calls Dot11ExtIhvStopPostAssociate. The operating
system calls this function after the miniport driver has completed a
disassociation operation with the AP. For more information about this
operation, see Disassociation Operations.
After the operating system calls Dot11ExtIhvAdapterReset. The operating system
calls this function after the miniport driver has completed a disconnection
operation with the basic service set (BSS) network. For more information about
this operation, see Disconnection Operations.

While the 802.1X authentication operation is in progress, the IHV Extensions DLL
can cancel the operation by calling Dot11ExtStopOneX.

While the 802.1X authentication operation is in progress, the IHV Extensions DLL
must call Dot11ExtProcessOneXPacket to forward EAPOL packets to the operating
system for processing. Note The IHV Extensions DLL is responsible for processing
EAPOL-Key packets received from the AP. The DLL must not pass these packets to
the operating system through calls to Dot11ExtProcessOneXPacket.

When the 802.1X authentication operation completes, the operating system calls
the Dot11ExtIhvOneXIndicateResult IHV Handler function. After this function is
called, the IHV Extensions DLL is responsible for processing all EAPOL packets

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_onex_start
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_onex_start
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/association-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_stop_post_associate
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/disassociation-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/disconnection-operations
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_onex_stop
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_process_onex_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_process_onex_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_onex_indicate_result

received from the AP, such as the EAPOL-Key packets used for derivation of the
cipher keys.

If the 802.1X authentication operation completed successfully, the operating
system passes the MPPE-Send-Key value to the DOT11_MSONEX_RESULT_PARAMS
structure pointed to by the pDot11MsOneXResultParams parameter of
Dot11ExtIhvOneXIndicateResult. The MPPE-Send-Key value pointed to by the
pbMPPESendKey member of DOT11_MSONEX_RESULT_PARAMS is derived
through the authentication process and is used by the IHV Extensions DLL when
sending EAPOL-Key packets to the AP. This key is encrypted and should be
decrypted by calling the CryptUnprotectData function that is documented in the
Windows SDK.

The algorithm that is used to derive the cipher keys is dependent upon the
implementation of the independent hardware vendor (IHV). The IHV Extensions
DLL can support standard key derivation algorithms, such as the algorithm defined
in Clause 8.5 of the IEEE 802.11i-2004 standard, as well as it can support a
proprietary key derivation algorithm.

After it derives the keys, the IHV Extensions DLL can call the following functions to
download the cipher keys to the Native 802.11 miniport driver, which manages the
wireless LAN (WLAN) adapter.

Dot11ExtSetDefaultKey

Dot11ExtSetDefaultKeyId

Dot11ExtSetKeyMappingKey

The IHV Extensions DLL completes the post-association operation by calling the
Dot11ExtPostAssociateCompletion function. After the post-association operation
completes, the IHV Extensions DLL can initiate another 802.1X authentication
operation if the DLL determines that the user must be reauthenticated.

The following figure shows the sequence of events when the IHV Extensions DLL
initiates an 802.1X authentication operation during a post-association operation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11_msonex_result_params
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_onex_indicate_result
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_default_key_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_key_mapping_key
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion

Native 802.11 IHV extension send and
receive operations
Article • 12/15/2021

This section describes the guidelines the IHV Extensions DLL follows when sending or
receiving packets and contains the following topics:

IEEE EtherType Handling

Send Operations

Receive Operations

IEEE EtherType Handling
Article • 12/15/2021

The IHV Extensions DLL can specify a list of IEEE EtherTypes for special handling of
packets received by the wireless LAN (WLAN) adapter. The following types of EtherType
handling can be specified.

Privacy Exemptions
The IHV Extensions DLL can specify packet decryption exemptions for received packets.
For example, the DLL can specify that a packet with a specified EtherType is allowed to
be received unencrypted even if a matching cipher key is configured on the WLAN
adapter.

EtherType Registration
The IHV Extensions DLL can register the EtherTypes that it will process and consume.
The operating system forwards packets that match a registered EtherType to the DLL
through calls to the Dot11ExtIhvReceivePacket function.

The IHV Extensions DLL specifies EtherType handling through a call to the
Dot11ExtSetEtherTypeHandling function. When calling this function, the IHV Extensions
DLL must follow these guidelines.

The IHV Extensions DLL can only call Dot11ExtSetEtherTypeHandling any time
prior to completing a pre-association operation. For more information about this
operation, see Pre-Association Operations.

The IHV Extensions DLL specifies its list of privacy exemptions through an array of
zero or more DOT11_PRIVACY_EXEMPTION structures. If the IHV Extensions DLL
does not call Dot11ExtSetEtherTypeHandling, the operating system defaults to an
empty list of privacy exemptions for any 802.11 association with an access point
(AP). Note For Windows Vista, the IHV Extensions DLL supports only infrastructure
basic service set (BSS) networks.

The IHV Extensions DLL registers a list of zero or more EtherTypes that it will
receive. Typically, the DLL registers the EtherTypes for the security packets it
processes during the post-association operation. For more information about this
operation, see Post-Association Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/windot11/ns-windot11-dot11_privacy_exemption
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling

If the IHV Extensions DLL does not call Dot11ExtSetEtherTypeHandling, the
operating system defaults to an empty list of registered EtherTypes for any 802.11
association with an AP.

After the IHV Extensions DLL completes the pre-association operation by calling
Dot11ExtPreAssociateCompletion, the list of privacy exemptions and EtherType
registrations specified through a call to Dot11ExtSetEtherTypeHandling is applied
to every 802.11 association made by the WLAN adapter while connected to the
basic service set (BSS) network.

The operating system clears the list of privacy exemptions and EtherType
registrations before it calls Dot11ExtIhvAdapterReset.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_pre_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset

Send Operations
Article • 12/15/2021

When performing a post-association operation, initiated through a call to
Dot11ExtIhvPerformPostAssociate, the IHV Extensions DLL can send packets through the
wireless LAN (WLAN) adapter. For more information about the post-association
operation, see Post-Association Operations.

Typically, the DLL sends security packets to an access point (AP) for data port
authentication by using the algorithm enabled through Dot11ExtSetAuthAlgorithm. The
IHV Extensions DLL calls Dot11ExtSetAuthAlgorithm during the pre-association
operation. For more information about this operation, see Pre-Association Operations.

Note For Windows Vista, the IHV Extensions DLL supports only infrastructure basic
service set (BSS) networks.

When sending packets, the IHV Extensions DLL must follow these guidelines.

The IHV Extensions DLL must allocate the memory for a complete 802.11 data
packet, including 802.11 media access control (MAC) header, LLC encapsulation (if
necessary), and payload data.

The following table describes which fields and subfields within the 802.11 MAC
header are set by the IHV Extensions DLL or WLAN adapter.

Field name Subfield name Set by IHV
Extension DLL

Set by WLAN
adapter

Frame Control Protocol Version X

Frame Control Type X

Frame Control Subtype X

Frame Control To DS X

Frame Control From DS X

Frame Control More Fragments X

Frame Control Retry X

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_auth_algorithm

Field name Subfield name Set by IHV
Extension DLL

Set by WLAN
adapter

Frame Control Pwr Mgt X

Frame Control More Data X

Frame Control Protected Frame X

Frame Control Order X

Duration/ID X

Address 1 X

Address 2 X

Address 3 X

Sequence Control Fragment Number X

Sequence Control Sequence Number X

The IHV Extensions DLL calls the Dot11ExtSendPacket function to send the packet
through the wireless LAN (WLAN) adapter. The DLL passes a unique handle value,
which identifies the packet, to the function's hSendCompletion parameter. Typically,
the DLL passes the address of the allocated buffer that contains the packet to the
hSendCompletion parameter. Note Only unicast packets can be sent through calls
to the Dot11ExtSendPacket function.

When the WLAN adapter has sent the packet, the operating system calls the
Dot11ExtIhvSendPacketCompletion function. The operating system passes the
packet's handle value to the hSendCompletion parameter of the function. This
handle value will be the same value used by the IHV Extensions DLL in its call to
Dot11ExtSendPacket.

When Dot11ExtIhvSendPacketCompletion is called, the IHV Extensions DLL must
release the memory it allocated for the packet.

Note The IHV Extensions DLL must not free the resources allocated for a packet
sent through Dot11ExtSendPacket until the corresponding call to
Dot11ExtIhvSendPacketCompletion is made.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_send_packet_completion

Receive Operations
Article • 12/15/2021

When performing a post-association operation, initiated through a call to
Dot11ExtIhvPerformPostAssociate, the operating system calls the
Dot11ExtIhvReceivePacket function to forward packets to the HV Extensions DLL received
through the wireless LAN (WLAN) adapter. For more information about the post-
association operation, see Post-Association Operations.

In order to receive packets, the IHV Extensions DLL must call
Dot11ExtSetEtherTypeHandling to register a list of one or more IEEE EtherTypes. When a
packet is received with an EtherType that matches an entry in this list, the operating
system calls the Dot11ExtIhvReceivePacket function and passes the packet buffer
through the function's pvInBuffer parameter.

Note The IHV Extensions DLL must call Dot11ExtSetEtherTypeHandling before the DLL
completes a pre-association operation. For more information about this operation, see
Pre-Association Operations.

When Dot11ExtIhvReceivePacket is called, the pvInBuffer parameter points to a buffer
allocated by the operating system that contains the entire 802.11 packet, including
media access control (MAC) header, LLC encapsulation (if necessary), and payload data.

The IHV Extensions DLL can send a response to the received packet from within the call
to Dot11ExtIhvReceivePacket. In this situation, the DLL must follow the guidelines
described in Send Operations.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_post_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_ethertype_handling
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_packet

Notification Operations
Article • 12/15/2021

This section describes the types of notifications the IHV Extensions DLL sends or receives
and contains the following topics:

Sending Notifications

Receiving Notifications

Sending Notifications
Article • 12/06/2022

The IHV Extensions DLL calls the Dot11ExtSendNotification function to send
notifications to any service or application that has registered for the notification. In
order to receive the notification, the service or application must register with the Auto
Configuration Manager (ACM) by calling the WlanRegisterNotification function.

Note The service or application must register for notifications with a source value of
L2_NOTIFICATION_SOURCE_WLAN_IHV in order to receive notifications through calls to
the Dot11ExtSendNotification function.

When calling Dot11ExtSendNotification, the IHV Extensions DLL passes a pointer to a
L2_NOTIFICATION_DATA structure to the pNotificationData parameter. The
L2_NOTIFICATION_DATA defines the type of the notification and can provide additional
data about the notification to the IHV Extensions DLL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_notification
https://learn.microsoft.com/en-us/windows/win32/api/wlanapi/nf-wlanapi-wlanregisternotification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_notification
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_notification
https://learn.microsoft.com/en-us/windows/win32/api/l2cmn/ns-l2cmn-l2_notification_data

Receiving Notifications
Article • 12/15/2021

The operating system forwards IHV-specific indications from the Native 802.11 miniport
driver by calling the Dot11ExtIhvReceiveIndication function. For more information about
how the driver makes this type of indication, see IHV-Specific Indications.

When the Dot11ExtIhvReceiveIndication function is called, the pvBuffer parameter is
passed a pointer to a buffer that contains data in a format defined by the IHV.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ihv-specific-indications
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_receive_indication

Virtual Station
Article • 12/15/2021

Beginning with NDIS 6.20 (Windows 7), the operating system provides a virtual station
(VSTA) that can interact with the 802.11 miniport driver.

An independent hardware vendor (IHV) uses VSTA functionality through the IHV
Extensibility framework rather than through Win32 application programming interfaces
(APIs).

The creation of the virtual station is initiated when the IHV Extensions DLL calls the
Dot11ExtRequestVirtualStation function. The operating system creates only one virtual
station on the computer at a time, and only if an IHV Extensions DLL issues a
Dot11ExtRequestVirtualStation request.

The operating system calls the Dot11ExtIhvInitVirtualStation function to initialize the IHV
Extensions DLL for virtual station operations. This call also initializes the user-mode API
interface between the operating system and the DLL.

Note To ensure that a virtual station is created in a consistent fashion, a computer
should have only one installation of the IHV Extensions DLL that attempts to use Virtual
Station functionality. Even if more than one DLL is installed, only one virtual station can
be created. The operating system cannot guarantee which DLL will have access to a
virtual station after the computer is restarted. Note that if a virtual station already has
been created at the request of one DLL and a second DLL then calls
Dot11ExtRequestVirtualStation, a success code might be returned but a second virtual
station will not be created. An IHV Extensions DLL should set a two-minute timer after it
calls the Dot11ExtRequestVirtualStation function. If the timer expires before the virtual
station adapter arrival event, the DLL should assume that the virtual station was not
created.

If your driver implements virtual station functionality but cannot sustain both Extensible
Access Point (ExtAP) and virtual station connections at the same time on different ports,
the driver should perform the following actions.

Extensible AP/Virtual Station Interactions

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_request_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_init_virtual_station
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extensible-access-point-operation-mode

Inform the operating system whether a port that is being used for ExtAP can or
cannot sustain functionality at all times. In particular, the driver should issue the
following status indications on the ExtAP port, using the appropriate status code (
NDIS_STATUS_INDICATION->StatusCode) and reason code:

NDIS_STATUS_DOT11_STOP_AP
Indicates that AP functionality cannot be sustained on the ExtAP port. In this case,
set DOT11_STOP_AP_PARAMETERS-> ulReason to a value of
DOT11_STOP_AP_REASON_AP_ACTIVE. Issue this status indication in the following
situations:

Before the virtual station port begins to use the shared resource that would
block simultaneous virtual station and ExtAP connections
If the ExtAP port transitions to the ExtAP INIT state, and virtual station resource
use would prevent successful initialization of the ExtAP port.

NDIS_STATUS_DOT11_CAN_SUSTAIN_AP
Indicates that the virtual station port is disconnected, or that use of a virtual station
resource will not prevent successful transition of the port to the ExtAP INIT state.

While connecting to a virtual station port, call the
Dot11ExtSetVirtualStationAPProperties function to provide information about the
AP implementation that is hosted by the virtual station connection.

Fail the virtual station port connections if the ExtAP port is running in the OP state
and one of the following situations occurs:

One or more clients is on the ExtAP port.
The virtual station attempts to start a connection that duplicates Wireless
Hosted Network settings.

Dot11ExtQueryVirtualStationProperties

Dot11ExtReleaseVirtualStation

Dot11ExtRequestVirtualStation

Dot11ExtSetVirtualStationAPProperties

DOT11EXT_VIRTUAL_STATION_AP_PROPERTY

Native 802.11 IHV Extensibility Functions That Support a
Virtual Station

Structures That Support a Virtual Station

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ndis-status-dot11-stop-ap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/windot11/ns-windot11-_dot11_stop_ap_parameters
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ndis-status-dot11-can-sustain-ap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_virtual_station_ap_properties
https://learn.microsoft.com/en-us/windows/win32/nativewifi/about-the-wireless-hosted-network
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_query_virtual_station_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_release_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_request_virtual_station
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_set_virtual_station_ap_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_virtual_station_ap_property

DOT11EXT_VIRTUAL_STATION_APIS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_virtual_station_apis

Native 802.11 IHV UI Extensions DLL
Topics
Article • 12/15/2021

This section discusses the architecture of the Native 802.11 IHV UI Extensions DLL, and
has the following topics:

Windows SDK References

Native 802.11 IHV UI Extensions DLL Overview

Native 802.11 IHV UI Extensions COM Interfaces

Extending the Properties for Wireless Network Profiles

Extending the Advanced Properties for Wireless Network Adapters

Handling Requests for the Display of a Custom UI

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Windows SDK References
Article • 05/29/2024

To understand the material in this section, you should be familiar with standard COM
interfaces and methods, and specifically the following:

IWizardExtension COM Interface

IWizardSite COM Interface

IObjectWithSite COM Interface

IPropertyBag COM Interface

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardsite
https://learn.microsoft.com/en-us/previous-versions/ms834916(v=msdn.10)
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)

Native 802.11 IHV UI Extensions DLL
Overview
Article • 12/15/2021

If the independent hardware vendor (IHV) provides a Native 802.11 IHV Extensions DLL,
the IHV can optionally provide a Native 802.11 IHV UI Extensions DLL. Through this DLL,
the IHV can do the following:

Extend the Microsoft Network Configuration user interface (UI) properties, which
are used for wireless connection and security configuration settings. In this
situation, the Native 802.11 IHV UI Extensions DLL can do the following:

Add custom display elements to the standard Microsoft 802.11 properties. For
example, the Native 802.11 IHV UI Extensions DLL can add items to a list to
provide the end user with selections for proprietary security options.
Launch a custom UI that you can use to configure proprietary connection and
security settings.

For more information about extending Microsoft 802.11 properties, see Extending
801.11 Properties.

Launch a custom UI at the request of the Native 802.11 IHV Extensions DLL.
Depending on the current state of the underlying Native 802.11 miniport driver,
the operating system displays the UI as either of the following:

A set of wizard pages within the flow of the operating system's 802.11 UI. For
example, if the Native 802.11 IHV Extensions DLL requires user credentials
during a wireless LAN (WLAN) connection operation, the operating system
displays the custom UI pages provided by the Native 802.11 UI Extensions DLL
as part of the standard UI flow.

A stand-alone UI launched from a balloon notification. For example, if the
Native 802.11 Extensions DLL determines that the connection or authentication
state on the WLAN connection has changes, the DLL can request that the Native
802.11 UI Extensions DLL display a balloon notification to alert the end user.

For more information about launching a UI that results from requests from the
Native 802.11 Extensions DLL, see Handling UI Requests from the Native 802.11
IHV Extensions DLL.

For more information about the Native 802.11 IHV Extensions DLL, see Native 802.11
IHV Extensions DLL.

For more information about the Microsoft Network Configuration UI and other Native
802.11 components, see Native 802.11 Software Architecture.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Native 802.11 IHV UI Extensions COM
Interfaces
Article • 12/15/2021

The Native 802.11 IHV UI Extensions DLL implements one or more of the following COM
interfaces:

IDot11ExtUI
Through the IDot11ExtUI COM interface, the operating system's Native 802.11 Network
Configuration UI can interact with the Native 802.11 IHV UI Extensions DLL. For example,
this COM interface provides the methods used by the Native 802.11 Network
Configuration UI to query the DLL for the IDot11ExtUIProperty COM interfaces that are
used to extend the operating system's 802.11 connection and security properties.

The Native 802.11 IHV UI Extensions DLL must provide an implementation of the
IDot11ExtUI COM interface.

For more information about this COM interface, see IDot11ExtUI COM Interface.

IDot11ExtUIProperty
Through the IDot11ExtUIProperty COM interface, the Native 802.11 IHV UI Extensions
DLL can extend the connection and security properties that are displayed by the Native
802.11 Network Configuration UI.

The IDot11ExtUIProperty COM interface is optional and is only required if the Native
802.11 IHV UI Extensions DLL supports extensions to the operating system's 802.11
connection and security properties.

The Native 802.11 IHV UI Extensions DLL can provide one or more implementations of
the IDot11ExtUIProperty COM interface, with each implementation representing an IHV-
defined extension to a Native 802.11 property. The DLL can provide one or more
property extensions for security settings. For Windows Vista, the DLL can add no more
than one property extension for connection settings.

For more information about this COM interface, see IDot11ExtUIProperty COM Interface.

IWizardExtension
The Native 802.11 IHV UI Extensions DLL can provide one or more implementations of
the IWizardExtension COM interface. Each implementation supports the display of one
or more custom UI pages. These UI pages are displayed through one of the following:

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553769(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553746(v=vs.85)

An external request made by the Native 802.11 IHV Extensions DLL. For more
information about this process, see Requesting the Display of a Custom UI.

A query made by the operating system to determine whether the Native 802.11
IHV Extensions DLL has a custom UI to display. For more information about this
process, see Querying for the Display of a Custom UI.

An internal request made by a component of the Native 802.11 IHV UI Extensions
DLL.

For more information about the IWizardExtension COM interface, see IWizardExtension
COM Interface.

For more information about the Native 802.11 Network Configuration UI component,
see Native 802.11 Software Architecture.

https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Extending the Properties for Wireless
Network Profiles
Article • 12/15/2021

The end user creates or edits a wireless network connection profile through the Native
802.11 Network Configuration user interface (UI). For more information about this UI,
see Native 802.11 Software Architecture.

The independent hardware vendor (IHV) can extend the Network Configuration UI to
support proprietary connection and security profile settings through a Native 802.11 UI
Extensions DLL. The DLL can extend the following tabs that are displayed in the Network
Configuration UI.

Connection tab
This tab displays the UI for the connection settings of a wireless LAN (WLAN) network.

The Native 802.11 IHV UI Extensions DLL can extend this UI by following the procedure
described in Extending Wireless Connection Property Pages.

Note For Windows Vista, the Native 802.11 UI Extensions DLL can only support one
extension to the Connection tab.

Security tab
This tab displays the UI for the security settings of a wireless LAN (WLAN) network.

The Native 802.11 IHV UI Extensions DLL can extend this UI by adding display elements
for proprietary security settings. For more information about this process, see Extending
Wireless Security Property Pages.

The Native 802.11 IHV UI Extensions DLL can also extend the Microsoft 802.1X settings
on the Security tab. For more information about this process, see Extending Microsoft
802.1X Security Settings.

Note For Windows Vista, the Native 802.11 IHV UI Extensions DLL can only extend the
properties of connection and security profiles for infrastructure wireless networks.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Extending Wireless Connection
Properties
Article • 12/15/2021

This topic describes how a Native 802.11 IHV UI Extensions DLL extends the properties
on the Connection tab that are displayed through the Network Configuration user
interface (UI). In this situation, the Native 802.11 IHV UI Extensions DLL adds properties
to the Connection tab for proprietary connection settings.

For more information about the Network Configuration UI and other Native 802.11
components, see Native 802.11 Software Architecture.

Before it displays the Connection tab, the operating system does the following:

1. Queries the Native 802.11 IHV UI Extensions DLL for its connection properties
through a call to the IDot11ExtUI::GetDot11ExtUIProperties method. The operating
system passes a value of DOT11_EXT_UI_CONNECTION to the method's ExtType
parameter.

If the Native 802.11 IHV UI Extension DLL supports a property of type
DOT11_EXT_UI_CONNECTION, the DLL returns (through the method's
ppDot11ExtUIProperty parameter) the address of the IDot11ExtUIProperty COM
interface, which implements the connection property extension. For more
information about the COM interfaces that are used to extend connection
properties, see Native 802.11 IHV UI Extensions COM Interfaces.

Note For Windows Vista, the Native 802.11 IHV UI Extensions DLL must not return
more than one IDot11ExtUI COM Interface for a connection property extension.

2. If the Native 802.11 IHV UI Extensions DLL supports a connection property, the
operating system queries the friendly name of the property extension by calling
the extension's IDot11ExtUIProperty::GetDot11ExtUIPropertyFriendlyName
method. The operating system inserts the friendly name within the text "Enable xxx
connection settings," where "xxx" is the friendly name of the property extension.
The operating system displays this text along with a check box on the Connection
tab.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553776(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553746(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553769(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553768(v=vs.85)

3. Queries the extension to determine whether it has a custom UI property that can
be displayed. The operating system does this by calling the extension's
IDot11ExtUIProperty::Dot11ExtUIPropertyHasConfigurationUI method. If the
connection property extension supports a custom UI property, the operating
system adds a Configure button below the check box for the property.

If the selected proprietary connection setting supports a configuration UI and the end
user clicks the Configure button in theConnection tab, the operating system calls the
connection property extension's IDot11ExtUIProperty::DisplayDot11ExtUIProperty
method to launch the custom UI. The operating system passes the current profile data
for the extension through the method's bstrIHVProfile argument.

The profile data is formatted as an XML fragment bounded by the <IHV> </IHV> XML
tags. The XML data within these tags is specific to the IHV's implementation and is
opaque to the operating system. For more information about the format of the Native
802.11 profile data, refer to the documentation within the Microsoft Windows SDK.

If the profile data is changed through the custom UI, the extension's
IDot11ExtUIProperty::DisplayDot11ExtUIProperty method must do the following before
returning:

Allocate a string buffer for the modified profile data and return a pointer to the
buffer through the method's bstrModifiedIHVProfile parameter. Note The
extension's IDot11ExtUIProperty::DisplayDot11ExtUIProperty method must not
modify the data referenced by the bstrIHVProfile argument.

Set the pbIsModified argument to TRUE.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553756(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)

Extending Wireless Security Properties
Article • 12/15/2021

This topic describes how a Native 802.11 IHV UI Extensions DLL extends the properties
of the Security tab that is displayed through the Network Configuration user interface
(UI). In this situation, the Native 802.11 IHV UI Extensions DLL adds properties to the
Security tab for proprietary security settings that are mutually exclusive from the Native
802.11 802.1X module.

The Native 802.11 IHV UI Extensions DLL can also extend the security and encryption
methods that are supported by the Native 802.11 802.1X module. For more information
about how the DLL does this, see Extending Microsoft 802.1X Security Settings.

For more information about the Network Configuration UI and other Native 802.11
components, see Native 802.11 Software Architecture.

Before it displays the Security tab, the operating system does the following:

1. Queries the Native 802.11 IHV UI Extensions DLL for its security property
extensions through a call to the IDot11ExtUI::GetDot11ExtUIProperties method.
The operating system passes a value of DOT11_EXT_UI_SECURITY to the method's
ExtType parameter.

If the Native 802.11 IHV UI Extension DLL supports one or more properties of type
DOT11_EXT_UI_SECURITY, the DLL returns (through the method's
ppDot11ExtUIProperty parameter) a list of IDot11ExtUIProperty COM interfaces for
the security property extensions that are supported by the DLL. For more
information about the COM interfaces used to extend security properties, see
Native 802.11 IHV UI Extensions COM Interfaces.

2. Queries the friendly name of the security extension by calling the extension's
IDot11ExtUIProperty::GetDot11ExtUIPropertyFriendlyName method. The
operating system adds the friendly name to the list of proprietary security settings
at the bottom of the Security tab.

3. If the end user selects an item from this list, the operating system will call the
IDot11ExtUIProperty::Dot11ExtUIPropertyGetSelected method of each security
extension's IDot11ExtUIProperty COM interfaces. The first extension that returns
with a value of TRUE for the method's pfIsSelected parameter is determined to be
the selected extension. The selected entry in the list will then be highlighted.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553776(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553746(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553768(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553753(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553746(v=vs.85)

4. Queries the selected setting's
IDot11ExtUIProperty::Dot11ExtUIPropertyHasConfigurationUI method to
determine whether it has a custom UI property page that can be displayed. If the
method returns with the fHasConfigurationUI parameter set to TRUE, the operating
system will add a Configure button next to the list of proprietary security settings.

If the selected proprietary security setting supports a configuration UI and the end user
clicks the Configure button, the operating system calls the setting's
IDot11ExtUIProperty::DisplayDot11ExtUIProperty method to launch the custom UI. The
operating system passes the current profile data for the setting through the method's
bstrIHVProfile argument.

The profile data is formatted as an XML fragment bounded by the <IHV> </IHV> XML
tags. The XML data within these tags is specific to the IHV's implementation and is
opaque to the operating system. For more information about the format of the Native
802.11 profile data, refer to the documentation within the Microsoft Windows SDK.

If the profile data is changed through the custom UI, the setting's
IDot11ExtUIProperty::DisplayDot11ExtUIProperty method must do the following before
returning:

Allocate a string buffer for the modified profile data and return a pointer to the
buffer through the method's bstrModifiedIHVProfile parameter. Note The setting's
IDot11ExtUIProperty::DisplayDot11ExtUIProperty method must not modify the
data that is referenced by the bstrIHVProfile argument.

Set the pbIsModified argument to TRUE.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553756(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)

Extending Microsoft 802.1X Security
Settings
Article • 12/15/2021

If the Native 802.11 IHV Extensions DLL supports extensions to the Native 802.11 802.1X
module, the Native 802.11 IHV UI Extensions DLL can extend the Network Configuration
user interface's (UI's) Security tab to allow user configuration of the 802.1X extensions.
For more information about extending the Native 802.11 802.1X module, see Interface
to the Native 802.11 802.1X Module.

This section describes how the Native 802.11 IHV UI Extensions DLL can extend the
settings for the operating system's security and encryption methods supported by the
Native 802.11 802.1X module. This section includes the following topics:

Extending the UI for Proprietary 802.1X Security Methods

Extending the UI for Standard 802.1X Security Methods

For more information about the Network Configuration UI and other Native 802.11
components, see Native 802.11 Software Architecture.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture

Extending the UI for Proprietary 802.1X
Security Methods
Article • 12/15/2021

If the Native 802.11 IHV Extensions DLL supports proprietary 802.1X-based security
extensions, the Native 802.11 IHV UI Extensions DLL can extend the Network
Configuration user interface's (UI's) Security tab to allow user configuration of the these
extensions. For more information about extending the Native 802.11 802.1X module, see
Interface to the Native 802.11 802.1X Module.

For more information about the Network Configuration UI and other Native 802.11
components, see Native 802.11 Software Architecture.

Before it displays the Security tab, the operating system does the following:

1. Queries the Native 802.11 IHV UI Extensions DLL for its security property
extensions through a call to the IDot11ExtUI::GetDot11ExtUIProperties method.
The operating system passes a value of DOT11_EXT_UI_KEYEXTENSION to the
method's ExtType parameter.

Property extensions of type DOT11_EXT_UI_KEYEXTENSION do not provide
security settings that are mutually exclusive to the standard Microsoft security
settings. Instead, this type of security property extension provides IHV-defined
802.1X settings that are used together with the Microsoft 802.1X settings.

2. Queries the friendly name of the 802.1X security extension by calling the
extension's IDot11ExtUIProperty::GetDot11ExtUIPropertyFriendlyName method.

3. Queries the extension's
IDot11ExtUIProperty::Dot11ExtUIPropertyIsStandardSecurity method to determine
whether the extension supports a security type extension. If the method sets the
fIsStandardSecurity parameter to FALSE, the operating system will add the
extension's friendly name to the Security type list on the Security tab.

4. When the end user selects an item from the Security type list, the operating
system responds by calling the
IDot11ExtUIProperty::Dot11ExtUIPropertyGetSelected method for each extension
to match the selection of the end user. The first extension that returns a value of
TRUE for the method's pfIsSelected parameter is determined to be the selected

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553776(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553768(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553760(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553753(v=vs.85)

extension. After this is confirmed, the operating system highlights the selection
made by the end user.

5. Calls the selected property extension's
IDot11ExtUIProperty::Dot11ExtUIPropertyHasConfigurationUI method to
determine whether it has a custom UI property page that can be displayed. If the
method returns a value of TRUE for the method's fHasConfigurationUI parameter,
the operating system will display a Configure button next to the Security type list.

If the end user clicks the Configure button, the operating system will call the
selected property extension's IDot11ExtUIProperty::DisplayDot11ExtUIProperty
method to display the custom configuration UI for the extension.

6. Calls the selected property extension's
IDot11ExtUIProperty::Dot11ExtUIPropertyGetDisplayInfo method. Through this
method, the Native 802.11 IHV UI Extensions DLL can return other property
extensions to the Security tab of the Native 802.11 Network Configuration UI.

The IDot11ExtUIProperty::Dot11ExtUIPropertyGetDisplayInfo method returns a list
of the items that the selected property extension adds to the Security tab. Each
entry in the list is formatted as a DOT11_EXT_UI_PROPERTY_DISPLAY_INFO
structure.

For Windows Vista, the Native 802.11 IHV UI Extensions DLL can only add items to
the Encryption list on the Security tab. As a result, each item in the list of
DOT11_EXT_UI_PROPERTY_DISPLAY_INFO structures must have a
DOT11_EXT_UI_DISPLAY_INFO_TYPE of DOT11_EXT_UI_DISPLAY_INFO_CIPHER in
order to be included in the Encryption list.

7. When the end user selects from the Encryption list, the operating system will call
the selected property extension's
IDot11ExtUIProperty::Dot11ExtUIPropertySetDisplayInfo method to process the
profile data that is associated with the end user's selection.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553756(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553749(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553752(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff548637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff548637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553763(v=vs.85)

Extending the UI for Standard 802.1X
Security Methods
Article • 12/15/2021

If the Native 802.11 IHV Extensions DLL supports proprietary encryption extensions that
can be used with the operating system's 802.1X security methods, the Native 802.11 IHV
UI Extensions DLL can extend the Network Configuration user interface's (UI')s Security
tab to allow user configuration of the these extensions. For more information about
extending the Native 802.11 802.1X module, see Interface to the Native 802.11 802.1X
Module.

For more information about the Network Configuration UI and other Native 802.11
components, see Native 802.11 Software Architecture.

Before it displays the Security tab,the operating system does the following:

1. Queries the Native 802.11 IHV UI Extensions DLL for its security property
extensions through a call to the IDot11ExtUI::GetDot11ExtUIProperties method.
The operating system passes a value of DOT11_EXT_UI_KEYEXTENSION to the
method's ExtType parameter.

Property extensions of type DOT11_EXT_UI_KEYEXTENSION do not provide
security settings that are mutually exclusive to the standard Microsoft security
settings. Instead, this type of security property extension provides IHV-defined
802.1X settings that are used together with the Microsoft 802.1X settings.

2. Queries the friendly name of the 802.1X security extension by calling the
extension's IDot11ExtUIProperty::GetDot11ExtUIPropertyFriendlyName method.

3. Queries the extension's
IDot11ExtUIProperty::Dot11ExtUIPropertyIsStandardSecurity method to determine
whether the extension supports a security type extension. If the method sets the
fIsStandardSecurity parameter to TRUE, the operating system will not add the
extension's friendly name to the Security type list on the Security tab.

In this situation, the extension adds functionality to the security settings that are
supported by the operating system. The method specifies the type of security
setting it extends through the dot11ExtUISecurityType parameter.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-software-architecture
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553776(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553768(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553760(v=vs.85)

4. When the end user selects an item from the Security type list, the operating
system responds by calling the
IDot11ExtUIProperty::Dot11ExtUIPropertyGetSelected method for each extension
to match the selection of the end user. The first extension that returns a value of
TRUE for the method's pfIsSelected parameter is determined to be the selected
extension. After this is confirmed, the operating system highlights the selection
made by the end user.

5. When the end user selects an item for a standard security setting from the Security
type list, the operating system calls the
IDot11ExtUIProperty::Dot11ExtUIPropertyGetDisplayInfo method of the property
extension that extends the security method. Through the
IDot11ExtUIProperty::Dot11ExtUIPropertyGetDisplayInfo method, the Native
802.11 IHV UI Extensions DLL can return other items to be added to the Security
tab of the Native 802.11 Network Configuration UI.

The IDot11ExtUIProperty::Dot11ExtUIPropertyGetDisplayInfo method returns a list
of the extended display properties that are supported by the property extension.
Each item in the list is formatted as a DOT11_EXT_UI_PROPERTY_DISPLAY_INFO
structure.

For Windows Vista, the Native 802.11 IHV UI Extensions DLL can only add items to
the Encryption list on the Security tab. As a result, each entry within the list of
DOT11_EXT_UI_PROPERTY_DISPLAY_INFO structures must have a
DOT11_EXT_UI_DISPLAY_INFO_TYPE of DOT11_EXT_UI_DISPLAY_INFO_CIPHER in
order to be included in the Encryption list.

6. When the end user selects from the Encryption list, the operating system will call
the property extension's IDot11ExtUIProperty::Dot11ExtUIPropertySetDisplayInfo
method to process the profile data that is associated with the end user's selection.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553753(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553752(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff548637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff548637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553763(v=vs.85)

Extending the Advanced Properties for
Wireless Network Adapters
Article • 12/15/2021

In addition to extending the properties for wireless network profiles, the independent
hardware vendor (IHV) can also extend the advanced properties for the configuration of
the wireless LAN (WLAN) adapter. For more information, refer to the following topics:

Specifying Configuration Parameters for the Advanced Properties Page

Specifying Custom Property Pages for Network Adapters

Handling Requests for the Display of a
Custom UI
Article • 12/15/2021

This section discusses how the Native 802.11 IHV UI Extensions DLL can display a
custom user interface (UI) through one of the following:

A request from the Native 802.11 IHV Extensions DLL. For example, the Native
802.11 IHV Extensions DLL might request a custom UI for user notification of a
wireless LAN (WLAN) event.

A query, made by the operating system, to determine whether the Native 802.11
IHV UI Extensions DLL has a custom UI that can be displayed.

This section has the following topics:

Requesting the Display of a Custom UI

Querying for the Display of a Custom UI

Displaying Custom UI Pages within a Balloon Notification

Displaying Custom UI Pages within the Network Connection Wizard

Accessing Profile and Context Data

For more information about the Native 802.11 IHV Extensions DLL, see Native 802.11
IHV Extensions DLL.

Requesting the Display of a Custom UI
Article • 12/15/2021

The Native 802.11 IHV Extensions DLL can request the display of a custom user interface
(UI) through the Native 802.11 IHV UI Extensions DLL. For example, the IHV Extensions
DLL could request that a custom UI be displayed to:

Notify the end user at various stages during the wireless LAN (WLAN) association
operation.

Notify the end user when the WLAN adapter has disassociated for the WLAN
network.

Notify the end user with the results of the authentication to the WLAN network.

To launch a custom UI or display a notification, the Native 802.11 IHV Extensions DLL
calls Dot11ExtSendUIRequest and passes a pointer to a DOT11EXT_IHV_UI_REQUEST
structure through the pIhvUIRequest parameter of this function.

Through the DOT11EXT_IHV_UI_REQUEST structure, the Native 802.11 IHV Extensions
DLL specifies the custom UI through the following data:

The user session identifier (ID), which is used to identify a specific user context.

A globally unique ID (GUID), which identifies the specific UI request.

The class ID (CLSID) of IWizardExtension COM interface implemented within the
Native 802.11 IHV UI Extensions DLL. The CLSID is used to request a specific
custom UI supported by the DLL.

For more information about the IWizardExtension COM interface, see
IWizardExtension COM Interface.

A buffer containing data in a proprietary format that is defined by the independent
hardware vendor (IHV) and processed by the specified IWizardExtension COM
interface. For example, the buffer could contain the default values that are
displayed within the custom UI.

Depending upon the WLAN connection state for the user session ID, the custom UI
request will be displayed as one of the following:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension

If the adapter has connected to a WLAN network, the request will be displayed as a
standalone UI launched through a clickable balloon notification. For more
information about this process, see Displaying a Balloon Notification.

If the adapter is in the process of connecting to a WLAN network, the request will
be displayed as a set of wizard pages within the standard Network Connection UI.
For more information about this process, see Displaying Custom UI Pages within
the Network Connection Wizard.

Querying for the Display of a Custom UI
Article • 12/15/2021

The operating system can query the Native 802.11 IHV Extensions DLL to determine
whether the DLL has a custom UI to display. The operating system queries the DLL
whenever the wireless LAN (WLAN) adapter transitions to one of the following phases
within the WLAN network connection process.

Pre-association
The connection phase before the IHV Extensions DLL initiates a pre-association
operation. For more information about the pre-association operation, see Pre-
Association Operations.

Post-association
The connection phase after the IHV Extensions DLL completes a post-association
operation. For more information about the post-association operation, see Post-
Association Operations.

The operating system calls the Native 802.11 IHV Extensions DLL's
Dot11ExtIhvQueryUIRequest IHV Handler function to query whether a custom UI can be
displayed. The operating system passes the current phase of the connection process
through the connectionPhase parameter. If a custom UI must be displayed, the DLL
returns a DOT11EXT_IHV_UI_REQUEST structure through the p pIhvUIRequest parameter.

Through the DOT11EXT_IHV_UI_REQUEST structure, the Native 802.11 IHV Extensions
DLL specifies the custom UI through the following data.

The user session identifier (ID), which is used to identify a specific user context.

A globally unique ID (GUID), which identifies the specific UI request.

The class ID (CLSID) of IWizardExtension COM interface that is implemented within
the Native 802.11 IHV UI Extensions DLL. The CLSID is used to request a specific
custom UI that is supported by the DLL.

For more information about the IWizardExtension COM interface, see
IWizardExtension COM Interface.

A buffer that contains data in a proprietary format that is defined by the
independent hardware vendor (IHV) and processed by the specified

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_query_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension

IWizardExtension COM interface. For example, the buffer could contain the default
values that are displayed within the custom UI.

The custom UI will be displayed as a set of wizard pages within the standard Network
Connection UI. For more information about this process, see Displaying Custom UI
Pages within the Network Connection Wizard.

Displaying Custom UI Pages within a
Balloon Notification
Article • 12/15/2021

If the Native 802.11 IHV Extensions DLL calls Dot11ExtSendUIRequest to display a
custom user interface (UI), the operating system will display the UI through a clickable
balloon notification if the wireless LAN (WLAN) adapter has connected to a wireless
network. In this situation, the request for the custom UI is displayed as a balloon
notification:

After the Native 802.11 IHV Extensions DLL calls
Dot11ExtPostAssociateCompletion to successfully complete the post-association
operation.

Before the operating system calls the DLL's Dot11ExtIhvAdapterReset IHV Handler
function to reset the WLAN connection.

For more information about how the Native 802.11 IHV Extensions DLL requests the
display of a custom UI, see Requesting the Display of a Custom UI.

When processing a custom UI request as a balloon notification, the operating system
does the following.

1. Calls the Native 802.11 IHV Extensions DLL's Dot11ExtIhvIsUIRequestPending IHV
Handler function to determine whether a UI request is still pending. The operating
system specifies the UI request using the globally unique identifier (GUID) passed
to Dot11ExtSendUIRequest by the Native 802.11 IHV Extensions DLL.

2. If Dot11ExtIhvIsUIRequestPending returns TRUE for the specified UI request, the
operating system will call the Native 802.11 IHV UI Extensions DLL's
IDot11ExtUI::GetDot11ExtUIBalloonText method. Through this method, the DLL
returns a string buffer that contains the localized text to be displayed within the
balloon notification.

3. Displays the balloon notification that contains the localized text.

4. If the end user clicks the balloon notification, the operating system will launch the
custom UI that is supported by the requested IWizardExtension COM interface.
When it calls Dot11ExtSendUIRequest, the Native 802.11 IHV Extensions DLL

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_adapter_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff553771(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request

specifies the class identifier (CLSID) of the IWizardExtension implementation
within the Native 802.11 IHV UI Extensions DLL.

When the operating system calls the IWizardExtension::AddPages method, the
Native 802.11 IHV UI Extensions DLL returns an array of handles for
PROPSHEETPAGE structures representing the custom UI pages.

For more information about the IWizardExtension COM interface, see
IWizardExtension COM Interface. For more information about the PROPSHEETPAGE
structure, refer to the documentation in the Microsoft Windows SDK.

5. Navigates through the UI pages as specified by the Native 802.11 IHV UI
Extensions DLL through IWizardSite COM interface. For more information about
this interface, see IWizardSite COM Interface.

While the custom UI is displayed, the Native 802.11 IHV UI Extensions DLL can read or
write context-specific data through the IPropertyBag COM interface. For more
information about this process, see Accessing Profile and Context Data. After the display
of the custom UI has completed, the Native 802.11 IHV UI Extensions DLL can return the
user-entered response data to the Native 802.11 IHV Extensions DLL by calling
WlanSendUIResponse . The DLL passes in the GUID for the UI request as well as a
pointer to a buffer that contains the response data.

After the Native 802.11 IHV UI Extensions DLLcalls WlanSendUIResponse, the operating
system will call the Native 802.11 IHV Extension DLL's Dot11ExtIhvProcessUIResponse IHV
Handler function to forward the response data for the custom UI.

For more information about the WlanSendUIResponse API, refer to the documentation
in the Windows SDK.

https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardsite
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response

Displaying Custom UI Pages within the
Network Connection Wizard
Article • 12/15/2021

A custom user interface (UI) supported by the Native 802.11 IHV UI Extensions DLL can
be displayed within the operating system's Network Connection Wizard when the
request for UI is made through either:

A call to Dot11ExtSendUIRequest, made by the Native 802.11 IHV Extensions DLL.
For more information about this process, see Requesting the Display of a Custom
UI.

A call to the Native 802.11 IHV Extensions DLL's Dot11ExtQueryUIRequest IHV
Handler function, made by the operating system. For more information about this
process, see Querying for the Display of a Custom UI.

The operating system displays the custom UI within the Network Connection Wizard if
the wireless LAN (WLAN) adapter is attempting to connect to a wireless network. In this
situation, the request for the custom UI will be displayed as a balloon notification within
the period:

After the operating system calls the Native 802.11 IHV Extensions DLL's
Dot11ExtIhvPerformPreAssociate IHV Handler function to initiate a pre-association
operation with the wireless network.

Before the Native 802.11 IHV Extensions DLL calls
Dot11ExtPostAssociateCompletion to successfully complete the post-association
operation.

When inserting the custom UI request within the Network Connection Wizard, the
operating system does the following:

1. Calls the Native 802.11 IHV Extensions DLL's Dot11ExtIhvIsUIRequestPending IHV
Handler function to determine whether a UI request is still pending. The operating
system specifies the UI request using the globally unique identifier (GUID) that is
passed to Dot11ExtSendUIRequest by the Native 802.11 IHV Extensions DLL.

2. If Dot11ExtIhvIsUIRequestPending returns TRUE for the specified UI request, the
operating system will instantiate the requested IWizardExtension COM interface
and bind it into the current UI flow of the Network Connection Wizard. When it

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_perform_pre_associate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_post_associate_completion
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_is_ui_request_pending

calls Dot11ExtSendUIRequest, the Native 802.11 IHV Extensions DLL specifies the
class identifier (CLSID) of the IWizardExtension implementation within the Native
802.11 IHV UI Extensions DLL.

The operating system also calls the IWizardExtension::AddPages method, through
which the Native 802.11 IHV UI Extensions DLL returns an array of handles for
PROPSHEETPAGE structures representing the custom UI pages.

For more information about the IWizardExtension COM interface, see
IWizardExtension COM Interface.

3. Navigates through the UI pages as controlled by the Native 802.11 IHV UI
Extensions DLL through the IWizardSite COM interface. For more information
about this interface, see IWizardSite COM Interface.

While the custom UI is displayed, the Native 802.11 IHV UI Extensions DLL can read or
write context-specific data through the IPropertyBag COM interface. For more
information about this process, see Accessing Profile and Context Data.

After the custom UI is displayed, the Native 802.11 IHV UI Extensions DLL can return the
user-entered response data to the Native 802.11 IHV Extensions DLL by calling
WlanSendUIResponse. The DLL passes in the GUID for the UI request as well as a
pointer to a buffer containing the response data.

After the Native 802.11 IHV UI Extensions DLL calls WlanSendUIResponse, the operating
system calls the Native 802.11 IHV Extension DLL's Dot11ExtIhvProcessUIResponse IHV
Handler function to forward the response data for the custom UI.

For more information about the WlanSendUIResponse API, refer to the documentation
in the Microsoft Windows SDK.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardextension
https://learn.microsoft.com/en-us/windows/win32/api/shobjidl/nn-shobjidl-iwizardsite
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_process_ui_response

Accessing Profile and Context Data
Article • 12/15/2021

A custom user interface (UI) that is supported by the Native 802.11 IHV UI Extensions
DLL can be displayed through either:

A call to Dot11ExtSendUIRequest made by the Native 802.11 IHV Extensions DLL.
For more information about this process, see Requesting the Display of a Custom
UI.

A call to the Native 802.11 IHV Extensions DLL's Dot11ExtQueryUIRequest IHV
Handler function made by the operating system. For more information about this
process, see Querying for the Display of a Custom UI.

Regardless of whether the UI request is displayed through either a balloon notification
or the operating system's Network Connection Wizard, the Native 802.11 IHV UI
Extensions DLL can access the following data:

Network connection profile data
If the custom UI is displayed within the Network Connection Wizard, the Native 802.11
IHV UI Extensions DLL can access the IHV-defined portion of the current network
connection profile. This data is formatted as an XML fragment bounded by the <IHV>
</IHV> XML tags. The XML data within these tags is specific to the IHV's
implementation and is opaque to the operating system.

Access to the profile data is through the Read and Write methods of the IPropertyBag
COM interface for a property named IHV_PROFILE_DATA.

Context data
The Native 802.11 IHV Extensions DLL specifies a custom UI through a
DOT11EXT_IHV_UI_REQUEST structure, which is passed as an argument in both the
Dot11ExtSendUIRequest and Dot11ExtIhvQueryUIRequest functions. Within the
DOT11EXT_IHV_UI_REQUEST structure, the IHV can provide (through the pvUIRequest
member) context data specific to the custom UI. Typically, the IHV formats this data with
default settings for the custom UI.

Access to the profile data is through the Read and Write methods of the IPropertyBag
COM interface for a property named IHV_NOTIFICATION_DATA.

The Native 802.11 IHV UI Extensions DLL accesses the IPropertyBag COM interface
through the IUnknown pointer returned through the IObjectWithSite::SetSite method.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/ns-wlanihv-_dot11ext_ihv_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11ext_send_ui_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wlanihv/nc-wlanihv-dot11extihv_query_ui_request
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768196(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/ocidl/nf-ocidl-iobjectwithsite-setsite

For more information, see IObjectWithSite.

As an alternative to the IPropertyBag COM interface, the Native 802.11 IHV UI
Extensions DLL can access the IHV_PROFILE_DATA and IHV_NOTIFICATION_DATA
properties through the GetProp Win32 function. In this situation, the DLL must use the
handle of the parent window, as shown in the following example:

C++

LPWSTR lpszBuffer = (LPWSTR) GetProp(GetParent(hwndDlg),
L"IHV_PROFILE_DATA");

https://learn.microsoft.com/en-us/windows/win32/api/ocidl/nn-ocidl-iobjectwithsite
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getpropa

Wi-Fi Hotspot Offloading Overview
Article • 12/15/2021

Wi-Fi Hotspot Offloading enables Windows 10 Mobile to automatically identify and
connect to local Wi-Fi networks designated as "hotspots." The Wi-Fi Hotspot Offload
Framework enables mobile operators to ship phones preconfigured with customized
hotspot plugins for Wi-Fi hotspot offloading.

Wi-Fi Hotspot Offloading Architecture
Wi-Fi Hotspot Offloading Plugin
Wi-Fi Discovery Service
Wi-Fi Hotspot Offloading Reference

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

In This Section

https://learn.microsoft.com/en-us/samples/browse/

Wi-Fi Hotspot Offloading Architecture
Article • 12/15/2021

The following diagram shows the major components in the Wi-Fi Offload Framework.

The hotspot offload service performs the following functions:

Identifies Wi-Fi networks that are hotspot networks
Oversees the creation and maintenance of connections to hotspot networks
Monitors and responds to connection state changes for hotspot networks
Monitors and responds to changes in user settings for enabling or disabling Wi-Fi
hotspot offloading

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Hotspot offload service

https://learn.microsoft.com/en-us/samples/browse/

The hotspot offload service relies on hotspot plugins created by mobile operators
and/or OEMs to identify and authenticate their hotspot networks.

The hotspot plugin host is the interface between the hotspot offload service and the
partner-implemented hotspot plugin. For example, queries to the hotspot plugin to
identify hotspot networks from a list of networks are made through the hotspot plugin
host. The plugin host also enables the hotspot plugin to, among other things, send and
receive HTTP messages via the WinHTTP/WinInet API and send SMS alerts and
notifications to the user.

The hotspot offload service is responsible for creating a hotspot plugin host for each
hotspot plugin.

The hotspot plugin performs the following functions:

Identifies hotspot networks from a list of available networks
Enables automatic connection to networks using EAP-SIM/AKA and HTTP-based
authentication, as specified by the OEM or mobile operator
Sends/receives HTTP messages via the WinHTTP/WinInet API
Sends SMS notifications to the user
Selects a bearer token for an HTTP request to send and receive messages over a
cellular network

It also interacts directly with the following external components:

WinInet/WinHTTP

Mobile operators and/or OEMs must implement and install their own hotspot plugins to
enable Wi-Fi offloading. The installation package for the plugin includes the following:

The plugin DLL
Files containing connection-specific information such as a list of SSIDs, encrypted
credentials, etc.

Note: These files are optional and are not expected in most plugins.
Registry configuration

Hotspot plugin host

Hotspot plugin

Hotspot user interface

The hotspot user interface is displayed in the Wi-Fi control panel. Through the user
interface the user can:

Enable/disable automatic Wi-Fi hotspot offloading.
View connection status during automatic connection to a hotspot network.
Manually connect to a hotspot network.

If hotspot offload functionality is enabled on the device, user-initiated
connections to a network that the hotspot offload service has identified as a
hotspot network will be handled as automatic connections to a Wi-Fi hotspot
network. Otherwise, the manual connection will be handled as a standard Wi-Fi
connection.

Configure a normal Wi-Fi profile for connection to a hotspot network if the mobile
operator hotspot connectivity has been disabled by the user.

The hotspot user interface is only displayed when at least one plugin is configured.

The following is a very high-level description of the sequence of component interactions
that occur during automatic connection to a hotspot network:

1. The Wi-Fi Connection Service sends to the Hotspot Offload Service a list of
networks that are not connected.

2. For each entry in the list of networks, the Hotspot Offload Service queries the
hotspot plugins (in the order the plugins were ranked) to determine if it is a
hotspot network. The first plugin to identify the network is asked to authenticate
that network at connection time.

3. When a hotspot plugin identifies a network as a hotspot network, it returns a
priority value associated with that network, the authentication method to be used
(whether it is HTTP-based, or EAP-SIM based, or requires no specific SIM) and,
optionally, the network display mask. The priority value indicates the order in
which a connection should be attempted. Connections to networks with lower
priority values will be attempted before connections to networks with higher
values.

4. The Hotspot Offload Service creates a Connection Manager profile for the selected
network.

5. The Hotspot Offload Service profile may also configure an initial policy setting that
will cause the Connection Manager to block applications from connecting to the
network until authorized.

6. The Hotspot Offload Service marks the selected network as a hotspot network.

Example: Automatic connection to a hotspot
network

7. The Hotspot Offload Service calls the hotspot plugin, through the hotspot plugin
host, to do any pre-connect processing if needed.

8. After the hotspot plugin has completed pre-connect processing, the Hotspot
Offload Service waits for the Connection Manager to connect to the hotspot
network and provide a connection-completion or failure notification.

9. On connection-completion, the Hotspot Offload Service sends a request to the
hotspot plugin to perform any necessary post-connect actions, such as HTTPS
exchange.

10. In the meantime, the Hotspot Offload Service does the following:

Starts a timer for completion of the post-connect activity (currently set to fire
after 5 minutes)
Sets proper user interface display state

11. If the hotspot plugin indicates connection success, the Hotspot Offload service
calls the Connection Manager to unblock the connection and notify applications.

12. If the post-connection request times out:

The Hotspot Offload Service resets the hotspot plugin’s state.
If retries are not exhausted the hotspot offload service initiates an attempt to
reconnect, otherwise it deletes the network’s hotspot profile.

13. If the hotspot plugin indicates failure and retries are possible, the hotspot offload
service initiates an attempt to reconnect, otherwise it deletes the network’s
hotspot profile.

Wi-Fi Hotspot Offloading Plugin
Article • 12/15/2021

To enable Wi-Fi offloading, create and install a hotspot plugin. This topic discusses a few
of the issues to consider when developing a hotspot plugin. It also provides a general
description of the plugin APIs to be implemented as part of the plugin package.

Before starting plugin development, make sure to address the following issues:

Identify the authentication methods required by the networks that the plugin will
support. The hotspot offload framework supports three classes of networks:

Networks that use WISPr 1.0, or some variant, to authenticate the user and/or
device over HTTP. These networks are represented by the following capability:

HS_FLAG_CAPABILITY_NETWORK_AUTH_HTTP

Networks that use EAP-SIM/AKA/AKA' to authenticate the device. These networks
are represented by the following capabilities:

HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_SIM
HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_AKA
HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_AKA_PRIME

For EAP-based networks, the plugin can also specify a custom realm by using the
HS_FLAG_CAPABILITY_NETWORK_CUSTOM_REALM capability.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Planning the plugin

Supported authentication methods

https://learn.microsoft.com/en-us/samples/browse/

Networks that do not require any authentication or networks for which the plugin
has an independent authentication mechanism that does not require any device
credentials. These networks are represented by the following capability:

HS_FLAG_CAPABILITY_NETWORK_AUTH_NO_SIM

Hidden networks must be prespecified at initialization time because the network is not
visible in the scan results. Due to the power and privacy implications of hidden
networks, the framework supports at most one hidden network globally. Therefore, if
another plugin has also requested connectivity to a hidden network, the request of the
second plugin will be denied. If the plugin requires a hidden network to be configured,
it must specify the HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability for that
network.

For all other networks, the plugin should specify the
HS_FLAG_CAPABILITY_NETWORK_TYPE_VISIBLE capability.

Custom UI display strings, used by the plugin to communicate with the user, must be
stored in a string table (in an .rc file). The plugin must pass the string IDs to the hotspot
offload service to enable it to load the appropriate strings. Currently, the following
display strings are supported:

Provider name (up to HS_CONST_MAX_PROVIDER_NAME_LENGTH length)
Network name (up to HS_CONST_MAX_NETWORK_DISPLAY_NAME_LENGTH
length)
Message on the Advanced page (up to
HS_CONST_MAX_ADVANCED_PAGE_STRING_LENGTH length)
Any additional strings passed to the user using the HSHostSendUserMessage
function (up to MAX_PATH length). For more information, see
HS_HOST_SEND_USER_MESSAGE.

Note: For more information about Wi-Fi Hotspot Offloading capabilities and constants,
see Wi-Fi Hotspot Offloading Constants.

The plugin is implemented as a DLL. The functions HSPluginGetVersion and
HSPluginInitPlugin must be exposed either by specifying them in the .def file of the

Hidden networks

User interface display strings

Implementing the plugin

https://learn.microsoft.com/en-us/previous-versions/dn789353(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/mt800328(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789345(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789346(v=vs.85)

plugin DLL, or by adding the “__declspec(dllexport)” keyword to them in the function
implementation.

The plugin APIs are invoked in the following order at initialization:

The plugin should return its version information, to verify that the plugin version
matches the host device version. The current version is stored in the constant
HS_CONST_HOST_CURRENT_API_VERSION.

This is the main initialization function. It provides the following information to the
plugin:

A context handle for the plugin to use whenever it calls any of the hotspot plugin
host (HS_HOST_**) functions
The version number currently used by the host (dwVerNumUsed)
Information about the device (pDeviceIdentity)
The OS capabilities available to the plugin, specified as a
HS_FLAG_CAPABILITY_NETWORK_** type (dwHostCapabilities)
Handlers for the functions used by the plugin to call back to the host
(pHotspotHostHandlers)

The plugin returns the following information to the hotspot plugin host:

A pointer to the structure that contains the list of plugin APIs
(pHotspotPluginAPIs). For more information, see HOTSPOT_PLUGIN_APIS.
A pointer to the structure that contains the plugin profile (pPluginProfile). For
more information, see HS_PLUGIN_PROFILE.

The profile includes all of the capabilities required by the plugin. This is represented by a
single value that results from combining the applicable capability flag values
(HS_FLAG_CAPABILITY_NETWORK_*) by using a bitwise OR operation. If the plugin
specifies the HS_FLAG_CAPABILITY_NETWORK_AUTH_HTTP capability or the
HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_* capabilities, the dwSupportedSIMCount
member of the HS_PLUGIN_PROFILE structure must be set to the number of supported

Initialization

HsPluginGetVersion

HSPluginInitPlugin

https://learn.microsoft.com/en-us/previous-versions/dn789344(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789365(v=vs.85)

SIMs. The plugin must also specify the total number of networks that it supports by
setting the dwNumNetworksSupported member of its HS_PLUGIN_PROFILE structure.

If the plugin specifies the HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability
and the device can support a hidden network, this function is called by the hotspot
plugin host to obtain the hidden network information from the plugin. For more
information, see HS_PLUGIN_QUERY_HIDDEN_NETWORK.

The hotspot plugin host calls this function if the plugin specifies a nonzero value for
dwSupportedSIMCount. When called, the pNetworkIdentity argument should be NULL
and the plugin is required to provide the list of all SIMs supported by the plugin. This
function may also be called later on to identify SIMs that are associated with each
hotspot network (at which time, the pNetworkIdentity will be non-NULL). The plugin
must provide the list of supported SIMs. For more information, see
HS_PLUGIN_QUERY_SUPPORTED_SIMS.

As networks become visible, the hotspot plugin host queries the plugin for each
network to determine if it is a hotspot network.

The hotspot plugin host calls this function to determine if the specified network is a
hotspot network. It passes identifying information about the network (SSID,
authentication type, cipher) through a HS_NETWORK_IDENTITY structure. The plugin
must return an eHS_NETWORK_STATE enumeration value that indicates the type of
network. If it is a hotspot network, then information about the network is returned
through a HS_NETWORK_PROFILE structure. For more information, see
HS_PLUGIN_IS_HOTSPOT_NETWORK.

The hotspot plugin host calls this function if the plugin specifies the capabilities
HS_FLAG_CAPABILITY_NETWORK_AUTH_HTTP or
HS_FLAG_CAPABILITIES_NETWORK_AUTH_EAP in the HS_NETWORK_PROFILE argument

HsPluginQueryHiddenNetwork [Optional]

HsPluginQuerySupportedSIMs [Optional]

Run time

HSPluginIsHotspotNetwork

HsPluginQuerySupportedSIMs [Optional]

https://learn.microsoft.com/en-us/previous-versions/dn789367(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789368(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789356(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn756756(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789357(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789363(v=vs.85)

of the call to HS_PLUGIN_IS_HOTSPOT_NETWORK. When called in this instance, the
pNetworkIdentity argument should be non-NULL and the plugin must provide the list of
SIMs supported for the network specified in pNetworkIdentity only. For more
information, see HS_PLUGIN_QUERY_SUPPORTED_SIMS.

The hotspot plugin host calls this function if the dwNumCellularExceptions field of the
HS_NETWORK_PROFILE structure, returned by the plugin, is set to a nonzero value. The
plugin must return the list of cellular bearer hosts when called. For more information,
see HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS.

When a network is deemed connectable, or the network is selected by the user, the
following sequence of calls takes place:

The hotspot plugin host calls this function to notify the plugin that a connection to the
hotspot network specified in the HS_NETWORK_IDENTITY structure, returned by the
plugin, is in progress. For more information, see HS_PLUGIN_PRE_CONNECT_INIT.

When the L2 connection is complete, the hotspot plugin host calls this function to notify
the plugin to start authentication. The plugin is provided the pConnectContext,
pNetworkIdentity, and pNetworkProfile from the previous call to
HSPluginPreConnectInit, but it is also provided a dwConnectionId and pSIMData. The
plugin must store the Connection ID and use it when calling back the host’s
HSHostPostConnectAuthCompletion handler to notify the OS of the authentication
result, and also in the call to HSHostSendUserMessage if a message needs to be
conveyed to the user. The pSIMData struct contains addition information about the SIM
configuration that could be needed by the plugin during authentication. If the plugin
returns Success, it must call HSHostPostConnectAuthCompletion within 5 minutes or
the connection is disconnected.

HSPluginQueryCellularExceptionHosts [Optional]

Connect time

HSPluginPreConnectInit

HSPluginStartPostConnectAuth

Disconnect and reset

https://learn.microsoft.com/en-us/previous-versions/dn789363(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789368(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789357(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789366(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789356(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789364(v=vs.85)

When a network is disconnected, either explicitly by some user or device action or
implicitly as a result of external factors, the following functions are called:

The hotspot plugin host calls this function to terminate network authentication because
the device is about to be disconnected from the network. For more information, see
HS_PLUGIN_STOP_POST_CONNECT_AUTH.

The hotspot plugin host calls this function to inform the plugin that the device will be
disconnected from the network. For more information, see
HS_PLUGIN_DISCONNECT_FROM_NETWORK.

The hotspot plugin host calls this function to reset the plugin to its initial (just loaded)
state. For more information, see HS_PLUGIN_RESET.

The following functions are called periodically, depending on specific parameters set by
the plugin:

The hotspot plugin host calls this function at the frequency specified in the
dwKeepAliveTimeMins member of the HS_NETWORK_PROFILE structure returned by
the plugin. For more information, see HS_PLUGIN_SEND_KEEP_ALIVE.

The hotspot plugin host calls this function at the frequency specified in the
dwProfileUpdateTimeDays member of the HS_PLUGIN_PROFILE structure.

HSPluginStopPostConnectAuth

HSPluginDisconnectFromNetwork

HSPluginReset

Periodic calls

HSPluginSendKeepAlive [Optional]

HSPluginCheckForUpdates [Optional]

Unloading the plugin

HSPluginDeinit

https://learn.microsoft.com/en-us/previous-versions/dn789372(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789361(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789369(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789357(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789370(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/dn789365(v=vs.85)

The hotspot plugin host calls this function to enable the plugin to flush any unsaved
information and close any open handles before it is unloaded. The plugin will be
provided the reason for the unload in the UnloadReason argument. For more
information, see HS_PLUGIN_DEINIT.

THe plugin installation package should include the following:

The DLL file must be signed and placed under Programs\HotspotHost\
<ProviderName>, where <ProviderName> is the name of the DLL provider.

For information about signing the DLL, see Sign binaries and packages.

There is no particular convention for naming the DLL file, so making sure the path to the
file is correct in the registry is all that is required. For example, the registry information
could be specified in the package as:

XML

The required registry settings are saved in a new entry created under:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
Phone\HotspotOffload\Plugins\ ProviderName.

ProviderName must be unique to the plugin provider or Mobile Operator.

The following values must be saved under the registry key:

Name Type Description

Plugin Installation package

The Plugin DLL File

<RegKeys>
 <RegKey KeyName="$(hklm.software)\Microsoft\Windows
Phone\HotspotOffload\Plugins\<ProviderName>">
 <RegValue Name="PluginRank" Type="REG_DWORD" Value="00000005" />
 <RegValue Name="PluginPath" Type="REG_SZ"
Value="%SystemDrive%\Programs\HotspotHost\Orange\<ProviderName>\
<HotspotPlugin.dll>" />
 </RegKey>
 </RegKeys>

Registry configuration

https://learn.microsoft.com/en-us/previous-versions/dn789360(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/code-signing/dn789217(v=vs.85)

Name Type Description

PluginPath [REG_SZ] The name and full path to the DLL.

PluginRank [REG_DWORD] Any positive value between 1 and 250, inclusive (0 is reserved for
Microsoft). A lower value represents a higher priority. If two
plugins have the same rank, the hotspot service arbitrarily
prioritizes one over another.

The data files should be saved under: Data\SharedData\HotspotHost\Plugins\
<ProviderName> .

Data files that contain connection-specific information
such as a list of SSIDs, encrypted credentials, etc.
[Optional]

Wi-Fi Discovery Service Overview
Article • 12/15/2021

The Wi-Fi discovery service enables users to reduce data costs by offloading cellular
traffic to Wi-Fi hotspots. The discovery service aggregates Wi-Fi hotspot data from
providers, such as mobile operators, and other sources to produce a directory of known
Wi-Fi hotspots. By using this directory, users can obtain information about hotspots
near their current position.

Mobile operators can submit hotspot data to the service by sending an HTTP POST
request, or by using a command-line tool provided by Microsoft.

Wi-Fi hotspot data must be in the format described in Wi-Fi Hotspot Data Submission
Format.

The discovery service requires that all of a provider's hotspots are submitted in a single
batch. Each batch can contain multiple submission requests with a smaller amount of
data. For example, a batch containing 1,000 hotspots can be uploaded to the discovery
service by sending 10 submission requests, each containing data for 100 hotspots. Each
submission request is assigned the same batch number. The final submission request
must include a X-FinalBatchRequest header set to the total number of hotspots in the
batch. The batch is not processed until a submission request with this header is received.
If the header does not match the number of hotspots in the batch, the submission is not
processed.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Instructions

Submitting hotspot data by using HTTP POST

https://learn.microsoft.com/en-us/samples/browse/

The following example shows a typical submission request. The presence of the X-
FinalBatchRequest header and the numeric value of "1" indicate that there is only one
hotspot in this batch and this is the final submission request. Therefore, this is the only
submission request. If the batch contained multiple hotspots, this line should be
removed for all submission requests but the last one.

HTTP

When the message is received on the destination server, SubmitHotspots validates the
request and authenticates the sender before sending the hotspot data to the discovery
service.

POST https://submitwifiservice.windowsphone.com/v1/SubmitHotspots HTTP/1.1
Content-Type: application/json
X-FinalBatchRequest: 1
 [More headers…]
{
 "Header": {
 "BatchId": "2E20A8DB-9AFA-4A5A-AF6E-5F87DA639C15",
 "TransactionId": 1,
 "ProviderId": "FD9E5EE6-75C7-4A54-8B29-45A3FC83AD63"
 },
 "Hotspots": {
 "add": {
 "Address": "123 abc street",
 "City": "Redmond",
 "CountryOrRegion": "USA",
 "PostalCode": "98052",
 "StateOrProvince": "WA"
 },

 "bssids":["00:aa:bb:cc:dd:ee"],
 "free": true,
 "pub": true,
 "loc": {
 "Latitude": 47.01,
 "Longitude": 121.1234,
 "RadialUncertainty": 300,
 "Altitude": 638.34,
 "AltitudeUncertainty": 100.0
 },
 "name": "Joes Coffee Shop",
 "phid": "abcdefg",
 "ran": 100,
 "ssid": "JoesCoffee",
 "phone": ["425-882-8080"]
 }
}

WifiProviderExe.exe is a command-line tool, provided by Microsoft, that takes as input a
hotspot data file, converts it to the required format, and uploads it to a specified
discovery service server.

To run WiFiProvider.exe, use the following syntax:

Windows Command Prompt

For example:

Windows Command Prompt

The following table contains the list of possible parameters for WiFiProvider.exe.

Parameter Description

DataFile Required. The name of the file that contains the hotspot data.

ProviderId Required. The Microsoft-assigned provider ID (a GUID).

ServiceEndpoint Required. The URL of the discovery service server to which the hotspot
data will be uploaded.

CustomerTransformer Required. The name of the assembly that contains the transformer.

MappingFile Optional. The mapping file that maps the provider's hotspot data to the
format required by the discovery service.

CertFile Optional. A pointer to the actual pfx file that contains the certificate(s) for
authentication. The certificate password parameter (CertPassword) must
be specified when using this authentication method.

CertPassword Optional. The password to the certificate specified in CertFile.

Submitting hotspot data by using the command line tool

WifiProviderExe –DataFile filename -ProviderId GUID -ServiceEndpoint URL -
CustomTransformer filename.dll [-MappingFile filename.xml] [-CertFile
filename.pfx] [-CertPassword password] [-CertSubject name]

WifiProviderExe -DataFile "file.txt" -ProviderId 00000000-0000-0000-0000-
000000000000 -ServiceEndpoint
"https://submitwifiservice.windowsphone.com/v1/SubmitHotspots" -
CustomTransformer "transformer.dll"

Parameter Description

CertSubject Optional. The subject name of the certificate. It is located in current user's
My Cert store. When using this authentication mechanism, CertFile and
CertPassword are not required. However, it is required to create a private
key for the certificate and, in the access control list, grant access rights for
the key to the account that will use the certificate.

The hotspot data can be in any format. However, it is required to specify a "data
transformer" that the command-line tool can access to convert the hotspot data to the
format required by the discovery service.

The following table shows the sample transformers that are provided with the
command-line tool. They can be used to convert specific data formats to the required
format.

Transformer Data
Format

Description

Microsoft.Wps.WifiService.ProviderSdk.JsonHotspotDataTransformer.dll JSON Your data
must conform
to the JSON
format
specified in
Wi-Fi Hotspot
Data
Submission
Format.

Microsoft.Wps.WifiService.ProviderSdk.JsonHotspotDataTransformer.dll Simple
Excel

You must
supply a
mapping file.

If your hotspot data is in simple Excel format, you must supply an XML file that maps
columns in the Excel file to corresponding required JSON elements. The following list
shows the allowed column names:

Latitude
Longitude
RadialUncertainty
Altitude

Transformers

Mapping Files

AltitudeUncertainty
HotspotName
SSID
Range
Address
City
StateOrProvince
PostalCode
CountryOrRegion
Bssids
ProviderHotspotId
IsPublic
IsFree
PhoneNumbers

The following example shows a portion of a mapping file. Each MappingRule element
associates an Excel column (PartnerColumnName and PartnerColumnNumber) with a
required JSON element (MicrosoftColumnName). The ContainsHeaderRow element,
located after the closing Rules tag (</Rules>), indicates that the file contains a header
row, which should be skipped when reading data.

XML

<?xml version="1.0" encoding="utf-8"?>
<MappingRules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Rules>
 <MappingRule>
 <PartnerColumnName>english_hotspot_name</PartnerColumnName>
 <PartnerColumnNumber>3</PartnerColumnNumber>
 <MicrosoftColumnName>HotspotName</MicrosoftColumnName>
 </MappingRule>
 <MappingRule>
 <PartnerColumnName>english_city_name</PartnerColumnName>
 <PartnerColumnNumber>2</PartnerColumnNumber>
 <MicrosoftColumnName>City</MicrosoftColumnName>
 </MappingRule>
 <MappingRule>
 <PartnerColumnName>ssid</PartnerColumnName>
 <PartnerColumnNumber>4</PartnerColumnNumber>
 <MicrosoftColumnName>SSID</MicrosoftColumnName>
 </MappingRule>
 <MappingRule>
 <PartnerColumnName>venue</PartnerColumnName>
 <PartnerColumnNumber>7</PartnerColumnNumber>
 <MicrosoftColumnName>HotspotType</MicrosoftColumnName>
 </MappingRule>
 .

 .
 .
 .
 </Rules>
 <ContainsHeaderRow>true</ContainsHeaderRow>
</MappingRules>

Wi-Fi Hotspot Data Submission Format
Article • 12/15/2021

Hotspot data submitted to the discovery service must be in JavaScript Object Notation
(JSON) and must use the following elements.

Element Type Description

BatchId GUID A provider can split a single submission that contains multiple
hotspots into multiple submissions. Each submission is assigned
the same BatchId GUID.

ProviderId GUID The provider ID will be assigned to the provider by Microsoft.

TransactionId int An incrementing number for each request in the batch. Used for
degbugging purposes.

Hotspots A list of hotspots to upload.

add The full address property, which includes the following sub-
elements: Address, City, StateOrProvince, PostalCode, and
CountryOrRegion.

bssids List<string> A list of the BSSIDs that make up the hotspot. Each BSSID consists
of eight two digit hexadecimal values in the in the following format:
00:aa:bb:cc:dd:ee.

free Boolean A Boolean value that indicates whether the hotspot is free.

pub Boolean A Boolean value that indicates whether the hotspot is public.

loc The full location property which includes the following sub-
elements: Latitude, Longitude, RadialUncertainty, Altitude, and
AltitudeUncertainty.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

https://learn.microsoft.com/en-us/samples/browse/

Element Type Description

name string The friendly name of the hotspot.

phid string The provider's hotspot ID. Used for debugging purposes.

ran uint The range of the hotspot.

ssid string The hotspot's SSID.

phone string A list of all the phone numbers associated with the hotspot.

Note

The header and its sub-elements (ProviderId, BatchId, and TransactionId) are
required.
The Hotspots list must not be empty.
If the Location element is specified then Latitude and Longitude are required.
If the Location element is not specified then at least one BSSID must be specified.
Otherwise, a warning will be returned and the discovery service will not process the
hotspot.

The following example shows the complete data for a single hotspot:

JSON

{
 "Header": {
 "BatchId": "BA85A383-5943-4D84-8ACB-B113BDEA3783",
 "ProviderId": "AE012377-B0B4-4096-B5D5-D7EFBDC170EC",
 "TransactionId": 1
 },
 "Hotspots":[{
 "add": {
 "Address": "123 abc street",
 "City": "Redmond",
 "CountryOrRegion": "USA",
 "PostalCode": "98052",
 "StateOrProvince": "WA"
 },
 "bssids":["00:aa:bb:cc:dd:ee"],
 "free": true,
 "pub": true,
 "loc": {
 "Latitude": 47.01,
 "Longitude": 121.1234,
 "RadialUncertainty": 300,
 "Altitude": 638.34,
 "AltitudeUncertainty": 100.0
 },
 "name": "Joes Coffee Shop",

The discovery service returns a simple response, also in JSON format, that includes the
activity ID used for debugging purposes and a list of warnings that were generated
when the discovery service validated the hotspot data. All strings returned by the
discovery service are encoded in UTF-8.

The following table shows the JSON elements for a discovery service response.

Element Type Description

ActivityId string Required. This is a string that the provider can use to help debug
issues.

Warnings List<string> A human-readable list of warnings.

The following example shows a typical response to a hotspot data submission:

JSON

 "phid": "abcdefg",
 "ran": 100,
 "ssid": "JoesCoffee",
 "phone": ["425-882-8080"]
 }
}

{
 "ActivityId": "d2856c06-e4a1-4434-90e8-ced0c9ee6e10",
 "Warnings": ["Invalid Latitude: 247.67 – Hotspot Id: abcdefg"]
}

Wi-Fi Hotspot Offloading Reference
Article • 12/15/2021

This section contains descriptions of the Wi-Fi Hotspot Offloading programming
elements and related information.

Wi-Fi Hotspot Offloading Constants

Wi-Fi Hotspot Offloading Structures

Wi-Fi Hotspot Offloading Functions

Wi-Fi Hotspot Offloading Enumerations

Wi-Fi Hotspot Offloading Guide

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

In this section

Related topics

https://learn.microsoft.com/en-us/samples/browse/

Wi-Fi Hotspot Offloading Constants
Article • 12/15/2021

This section describes the constants that are defined for the Wi-Fi Hotspot Offloading
framework.

HS_CONST_HOST_CURRENT_API_VERSION
1
Current API version number.

HS_CONST_MAX_NETWORK_DISPLAY_NAME_LENGTH
32
Maximum length of the network display name string.

HS_CONST_MAX_REALM_LENGTH
255
Maximum length of the realm value string.

HS_CONST_MIN_CONN_KEEPALIVE_TIME_IN_MINS
5
Minimum time between keep-alive message transmissions

HS_CONST_PROFILE_UPDATE_TIME_IN_DAYS
7
Minimum time between checks for profile updates.

HS_CONST_MIN_NETWORK_PRIORITY_VALUE
1
Minimum network priority value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

https://learn.microsoft.com/en-us/samples/browse/

HS_CONST_MAX_NETWORK_PRIORITY_VALUE
65000
Maximum network priority value.

HS_MAX_PHONE_NUMBER_LENGTH
32
Maximum length of the phone number string.

HS_CONST_MAX_HOST_NAME_LENGTH
255
Maximum length of the host name string.

HS_CONST_PLUGIN_MIN_RANK_VALUE
1
Minimum Rank value. Must be greater than 0.

HS_CONST_PLUGIN_MAX_RANK_VALUE
250
Maximum rank value. Must be less than or equal to 250.

HS_CONST_MAX_PROVIDER_NAME_LENGTH
63
Maximum length of provider name string.

HS_CONST_MAX_ADVANCED_PAGE_STRING_LENGTH
255
Maximum length of the advanced page string.

HS_CONST_MAX_PHONE_NUMBER_LENGTH
32
Maximum length of the phone number string.

HS_CONST_MAX_SUPPORTED_SIMS
1000
Maximum size of the list of supported SIM configurations.

HS_CONST_MAX_CELLULAR_EXCEPTION_HOSTS
5
Maximum size of the list of cellular bearers.

HS_CONST_MAX_AUTH_ERROR_MSG_LENGTH
512
Maximum length of an authentication error message.

HS_CONST_MAX_USER_MESSAGES_IN_MINUTES
7*24*60
Maximum user messages, in minutes (7 days).

The following flags are defined for the plug-in and the host to indicate their
requirements and capabilities respectively.

HS_FLAG_CAPABILITY_NETWORK_TYPE_VISIBLE
0x00000001
Specifies visible network.

HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN
0x00000002
Specifies hidden network.

HS_FLAG_CAPABILITY_NETWORK_DISPLAY_NAME
0x00000010
Specifies use of display name for EAP-SIM or EAP-AKA authentication.

HS_FLAG_CAPABILITY_NETWORK_AUTH_NO_SIM
0x00000100
Specifies no-SIM authentication.

HS_FLAG_CAPABILITY_NETWORK_AUTH_HTTP
0x00000200
Specifies HTTP authentication.

HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_SIM
0x00001000
Specifies EAP-SIM authentication.

HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_AKA
0x00002000
Specifies EAP-AKA authentication.

HS_FLAG_CAPABILITY_NETWORK_AUTH_EAP_AKA_PRIME
0x00004000
Specifies EAP-AKA’ (AKA Prime) authentication.

HS_FLAG_CAPABILITY_NETWORK_CUSTOM_REALM
0x00010000
Specifies use of custom realm value for network authentication.

Requirements

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading Reference

See also

HOTSPOT_HOST_HANDLERS structure
Article • 03/03/2023

The HOTSPOT_HOST_HANDLERS structure contains the hotspot host handlers function
table. This function table is passed to the plugin when HSPluginInitPlugin is called to
initialize it. The table contains functions that are called by the plugin to communicate
with the hotspot host.

ManagedCPlusPlus

HSHostAllocateMemory
Optional memory management handler.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HOTSPOT_HOST_HANDLERS {
 HS_HOST_ALLOCATE_MEMORY HSHostAllocateMemory;
 HS_HOST_FREE_MEMORY HSHostFreeMemory;
 HS_HOST_POST_CONNECT_AUTH_COMPLETION
 HSHostPostConnectAuthCompletion;
 HS_HOST_SEND_KEEP_ALIVE_COMPLETION
 HSHostSendKeepAliveCompletion;
 HS_HOST_UPDATE_CONFIGURATION_COMPLETION
 HSHostUpdateConfigurationCompletion;
 HS_HOST_SEND_USER_MESSAGE HSHostSendUserMessage;
} HOTSPOT_HOST_HANDLERS, *PHOTSPOT_HOST_HANDLERS;

Members

https://learn.microsoft.com/en-us/samples/browse/

Handle to the function that is called by the plugin to allocate any memory needed by
the plugin. For more information, see HS_HOST_ALLOCATE_MEMORY.

HSHostFreeMemory
Optional memory management handler.

Handle to the function that is called by the plugin to free any memory that had been
allocated earlier by the call to HS_HOST_ALLOCATE_MEMORY. For more information,
see HS_HOST_FREE_MEMORY.

HSHostPostConnectAuthCompletion
Required connection-process handler.

Handle to the function that is called by the plugin to indicate the success or failure
status resulting from the authentication attempt following a Wi-Fi connection setup at
layer 2. For more information, see HS_PLUGIN_START_POST_CONNECT_AUTH.

HSHostSendKeepAliveCompletion
Optional periodic request.

Handle to the function that is called by the plugin to indicate the success or failure
status resulting from the Send Keep Alive request. For more information, see
HS_PLUGIN_SEND_KEEP_ALIVE.

HSHostUpdateConfigurationCompletion
Optional periodic request.

Handle to the function that is called by the plugin to indicate the success or failure of a
call to check for updates. For more information, see HS_PLUGIN_CHECK_FOR_UPDATES.

HSHostSendUserMessage
Optional periodic request.

Handle to the function that is called to communicate with the user. For more
information see HS_HOST_SEND_USER_MESSAGE.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

See also

HSPluginInitPlugin

HS_HOST_ALLOCATE_MEMORY

HS_HOST_FREE_MEMORY

HS_PLUGIN_START_POST_CONNECT_AUTH

HS_PLUGIN_SEND_KEEP_ALIVE

HS_PLUGIN_CHECK_FOR_UPDATES

HS_HOST_SEND_USER_MESSAGE

HOTSPOT_PLUGIN_APIS structure
Article • 03/03/2023

The HOTSPOT_PLUGIN_APIS structure contains the Hotspot plugin APIs function table.
This function table is returned by the plugin when HSPluginInitPlugin is called to
initialize the plugin. The table contains functions that are called by the hotspot host to
communicate with the plugin.

ManagedCPlusPlus

HSPluginQuerySupportedSIMs
API called during plugin initialization.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HOTSPOT_PLUGIN_APIS {
 HS_PLUGIN_QUERY_SUPPORTED_SIMS HSPluginQuerySupportedSIMs;
 HS_PLUGIN_QUERY_HIDDEN_NETWORK HSPluginQueryCellularExceptionHosts;
 HS_PLUGIN_IS_HOTSPOT_NETWORK HSPluginIsHotspotNetwork;
 HS_PLUGIN_PRE_CONNECT_INIT HSPluginPreConnectInit;
 HS_PLUGIN_START_POST_CONNECT_AUTH HSPluginStartPostConnectAuth;
 HS_PLUGIN_STOP_POST_CONNECT_AUTH HSPluginStopPostConnectAuth;
 HS_PLUGIN_DISCONNECT_FROM_NETWORK HSPluginDisconnectFromNetwork;
 HS_PLUGIN_RESET HSPluginReset;
 HS_PLUGIN_SEND_KEEP_ALIVE HSPluginSendKeepAlive;
 HS_PLUGIN_CHECK_FOR_UPDATES HSPluginCheckForUpdates;
 HS_PLUGIN_DEINIT HSPluginDeinit;
} HOTSPOT_PLUGIN_APIS, *PHOTSPOT_PLUGIN_APIS;

Members

https://learn.microsoft.com/en-us/samples/browse/

Called by the hotspot host to retrieve the list of SIMs that the plugin supports. It can be
called to retrieve the complete list of supported SIMs, or just the SIMs for a specific
network. For more information, see HS_PLUGIN_QUERY_SUPPORTED_SIMS.

HSPluginQueryCellularExceptionHosts
API called during plugin initialization.

Called by the hotspot host if the plugin has specified the
HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability by way of the
HS_PLUGIN_PROFILE structure. For more information, see
HS_PLUGIN_QUERY_HIDDEN_NETWORK.

HSPluginIsHotspotNetwork
API called while processing scan results.

Called by the hotspot host to request the plugin to identify if the network passed in the
pHiddenNetworkIdentity parameter is a hotspot network. For more information, see
HS_PLUGIN_IS_HOTSPOT_NETWORK.

HSPluginPreConnectInit
Connection-process API.

Called by the hotspot host to notify the plugin to initialize its state when a connection is
in progress. For more information, see HS_PLUGIN_PRE_CONNECT_INIT.

HSPluginStartPostConnectAuth
Connection-process API.

Called by the hotspot host to request the plugin to perform any post-connect
authentication required to authenticate the device over the network. For more
information, see HS_PLUGIN_START_POST_CONNECT_AUTH.

HSPluginStopPostConnectAuth
Connection-process API.

Called by the hotspot host to notify the plugin to stop the authentication process. For
more information, see HS_PLUGIN_STOP_POST_CONNECT_AUTH.

HSPluginDisconnectFromNetwork
Connection-process API.

Called by the hotspot host to notify the plugin of disconnection from network. For more
information, see HS_PLUGIN_DISCONNECT_FROM_NETWORK.

HSPluginReset
API to reset the plugin. If the plugin does not release any pending calls before returning
from this call, the plugin will be unloaded.

Called by the hotspot host to reset the plugin. For more information, see
HS_PLUGIN_RESET.

HSPluginSendKeepAlive
API for plugin to do periodic updates.

Called by the hotspot host to send a keep-alive message to the plugin. For more
information, see HS_PLUGIN_SEND_KEEP_ALIVE.

HSPluginCheckForUpdates
API for plugin to do periodic updates.

Called by the hotspot host to check for updates. For more information, see
HS_PLUGIN_CHECK_FOR_UPDATES.

HSPluginDeinit
API called to de-initialize and clean up the plugin before unloading.

Called by the hotspot host to notify the plugin that it is about to be unloaded. For more
information, see HS_PLUGIN_DEINIT.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HSPluginInitPlugin

HS_PLUGIN_QUERY_SUPPORTED_SIMS

HS_PLUGIN_PROFILE

HS_PLUGIN_QUERY_HIDDEN_NETWORK

HS_PLUGIN_IS_HOTSPOT_NETWORK

HS_PLUGIN_PRE_CONNECT_INIT

Requirements

See also

HS_PLUGIN_START_POST_CONNECT_AUTH

HS_PLUGIN_STOP_POST_CONNECT_AUTH

HS_PLUGIN_DISCONNECT_FROM_NETWORK

HS_PLUGIN_RESET

HS_PLUGIN_SEND_KEEP_ALIVE

HS_PLUGIN_CHECK_FOR_UPDATES

HS_PLUGIN_DEINIT

HS_CONNECTION_CONTEXT structure
Article • 03/03/2023

The HS_CONNECTION_CONTEXT structure contains the information required by the
plugin for post connect authentication.

ManagedCPlusPlus

MacAddress
The HS_MAC_ADDRESS structure that contains the MAC address.

SIMIdentity
The HS_SIM_IDENTITY structure that contains information required for EAP-SIM/AKA
authentication.

pszPhoneNumber
Pointer to the phone number.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_CONNECTION_CONTEXT {
 HS_MAC_ADDRESS MacAddress;
 HS_SIM_IDENTITY SIMIdentity;
 WCHAR pszPhoneNumber[HS_MAX_PHONE_NUMBER_LENGTH+1];
} HS_CONNECTION_CONTEXT, *PHS_CONNECTION_CONTEXT;

Members

https://learn.microsoft.com/en-us/samples/browse/

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_MAC_ADDRESS

HS_SIM_IDENTITY

Requirements

See also

HS_DEVICE_IDENTITY structure
Article • 03/03/2023

The HS_DEVICE_IDENTITY structure contains information about the device model and
manufacturer.

ManagedCPlusPlus

dwSystemType
The type of SIM, whether GSM or CDMA.

wszPhoneManufacturer
The phone manufacturer name.

wszPhoneModelName
The phone model name.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_DEVICE_IDENTITY {
 DWORD dwSystemType;
 WCHAR wszPhoneManufacturer[HS_CONST_MAX_DEVICE_INFO_LENGTH+1];
 WCHAR wszPhoneModelName[HS_CONST_MAX_DEVICE_INFO_LENGTH+1];
 WCHAR wszPhoneManufacturerModel[HS_CONST_MAX_DEVICE_INFO_LENGTH+1];
 WCHAR wszDeviceModel[HS_CONST_MAX_DEVICE_INFO_LENGTH+1];
} HS_DEVICE_IDENTITY, *PHS_DEVICE_IDENTITY;

Members

https://learn.microsoft.com/en-us/samples/browse/

wszPhoneManufacturerModel
Another name for the phone manufacturer and model.

wszDeviceModel
The device model name.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

HS_MAC_ADDRESS structure
Article • 03/03/2023

The HS_MAC_ADDRESS structure contains the host Media Access Control (MAC)
address.

ManagedCPlusPlus

ucHSMacAddress
The MAC address.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_MAC_ADDRESS {
 UCHAR ucHSMacAddress[6];
} HS_MAC_ADDRESS, *PHS_MAC_ADDRESS;

Members

Requirements

https://learn.microsoft.com/en-us/samples/browse/

HS_NETWORK_IDENTITY structure
Article • 03/03/2023

The HS_NETWORK_IDENTITY structure contains information that uniquely identifies a
Wi-Fi network.

ManagedCPlusPlus

Ssid
The network SSID.

hsAuthAlgo
The authentication algorithm used by the wireless network.

hsCipherAlgo
The cipher algorithm used by the wireless network.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_NETWORK_IDENTITY {
 HS_SSID Ssid;
 HS_AUTH_ALGORITHM hsAuthAlgo;
 HS_CIPHER_ALGORITHM hsCipherAlgo;
} HS_NETWORK_IDENTITY, *PHS_NETWORK_IDENTITY;

Members

Requirements

https://learn.microsoft.com/en-us/samples/browse/

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_PROFILE structure
Article • 03/03/2023

The HS_NETWORK_PROFILE structure is provided by the plugin and contains
information required for connection to the target network. Each instance of the Network
Profile is uniquely associated with a corresponding HS_NETWORK_IDENTITY structure.

ManagedCPlusPlus

dwNetworkCapabilities
A subset of the possible HS_FLAG_CAPABILITY_NETWORK_* values. For more
information about hotspot host capabilities, see Wi-Fi Hotspot Offloading Constants.

usPriority
A unique priority value assigned to the associated network. It must be a value between 1

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_NETWORK_PROFILE {
 DWORD dwNetworkCapabilities;
 USHORT usPriority;
 DWORD dwSupportedSIMCount;
 DWORD dmNumCellularExceptions;
 DWORD dwNetworkStringID;
 DWORD dwKeepAliveTimeMins;
 WCHAR szRealm[HS_CONST_MAX_REALM_LENGTH+1];
} HS_NETWORK_PROFILE, *PHS_NETWORK_PROFILE;

Members

https://learn.microsoft.com/en-us/samples/browse/

and 65000 (a hidden network must have a value of 1). A lower numeric value
corresponds to a higher priority.

dwSupportedSIMCount
Supported SIM count. This member is set for HTTP-based and EAP-SIM/AKA/AKA'
authentication.

dmNumCellularExceptions
Optional. Number of host connections over cellular only.

dwNetworkStringID
Network name string ID. Maximum string size =
MAX_NETWORK_DISPLAY_NAME_LENGTH.

dwKeepAliveTimeMins
Optional. The time interval between network connection keep-alive messages.

szRealm
Network-specific realm value.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

Wi-Fi Hotspot Offloading Constants

Requirements

See also

HS_PLUGIN_CELLULAR_EXCEPTION_HOS
TS structure
Article • 03/03/2023

The HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS structure contains the list of hosts that
the plugin requires to be connected over a cellular bearer only during the authentication
process. This is an optional capability that can be requested by the plugin. For more
information, see HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS.

ManagedCPlusPlus

dwCount
The number of host names in the list pointed to by pExceptions.

pExceptions
Used if MIDL is utilized. Unique, size is (dwCount).

Pointer to the list of host names.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS {
 DWORD dwCount;
 HS_PLUGIN_HOST_NAME pExceptions[*];
 HS_PLUGIN_HOST_NAME pExceptions[1];
} HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS, *PHS_PLUGIN_CELLULAR_EXCEPTION_HOSTS;

Members

https://learn.microsoft.com/en-us/samples/browse/

pExceptions
Used if MIDL is not utilized.

Pointer to the list of host names.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS

Microsoft Interface Definition Language

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/Midl/midl-start-page

HS_PLUGIN_HOST_NAME structure
Article • 03/03/2023

The HS_PLUGIN_HOST_NAME structure contains the host name.

ManagedCPlusPlus

pszHostName
Pointer to the host name.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_PLUGIN_HOST_NAME {
 WHCAR pszHostName[HS_CONST_MAX_HOST_NAME_LENGTH+1];
} HS_PLUGIN_HOST_NAME, *PHS_PLUGIN_HOST_NAME;

Members

Requirements

https://learn.microsoft.com/en-us/samples/browse/

HS_PLUGIN_PROFILE structure
Article • 03/03/2023

The HS_PLUGIN_PROFILE structure provides information about the plugin. The
members of this structure are set by the plugin during execution of the
HSPluginInitPlugin function that is called by the host.

ManagedCPlusPlus

dwPluginCapabilities
Required.

A subset of the possible HS_FLAG_CAPABILITY_NETWORK_* values. For more
information about hotspot host capabilities, see Wi-Fi Hotspot Offloading Constants.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_PLUGIN_PROFILE {
 DWORD dwPluginCapabilities;
 DWORD dwNumNetworksSupported;
 DWORD dwProviderNameStringID;
 DWORD dwGenericNetworkNameStringID;
 DWORD dwAdvancedPageStringID;
 DWORD dwProfileUpdateTimeDays;
 WCHAR szRealm[HS_CONST_MAX_REALM_LENGTH+1];
 DWORD dwSupportedSIMCount;
} HS_PLUGIN_PROFILE, *PHS_PLUGIN_PROFILE;

Members

https://learn.microsoft.com/en-us/samples/browse/

dwNumNetworksSupported
Required.

Total number of networks supported by this plugin.

dwProviderNameStringID
Required.

The network provider name which is displayed to the user. Maximum string size =
MAX_PROVIDER_NAME_LENGTH.

dwGenericNetworkNameStringID
Optional.

Network name. Maximum string size = MAX_NETWORK_DISPLAY_NAME_LENGTH.

dwAdvancedPageStringID
Optional.

Maximum string size = HS_CONST_MAX_ADVANCED_PAGE_STRING_LENGTH.

dwProfileUpdateTimeDays
Optional.

Must be greater than or equal to HS_CONST_MIN_PROFILE_UPDATE_TIME_IN_DAYS.

szRealm
Required if HS_FLAG_CAPABILITIES_NETWORK_CUSTOM_REALM is set.

Network-specific realm value.

dwSupportedSIMCount
The size of the list pointed to by pSupported SIMs.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HSPluginInitPlugin

Wi-Fi Hotspot Offloading Constants

Requirements

See also

HS_PLUGIN_SUPPORTED_SIMS structure
Article • 03/03/2023

The HS_PLUGIN_SUPPORTED_SIMS structure contains the list of supported SIM
configurations. This list must be supplied if the hotspot plugin requires HTTP or EAP
authentication for any of its networks.

ManagedCPlusPlus

dwCount
The list size.

pSupportedSIMs
Used if MIDL is utilized. Unique, size is (dwCount).

An array of HS_SIM_IDENTITY structures that make up the list of supported SIM
configurations.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_PLUGIN_SUPPORTED_SIMS {
 DWORD dwCount;
 HS_SIM_IDENTITY pSupportedSIMs[*];
 HS_SIM_IDENTITY pSupportedSIMs[1];
} HS_PLUGIN_SUPPORTED_SIMS, *PHS_PLUGIN_SUPPORTED_SIMS;

Members

https://learn.microsoft.com/en-us/samples/browse/

pSupportedSIMs
Used if MIDL is not utilized.

An array of HS_SIM_IDENTITY structures that make up the list of supported SIM
configurations.

In the dwEapMethods field of the HS_SIM_IDENTITY structure for each SIM
configuration, you must specify the EAP methods that it supports.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_SIM_IDENTITY

Microsoft Interface Definition Language

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/desktop/Midl/midl-start-page

HS_PLUGIN_VERSION structure
Article • 03/03/2023

The HS_PLUGIN_VERSION structure contains the minimum and maximum hotspot host
versions supported by the plugin.

ManagedCPlusPlus

dwVerMin
The minimum hotspot host version supported by the plugin.

dwVerMax
The maximum hotspot host version supported by the plugin.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_PLUGIN_VERSION {
 DWORD dwVerMin;
 DWORD dwVerMax;
} HS_PLUGIN_VERSION, *PHS_PLUGIN_VERSION;

Members

Requirements

https://learn.microsoft.com/en-us/samples/browse/

HS_SIM_DATA structure
Article • 03/03/2023

The HS_SIM_DATA structure contains information stored in the SIM card.

ManagedCPlusPlus

wszICCID
The Integrated Circuit Card Identifier (ICCID) stored in the SIM card.

wszIMEI
The International Mobile Equipment Identity (IMEI) used to identify 3GPP phones.

wszMEID_ME
The Mobile Equipment Identifier (MEID) defined by 3GPP2.

wszSF_EUIMID
The Short Form Expanded User Identity Module Identifier (EUIMID) for a R-UIM or CSIM

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_SIM_DATA {
 WCHAR wszICCID[HS_CONST_MAX_ICCID_LENGTH+1];
 WCHAR wszIMEI[HS_CONST_MAX_IMEI_LENGTH+1];
 WCHAR wszMEID_ME[HS_CONST_MAX_MEID_ME_LENGTH+1];
 WCHAR wszSF_EUIMID[HS_CONST_MAX_SF_EUIMID_LENGTH+1];
} HS_SIM_DATA, *PHS_SIM_DATA;

Members

https://learn.microsoft.com/en-us/samples/browse/

(CDMA SIM application) card.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

HS_SIM_IDENTITY structure
Article • 03/03/2023

The HS_SIM_IDENTITY structure contains SIM identification information required for
EAP-SIM or EAP-AKA authentication.

ManagedCPlusPlus

SimType
The type of SIM, whether GSM or CDMA, or none. If the network is GSM, the dwMNC
and dwMCC pair of fields will be defined, whereas for CDMA the dwSID and dwNID pair
of fields must be defined.

dwMNC
Used if the SIM is GSM type.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef struct _HS_SIM_IDENTITY {
 eHS_SIM_TYPE SimType;
 DWORD dwMNC;
 DWORD dwMCC;
 DWORD dwNID;
 DWORD dwSID;
 DWORD dwEapMethods;
} HS_SIM_IDENTITY, *PHS_SIM_IDENTITY;

Members

https://learn.microsoft.com/en-us/samples/browse/

The mobile network code (MNC) of the GSM network.

dwMCC
Used if the SIM is GSM type.

The mobile country code (MCC) of the GSM network.

dwNID
Used if the SIM is CDMA type.

The Network Identification Number (NID) of the CDMA network.

dwSID
Used if the SIM is CDMA type.

The System Identification Number (SID) of the CDMA network.

dwEapMethods
The EAP authentication method.

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

HSPluginGetVersion function
Article • 03/03/2023

The HSPluginGetVersion function is exported by the plugin DLL and is called to verify
that the plugin version matches the host version.

ManagedCPlusPlus

*pHotspotPluginVersion [out]
A pointer to the HS_PLUGIN_VERSION structure that contains version information for
the plugin.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

DWORD HSPluginGetVersion(
 Out HS_PLUGIN_VERSION *pHotspotPluginVersion
);

Parameters

Requirements

https://learn.microsoft.com/en-us/samples/browse/

HS_PLUGIN_VERSION

See also

HSPluginInitPlugin function
Article • 03/03/2023

The HSPluginInitPlugin function is exported by the plugin DLL and is called to initialize
the plugin.

ManagedCPlusPlus

hPluginContext [in]
A handle, provided by the host, that the plugin is required to save and then use when it
needs to make a request to the host by way of the host handler functions.

dwVerNumUsed [in]
The host's current version number.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

DWORD HSPluginInitPlugin(
 In HANDLE hPluginContext,
 In DWORD dwVerNumUsed,
 In DWORD dwHostCapabilities,
 In HS_DEVICE_IDENTITY *pDeviceIdentity,
 In HOTSPOT_HOST_HANDLERS *pHotspotHostHandlers,
 Out HOTSPOT_PLUGIN_APIS *pHotspotPluginAPIs,
 Out HS_PLUGIN_PROFILE *pPluginProfile
);

Parameters

https://learn.microsoft.com/en-us/samples/browse/

dwHostCapabilities [in]
Value that specifies the list of capabilities that the host can provide to the plugin. This
value is the bitwise OR combination of the applicable capability flags. For more
information about capability flags, see the HS_FLAG_CAPABILITY_* constants in Wi-Fi
Hotspot Offloading Constants.

Note If the host does not supply all the capabilities required by the plugin, the plugin
will not be initialized.

*pDeviceIdentity [in]
Pointer to a HS_DEVICE_IDENTITY structure that contains information about the device
manufacturer and model.

*pHotspotHostHandlers [in]
Pointer to a HOTSPOT_HOST_HANDLERS structure that contains the hotspot host
handlers function table. This table contains pointers to functions that are called by the
plugin to communicate with the hotspot host.

*pHotspotPluginAPIs [out]
Pointer to the HOTSPOT_PLUGIN_APIS structure that contains the hotspot plugin APIs
function table. This table is returned by the plugin and contains pointers to functions
that are called by the host to communicate with the plugin.

*pPluginProfile [out]
Pointer to a HS_PLUGIN_PROFILE structure, returned by the plugin, that provides
information about the plugin.

During initialization, the host provides the following:

The plugin context handle
The current version number
A list of capabilities that the host can provide to the plugin
A pointer to the host handler function table through which the plugin can
communicate with the host

The plugin returns a pointer to its own function table and a pointer to its
HS_PLUGIN_PROFILE structure.

Remarks

Requirements

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Wi-Fi Hotspot Offloading Constants

HS_DEVICE_IDENTITY

HOTSPOT_HOST_HANDLERS

HOTSPOT_PLUGIN_APIS

HS_PLUGIN_PROFILE

See also

HS_PLUGIN_CHECK_FOR_UPDATES
function
Article • 03/03/2023

The HS_PLUGIN_CHECK_FOR_UPDATES function checks for configuration updates at the
frequency specified in the dwProfileUpdateTimeDays member of the plugin’s
HS_PLUGIN_PROFILE structure.

ManagedCPlusPlus

This function has no parameters.

**

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_CHECK_FOR_UPDATES)(

);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_PROFILE

Requirements

See also

HS_PLUGIN_DEINIT function
Article • 03/03/2023

The HS_PLUGIN_DEINIT function is called by the host to notify the plugin that it will be
unloaded.

ManagedCPlusPlus

UnloadReason [in]
An eHS_UNLOAD_REASON enumeration value that indicates the reason for the unload.

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_DEINIT)(
 In eHS_UNLOAD_REASON UnloadReason
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/samples/browse/

Upon receiving notification that it will be unloaded, the plugin should complete any
current activity and save state, if required.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

eHS_UNLOAD_REASON

Requirements

See also

HS_PLUGIN_DISCONNECT_FROM_NETW
ORK function
Article • 03/03/2023

The HS_PLUGIN_DISCONNECT_FROM_NETWORK function notifies the plugin that the
device will be disconnected from the network.

ManagedCPlusPlus

*pNetworkIdentity [in]
Pointer to the HS_NETWORK_IDENTITY structure for the network from which the device
is to be disconnected.

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_DISCONNECT_FROM_NETWORK)(
 In HS_NETWORK_IDENTITY *pNetworkIdentity
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

Requirements

See also

HS_PLUGIN_IS_HOTSPOT_NETWORK
function
Article • 03/03/2023

The HS_PLUGIN_IS_HOTSPOT_NETWORK function is called by the host to determine if a
specified network is a hotspot network.

ManagedCPlusPlus

*pNetworkIdentity [in]
Pointer to the HS_NETWORK_IDENTITY structure for the network from which the device
is to be disconnected.

*pNetworkState [out]
An eHS_NETWORK_STATE enumeration value that indicates the type of network.

*pNetworkProfile [out, optional]
Pointer to the HS_NETWORK_PROFILE structure for the network.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_IS_HOTSPOT_NETWORK)(
 In HS_NETWORK_IDENTITY *pNetworkIdentity,
 Out eHS_NETWORK_STATE *pNetworkState,
 _Out_opt_ HS_NETWORK_PROFILE *pNetworkProfile
);

Parameters

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the host to communicate with the plugin and does not return a
value.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

eHS_NETWORK_STATE

HS_NETWORK_PROFILE

Return value

Requirements

See also

HS_PLUGIN_PRE_CONNECT_INIT
function
Article • 03/03/2023

The HS_PLUGIN_PRE_CONNECT_INIT function is called to notify the plugin to initialize
its state when a connection to a hotspot network is in progress.

ManagedCPlusPlus

*pNetworkIdentity [in]
Pointer to the HS_NETWORK_IDENTITY structure for the target network.

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_PRE_CONNECT_INIT)(
 In HS_NETWORK_IDENTITY *pNetworkIdentity
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

Requirements

See also

HS_PLUGIN_QUERY_CELLULAR_EXCEPTI
ON_HOSTS function
Article • 03/03/2023

The HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS function queries the list of
hosts that the plugin will need to connect to over cellular as part of its authentication
process.

ManagedCPlusPlus

*pExceptionsList [in, out]
The HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS structure that contains the list of
cellular host names.

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS)(
 Inout HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS *pExceptionsList
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called only if the plugin sets the dwNumCellularExceptions field of its
HS_PLUGIN_PROFILE to a value greater than zero.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS

HS_PLUGIN_PROFILE

Remarks

Requirements

See also

HS_PLUGIN_QUERY_HIDDEN_NETWORK
function
Article • 03/03/2023

The HS_PLUGIN_QUERY_HIDDEN_NETWORK function returns the network identity and
network profile for a hidden network.

ManagedCPlusPlus

*pHiddenNetworkIdentity [out]
The HS_NETWORK_IDENTITY structure that uniquely identifies the network.

*pHiddenNetworkProfile [out]
The HS_NETWORK_PROFILE structure that contains the network profile.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_QUERY_HIDDEN_NETWORK)(
 Out HS_NETWORK_IDENTITY *pHiddenNetworkIdentity,
 Out HS_NETWORK_PROFILE *pHiddenNetworkProfile
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the host to communicate with the plugin and does not return a
value.

The host calls this function only if the dwPluginCapabilities field of the associated
plugin's HS_PLUGIN_PROFILE structure includes the
HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability.

The plugin must provide both the network identity and the network profile for the
hidden Wi-Fi network.

This network must have the highest priority (1) among all the hotspot networks.

The hotspot offload service imposes a limitation of one hidden network for the life of
the service. Therefore, in the case where there are multiple plugins installed, only the
first plugin's request to specify a hidden network will be accepted.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

HS_NETWORK_PROFILE

HS_PLUGIN_PROFILE

Remarks

Requirements

See also

HS_PLUGIN_QUERY_SUPPORTED_SIMS
function
Article • 03/03/2023

The HS_PLUGIN_QUERY_SUPPORTED_SIMS function returns the list of SIMs that the
plugin supports.

ManagedCPlusPlus

*pNetworkIdentity [in, optional]
The HS_NETWORK_IDENTITY structure that uniquely identifies the network.

*pSupportedSIMs [in, out]
Pointer to an array of one or more HS_PLUGIN_SUPPORTED_SIMS structures that
contains the list of supported SIMs.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_QUERY_SUPPORTED_SIMS)(
 _In_opt_ HS_NETWORK_IDENTITY *pNetworkIdentity,
 Inout HS_PLUGIN_SUPPORTED_SIMS *pSupportedSIMs
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the host to communicate with the plugin and does not return a
value.

If the pNetworkIdentity parameter exists then only those SIM identities required for
connecting to the specified network must be provided, otherwise the entire list of SIMs
for connecting to all networks must be provided.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

HS_PLUGIN_SUPPORTED_SIMS

Remarks

Requirements

See also

HS_PLUGIN_RESET function
Article • 03/03/2023

The HS_PLUGIN_RESET function is called by the host to notify the plugin that it must
reset its state.

ManagedCPlusPlus

This function has no parameters.

**

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_RESET)(

);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/samples/browse/

The plugin should terminate all threads and stop any activities in progress.

The plugin is unloaded if it fails to reset.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

HS_PLUGIN_SEND_KEEP_ALIVE function
Article • 03/03/2023

The HS_PLUGIN_SEND_KEEP_ALIVE function is called by the host to send a network
connection keep-alive message. It will be called at the frequency specified in the
dwKeepAliveTimeMins member of the plugin's HS_PLUGIN_PROFILE structure.

ManagedCPlusPlus

This function has no parameters.

**

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_SEND_KEEP_ALIVE)(

);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_PROFILE

Requirements

See also

HS_PLUGIN_START_POST_CONNECT_AU
TH function
Article • 03/03/2023

The HS_PLUGIN_START_POST_CONNECT_AUTH function is called to perform any post-
connect authentication required to authenticate the device over the network.

ManagedCPlusPlus

dwConnectionId [in]
Unique identifier for the network connection.

*pConnectContext [in]
Pointer to a HS_CONNECTION_CONTEXT structure that contains the information
required by the plugin for post-connect authentication.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_START_POST_CONNECT_AUTH)(
 In DWORD dwConnectionId,
 In HS_CONNECTION_CONTEXT *pConnectContext,
 In HS_SIM_DATA *pSIMData,
 In HS_NETWORK_IDENTITY *pNetworkIdentity,
 In HS_NETWORK_PROFILE *pNetworkProfile
);

Parameters

https://learn.microsoft.com/en-us/samples/browse/

*pSIMData [in]
Pointer to a HS_SIM_DATA structure that contains information from the SIM required by
the plugin for post-connect authentication.

*pNetworkIdentity [in]
Pointer to the HS_NETWORK_IDENTITY structure for the network.

*pNetworkProfile [in]
Pointer to the HS_NETWORK_PROFILE structure that contains the network profile.

This function is called by the host to communicate with the plugin and does not return a
value.

After calling this function, the plugin must call the
HS_HOST_POST_CONNECT_AUTH_COMPLETION handler to inform the host of the
status of the request.

If the network uses EAP-SIM/AKA authentication, the plugin is not expected to perform
any activity in this state. However, if the network requires HTTP-based authentication,
the plugin must perform the appropriate authentication.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_CONNECTION_CONTEXT

HS_SIM_DATA

HS_NETWORK_IDENTITY

HS_NETWORK_PROFILE

Return value

Remarks

Requirements

See also

HS_PLUGIN_STOP_POST_CONNECT_AUT
H function
Article • 03/03/2023

The HS_PLUGIN_STOP_POST_CONNECT_AUTH function is called to notify the plugin to
stop the authentication process.

ManagedCPlusPlus

*pNetworkIdentity [in]
The HS_NETWORK_IDENTITY structure that uniquely identifies the network.

This function is called by the host to communicate with the plugin and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_PLUGIN_STOP_POST_CONNECT_AUTH)(
 In HS_NETWORK_IDENTITY *pNetworkIdentity
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_NETWORK_IDENTITY

Requirements

See also

HS_HOST_ALLOCATE_MEMORY function
Article • 03/03/2023

The HS_HOST_ALLOCATE_MEMORY function returns an amount of memory specified by
the caller.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

dwByteCount [in]
The amount of memory to allocate.

ppvBuffer [out]
Pointer to the buffer that contains the allocated memory.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 (WINAPI *HS_HOST_ALLOCATE_MEMORY)(
 In HANDLE hPluginContext,
 In DWORD dwByteCount,
 Out _bcount (dwByteCount) LPVOID* ppvBuffer
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the plugin to communicate with the host and does not return a
value.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

HS_HOST_FREE_MEMORY function
Article • 03/03/2023

The HS_HOST_FREE_MEMORY function frees any memory that was allocated earlier by a
call to HS_HOST_ALLOCATE_MEMORY.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

pvBuffer [in, optional]
Pointer to the memory buffer.

This function is called by the plugin to communicate with the host and does not return a
value.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef VOID (WINAPI *HS_HOST_FREE_MEMORY)(
 In HANDLE hPluginContext,
 _In_opt_ LPVOID pvBuffer
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_HOST_ALLOCATE_MEMORY

Requirements

See also

HS_HOST_POST_CONNECT_AUTH_COM
PLETION function
Article • 03/03/2023

The HS_HOST_POST_CONNECT_AUTH_COMPLETION function indicates the success or
failure of an authentication attempt following a Wi-Fi connection setup at layer 2.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

dwConnectionId [in]
Unique identifier for the network connection.

AuthResult [in]
The eHS_AUTHENTICATION_RESULT enumeration value that indicates success or failure.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_HOST_POST_CONNECT_AUTH_COMPLETION)(
 In HANDLE hPluginContext,
 In DWORD dwConnectionId,
 In eHS_AUTHENTICATION_RESULT AuthResult,
 _In_opt_ LPVOID pvReserved
);

Parameters

https://learn.microsoft.com/en-us/samples/browse/

pvReserved [in, optional]
Reserved for future use.

This function is called by the plugin to communicate with the host and does not return a
value.

The plugin must call this function to inform the host of the result of a previous call to
HS_PLUGIN_START_POST_CONNECT_AUTH.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

eHS_AUTHENTICATION_RESULT

HS_PLUGIN_START_POST_CONNECT_AUTH

Return value

Remarks

Requirements

See also

HS_HOST_SEND_KEEP_ALIVE_COMPLETI
ON function
Article • 03/03/2023

The HS_HOST_SEND_KEEP_ALIVE_COMPLETION function indicates the success or
failure of a request for a network send keep-alive message.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

dwResult [in]
The result code.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_HOST_SEND_KEEP_ALIVE_COMPLETION)(
 In HANDLE hPluginContext,
 In DWORD dwResult
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the plugin to communicate with the host and does not return a
value.

The plugin must call this function to inform the host of the result of a previous call to
HS_PLUGIN_SEND_KEEP_ALIVE.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_SEND_KEEP_ALIVE

Remarks

Requirements

See also

HS_HOST_SEND_USER_MESSAGE
function
Article • 03/03/2023

The HS_HOST_SEND_USER_MESSAGE function is called to communicate with the user.
The message content is contained in custom UI display strings that are passed to the
hotspot offload service.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

dwConnectionId [in]
Unique identifier for the network connection.

dwStringID [in]
The string ID, used as an index into the string table where the message is stored.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_HOST_SEND_USER_MESSAGE)(
 In HANDLE hPluginContext,
 In DWORD dwConnectionId,
 In DWORD dwStringID
);

Parameters

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the plugin to communicate with the host and does not return a
value.

The hotspot plugin stores the messages in a string table. The plugin must pass the
string IDs to the hotspot offload service to enable it to load the appropriate strings.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Return value

Remarks

Requirements

HS_HOST_UPDATE_CONFIGURATION_C
OMPLETION function
Article • 03/03/2023

The HS_HOST_UPDATE_CONFIGURATION_COMPLETION function indicates the success
or failure of a request to check for updates.

ManagedCPlusPlus

hPluginContext [in]
Context handle for the plugin making the call to this function.

UpdateResult [in]
The eHS_UPDATE_RESULT enumeration value that indicates the result of the request to
check for updates.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

 typedef DWORD (WINAPI *HS_HOST_UPDATE_CONFIGURATION_COMPLETION)(
 In HANDLE hPluginContext,
 In eHS_UPDATE_RESULT UpdateResult
);

Parameters

Return value

https://learn.microsoft.com/en-us/samples/browse/

This function is called by the plugin to communicate with the host and does not return a
value.

The plugin must call this function to inform the host of the result of a previous call to
HS_PLUGIN_CHECK_FOR_UPDATES.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

eHS_UPDATE_RESULT

HS_PLUGIN_CHECK_FOR_UPDATES

Remarks

Requirements

See also

eHS_AUTHENTICATION_RESULT
enumeration
Article • 03/03/2023

The eHS_AUTHENTICATION_RESULT enumeration indicates the result of authentication
by the plugin after the PostConnectAuth request.

ManagedCPlusPlus

HS_AUTHENTICATION_RESULT_SUCCESS
Indicates the authentication was successful.

HS_AUTHENTICATION_RESULT_FAILED_TIMEOUT
Indicates the authentication failed due to a timeout from the server/back end.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef enum _eHS_AUTHENTICATION_RESULT {
 HS_AUTHENTICATION_RESULT_SUCCESS = 0,
 HS_AUTHENTICATION_RESULT_FAILED_TIMEOUT = 100,
 HS_AUTHENTICATION_RESULT_FAILED_AUTH,
 HS_AUTHENTICATION_RESULT_FAILED_CONNECT,
 HS_AUTHENTICATION_RESULT_FAILED_OTHER,
 HS_AUTHENTICATION_RESULT_MAX
} eHS_AUTHENTICATION_RESULT;

Constants

https://learn.microsoft.com/en-us/samples/browse/

HS_AUTHENTICATION_RESULT_FAILED_AUTH
Indicates the authentication failed due to incorrect credentials.

HS_AUTHENTICATION_RESULT_FAILED_CONNECT
Indicates the authentication failed due to an inability to connect to the authentication
server

HS_AUTHENTICATION_RESULT_FAILED_OTHER
Indicates the authentication failed for some other reason.

HS_AUTHENTICATION_RESULT_MAX
Indicates an out-of-range value.

The plugin passes this enumeration value to the hotspot plugin host through the
HS_HOST_POST_CONNECT_AUTH_COMPLETION function, which is used to inform the
hotspot plugin host of the results of a call to
HS_PLUGIN_START_POST_CONNECT_AUTH.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Remarks

Requirements

eHS_NETWORK_STATE enumeration
Article • 03/03/2023

The eHS_NETWORK_STATE enumeration indicates whether a network is a hotspot
network.

ManagedCPlusPlus

HS_NETWORK_STATE_NOT_A_HOTSPOT
Indicates the network is not a hotspot network.

HS_NETWORK_STATE_HOTSPOT_MANUAL_CONNECT
Indicates the user can manually connect to the hotspot network.

HS_NETWORK_STATE_HOTSPOT_AUTO_CONNECT
Indicates the device can connect automatically to the hotspot network.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef enum _eHS_NETWORK_STATE {
 HS_NETWORK_STATE_NOT_A_HOTSPOT,
 HS_NETWORK_STATE_HOTSPOT_MANUAL_CONNECT,
 HS_NETWORK_STATE_HOTSPOT_AUTO_CONNECT,
 HS_NETWORK_STATE_MAX
} eHS_NETWORK_STATE;

Constants

https://learn.microsoft.com/en-us/samples/browse/

HS_NETWORK_STATE_MAX
Indicates an out-of-range value.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

Requirements

eHS_UNLOAD_REASON enumeration
Article • 03/03/2023

The eHS_UNLOAD_REASON enumeration indicates the reason for the plugin to get
unloaded.

ManagedCPlusPlus

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef enum _eHS_UNLOAD_REASON {
 HS_UNLOAD_REASON_NONE,
 HS_UNLOAD_REASON_PLUGN_INIT_FAILED,
 HS_UNLOAD_REASON_NO_NETWORKS_SUPPORTED,
 HS_UNLOAD_REASON_NO_PROVIDE_NAME_ID,
 HS_UNLOAD_REASON_ZERO_SIM_COUNT,
 HS_UNLOAD_REASON_DISPLAY_FLAG_BUT_NO_DISPLAY_STRING_ID,
 HS_UNLOAD_REASON_CUSTOM_REALM_FLAG_BUT_NO_REALM_STRING,
 HS_UNLOAD_REASON_DUPLICATE_PLUGIN_LOADED,
 HS_UNLOAD_REASON_RELOAD_REQUESTED_BY_PLUGIN,
 HS_UNLOAD_REASON_EXCEPTION_DURING_PLUGIN_CALL,
 HS_UNLOAD_REASON_EXCEPTION_IN_PLUGIN_HOST,
 HS_UNLOAD_REASON_ASYNC_INITIALIZATION_FAILED,
 HS_UNLOAD_REASON_UNSUPPORTED_AUTH_CAPABILITY_REQUESTED,
 HS_UNLOAD_REASON_FAILED_TO_LOAD_PROVIDER_NAME_STRING,
 HS_UNLOAD_REASON_FAILED_TO_LOAD_ADVANCED_PAGE_STRING,
 HS_UNLOAD_REASON_FAILED_TO_LOAD_NETWORK_NAME_STRING,
 HS_UNLOAD_REASON_FAILED_TO_CONFIGURE_HIDDEN_NETWORK,
 HS_UNLOAD_REASON_HIDDEN_NETWORK_ALREADY_CONFIGURED,
 HS_UNLOAD_REASON_FAILED_TO_QUERY_SIMS,
 HS_UNLOAD_REASON_PLUGIN_REQUIRED_SIM_NOT_PRESENT,
 HS_UNLOAD_REASON_SIM_CONFIG_CHANGED,
 HS_UNLOAD_REASON_WIFI_SWITCHED_OFF_IN_OS,

https://learn.microsoft.com/en-us/samples/browse/

HS_UNLOAD_REASON_NONE
No specific reason for the unload operation.

HS_UNLOAD_REASON_PLUGN_INIT_FAILED
The plugin is being unloaded because it failed to initialize successfully.

HS_UNLOAD_REASON_NO_NETWORKS_SUPPORTED
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure did
not indicate a valid value for dwNumNetworksSupported.

HS_UNLOAD_REASON_NO_PROVIDE_NAME_ID
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure did
not specify a string ID for dwProviderNameStringID.

HS_UNLOAD_REASON_ZERO_SIM_COUNT
The plugin is being unloaded because there are no SIM cards present.

HS_UNLOAD_REASON_DISPLAY_FLAG_BUT_NO_DISPLAY_STRING_ID
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure
requires HTTP or EAP SIM-based authentication but did not specify a value for
dwSupportedSIMCount.

HS_UNLOAD_REASON_CUSTOM_REALM_FLAG_BUT_NO_REALM_STRING
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure
specified the HS_FLAG_CAPABILITY_NETWORK_CUSTOM_REALM capability but did not
provide a valid string for szRealm.

HS_UNLOAD_REASON_DUPLICATE_PLUGIN_LOADED
The plugin is being unloaded because another plugin is using the same DLL.

HS_UNLOAD_REASON_RELOAD_REQUESTED_BY_PLUGIN
The plugin is being unloaded because the plugin requested to be unloaded and
reloaded by specifying the HS_UPDATE_RESULT_ACTION_RELOAD action with the
eHS_UPDATE_RESULT enumeration.

HS_UNLOAD_REASON_EXCEPTION_DURING_PLUGIN_CALL
The plugin is being unloaded because the host process encountered an exception while
in a call to the plugin.

 HS_UNLOAD_REASON_MAX
} eHS_UNLOAD_REASON;

Constants

HS_UNLOAD_REASON_EXCEPTION_IN_PLUGIN_HOST
The plugin is being unloaded because the hotspot host encountered an exception.

HS_UNLOAD_REASON_ASYNC_INITIALIZATION_FAILED
The plugin is being unloaded because the hotspot service failed to register for
notifications from the plugin.

HS_UNLOAD_REASON_UNSUPPORTED_AUTH_CAPABILITY_REQUESTED
The plugin is being unloaded because none of the authentication capabilities requested
by the plugin are available.

HS_UNLOAD_REASON_FAILED_TO_LOAD_PROVIDER_NAME_STRING
The plugin is being unloaded because the hotspot service could not map the
dwProviderNameStringID string ID provided in the plugin's HS_PLUGIN_PROFILE
structure to a valid string.

HS_UNLOAD_REASON_FAILED_TO_LOAD_ADVANCED_PAGE_STRING
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure
specified an (optional) dwAdvancedPageStringID string ID but it did not map to a valid
string.

HS_UNLOAD_REASON_FAILED_TO_LOAD_NETWORK_NAME_STRING
The plugin is being unloaded because the plugin's HS_PLUGIN_PROFILE structure
specified an (optional) dwGenericNetworkNameStringID string ID, but it did not map to
a valid string.

HS_UNLOAD_REASON_FAILED_TO_CONFIGURE_HIDDEN_NETWORK
The plugin is being unloaded because the plugin specified a hidden network (via the
HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability), but the hotspot service
was unable to configure the hidden network.

HS_UNLOAD_REASON_HIDDEN_NETWORK_ALREADY_CONFIGURED
The plugin is being unloaded because the plugin specified a hidden network via the
HS_FLAG_CAPABILITY_NETWORK_TYPE_HIDDEN capability but another plugin has
already claimed the hidden network slot.

HS_UNLOAD_REASON_FAILED_TO_QUERY_SIMS
The plugin is being unloaded because the call to
HS_PLUGIN_QUERY_SUPPORTED_SIMS failed.

HS_UNLOAD_REASON_PLUGIN_REQUIRED_SIM_NOT_PRESENT
The plugin is being unloaded because the SIMs required by the plugin are not present
in the device.

HS_UNLOAD_REASON_SIM_CONFIG_CHANGED
The plugin is being unloaded because the SIM configuration changed, which requires
the plugins to be unloaded and reloaded.

HS_UNLOAD_REASON_WIFI_SWITCHED_OFF_IN_OS
The plugin is being unloaded because Wi-Fi functionality was switched off in the OS.

HS_UNLOAD_REASON_MAX
Indicates an out-of-range value.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_PLUGIN_PROFILE

eHS_UPDATE_RESULT

HS_PLUGIN_QUERY_SUPPORTED_SIMS

Requirements

See also

eHS_UPDATE_RESULT enumeration
Article • 03/03/2023

The eHS_UPDATE_RESULT enumeration indicates the result of a “check for updates”
request.

ManagedCPlusPlus

HS_UPDATE_RESULT_SUCCESS
Indicates the update was successful.

HS_UPDATE_RESULT_ACTION_RECONNECT
The result of the update request requires the service to disconnect and reconnect.

HS_UPDATE_RESULT_ACTION_RELOAD
The result of the update request requires the service to unload and reload the plugin.

Wi-Fi Hotspot Offloading deprecation note

） Important

Starting in Windows 10, version 1709, the Wi-Fi Hotspot Offloading feature is
deprecated and should not be used. Instead, we recommend writing a UWP app
and using the Wi-Fi Hotspot Authentication API
(Windows.Networking.NetworkOperators).

For a code sample and more info, see the Wi-Fi hotspot authentication sample.

Syntax

typedef enum _eHS_UPDATE_RESULT {
 HS_UPDATE_RESULT_SUCCESS,
 HS_UPDATE_RESULT_ACTION_RECONNECT,
 HS_UPDATE_RESULT_ACTION_RELOAD,
 HS_UPDATE_RESULT_MAX
} eHS_UPDATE_RESULT;

Constants

https://learn.microsoft.com/en-us/samples/browse/

HS_UPDATE_RESULT_MAX
Indicates an out-of-range value.

The plugin passes this enumeration value to the hotspot plugin host through the
HS_HOST_UPDATE_CONFIGURATION_COMPLETION function, which is used to inform
the hotspot plugin host of the results of a call to HS_PLUGIN_CHECK_FOR_UPDATES.

Version Windows 10 Mobile

Header Hotspotoffloadplugin.h (include
Hotspotoffloadplugin.h)

HS_HOST_UPDATE_CONFIGURATION_COMPLETION

HS_PLUGIN_CHECK_FOR_UPDATES

Remarks

Requirements

See also

Network Module Registrar Topics
Article • 12/15/2021

This section discusses the Network Module Registrar and includes the following topics:

Introduction to the Network Module Registrar

Network Module

Architecture Overview

Initializing and Registering a Client Module

Provider Module Operations

Programming Considerations

Using the WskRegister and WskDeregister functions is the preferred method for
registering and unregistering WSK applications. The Network Module Registrar remains
available for compatibility. For more information, see Registering a Winsock Kernel
Application.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister

Introduction to the Network Module
Registrar
Article • 12/15/2021

The Network Module Registrar (NMR) is an operating system module that facilitates the
attachment of network modules to each other. Each network module registers itself with
the NMR, specifying the characteristics that describe the network module. The NMR
initiates attachment between pairs of registered network modules that can be attached
to each other. After they are attached, the network modules can interact with each other
independent of the NMR. The NMR also facilitates detachment of attached pairs of
network modules when one of the network modules deregisters with the NMR. The
deregistration of a network module is not complete until the network module is
completely detached from all network modules to which it was previously attached.

Although the NMR was developed for use by network modules, the design of the NMR
architecture is sufficiently generic so that it can also be used by software modules in
other technology areas.

Network Module
Article • 12/15/2021

A network module is a software module that implements a specific function in a network
stack, such as a data link interface, a transport protocol, or a network application. A
network module can be a provider module, a client module, or both, depending on
where it is located in the network stack.

Provider Module
Article • 12/15/2021

A provider module is a network module that supports and implements the provider side
of a Network Programming Interface (NPI). A provider module registers itself with the
Network Module Registrar as a Provider of the NPI that it supports. A provider module
can register itself as a provider of more than one NPI. A network module can be both a
provider module and a client module.

Client Module
Article • 12/15/2021

A client module is a network module that supports and implements the client side of a
Network Programming Interface (NPI). A client module registers itself with the Network
Module Registrar as a Client of the NPI that it supports. A client module can register
itself as a client of more than one NPI. A network module can be both a client module
and a provider module.

Network Programming Interface
Article • 12/15/2021

A Network Programming Interface, or NPI, defines the interface between network
modules that can be attached to one another. A client module that is registered as a
client of a particular NPI can only be attached to provider modules that are registered as
providers of the same NPI. Likewise, a provider module that is registered as a provider
of a particular NPI can only be attached to client modules that are registered as clients
of the same NPI.

Each NPI defines the following items:

An NPI identifier that uniquely identifies the NPI. A network module specifies an
NPI identifier to indicate the particular NPI that it supports when the network
module registers itself with the Network Module Registrar (NMR). A network
module can support multiple NPIs by registering itself with the NMR multiple
times, once for each NPI that it supports. The NMR will initiate attaching a client
module to a provider module only if they both support the same NPI.

An optional client characteristics structure that specifies the NPI-specific
characteristics of each client module. Such NPI-specific characteristics might
include items such as which version (or versions) of the NPI that a client module
supports, or which address family or protocol a client module requires. A provider
module can use the information contained in a client module's client
characteristics structure to determine if it will attach to the client module. If an NPI
does not define any NPI-specific client characteristics, then this structure is not
required.

An optional provider characteristics structure that specifies the NPI-specific
characteristics of each provider module. Such NPI-specific characteristics might
include items such as which version (or versions) of the NPI that a provider module
supports, or which address families or protocols a provider module supports. A
client module can use the information contained in a provider module's client
characteristics structure to determine if it will attach to the provider module. If an
NPI does not define any NPI-specific provider characteristics, then this structure is
not required.

Zero or more client module callback functions. After a provider module
successfully attaches to a client module, the provider module can access the client
module's functionality by calling the client module's callback functions.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_client_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_provider_characteristics

One or more provider module functions. After a client module successfully
attaches to a provider module, the client module can access the provider module's
functionality by calling the provider module's functions.

A client dispatch table structure that contains function pointers to each of the client
module callback functions. If an NPI does not define any client module callback
functions, then this structure is not required.

A provider dispatch table structure that contains function pointers to each of the
provider module functions.

A client module that supports a particular NPI uses the items defined by the NPI to
implement the client side of the interface. Similarly, a provider module that supports a
particular NPI uses the items defined by the NPI to implement the provider side of the
interface.

All of the items defined by an NPI are opaque to the NMR except for the NPI identifier.
The NMR uses the NPI identifier to determine which client modules should be attached
to which provider modules.

Architecture overview for the Network
Module Registrar
Article • 12/15/2021

An overview of the basic architecture of the Network Module Registrar (NMR) is shown
in the following diagram:

In this situation, there are two network modules, a client module and a provider module.
The client module and the provider module are respectively a client and a provider of
the same Network Programming Interface (NPI). Each network module interacts directly
with the NMR for the purpose of registration and deregistration, as well as attaching to,
and detaching from, other network modules. The NMR will initiate attaching a client
module to a provider module only if they both support the same NPI. After the client
module and the provider module are attached to each other, they can interact with each
other through their NPI functions independent of the NMR.

The following sections provide an overview of the process by which a client module and
a provider module that both support a common NPI are attached and detached.

Network Module Attachment

Network Module Detachment

Network Module Attachment
Article • 12/15/2021

Before a client module and a provider module can be attached to one another, they
each must register themselves with the NMR. A client module registers with the NMR by
calling the NmrRegisterClient function and a provider module registers with the NMR
by calling the NmrRegisterProvider function. The following diagram illustrates network
module registration.

If the client module and the provider module both specify the same Network
Programming Interface (NPI) when they register with the NMR, the NMR will initiate
attaching the two network modules together. The NMR initiates the attachment process
by calling the client module's ClientAttachProvider callback function. The following
diagram illustrates the Network Module Registrar (NMR) initiating the attachment.

A client module's ClientAttachProvider callback function can examine the registration
data for the provider module to determine if it will attach to the provider module. If the
client module determines that it will attach to the provider module, it continues the
attachment process by calling the NmrClientAttachProvider function. When a client
module calls the NmrClientAttachProvider function, the NMR in turn calls the provider
module's ProviderAttachClient callback function. The following diagram illustrates the
client module continuing the attachment.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn

A provider module's ProviderAttachClient callback function can examine the registration
data for the client module to determine if it will attach to the client module. If the
provider module determines that it will attach to the client module, the provider module
and client module exchange pointers to their respective NPI dispatch table structures.
After the client module and provider module are attached, they can interact with each
other through their NPI functions independent of the NMR. The following diagram
illustrates the network modules attached.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn

Network Module Detachment
Article • 12/15/2021

An attached pair of network modules are detached from each other when either the
client module or the provider module deregisters with the Network Module Registrar
(NMR). A client module deregisters with the NMR by calling the NmrDeregisterClient
function and a provider module deregisters with the NMR by calling the
NmrDeregisterProvider function. The following diagram illustrates the network modules
initiating deregistration.

When either network module deregisters with the NMR, the NMR calls both the client
module's ClientDetachProvider callback function and the provider module's
ProviderDetachClient callback function to initiate detaching the network module. The
following diagram illustrates the NMR initiating the detachment.

If the client module is unable to detach itself from the provider module immediately, it
calls the NmrClientDetachProviderComplete function after it completes detaching itself
from the provider module. Likewise, if the provider module cannot detach itself from the
client module immediately, it calls the NmrProviderDetachClientComplete function
after it completes detaching itself from the client module. The following diagram
illustrates the network modules completing the detachment.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_detach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientdetachprovidercomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrproviderdetachclientcomplete

After both the client module and the provider module have completed detachment
from each other, the NMR calls the client module's ClientCleanupBindingContext
callback function and the provider module's ProviderCleanupBindingContext callback
function so that the network modules can clean up their respective binding contexts for
the attachment. The following diagram illustrates the NMR initiating cleanup.

If the client module deregistered with the NMR, the deregistration of the client module
is not complete until the client module has completely detached from all of the provider
modules that it was previously attached to and all of those provider modules have
completely detached from the client module. The client module waits for the
deregistration to complete by calling the NmrWaitForClientDeregisterComplete
function. Likewise, if the provider module deregistered with the NMR, the deregistration
of the provider module is not complete until the provider module has completely
detached from all of the client modules that it was previously attached to and all of
those client modules have completely detached from the provider module. The provider
module waits for the deregistration to complete by calling the
NmrWaitForProviderDeregisterComplete function. The following diagram illustrates the
network modules waiting for deregistration to complete.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_cleanup_binding_context_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_cleanup_binding_context_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrwaitforclientderegistercomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrwaitforproviderderegistercomplete

Initializing and Registering a Client
Module
Article • 12/15/2021

A client module must initialize a number of data structures before it can register itself
with the Network Module Registrar (NMR). These structures include an NPI_MODULEID
structure, an NPI_CLIENT_CHARACTERISTICS structure, an
NPI_REGISTRATION_INSTANCE structure (contained within the
NPI_CLIENT_CHARACTERISTICS structure), and a structure defined by the client module
that is used for the client module's registration context.

If a client module registers itself with the NMR as a client of a Network Programming
Interface (NPI) that defines NPI-specific client characteristics, the client module must
also initialize an instance of the client characteristics structure defined by the NPI.

All of these data structures must remain valid and resident in memory as long as the
client module is registered with the NMR.

For example, suppose the "EXNPI" NPI defines the following in header file Exnpi.h:

C++

The following shows how a client module that registers itself as a client of the EXNPI NPI
can initialize all of these data structures:

C++

// EXNPI NPI identifier
const NPIID EXNPI_NPIID = { ... };

// EXNPI client characteristics structure
typedef struct EXNPI_CLIENT_CHARACTERISTICS_
{
 .
 . // NPI-specific members
 .
} EXNPI_CLIENT_CHARACTERISTICS, *PEXNPI_CLIENT_CHARACTERISTICS;

// Include the NPI specific header file
#include "exnpi.h"

// Structure for the client module's NPI-specific characteristics
const EXNPI_CLIENT_CHARACTERISTICS NpiSpecificCharacteristics =
{
 .

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568813(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_client_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance

 . // The NPI-specific characteristics of the client module
 .
};

// Structure for the client module's identification
const NPI_MODULEID ClientModuleId =
{
 sizeof(NPI_MODULEID),
 MIT_GUID,
 { ... } // A GUID that uniquely identifies the client module
};

// Prototypes for the client module's callback functions
NTSTATUS
 ClientAttachProvider(
 IN HANDLE NmrBindingHandle,
 IN PVOID ClientContext,
 IN PNPI_REGISTRATION_INSTANCE ProviderRegistrationInstance
);

NTSTATUS
 ClientDetachProvider(
 IN PVOID ClientBindingContext
);

VOID
 ClientCleanupBindingContext(
 IN PVOID ClientBindingContext
);

// Structure for the client module's characteristics
const NPI_CLIENT_CHARACTERISTICS ClientCharacteristics =
{
 0,
 sizeof(NPI_CLIENT_CHARACTERISTICS),
 ClientAttachProvider,
 ClientDetachProvider,
 ClientCleanupBindingContext,
 {
 0,
 sizeof(NPI_REGISTRATION_INSTANCE),
 &EXNPI_NPIID,
 &ClientModuleId,
 0,
 &NpiSpecificCharacteristics
 }
};

// Context structure for the client module's registration
typedef struct CLIENT_REGISTRATION_CONTEXT_ {
 .
 . // Client-specific members
 .
} CLIENT_REGISTRATION_CONTEXT, *PCLIENT_REGISTRATION_CONTEXT;

A client module typically initializes itself within its DriverEntry function. The main
initialization tasks for a client module are:

Specify an Unload function. The operating system calls this function when the
client module is unloaded from the system. If a client module does not provide an
unload function, the client module cannot be unloaded from the system.

Call the NmrRegisterClient function to register the client module with the NMR.

For example:

C++

// Structure for the client's registration context
CLIENT_REGISTRATION_CONTEXT ClientRegistrationContext =
{
 .
 . // Initial values for the registration context
 .
};

// Prototype for the client module's unload function
VOID
 Unload(
 PDRIVER_OBJECT DriverObject
);

// Variable to contain the handle for the registration
HANDLE ClientHandle;

// DriverEntry function
NTSTATUS
 DriverEntry(
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
 NTSTATUS Status;

 // Specify the unload function
 DriverObject->DriverUnload = Unload;

 .
 . // Other initialization tasks
 .

 // Register the client module with the NMR
 Status = NmrRegisterClient(
 &ClientCharacteristics,
 &ClientRegistrationContext,
 &ClientHandle
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient

If a client module is a client of more than one NPI, it must initialize an independent set
of data structures and call NmrRegisterClient for each NPI that it supports. If a network
module is both a client module and a provider module (that is, it is a client of one NPI
and a provider of another NPI), it must initialize two independent sets of data structures,
one for the client interface and one for the provider interface, and call both
NmrRegisterClient and NmrRegisterProvider.

A client module is not required to call NmrRegisterClient from within its DriverEntry
function. For example, in the situation where a client module is a subcomponent of a
complex driver, the registration of the client module might occur only when the client
module subcomponent is activated.

For more information about implementing a client module's Unload function, see
Unloading a Client Module.

 // Return the result of the registration
 return Status;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

Attaching a Client Module to a Provider
Module
Article • 12/15/2021

After a client module has registered with the Network Module Registrar (NMR), the
NMR calls the client module's ClientAttachProvider callback function, once for each
provider module that is registered as a provider of the same Network Programming
Interface (NPI) for which the client module has registered as a client.

The NMR also calls a client module's ClientAttachProvider callback function whenever a
new provider module registers as a provider of the same NPI for which the client
module has registered as a client.

When the NMR calls the client module's ClientAttachProvider callback function for a
particular provider module, it passes, in the ProviderRegistrationInstance parameter, a
pointer to the NPI_REGISTRATION_INSTANCE structure that is associated with the
provider module. The client module's ClientAttachProvider callback function can use the
data in the provider module's NPI_REGISTRATION_INSTANCE structure, as well as the
data in the NPI_MODULEID structure and the NPI-specific provider characteristics
structure pointed to by the ModuleId and NpiSpecificCharacteristics members of the
provider module's NPI_REGISTRATION_INSTANCE structure, to determine if it will
attach to the provider module.

If the client module determines that it will attach to the provider module, the client
module's ClientAttachProvider callback function allocates and initializes a binding
context structure for the attachment to the provider module and then calls the
NmrClientAttachProvider function to continue the attachment process. In this situation,
the client module's ClientAttachProvider callback function must return the status code
that is returned by the NmrClientAttachProvider function.

If NmrClientAttachProvider returns STATUS_SUCCESS, the client module and the
provider module have successfully attached to each other. In this situation, the client
module's ClientAttachProvider callback function must save the binding handle that the
NMR passed in the NmrBindingHandle parameter when the NMR called the client
module's ClientAttachProvider callback function. The client module's
ClientAttachProvider callback function must also save the pointers to the provider
binding context and the provider dispatch table that are returned in the variables that
the client module passed to the NmrClientAttachProvider function in the
ProviderBindingContext and ProviderDispatch parameters. A client module typically saves
this data in its binding context for the attachment to the provider module.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568813(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn

If NmrClientAttachProvider does not return STATUS_SUCCESS, the client module's
ClientAttachProvider callback function should clean up and free any resources that it
allocated before it called NmrClientAttachProvider.

If the client module determines that it will not attach to the provider module, then the
client module's ClientAttachProvider callback function must return
STATUS_NOINTERFACE.

For example, suppose the "EXNPI" Network Programming Interface (NPI) defines the
following in header file Exnpi.h:

C++

The following code example shows how a client module that is registered as a client of
the EXNPI NPI can attach itself to a provider module that is registered as a provider of
the EXNPI NPI:

C++

// EXNPI provider characteristics structure
typedef struct EXNPI_PROVIDER_CHARACTERISTICS_
{
 .
 . // NPI-specific members
 .
} EXNPI_PROVIDER_CHARACTERISTICS, *PEXNPI_PROVIDER_CHARACTERISTICS;

// EXNPI client dispatch table
typedef struct EXNPI_CLIENT_DISPATCH_ {
 .
 . // NPI-specific dispatch table of function pointers that
 . // point to a client module's NPI callback functions.
 .
} EXNPI_CLIENT_DISPATCH, *PEXNPI_CLIENT_DISPATCH;

// EXNPI provider dispatch table
typedef struct EXNPI_PROVIDER_DISPATCH_ {
 .
 . // NPI-specific dispatch table of function pointers that
 . // point to a provider module's NPI functions.
 .
} EXNPI_PROVIDER_DISPATCH, *PEXNPI_PROVIDER_DISPATCH;

// Context structure for the client
// module's binding to a provider module
typedef struct CLIENT_BINDING_CONTEXT_ {
 HANDLE NmrBindingHandle;
 PVOID ProviderBindingContext;
 PEXNPI_PROVIDER_DISPATCH ProviderDispatch;
 .

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn

 . // Other client-specific members
 .
} CLIENT_BINDING_CONTEXT, *PCLIENT_BINDING_CONTEXT;

// Pool tag used for allocating the binding context
#define BINDING_CONTEXT_POOL_TAG 'tpcb'

// Structure for the client's dispatch table
const EXNPI_CLIENT_DISPATCH Dispatch = {
 .
 . // Function pointers to the client module's
 . // NPI callback functions
 .
};

// ClientAttachProvider callback function
NTSTATUS
 ClientAttachProvider(
 IN HANDLE NmrBindingHandle,
 IN PVOID ClientContext,
 IN PNPI_REGISTRATION_INSTANCE ProviderRegistrationInstance
)
{
 PNPI_MODULEID ProviderModuleId;
 PEXNPI_PROVIDER_CHARACTERISTICS ProviderNpiSpecificCharacteristics;
 PCLIENT_BINDING_CONTEXT BindingContext;
 PVOID ProviderBindingContext;
 PEXNPI_PROVIDER_DISPATCH ProviderDispatch;
 NTSTATUS Status;

 // Get pointers to the provider module's identification structure
 // and the provider module's NPI-specific characteristics structure
 ProviderModuleId = ProviderRegistrationInstance->ModuleId;
 ProviderNpiSpecificCharacteristics =
 (PEXNPI_PROVIDER_CHARACTERISTICS)
 ProviderRegistrationInstance->NpiSpecificCharacteristics;

 //
 // Use the data in the structures pointed to by
 // ProviderRegistrationInstance, ProviderModuleId,
 // and ProviderNpiSpecificCharacteristics to determine
 // whether to attach to the provider module.
 //

 // If the client module determines that it will not attach
 // to the provider module
 if (...)
 {
 // Return status code indicating the modules did not
 // attach to each other
 return STATUS_NOINTERFACE;
 }

 // Allocate memory for the client module's
 // binding context structure

 BindingContext =
 (PCLIENT_BINDING_CONTEXT)
 ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(CLIENT_BINDING_CONTEXT),
 BINDING_CONTEXT_POOL_TAG
);

 // Check result of allocation
 if (BindingContext == NULL)
 {
 // Return error status code
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Initialize the client binding context structure
 ...

 // Continue with the attachment to the provider module
 Status = NmrClientAttachProvider(
 NmrBindingHandle,
 BindingContext,
 &Dispatch,
 &ProviderBindingContext,
 &ProviderDispatch
);

 // Check result of attachment
 if (Status == STATUS_SUCCESS)
 {
 // Save NmrBindingHandle, ProviderBindingContext,
 // and ProviderDispatch for future reference
 BindingContext->NmrBindingHandle =
 NmrBindingHandle;
 BindingContext->ProviderBindingContext =
 ProviderBindingContext;
 BindingContext->ProviderDispatch =
 ProviderDispatch;
 }

 // Attachment did not succeed
 else
 {
 // Free memory for client's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
 }

 // Return result of attachment
 return Status;
}

Managing Multiple Attached Provider
Modules
Article • 05/03/2023

A single client module can attach to more than one provider module. In order to
manage multiple attached provider modules, a client module must independently save
the binding handle, the provider module's binding context, and the provider module's
dispatch table for each provider module to which it is attached. Typically this data is
saved in the client module's binding context for each attachment. However, a client
module can manage the data for each attached provider module in whatever way it
chooses.

A Network Programming Interface (NPI) typically defines the client module callback
functions such that they include either a pointer to the client module's binding context
or some other NPI-specific identifier as one of the function parameters. As a result, a
client module can determine which provider module is the caller when one of its NPI
callback functions is called.

Detaching a Client Module from a
Provider Module
Article • 12/15/2021

When a client module deregisters with the Network Module Registrar (NMR) by calling
the NmrDeregisterClient function, the NMR calls the client module's
ClientDetachProvider callback function, once for each provider module to which it is
attached, so that the client module can detach itself from all of the provider modules as
part of the client module's deregistration process.

Furthermore, whenever a provider module to which the client module is attached
deregisters with the NMR by calling the NmrDeregisterProvider function, the NMR also
calls the client module's ClientDetachProvider callback function so that the client module
can detach itself from the provider module as part of the provider module's
deregistration process.

After its ClientDetachProvider callback function has been called, a client module must
not make any further calls to any of the provider module's Network Programming
Interface (NPI) functions. If there are no in-progress calls to any of the provider module's
NPI functions when the client module's ClientDetachProvider callback function is called,
then the ClientDetachProvider callback function should return STATUS_SUCCESS.

If there are in-progress calls to one or more of the provider module's NPI functions
when the client module's ClientDetachProvider callback function is called, then the
ClientDetachProvider callback function should return STATUS_PENDING. In this case, the
client module must call the NmrClientDetachProviderComplete function after all in-
progress calls to the provider module's NPI functions have completed. The call to
NmrClientDetachProviderComplete notifies the NMR that detachment of the client
module from the provider module is complete.

For more information about how to track the number of in-progress calls to a provider
module's NPI functions, see Programming Considerations.

If a client module implements a ClientCleanupBindingContext callback function, the
NMR calls the client module's ClientCleanupBindingContext callback function after both
the client module and the provider module have completed detachment from each
other. A client module's ClientCleanupBindingContext callback function should perform
any necessary cleanup of the data contained within the client module's binding context
structure. It should then free the memory for the binding context structure if the client
module dynamically allocated the memory for the structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientdetachprovidercomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_cleanup_binding_context_fn

For example:

C++

// ClientDetachProvider callback function
NTSTATUS
 ClientDetachProvider(
 IN PVOID ClientBindingContext
)
{
 PCLIENT_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext = (PCLIENT_BINDING_CONTEXT)ClientBindingContext;

 // Set a flag indicating that the client module is detaching
 // from the provider module so that no more calls are made to
 // the provider module's NPI functions.
 ...

 // Check if there are no in-progress NPI function calls to the
 // provider module
 if (...)
 {
 // Return success status indicating detachment is complete
 return STATUS_SUCCESS;
 }

 // There are one or more in-progress NPI function calls
 // to the provider module
 else
 {
 // Return pending status indicating detachment is pending
 // completion of the in-progress NPI function calls
 return STATUS_PENDING;

 // When the last in-progress call to the provider module's
 // NPI functions completes, the client module must call
 // NmrClientDetachProviderComplete() with the binding handle
 // for the attachment to the provider module.
 }
}

// ClientCleanupBindingContext callback function
VOID
 ClientCleanupBindingContext(
 IN PVOID ClientBindingContext
)
{
 PCLIENT_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext = (PCLIENT_BINDING_CONTEXT)ClientBindingContext;

 // Clean up the client binding context structure
 ...

 // Free the memory for client's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
}

Unloading a Client Module
Article • 12/15/2021

To unload a client module, the operating system calls the client module's Unload
function. See Initializing and Registering a Client Module for more information about
how to specify a client module's Unload function during initialization.

A client module's Unload function ensures that the client module is deregistered from
the Network Module Registrar (NMR) before the client module is unloaded from system
memory. A client module initiates deregistration from the NMR by calling the
NmrDeregisterClient function, which it typically calls from its Unload function. A client
module must not return from its Unload function until after it has been completely
deregistered from the NMR. If the call to NmrDeregisterClient returns
STATUS_PENDING, the client module must call the
NmrWaitForClientDeregisterComplete function to wait for the deregistration to
complete before it returns from its Unload function.

For example:

C++

// Variable containing the handle for the registration
HANDLE ClientHandle;

// Unload function
VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
)
{
 NTSTATUS Status;

 // Deregister the client module from the NMR
 Status =
 NmrDeregisterClient(
 ClientHandle
);

 // Check if pending
 if (Status == STATUS_PENDING)
 {
 // Wait for the deregistration to be completed
 NmrWaitForClientDeregisterComplete(
 ClientHandle
);
 }

 // An error occurred

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrwaitforclientderegistercomplete

If a client module is registered as a client of multiple Network Programming Interfaces
(NPIs), it must call NmrDeregisterClient for each NPI that it supports. If a network
module is registered as both a client module and a provider module (that is, it is a client
of one NPI and a provider of another NPI), it must call both NmrDeregisterClient and
NmrDeregisterProvider.

A network module must wait until all of the deregistrations are complete before
returning from its Unload function.

A client module is not required to call NmrDeregisterClient from within its Unload
function. For example, in the situation where a client module is a subcomponent of a
complex driver, the deregistration of the client module might occur when the client
module subcomponent is deactivated. However, in such a situation the driver must still
ensure that the client module has been completely deregistered from the NMR before
returning from its Unload function.

 else
 {
 // Handle error
 ...
 }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

Initializing and Registering a Provider
Module
Article • 12/15/2021

A provider module must initialize a number of data structures before it can register itself
with the Network Module Registrar (NMR). These structures include an NPI_MODULEID
structure, an NPI_PROVIDER_CHARACTERISTICS structure, an
NPI_REGISTRATION_INSTANCE structure (contained within the
NPI_PROVIDER_CHARACTERISTICS structure), and a structure defined by the provider
module that is used for the provider module's registration context.

If a provider module registers itself with the NMR as a provider of a Network
Programming Interface (NPI) that defines NPI-specific provider characteristics, the
provider module must also initialize an instance of the provider characteristics structure
that are defined by the NPI.

All of these data structures must remain valid and resident in memory as long as the
provider module is registered with the NMR.

For example, suppose the "EXNPI" NPI defines the following in header file Exnpi.h:

C++

The following shows how a provider module that registers itself as a provider of the
EXNPI NPI can initialize all of these data structures:

C++

// EXNPI NPI identifier
const NPIID EXNPI_NPIID = { ... };

// EXNPI provider characteristics structure
typedef struct EXNPI_PROVIDER_CHARACTERISTICS_
{
 .
 . // NPI-specific members
 .
} EXNPI_PROVIDER_CHARACTERISTICS, *PEXNPI_PROVIDER_CHARACTERISTICS;

// Include the NPI specific header file
#include "exnpi.h"

// Structure for the provider module's NPI-specific characteristics
const EXNPI_PROVIDER_CHARACTERISTICS NpiSpecificCharacteristics =
{

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568813(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_provider_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance

 .
 . // The NPI-specific characteristics of the provider module
 .
};

// Structure for the provider module's identification
const NPI_MODULEID ProviderModuleId =
{
 sizeof(NPI_MODULEID),
 MIT_GUID,
 { ... } // A GUID that uniquely identifies the provider module
};

// Prototypes for the provider module's callback functions
NTSTATUS
 ProviderAttachClient(
 IN HANDLE NmrBindingHandle,
 IN PVOID ProviderContext,
 IN PNPI_REGISTRATION_INSTANCE ClientRegistrationInstance,
 IN PVOID ClientBindingContext,
 IN CONST VOID *ClientDispatch,
 OUT PVOID *ProviderBindingContext,
 OUT PVOID *ProviderDispatch
);

NTSTATUS
 ProviderDetachClient(
 IN PVOID ProviderBindingContext
);

VOID
 ProviderCleanupBindingContext(
 IN PVOID ProviderBindingContext
);

// Structure for the provider module's characteristics
const NPI_PROVIDER_CHARACTERISTICS ProviderCharacteristics =
{
 0,
 sizeof(NPI_PROVIDER_CHARACTERISTICS),
 ProviderAttachClient,
 ProviderDetachClient,
 ProviderCleanupBindingContext,
 {
 0,
 sizeof(NPI_REGISTRATION_INSTANCE),
 &EXNPI_NPIID,
 &ProviderModuleId,
 0,
 &NpiSpecificCharacteristics
 }
};

// Context structure for the provider module's registration
typedef struct PROVIDER_REGISTRATION_CONTEXT_ {

A provider module typically initializes itself within its DriverEntry function. The main
initialization tasks for a provider module are:

Specify an Unload function. The operating system calls this function when the
provider module is unloaded from the system. If a provider module does not
provide an unload function, the provider module cannot be unloaded from the
system.

Call the NmrRegisterProvider function to register the provider module with the
NMR.

For example:

C++

 .
 . // Provider-specific members
 .
} PROVIDER_REGISTRATION_CONTEXT, *PPROVIDER_REGISTRATION_CONTEXT;

// Structure for the provider's registration context
PROVIDER_REGISTRATION_CONTEXT ProviderRegistrationContext =
{
 .
 . // Initial values for the registration context
 .
};

// Prototype for the provider module's unload function
VOID
 Unload(
 PDRIVER_OBJECT DriverObject
);

// Variable to contain the handle for the registration
HANDLE ProviderHandle;

// DriverEntry function
NTSTATUS
 DriverEntry(
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
 NTSTATUS Status;

 // Specify the unload function
 DriverObject->DriverUnload = Unload;

 .
 . // Other initialization tasks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterprovider

If a provider module is a provider of more than one NPI, it must initialize an
independent set of data structures and call NmrRegisterProvider for each NPI that it
supports. If a network module is both a provider module and a client module (that is, it
is a provider of one NPI and a client of another NPI), it must initialize two independent
sets of data structures, one for the provider interface and one for the client interface,
and call both NmrRegisterProvider and NmrRegisterClient.

A provider module is not required to call NmrRegisterProvider from within its
DriverEntry function. For example, in the situation where a provider module is a
subcomponent of a complex driver, the registration of the provider module might occur
only when the provider module subcomponent is activated.

For more information about implementing a provider module's Unload function, see
Unloading a Provider Module.

 .

 // Register the provider module with the NMR
 Status = NmrRegisterProvider(
 &ProviderCharacteristics,
 &ProviderRegistrationContext,
 &ProviderHandle
);

 // Return the result of the registration
 return Status;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

Attaching a Provider Module to a Client
Module
Article • 12/15/2021

A client module calls the NmrClientAttachProvider function to attach itself to a provider
module. For more information about how a client module attaches to a provider
module, see Attaching a Client Module to a Provider Module.

When a client module calls NmrClientAttachProvider, the NMR calls the provider
module's ProviderAttachClient callback function. When the NMR calls a provider
module's ProviderAttachClient callback function, it passes, in the
ClientRegistrationInstance parameter, a pointer to the NPI_REGISTRATION_INSTANCE
structure that is associated with the client module that called NmrClientAttachProvider.
The provider module's ProviderAttachClient callback function can use the data in the
client module's NPI_REGISTRATION_INSTANCE structure, the data in the
NPI_MODULEID structure and the Network Programming Interface (NPI)-specific client
characteristics structure pointed to by the ModuleId and NpiSpecificCharacteristics
members of the client module's NPI_REGISTRATION_INSTANCE structure, to determine
if it will attach to the client module.

If the provider module determines that it will attach to the client module, then the
provider module's ProviderAttachClient callback function must do the following:

Allocate and initialize a binding context structure for the attachment to the client
module.

Save the binding handle passed in the NmrBindingHandle parameter.

Save the pointers passed in the ClientBindingContext and ClientDispatch
parameters so that the provider module can make calls to the client module's NPI
callback functions.

Set the variable pointed to by the ProviderBindingContext parameter to point to
the provider module's binding context structure.

Set the variable pointed to by the ProviderDispatch parameter to point to a
structure that contains the provider module's dispatch table of NPI functions.

Return STATUS_SUCCESS.

A provider module typically saves the binding handle, the pointer to the client binding
context, and the pointer to the client dispatch structure in its binding context for the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568813(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn

attachment to the client module.

If a provider module's ProviderAttachClient callback function returns STATUS_SUCCESS,
the client module and the provider module have successfully attached to each other.

If the provider module determines that it will not attach to the client module, then the
provider module's ProviderAttachClient callback function must return
STATUS_NOINTERFACE.

For example, suppose the "EXNPI" Network Programming Interface (NPI) defines the
following in header file Exnpi.h:

C++

The following code example shows how a provider module that is registered as a
provider of the EXNPI NPI can attach itself to a client module that is registered as a
client of the EXNPI NPI:

C++

// EXNPI client characteristics structure
typedef struct EXNPI_CLIENT_CHARACTERISTICS_
{
 .
 . // NPI-specific members
 .
} EXNPI_CLIENT_CHARACTERISTICS, *PEXNPI_CLIENT_CHARACTERISTICS;

// EXNPI client dispatch table
typedef struct EXNPI_CLIENT_DISPATCH_ {
 .
 . // NPI-specific dispatch table of function pointers that
 . // point to a client module's NPI callback functions.
 .
} EXNPI_CLIENT_DISPATCH, *PEXNPI_CLIENT_DISPATCH;

// EXNPI provider dispatch table
typedef struct EXNPI_PROVIDER_DISPATCH_ {
 .
 . // NPI-specific dispatch table of function pointers that
 . // point to a provider module's NPI functions.
 .
} EXNPI_PROVIDER_DISPATCH, *PEXNPI_PROVIDER_DISPATCH;

// Context structure for the provider
// module's binding to a client module
typedef struct PROVIDER_BINDING_CONTEXT_ {
 HANDLE NmrBindingHandle;
 PVOID ClientBindingContext;
 PEXNPI_CLIENT_DISPATCH ClientDispatch;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_attach_client_fn

 .
 . // Other provider-specific members
 .
} PROVIDER_BINDING_CONTEXT, *PPROVIDER_BINDING_CONTEXT;

// Pool tag used for allocating the binding context
#define BINDING_CONTEXT_POOL_TAG 'tpcb'

// Structure for the provider's dispatch table
const EXNPI_PROVIDER_DISPATCH Dispatch = {
 .
 . // Function pointers to the provider
 . // module's NPI functions
 .
};

// ProviderAttachClient callback function
NTSTATUS
 ProviderAttachClient(
 IN HANDLE NmrBindingHandle,
 IN PVOID ProviderContext,
 IN PNPI_REGISTRATION_INSTANCE ClientRegistrationInstance,
 IN PVOID ClientBindingContext,
 IN CONST VOID *ClientDispatch,
 OUT PVOID *ProviderBindingContext,
 OUT PVOID *ProviderDispatch
)
{
 PNPI_MODULEID ClientModuleId;
 PEXNPI_CLIENT_CHARACTERISTICS ClientNpiSpecificCharacteristics;
 PPROVIDER_BINDING_CONTEXT BindingContext;
 PVOID ClientBindingContext;
 PEXNPI_CLIENT_DISPATCH ClientDispatch;

 // Check parameters
 if ((ProviderBindingContext == NULL) ||
 (ProviderDispatch == NULL))
 {
 // Return error status code
 return STATUS_INVALID_PARAMETER;
 }

 // Get pointers to the client module's identification structure
 // and the client module's NPI-specific characteristics structure
 ClientModuleId = ClientRegistrationInstance->ModuleId;
 ClientNpiSpecificCharacteristics =
 (PEXNPI_CLIENT_CHARACTERISTICS)
 ProviderRegistrationInstance->NpiSpecificCharacteristics;

 //
 // Use the data in the structures pointed to by
 // ClientRegistrationInstance, ClientModuleId,
 // and ClientNpiSpecificCharacteristics to determine
 // whether to attach to the client module.
 //

 // If the provider module determines that it will not attach
 // to the client module
 if (...)
 {
 // Return status code indicating the modules did not
 // attach to each other
 return STATUS_NOINTERFACE;
 }

 // Allocate memory for the provider module's
 // binding context structure
 BindingContext =
 (PPROVIDER_BINDING_CONTEXT)
 ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(PROVIDER_BINDING_CONTEXT),
 BINDING_CONTEXT_POOL_TAG
);

 // Check result of allocation
 if (BindingContext == NULL)
 {
 // Return error status code
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Initialize the provider binding context structure
 ...

 // Save NmrBindingHandle, ClientBindingContext,
 // and ClientDispatch for future reference
 BindingContext->NmrBindingHandle =
 NmrBindingHandle;
 BindingContext->ClientBindingContext =
 ClientBindingContext;
 BindingContext->ClientDispatch =
 ClientDispatch;

 // Return a pointer to the provider binding context structure
 // in the ProviderBindingContext parameter
 *ProviderBindingContext = BindingContext;

 // Return a pointer to the provider dispatch structure
 // in the ProviderDispatch parameter
 *ProviderDispatch = &Dispatch;

 // Return success status
 return STATUS_SUCCESS;
}

Managing Multiple Attached Client
Modules
Article • 12/15/2021

A single provider module can attach to more than one client module. In order to
manage multiple attached client modules, a provider module must independently save
the binding handle, the client module's binding context, and the client module's
dispatch table for each client module to which it is attached. Typically this data is saved
in the provider module's binding context for each attachment. However, a provider
module can manage the data for each attached client module in whatever way it
chooses.

A Network Programming Interface (NPI) typically defines the provider module functions
such that they include either a pointer to the provider module's binding context or
some other NPI-specific identifier as one of the function parameters. As a result, a
provider module can determine which client module is the caller when one of it's NPI
functions is called.

Detaching a Provider Module from a
Client Module
Article • 12/15/2021

When a provider module deregisters with the Network Module Registrar (NMR) by
calling the NmrDeregisterProvider function, the NMR calls the provider module's
ProviderDetachClient callback function, once for each client module to which it is
attached, so that the provider module can detach itself from all of the client modules as
part of the provider module's deregistration process.

Furthermore, whenever a client module to which the provider module is attached
deregisters with the NMR by calling the NmrDeregisterClient function, the NMR also
calls the provider module's ProviderDetachClient callback function so that the provider
module can detach itself from the client module as part of the client module's
deregistration process.

After its ProviderDetachClient callback function has been called, a provider module must
not make any further calls to any of the client module's Network Programming Interface
(NPI) callback functions. If there are no in-progress calls to any of the client module's
NPI callback functions when the provider module's ProviderDetachClient callback
function is called, then the ProviderDetachClient callback function should return
STATUS_SUCCESS.

If there are in-progress calls to one or more of the client module's NPI callback
functions when the provider module's ProviderDetachClient callback function is called,
then the ProviderDetachClient callback function should return STATUS_PENDING. In this
case, the provider module must call the NmrProviderDetachClientComplete function
after all in-progress calls to the client module's NPI callback functions have completed.
The call to NmrProviderDetachClientComplete notifies the NMR that detachment of
the provider module from the client module is complete.

For more information about how to track the number of in-progress calls to a client
module's NPI callback functions, see Programming Considerations.

If a provider module implements a ProviderCleanupBindingContext callback function, the
NMR calls the provider module's ProviderCleanupBindingContext callback function after
both the provider module and the client module have completed detachment from each
other. A provider module's ProviderCleanupBindingContext callback function should
perform any necessary cleanup of the data contained within the provider module's
binding context structure. It should then free the memory for the binding context
structure if the provider module dynamically allocated the memory for the structure.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_detach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_detach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_detach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_detach_client_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrproviderdetachclientcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_provider_cleanup_binding_context_fn

For example:

C++

// ProviderDetachClient callback function
NTSTATUS
 ProviderDetachClient(
 IN PVOID ProviderBindingContext
)
{
 PPROVIDER_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext = (PPROVIDER_BINDING_CONTEXT)ProviderBindingContext;

 // Set a flag indicating that the provider module is detaching
 // from the client module so that no more calls are made to
 // the client module's NPI callback functions.
 ...

 // Check if there are no in-progress NPI callback function calls
 // to the client module
 if (...)
 {
 // Return success status indicating detachment is complete
 return STATUS_SUCCESS;
 }

 // There are one or more in-progress NPI callback function
 // calls to the client module
 else
 {
 // Return pending status indicating detachment is pending
 // completion of the in-progress NPI callback function calls
 return STATUS_PENDING;

 // When the last in-progress call to the client module's
 // NPI callback functions completes, the provider module
 // must call NmrProviderDetachClientComplete() with the
 // binding handle for the attachment to the client module.
 }
}

// ProviderCleanupBindingContext callback function
VOID
 ProviderCleanupBindingContext(
 IN PVOID ProviderBindingContext
)
{
 PPROVIDER_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext = (PPROVIDER_BINDING_CONTEXT)ProviderBindingContext;

 // Clean up the provider binding context structure
 ...

 // Free the memory for provider's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
}

Unloading a Provider Module
Article • 12/15/2021

To unload a provider module, the operating system calls the provider module's Unload
function. See Initializing and Registering a Provider Module for more information about
how to specify a provider module's Unload function during initialization.

A provider module's Unload function ensures that the provider module is deregistered
from the Network Module Registrar (NMR) before the provider module is unloaded
from system memory. A provider module initiates deregistration from the NMR by
calling the NmrDeregisterProvider function, which it typically calls from its Unload
function. A provider module must not return from its Unload function until after it has
been completely deregistered from the NMR. If the call to NmrDeregisterProvider
returns STATUS_PENDING, the provider module must call the
NmrWaitForProviderDeregisterComplete function to wait for the deregistration to
complete before it returns from its Unload function.

For example:

C++

// Variable containing the handle for the registration
HANDLE ProviderHandle;

// Unload function
VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
)
{
 NTSTATUS Status;

 // Deregister the provider module from the NMR
 Status =
 NmrDeregisterProvider(
 ProviderHandle
);

 // Check if pending
 if (Status == STATUS_PENDING)
 {
 // Wait for the deregistration to be completed
 NmrWaitForProviderDeregisterComplete(
 ProviderHandle
);
 }

 // An error occurred

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrwaitforproviderderegistercomplete

If a provider module is registered as a provider of multiple Network Programming
Interfaces (NPIs), it must call NmrDeregisterProvider for each NPI that it supports. If a
network module is registered as both a provider module and a client module (that is, it
is a provider of one NPI and a client of another NPI), it must call both
NmrDeregisterProvider and NmrDeregisterClient.

A network module must wait until all of the deregistrations are complete before
returning from its Unload function.

A provider module is not required to call NmrDeregisterProvider from within its Unload
function. For example, in the situation where a provider module is a subcomponent of a
complex driver, the deregistration of the provider module might occur when the
provider module subcomponent is deactivated. However, in such a situation the driver
must still ensure that the provider module has been completely deregistered from the
NMR before returning from its Unload function.

 else
 {
 // Handle error
 ...
 }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

Programming Considerations
Article • 12/15/2021

A network module should use some form of reference counting to keep track of the
number of in-progress calls to an attached network module's Network Programming
Interface (NPI) functions. This will facilitate detaching from an attached network module
when one of the two network modules deregisters with the NMR. A network module
cannot complete detachment until there are no in-progress calls to the attached
network module's NPI functions. A network module must also ensure that no more calls
to the previously attached network module will be initiated once the network modules
are detached.

For example, a client module might use an implementation similar to the following for
tracking the number of in-progress calls to an attached provider module's NPI functions:

C++

// Context structure for the client's binding to a provider module
typedef struct CLIENT_BINDING_CONTEXT_ {
 LIST_ENTRY Link;
 HANDLE NmrBindingHandle;
 PVOID ProviderBindingContext;
 PEXNPI_PROVIDER_DISPATCH ProviderDispatch;
 KSPIN_LOCK DetachLock;
 LONG InProgressCallCount;
 LONG Detaching;
 .
 . // Other client-specific members
 .
} CLIENT_BINDING_CONTEXT, *PCLIENT_BINDING_CONTEXT;

// Pool tag used for allocating the binding context
#define BINDING_CONTEXT_POOL_TAG 'tpcb'

// Structure for the client's dispatch table
const EXNPI_CLIENT_DISPATCH Dispatch = {
 .
 . // Function pointers to the client module's
 . // NPI callback functions
 .
};

// Head of linked list of binding context structures
LIST_ENTRY BindingContextList;

// Spin lock for binding context list
KSPIN_LOCK BindingContextListLock;

// Prototype for the client module's unload function

VOID
 Unload(
 PDRIVER_OBJECT DriverObject
);

// Variable to contain the handle for the registration
HANDLE ClientHandle;

// DriverEntry function
NTSTATUS
 DriverEntry(
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
 NTSTATUS Status;

 // Specify the unload function
 DriverObject->DriverUnload = Unload;

 // Initialize the binding context list spin lock
 KeInitializeSpinLock(
 &BindingContextListLock
);

 // Initialize the binding context list head
 InitializeListHead(
 &BindingContextList
);

 .
 . // Other initialization tasks
 .

 // Register the client module with the NMR
 Status = NmrRegisterClient(
 &ClientCharacteristics,
 &ClientRegistrationContext,
 &ClientHandle,
);

 // Return the result of the registration
 return Status;
}

// ClientAttachProvider callback function
NTSTATUS
 ClientAttachProvider(
 IN HANDLE NmrBindingHandle,
 IN PVOID ClientContext,
 IN PNPI_REGISTRATION_INSTANCE ProviderRegistrationInstance
)
{
 PNPI_MODULEID ProviderModuleId;
 PEXNPI_PROVIDER_CHARACTERISTICS ProviderNpiSpecificCharacteristics;

 PCLIENT_BINDING_CONTEXT BindingContext;
 PVOID ProviderBindingContext;
 PEXNPI_PROVIDER_DISPATCH ProviderDispatch;
 KLOCK_QUEUE_HANDLE BindingContextListLockHandle;
 NTSTATUS Status;

 // Get pointers to the provider module's identification structure
 // and the provider module's NPI-specific characteristics structure
 ProviderModuleId = ProviderRegistrationInstance->ModuleId;
 ProviderNpiSpecificCharacteristics =
 (PEXNPI_PROVIDER_CHARACTERISTICS)
 ProviderRegistrationInstance->NpiSpecificCharacteristics;

 //
 // Use the data in the structures pointed to by
 // ProviderRegistrationInstance, ProviderModuleId,
 // and ProviderNpiSpecificCharacteristics to determine
 // whether to attach to the provider module.
 //

 // If the client module determines that it will not attach
 // to the provider module
 if (...)
 {
 // Return status code indicating the modules did not
 // attach to each other
 return STATUS_NOINTERFACE;
 }

 // Allocate memory for the client's binding context structure
 BindingContext =
 (PCLIENT_BINDING_CONTEXT)
 ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(CLIENT_BINDING_CONTEXT),
 BINDING_CONTEXT_POOL_TAG
);

 // Check result of allocation
 if (BindingContext == NULL)
 {
 // Return error status code
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Initialize the client binding context structure
 KeInitializeSpinLock(
 &BindingContext->DetachLock
);
 BindingContext->InProgressCallCount = 0;
 BindingContext->Detaching = 0;
 ...

 // Continue with the attachment to the provider module
 Status = NmrClientAttachProvider(

 NmrBindingHandle,
 BindingContext,
 &Dispatch,
 &ProviderBindingContext,
 &ProviderDispatch
);

 // Check result of attachment
 if (Status == STATUS_SUCCESS)
 {
 // Save NmrBindingHandle, ProviderBindingContext,
 // and ProviderDispatch for future reference
 BindingContext->NmrBindingHandle =
 NmrBindingHandle;
 BindingContext->ProviderBindingContext =
 ProviderBindingContext;
 BindingContext->ProviderDispatch =
 ProviderDispatch;

 // Acquire the binding context list spin lock
 KeAcquireInStackQueuedSpinLock(
 &BindingContextListLock,
 &BindingContextListLockHandle
);

 // Add this binding context to the list of valid
 // binding contexts
 InsertTailList(
 &BindingContextList,
 &BindingContext->Link
);

 // Release the binding context list spin lock
 KeReleaseInStackQueuedSpinLock(
 &BindingContextListLockHandle
);
 }

 // Attachment did not succeed
 else
 {
 // Free memory for client's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
 }

 // Return result of attachment
 return Status;
}

// Wrapper function around a provider NPI function
//
// Each of the provider NPI functions should be wrapped

// in this manner.
NTSTATUS
 ProviderNpiFunctionXxx(
 ClientBindingContext,
 .
 . // Parameters to the provider NPI function
 .
)
{
 KLOCK_QUEUE_HANDLE BindingContextListLockHandle;
 KLOCK_QUEUE_HANDLE DetachLockHandle;
 PCLIENT_BINDING_CONTEXT BindingContextListElement;
 PLIST_ENTRY Entry;
 NTSTATUS Status;

 // Acquire the binding context list spin lock
 KeAcquireInStackQueuedSpinLock(
 &BindingContextListLock,
 &BindingContextListLockHandle
);

 // Search for the binding context in the list of valid
 // binding contexts
 for (Entry = BindingContextList.Flink;
 Entry != &BindingContextList;
 Entry = Entry->Flink)
 {
 // Get the next binding context from the list
 BindingContextListElement =
 CONTAINING_RECORD(
 Entry,
 CLIENT_BINDING_CONTEXT,
 Link
);

 // Check if this binding context is a match
 if (BindingContextListElement == ClientBindingContext)
 {
 // Break out of the search loop
 break;
 }
 }

 // Check if the binding context was not found
 if (Entry == &BindingContextList)
 {
 // Release the binding context list spin lock
 KeReleaseInStackQueuedSpinLock(
 &BindingContextListLockHandle
);

 // Return status indicating that the interface is not available
 return STATUS_NOINTERFACE;
 }

 // Acquire the detach spin lock at DPC level
 KeAcquireInStackQueuedSpinLockAtDpcLevel(
 &ClientBindingContext->DetachLock,
 &DetachLockHandle
);

 // The modules should not be detaching
 ASSERT(ClientBindingContext->Detaching != 1);

 // Increment the in-progress call count
 ClientBindingContext->InProgressCallCount++;

 // Release the detach spin lock from DPC level
 KeReleaseInStackQueuedSpinLockFromDpcLevel(
 &DetachLockHandle
);

 // Release the binding context list spin lock
 KeReleaseInStackQueuedSpinLock(
 &BindingContextListLockHandle
);

 // Call the provider NPI function
 Status =
 ClientBindingContext->ProviderDispatch->ProviderNpiFunctionXxx(
 ClientBindingContext->ProviderBindingContext,
 .
 . // Parameters to the provider NPI function
 .
);

 // Check if pending
 if (Status == STATUS_PENDING)
 {
 // If completion of the call is pending, then when the call
 // completes, the completion routine (or other callback function
 // that is called upon completion of the call) must include the
 // the same code as below for the non-pending case.

 // Return pending status
 return STATUS_PENDING;
 }

 // Acquire the detach spin lock
 KeAcquireInStackQueuedSpinLock(
 &ClientBindingContext->DetachLock,
 &DetachLockHandle
);

 // Decrement the in-progress call count
 ClientBindingContext->InProgressCallCount--;

 // Check if the modules are now detaching
 if (ClientBindingContext->Detaching == 1)
 {

 // Check if this call was the last of the in-progress
 // calls to the provider module to be completed
 if (ClientBindingContext->InProgressCallCount == 0)
 {
 // Release the detach spin lock
 KeReleaseInStackQueuedSpinLock(
 &DetachLockHandle
);

 // Inform the NMR that detachment is complete
 NmrClientDetachProviderComplete(
 ClientBindingContext->NmrBindingHandle
);
 }
 else
 {
 // Release the detach spin lock
 KeReleaseInStackQueuedSpinLock(
 &DetachLockHandle
);
 }
 }
 else
 {
 // Release the detach spin lock
 KeReleaseInStackQueuedSpinLock(
 &DetachLockHandle
);
 }

 // Return status of the call to the provider NPI function
 return Status;
}

// ClientDetachProvider callback function
NTSTATUS
 ClientDetachProvider(
 IN PVOID ClientBindingContext
)
{
 PCLIENT_BINDING_CONTEXT BindingContext;
 KLOCK_QUEUE_HANDLE BindingContextListLockHandle;
 KLOCK_QUEUE_HANDLE DetachLockHandle;
 NTSTATUS Status;

 // Get a pointer to the binding context
 BindingContext = (PCLIENT_BINDING_CONTEXT)ClientBindingContext;

 // Acquire the binding context list spin lock
 KeAcquireInStackQueuedSpinLock(
 &BindingContextListLock,
 &BindingContextListLockHandle
);

 // Remove the binding context from the binding context list

Likewise, a provider module might use an implementation along the same lines as the
above client module example for tracking the number of in-progress calls to an
attached client module's NPI callback functions.

Note The above code example shows one possible method of tracking the number of
in-progress calls to an attached network module's NPI functions. A network module
might use an alternate method depending on the implementation details of the
particular NPI that the network module supports.

 RemoveEntryList(&BindingContext->Link);

 // Acquire the detach spin lock at DPC level
 KeAcquireInStackQueuedSpinLockAtDpcLevel(
 &BindingContext->DetachLock,
 &DetachLockHandle
);

 // Set the flag indicating that the client module is detaching
 // from the provider module so that the completion of the final
 // call will complete the detachment
 BindingContext->Detaching = 1;

 // Check if there are no in-progress NPI function calls to the
 // provider module
 if (BindingContext->InProgressCallCount == 0)
 {
 // Set the status to success to indicate detachment is complete
 Status = STATUS_SUCCESS;
 }

 // There are one or more in-progress NPI function calls
 // to the provider module
 else
 {
 // Set the status to pending to indicate that detachment is
 // pending completion of the in-progress NPI function calls
 Status = STATUS_PENDING;
 }

 // Release the detach spin lock from DPC level
 KeReleaseInStackQueuedSpinLockFromDpcLevel(
 &DetachLockHandle
);

 // Release the binding context list spin lock
 KeReleaseInStackQueuedSpinLock(
 &BindingContextListLockHandle
);

 // Return the status of the detachment
 return Status;
}

Roadmap for Developing Network
Drivers with Winsock Kernel
Article • 11/29/2022

To create a networking driver package that uses the kernel-mode socket programming
features of Winsock Kernel (WSK), follow these steps:

Step 1: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 2: Learn about the Network Driver Interface Specification (NDIS).

Your driver package will typically use Network Driver Interface Specification (NDIS)
interfaces. For more information about NDIS and NDIS miniport drivers, see the
following topics:

Windows Network Architecture and the OSI Model

NDIS Miniport Drivers

Writing NDIS Miniport Drivers

Network Driver Programming Considerations

Step 3: Determine additional network components to use in your driver.

In addition to the core NDIS features, you can use the following additional
Windows network components with kernel-mode drivers, depending on the
hardware configuration:

IP Helper

Windows Filtering Platform Callout Drivers

Native 802.11 Wireless LAN

Mobile Broadband Network Interface

Step 4: Learn the fundamentals of Winsock Kernel.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560689(v=vs.85)

Winsock Kernel is supported in Windows Vista and later versions of Windows. For
information about how to use Winsock Kernel, see Introduction to Winsock Kernel.

A simpler, more generic network programming interface that you can use in
network drivers is Network Module Registrar.

Step 5: Determine additional Windows driver design decisions.

For information about how to make additional Windows design decisions, see
Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers, and
Creating International INF Files.

Step 6: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For information
about Windows driver build, debug, and test processes, driver signing, and
Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For information about tools for building, testing, verifying, and debugging,
see Driver Development Tools.

Step 7: Review the Winsock Kernel (WSK TCP Echo Server) driver sample in the
Windows driver samples repository on GitHub.

Step 8: Develop, build, test, and debug your driver.

For information about iterative building, testing, and debugging, see Overview of
Build, Debug, and Test Process. This process helps ensure that you build a driver
that works.

Step 9: Create a driver package for your driver.

For information about how to install drivers, see Providing a Driver Package.

Step 10: Sign and distribute your driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Lab Kit (HLK), you
can distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/
https://go.microsoft.com/fwlink/p/?LinkId=617935
https://go.microsoft.com/fwlink/p/?LinkId=616507
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

Introduction to Winsock Kernel
Article • 12/15/2021

Winsock Kernel (WSK) is a kernel-mode Network Programming Interface (NPI). With
WSK, kernel-mode software modules can perform network I/O operations using the
same socket programming concepts that are supported by user-mode Winsock2. The
WSK NPI supports familiar socket operations such as socket creation, binding,
connection establishment, and data transfers (send and receive). However, while the
WSK NPI supports most of the same socket programming concepts as user-mode
Winsock2, it is a completely new and different interface with unique characteristics such
as asynchronous I/O that uses IRPs and event callbacks to enhance performance.

Kernel-mode network modules targeted for Windows Vista and later versions of
Microsoft Windows should use WSK instead of TDI because WSK provides improved
performance and easier programming. Filter drivers should implement the Windows
Filtering Platform on Windows Vista, and TDI clients should implement WSK.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565094(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/#winsock-kernel-wsk

Winsock Kernel Overview Topics
Article • 12/15/2021

This section provides an overview of Winsock Kernel (WSK) and includes the following
topics:

Winsock Kernel Architecture
Winsock Kernel Objects
Winsock Kernel Socket Categories
Winsock Kernel Events
Using Winsock Kernel Functions vs. Event Callback Functions
Winsock Kernel Dispatch Tables
Winsock Kernel Extension Interfaces
Using IRPs with Winsock Kernel Functions

Winsock Kernel Architecture
Article • 12/15/2021

The architecture of Winsock Kernel (WSK) is shown in the following diagram.

At the core of the WSK architecture is the WSK subsystem. The WSK subsystem is a
network module that implements the provider side of the WSK Network Programming
Interface (NPI). The WSK subsystem interfaces with transport providers on its lower edge
that provide support for various transport protocols.

Attached to the WSK subsystem are WSK applications. WSK applications are kernel-
mode software modules that implement the client side of the WSK NPI in order to
perform network I/O operations. (In this context, "client" should not be confused with
the term as used in client-server systems). . The WSK subsystem can call the functions in
the WSK client NPI to notify the WSK application of asynchronous events.

WSK applications discover and attach to the WSK subsystem by using a set of WSK
registration functions. Applications can use these functions to dynamically detect when
the WSK subsystem is available and to exchange dispatch tables that constitute the
provider and client side implementations of the WSK NPI.

Alternately, WSK applications can attach to the WSK subsystem by using the Network
Module Registrar (NMR). For more information, see Using NMR for WSK Registration
and Unregistration.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Winsock Kernel Objects
Article • 12/15/2021

The Winsock Kernel (WSK) Network Programming Interface (NPI) is designed around
two main object types: Client and Socket .

Client Object
A client object represents the attachment, or binding, between a WSK application and
the WSK subsystem. A client object is represented by the WSK_CLIENT structure. A
pointer to a client object is returned to a WSK application during the process of
attachment to the WSK subsystem. A WSK application passes this pointer to all WSK
functions that operate at the client object level.

Socket Object
A socket object represents a network socket that can be used for network I/O. A socket
object is represented by the WSK_SOCKET structure. A pointer to a socket object is
returned to a WSK application when the application creates a new socket or when the
application accepts an incoming connection. A WSK application passes this pointer to all
WSK functions that are specific to a particular socket.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_socket

Winsock Kernel Socket Categories
Article • 12/15/2021

The Winsock Kernel (WSK) Network Programming Interface (NPI) defines five different
categories of sockets: basic sockets, listening sockets, datagram sockets, connection-
oriented sockets, and stream sockets. Each WSK socket category has unique functionality
and supports a different set of socket functions. A WSK application must specify which
category of WSK socket it is creating whenever it creates a new socket. The purpose for
each WSK socket category is as follows:

Basic Sockets
Basic sockets are used only to get and set transport stack socket options or to perform
socket I/O control operations. Basic sockets cannot be bound to a local transport
address and do not support sending or receiving network data.

Listening Sockets
Listening sockets are used to listen for incoming connections from remote transport
addresses. The functionality of a listening socket includes all of the functionality of a
basic socket.

Datagram Sockets
Datagram sockets are used to send and receive datagrams. The functionality of a
datagram socket includes all of the functionality of a basic socket.

Connection-Oriented Sockets
Connection-oriented sockets are used to send and receive network data over
established connections. The functionality of a connection-oriented socket includes all
of the functionality of a basic socket.

Stream Sockets
Stream sockets are used to either listen for incoming connections from remote transport
addresses (act as a listening socket), or to send and receive network data over
established connections (act as a connection-oriented socket). Use a stream socket
when you do not know at the time of socket creation if you want a listening socket or a
connection-oriented socket. The functionality of a stream socket includes all of the
functionality of a basic socket.

Winsock Kernel Events
Article • 12/15/2021

The Winsock Kernel (WSK) subsystem can asynchronously notify a WSK application
when certain socket events occur, such as when new data has been received on a socket
or when a socket has been disconnected. In order for a WSK application to be
asynchronously notified of socket events, the WSK application must implement the
appropriate event callback functions and enable those event callback functions on the
sockets that it creates.

Note A WSK application is not required to implement or use event callback functions. A
WSK application can perform most WSK socket operations by calling the appropriate
WSK socket functions. The only WSK feature that requires using event callback functions
is conditional-accept mode on listening sockets. For more information about the
advantages and disadvantages between using WSK functions versus using event
callback functions, see Using Winsock Kernel Functions vs. Event Callback Functions.

Each WSK socket category supports a different set of socket events.

Basic sockets

Basic sockets do not support any socket events.

Listening sockets

Event Event callback function

An incoming connection has been accepted. WskAcceptEvent

An incoming connection request has arrived. WskInspectEvent

An incoming connection request has been
dropped.

WskAbortEvent

* Applies only to listening sockets that have conditional-accept mode enabled. For more
information about using conditional accept mode with listening sockets, see Listening
for and Accepting Incoming Connections.

Datagram sockets

Event Event callback function

One or more new datagrams have been
received.

WskReceiveFromEvent

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_inspect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_abort_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from_event

Connection-oriented sockets

Event Event callback function

New data has been received. WskReceiveEvent

The socket has been disconnected. WskDisconnectEvent

The ideal send backlog size has changed. WskSendBacklogEvent

When a WSK application creates a socket, the socket's event callback functions are
disabled by default. A WSK application must enable a socket's event callback functions
in order for the WSK subsystem to call the socket's event callback functions when socket
events occur. For more information about enabling and disabling a socket's event
callback functions, see Enabling and Disabling Event Callback Functions.

If a WSK application registers an extension interface for a socket, the extension interface
might support additional events. For more information about registering an extension
interface for a socket, see Registering an Extension Interface.

The WSK subsystem can also notify a WSK application of events that are not specific to a
particular socket. In order for a WSK application to be notified of these events, the WSK
application must implement a WskClientEvent event callback function. There are
currently no events defined that are not specific to a particular socket. A WSK
application's WskClientEvent event callback function is always enabled and cannot be
disabled.

A WSK application's event callback functions must not wait for completion of other WSK
requests in the context of WSK completion or event callback functions. The callback may
initiate other WSK requests assuming that it doesn't spend too much time at
DISPATCH_LEVEL or exhaust the kernel stack, but it must not wait for their completion
even when the callback is called at IRQL = PASSIVE_LEVEL.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_backlog_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_client_event

Using Winsock Kernel Functions vs.
Event Callback Functions
Article • 12/15/2021

For certain socket operations, a Winsock Kernel (WSK) application can either call one of
the socket's WSK functions to perform the operation or implement and enable an event
callback function on the socket that the WSK subsystem calls when the event associated
with the operation occurs. For example, when receiving data on a connection-oriented
socket, a WSK application can either make calls to the socket's WskReceive function, or
implement and enable a WskReceiveEvent event callback function on the socket. The
requirements of a WSK application dictate which method the application should use.
Examples for how to use both methods are provided throughout the WSK
documentation.

The following lists summarize some key points for each method.

The WSK application drives the socket operations, meaning the WSK application
controls when the socket operations occur. This might simplify the synchronization
required by the WSK application.

The WSK application provides IRPs to the socket functions. These IRPs are queued
by the WSK subsystem until the socket operation completes. For more information
about using IRPs with WSK functions, see Using IRPs with Winsock Kernel
Functions.

The WSK application can perform blocking socket operations by waiting for the IRP
for each operation to be completed by the WSK subsystem.

The WSK application might need to keep multiple socket operations queued in
some situations in order to ensure high performance data transfer on connection-
oriented sockets, to prevent incoming datagrams from being dropped on
datagram sockets, or to prevent incoming connections being dropped on listening
sockets.

The WSK application provides the data buffers for the data transfer operations.
This reduces the number of times the data might need to be copied. However, if a
WSK application keeps multiple data transfer operations queued, the application
must provide data buffers to the WSK subsystem for each queued data transfer
operation. Thus, the WSK application might require additional memory resources.

Using Winsock Kernel Functions

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event

The WSK subsystem drives the socket operations, meaning the WSK subsystem
notifies the WSK application of the socket's events by calling the socket's event
callback functions. The WSK application might require more complex
synchronization to handle the asynchronous nature of the event callback functions.

The WSK application does not use IRPs for the socket operations.

The WSK application does not need to queue socket operations. The WSK
subsystem calls the WSK application's event callback functions as soon as the
socket's events occur. If the WSK application can keep up with the rate that a
socket's event callback functions are called, using event callback functions could
provide the highest performance and least chance of dropping datagrams or
incoming connections.

The WSK subsystem supplies the data buffers for data transfer operations. The
WSK application must release these data buffers back to the WSK subsystem either
immediately, or within a reasonable amount of time, so that the WSK subsystem
does not run out of memory resources. Thus, the WSK application might need to
copy the data from the data buffers that are owned by the WSK subsystem into its
own data buffers.

Note The above lists are not necessarily exhaustive. There might be other points to
consider when choosing which method is the best choice for a particular WSK
application.

Using Event Callback Functions

Winsock Kernel Dispatch Tables
Article • 12/15/2021

The socket object for a Winsock Kernel (WSK) socket contains a pointer to a provider
dispatch table structure that contains function pointers to the socket functions
supported by the socket. A WSK application calls the functions in the provider dispatch
table structure to perform network I/O operations on the socket. Because each WSK
socket category supports a different set of socket functions, the WSK Network
Programming Interface (NPI) defines a different provider dispatch table structure for
each category of WSK socket.

Socket category Dispatch table structure

Basic socket WSK_PROVIDER_BASIC_DISPATCH

Listening socket WSK_PROVIDER_LISTEN_DISPATCH

Datagram socket WSK_PROVIDER_DATAGRAM_DISPATCH

Connection-oriented socket WSK_PROVIDER_CONNECTION_DISPATCH

If a WSK application uses event callback functions for the sockets that it creates, it must
provide a client dispatch table structure that contains function pointers to the socket's
event callback functions whenever it creates a new socket. Because each WSK socket
category supports a different set of event callback functions, the WSK NPI defines a
different client dispatch table structure for each category of WSK socket.

Socket category Dispatch table structure

Listening socket WSK_CLIENT_LISTEN_DISPATCH

Datagram socket WSK_CLIENT_DATAGRAM_DISPATCH

Connection-oriented socket WSK_CLIENT_CONNECTION_DISPATCH

Note Basic sockets do not support any event callback functions. Therefore, no client
dispatch table structure is defined for basic sockets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_basic_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_listen_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_datagram_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_connection_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_listen_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_datagram_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_connection_dispatch

Winsock Kernel Extension Interfaces
Article • 12/15/2021

The Winsock Kernel (WSK) Network Programming Interface (NPI) includes support for
extension interfaces. The WSK subsystem can use extension interfaces to extend the
functionality of WSK sockets beyond the set of socket functions and event callback
functions currently defined by the WSK NPI. Each extension interface is defined by an
NPI that is independent of the WSK NPI. Currently no extension interfaces have been
defined.

A WSK application can register for an extension interface that is supported by the WSK
subsystem by using the SIO_WSK_REGISTER_EXTENSION socket IOCTL operation. A
WSK application registers for extension interfaces on a socket-by-socket basis.

For more information about registering an extension interface, see Registering an
Extension Interface.

Using IRPs with Winsock Kernel
Functions
Article • 12/15/2021

The Winsock Kernel (WSK) Network Programming Interface (NPI) uses IRPs for
asynchronous completion of network I/O operations. Each WSK function takes a pointer
to an IRP as a parameter. The WSK subsystem completes the IRP after the operation
performed by the WSK function is complete.

An IRP that a WSK application uses to pass to a WSK function can originate in one of the
following ways.

The WSK application allocates the IRP by calling the IoAllocateIrp function. In this
situation, the WSK application must allocate the IRP with at least one I/O stack
location.

The WSK application reuses a completed IRP that it previously allocated. In this
situation, the WSK must call the IoReuseIrp function to reinitialize the IRP.

The WSK application uses an IRP that was passed down to it either by a higher
level driver or by the I/O manager. In this situation, the IRP must have at least one
remaining I/O stack location available for use by the WSK subsystem.

After a WSK application has an IRP to use for calling a WSK function, it can set an
IoCompletion routine for the IRP to be called when the IRP is completed by the WSK
subsystem. A WSK application sets an IoCompletion routine for an IRP by calling the
IoSetCompletionRoutine function. Depending upon how the IRP originated, an
IoCompletion routine is either required or optional.

If the WSK application allocated the IRP, or is reusing an IRP that it previously
allocated, then it must set an IoCompletion routine for the IRP before calling a
WSK function. In this situation, the WSK application must specify TRUE for the
InvokeOnSuccess, InvokeOnError, and InvokeOnCancel parameters that are passed
to the IoSetCompletionRoutine function to ensure that the IoCompletion routine
is always called. Furthermore, the IoCompletion routine that is set for the IRP must
always return STATUS_MORE_PROCESSING_REQUIRED to terminate the completion
processing of the IRP. If the WSK application is done using the IRP after the
IoCompletion routine has been called, then it should call the IoFreeIrp function to
free the IRP before returning from the IoCompletion routine. If the WSK
application does not free the IRP then it can reuse the IRP for a call to another
WSK function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioallocateirp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-ioreuseirp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-io_completion_routine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutine
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iofreeirp

If the WSK application uses an IRP that was passed down to it by a higher level
driver or by the I/O manager, it should set an IoCompletion routine for the IRP
before calling the WSK function only if it must be notified when the operation
performed by the WSK function has completed. If the WSK application does not
set an IoCompletion routine for the IRP, then when the IRP is completed the IRP
will be passed back up to the higher level driver or to the I/O manager as per
normal IRP completion processing. If the WSK application sets an IoCompletion
routine for the IRP, the IoCompletion routine can either return STATUS_SUCCESS
or STATUS_MORE_PROCESSING_REQUIRED. If the IoCompletion routine returns
STATUS_SUCCESS, the IRP completion processing will continue normally. If the
IoCompletion routine returns STATUS_MORE_PROCESSING_REQUIRED, the WSK
application must complete the IRP by calling IoCompleteRequest after it has
finished processing the results of the operation that was performed by the WSK
function. A WSK application should never free an IRP that was passed down to it
by a higher level driver or by the I/O manager.

Note If the WSK application sets an IoCompletion routine for an IRP that was passed
down to it by a higher level driver or by the I/O manager, then the IoCompletion
routine must check the PendingReturned member of the IRP and call the
IoMarkIrpPending function if the PendingReturned member is TRUE. For more
information, see Implementing an IoCompletion Routine.

Note A WSK application should not call new WSK functions in the context of the
IoCompletion routine. Doing so may result in recursive calls and exhaust the kernel
mode stack. When executing at IRQL = DISPATCH_LEVEL, this can also lead to starvation
of other threads.

A WSK application does not initialize the IRPs that it passes to the WSK functions other
than setting an IoCompletion routine. When a WSK application passes an IRP to a WSK
function, the WSK subsystem sets up the next I/O stack location on behalf of the
application.

The following code example shows how a WSK application can allocate and use an IRP
when performing a receive operation on a socket.

C++

// Prototype for the receive IoCompletion routine
NTSTATUS
 ReceiveComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocompleterequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iomarkirppending
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/implementing-an-iocompletion-routine

// Function to receive data
NTSTATUS
 ReceiveData(
 PWSK_SOCKET Socket,
 PWSK_BUF DataBuffer
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 ReceiveComplete,
 DataBuffer, // Use the data buffer for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the receive operation on the socket
 Status =
 Dispatch->WskReceive(
 Socket,
 DataBuffer,
 0, // No flags are specified
 Irp
);

 // Return the status of the call to WskReceive()
 return Status;
}

// Receive IoCompletion routine
NTSTATUS
 ReceiveComplete(

The model shown in the previous example, where the WSK application allocates an IRP
and then frees it in the completion routine, is the model that is used in the examples
throughout the remainder of the WSK documentation.

The following code example shows how a WSK application can use an IRP that has been
passed to it by a higher level driver or by the I/O manager when performing a receive
operation on a socket.

C++

 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DataBuffer;
 ULONG ByteCount;

 // Check the result of the receive operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the data buffer
 DataBuffer = (PWSK_BUF)Context;

 // Get the number of bytes received
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Process the received data
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

// Prototype for the receive IoCompletion routine
NTSTATUS
 ReceiveComplete(
 PDEVICE_OBJECT DeviceObject,

 PIRP Irp,
 PVOID Context
);

// Function to receive data
NTSTATUS
 ReceiveData(
 PWSK_SOCKET Socket,
 PWSK_BUF DataBuffer,
 PIRP Irp; // IRP from a higher level driver or the I/O manager
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Set the completion routine for the IRP such that it is
 // only called if the receive operation succeeds.
 IoSetCompletionRoutine(
 Irp,
 ReceiveComplete,
 DataBuffer, // Use the data buffer for the context
 TRUE,
 FALSE,
 FALSE
);

 // Initiate the receive operation on the socket
 Status =
 Dispatch->WskReceive(
 Socket,
 DataBuffer,
 0, // No flags are specified
 Irp
);

 // Return the status of the call to WskReceive()
 return Status;
}

// Receive IoCompletion routine
NTSTATUS
 ReceiveComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DataBuffer;
 ULONG ByteCount;

For more information about using IRPs, see Handling IRPs.

 // Since the completion routine was only specified to
 // be called if the operation succeeds, this should
 // always be true.
 ASSERT(Irp->IoStatus.Status == STATUS_SUCCESS);

 // Check the pending status of the IRP
 if (Irp->PendingReturned == TRUE)
 {
 // Mark the IRP as pending
 IoMarkIrpPending(Irp);
 }

 // Get the pointer to the data buffer
 DataBuffer = (PWSK_BUF)Context;

 // Get the number of bytes received
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Process the received data
 ...

 // Return STATUS_SUCCESS to continue the
 // completion processing of the IRP.
 return STATUS_SUCCESS;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/handling-irps

Winsock Kernel Operations Topics
Article • 12/15/2021

This section discusses Winsock Kernel (WSK) operations and includes the following
topics:

Registering a Winsock Kernel Application
Performing Control Operations on a Client Object
Creating Sockets
Performing Control Operations on a Socket
Enabling and Disabling Event Callback Functions
Binding a Socket to a Transport Address
Listening for and Accepting Incoming Connections
Establishing a Connection with a Destination
Sending and Receiving Data
Disconnecting a Socket from a Destination
Closing a Socket
Registering an Extension Interface
Unregistering a Winsock Kernel Application
Resolving Host Names and IP Addresses
WSK Client Control Operations
WSK Socket IOCTL Operations
WSK Socket Options
WSK data types

Registering a Winsock Kernel
Application
Article • 12/15/2021

A Winsock Kernel (WSK) application must register as a WSK client by calling the
WskRegister function. WskRegister requires the WSK application to initialize and pass a
pointer to its WSK client's Network Programming Interface (NPI)(a WSK_CLIENT_NPI
structure) and a WSK registration object (a WSK_REGISTRATION structure) that will be
initialized by WskRegister upon successful return.

The following code example shows how a WSK application can register as a WSK client.

C++

WSK Client Object Registration

// Include the WSK header file
#include "wsk.h"

// WSK Client Dispatch table that denotes the WSK version
// that the WSK application wants to use and optionally a pointer
// to the WskClientEvent callback function
const WSK_CLIENT_DISPATCH WskAppDispatch = {
 MAKE_WSK_VERSION(1,0), // Use WSK version 1.0
 0, // Reserved
 NULL // WskClientEvent callback not required for WSK version 1.0
};

// WSK Registration object
WSK_REGISTRATION WskRegistration;

// DriverEntry function
NTSTATUS
 DriverEntry(
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
 NTSTATUS Status;
 WSK_CLIENT_NPI wskClientNpi;

 .
 .
 .

 // Register the WSK application
 wskClientNpi.ClientContext = NULL;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_npi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_registration

A WSK application is not required to call WskRegister from within its DriverEntry
function. For example, if a WSK application is a subcomponent of a complex driver, the
registration of the application might occur only when the WSK application
subcomponent is activated.

A WSK application must keep the WSK_CLIENT_DISPATCH structure passed to
WskRegister valid and resident in memory until WskDeregister is called and the
registration is no longer valid. The WSK_REGISTRATION structure must also be kept
valid and resident in memory until the WSK application stops making calls to the other
WSK registration functions. The previous code example keeps these two structures in
the global data section of the driver, thereby keeping the structure data resident in
memory until the driver is unloaded.

After a WSK application has registered as a WSK client with WskRegister, it must use the
WskCaptureProviderNPI function to capture the WSK provider NPI from the WSK
subsystem in order to start using the WSK interface.

Because the WSK subsystem might not yet be ready when a WSK application attempts
to capture the WSK provider NPI, the WskCaptureProviderNPI function allows the WSK
application to poll or wait for the WSK subsystem to become ready as follows:

If the WaitTimeout parameter is WSK_NO_WAIT, the function will always return
immediately without waiting.

If WaitTimeout is WSK_INFINITE_WAIT, the function will wait until the WSK
subsystem becomes ready.

If WaitTimeout is any other value, the function will return either when the WSK
subsystem becomes ready or when the wait time, in milliseconds, reaches the value

 wskClientNpi.Dispatch = &WskAppDispatch;
 Status = WskRegister(&wskClientNpi, &WskRegistration);

 if(!NT_SUCCESS(Status)) {
 .
 .
 .
 return Status;
 }

 .
 .
 .
}

WSK Provider NPI Capture

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_registration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi

of WaitTimeout, whichever occurs first.

Important To avoid adversely affecting the start of other drivers and services, a WSK
application that calls WskCaptureProviderNPI from its DriverEntry function should not
set the WaitTimeout parameter to WSK_INFINITE_WAIT or an excessive wait time. Also, if
a WSK application starts very early in the system startup phase, it should wait for the
WSK subsystem to become ready in a different worker thread than the one in which
DriverEntry runs.

If the call to WskCaptureProviderNPI fails with STATUS_NOINTERFACE, the WSK
application can use the WskQueryProviderCharacteristics function to discover the
range of WSK NPI versions supported by the WSK subsystem. The WSK application can
call WskDeregister to unregister its current registration instance, and then register again
by using a different WSK_CLIENT_DISPATCH instance that uses a supported WSK NPI
version.

When WskCaptureProviderNPI returns successfully, its WskProviderNpi parameter
points to a WSK provider NPI (WSK_PROVIDER_NPI) ready for use by the WSK
application. The WSK_PROVIDER_NPI structure contains pointers to the WSK client
object (WSK_CLIENT) and the WSK_PROVIDER_DISPATCH dispatch table of WSK
functions that the WSK application can use to create WSK sockets and perform other
operations on the WSK client object. After the WSK application is finished using the
WSK_PROVIDER_DISPATCH functions, it must release the WSK provider NPI by calling
WskReleaseProviderNPI.

The following code example shows how a WSK application can capture the WSK
provider NPI, use it to create a socket, and then release it.

C++

// WSK application routine that waits for WSK subsystem
// to become ready and captures the WSK Provider NPI
NTSTATUS
 WskAppWorkerRoutine(
)
{
 NTSTATUS Status;
 WSK_PROVIDER_NPI wskProviderNpi;

 // Capture the WSK Provider NPI. If WSK subsystem is not ready yet,
 // wait until it becomes ready.
 Status = WskCaptureProviderNPI(
 &WskRegistration, // must have been initialized with WskRegister
 WSK_INFINITE_WAIT,
 &wskProviderNpi
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskqueryprovidercharacteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_npi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskreleaseprovidernpi

A WSK application can call WskCaptureProviderNPI more than once. For each call to
WskCaptureProviderNPI that returns successfully, there must be a corresponding call to
WskReleaseProviderNPI. A WSK application must not make any further calls to the
functions in WSK_PROVIDER_DISPATCH after calling WskReleaseProviderNPI.

 if(!NT_SUCCESS(Status))
 {
 // The WSK Provider NPI could not be captured.
 if(Status == STATUS_NOINTERFACE) {
 // WSK application's requested version is not supported
 }
 else if(status == STATUS_DEVICE_NOT_READY) {
 // WskDeregister was invoked in another thread thereby causing
 // WskCaptureProviderNPI to be canceled.
 }
 else {
 // Some other unexpected failure has occurred
 }

 return Status;
 }

 // The WSK Provider NPI has been captured.
 // Create and set up a listening socket that accepts
 // incoming connections.
 Status = CreateListeningSocket(&wskProviderNpi, ...);

 // The WSK Provider NPI will not be used any more.
 // So, release it here immediately.
 WskReleaseProviderNPI(&WskRegistration);

 // Return result of socket creation routine
 return Status;

}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskreleaseprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

Performing Control Operations on a
Client Object
Article • 12/15/2021

After a Winsock Kernel (WSK) application has successfully attached to the WSK
subsystem, it can perform control operations on the client object (WSK_CLIENT) that
was returned by the WSK subsystem during attachment. These control operations are
not specific to a particular socket, but instead have a more general scope. For more
information about each of the control operations that can be performed on a client
object, see WSK Client Control Operations.

A WSK application performs client control operations by calling the WskControlClient
function. The WskControlClient function is pointed to by the WskControlClient member
of the WSK_PROVIDER_DISPATCH structure that was returned by the WSK subsystem
during attachment.

The following code example shows how a WSK application can use the
WSK_TRANSPORT_LIST_QUERY client control operation to retrieve a list of available
network transports that can be specified when creating a new socket.

C++

// Function to retrieve a list of available network transports
NTSTATUS
 GetTransportList(
 PWSK_PROVIDER_NPI WskProviderNpi,
 PWSK_TRANSPORT TransportList,
 ULONG MaxTransports,
 PULONG TransportsRetrieved
)
{
 SIZE_T BytesRetrieved;
 NTSTATUS Status;

 // Perform client control operation
 Status =
 WskProviderNpi->Dispatch->
 WskControlClient(
 WskProviderNpi->Client,
 WSK_TRANSPORT_LIST_QUERY,
 0,
 NULL,
 MaxTransports * sizeof(WSK_TRANSPORT),
 TransportList,
 &BytesRetrieved,
 NULL // No IRP for this control operation

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

);

 // Convert bytes retrieved to transports retrieved
 TransportsRetrieved = BytesRetrieved / sizeof(WSK_TRANSPORT);

 // Return status of client control operation
 return Status;
}

Creating Sockets
Article • 12/15/2021

After a Winsock Kernel (WSK) application has successfully attached to the WSK
subsystem, it can create sockets that can be used for network I/O operations. A WSK
application creates sockets by calling the WskSocket function. The WskSocket function
is pointed to by the WskSocket member of the WSK_PROVIDER_DISPATCH structure
that was returned by the WSK subsystem during attachment.

A WSK application must specify which category of WSK socket it is creating whenever it
creates a new socket. For more information about WSK socket categories, see Winsock
Kernel Socket Categories.

A WSK application must also specify the address family, socket type, and protocol
whenever it creates a new socket. For more information about the address families
supported by WSK, see WSK Address Families.

When creating a new socket, a WSK application must provide a socket context value and
a pointer to a client dispatch table structure if the application will be enabling any event
callback functions on the socket. For more information about enabling event callback
functions on a socket, see Enabling and Disabling Event Callback Functions.

If the socket is created successfully, the IoStatus.Information field of the IRP contains a
pointer to a socket object structure (WSK_SOCKET) for the new socket. For more
information about using IRPs with WSK functions, see Using IRPs with Winsock Kernel
Functions.

The following code example shows how a WSK application can create a listening socket.

C++

// Context structure for each socket
typedef struct _WSK_APP_SOCKET_CONTEXT {
 PWSK_SOCKET Socket;
 .
 . // Other application-specific members
 .
} WSK_APP_SOCKET_CONTEXT, *PWSK_APP_SOCKET_CONTEXT;

// Prototype for the socket creation IoCompletion routine
NTSTATUS
 CreateListeningSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_socket

// Function to create a new listening socket
NTSTATUS
 CreateListeningSocket(
 PWSK_PROVIDER_NPI WskProviderNpi,
 PWSK_APP_SOCKET_CONTEXT SocketContext,
 PWSK_CLIENT_LISTEN_DISPATCH Dispatch,
)
{
 PIRP Irp;
 NTSTATUS Status;

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 CreateListeningSocketComplete,
 SocketContext,
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the creation of the socket
 Status =
 WskProviderNpi->Dispatch->
 WskSocket(
 WskProviderNpi->Client,
 AF_INET,
 SOCK_STREAM,
 IPPROTO_TCP,
 WSK_FLAG_LISTEN_SOCKET,
 SocketContext,
 Dispatch,
 NULL,
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskSocket()
 return Status;

For connection-oriented sockets, a WSK application can call the WskSocketConnect
function to create, bind, and connect a socket in a single function call.

}

// Socket creation IoCompletion routine
NTSTATUS
 CreateListeningSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_APP_SOCKET_CONTEXT SocketContext;

 // Check the result of the socket creation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the socket context
 SocketContext =
 (PWSK_APP_SOCKET_CONTEXT)Context;

 // Save the socket object for the new socket
 SocketContext->Socket =
 (PWSK_SOCKET)(Irp->IoStatus.Information);

 // Set any socket options for the new socket
 ...

 // Enable any event callback functions on the new socket
 ...

 // Perform any other initializations
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

Performing Control Operations on a
Socket
Article • 12/15/2021

After a Winsock Kernel (WSK) application has successfully created a socket, it can
perform control operations on the socket. The control operations that can be performed
on a socket include setting and retrieving socket options and executing socket IOCTL
operations.

A WSK application performs control operations on a socket by calling the
WskControlSocket function. The WskControlSocket function is pointed to by the
WskControlSocket member of the socket's provider dispatch structure. A socket's
provider dispatch structure is pointed to by the Dispatch member of the socket object
structure (WSK_SOCKET) that was returned by the WSK subsystem during the creation
of the socket.

The following code example shows how a WSK application can set the
SO_EXCLUSIVEADDRUSE socket option on a datagram socket.

C++

// Prototype for the control socket IoCompletion routine
NTSTATUS
 ControlSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to set the SO_EXCLUSIVEADDRUSE socket option
// on a datagram socket
NTSTATUS
 SetExclusiveAddrUse(
 PWSK_SOCKET Socket
)
{
 PWSK_PROVIDER_DATAGRAM_DISPATCH Dispatch;
 PIRP Irp;
 ULONG SocketOptionState;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_DATAGRAM_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_socket

 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 ControlSocketComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Set the socket option state to 1 to set the socket option
 SocketOptionState = 1;

 // Initiate the control operation on the socket
 Status =
 Dispatch->WskControlSocket(
 Socket,
 WskSetOption,
 SO_EXCLUSIVEADDRUSE,
 SOL_SOCKET,
 sizeof(ULONG),
 &SocketOptionState,
 0,
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskControlSocket()
 return Status;
}

// Control socket IoCompletion routine
NTSTATUS
 ControlSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

For more information about each of the supported socket options, see WSK Socket
Options.

The following code example shows how a WSK application can execute the
SIO_WSK_SET_REMOTE_ADDRESS socket IOCTL operation on a datagram socket.

C++

 // Check the result of the control operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

// Prototype for the control socket IoCompletion routine
NTSTATUS
 ControlSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to perform the SIO_WSK_SET_REMOTE_ADDRESS socket
// IOCTL operation on a datagram socket
NTSTATUS
 SetRemoteAddress(
 PWSK_SOCKET Socket,
 PSOCKADDR RemoteAddress
)
{
 PWSK_PROVIDER_DATAGRAM_DISPATCH Dispatch;
 PIRP Irp;

 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_DATAGRAM_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 ControlSocketComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the IOCTL operation on the socket
 Status =
 Dispatch->WskControlSocket(
 Socket,
 WskIoctl,
 SIO_WSK_SET_REMOTE_ADDRESS,
 0,
 sizeof(SOCKADDR_IN), // AF_INET
 RemoteAddress,
 0,
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskControlSocket()
 return Status;
}

// Control socket IoCompletion routine
NTSTATUS
 ControlSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context

For more information about each of the supported socket IOCTL operations, see WSK
Socket IOCTL Operations.

)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

 // Check the result of the control operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

Enabling and Disabling Event Callback
Functions
Article • 12/15/2021

A Winsock Kernel (WSK) application can implement event callback functions that the
WSK subsystem calls asynchronously to notify the application when certain events occur
on a socket. A WSK application can provide a client dispatch table structure to the WSK
subsystem whenever it creates a socket or accepts a socket on a listening socket. This
dispatch table contains pointers to the WSK application's event callback functions for
the new socket. If a WSK application does not implement any event callback functions
for a particular socket, then it does not need to provide a client dispatch table structure
to the WSK subsystem for that socket.

All of a socket's event callback functions, except for a listening socket's WskInspectEvent
and WskAbortEvent event callback functions, can be enabled or disabled by using the
SO_WSK_EVENT_CALLBACK socket option. A WSK application can enable multiple event
callback functions on a socket at the same time. However, a WSK application must
disable each event callback function individually.

The following code example shows how a WSK application can use the
SO_WSK_EVENT_CALLBACK socket option to enable the WskDisconnectEvent and
WskReceiveEvent event callback functions on a connection-oriented socket.

C++

// Function to enable the WskDisconnectEvent and WskReceiveEvent
// event callback functions on a connection-oriented socket
NTSTATUS
 EnableDisconnectAndRecieveCallbacks(
 PWSK_SOCKET Socket
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 WSK_EVENT_CALLBACK_CONTROL EventCallbackControl;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Specify the WSK NPI identifier
 EventCallbackControl.NpiId = &NPI_WSK_INTERFACE_ID;

 // Set the event flags for the event callback functions that
 // are to be enabled on the socket

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_inspect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_abort_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event

The following code example shows how a WSK application can use the
SO_WSK_EVENT_CALLBACK socket option to disable the WskReceiveEvent event
callback functions on a connection-oriented socket.

C++

 EventCallbackControl.EventMask =
 WSK_EVENT_DISCONNECT | WSK_EVENT_RECEIVE;

 // Initiate the control operation on the socket
 Status =
 Dispatch->WskControlSocket(
 Socket,
 WskSetOption,
 SO_WSK_EVENT_CALLBACK,
 SOL_SOCKET,
 sizeof(WSK_EVENT_CALLBACK_CONTROL),
 &EventCallbackControl,
 0,
 NULL,
 NULL,
 NULL // No IRP for this control operation
);

 // Return the status of the call to WskControlSocket()
 return Status;
}

// Prototype for the disable disconnect IoCompletion routine
NTSTATUS
 DisableDisconnectComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to disable the WskDisconnectEvent event
// callback functions on a connection-oriented socket
NTSTATUS
 DisableDisconnectCallback(
 PWSK_SOCKET Socket
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 WSK_EVENT_CALLBACK_CONTROL EventCallbackControl;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 DisableDisconnectComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Specify the WSK NPI identifier
 EventCallbackControl.NpiId = &NPI_WSK_INTERFACE_ID;

 // Set the event flag for the event callback function that
 // is to be disabled on the socket along with the disable flag
 EventCallbackControl.EventMask =
 WSK_EVENT_DISCONNECT | WSK_EVENT_DISABLE;

 // Initiate the control operation on the socket
 Status =
 Dispatch->WskControlSocket(
 Socket,
 WskSetOption,
 SO_WSK_EVENT_CALLBACK,
 SOL_SOCKET,
 sizeof(WSK_EVENT_CALLBACK_CONTROL),
 &EventCallbackControl,
 0,
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskControlSocket()
 return Status;
}

// Disable disconnect IoCompletion routine
NTSTATUS
 DisableDisconnectComplete(
 PDEVICE_OBJECT DeviceObject,

For listening sockets, the WskInspectEvent and WskAbortEvent event callback functions
are enabled only if the WSK application enables conditional accept mode on the socket.
A WSK application enables conditional accept mode on a listening socket by setting the
SO_CONDITIONAL_ACCEPT socket option for the socket prior to binding the socket to a
local transport address. For more information about how to set socket options, see
Performing Control Operations on a Socket.

After conditional accept mode has been enabled on a listening socket, the socket's
WskInspectEvent and WskAbortEvent event callback functions cannot be disabled. For
more information about conditionally accepting incoming connections on listening
sockets, see Listening for and Accepting Incoming Connections.

A listening socket can automatically enable event callback functions on connection-
oriented sockets that are accepted by the listening socket's WskAcceptEvent event

 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

 // Check the result of the control operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // The WskDisconnectEvent event callback
 // function is now disabled

 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_inspect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_abort_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event

callback function. A WSK application automatically enables these callback functions by
enabling the connection-oriented socket event callback functions on the listening
socket. For more information about this process, see SO_WSK_EVENT_CALLBACK.

If a WSK application always enables certain event callback functions on every socket that
it creates, the application can configure the WSK subsystem to automatically enable
those event callback functions by using the WSK_SET_STATIC_EVENT_CALLBACKS client
control operation. The event callback functions that are enabled in this manner are
always enabled and cannot be disabled or re-enabled later by the WSK application. If a
WSK application always enables certain event callback functions on every socket that it
creates, the application should use this method to automatically enable those event
callback functions because it will yield much better performance.

The following code example shows how a WSK application can use the
WSK_SET_STATIC_EVENT_CALLBACKS client control operation to automatically enable
the WskReceiveFromEvent event callback function on datagram sockets and the
WskReceiveEvent event callback function on connection-oriented sockets.

C++

// Function to set static event callbacks
NTSTATUS
 SetStaticEventCallbacks(
 PWSK_APP_BINDING_CONTEXT BindingContext,
)
{
 WSK_EVENT_CALLBACK_CONTROL EventCallbackControl;
 NTSTATUS Status;

 // Specify the WSK NPI identifier
 EventCallbackControl.NpiId = &NPI_WSK_INTERFACE_ID;

 // Set the event flags for the event callback functions that
 // are to be automatically enabled on every new socket
 EventCallbackControl.EventMask =
 WSK_EVENT_RECEIVE_FROM | WSK_EVENT_RECEIVE;

 // Perform client control operation
 Status =
 BindingContext->
 WskProviderDispatch->
 WskControlClient(
 BindingContext->WskClient,
 WSK_SET_STATIC_EVENT_CALLBACKS,
 sizeof(WSK_EVENT_CALLBACK_CONTROL),
 &EventCallbackControl,
 0,
 NULL,
 NULL,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event

If a WSK application uses the WSK_SET_STATIC_EVENT_CALLBACKS client control
operation to automatically enable certain event callback functions, it must do so before
it creates any sockets.

 NULL // No IRP for this control operation
);

 // Return status of client control operation
 return Status;
}

Binding a Socket to a Transport Address
Article • 12/15/2021

After a Winsock Kernel (WSK) application has successfully created a socket, it can bind
that socket to a local transport address. A listening socket must be bound to a local
transport address before it can accept incoming connections. A datagram socket must
be bound to a local transport address before it can send or receive datagrams. A
connection-oriented socket must be bound to a local transport address before it can
connect to a remote transport address.

Note Basic sockets do not support sending or receiving network data. Therefore, a WSK
application cannot bind a basic socket to a local transport address.

A WSK application binds a socket to a local transport address by calling the WskBind
function. The WskBind function is pointed to by the WskBind member of the socket's
provider dispatch structure. A socket's provider dispatch structure is pointed to by the
Dispatch member of the socket object structure (WSK_SOCKET) that was returned by
the WSK subsystem during the creation of the socket.

A socket can be bound to a local wildcard address. For more information about the
behavior of a socket that has been bound to a local wildcard address, see WskBind.

The following code example shows how a WSK application can bind a listening socket to
a local transport address.

C++

// Prototype for the bind IoCompletion routine
NTSTATUS
 BindComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to bind a listening socket to a local transport address
NTSTATUS
 BindListeningSocket(
 PWSK_SOCKET Socket,
 PSOCKADDR LocalAddress
)
{
 PWSK_PROVIDER_LISTEN_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_bind
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_socket

 Dispatch =
 (PWSK_PROVIDER_LISTEN_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 BindComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the bind operation on the socket
 Status =
 Dispatch->WskBind(
 Socket,
 LocalAddress,
 0, // No flags
 Irp
);

 // Return the status of the call to WskBind()
 return Status;
}

// Bind IoCompletion routine
NTSTATUS
 BindComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

 // Check the result of the bind operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {

For connection-oriented sockets, a WSK application can call the WskSocketConnect
function to create, bind, and connect a socket in a single function call.

 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

Listening for and Accepting Incoming
Connections
Article • 12/15/2021

After a Winsock Kernel (WSK) application binds a listening socket to a local transport
address, the socket begins listening for incoming connections from remote transport
addresses. A WSK application can accept an incoming connection on a listening socket
by calling the WskAccept function. The IRP that the application passes to the
WskAccept function is queued until an incoming connection arrives.

The following code example shows how a WSK application can accept an incoming
connection by calling the WskAccept function.

C++

// Prototype for the accept IoCompletion routine
NTSTATUS
 AcceptComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to accept an incoming connection
NTSTATUS
 AcceptConnection(
 PWSK_SOCKET Socket,
 PVOID AcceptSocketContext,
 PWSK_CLIENT_CONNECTION_DISPATCH AcceptSocketDispatch
)
{
 PWSK_PROVIDER_LISTEN_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_LISTEN_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept

 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 AcceptComplete,
 AcceptSocketContext,
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the accept operation on the socket
 Status =
 Dispatch->WskAccept(
 Socket,
 0, // No flags
 AcceptSocketContext,
 AcceptSocketDispatch,
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskAccept()
 return Status;
}

// The accept IoCompletion routine
NTSTATUS
 AcceptComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;
 PVOID AcceptSocketContext;

 // Check the result of the accept operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the accepted socket object from the IRP
 Socket = (PWSK_SOCKET)(Irp->IoStatus.Information);

 // Get the accepted socket's context
 AcceptSocketContext = Context;

 // Perform the next operation on the accepted socket
 ...

As an alternative to calling the WskAccept function to accept incoming connections on
a listening socket, a WSK application can enable the WskAcceptEvent event callback
function on the socket. If a WSK application enables the WskAcceptEvent event callback
function on a listening socket, the WSK subsystem calls the socket's WskAcceptEvent
event callback function whenever a new incoming connection is accepted on the socket.
For more information about enabling a listening socket's WskAcceptEvent event callback
function, see Enabling and Disabling Event Callback Functions.

The following code example shows how a WSK application can accept an incoming
connection by the WSK subsystem calling a listening socket's WskAcceptEvent event
callback function.

C++

 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

// Dispatch table of event callback functions for accepted sockets
const WSK_CLIENT_CONNECTION_DISPATCH ConnectionDispatch =
{
 .
 . // Function pointers for the event callback functions
 .
};

// Pool tag used for allocating the socket context
#define SOCKET_CONTEXT_POOL_TAG 'tpcs'

// A listening socket's WskAcceptEvent event callback function
NTSTATUS WSKAPI
 WskAcceptEvent(
 PVOID SocketContext,
 ULONG Flags,
 PSOCKADDR LocalAddress,
 PSOCKADDR RemoteAddress,
 PWSK_SOCKET AcceptSocket,

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event

 PVOID *AcceptSocketContext,
 CONST WSK_CLIENT_CONNECTION_DISPATCH **AcceptSocketDispatch
)
{
 PWSK_APP_SOCKET_CONTEXT SocketContext;

 // Check for a valid new socket
 if (AcceptSocket != NULL)
 {
 // Allocate the socket context
 SocketContext =
 (PWSK_APP_SOCKET_CONTEXT)
 ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(WSK_APP_SOCKET_CONTEXT),
 SOCKET_CONTEXT_POOL_TAG
);

 // Check result of allocation
 if (SocketContext == NULL)
 {
 // Reject the socket
 return STATUS_REQUEST_NOT_ACCEPTED;
 }

 // Initialize the socket context
 SocketContext->Socket = AcceptSocket;
 ...

 // Set the accepted socket's client context
 *AcceptSocketContext = SocketContext;

 // Set the accepted socket's dispatch table of callback functions
 *AcceptSocketDispatch = ConnectionDispatch;

 // Perform additional operations on the accepted socket
 ...

 // Return status indicating that the socket was accepted
 return STATUS_SUCCESS:
 }

 // Error with listening socket
 else
 {
 // Handle error
 ...

 // Return status indicating that no socket was accepted
 return STATUS_REQUEST_NOT_ACCEPTED;
 }
}

A WSK application can configure a listening socket to conditionally accept incoming
connections that are received on the socket. A WSK application enables conditional
accept mode on a listening socket by setting the SO_CONDITIONAL_ACCEPT socket
option for the socket prior to binding the socket to a local transport address. For more
information about how to set socket options, see Performing Control Operations on a
Socket.

If conditional accept mode is enabled on a listening socket, the WSK subsystem first
calls the socket's WskInspectEvent event callback function whenever a new incoming
connection request is received on the socket. A socket's WskInspectEvent event callback
function can inspect the incoming connection request to determine if the request
should be accepted or rejected. To accept the request, the socket's WskInspectEvent
event callback function returns InspectAccept. To reject the request, the socket's
WskInspectEvent event callback function returns InspectReject. If a socket's
WskInspectEvent event callback function cannot immediately determine if the request
should be accepted or rejected, it returns InspectPend. In this situation, a WSK
application must call the WskInspectComplete function after completing the inspection
process for the incoming connection request. If an incoming connection request is
dropped before the socket connection is fully established, the WSK subsystem calls the
WSK application's WskAbortEvent event callback function.

The following code example shows how a WSK application can inspect an incoming
connection request by the WSK subsystem calling the listening socket's WskInspectEvent
event callback function.

C++

// Inspect ID for a pending inspection
WSK_INSPECT_ID PendingInspectID

// A listening socket's WskInspectEvent event callback function
WSK_INSPECT_ACTION WSKAPI
 WskInspectEvent(
 PVOID SocketContext,
 PSOCKADDR LocalAddress,
 PSOCKADDR RemoteAddress,
 PWSK_INSPECT_ID InspectID
)
{
 // Check for a valid inspect ID
 if (InspectID != NULL)
 {
 // Inspect local and/or remote address of the incoming
 // connection request to determine if the connection should
 // be accepted or rejected.
 ...

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_inspect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_inspect_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_abort_event

 // If the incoming connection should be accepted
 if (...)
 {
 // Return status indicating that the incoming
 // connection request was accepted
 return InspectAccept;
 }

 // If the incoming connection should be rejected
 else if (...)
 {
 // Return status indicating that the incoming
 // connection request was rejected
 return InspectReject;
 }

 // Cannot determine immediately
 else
 {
 // Save the inspect ID while the inspection is pending.
 // This will be passed to WskInspectComplete when the
 // inspection process is completed.
 PendingInspectID = *InspectID;

 // Return status indicating that the result of the
 // inspection process for the incoming connection
 // request is pending
 return InspectPend;
 }
 }

 // Error with listening socket
 else
 {
 // Handle error
 ...

 // Return status indicating that a socket was not accepted
 return InspectReject;
 }
}

// A listening socket's WskAbortEvent event callback function
NTSTATUS WSKAPI
 WskAbortEvent(
 PVOID SocketContext,
 PWSK_INSPECT_ID InspectID
)
{
 // Terminate the inspection for the incoming connection
 // request with a matching inspect ID. To test for a matching
 // inspect ID, the contents of the WSK_INSPECT_ID structures
 // must be compared, not the pointers to the structures.
 ...
}

If a WSK application determines that it will accept an incoming connection request on a
listening socket that has conditional accept mode enabled, the incoming connection will
be established and it can be accepted normally by either the application calling to the
WskAccept function or the WSK subsystem calling the socket's WskAcceptEvent event
callback function as described previously.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event

Establishing a Connection with a
Destination
Article • 12/15/2021

After a Winsock Kernel (WSK) application has bound a connection-oriented socket to a
local transport address, it can connect the socket to a remote transport address in order
to establish a connection with the remote system. A WSK application must connect a
connection-oriented socket to a remote transport address before it can send or receive
data over the socket.

A WSK application connects a socket to a remote transport address by calling the
WskConnect function. The WskConnect function is pointed to by the WskConnect
member of the socket's provider dispatch structure. A socket's provider dispatch
structure is pointed to by the Dispatch member of the socket object structure (
WSK_SOCKET) that was returned by the WSK subsystem during the creation of the
socket.

The following code example shows how a WSK application can connect a connection-
oriented socket to a remote transport address.

C++

// Prototype for the connect IoCompletion routine
NTSTATUS
 ConnectComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to connect a socket to a remote transport address
NTSTATUS
 ConnectSocket(
 PWSK_SOCKET Socket,
 PSOCKADDR RemoteAddress
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_socket

 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 ConnectComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the connect operation on the socket
 Status =
 Dispatch->WskConnect(
 Socket,
 RemoteAddress,
 0, // No flags
 Irp
);

 // Return the status of the call to WskConnect()
 return Status;
}

// Connect IoCompletion routine
NTSTATUS
 ConnectComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

 // Check the result of the connect operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket

A WSK application can call the WskSocketConnect function to create, bind, and connect
a connection-oriented socket in a single function call.

 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

Sending and receiving data over WSK
sockets
Article • 12/15/2021

This section discusses sending and receiving data over Winsock Kernel (WSK) sockets
and includes the following sections:

Sending Data over a Datagram Socket
Receiving Data over a Datagram Socket
Sending Data over a Connection-Oriented Socket
Receiving Data over a Connection-Oriented Socket

Sending Data over a Datagram Socket
Article • 12/15/2021

After a Winsock Kernel (WSK) application has bound a datagram socket to a local
transport address it can send datagrams over the socket. A WSK application sends a
datagram over a datagram socket by calling the WskSendTo function.

The following code example shows how a WSK application can send a datagram over a
datagram socket.

C++

// Prototype for the send datagram IoCompletion routine
NTSTATUS
 SendDatagramComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to send a datagram
NTSTATUS
 SendDatagram(
 PWSK_SOCKET Socket,
 PWSK_BUF DatagramBuffer,
 PSOCKADDR RemoteAddress
)
{
 PWSK_PROVIDER_DATAGRAM_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_DATAGRAM_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_to

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 SendDatagramComplete,
 DatagramBuffer, // Use the datagram buffer for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the send operation on the socket
 Status =
 Dispatch->WskSendTo(
 Socket,
 DatagramBuffer,
 0, // No flags
 RemoteAddress,
 0,
 NULL, // No associated control info
 Irp
);

 // Return the status of the call to WskSendTo()
 return Status;
}

// Send datagram IoCompletion routine
NTSTATUS
 SendDatagramComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DatagramBuffer;
 ULONG ByteCount;

 // Check the result of the send operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the datagram buffer
 DatagramBuffer = (PWSK_BUF)Context;

 // Get the number of bytes sent
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Re-use or free the datagram buffer
 ...
 }

 // Error status
 else
 {

If the WSK application has set either a fixed remote transport address or a fixed
destination transport address for the datagram socket, the RemoteAddress parameter
passed to the WskSendTo function is optional and can be NULL. If NULL, the datagram
is sent to the fixed remote transport address or the fixed destination transport address.
If non-NULL, the datagram is sent to the specified remote transport address.

For more information about setting a fixed remote transport address for a datagram
socket, see SIO_WSK_SET_REMOTE_ADDRESS.

For more information about setting a fixed destination transport address for a datagram
socket, see SIO_WSK_SET_SENDTO_ADDRESS.

 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_to

Receiving Data over a Datagram Socket
Article • 12/15/2021

After a Winsock Kernel (WSK) application has bound a datagram socket to a local
transport address it can receive datagrams over the socket. A WSK application receives a
datagram over a datagram socket by calling the WskReceiveFrom function.

The following code example shows how a WSK application can receive a datagram over
a datagram socket.

C++

// Prototype for the receive datagram IoCompletion routine
NTSTATUS
 ReceiveDatagramComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to receive a datagram
NTSTATUS
 ReceiveDatagram(
 PWSK_SOCKET Socket,
 PWSK_BUF DatagramBuffer
)
{
 PWSK_PROVIDER_DATAGRAM_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_DATAGRAM_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from

 IoSetCompletionRoutine(
 Irp,
 ReceiveDatagramComplete,
 DatagramBuffer, // Use the datagram buffer for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the receive operation on the socket
 Status =
 Dispatch->WskReceiveFrom(
 Socket,
 DatagramBuffer,
 0, // No flags are specified
 NULL, // Not interested in the remote address
 NULL, // Not interested in any associated control information
 NULL,
 NULL,
 Irp
);

 // Return the status of the call to WskReceiveFrom()
 return Status;
}

// Receive datagram IoCompletion routine
NTSTATUS
 ReceiveDatagramComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DataBuffer;
 ULONG ByteCount;

 // Check the result of the receive operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the data buffer
 DataBuffer = (PWSK_BUF)Context;

 // Get the number of bytes received
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Process the received datagram
 ...
 }

 // Error status
 else
 {

As an alternative to calling the WskReceiveFrom function to receive each datagram over
a datagram socket, a WSK application can enable the WskReceiveFromEvent event
callback function on the socket. If a WSK application enables the WskReceiveFromEvent
event callback function on a datagram socket, the WSK subsystem calls the socket's
WskReceiveFromEvent event callback function whenever new datagrams are received on
the socket. For more information about enabling a datagram socket's
WskReceiveFromEvent event callback function, see Enabling and Disabling Event Callback
Functions.

The following code example shows how a WSK application can receive datagrams by the
WSK subsystem by calling a datagram socket's WskReceiveFromEvent event callback
function.

C++

 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

// A datagram socket's WskReceiveFromEvent
// event callback function
NTSTATUS WSKAPI
 WskReceiveFromEvent(
 PVOID SocketContext,
 ULONG Flags,
 PWSK_DATAGRAM_INDICATION DataIndication
)
{
 // Check for a valid data indication
 if (DataIndication != NULL)
 {
 // Loop through the list of data indication structures
 while (DataIndication != NULL)
 {
 // Process the data in the data indication structure
 ...

 // Move to the next data indication structure
 DataIndication = DataIndication->Next;
 }

 // Return status indicating the datagrams were received

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from_event

If a datagram socket's WskReceiveFromEvent event callback function does not retrieve all
of the datagrams from the list of WSK_DATAGRAM_INDICATION structures pointed to
by the DataIndication parameter, it can retain the list for further processing by returning
STATUS_PENDING. In this situation, the WSK application must call the WskRelease
function to release the list of WSK_DATAGRAM_INDICATION structures back to the WSK
subsystem after it has completed retrieving all of the datagrams from the structures in
the list.

 return STATUS_SUCCESS;
 }

 // Error
 else
 {
 // Close the socket
 ...

 // Return success since no datagrams were indicated
 return STATUS_SUCCESS;
 }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_datagram_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff571144(v=vs.85)

Sending Data over a Connection-
Oriented Socket
Article • 12/15/2021

After a Winsock Kernel (WSK) application has connected a connection-oriented socket
to a remote transport address it can send data over the socket. A WSK application can
also send data over a connection-oriented socket that it accepted on a listening socket.
A WSK application sends data over a connection-oriented socket by calling the
WskSend function.

The following code example shows how a WSK application can send data over a
connection-oriented socket.

C++

// Prototype for the send IoCompletion routine
NTSTATUS
 SendComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to send data
NTSTATUS
 SendData(
 PWSK_SOCKET Socket,
 PWSK_BUF DataBuffer
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send

 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 SendComplete,
 DataBuffer, // Use the data buffer for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the send operation on the socket
 Status =
 Dispatch->WskSend(
 Socket,
 DataBuffer,
 0, // No flags
 Irp
);

 // Return the status of the call to WskSend()
 return Status;
}

// Send IoCompletion routine
NTSTATUS
 SendComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DataBuffer;
 ULONG ByteCount;

 // Check the result of the send operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the data buffer
 DataBuffer = (PWSK_BUF)Context;

 // Get the number of bytes sent
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Re-use or free the data buffer
 ...
 }

 // Error status
 else

 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

Receiving Data over a Connection-
Oriented Socket
Article • 12/15/2021

After a Winsock Kernel (WSK) application has connected a connection-oriented socket
to a remote transport address it can receive data over the socket. A WSK application can
also receive data over a connection-oriented socket that it accepted on a listening
socket. A WSK application receives data over a connection-oriented socket by calling
the WskReceive function.

The following code example shows how a WSK application can receive data over a
connection-oriented socket.

C++

// Prototype for the receive IoCompletion routine
NTSTATUS
 ReceiveComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to receive data
NTSTATUS
 ReceiveData(
 PWSK_SOCKET Socket,
 PWSK_BUF DataBuffer
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive

 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 ReceiveComplete,
 DataBuffer, // Use the data buffer for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the receive operation on the socket
 Status =
 Dispatch->WskReceive(
 Socket,
 DataBuffer,
 0, // No flags are specified
 Irp
);

 // Return the status of the call to WskReceive()
 return Status;
}

// Receive IoCompletion routine
NTSTATUS
 ReceiveComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_BUF DataBuffer;
 ULONG ByteCount;

 // Check the result of the receive operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the data buffer
 DataBuffer = (PWSK_BUF)Context;

 // Get the number of bytes received
 ByteCount = (ULONG)(Irp->IoStatus.Information);

 // Process the received data
 ...
 }

 // Error status
 else

As an alternative to calling the WskReceive function to receive data over a connection-
oriented socket, a WSK application can enable the WskReceiveEvent event callback
function on the socket. If a WSK application enables the WskReceiveEvent event callback
function on a connection-oriented socket, the WSK subsystem calls the socket's
WskReceiveEvent event callback function whenever new data is received on the socket.
For more information about enabling a connection-oriented socket's WskReceiveEvent
event callback function, see Enabling and Disabling Event Callback Functions.

The following code example shows how a WSK application can receive data by the WSK
subsystem calling a connection-oriented socket's WskReceiveEvent event callback
function.

C++

 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

// A connection-oriented socket's WskReceiveEvent
// event callback function
NTSTATUS WSKAPI
 WskReceiveEvent(
 PVOID SocketContext,
 ULONG Flags,
 PWSK_DATA_INDICATION DataIndication,
 SIZE_T BytesIndicated,
 SIZE_T *BytesAccepted
)
{
 // Check for a valid data indication
 if (DataIndication != NULL)
 {
 // Loop through the list of data indication structures
 while (DataIndication != NULL)
 {
 // Process the data in the data indication structure
 ...

 // Move to the next data indication structure
 DataIndication = DataIndication->Next;
 }

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event

If a connection-oriented socket's WskReceiveEvent event callback function does not
retrieve all of the data contained in the list of WSK_DATA_INDICATION structures
pointed to by the DataIndication parameter, it can retain the list for further processing
by returning STATUS_PENDING. In this situation, the WSK application must call the
WskRelease function to release the list of WSK_DATA_INDICATION structures back to
the WSK subsystem after it has completed retrieving all of the data from the structures
in the list.

If a connection-oriented socket's WskReceiveEvent event callback function only accepts a
portion of the total number of bytes of received data, it must set the variable pointed to
by the BytesAccepted parameter to the number of bytes of data that were actually
accepted. However, if the socket's WskReceiveEvent event callback function accepts all of
the received data, it does not need to set the variable pointed to by the BytesAccepted
parameter.

 // Return status indicating the data was received
 return STATUS_SUCCESS;
 }

 // Error
 else
 {
 // Close the socket
 ...

 // Return success since no data was indicated
 return STATUS_SUCCESS;
 }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_data_indication
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff571144(v=vs.85)

Disconnecting a Socket from a
Destination
Article • 12/15/2021

When a Winsock Kernel (WSK) application has finished sending and receiving data over
an established socket connection, it can disconnect the connection-oriented socket from
the remote transport address to which it is connected. A WSK application disconnects a
socket from a remote transport address by calling the WskDisconnect function. A WSK
application can perform either an abortive disconnect or a graceful disconnect of the
socket. For more information about the difference between an abortive disconnect and
a graceful disconnect, see WskDisconnect.

The following code example shows how a WSK application can gracefully disconnect a
connection-oriented socket from a remote transport address.

C++

// Prototype for the disconnect IoCompletion routine
NTSTATUS
 DisconnectComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to disconnect a socket from a remote transport address
NTSTATUS
 DisconnectSocket(
 PWSK_SOCKET Socket
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect

 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 DisconnectComplete,
 Socket, // Use the socket object for the context
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the disconnect operation on the socket
 Status =
 Dispatch->WskDisconnect(
 Socket,
 NULL, // No final data to be transmitted
 0, // No flags (graceful disconnect)
 Irp
);

 // Return the status of the call to WskDisconnect()
 return Status;
}

// Disconnect IoCompletion routine
NTSTATUS
 DisconnectComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_SOCKET Socket;

 // Check the result of the disconnect operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the socket object from the context
 Socket = (PWSK_SOCKET)Context;

 // Perform the next operation on the socket
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...

If a WSK application performs a graceful disconnect of a socket, the application can
send a final buffer of data to the remote transport address before the socket is
disconnected by passing a pointer to a WSK_BUF structure to the WskDisconnect
function.

If a WSK application closes a connection-oriented socket without first disconnecting the
socket from the remote transport address to which it is connected, the WSK subsystem
automatically performs an abortive disconnect of the socket prior to closing the socket.
For more information about closing a socket, see Closing a Socket.

 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_buf
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect

Closing a Socket
Article • 12/15/2021

When a Winsock Kernel (WSK) application has finished using a socket, it should close
the socket and free up any associated resources. A WSK application must close all open
sockets before the application can detach itself from the WSK subsystem. For more
information about detaching a WSK application from the WSK subsystem, see
Unregistering a Winsock Kernel Application.

A WSK application closes a socket by calling the WskCloseSocket function. Before
calling the WskCloseSocket function, a WSK application must ensure that there are no
other function calls in progress to any of the socket's functions, including any extension
functions in any of the application's other threads. However, a WSK application can call
WskCloseSocket if there are pending IRPs from prior calls to the socket's functions that
have not yet completed.

The method that a WSK application uses to ensure that there are no other function calls
in progress to any of the socket's functions before it calls the WskCloseSocket function
is dependent upon the design of the application. For example, if a WSK application
might need to close a socket in one thread while there could be calls in progress to that
socket's other functions in one or more other threads, then the application would
typically use a reference counter to track the number of function calls that are currently
in progress on the socket. In this situation, the WSK application atomically tests and
increments a socket's reference counter before it calls one of the socket's functions, and
then atomically decrements the socket's reference counter when the function returns.
When the reference counter is zero, the WSK application can safely call the
WskCloseSocket function to close the socket.

On the other hand, if the design of the WSK application guarantees that there will not
be any calls in progress to a particular socket's functions in any other threads when the
application calls the WskCloseSocket function to close the socket, then the WSK
application does not need to use a reference counter to track the number of function
calls that are currently in progress on the socket. For example, if the WSK application
performs all of its socket operations for a particular socket from a single thread, then the
application can safely call the WskCloseSocket function from within that thread without
the need for a reference counter.

Calling the WskCloseSocket function causes the WSK subsystem to cancel and complete
all pending IRPs from prior calls to the socket's functions. The WSK subsystem also
ensures that any event callback functions in progress have returned control back to the
WSK subsystem before the close operation is completed.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_close_socket

The following code example shows how a WSK application can close a socket.

C++

// Prototype for the socket close IoCompletion routine
NTSTATUS
 CloseSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
);

// Function to close a socket
NTSTATUS
 CloseSocket(
 PWSK_SOCKET Socket,
 PWSK_APP_SOCKET_CONTEXT SocketContext
)
{
 PWSK_PROVIDER_BASIC_DISPATCH Dispatch;
 PIRP Irp;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_BASIC_DISPATCH)(Socket->Dispatch);

 // Allocate an IRP
 Irp =
 IoAllocateIrp(
 1,
 FALSE
);

 // Check result
 if (!Irp)
 {
 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Set the completion routine for the IRP
 IoSetCompletionRoutine(
 Irp,
 CloseSocketComplete,
 SocketContext,
 TRUE,
 TRUE,
 TRUE
);

 // Initiate the close operation on the socket
 Status =
 Dispatch->WskCloseSocket(

After a WSK application has called WskCloseSocket, it should not make any further calls
to any of the socket's functions.

If a WSK application closes a connection-oriented socket that has not been previously
disconnected in both directions, the WSK subsystem automatically performs an abortive

 Socket,
 Irp
);

 // Return the status of the call to WskCloseSocket()
 return Status;
}

// Socket close IoCompletion routine
NTSTATUS
 CloseSocketComplete(
 PDEVICE_OBJECT DeviceObject,
 PIRP Irp,
 PVOID Context
)
{
 UNREFERENCED_PARAMETER(DeviceObject);

 PWSK_APP_SOCKET_CONTEXT SocketContext;

 // Check the result of the socket close operation
 if (Irp->IoStatus.Status == STATUS_SUCCESS)
 {
 // Get the pointer to the socket context
 SocketContext =
 (PWSK_APP_SOCKET_CONTEXT)Context;

 // Perform any cleanup and/or deallocation of the socket context
 ...
 }

 // Error status
 else
 {
 // Handle error
 ...
 }

 // Free the IRP
 IoFreeIrp(Irp);

 // Always return STATUS_MORE_PROCESSING_REQUIRED to
 // terminate the completion processing of the IRP.
 return STATUS_MORE_PROCESSING_REQUIRED;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_close_socket

disconnect of the socket before closing the socket. For more information about
disconnecting a socket, see Disconnecting a Socket from a Destination.

Registering an Extension Interface
Article • 12/15/2021

After a Winsock Kernel (WSK) application has successfully created a socket, it can
register that socket for one or more of the extension interfaces that are supported by
the WSK subsystem. A WSK application determines which set of extension interfaces are
supported by the WSK subsystem by examining the Version member of the
WSK_PROVIDER_DISPATCH structure that the WSK subsystem returned to the
application during attachment.

Each extension interface is defined by an NPI that is independent of the WSK NPI. Note,
however, that the NPIs for extension interfaces do not support NPI-specific
characteristics.

A WSK application registers for an extension interface by executing the
SIO_WSK_REGISTER_EXTENSION socket IOCTL operation on the socket. For more
information about executing socket IOCTL operations, see Performing Control
Operations on a Socket.

If a WSK application attempts to register a socket for an extension interface that is not
supported by the WSK subsystem, the SIO_WSK_REGISTER_EXTENSION socket IOCTL
operation will return STATUS_NOT_SUPPORTED.

For example, suppose that an extension interface is defined as in the following code
example.

C++

const NPIID EXAMPLE_EXTIF_NPIID = {...};

typedef struct _EXAMPLE_EXTIF_PROVIDER_DISPATCH {
 .
 . // Function pointers for the functions that are
 . // defined by the extension interface.
 .
} EXAMPLE_EXTIF_PROVIDER_DISPATCH, *PEXAMPLE_EXTIF_PROVIDER_DISPATCH;

typedef struct _EXAMPLE_EXTIF_CLIENT_DISPATCH {
 .
 . // Function pointers for the callback functions
 . // that are defined by the extension interface.
 .
} EXAMPLE_EXTIF_CLIENT_DISPATCH, *PEXAMPLE_EXTIF_CLIENT_DISPATCH;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

The following shows how a WSK application can register for this extension interface for
a connection-oriented socket.

C++

// Client dispatch structure for the extension interface
const EXAMPLE_EXTIF_CLIENT_DISPATCH ExtIfClientDispatch = {
 .
 . // The WSK application's callback functions
 . // for the extension interface
 .
};

// Context structure type for the example extension interface
typedef struct _EXAMPLE_EXTIF_CLIENT_CONTEXT
{
 const EXAMPLE_EXTIF_PROVIDER_DISPATCH *ExtIfProviderDispatch;
 PVOID ExtIfProviderContext;
 .
 . // Other application-specific members
 .
} EXAMPLE_EXTIF_CLIENT_CONTEXT, *PEXAMPLE_EXTIF_CLIENT_CONTEXT;

// Function to register the example extension interface
NTSTATUS
 RegisterExampleExtIf(
 PWSK_SOCKET Socket,
 PEXAMPLE_EXTIF_CLIENT_CONTEXT ExtIfClientContext
)
{
 PWSK_PROVIDER_CONNECTION_DISPATCH Dispatch;
 WSK_EXTENSION_CONTROL_IN ExtensionControlIn;
 WSK_EXTENSION_CONTROL_OUT ExtensionControlOut;
 NTSTATUS Status;

 // Get pointer to the socket's provider dispatch structure
 Dispatch =
 (PWSK_PROVIDER_CONNECTION_DISPATCH)(Socket->Dispatch);

 // Fill in the WSK_EXTENSION_CONTROL_IN structure
 ExtensionControlIn.NpiId = &EXAMPLE_EXTIF_NPIID;
 ExtensionControlIn.ClientContext = ExtIfClientContext;
 ExtensionControlIn.ClientDispatch = &ExtIfClientDispatch;

 // Initiate the IOCTL operation on the socket
 Status =
 Dispatch->WskControlSocket(
 Socket,
 WskIoctl,
 SIO_WSK_REGISTER_EXTENSION,
 0,
 sizeof(WSK_EXTENSION_CONTROL_IN),
 &ExtensionControlIn,
 sizeof(WSK_EXTENSION_CONTROL_OUT),

A WSK application registers for extension interfaces on a socket-by-socket basis.

 &ExtensionControlOut,
 NULL,
 NULL // No IRP used for this IOCTL operation
);

 // Check result
 if (Status == STATUS_SUCCESS)
 {
 // Save provider dispatch table and provider context
 ExtIfClientContext->ExtIfProviderDispatch =
 (const EXAMPLE_EXTIF_PROVIDER_DISPATCH *)
 ExtensionControlOut.ProviderDispatch;
 ExtIfClientContext->ExtIfProviderContext =
 ExtensionControlOut.ProviderContext;
 }

 // Return the status of the call to WskControlSocket()
 return Status;
}

Unregistering a Winsock Kernel
Application
Article • 12/15/2021

A Winsock Kernel (WSK) application that has successfully registered as a WSK client with
the WskRegister function must ensure that WskDeregister has been called, and the call
has returned, before the driver's Unload function returns. A WSK application that has
called WskRegister successfully should never unload without calling WskDeregister,
which will wait to unregister the WSK client object until all captured instances of the
WSK provider NPI are released with WskReleaseProviderNPI and all sockets are closed
by the WSK application. If there are pending IRPs that were passed to the functions in
WSK_PROVIDER_DISPATCH, WskDeregister will also wait until those pending IRPs
complete. A WSK application should never call the functions in
WSK_PROVIDER_DISPATCH after WskReleaseProviderNPI is called.

For example:

C++

A WSK application is not necessarily required to always call WskDeregister from within
its Unload function. For example, if a WSK application is a subcomponent of a complex
driver, the WSK application's call to WskDeregister might occur when the WSK
application subcomponent is deactivated. In such a scenario, before the driver returns
from its Unload function, it must still ensure that the WSK application has been
successfully unregistered with a call to WskDeregister.

// Unload function
VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
)
{
 // Unregister the WSK application
 WskDeregister(
 &WskRegistration
);

}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskreleaseprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

Resolving Host Names and IP Addresses
Article • 12/15/2021

Beginning with Windows 7, a kernel name resolution feature allows kernel-mode
components to perform protocol-independent translation between Unicode host names
and transport addresses. You can use the following Winsock Kernel (WSK) client-level
functions to perform this name resolution:

WskFreeAddressInfo

WskGetAddressInfo

WskGetNameInfo

These functions perform name-address translation similarly to the user-mode functions
FreeAddrInfoW, GetAddrInfoW, and GetNameInfoW, respectively.

To take advantage of this feature, you must compile or recompile your driver with the
NTDDI_VERSION macro set to NTDDI_WIN7 or greater.

In order for your driver to use kernel name resolution functionality, it must perform the
following calling sequence:

1. Call WskRegister to register with WSK.

2. Call WskCaptureProviderNPI to capture the WSK provider Network Programming
Interface (NPI).

3. When you are done using the WSK provider NPI, call WskReleaseProviderNPI to
release the WSK provider NPI.

4. Call WskDeregister to deregister the WSK application.

The following code example uses the above calling sequence to show how a WSK
application can call the WskGetAddressInfo function to translate a host name to a
transport address.

C++

NTSTATUS
SyncIrpCompletionRoutine(
 __in PDEVICE_OBJECT Reserved,
 __in PIRP Irp,
 __in PVOID Context
)
{

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_free_address_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_get_address_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_get_name_info
https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-freeaddrinfow
https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-getaddrinfow
https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-getnameinfow
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskreleaseprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister

 PKEVENT compEvent = (PKEVENT)Context;
 UNREFERENCED_PARAMETER(Reserved);
 UNREFERENCED_PARAMETER(Irp);
 KeSetEvent(compEvent, 2, FALSE);
 return STATUS_MORE_PROCESSING_REQUIRED;
}

NTSTATUS
KernelNameResolutionSample(
 __in PCWSTR NodeName,
 __in_opt PCWSTR ServiceName,
 __in_opt PADDRINFOEXW Hints,
 __in PWSK_PROVIDER_NPI WskProviderNpi
)
{
 NTSTATUS status;
 PIRP irp;
 KEVENT completionEvent;
 UNICODE_STRING uniNodeName, uniServiceName, *uniServiceNamePtr;
 PADDRINFOEXW results;

 PAGED_CODE();
 //
 // Initialize UNICODE_STRING structures for NodeName and ServiceName
 //

 RtlInitUnicodeString(&uniNodeName, NodeName);

 if(ServiceName == NULL) {
 uniServiceNamePtr = NULL;
 }
 else {
 RtlInitUnicodeString(&uniServiceName, ServiceName);
 uniServiceNamePtr = &uniServiceName;
 }

 //
 // Use an event object to synchronously wait for the
 // WskGetAddressInfo request to be completed.
 //

 KeInitializeEvent(&completionEvent, SynchronizationEvent, FALSE);

 //
 // Allocate an IRP for the WskGetAddressInfo request, and set the
 // IRP completion routine, which will signal the completionEvent
 // when the request is completed.
 //

 irp = IoAllocateIrp(1, FALSE);
 if(irp == NULL) {
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 IoSetCompletionRoutine(irp, SyncIrpCompletionRoutine,

 &completionEvent, TRUE, TRUE, TRUE);

 //
 // Make the WskGetAddressInfo request.
 //

 WskProviderNpi->Dispatch->WskGetAddressInfo (
 WskProviderNpi->Client,
 &uniNodeName,
 uniServiceNamePtr,
 NS_ALL,
 NULL, // Provider
 Hints,
 &results,
 NULL, // OwningProcess
 NULL, // OwningThread
 irp);

 //
 // Wait for completion. Note that processing of name resolution results
 // can also be handled directly within the IRP completion routine, but
 // for simplicity, this example shows how to wait synchronously for
 // completion.
 //

 KeWaitForSingleObject(&completionEvent, Executive,
 KernelMode, FALSE, NULL);

 status = irp->IoStatus.Status;

 IoFreeIrp(irp);

 if(!NT_SUCCESS(status)) {
 return status;
 }

 //
 // Process the name resolution results by iterating through the
addresses
 // within the returned ADDRINFOEXW structure.
 //

 results; // your code here

 //
 // Release the returned ADDRINFOEXW structure when no longer needed.
 //

 WskProviderNpi->Dispatch->WskFreeAddressInfo(
 WskProviderNpi->Client,
 results);

 return status;
}

WSK_CACHE_SD
Article • 03/03/2023

A WSK application uses the WSK_CACHE_SD client control operation to obtain a cached
copy of a security descriptor that can be passed to the WskSocket, WskSocketConnect,
and WskControlSocket functions.

To obtain a cached copy of a security descriptor, a WSK application calls the
WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_CACHE_SD

InputSize sizeof(PSECURITY_DESCRIPTOR)

InputBuffer A pointer to a PSECURITY_DESCRIPTOR-typed
variable. This variable contains a pointer to the
SECURITY_DESCRIPTOR structure that defines
the uncached security descriptor that is being
cached.

OutputSize sizeof(PSECURITY_DESCRIPTOR)

OutputBuffer A pointer to a PSECURITY_DESCRIPTOR-typed
variable. This variable receives a pointer to a
SECURITY_DESCRIPTOR structure that describes
the cached security descriptor.

OutputSizeReturned NULL

Irp NULL

A WSK application must release the cached copy of the security descriptor by using the
WSK_RELEASE_SD client control operation when the security descriptor is no longer
needed.

See the reference page for the SECURITY_DESCRIPTOR structure for more information.

The Irp parameter must be NULL for this client control operation.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-security_descriptor

Header Wsk.h (include Wsk.h)

WSK_RELEASE_SD
Article • 03/03/2023

A WSK application uses the WSK_RELEASE_SD client control operation to release a
cached copy of a security descriptor that either was previously obtained by using the
WSK_CACHE_SD client control operation or was retrieved by using the
SO_WSK_SECURITY socket option.

To release a cached copy of a security descriptor, a WSK application calls the
WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_RELEASE_SD

InputSize sizeof(PSECURITY_DESCRIPTOR)

InputBuffer A pointer to a PSECURITY_DESCRIPTOR-typed
variable. This variable contains a pointer to the
SECURITY_DESCRIPTOR structure that defines
the cached security descriptor that is being
released.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp NULL

See the reference page for the SECURITY_DESCRIPTOR structure for more information.

The Irp parameter must be NULL for this client control operation.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-security_descriptor

WSK_SET_STATIC_EVENT_CALLBACKS
Article • 03/03/2023

A WSK application uses the WSK_SET_STATIC_EVENT_CALLBACKS client control
operation to automatically enable certain event callback functions on every socket that
it creates. The event callback functions that are enabled in this manner are always
enabled and cannot be disabled or re-enabled later by the WSK application. However, if
a WSK application always enables certain event callback functions on every socket that it
creates, the application should use this method to automatically enable those event
callback functions because it will yield much better performance.

If a WSK application uses the WSK_SET_STATIC_EVENT_CALLBACKS client control
operation, it must do so before it creates any sockets.

To automatically enable certain event callback functions on every socket it creates, a
WSK application calls the WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_SET_STATIC_EVENT_CALLBACKS

InputSize sizeof(WSK_EVENT_CALLBACK_CONTROL)

InputBuffer A pointer to a
WSK_EVENT_CALLBACK_CONTROL structure
that specifies the desired event callback
functions to be automatically enabled

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp NULL

A WSK application can specify a combination of event flags for different socket types in
the EventMask member of the WSK_EVENT_CALLBACK_CONTROL structure. When the
WSK application creates a new socket, the WSK subsystem will automatically enable the
appropriate event callback functions for the specific category of WSK socket that is
being created.

For more information about the event flags for the standard WSK event callback
functions, see SO_WSK_EVENT_CALLBACK.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_event_callback_control
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_event_callback_control

For more information about enabling and disabling a socket's event callback functions,
see Enabling and Disabling Event Callback Functions.

The Irp parameter must be NULL for this client control operation.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

WSK_TDI_BEHAVIOR
Article • 03/03/2023

Note The TDI feature is deprecated and will be removed in future versions of Microsoft
Windows.

A WSK application uses the WSK_TDI_BEHAVIOR client control operation to control
whether the WSK subsystem will divert network I/O to TDI transports. A WSK application
uses this client control operation only if it needs to override the default behavior of the
WSK subsystem.

If a WSK application uses the WSK_TDI_BEHAVIOR client control operation, it must do so
before it creates any sockets.

To control whether the WSK subsystem will divert network I/O to TDI transports, a WSK
application calls the WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_TDI_BEHAVIOR

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG typed variable that
contains flags that control the behavior of the
WSK subsystem.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp NULL

The following flags are defined for the WSK_TDI_BEHAVIOR client control operation.

WSK_TDI_BEHAVIOR_BYPASS_TDI
If a native WSK transport exists for the address family, socket type, and protocol that are
specified when the WSK application creates a socket, then, if this flag is set, the WSK
subsystem ignores any TDI filter drivers and always uses the native WSK transport.

The default behavior is that if a TDI filter driver is detected for the address family, socket
type, and protocol that are specified when the WSK application creates a new socket,
the WSK subsystem diverts the network I/O for the new socket to the TDI transport so
that the network traffic and other socket operations pass through the TDI filter driver.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565094(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client

The Irp parameter must be NULL for this client control operation.

Note TDI is not supported in Microsoft Windows versions after Windows Vista.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

WSK_TDI_DEVICENAME_MAPPING
Article • 03/03/2023

A WSK application uses the WSK_TDI_DEVICENAME_MAPPING client control operation
to map combinations of address family, socket type, and protocol to device names of
TDI transports. A WSK application uses this client control operation only if it requires
support for TDI transports. When a WSK application creates a socket, the WSK
subsystem refer to the list of mappings only if there is no native support for the
combination of address family, socket type, and protocol specified by the WSK
application.

If a WSK application uses the WSK_TDI_DEVICENAME_MAPPING client control operation
to map combinations of address family, socket type, and protocol to device names of
TDI transports, it must do so before it creates any sockets.

To map combinations of address family, socket type, and protocol to device names of
TDI transports, a WSK application calls the WskControlClient function with the following
parameters.

Parameter Value

ControlCode WSK_TDI_DEVICENAME_MAPPING

InputSize sizeof(WSK_TDI_MAP_INFO)

InputBuffer A pointer to a WSK_TDI_MAP_INFO structure
that contains a list of mappings of
combinations of address family, socket type,
and protocol to TDI device names.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp NULL

For more information about using TDI transports, see Using TDI Transports.

The Irp parameter must be NULL for this client control operation.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565094(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_tdi_map_info
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565091(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

WSK_TRANSPORT_LIST_CHANGE
Article • 03/03/2023

A WSK application uses the WSK_TRANSPORT_LIST_CHANGE client control operation to
receive notification if the list of available network transports changes.

To receive notification of when the list of available network transports changes, a WSK
application calls the WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_TRANSPORT_LIST_CHANGE

InputSize 0

InputBuffer NULL

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp A pointer to an IRP that is queued by the WSK
subsystem until the list of available network
transports changes. The WSK subsystem will
complete the IRP after either a new network
transport is added or an existing network
transport is removed.

An IRP is required for this client control operation.

The WSK subsystem will cancel any pending IRPs if the WSK application calls
WskDeregister to detach itself from the WSK subsystem.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister

WSK_TRANSPORT_LIST_QUERY
Article • 03/03/2023

A WSK application uses the WSK_TRANSPORT_LIST_QUERY client control operation to
retrieve a list of available network transports that can be specified when creating a new
socket.

To retrieve a list of available network transports, a WSK application calls the
WskControlClient function with the following parameters.

Parameter Value

ControlCode WSK_TRANSPORT_LIST_QUERY

InputSize 0

InputBuffer NULL

OutputSize The size, in bytes, of the array of structures that
is pointed to by the OutputBuffer parameter

OutputBuffer A pointer to an array of WSK_TRANSPORT
structures that receives the list of available
network transports

OutputSizeReturned A pointer to a SIZE_T-typed variable that
receives the number of bytes of data that are
copied into the array of structures that is
pointed to by the OutputBuffer parameter

Irp NULL

A WSK application can specify zero in the OutputSize parameter and NULL in the
OutputBuffer parameter to determine the size of the array of WSK_TRANSPORT
structures, in bytes, that is required to contain the complete list of available network
transports. In such a situation, the call to the WskControlClient function returns
STATUS_BUFFER_OVERFLOW, and the variable that is pointed to by the
OutputSizeReturned parameter contains the required buffer size. The application can
then allocate a buffer that is large enough to contain the complete list of available
network transports and can call the WskControlClient function a second time, specifying
the parameters that are shown in the preceding table.

The Irp parameter must be NULL for this client control operation.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_transport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_transport
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_QUERY_IDEAL_SEND_BACKLO
G
Article • 03/03/2023

The SIO_WSK_QUERY_IDEAL_SEND_BACKLOG socket I/O control operation allows a WSK
application to query the ideal send backlog size for a connection-oriented socket. This
socket I/O control operation applies only to connection-oriented sockets.

The ideal send backlog size for a connection-oriented socket is the optimal amount of
send data that needs to be kept outstanding (that is, passed to the WSK subsystem but
not yet completed) to keep the socket's data stream full at all times. A WSK application
can use this size to incrementally probe and lock the buffers of data to be sent based on
the underlying connection's flow control state.

If a WSK application uses this socket I/O control operation to query the ideal send
backlog size, it must do so after the connection-oriented socket has been connected to
a remote transport address.

To query the ideal send backlog size for a connection-oriented socket, a WSK
application calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_QUERY_IDEAL_SEND_BACKLOG

Level 0

InputSize 0

InputBuffer NULL

OutputSize sizeof(SIZE_T)

OutputBuffer A pointer to a SIZE_T-typed variable that
receives the current ideal send backlog size

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to query the ideal send backlog size for a connection-oriented socket.

A connection-oriented socket can be notified of changes to the ideal send backlog size
by enabling its WskSendBacklogEvent event callback function.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_backlog_event

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_QUERY_INSPECT_ID
Article • 03/03/2023

The SIO_WSK_QUERY_INSPECT_ID socket I/O control operation allows a WSK application
to query the inspection identification data for a connection-oriented socket that has
been successfully accepted on a listening socket that has conditional accept mode
enabled. This socket I/O control operation applies only to connection-oriented sockets
that have been accepted on a listening socket that has conditional accept mode
enabled.

To query the inspection identification data for a connection-oriented socket, a WSK
application calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_QUERY_INSPECT_ID

Level 0

InputSize 0

InputBuffer NULL

OutputSize sizeof(WSK_INSPECT_ID)

OutputBuffer A pointer to a WSK_INSPECT_ID structure that
receives the inspection identification data

OutputSizeReturned A pointer to a ULONG-typed variable that
receives the number of bytes of data that is
copied into the buffer that is pointed to by the
OutputBuffer parameter.

Irp NULL

If a WSK application calls the WskControlSocket function to query the inspection
identification data for any socket other than a connection-oriented socket that was
accepted on a listening socket that has conditional accept mode enabled, the
WskControlSocket function returns STATUS_INVALID_DEVICE_REQUEST.

For more information about conditionally accepting connections, see Listening for and
Accepting Incoming Connections.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_QUERY_RECEIVE_BACKLOG
Article • 03/03/2023

The SIO_WSK_QUERY_RECEIVE_BACKLOG socket I/O control operation allows a WSK
application to query the current backlog of received data for a connection-oriented
socket. This socket I/O control operation applies only to connection-oriented sockets.

If a WSK application uses this socket I/O control operation to query the receive backlog,
it must do so after the connection-oriented socket has been connected to a remote
transport address.

To query the current backlog of received data for a connection-oriented socket, a WSK
application calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_QUERY_RECEIVE_BACKLOG

Level 0

InputSize 0

InputBuffer NULL

OutputSize sizeof(SIZE_T)

OutputBuffer A pointer to a SIZE_T-typed variable that
receives the current backlog of received data

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to query the current backlog of received data for a connection-oriented socket.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

SIO_WSK_REGISTER_EXTENSION
Article • 03/03/2023

The SIO_WSK_REGISTER_EXTENSION socket I/O control operation allows a WSK
application to register for an extension interface that is supported by the WSK
subsystem. This socket I/O control operation applies to all socket types.

To register an extension interface, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_REGISTER_EXTENSION

Level 0

InputSize sizeof(WSK_EXTENSION_CONTROL_IN)

InputBuffer A pointer to a WSK_EXTENSION_CONTROL_IN
structure. This structure contains a pointer to
the Network Programming Interface (NPI)
identifier for the extension interface and
pointers to the dispatch table and to the
context for the WSK application's
implementation of the extension interface.

OutputSize sizeof(WSK_EXTENSION_CONTROL_OUT)

OutputBuffer A pointer to a
WSK_EXTENSION_CONTROL_OUT structure.
This structure receives a pointer to the dispatch
table and a pointer to the context for the WSK
subsystem's implementation of the extension
interface.

OutputSizeReturned NULL

A WSK application does not specify a pointer to an IRP when calling the
WskControlSocket function to register an extension interface.

The contents of the dispatch table structures are extension interface-specific.

For more information about registering an extension interface, see Registering an
Extension Interface.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_extension_control_in
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_extension_control_out

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_SET_REMOTE_ADDRESS
Article • 03/03/2023

The SIO_WSK_SET_REMOTE_ADDRESS socket I/O control operation allows a WSK
application to specify a fixed remote transport address for a datagram socket. This
socket I/O control operation applies only to datagram sockets.

If a WSK application sets a fixed remote transport address for a datagram socket, all
datagrams that are sent over the socket are sent to the fixed remote transport address,
and only datagrams that are received from the fixed remote transport address are
accepted.

A WSK application can override a fixed remote transport address when it sends a
datagram over the socket by specifying an alternative remote transport address in the
RemoteAddress parameter when calling the WskSendTo function. In this situation, the
datagram is sent to the alternative remote transport address instead of the fixed remote
transport address. However, any responses that are sent back from an alternative
remote transport address will not be accepted.

If a WSK application uses this socket I/O control operation to specify a fixed remote
transport address, it must do so after the datagram socket has been bound to a local
transport address.

To set a fixed remote transport address for a datagram socket, a WSK application calls
the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_SET_REMOTE_ADDRESS

Level 0

InputSize The size of the SOCKADDR structure pointed to
by the InputBuffer parameter.

InputBuffer A pointer to a structure that specifies a fixed
remote transport address for the datagram
socket. The pointer must be a pointer to the
specific SOCKADDR structure type that
corresponds to the address family that the WSK
application specified when it created the
datagram socket.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_to
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To clear a fixed remote transport address for a datagram socket, a WSK application calls
the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_SET_REMOTE_ADDRESS

Level 0

InputSize 0

InputBuffer NULL

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or clear a fixed remote transport address for a datagram socket.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_SET_SENDTO_ADDRESS
Article • 03/03/2023

The SIO_WSK_SET_SENDTO_ADDRESS socket I/O control operation allows a WSK
application to specify a fixed destination transport address for a datagram socket. This
socket I/O control operation applies only to datagram sockets.

If a WSK application sets a fixed destination transport address for a datagram socket, all
datagrams that are sent over the socket are sent to the fixed destination transport
address. However, datagrams that are received on the socket will be accepted from any
transport address.

A WSK application can override a fixed destination transport address when it sends a
datagram over the socket by specifying an alternative remote transport address in the
RemoteAddress parameter when calling the WskSendTo function. In this situation, the
datagram is sent to the alternative remote transport address instead of the fixed
destination transport address.

If a WSK application uses this socket I/O control operation to specify a fixed destination
transport address, it must do so after the datagram socket has been bound to a local
transport address.

To set a fixed destination transport address for a datagram socket, a WSK application
calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_SET_SENDTO_ADDRESS

Level 0

InputSize The size of the SOCKADDR structure that is
pointed to by the InputBuffer parameter.

InputBuffer A pointer to a structure that specifies a fixed
destination transport address for the datagram
socket. The pointer must be a pointer to the
specific SOCKADDR structure type that
corresponds to the address family that the WSK
application specified when it created the
datagram socket.

OutputSize 0

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_to
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

OutputBuffer NULL

OutputSizeReturned NULL

To clear a fixed destination transport address for a datagram socket, a WSK application
calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_WSK_SET_SENDTO_ADDRESS

Level 0

InputSize 0

InputBuffer NULL

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or clear a fixed destination transport address for a datagram socket.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Wsk.h (include Wsk.h)

Requirements

SIO_WSK_SET_TCP_SILENT_MODE
control code
Article • 03/03/2023

The SIO_WSK_SET_TCP_SILENT_MODE socket I/O control operation allows a WSK client
to enable silent mode on the TCP connection.

A TCP connection in silent mode will not send any data or control packets on the wire.
This socket I/O control operation applies only to connected TCP sockets. It is not
supported on loopback.

To perform this operation, call the WskControlSocket function with the following
parameters.

RequestType [in]
Use WskIoctl for this operation.

ControlCode [in]
The control code for the operation. Use SIO_WSK_SET_TCP_SILENT_MODE for this
operation.

Level
Use zero for this operation.

InputSize [in]
Use zero for this operation.

InputBuffer [in]
Use NULL for this operation.

OutputSize [out]
Use zero for this operation.

OutputBuffer [in]
Use NULL for this operation.

OutputSizeReturned [out]
Use NULL for this operation.

Parameters

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to enable silent mode.

The WSK application before calling WskControlSocket to enable silent mode must
ensure that there are no pending send or disconnect requests.

WskControlSocket will return STATUS_SUCCESS when silent mode is enabled. Once
silent mode is enabled, send and disconnect requests will be failed with
STATUS_INVALID_DEVICE_STATE and all received control or data packets will be
discarded silently.

The only valid operation on this socket is WskCloseSocket.

Version Available in Windows 8, Windows Server 2012,
and later.

Header Wsk.h (include Wsk.h)

WskCloseSocket

WskControlSocket

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_close_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_close_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

SO_WSK_EVENT_CALLBACK
Article • 03/03/2023

The SO_WSK_EVENT_CALLBACK socket option allows a WSK application to enable and
disable a socket's event callback functions. This socket option applies only to listening
sockets, datagram sockets, connection-oriented sockets, and basic sockets that have
registered an extension interface for which at least one event callback function is
defined.

If a WSK application uses this socket option to enable or disable event callback
functions on either a listening socket or a datagram socket, it must do so after the
socket has been bound to a local transport address.

If a WSK application uses this socket option to enable or disable event callback
functions on a connection-oriented socket, it must do so after the socket has been
connected to a remote transport address.

To enable or disable event callback functions on a socket, a WSK application calls the
WskControlSocket function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_WSK_EVENT_CALLBACK

Level SOL_SOCKET

InputSize sizeof(WSK_EVENT_CALLBACK_CONTROL)

InputBuffer A pointer to a
WSK_EVENT_CALLBACK_CONTROL structure

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

A WSK application does not specify a pointer to an IRP when calling the
WskControlSocket function to enable event callback functions on a socket.

A WSK application can optionally specify a pointer to an IRP when calling the
WskControlSocket function to disable an event callback function on a socket.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_event_callback_control

When a WSK application calls WskControlSocket to disable an event callback function,
the WSK subsystem behaves as follows:

If there are no in-progress calls to the event callback function that is being
disabled when the WSK application calls the WskControlSocket function, the event
callback function is disabled and the WskControlSocket function returns
STATUS_SUCCESS. If the WSK application specifies an IRP, the IRP is completed
with success status.

If there are in-progress calls to the event callback function that is being disabled
when the WSK application calls the WskControlSocket function and the WSK
application specified an IRP, the WskControlSocket function returns
STATUS_PENDING. The WSK subsystem disables the event callback function and
completes the IRP after all in-progress calls to the event callback function have
returned.

If there are in-progress calls to the event callback function that is being disabled
when the WSK application calls the WskControlSocket function and the WSK
application did not specify an IRP, the WskControlSocket function returns
STATUS_EVENT_PENDING. The WSK subsystem disables the event callback function
after all in-progress calls to the event callback function have returned.

When enabling or disabling any of the standard WSK event callback functions, a WSK
application sets the NpiId member of the WSK_EVENT_CALLBACK_CONTROL structure
to a pointer to the WSK Network Programming Interface (NPI) identifier,
NPI_WSK_INTERFACE_ID.

When enabling or disabling any callback functions for an extension interface, a WSK
application sets the NpiId member of the WSK_EVENT_CALLBACK_CONTROL structure
to a pointer to the NPI identifier for that extension interface.

When enabling event callback functions, a WSK application can simultaneously enable
any combination of the event callback functions that are valid for a particular category
of WSK socket. The WSK application simultaneously enables these combinations by
setting the EventMask member of the WSK_EVENT_CALLBACK_CONTROL structure to a
bitwise OR of the event flags for all of the event callback functions that are being
enabled.

When disabling event callback functions, a WSK application must disable each event
callback function independently. A WSK application independently disables an event
callback function by setting the EventMask member of the
WSK_EVENT_CALLBACK_CONTROL structure to a bitwise OR of the event flag for the
event callback function that is being disabled and the WSK_EVENT_DISABLE flag.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_event_callback_control

The following table shows the valid event flags for a listening socket.

Event flag Event callback function

WSK_EVENT_ACCEPT WskAcceptEvent

The following table shows the valid event flags for a datagram socket.

Event flag Event callback function

WSK_EVENT_RECEIVE_FROM WskReceiveFromEvent

The following table shows the valid event flags for a connection-oriented socket.

Event flag Event callback function

WSK_EVENT_DISCONNECT WskDisconnectEvent

WSK_EVENT_RECEIVE WskReceiveEvent

WSK_EVENT_SEND_BACKLOG WskSendBacklogEvent

A listening socket can automatically enable event callback functions on connection-
oriented sockets that are accepted by the listening socket. A WSK application
automatically enables these callback functions by enabling the connection-oriented
socket event callback functions on the listening socket. The event callback functions are
automatically enabled on an accepted connection-oriented socket only if the socket is
accepted by the listening socket's WskAcceptEvent event callback function. If the
connection-oriented socket is accepted by the listening socket's WskAccept function,
the accepted socket's event callback functions are not automatically enabled.

After any connection-oriented event callback functions are enabled on a listening
socket, they cannot be disabled on the listening socket. If the WskAcceptEvent event
callback function is disabled and then re-enabled on a listening socket, any connection-
oriented event callback functions that were originally enabled on that listening socket
will continue to be applied to all connection-oriented sockets that are accepted by the
WskAcceptEvent event callback function.

For more information about enabling and disabling a socket's event callback functions,
see Enabling and Disabling Event Callback Functions.

Version Available in Windows Vista and later versions of

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_from_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send_backlog_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept

the Windows operating systems.

Header Wsk.h (include Wsk.h)

SO_WSK_SECURITY
Article • 03/03/2023

The SO_WSK_SECURITY socket option allows a WSK application to either apply a
security descriptor to a socket or retrieve a cached copy of a socket's security descriptor
from a socket. The security descriptor controls the sharing of the local transport address
to which the socket is bound.

This socket option applies only to listening sockets, datagram sockets, and connection-
oriented sockets.

If a WSK application uses this socket option to apply a security descriptor to a socket, it
must do so before the socket is bound to a local transport address.

To apply a security descriptor to a socket, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_WSK_SECURITY

Level SOL_SOCKET

InputSize sizeof(PSECURITY_DESCRIPTOR)

InputBuffer A pointer to a PSECURITY_DESCRIPTOR-typed
variable. This variable must contain a pointer to
a cached copy of a security descriptor that was
obtained by calling the WskControlClient
function with the WSK_CACHE_SD control
code.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to apply a security descriptor to a socket.

If a WSK application uses this socket option to apply a security descriptor to a socket,
the new security descriptor replaces any security descriptor that was previously applied
to the socket.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client

A WSK application must not release the cached copy of the security descriptor until after
the IRP is completed.

A WSK application can also apply a security descriptor to a socket when the socket is
initially created by specifying a pointer to a cached copy of a security descriptor in the
SecurityDescriptor parameter when it calls the WskSocket or WskSocketConnect
function.

If a WSK application does not apply a security descriptor to a socket, the WSK
subsystem uses a default security descriptor that does not allow sharing of the local
transport address.

To retrieve a cached copy of a socket's security descriptor from a socket, a WSK
application calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskGetOption

ControlCode SO_WSK_SECURITY

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

OutputSize sizeof(PSECURITY_DESCRIPTOR)

OutputBuffer A pointer to a PSECURITY_DESCRIPTOR-typed
variable. This variable receives a pointer to a
cached copy of the socket's security descriptor.

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to retrieve a cached copy of a socket's security descriptor from a socket.

A WSK application must call the WskControlClient function with the WSK_RELEASE_SD
control code to release the cached copy of the security descriptor when it is no longer
needed.

See the reference page for the SECURITY_DESCRIPTOR structure for more information.

Version Available in Windows Vista and later versions of

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-security_descriptor

the Windows operating systems.

Header Wsk.h (include Wsk.h)

WSK_CLIENT
Article • 03/03/2023

The WSK_CLIENT data type defines the WSK subsystem's binding context for its
attachment to a WSK application.

c++

PWSK_CLIENT
The contents of the WSK_CLIENT structure are opaque to a WSK application.

When a WSK application calls the WskCaptureProviderNPI function, the WSK subsystem
returns a pointer to a WSK_CLIENT structure to the WSK application by means of the
WskProviderNpi parameter. The WSK subsystem uses this structure to track the state of
the binding between the WSK application and the WSK subsystem. A WSK application
passes this pointer as a parameter to all the functions in WSK_PROVIDER_DISPATCH
(WskControlClient, WskSocket, and WskSocketConnect).

For more information, see Registering a Winsock Kernel Application.

Version: Available in Windows Vista and later versions of the Windows operating
systems.

Header: Wsk.h (include Wsk.h)

WskCaptureProviderNPI
WskControlClient
WskSocket
WskSocketConnect
WSK_PROVIDER_DISPATCH

typedef PVOID PWSK_CLIENT;

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

Porting TDI Drivers to Winsock Kernel
Article • 12/15/2021

To port your TDI driver to Winsock Kernel (WSK), you'll need to convert TDI tasks to their
WSK equivalents as shown in the following table.

Tasks TDI Winsock Kernel (WSK)

Register and
Deregister

N/A WskRegister and WskDeregister

Capture and Release
Provider NPI

N/A WskCaptureProviderNPI and
WskReleaseProviderNPI

Create Address File
Object

Create EaBuffer, then call
ZwCreateFile

No longer necessary. See WskSocket.

Create Connection
File Object

Create connection EaBuffer,
then call ZwCreateFile

No longer necessary. See WskSocket
and WskAcceptEvent.

Associate Address TDI_ASSOCIATE_ADDRESS WskBind

Set Event Handlers TDI_SET_EVENT_HANDLER WskControlSocket or static variation
using WskControlClient

Clear Event Handlers TDI_SET_EVENT_HANDLER WskControlSocket

Connect TDI_CONNECT WskConnect

Disconnect TDI_DISCONNECT WskDisconnect

Send TDI_SEND WskSend

Receive TDI_RECEIVE WskReceive

Disassociate Address TDI_DISASSOCIATE_ADDRESS N/A

Receive Handler ClientEventReceive,
TDI_RECEIVE

WskReceiveEvent

Connect Handler ClientEventConnect,
TDI_CONNECT

WskAccept

Close Socket or
Connection

ObDereferenceObject or
ZwClose

WskCloseSocket

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskcaptureprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskreleaseprovidernpi
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntcreatefile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntcreatefile
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept_event
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565080(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_bind
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565576(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_client
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565576(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565083(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_connect
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565090(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_disconnect
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565549(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_send
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565131(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565089(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545260(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565131(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_receive_event
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff544257(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565083(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_accept
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obdereferenceobject
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntclose
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_close_socket

Sharing Transport Addresses
Article • 12/15/2021

In most situations, a Winsock Kernel (WSK) application cannot bind a socket to a local
transport address that is already in use by another socket. WSK applications can use the
SO_EXCLUSIVEADDRUSE and SO_REUSEADDR socket options to control the sharing of the
local transport address to which a socket is bound. Neither of these socket options are set
for a socket by default. For more information about setting socket options, see Performing
Control Operations on a Socket.

The following table shows the result of binding a second socket to a local transport address
that is already in use by another socket. The Wildcard and Specific cases specify whether the
socket is bound to a wildcard local transport address or to a specific local transport address.

Second bind First bind

No socket options
(default)

SO_REUSEADDR SO_EXCLUSIVEADDRUSE

Wildcard Specific Wildcard Specific Wildcard Specific

No socket options
(default)

Wildcard INUSE SUCCESS INUSE SUCCESS INUSE SUCCESS

Specific CHECK INUSE CHECK DENIED DENIED INUSE

SO_REUSEADDR Wildcard DENIED SUCCESS SUCCESS SUCCESS DENIED SUCCESS

Specific CHECK DENIED SUCCESS SUCCESS DENIED DENIED

SO_EXCLUSIVEADDRUSE Wildcard INUSE INUSE INUSE INUSE INUSE INUSE

Specific CHECK INUSE CHECK INUSE DENIED INUSE

The results are defined as follows:

SUCCESS
The bind operation for the second socket succeeds. The WSK subsystem returns a status of
STATUS_SUCCESS.

INUSE
The bind operation on the second socket fails. The WSK subsystem returns a status of
STATUS_ADDRESS_ALREADY_EXISTS.

DENIED
The bind operation on the second socket fails. The WSK subsystem returns a status of
STATUS_ACCESS_DENIED.

CHECK
An access check is performed to determine if the bind operation on the second socket
succeeds or fails. If access is granted, the bind succeeds and the WSK subsystem returns a
status of STATUS_SUCCESS. If access is denied, the bind fails and the WSK subsystem
returns a status of STATUS_ACCESS_DENIED.

In the cases defined in the previous table where an access check is performed, the second
socket's security context is checked against the first socket's security descriptor.

A socket's security context is determined by the OwningProcess and OwningThread
parameters that are passed to either the WskSocket function or the
WskSocketConnect function when the socket is created. If no specific process or
thread is specified when the socket is created, the security context of the process that
created the socket is used.

A socket's security descriptor is specified by the SecurityDescriptor parameter that is
passed to either the WskSocket function or the WskSocketConnect function when the
socket is created. If no specific security descriptor is specified, the WSK subsystem
uses a default security descriptor that does not permit sharing of transport addresses.
A security descriptor can also be applied to a socket after the socket has been created
by using the SO_WSK_SECURITY socket option.

If the two sockets are bound to two different specific local transport addresses, there is no
sharing of either transport address. In this situation the second bind operation will always
complete successfully.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

Using TDI Transports
Article • 12/15/2021

The Winsock Kernel (WSK) subsystem provides support for using TDI transports. In order
to use TDI transports via the WSK Network Programming Interface (NPI), a WSK
application must map the combination of address family, socket type, and protocol for
each of the TDI transports it uses to the associated device name of each of those TDI
transports. A WSK application maps combinations of address family, socket type, and
protocol to device names of TDI transports by using the
WSK_TDI_DEVICENAME_MAPPING client control operation.

The following code example shows how a WSK application can map combinations of
address family, socket type, and protocol to device names of TDI transports.

C++

// Number of TDI mappings
#define MAPCOUNT 2

// Array of TDI mappings
const WSK_TDI_MAP TdiMap[MAPCOUNT] =
{
 {SOCK_STREAM, ..., ..., ...},
 {SOCK_DGRAM, ..., ..., ...}
};

// TDI map info structure
const WSK_TDI_MAP_INFO TdiMapInfo =
{
 MAPCOUNT,
 TdiMap
}

// Function to set the TDI map
NTSTATUS
 SetTdiMap(
 PWSK_APP_BINDING_CONTEXT BindingContext
)
{
 NTSTATUS Status;

 // Perform client control operation
 Status =
 BindingContext->
 WskProviderDispatch->
 WskControlClient(
 BindingContext->WskClient,
 WSK_TDI_DEVICENAME_MAPPING,
 sizeof(WSK_TDI_MAP_INFO),

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565094(v=vs.85)

A WSK application must map combinations of address family, socket type, and protocol
to device names of TDI transports before it creates any sockets. After the WSK
application has successfully mapped the combinations of address family, socket type,
and protocol to device names of TDI transports, the application can then create new
sockets that use the mapped TDI transports.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

 &TdiMapInfo,
 0,
 NULL,
 NULL,
 NULL // No IRP for this control operation
);

 // Return status of client control operation
 return Status;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Using NMR for WSK Registration and
Unregistration
Article • 12/15/2021

The Registering a Winsock Kernel Application and Unregistering a Winsock Kernel
Application sections describe how a WSK application can attach to and detach from the
WSK subsystem by using the WSK registration functions. However, WSK can also attach
to the WSK subsystem by using the Network Module Registrar (NMR).

A WSK application can register itself with the NMR as a client of the WSK Network
Programming Interface (NPI) by using the procedures in the following sections:

Initializing NMR Data Structures
Attaching the WSK Client to the WSK Subsystem
Unregistering and Unloading the WSK Client

Using the WskRegister and WskDeregister functions is the preferred method for
registering and unregistering WSK applications. The Network Module Registrar remains
available for compatibility.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskregister
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nf-wsk-wskderegister

Initializing NMR Data Structures
Article • 12/15/2021

Before a Winsock Kernel (WSK) application can register with the Network Module
Registrar (NMR), the application must first initialize the following structures.

NPI_MODULEID

NPI_CLIENT_CHARACTERISTICS

NPI_REGISTRATION_INSTANCE contained within the
NPI_CLIENT_CHARACTERISTICS structure

All of these data structures must remain valid and resident in memory as long as the
WSK application is registered with the NMR.

The following code example shows how a WSK application can initialize all of the data
structures listed previously.

C++

// Include the WSK header file
#include "wsk.h"

// Structure for the WSK application's network module identification
const NPI_MODULEID ModuleId =
{
 sizeof(NPI_MODULEID),
 MIT_GUID,
 { ... } // A GUID that uniquely identifies the WSK application
};

// Prototypes for the WSK application's NMR API callback functions
NTSTATUS
 ClientAttachProvider(
 IN HANDLE NmrBindingHandle,
 IN PVOID ClientContext,
 IN PNPI_REGISTRATION_INSTANCE ProviderRegistrationInstance
);

NTSTATUS
 ClientDetachProvider(
 IN PVOID ClientBindingContext
);

VOID
 ClientCleanupBindingContext(
 IN PVOID ClientBindingContext
);

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568813(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_client_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_client_characteristics

A WSK application calls the NmrRegisterClient function to register the application with
the NMR.

For example:

C++

// Structure for the WSK application's characteristics
const NPI_CLIENT_CHARACTERISTICS Characteristics =
{
 0,
 sizeof(NPI_CLIENT_CHARACTERISTICS),
 ClientAttachProvider,
 ClientDetachProvider,
 ClientCleanupBindingContext,
 {
 0,
 sizeof(NPI_REGISTRATION_INSTANCE),
 &NPI_WSK_INTERFACE_ID,
 &ModuleId,
 0,
 NULL
 }
};

// Variable to contain the handle for the registration with the NMR
HANDLE RegistrationHandle;

// DriverEntry function
NTSTATUS
 DriverEntry(
 PDRIVER_OBJECT DriverObject,
 PUNICODE_STRING RegistryPath
)
{
 NTSTATUS Status;

 .
 .
 .

 // Register the WSK application with the NMR
 Status = NmrRegisterClient(
 &Characteristics,
 NULL,
 &RegistrationHandle
);

 if(!NT_SUCCESS(Status)) {
 .
 .
 .

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrregisterclient

A WSK application is not required to call NmrRegisterClient from within its DriverEntry
function. For example, if a WSK application is a subcomponent of a complex driver, the
registration of the application might occur only when the WSK application
subcomponent is activated.

 return Status;
 }

 .
 .
 .
}

Attaching the WSK Client to the WSK
Subsystem
Article • 12/15/2021

After a Winsock Kernel (WSK) application has registered with the Network Module
Registrar (NMR) as a client of the WSK NPI, the NMR immediately calls the application's
ClientAttachProvider callback function if the WSK subsystem is loaded and has
registered itself with the NMR. If the WSK subsystem is not registered with the NMR, the
NMR does not call the application's ClientAttachProvider callback function until the WSK
subsystem registers with the NMR.

The WSK application should make the following sequence of calls to complete the
attachment procedure.

1. When the NMR calls the WSK application's ClientAttachProvider callback function,
it passes a pointer to the NPI_REGISTRATION_INSTANCE structure associated with
the WSK subsystem. The WSK application's ClientAttachProvider callback function
can use the data passed to it by the NMR to determine if it can attach to the WSK
subsystem. Typically, a WSK application only needs the version information
contained within a WSK_PROVIDER_CHARACTERISTICS structure that is pointed to
by the NpiSpecificCharacteristics member of the WSK subsystem's
NPI_REGISTRATION_INSTANCE structure.

2. If the WSK application determines that it can attach to the WSK subsystem, the
WSK application's ClientAttachProvider callback function allocates and initializes a
binding context structure for the attachment to the WSK subsystem. The
application then calls the NmrClientAttachProvider function to continue the
attachment process.

If NmrClientAttachProvider returns STATUS_SUCCESS, the WSK application has
successfully attached to the WSK subsystem. In this situation, the WSK
application's ClientAttachProvider callback function must save the binding handle
that the NMR passed in the NmrBindingHandle parameter when the NMR called
the application's ClientAttachProvider callback function. The WSK application's
ClientAttachProvider callback function must also save the pointers to the client
object (WSK_CLIENT) and the provider dispatch table (
WSK_PROVIDER_DISPATCH) that are returned in the variables that the application
passed to the NmrClientAttachProvider function in the ProviderBindingContext
and ProviderDispatch parameters. A WSK application typically saves this data in its
binding context for the attachment to the WSK subsystem. After the WSK

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_attach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/ns-netioddk-_npi_registration_instance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientattachprovider
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_provider_dispatch

application has successfully attached to the WSK subsystem, the WSK application's
ClientAttachProvider callback function must return STATUS_SUCCESS.

3. If NmrClientAttachProvider returns STATUS_NOINTERFACE, the WSK application
can make another attempt to attach to the WSK subsystem by calling the
NmrClientAttachProvider function again, passing a ClientDispatch pointer to a
different WSK_CLIENT_DISPATCH structure that specifies an alternate version of
the WSK NPI that is supported by the application.

4. If a call to the NmrClientAttachProvider function does not return
STATUS_SUCCESS, and the WSK application does not make any further attempts to
attach to the WSK subsystem, the WSK application's ClientAttachProvider callback
function should clean up and deallocate any resources that it allocated before it
called NmrClientAttachProvider. In this situation, the WSK application's
ClientAttachProvider callback function must return the status code that was
returned by the last call to the NmrClientAttachProvider function.

5. If the WSK application determines that it cannot attach to the provider module, the
application's ClientAttachProvider callback function must return
STATUS_NOINTERFACE.

The following code example shows how a WSK application can attach itself to the WSK
subsystem.

C++

// Context structure type for the WSK application's
// binding to the WSK subsystem
typedef struct WSK_APP_BINDING_CONTEXT_ {
 HANDLE NmrBindingHandle;
 PWSK_CLIENT WskClient;
 PWSK_PROVIDER_DISPATCH WskProviderDispatch;
 .
 . // Other application-specific members
 .
} WSK_APP_BINDING_CONTEXT, *PWSK_APP_BINDING_CONTEXT;

// Pool tag used for allocating the binding context
#define BINDING_CONTEXT_POOL_TAG 'tpcb'

// The WSK application uses version 1.0 of WSK
#define WSK_APP_WSK_VERSION MAKE_WSK_VERSION(1,0)

// Structure for the WSK application's dispatch table
const WSK_CLIENT_DISPATCH WskAppDispatch = {
 WSK_APP_WSK_VERSION,
 0,
 NULL // No WskClientEvent callback

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/ns-wsk-_wsk_client_dispatch

};

// ClientAttachProvider NMR API callback function
NTSTATUS
 ClientAttachProvider(
 IN HANDLE NmrBindingHandle,
 IN PVOID ClientContext,
 IN PNPI_REGISTRATION_INSTANCE ProviderRegistrationInstance
)
{
 PNPI_MODULEID WskProviderModuleId;
 PWSK_PROVIDER_CHARACTERISTICS WskProviderCharacteristics;
 PWSK_APP_BINDING_CONTEXT BindingContext;
 PWSK_CLIENT WskClient;
 PWSK_PROVIDER_DISPATCH WskProviderDispatch;
 NTSTATUS Status;

 // Get pointers to the WSK subsystem's identification and
 // characteristics structures
 WskProviderModuleId = ProviderRegistrationInstance->ModuleId;
 WskProviderCharacteristics =
 (PWSK_PROVIDER_CHARACTERISTICS)
 ProviderRegistrationInstance->NpiSpecificCharacteristics;

 //
 // The WSK application can use the data in the structures pointed
 // to by ProviderRegistrationInstance, WskProviderModuleId, and
 // WskProviderCharacteristics to determine if the WSK application
 // can attach to the WSK subsystem.
 //
 // In this example, the WSK application does not perform any
 // checks to determine if it can attach to the WSK subsystem.
 //

 // Allocate memory for the WSK application's binding
 // context structure
 BindingContext =
 (PWSK_APP_BINDING_CONTEXT)
 ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(WSK_APP_BINDING_CONTEXT),
 BINDING_CONTEXT_POOL_TAG
);

 // Check result of allocation
 if (BindingContext == NULL)
 {
 // Return error status code
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Initialize the binding context structure
 ...

 // Continue with the attachment to the WSK subsystem

 Status = NmrClientAttachProvider(
 NmrBindingHandle,
 BindingContext,
 &WskAppDispatch,
 &WskClient,
 &WskProviderDispatch
);

 // Check result of attachment
 if (Status == STATUS_SUCCESS)
 {
 // Save NmrBindingHandle, WskClient, and
 // WskProviderDispatch for future reference
 BindingContext->NmrBindingHandle = NmrBindingHandle;
 BindingContext->WskClient = WskClient;
 BindingContext->WskProviderDispatch = WskProviderDispatch;
 }

 // Attachment did not succeed
 else
 {
 // Free memory for application's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
 }

 // Return result of attachment
 return Status;
}

Unregistering and Unloading the WSK
Client
Article • 12/15/2021

Any Winsock Kernel (WSK) application that uses the Network Module Registrar (NMR)
for attaching to the WSK subsystem must unregister with NMR before unloading. When
a WSK application unregisters with the NMR by calling the NmrDeregisterClient
function, the NMR calls the application's ClientDetachProvider callback function so that
the application can detach itself from the WSK subsystem as part of the WSK
application's unregistration process.

Furthermore, in the unlikely, but possible, case of the WSK subsystem unregistering with
the NMR, the NMR also calls the WSK application's ClientDetachProvider callback
function so that the application can detach itself from the WSK subsystem as part of the
WSK subsystem's unregistration process.

The NMR calls a WSK application's ClientDetachProvider callback function only once. If
both the WSK application and the WSK subsystem unregister with the NMR, the NMR
calls the WSK application's ClientDetachProvider callback function only after the first
unregistration is initiated.

If there are no calls in progress to any of the WSK functions in
WSK_PROVIDER_DISPATCH at the time that the NMR calls the WSK application's
ClientDetachProvider callback function, the WSK application should return
STATUS_SUCCESS from its ClientDetachProvider callback function. Otherwise, the WSK
application must return STATUS_PENDING from its ClientDetachProvider callback
function, and it must call the NmrClientDetachProviderComplete function after all of
the calls in progress to the WSK functions in WSK_PROVIDER_DISPATCH have returned.
A WSK application calls the NmrClientDetachProviderComplete function to notify the
NMR that the application has detached from the WSK subsystem. However, the WSK
subsystem will not allow the detachment procedure to be completed fully until all open
sockets are closed by the WSK application. For more information, see Closing a Socket.

After a WSK application has notified the NMR that detachment is complete, either by
returning STATUS_SUCCESS from its ClientDetachProvider callback function or by calling
the NmrClientDetachProviderComplete function, the application must not make any
further calls to any of the WSK functions in WSK_PROVIDER_DISPATCH.

If a WSK application implements a ClientCleanupBindingContext callback function, the
NMR calls the application's ClientCleanupBindingContext callback function after both the
WSK application and the WSK subsystem have completed detachment from each other.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrderegisterclient
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_detach_provider_fn
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nf-netioddk-nmrclientdetachprovidercomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netioddk/nc-netioddk-npi_client_cleanup_binding_context_fn

A WSK application's ClientCleanupBindingContext callback function should perform any
necessary cleanup of the data contained within the application's binding context
structure. It should then free the memory for the binding context structure if the
application dynamically allocated memory for the structure.

For example:

C++

// ClientDetachProvider callback function
NTSTATUS
 ClientDetachProvider(
 IN PVOID ClientBindingContext
)
{
 PWSK_APP_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext =
 (PWSK_APP_BINDING_CONTEXT)ClientBindingContext;

 // Check if there are no calls in progress to any WSK functions
 // in WSK_PROVIDER_DISPATCH and that there are no open sockets
 if (...)
 {
 // Return success status indicating that detachment is complete
 return STATUS_SUCCESS;
 }

 // There are calls in progress to one or more of the WSK functions
 // in WSK_PROVIDER_DISPATCH and/or one or more open sockets
 else
 {
 // Return pending status, indicating that detachment is pending
 // completion of the calls in progress to the WSK functions in
 // WSK_PROVIDER_DISPATCH and/or closing of the open sockets
 return STATUS_PENDING;

 // When all of the calls in progress to the WSK functions
 // in WSK_PROVIDER_DISPATCH are completed, the WSK application
 // must close all open sockets.
 //
 // After all sockets have been closed, the WSK application must
 // call the NmrClientDetachProviderComplete function with the
 // binding handle for the attachment to the WSK subsystem.
 }
}

// ClientCleanupBindingContext callback function
VOID
 ClientCleanupBindingContext(
 IN PVOID ClientBindingContext
)

A WSK application's Unload function must ensure that the application is unregistered
from the NMR before the application is unloaded from system memory. A WSK
application must not return from its Unload function until after it has been completely
unregistered from the NMR. If the call to NmrDeregisterClient returns
STATUS_PENDING, the WSK application must call the
NmrWaitForClientDeregisterComplete function to wait for the unregistration to
complete before it returns from its Unload function.

For example:

C++

{
 PWSK_APP_BINDING_CONTEXT BindingContext;

 // Get a pointer to the binding context
 BindingContext =
 (PWSK_APP_BINDING_CONTEXT)ClientBindingContext;

 // Clean up the binding context structure
 ...

 // Free the memory for client's binding context structure
 ExFreePoolWithTag(
 BindingContext,
 BINDING_CONTEXT_POOL_TAG
);
}

// Variable containing the handle for registration with the NMR
HANDLE RegistrationHandle;

// Unload function
VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
)
{
 NTSTATUS Status;

 // Unregister the WSK application from the NMR
 Status =
 NmrDeregisterClient(
 RegistrationHandle
);

 // Check if pending
 if (Status == STATUS_PENDING)
 {
 // Wait for the unregistration to be completed
 NmrWaitForClientDeregisterComplete(

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload

A WSK application is not required to call NmrDeregisterClient from within its Unload
function. For example, if a WSK application is a subcomponent of a complex driver, the
unregistration of the WSK application might occur when the WSK application
subcomponent is deactivated. However, in such a situation the driver must still ensure
that the WSK application has been completely unregistered from the NMR before
returning from its Unload function.

 RegistrationHandle
);
 }
}

IP Helper Overview
Article • 06/30/2022

Internet Protocol Helper (IP Helper) enables drivers to retrieve information about the
network configuration of the local computer and to modify that configuration. IP Helper
also provides notification mechanisms to make sure that a driver is notified when certain
aspects of the local computer network configuration change. IP Helper is available in
Windows Vista and later versions of the Microsoft Windows operating systems.

Many of the IP Helper functions pass structure parameters that represent data types that
are associated with the Management Information Base (MIB) technology. The IP Helper
functions use these MIB structures to represent various networking information.

The IP Helper documentation uses the terms "adapter" and "interface" extensively. An
adapter is a legacy term that is an abbreviated form of network adapter, which originally
referred to some form of network hardware. An adapter is a data link-level abstraction.

An interface is described in the IETF RFC documents as an abstract concept that
represents a node's attachment to a link. An interface is an IP-level abstraction.

Your driver can use the following kernel-mode functions, MIB structures, and MIB and
Network Layer (NL) enumerations to retrieve and modify configuration settings for
Transmission Control Protocol/Internet Protocol (TCP/IP) transport on a local computer.

Function Description

ConvertInterfaceAliasToLuid Converts a locally unique identifier (LUID) for a
network interface to the Unicode interface
name.

ConvertInterfaceGuidToLuid Converts a globally unique identifier (GUID) for
a network interface to the LUID for the
interface.

７ Note

 When you are developing driver code, follow the instructions for including header
files.

Interface Conversion Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546130(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546137(v=vs.85)

Function Description

ConvertInterfaceIndexToLuid Converts a local index for a network interface
to the LUID for the interface.

ConvertInterfaceLuidToAlias Converts a LUID for a network interface to an
interface alias.

ConvertInterfaceLuidToGuid Converts a LUID for a network interface to a
GUID for the interface.

ConvertInterfaceLuidToIndex Converts a LUID for a network interface to the
local index for the interface.

ConvertInterfaceLuidToNameA Converts a LUID for a network interface to the
ANSI interface name.

ConvertInterfaceLuidToNameW Converts a LUID for a network interface to the
Unicode interface name.

ConvertInterfaceNameToLuidA Converts an ANSI network interface name to
the LUID for the interface.

ConvertInterfaceNameToLuidW Converts a Unicode network interface name to
the LUID for the interface.

if_indextoname Converts the local index for a network interface
to the ANSI interface name.

if_nametoindex Converts the ANSI interface name for a network
interface to the local index for the interface.

Function Description

GetIfEntry2 Retrieves information for the specified interface
on the local computer.

GetIfStackTable Retrieves a table of network interface stack row
entries that specify the relationship of the
network interfaces on an interface stack.

GetIfTable2 Retrieves the MIB-II interface table.

GetIfTable2Ex Retrieves the MIB-II interface table, given a
level of interface information to retrieve.

Interface Management Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546141(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546151(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546156(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546167(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546171(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546175(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546185(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546192(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff553785(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff553788(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552517(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552521(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552524(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552528(v=vs.85)

Function Description

GetInvertedIfStackTable Retrieves a table of inverted network interface
stack row entries that specify the relationship of
the network interfaces on an interface stack.

GetIpInterfaceEntry Retrieves IP information for the specified
interface on the local computer.

GetIpInterfaceTable Retrieves the IP interface entries on the local
computer.

InitializeIpInterfaceEntry Initializes the members of a
MIB_IPINTERFACE_ROW structure entry with
default values.

SetIpInterfaceEntry Sets the properties of an IP interface on the
local computer.

Function Description

CreateAnycastIpAddressEntry Adds a new anycast IP address entry on the
local computer.

CreateSortedAddressPairs Pairs a supplied list of destination addresses
together with the host machine's local IP
addresses and sorts the pairs according to the
preferred order of communication.

CreateUnicastIpAddressEntry Adds a new unicast IP address entry on the
local computer.

DeleteAnycastIpAddressEntry Deletes an existing anycast IP address entry on
the local computer.

DeleteUnicastIpAddressEntry Deletes an existing unicast IP address entry
from the local computer.

GetAnycastIpAddressEntry Retrieves information for an existing anycast IP
address entry on the local computer.

GetAnycastIpAddressTable Retrieves the anycast IP address table on the
local computer.

GetMulticastIpAddressEntry Retrieves information for an existing multicast
IP address entry on the local computer.

IP Address Management Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552531(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552540(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552543(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff554883(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559254(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff570774(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546204(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546219(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546227(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546363(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546370(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552504(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552508(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552565(v=vs.85)

Function Description

GetMulticastIpAddressTable Retrieves the multicast IP address table on the
local computer.

GetUnicastIpAddressEntry Retrieves information for an existing unicast IP
address entry on the local computer.

GetUnicastIpAddressTable Retrieves the unicast IP address table on the
local computer.

InitializeUnicastIpAddressEntry Initializes a MIB_UNICASTIPADDRESS_ROW
structure with default values for a unicast IP
address entry on the local computer.

NotifyStableUnicastIpAddressTable Retrieves the stable unicast IP address table on
a local computer.

SetUnicastIpAddressEntry Sets the properties of an existing unicast IP
address entry on the local computer.

Function Description

CreateIpNetEntry2 Creates a new neighbor IP address entry on the
local computer.

DeleteIpNetEntry2 Deletes a neighbor IP address entry from the
local computer.

FlushIpNetTable2 Flushes the IP neighbor table on the local
computer.

GetIpNetEntry2 Retrieves information for a neighbor IP address
entry on the local computer.

GetIpNetTable2 Retrieves the IP neighbor table on the local
computer.

ResolveIpNetEntry2 Resolves the physical address for a neighbor IP
address entry on the local computer.

SetIpNetEntry2 Sets the physical address of an existing
neighbor IP address entry on the local
computer.

IP Neighbor Address Management Functions

IP Path Management Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552570(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552589(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552594(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff554886(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559308(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568807(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff570800(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546217(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546368(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff550029(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552546(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552551(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff570686(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff570775(v=vs.85)

Function DescriptionFunction Description

FlushIpPathTable Flushes the IP path table on the local computer.

GetIpPathEntry Retrieves information for an IP path entry on
the local computer.

GetIpPathTable Retrieves information for an IP path entry on
the local computer.

Function Description

CreateIpForwardEntry2 Creates a new IP route entry on the local
computer.

DeleteIpForwardEntry2 Deletes an IP route entry from the local
computer.

GetBestRoute2 Retrieves the IP route entry on the local
computer for the best route to the specified
destination IP address.

GetIpForwardEntry2 Retrieves information for an IP route entry on
the local computer.

GetIpForwardTable2 Retrieves the IP route entries on the local
computer.

InitializeIpForwardEntry Initializes a MIB_IPFORWARD_ROW2 structure
with default values for an IP route entry on the
local computer.

SetIpForwardEntry2 Sets the properties of an IP route entry on the
local computer.

Function Description

FreeMibTable Frees the buffer that is allocated by the
functions that return tables of network
interfaces, addresses, and routes (for example,
GetIfTable2 and GetAnycastIpAddressTable).

IP Route Management Functions

IP Table Memory Management Functions

Notification Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff550031(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552556(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552559(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546209(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff546365(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552511(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552535(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552536(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff554882(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559245(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff570773(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff550045(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552524(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552508(v=vs.85)

Function Description

CancelMibChangeNotify2 Deregisters the driver for change notifications
for IP interface changes, IP address changes, IP
route changes, and requests to retrieve the
stable unicast IP address table.

NotifyIpInterfaceChange Registers the driver to be notified for changes
to all IP interfaces, IPv4 interfaces, or IPv6
interfaces on a local computer.

NotifyRouteChange2 Registers to be notified for changes to IP route
entries on a local computer.

NotifyUnicastIpAddressChange Registers to be notified for changes to all
unicast IP interfaces, unicast IPv4 addresses, or
unicast IPv6 addresses on a local computer.

Function Description

GetTeredoPort Retrieves the dynamic UDP port number that
the Teredo client uses on the local computer.

NotifyTeredoPortChange Registers to be notified for changes to the UDP
port number that the Teredo client uses for the
Teredo service port on a local computer.

NotifyStableUnicastIpAddressTable Retrieves the stable unicast IP address table on
a local computer.

Structure Description

IP_ADDRESS_PREFIX Stores an IP address prefix.

MIB_ANYCASTIPADDRESS_ROW Stores information about an anycast IP address.

MIB_ANYCASTIPADDRESS_TABLE Contains a table of anycast IP address entries.

MIB_IF_ROW2 Stores information about a particular interface.

MIB_IF_TABLE2 Contains a table of logical and physical
interface entries.

Teredo IPv6 Client Management Functions

MIB Structures

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff544864(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568805(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568806(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568809(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff552578(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568808(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568807(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff557013(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559190(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559193(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559214(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559224(v=vs.85)

Structure Description

MIB_IFSTACK_ROW Represents the relationship between two
network interfaces.

MIB_IFSTACK_TABLE Contains a table of row entries in the network
interface stack. This table specifies the
relationship of the network interfaces on an
interface stack.

MIB_INVERTEDIFSTACK_ROW Represents the relationship between two
network interfaces.

MIB_INVERTEDIFSTACK_TABLE Contains a table of inverted network interface
stack row entries. This table specifies the
relationship of the network interfaces on an
interface stack in reverse order.

MIB_IPFORWARD_ROW2 Stores information about an IP route entry.

MIB_IPFORWARD_TABLE2 Contains a table of IP route entries.

MIB_IPINTERFACE_ROW Stores interface management information for a
particular IP address family on a network
interface.

MIB_IPINTERFACE_TABLE Contains a table of IP interface entries.

MIB_IPNET_ROW2 Stores information about a neighbor IP address.

MIB_IPNET_TABLE2 Contains a table of neighbor IP address entries.

MIB_IPPATH_ROW Stores information about an IP path entry.

MIB_IPPATH_TABLE Contains a table of IP path entries.

MIB_MULTICASTIPADDRESS_ROW Stores information about a multicast IP address.

MIB_MULTICASTIPADDRESS_TABLE Contains a table of multicast IP address entries.

MIB_UNICASTIPADDRESS_ROW Stores information about a unicast IP address.

MIB_UNICASTIPADDRESS_TABLE Contains a table of unicast IP address entries.

Enumeration Description

MIB_IF_TABLE_LEVEL Defines the level of interface information to
retrieve.

MIB Enumerations

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559207(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559210(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559234(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559240(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559245(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559252(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559254(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559260(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559263(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559267(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559270(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559273(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559277(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559281(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559308(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559322(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/netioapi/ne-netioapi-mib_if_table_level

Enumeration Description

MIB_NOTIFICATION_TYPE Defines the notification type that is passed to a
callback function when a notification occurs.

Enumeration Description

NL_ADDRESS_TYPE Specifies the IP address type of the network
layer.

NL_DAD_STATE Defines the duplicate address detection (DAD)
state.

NL_LINK_LOCAL_ADDRESS_BEHAVIOR Defines the link local address behavior.

NL_NEIGHBOR_STATE Defines the state of a network layer neighbor IP
address, as described in RFC 2461, section 7.3.2.

NL_PREFIX_ORIGIN Defines the origin of the prefix or network part
of the IP address.

NL_ROUTE_ORIGIN Defines the origin of the IP route.

NL_ROUTE_PROTOCOL Defines the routing mechanism that an IP route
was added with, as described in RFC 4292.

NL_ROUTER_DISCOVERY_BEHAVIOR Defines the router discovery behavior, as
described in RFC 2461.

NL_SUFFIX_ORIGIN Defines the origin of the suffix or host part of
the IP address.

NL Enumerations

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff559286(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_address_type
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568758(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_link_local_address_behavior
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_neighbor_state
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568762(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_origin
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_protocol
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_router_discovery_behavior
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/ff568768(v=vs.85)

Including Header Files for IP Helper
Article • 06/30/2022

Driver code that uses the kernel-mode IP Helper functions, MIB structures, and
enumerations that are declared in Netioapi.h must have #include statements in the
following sequence.

C++

Note Do not include Iphlpapi.h in driver code. It is used only for user-mode
applications.

When Netioapi.h is used with kernel-mode drivers, it already includes networking
header files that define Winsock Kernel, network interface information, the network
layer, and Network Driver Interface Specification (NDIS) types.

Therefore, do not include the following header files in your driver code:

Ifdef.h
Nldef.h
Ws2def.h
Ws2ipdef.h

For information about the user-mode versions of the IP Helper functions and MIB
structures, see the Windows SDK IP Helper documentation.

#include <ntddk.h>
#include <netioapi.h>

https://learn.microsoft.com/en-us/windows/win32/iphlp/ip-helper-start-page

ConvertInterfaceAliasToLuid function
Article • 03/03/2023

The ConvertInterfaceAliasToLuid function converts an interface alias name for a
network interface to the locally unique identifier (LUID) for the interface.

c++

InterfaceAlias [in]
A pointer to a NULL-terminated Unicode string that contains the alias name of the
network interface.

InterfaceLuid [out]
A pointer to the NET_LUID union for the network interface.

ConvertInterfaceAliasToLuid returns STATUS_SUCCESS if the function succeeds. If the
function fails, the InterfaceLuid parameter is set to NULL, and
ConvertInterfaceAliasToLuid returns the following error code:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceAliasToLuid(
 In const WCHAR *InterfaceAlias,
 Out PNET_LUID InterfaceLuid
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER One of the parameters was invalid. ConvertInterfaceAliasToLuid
returns this error if either InterfaceAlias or InterfaceLuid is NULL,
or if InterfaceAlias is invalid.

The ConvertInterfaceAliasToLuid function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NET_LUID

ConvertInterfaceGuidToLuid function
Article • 03/03/2023

The ConvertInterfaceGuidToLuid function converts a globally unique identifier (GUID)
for a network interface to the locally unique identifier (LUID) for the interface.

c++

InterfaceGuid [in]
A pointer to a GUID for the network interface.

InterfaceLuid [out]
A pointer to the NET_LUID union for the network interface.

ConvertInterfaceGuidToLuid returns STATUS_SUCCESS if the function succeeds. If the
function fails, the InterfaceLuid parameter is set to NULL, and
ConvertInterfaceGuidToLuid returns the following error code:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceGuidToLuid(
 In const GUID *InterfaceGuid,
 Out PNET_LUID InterfaceLuid
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER One of the parameters was invalid. ConvertInterfaceGuidToLuid
returns this error if either InterfaceAlias or InterfaceLuid is NULL,
or if InterfaceGuid is invalid.

The ConvertInterfaceGuidToLuid function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NET_LUID

ConvertInterfaceIndexToLuid function
Article • 03/03/2023

The ConvertInterfaceIndexToLuid function converts a local index for a network interface
to the locally unique identifier (LUID) for the interface.

c++

InterfaceIndex [in]
The local index value for the network interface.

InterfaceLuid [out]
A pointer to the NET_LUID union for the network interface.

ConvertInterfaceIndexToLuid returns STATUS_SUCCESS if the function succeeds. If the
function fails, the InterfaceLuid parameter is set to NULL, and
ConvertInterfaceIndexToLuid returns the following error code:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceIndexToLuid(
 In NET_IFINDEX InterfaceIndex,
 Out PNET_LUID InterfaceLuid
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER One of the parameters was invalid.
ConvertInterfaceIndexToLuid returns this error if the
InterfaceLuid parameter is NULL, or if the InterfaceIndex
parameter is invalid.

The ConvertInterfaceIndexToLuid function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NET_LUID

ConvertInterfaceLuidToAlias function
Article • 03/03/2023

The ConvertInterfaceLuidToAlias function converts a locally unique identifier (LUID) for
a network interface to an interface alias.

c++

InterfaceLuid [in]
A pointer to a NET_LUID union for the network interface.

InterfaceAlias [out]
A pointer to a buffer to hold the NULL-terminated Unicode string. If
ConvertInterfaceLuidToAlias returns successfully, InterfaceAlias contains the alias
name of the network interface.

Length [in]
The length, by character count, of the buffer that the InterfaceAlias parameter
points to. This value must be large enough to hold the alias name of the network
interface and the terminating NULL character. The maximum allowed length is
NDIS_IF_MAX_STRING_SIZE + 1. For more information about
NDIS_IF_MAX_STRING_SIZE, see the following Remarks section.

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceLuidToAlias(
 In const NET_LUID *InterfaceLuid,
 Out PWSTR InterfaceAlias,
 In SIZE_T Length
);

Parameters

ConvertInterfaceLuidToAlias returns STATUS_SUCCESS if the function succeeds. If the
function fails, ConvertInterfaceLuidToAlias returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER One of the parameters is invalid.
ConvertInterfaceLuidToAlias returns this error if either
InterfaceLuid or InterfaceAlias is NULL, or if InterfaceLuid is
invalid.

STATUS_NOT_ENOUGH_MEMORY Not enough storage is available.
ConvertInterfaceLuidToAlias returns this error if the size of
the buffer that the InterfaceAlias parameter points to was
not as large as specified in the Length parameter and,
therefore, the buffer could not hold the alias name.

The ConvertInterfaceLuidToAlias function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

The maximum length of the alias name for a network interface,
NDIS_IF_MAX_STRING_SIZE, without the terminating NULL character, is declared in the
Ntddndis.h header file. NDIS_IF_MAX_STRING_SIZE is defined to be the
IF_MAX_STRING_SIZE constant, which is defined in the Ifdef.h header file.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Return value

Remarks

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

NET_LUID

See also

ConvertInterfaceLuidToGuid function
Article • 03/03/2023

The ConvertInterfaceLuidToGuid function converts a locally unique identifier (LUID) for
a network interface to a globally unique identifier (GUID) for the interface.

c++

InterfaceLuid [in]
A pointer to a NET_LUID union for the network interface.

InterfaceGuid [out]
A pointer to the GUID for the network interface.

ConvertInterfaceLuidToGuid returns STATUS_SUCCESS if the function succeeds. If the
function fails, the InterfaceGuid parameter is set to NULL, and
ConvertInterfaceLuidToGuid returns the following error code:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceLuidToGuid(
 In const NET_LUID *InterfaceLuid,
 Out GUID *InterfaceGuid
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER One of the parameters is invalid. ConvertInterfaceLuidToGuid
returns this error if either InterfaceLuid or InterfaceGuid is NULL,
or if InterfaceLuid is invalid.

The ConvertInterfaceLuidToGuid function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NET_LUID

ConvertInterfaceLuidToIndex function
Article • 03/03/2023

The ConvertInterfaceLuidToIndex function converts a locally unique identifier (LUID) for
a network interface to the local index for the interface.

c++

InterfaceLuid [in]
A pointer to a NET_LUID union for the network interface.

InterfaceIndex [out]
The local index value for the network interface.

ConvertInterfaceLuidToIndex returns STATUS_SUCCESS if the function succeeds. If the
function fails, the InterfaceIndex parameter is set to NET_IFINDEX_UNSPECIFIED, and
ConvertInterfaceLuidToIndex returns the following error code:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceLuidToIndex(
 In const NET_LUID *InterfaceLuid,
 Out PNET_IFINDEX InterfaceIndex
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER One of the parameters is invalid. ConvertInterfaceLuidToIndex
returns this error if either InterfaceLuid or InterfaceIndex is NULL,
or if InterfaceLuid is invalid.

The ConvertInterfaceLuidToIndex function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NET_LUID

ConvertInterfaceLuidToNameA function
Article • 03/03/2023

The ConvertInterfaceLuidToNameA function converts a locally unique identifier (LUID)
for a network interface to the ANSI interface name.

c++

InterfaceLuid [in]
A pointer to a NET_LUID union for a network interface.

InterfaceName [out]
A pointer to a buffer to hold the NULL-terminated ANSI string. If
ConvertInterfaceLuidToNameA returns successfully, InterfaceName contains the
ANSI interface name.

Length [in]
The length, in bytes, of the buffer that the InterfaceName parameter points to. This
value must be large enough to hold the interface name and the terminating NULL
character. The maximum allowed length is NDIS_IF_MAX_STRING_SIZE + 1. For
more information about NDIS_IF_MAX_STRING_SIZE, see the following Remarks
section.

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceLuidToNameA(
 In const NET_LUID *InterfaceLuid,
 Out PSTR InterfaceName,
 In SIZE_T Length
);

Parameters

ConvertInterfaceLuidToNameA returns STATUS_SUCCESS if the function succeeds. If the
function fails, ConvertInterfaceLuidToNameA returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER One of the parameters is invalid.
ConvertInterfaceLuidToNameA returns this error if either
InterfaceLuid or InterfaceName is NULL, or if InterfaceLuid is
invalid.

STATUS_NOT_ENOUGH_MEMORY ConvertInterfaceLuidToNameA returns this error if the
InterfaceName buffer was not as large as specified in the
Length parameter and, therefore, the buffer could not hold
the interface name.

The ConvertInterfaceLuidToNameA function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

The maximum length of the name for a network interface, NDIS_IF_MAX_STRING_SIZE,
without the terminating NULL character, is defined in the Ntddndis.h header file.
NDIS_IF_MAX_STRING_SIZE is defined to be the IF_MAX_STRING_SIZE constant, which is
defined in the Ifdef.h header file.

Use the ConvertInterfaceLuidToNameW function to convert a network interface LUID to
a Unicode interface name.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Return value

Remarks

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

NET_LUID

See also

ConvertInterfaceLuidToNameW function
Article • 03/03/2023

The ConvertInterfaceLuidToNameW function converts a locally unique identifier (LUID)
for a network interface to the Unicode interface name.

c++

InterfaceLuid [in]
A pointer to a NET_LUID union for the network interface.

InterfaceName [out]
A pointer to a buffer to hold the NULL-terminated Unicode string. If
ConvertInterfaceLuidToNameW returns successfully, InterfaceName contains the
Unicode interface name.

Length [in]
The length of the buffer, by character count, that the InterfaceName parameter
points to. This value must be large enough to hold the interface name and the
terminating NULL character. The maximum allowed length is
NDIS_IF_MAX_STRING_SIZE + 1. For more information about
NDIS_IF_MAX_STRING_SIZE, see the following Remarks section.

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceLuidToNameW(
 In const NET_LUID *InterfaceLuid,
 Out PWSTR InterfaceName,
 In SIZE_T Length
);

Parameters

ConvertInterfaceLuidToNameW returns STATUS_SUCCESS if the function succeeds. If
the function fails, ConvertInterfaceLuidToNameW returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER One of the parameters is invalid.
ConvertInterfaceLuidToNameW returns this error if either
InterfaceLuid or InterfaceName is NULL, or if InterfaceLuid is
invalid.

STATUS_NOT_ENOUGH_MEMORY ConvertInterfaceLuidToNameW returns this error if the
InterfaceName buffer was not as large as specified in the
Length parameter and, therefore, the buffer could not hold
the interface name.

The ConvertInterfaceLuidToNameW function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

The maximum length of the network interface name, NDIS_IF_MAX_STRING_SIZE,
without the terminating NULL character, is defined in the Ntddndis.h header file. The
NDIS_IF_MAX_STRING_SIZE is defined to be the IF_MAX_STRING_SIZE constant, which is
defined in the Ifdef.h header file.

Use ConvertInterfaceLuidToNameA to convert a network interface LUID to an ANSI
interface name.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Return value

Remarks

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceNameToLuidA

ConvertInterfaceNameToLuidW

NET_LUID

See also

ConvertInterfaceNameToLuidA function
Article • 03/03/2023

The ConvertInterfaceNameToLuidA function converts an ANSI network interface name
to the locally unique identifier (LUID) for the interface.

c++

InterfaceName [in]
A pointer to a NULL-terminated ANSI string that contains the network interface
name.

InterfaceLuid [out]
A pointer to the NET_LUID union for this interface.

ConvertInterfaceNameToLuidA returns STATUS_SUCCESS if the function succeeds. If the
function fails, ConvertInterfaceNameToLuidA returns one of the following error codes:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceNameToLuidA(
 In const CHAR *InterfaceName,
 Out NET_LUID *InterfaceLuid
);

Parameters

Return value

Return code Description

ERROR_BUFFER_OVERFLOW The length of the ANSI interface name is invalid.
ConvertInterfaceNameToLuidA returns this error if the
InterfaceName parameter exceeds the maximum allowed string
length for this parameter.

STATUS_INVALID_NAME The interface name is invalid. ConvertInterfaceNameToLuidA
returns this error if the InterfaceName parameter contains an
invalid interface name.

STATUS_INVALID_PARAMETER One of the parameters is invalid.
ConvertInterfaceNameToLuidA returns this error if the
InterfaceLuid parameter is NULL.

The ConvertInterfaceNameToLuidA function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

The maximum length of the network interface name, NDIS_IF_MAX_STRING_SIZE,
without the terminating NULL, is defined in the Ntddndis.h header file.
NDIS_IF_MAX_STRING_SIZE is defined to be the IF_MAX_STRING_SIZE constant, which is
defined in the Ifdef.h header file.

Use the ConvertInterfaceNameToLuidW function to convert a Unicode interface name
to a LUID.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

Remarks

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

IRQL PASSIVE_LEVEL

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidW

NET_LUID

See also

ConvertInterfaceNameToLuidW function
Article • 03/03/2023

The ConvertInterfaceNameToLuidW function converts a Unicode network interface
name to the locally unique identifier (LUID) for the interface.

c++

InterfaceName [in]
A pointer to a NULL-terminated Unicode string that contains the network interface
name.

InterfaceLuid [out]
A pointer to the NET_LUID union for this interface.

ConvertInterfaceNameToLuidW returns STATUS_SUCCESS if the function succeeds. If
the function fails, ConvertInterfaceNameToLuidW returns one of the following error
codes:

Return code Description

７ Note

The ConvertInterfaceXxx API family enumerates identifiers over all interfaces bound
to TCP/IP, which may include virtual miniports, lightweight filters, tunnel adapters,
and physical interfaces.

Syntax

NETIOAPI_API ConvertInterfaceNameToLuidW(
 In const WCHAR *InterfaceName,
 Out NET_LUID *InterfaceLuid
);

Parameters

Return value

Return code Description

STATUS_INVALID_NAME The interface name is invalid. ConvertInterfaceNameToLuidW
returns this error if the InterfaceName parameter contains an
invalid name or the length of the InterfaceName parameter
exceeds the maximum allowed string length for this parameter.

STATUS_INVALID_PARAMETER One of the parameters is invalid.
ConvertInterfaceNameToLuidW returns this error if the
InterfaceLuid parameter is NULL.

The ConvertInterfaceNameToLuidW function is protocol-independent and works with
network interfaces for both the IPv6 and IPv4 protocols.

The maximum length of the network interface name, NDIS_IF_MAX_STRING_SIZE,
without the terminating NULL character, is defined in the Ntddndis.h header file.
NDIS_IF_MAX_STRING_SIZE is defined to be the IF_MAX_STRING_SIZE constant, which is
defined in the Ifdef.h header file.

Use the ConvertInterfaceNameToLuidA function to convert an ANSI interface name to a
LUID.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

Remarks

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

ConvertInterfaceAliasToLuid

ConvertInterfaceGuidToLuid

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToAlias

ConvertInterfaceLuidToGuid

ConvertInterfaceLuidToIndex

ConvertInterfaceLuidToNameA

ConvertInterfaceLuidToNameW

ConvertInterfaceNameToLuidA

NET_LUID

See also

ConvertIpv4MaskToLength function
Article • 03/03/2023

Reserved for future use. Do not use this function.

c++

Mask [in]
Reserved.

MaskLength [out]
Reserved.

Header Netioapi.h

Syntax

NETIOAPI_API ConvertIpv4MaskToLength(
 In ULONG Mask,
 Out PUINT8 MaskLength
);

Parameters

Requirements

ConvertLengthtoIpv4Mask function
Article • 03/03/2023

Reserved for future use. Do not use this function.

c++

MaskLength [in]
Reserved.

Mask [out]
Reserved.

Header Netioapi.h

Syntax

NETIOAPI_API ConvertLengthtoIpv4Mask(
 In ULONG MaskLength,
 Out PULONG Mask
);

Parameters

Requirements

if_indextoname function
Article • 03/03/2023

The if_indextoname function converts the local index for a network interface to the
ANSI interface name.

c++

InterfaceIndex [in]
The local index for a network interface.

InterfaceName [out]
A pointer to a buffer to hold the NULL-terminated ANSI string. If if_indextoname
succeeds, InterfaceName contains the ANSI interface name. The length, in bytes, of
the buffer that this parameter points to must be equal to or greater than
IF_NAMESIZE. For more information about IF_NAMESIZE, see the following
Remarks section.

If this function succeeds, if_indextoname returns a pointer to a NULL-terminated ANSI
string that contains the interface name. If this function fails, if_indextoname returns a
NULL pointer

The if_indextoname function maps an interface index into its corresponding name. This
function is designed as part of basic socket extensions for IPv6, as described by the IETF
in RFC 2553 .

Syntax

PCHAR NETIOAPI_API_ if_indextoname(
 In NET_IFINDEX InterfaceIndex,
 Out PCHAR InterfaceName
);

Parameters

Return value

Remarks

https://www.ietf.org/rfc/rfc2553.txt

The if_indextoname function is implemented for portability of drivers with Unix
environments, but the ConvertInterfaceXxx functions are the preferred method to
convert network interface identifiers. You can replace the if_indextoname function by a
call to the ConvertInterfaceIndexToLuid function to convert an interface index to a
NET_LUID union, followed by a call to the ConvertInterfaceLuidToNameA function to
convert NET_LUID to the ANSI interface name.

The length, in bytes, of the buffer that the InterfaceName parameter points to must be
equal or greater than IF_NAMESIZE. The IF_NAMESIZE value is defined in the Netioapi.h
header file as equal to NDIS_IF_MAX_STRING_SIZE. The maximum length of an interface
name, NDIS_IF_MAX_STRING_SIZE, without the terminating NULL character is declared in
the Ntddndis.h header file. The NDIS_IF_MAX_STRING_SIZE is defined to be the
IF_MAX_STRING_SIZE constant that is defined in the Ifdef.h header file.

If the if_indextoname function fails and returns a NULL pointer, you cannot determine
an error code.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceIndexToLuid

ConvertInterfaceLuidToNameA

NET_LUID

７ Note

The Ntddndis.h and Ifdef.h header files are automatically included in the Netioapi.h
header file. You should never use the Ntddndis.h and Ifdef.h header files directly.

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

if_nametoindex function
Article • 03/03/2023

The if_nametoindex function converts the ANSI interface name for a network interface
to the local index for the interface.

c++

InterfaceName [in]
A pointer to a NULL-terminated ANSI string that contains the interface name.

If the function succeeds, if_nametoindex returns the local interface index. If the function
fails, if_nametoindex returns zero.

The if_nametoindex function maps an interface name into its corresponding index. This
function is designed as part of basic socket extensions for IPv6 as described by the IETF
in RFC 2553 .

The if_nametoindex function is implemented for portability of drivers with Unix
environments, but the ConvertInterfaceXxx functions are the preferred method to
convert network interface identifiers. You can replace the if_nametoindex function by a
call to the ConvertInterfaceNameToLuidA function to convert the ANSI interface name
to a NET_LUID union, followed by a call to the ConvertInterfaceLuidToIndex function to
convert NET_LUID to the local interface index.

If the if_nametoindex function fails and returns zero, you cannot determine an error
code.

Syntax

NET_IFINDEX NETIOAPI_API_ if_nametoindex(
 In PCSTR InterfaceName
);

Parameters

Return value

Remarks

https://www.ietf.org/rfc/rfc2553.txt

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

ConvertInterfaceLuidToIndex

ConvertInterfaceNameToLuidA

NET_LUID

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIfEntry2 function
Article • 04/01/2024

The GetIfEntry2 function retrieves information for the specified interface on a local
computer.

c++

Row [in, out]
A pointer to a MIB_IF_ROW2 structure that, on successful return, receives
information for an interface on the local computer. On input, your driver must set
the InterfaceLuid member or the InterfaceIndex member of the MIB_IF_ROW2
structure to the interface to retrieve information for.

GetIfEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIfEntry2 returns one of the following error codes:

） Important

For driver developers, it is recommended to use GetIfEntry2Ex with
MibIfEntryNormalWithoutStatistics when possible, in order to avoid a deadlock
when servicing NDIS OIDs.

Syntax

NETIOAPI_API GetIfEntry2(
 Inout PMIB_IF_ROW2 Row
);

Parameters

Return value

ﾉ Expand table

https://learn.microsoft.com/en-us/windows/desktop/api/netioapi/nf-netioapi-getiftable2ex

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IF_ROW2 structure that the Row parameter points to.

Other Use the FormatMessage function to obtain the message string
for the returned error.

On input, your driver must initialize at least the InterfaceLuid or InterfaceIndex member
in the MIB_IF_ROW2 structure that is passed in the Row parameter. The members are
used in the order that is listed earlier. So if InterfaceLuid is specified, this member is
used to determine the interface. If no value was set for the InterfaceLuid member (the
value of this member was set to zero), the InterfaceIndex member is next used to
determine the interface.

On output, the remaining fields of the MIB_IF_ROW2 structure that the Row parameter
points to are filled in.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetIfTable2

Remarks

Requirements

ﾉ Expand table

See also

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

GetIfTable2Ex

MIB_IF_ROW2

MIB_IF_TABLE2

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

GetIfStackTable function
Article • 03/03/2023

The GetIfStackTable function retrieves a table of network interface stack row entries that
specify the relationship of the network interfaces on an interface stack.

c++

Table [out]
A pointer to a buffer that receives the table of interface stack row entries in a
MIB_IFSTACK_TABLE structure.

GetIfStackTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIfStackTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No interface stack entries were found.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Syntax

NETIOAPI_API GetIfStackTable(
 Out PMIB_IFSTACK_TABLE *Table
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The GetIfStackTable function enumerates the physical and logical network interfaces on
an interface stack on a local computer and returns this information in a
MIB_IFSTACK_TABLE structure.

Interface stack entries are returned in a MIB_IFSTACK_TABLE structure in the buffer that
the Table parameter points to. The MIB_IFSTACK_TABLE structure contains an interface
stack entry count and an array of MIB_IFSTACK_ROW structures for each interface stack
entry.

The relationship between the interfaces in the interface stack is that the interface with
index in the HigherLayerInterfaceIndex member of the MIB_IFSTACK_ROW structure is
immediately above the interface with index in the LowerLayerInterfaceIndex member of
the MIB_IFSTACK_ROW structure.

Memory is allocated by the GetIfStackTable function for the MIB_IFSTACK_TABLE
structure and the MIB_IFSTACK_ROW entries in this structure. When these returned
structures are no longer required, your driver should free the memory by calling
FreeMibTable.

Note that the returned MIB_IFSTACK_TABLE structure that the Table parameter points to
might contain padding for alignment between the NumEntries member and the first
MIB_IFSTACK_ROW array entry in the Table member of the MIB_IFSTACK_TABLE
structure. Padding for alignment might also be present between the MIB_IFSTACK_ROW
array entries. Any access to a MIB_IFSTACK_ROW array entry should assume padding
may exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIfEntry2

GetIfTable2

GetInvertedIfStackTable

GetIpInterfaceEntry

InitializeIpInterfaceEntry

MIB_IF_ROW2

MIB_IF_TABLE2

MIB_IFSTACK_ROW

MIB_IFSTACK_TABLE

MIB_INVERTEDIFSTACK_ROW

MIB_INVERTEDIFSTACK_TABLE

MIB_IPINTERFACE_ROW

NotifyIpInterfaceChange

SetIpInterfaceEntry

GetIfTable2 function
Article • 03/03/2023

The GetIfTable2 function retrieves the MIB-II interface table.

c++

Table [out]
A pointer to a buffer that receives the table of interfaces in a MIB_IF_TABLE2
structure.

GetIfTable2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIfTable2 returns one of the following error codes:

Return code Description

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetIfTable2 function enumerates the logical and physical interfaces on a local
computer and returns this information in a MIB_IF_TABLE2 structure.

Your driver can use a similar function, GetIfTable2Ex, to specify the level of interfaces to
return. A call to the GetIfTable2Ex function with the Level parameter set to

Syntax

NETIOAPI_API GetIfTable2(
 Out PMIB_IF_TABLE2 *Table
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

MibIfTableNormal retrieves the same results as calling the GetIfTable2 function.

GetIfTable2 returns interfaces in a MIB_IF_TABLE2 structure in the buffer that the Table
parameter points to. The MIB_IF_TABLE2 structure contains an interface count and an
array of MIB_IF_ROW2 structures for each interface. GetIfTable2 allocates memory for
the MIB_IF_TABLE2 structure and the MIB_IF_ROW2 entries in this structure. When these
returned structures are no longer required, your driver should free the memory by
calling FreeMibTable.

Note that the returned MIB_IF_TABLE2 structure that the Table parameter points to
might contain padding for alignment between the NumEntries member and the first
MIB_IF_ROW2 array entry in the Table member of the MIB_IF_TABLE2 structure. Padding
for alignment might also be present between the MIB_IF_ROW2 array entries. Any access
to a MIB_IF_ROW2 array entry should assume padding may exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

GetIfTable2Ex

MIB_IF_TABLE2

MIB_IF_ROW2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIfTable2Ex function
Article • 03/03/2023

The GetIfTable2Ex function retrieves the MIB-II interface table, given a level of interface
information to retrieve.

c++

Level [in]
The level of interface information to retrieve. This parameter can be one of the
values from the MIB_IF_TABLE_LEVEL enumeration.

Table [out]
A pointer to a buffer that receives the table of interfaces in a MIB_IF_TABLE2
structure.

GetIfTable2Ex returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIfTable2Ex returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if an illegal value was passed in the Level
parameter.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Syntax

NETIOAPI_API GetIfTable2Ex(
 In MIB_IF_TABLE_LEVEL Level,
 Out PMIB_IF_TABLE2 *Table
);

Parameters

Return value

https://learn.microsoft.com/en-us/windows/win32/api/netioapi/ne-netioapi-mib_if_table_level
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The GetIfTable2Ex function enumerates the logical and physical interfaces on a local
computer and returns this information in a MIB_IF_TABLE2 structure.

Your driver can use a similar function, GetIfTable2, to retrieve interfaces, but GetIfTable2
does not enable your driver tospecify the level of interfaces to return. A call to the
GetIfTable2Ex function with the Level parameter set to MibIfTableNormal retrieves the
same results as calling the GetIfTable2 function.

GetIfTable2Ex returns interfaces in a MIB_IF_TABLE2 structure in the buffer that the Table
parameter points to. The MIB_IF_TABLE2 structure contains an interface count and an
array of MIB_IF_ROW2 structures for each interface. GetIfTable2 allocates mmory for the
MIB_IF_TABLE2 structure and the MIB_IF_ROW2 entries in this structure. When these
returned structures are no longer required, your driver should free the memory by
calling FreeMibTable.

All interfaces, including NDIS intermediate driver interfaces and NDIS filter driver
interfaces, are returned for either of the possible values for the Level parameter. The
setting for the Level parameter affects how statistics and state members of the
MIB_IF_ROW2 structure in the MIB_IF_TABLE2 structure that is pointed to by the Table
parameter for the interface are returned. For example, a network interface card (NIC) has
an NDIS miniport driver. An NDIS intermediate driver can be installed to interface
between upper-level protocol drivers and NDIS miniport drivers. An NDIS filter driver
can be attached on top of the NDIS intermediate driver. Assume that the NIC reports
the MediaConnectState member of the MIB_IF_ROW2 structure as
MediaConnectStateConnected, but the NDIS filter driver modifies the state and reports
the state as MediaConnectStateDisconnected. When the interface information is
queried with Level parameter set to MibIfTableNormal, the state at the top of the filter
stack (MediaConnectStateDisconnected) is reported. When the interface is queried with
the Level parameter set to MibIfTableRaw, the state at the interface level directly
(MediaConnectStateConnected) is returned.

Note that the returned MIB_IF_TABLE2 structure that the Table parameter points to
might contain padding for alignment between the NumEntries member and the first
MIB_IF_ROW2 array entry in the Table member of the MIB_IF_TABLE2 structure. Padding
for alignment might also be present between the MIB_IF_ROW2 array entries. Any access
to a MIB_IF_ROW2 array entry should assume padding may exist.

Remarks

Requirements

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

GetIfTable2

MIB_IF_TABLE_LEVEL

MIB_IF_TABLE2

MIB_IF_ROW2

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms
https://learn.microsoft.com/en-us/windows/win32/api/netioapi/ne-netioapi-mib_if_table_level

GetInvertedIfStackTable function
Article • 03/03/2023

The GetInvertedIfStackTable function retrieves a table of inverted network interface
stack row entries that specify the relationship of the network interfaces on an interface
stack.

c++

Table [out]
A pointer to a buffer that receives the table of inverted interface stack row entries
in a MIB_INVERTEDIFSTACK_TABLE structure.

GetInvertedIfStackTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetInvertedIfStackTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No interface stack entries were found.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Syntax

NETIOAPI_API GetInvertedIfStackTable(
 Out PMIB_INVERTEDIFSTACK_TABLE *Table
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The GetInvertedIfStackTable function enumerates the physical and logical network
interfaces on an interface stack on a local computer and returns this information in an
inverted form in the MIB_INVERTEDIFSTACK_TABLE structure.

GetInvertedIfStackTable returns interface stack entries in a
MIB_INVERTEDIFSTACK_TABLE structure in the buffer that the Table parameter points to.
The MIB_INVERTEDIFSTACK_TABLE structure contains an interface stack entry count and
an array of MIB_INVERTEDIFSTACK_ROW structures for each interface stack entry.

The relationship between the interfaces in the interface stack is that the interface with
index in the HigherLayerInterfaceIndex member of the MIB_INVERTEDIFSTACK_ROW
structure is immediately above the interface with index in the LowerLayerInterfaceIndex
member of the MIB_INVERTEDIFSTACK_ROW structure.

GetInvertedIfStackTable allocates memory for the MIB_INVERTEDIFSTACK_TABLE
structure and the MIB_INVERTEDIFSTACK_ROW entries in this structure. When these
returned structures are no longer required, your driver should free the memory by
calling FreeMibTable.

Note that the returned MIB_INVERTEDIFSTACK_TABLE structure that the Table parameter
points to might contain padding for alignment between the NumEntries member and
the first MIB_INVERTEDIFSTACK_ROW array entry in the Table member of the
MIB_INVERTEDIFSTACK_TABLE structure. Padding for alignment might also be present
between the MIB_INVERTEDIFSTACK_ROW array entries. Any access to a
MIB_INVERTEDIFSTACK_ROW array entry should assume padding might exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIfEntry2

GetIfStackTable

GetIfTable2

GetIpInterfaceEntry

InitializeIpInterfaceEntry

MIB_IF_ROW2

MIB_IF_TABLE2

MIB_IFSTACK_ROW

MIB_IFSTACK_TABLE

MIB_INVERTEDIFSTACK_ROW

MIB_INVERTEDIFSTACK_TABLE

MIB_IPINTERFACE_ROW

NotifyIpInterfaceChange

SetIpInterfaceEntry

GetIpInterfaceTable function
Article • 03/03/2023

The GetIpInterfaceTable function retrieves the IP interface entries on a local computer.

c++

Family [in]
The address family of IP interfaces to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family.

AF_INET6
The IPv6 address family.

AF_UNSPEC
The address family is unspecified. When this value is specified, the
GetIpInterfaceTable function returns the IP interface table that contains both
IPv4 and IPv6 entries.

Syntax

NETIOAPI_API GetIpInterfaceTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_IPINTERFACE_TABLE *Table
);

Parameters

Table [out]
A pointer to a buffer that receives the table of IP interface entries in a
MIB_IPINTERFACE_TABLE structure.

GetIpInterfaceTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpInterfaceTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No IP interface entries, as specified in the Family parameter,
were found.

STATUS_NOT_SUPPORTED The function is not supported. This error is returned when
the IP transport that is specified in the Address parameter is
not configured on the local computer. This error is also
returned on versions of Windows where this function is not
supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetIpInterfaceTable function enumerates the IP interfaces on a local computer and
returns this information in an MIB_IPINTERFACE_TABLE structure.

GetIpInterfaceTable returns IP interface entries in a MIB_IPINTERFACE_TABLE structure in
the buffer that the Table parameter points to. The MIB_IPINTERFACE_TABLE structure
contains an IP interface entry count and an array of MIB_IPINTERFACE_ROW structures
for each IP interface entry. When these returned structures are no longer required, your
driver should free the memory by calling the FreeMibTable function.

Your driver must initialize the Family parameter to either AF_INET or AF_INET6.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Note that the returned MIB_IPINTERFACE_TABLE structure that the Table parameter
points to might contain padding for alignment between the NumEntries member and
the first MIB_IPINTERFACE_ROW array entry in the Table member of the
MIB_IPINTERFACE_TABLE structure. Padding for alignment might also be present
between the MIB_IPINTERFACE_ROW array entries. Any access to a
MIB_IPINTERFACE_ROW array entry should assume padding might exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

MIB_IPINTERFACE_ROW

MIB_IPINTERFACE_TABLE

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

InitializeIpInterfaceEntry function
Article • 03/03/2023

The InitializeIpInterfaceEntry function initializes the members of an
MIB_IPINTERFACE_ROW structure entry with default values.

c++

Row [in, out]
A pointer to a MIB_IPINTERFACE_ROW structure to initialize. On successful return,
the fields in this parameter are initialized with default information for an interface
on the local computer.

InitializeIpInterfaceEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, InitializeIpInterfaceEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter

Other Use the FormatMessage function to obtain the message string
for the returned error.

On output, the members of the MIB_IPINTERFACE_ROW structure that the Row
parameter points to are initialized as follows.

Syntax

VOID NETIOAPI_API_ InitializeIpInterfaceEntry(
 Inout PMIB_IPINTERFACE_ROW Row
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Family
Set to AF_UNSPEC.

InterfaceLuid
Set to an unspecified value.

All other members
Set to zero.

Your driver must use the InitializeIpInterfaceEntry function to initialize the fields of a
MIB_IPINTERFACE_ROW structure entry with default values. A driver can then change the
fields in the MIB_IPINTERFACE_ROW entry that it wants to modify, and then call the
SetIpInterfaceEntry function.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetIpInterfaceEntry

GetIpInterfaceTable

MIB_IPINTERFACE_ROW

MIB_IPINTERFACE_TABLE

SetIpInterfaceEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

SetIpInterfaceEntry function
Article • 03/03/2023

The SetIpInterfaceEntry function sets the properties of an IP interface on a local
computer.

c++

Row [in, out]
A pointer to a MIB_IPINTERFACE_ROW structure entry for an interface. On input,
your driver must set the Family member of the MIB_IPINTERFACE_ROW to
AF_INET6 or AF_INET and your driver must specify the InterfaceLuid member or
the InterfaceIndex member of MIB_IPINTERFACE_ROW. On a successful return, the
InterfaceLuid member of the MIB_IPINTERFACE_ROW is filled in if the
InterfaceIndex member of the MIB_IPINTERFACE_ROW entry was specified.

SetIpInterfaceEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, SetIpInterfaceEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Family member of the MIB_IPINTERFACE_ROW structure that
the Row parameter points to was not specified as AF_INET or
AF_INET6, or both InterfaceLuid and InterfaceIndex members
of the MIB_IPINTERFACE_ROW structure were unspecified.

Syntax

NETIOAPI_API SetIpInterfaceEntry(
 Inout PMIB_IPINTERFACE_ROW Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPINTERFACE_ROW structure that the Row parameter points
to.

Other Use the FormatMessage function to obtain the message string
for the returned error.

Your driver must use the InitializeIpInterfaceEntry function to initialize the fields of a
MIB_IPINTERFACE_ROW structure entry with default values. A driver can then change
the fields in the MIB_IPINTERFACE_ROW entry that it wants to modify, and then call the
SetIpInterfaceEntry function.

On input, your driver must initialize the following members of the
MIB_IPINTERFACE_ROW structure that the Row parameter points to.

Family
Set to either AF_INET or AF_INET6.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, the InterfaceLuid member of the MIB_IPINTERFACE_ROW structure that the
Row parameter points to is filled in if the InterfaceIndex was specified.

SetIpInterfaceEntry ignores the MaxReassemblySize, MinRouterAdvertisementInterval,
MaxRouterAdvertisementInterval, Connected, SupportsWakeUpPatterns,
SupportsNeighborDiscovery, SupportsRouterDiscovery, ReachableTime,
TransmitOffload, and ReceiveOffload members of the MIB_IPINTERFACE_ROW structure
that the Row parameter points to. These members are set by the network stack and
cannot be changed by using the SetIpInterfaceEntry function.

Unprivileged simultaneous access to multiple networks of different security
requirements creates a security hole and enables an unprivileged driver to accidentally
relay data between the two networks. A typical example is simultaneous access to a
virtual private network (VPN) and the Internet. The Windows Server 2003 and Windows

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

XP operating systems use a weak host model, where Remote Access Service (RAS)
prevents such simultaneous access by increasing the route metric of all default routes
over other interfaces. Therefore, all traffic is routed through the VPN interface,
disrupting other network connectivity.

On Windows Vista and later versions of the Windows operating systems, by default, a
strong host model is used. If a source IP address is specified in the route lookup by
using the GetBestRoute2 function, the route lookup is restricted to the interface of the
source IP address. The route metric modification by RAS has no effect because the list of
potential routes does not even have the route for the VPN interface, which enables
traffic to the Internet. Your driver can use the DisableDefaultRoutes member of the
MIB_IPINTERFACE_ROW structure to disable using the default route on an interface. VPN
clients can use this member as a security measure to restrict split tunneling when split
tunneling is not required by the VPN client. A VPN client can call the
SetIpInterfaceEntry function to set the DisableDefaultRoutes member to TRUE when it
is required. A VPN client can query the current state of the DisableDefaultRoutes
member by calling the GetIpInterfaceEntry function.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetBestRoute2

GetIfEntry2

GetIfTable2

GetIfTable2Ex

GetIpInterfaceEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIpInterfaceTable

InitializeIpInterfaceEntry

MIB_IF_ROW2

MIB_IF_TABLE2

MIB_IPINTERFACE_ROW

MIB_IPINTERFACE_TABLE

NotifyIpInterfaceChange

CreateAnycastIpAddressEntry function
Article • 03/03/2023

The CreateAnycastIpAddressEntry function adds a new anycast IP address entry on a
local computer.

c++

Row [in]
A pointer to a MIB_ANYCASTIPADDRESS_ROW structure entry for an anycast IP
address entry.

CreateAnycastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, CreateAnycastIpAddressEntry returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter,
the Address member of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to was not set to a valid unicast IPv4 or
IPv6 address, or both InterfaceLuid and InterfaceIndex
members of the MIB_ANYCASTIPADDRESS_ROW structure
were unspecified.

Syntax

NETIOAPI_API CreateAnycastIpAddressEntry(
 In const MIB_ANYCASTIPADDRESS_ROW *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is
returned if the function cannot find the network interface
that is specified by the InterfaceLuid or InterfaceIndex
member of the MIB_UNICASTIPADDRESS_ROW structure that
the Row parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address
was specified in the Address member of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the
local computer and an IPv6 address was specified in the
Address member.

ERROR_OBJECT_ALREADY_EXISTS The object already exists. This error is returned if the Address
member of the MIB_ANYCASTIPADDRESS_ROW structure
that the Row parameter points to is a duplicate of an existing
anycast IP address on the interface that is specified by the
InterfaceLuid or InterfaceIndex member of the
MIB_ANYCASTIPADDRESS_ROW structure.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Your driver must initialize the following members of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid unicast IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface to add the unicast IP
address to. If no value was set for the InterfaceLuid member (the value of this
member was set to zero), the InterfaceIndex member is next used to determine
the interface.

The ScopeId member of the MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to is ignored when the CreateAnycastIpAddressEntry function is
called. The ScopeId member is automatically determined by the interface that the
address is added on.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The CreateAnycastIpAddressEntry function fails if the anycast IP address that is passed
in the Address member of the MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to is a duplicate of an existing anycast IP address on the interface.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

DeleteAnycastIpAddressEntry

GetAnycastIpAddressEntry

GetAnycastIpAddressTable

MIB_ANYCASTIPADDRESS_ROW

MIB_ANYCASTIPADDRESS_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

CreateSortedAddressPairs function
Article • 03/03/2023

From a supplied list of potential IP destination addresses, the CreateSortedAddressPairs
function pairs the destination addresses together with the host machine's local IP
addresses and sorts the pairs according to the preferred order of communication.

c++

SourceAddressList [in, optional]
Reserved. This parameter must be NULL.

SourceAddressCount [in]
Reserved. This parameter must be zero.

DestinationAddressList [in]
A pointer to a list of potential destination addresses of type SOCKADDR_IN6.

DestinationAddressCount [in]
The number of addresses in the list that the DestinationAddressList parameter
points to.

AddressSortOptions [in]
Reserved. This parameter must be zero.

SortedAddressPairList [in]
A pointer to a list of pairs of source and destination addresses, sorted in the

Syntax

NETIOAPI_API CreateSortedAddressPairs(
 _In_opt_ const PSOCKADDR_IN6 SourceAddressList,
 In ULONG SourceAddressCount,
 In const PSOCKADDR_IN6 DestinationAddressList,
 In ULONG DestinationAddressCount,
 In ULONG AddressSortOptions,
 In PSOCKADDR_IN6_PAIR *SortedAddressPairList,
 Out ULONG *SortedAddressPairCount
);

Parameters

https://learn.microsoft.com/en-us/windows/win32/api/ws2ipdef/ns-ws2ipdef-sockaddr_in6_lh

preferred order of communication. For more information about this parameter, see
the following Remarks section.

SortedAddressPairCount [out]
The number of address pairs in the list that the SortedAddressPairList parameter
points to.

CreateSortedAddressPairs returns STATUS_SUCCESS if the function succeeds.

If the function fails, CreateSortedAddressPairs returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources were available to complete
the operation.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The CreateSortedAddressPairs function automatically pairs the host machine's local
addresses together with the supplied list of potential destination addresses that the
DestinationAddressList parameter points to.

The returned list of pairs of addresses that the SortedAddressPairList parameter points to
is sorted so that the address pairs that are best suited for communication between two
peers occurr earlier in the list.

The SortedAddressPairList parameter is of type PSOCKADDR_IN6_PAIR, which is defined
in the Ws2ipdef.h header as follows.

C++

Return value

Remarks

 typedef struct _sockaddr_in6_pair
 {
 PSOCKADDR_IN6 SourceAddress;
 PSOCKADDR_IN6 DestinationAddress;
 } SOCKADDR_IN6_PAIR, *PSOCKADDR_IN6_PAIR;

 - **SourceAddress**
 The IP source address.

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FormatMessage

SOCKADDR_IN6

 - **DestinationAddress**
 The IP destination address.

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows/win32/api/ws2ipdef/ns-ws2ipdef-sockaddr_in6_lh

CreateUnicastIpAddressEntry function
Article • 03/03/2023

The CreateUnicastIpAddressEntry function adds a new unicast IP address entry on the
local computer.

c++

Row [in]
A pointer to a MIB_UNICASTIPADDRESS_ROW structure entry for a unicast IP
address entry.

CreateUnicastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, CreateUnicastIpAddressEntry returns one of the following error
codes:

Return code Description

Syntax

NETIOAPI_API CreateUnicastIpAddressEntry(
 In const MIB_UNICASTIPADDRESS_ROW *Row
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter,
the Address member of the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a
valid unicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the
MIB_UNICASTIPADDRESS_ROW structure were unspecified.

This error is also returned for other errors in the values that
are set for members in the MIB_UNICASTIPADDRESS_ROW
structure. These errors include the following situations:

The ValidLifetime member is less than than the
PreferredLifetime member.
The PrefixOrigin member is set to
IpPrefixOriginUnchanged and the SuffixOrigin is not
set to IpSuffixOriginUnchanged.
The PrefixOrigin member is not set to
IpPrefixOriginUnchanged and the SuffixOrigin is set
to IpSuffixOriginUnchanged.
The PrefixOrigin member is not set to a value from the
NL_PREFIX_ORIGIN enumeration.
The SuffixOrigin member is not set to a value from the
NL_SUFFIX_ORIGIN enumeration.
The OnLinkPrefixLength member is set to a value that
is greater than the IP address length, in bits (32 for a
unicast IPv4 address or 128 for a unicast IPv6 address).

For possible values of the NL_PREFIX_ORIGIN and
NL_SUFFIX_ORIGIN enumerations, see
MIB_UNICASTIPADDRESS_ROW.

STATUS_NOT_FOUND The specified interface could not be found. This error is
returned if the function cannot find the network interface
that is specified by the InterfaceLuid or InterfaceIndex
member of the MIB_UNICASTIPADDRESS_ROW structure that
the Row parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address
was specified in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the
local computer and an IPv6 address was specified in the
Address member.

Return code Description

ERROR_OBJECT_ALREADY_EXISTS The object already exists. This error is returned if the Address
member of the MIB_UNICASTIPADDRESS_ROW structure that
the Row parameter points to is a duplicate of an existing
unicast IP address on the interface that is specified by the
InterfaceLuid or InterfaceIndex member of the
MIB_UNICASTIPADDRESS_ROW.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Use the InitializeUnicastIpAddressEntry function to initialize the members of a
MIB_UNICASTIPADDRESS_ROW structure entry with default values. A driver can then
change the members in the MIB_UNICASTIPADDRESS_ROW entry that it wants to
modify, and then call the CreateUnicastIpAddressEntry function.

On input, your driver must initialize the following members of the
MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid unicast IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface to add the unicast IP
address to. If no value was set for the InterfaceLuid member (the value of this
member was set to zero), the InterfaceIndex member is next used to determine
the interface.

If the OnLinkPrefixLength member of the MIB_UNICASTIPADDRESS_ROW structure that
the Row parameter points to is set to 255, CreateUnicastIpAddressEntry adds the new
unicast IP address with the OnLinkPrefixLength member set equal to the length of the
IP address. So for a unicast IPv4 address, the OnLinkPrefixLength is set to 32 and the
OnLinkPrefixLength is set to 128 for a unicast IPv6 address. If this setting would result in
the incorrect subnet mask for an IPv4 address or the incorrect link prefix for an IPv6
address, the driver should set the OnLinkPrefixLength member to the correct value
before calling CreateUnicastIpAddressEntry.

If a unicast IP address is created with the OnLinkPrefixLength member set incorrectly,
your driver can change the IP address by calling SetUnicastIpAddressEntry with the
OnLinkPrefixLength member set to the correct value.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The DadState, ScopeId, and CreationTimeStamp members of the
MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points to are ignored
when the CreateUnicastIpAddressEntry function is called. These members are set by the
network stack. The ScopeId member is automatically determined by the interface that
the address is added on.

The CreateUnicastIpAddressEntry function fails if the unicast IP address that is passed
in the Address member of the MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to is a duplicate of an existing unicast IP address on the interface.
Note that your driver can add a loopback IP address to a loopback interface only by
using the CreateUnicastIpAddressEntry function.

The unicast IP address that is passed in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points to is not usable
immediately. The IP address is usable after the duplicate address detection process has
completed successfully. It can take several seconds for the duplicate address detection
process to complete because IP packets must be sent and potential responses must be
waited for. For IPv6, the duplicate address detection process typically takes about 1
second. For IPv4, the duplicate address detection process typically takes about 3
seconds.

After a driver calls the CreateUnicastIpAddressEntry function, it can use the following
methods to determine if an IP address is still usable:

Use polling and the GetUnicastIpAddressEntry function
After the call to the CreateUnicastIpAddressEntry function returns successfully,
pause for 1 to 3 seconds (depending on whether an IPv6 or IPv4 address is being
created) to allow time for the successful completion of the duplication address
detection process. Then, call GetUnicastIpAddressEntry to retrieve the updated
MIB_UNICASTIPADDRESS_ROW structure and examine the value of the DadState
member. If the value of the DadState member is set to IpDadStatePreferred, the IP
address is now usable. If the value of the DadState member is set to
IpDadStateTentative, duplicate address detection has not yet completed. In this
case, call the GetUnicastIpAddressEntry function again every 0.5 seconds while the
DadState member is still set to IpDadStateTentative. If the value of the DadState
member returns with some value other than IpDadStatePreferred or
IpDadStateTentative, duplicate address detection has failed and the IP address is
not usable.

Call one of the IP Helper NotifyXxx notification functions to set up an
asynchronous notification for when an address changes
After the call to the CreateUnicastIpAddressEntry function returns successfully, call

the NotifyUnicastIpAddressChange function to register the driver to be notified of
changes to either IPv6 or IPv4 unicast IP addresses, depending on the type of IP
address that is being created. When a notification is received for the IP address
that is being created, call the GetUnicastIpAddressEntry function to retrieve the
DadState member. If the value of the DadState member is set to
IpDadStatePreferred, the IP address is now usable. If the value of the DadState
member is set to IpDadStateTentative, duplicate address detection has not yet
completed and the driver must wait for future notifications. If the value of the
DadState member returns with some value other than IpDadStatePreferred or
IpDadStateTentative, duplicate address detection has failed and the IP address is
not usable.

If, during the duplicate address detection process, the media is disconnected and
then reconnected, the duplicate address detection process is restarted. So the time
to complete the process might increase beyond the typical 1 second value for IPv6
or 3 second value for IPv4.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

DeleteUnicastIpAddressEntry

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NL_PREFIX_ORIGIN

NL_SUFFIX_ORIGIN

NotifyIpInterfaceChange

NotifyRouteChange2

NotifyStableUnicastIpAddressTable

NotifyTeredoPortChange

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

DeleteAnycastIpAddressEntry function
Article • 03/03/2023

The DeleteAnycastIpAddressEntry function deletes an existing anycast IP address entry
on a local computer.

c++

Row [in]
A pointer to a MIB_ANYCASTIPADDRESS_ROW structure entry for an existing
anycast IP address entry to delete from the local computer.

DeleteAnycastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, DeleteAnycastIpAddressEntry returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_ANYCASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
unicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the MIB_ANYCASTIPADDRESS_ROW
structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to.

Syntax

NETIOAPI_API DeleteAnycastIpAddressEntry(
 In const MIB_ANYCASTIPADDRESS_ROW *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The DeleteAnycastIpAddressEntry function is used to delete an existing
MIB_ANYCASTIPADDRESS_ROW structure entry on the local computer.

On input, your driver must initialize the following members of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid unicast IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

If the function is successful, the existing IP address that the Row parameter represents
was deleted.

Your driver can call the GetAnycastIpAddressTable function to enumerate the anycast IP
address entries on a local computer. Your driver can call the GetAnycastIpAddressEntry
function to retrieve a specific existing anycast IP address entry.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateAnycastIpAddressEntry

GetAnycastIpAddressEntry

GetAnycastIpAddressTable

MIB_ANYCASTIPADDRESS_ROW

MIB_ANYCASTIPADDRESS_TABLE

See also

DeleteUnicastIpAddressEntry function
Article • 03/03/2023

The DeleteUnicastIpAddressEntry function deletes an existing unicast IP address entry
on a local computer.

c++

Row [in]
A pointer to a MIB_UNICASTIPADDRESS_ROW structure entry for an existing
unicast IP address entry to delete from the local computer.

DeleteUnicastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, DeleteUnicastIpAddressEntry returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
unicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the MIB_UNICASTIPADDRESS_ROW
structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to.

Syntax

NETIOAPI_API DeleteUnicastIpAddressEntry(
 In const MIB_UNICASTIPADDRESS_ROW *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The DeleteUnicastIpAddressEntry function is used to delete an existing
MIB_UNICASTIPADDRESS_ROW structure entry on the local computer.

On input, your driver must initialize the following members of the
MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid IPv4 or IPv6 unicast address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

If the function is successful, the existing IP address that the Row parameter represents is
deleted.

Your driver can call the GetUnicastIpAddressTable function to enumerate the unicast IP
address entries on a local computer. Your driver can call the GetUnicastIpAddressEntry
function to retrieve a specific existing unicast IP address entry.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateUnicastIpAddressEntry

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

See also

GetAnycastIpAddressEntry function
Article • 03/03/2023

The GetAnycastIpAddressEntry function retrieves information for an existing anycast IP
address entry on a local computer.

c++

Row [in, out]
A pointer to a MIB_ANYCASTIPADDRESS_ROW structure entry for an anycast IP
address entry. On successful return, this structure is updated with the properties
for an existing anycast IP address.

GetAnycastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetAnycastIpAddressEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_ANYCASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
anycast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the MIB_ANYCASTIPADDRESS_ROW
structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row
parameter points to.

Syntax

NETIOAPI_API GetAnycastIpAddressEntry(
 Inout PMIB_ANYCASTIPADDRESS_ROW Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetAnycastIpAddressEntry function is used to retrieve an existing
MIB_ANYCASTIPADDRESS_ROW structure entry.

On input, your driver must initialize the following members of the
MIB_ANYCASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid IPv4 or IPv6 anycast address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetAnycastIpAddressEntry retrieves the other
properties for the anycast IP address and fills out the MIB_ANYCASTIPADDRESS_ROW
structure that the Row parameter points to.

Your driver can call the GetAnycastIpAddressTable function to enumerate the anycast IP
address entries on a local computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateAnycastIpAddressEntry

DeleteAnycastIpAddressEntry

GetAnycastIpAddressTable

MIB_ANYCASTIPADDRESS_ROW

MIB_ANYCASTIPADDRESS_TABLE

See also

GetAnycastIpAddressTable function
Article • 03/03/2023

The GetAnycastIpAddressTable function retrieves the anycast IP address table on a local
computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameterare defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the
anycast IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the
anycast IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function

Syntax

NETIOAPI_API GetAnycastIpAddressTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_ANYCASTIPADDRESS_TABLE *Table
);

Parameters

returns the anycast IP address table that contains both IPv4 and IPv6 entries.

Table [out]
A pointer to a MIB_ANYCASTIPADDRESS_TABLE structure that contains a table of
anycast IP address entries on the local computer.

GetAnycastIpAddressTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetAnycastIpAddressTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No anycast IP address entries, as specified in the Family
parameter, were found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetAnycastIpAddressTable function enumerates the anycast IP addresses on a local
computer and returns this information in a MIB_ANYCASTIPADDRESS_TABLE structure.

The anycast IP address entries are returned in a MIB_ANYCASTIPADDRESS_TABLE
structure in the buffer that the Table parameter points to. The
MIB_ANYCASTIPADDRESS_TABLE structure contains an anycast IP address entry count
and an array of MIB_ANYCASTIPADDRESS_ROW structures for each anycast IP address

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

entry. When these returned structures are no longer required, your driver should free
the memory by calling FreeMibTable.

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_ANYCASTIPADDRESS_TABLE structure that the Table
parameter points to might contain padding for alignment between the NumEntries
member and the first MIB_ANYCASTIPADDRESS_ROW array entry in the Table member
of the MIB_ANYCASTIPADDRESS_TABLE structure. Padding for alignment might also be
present between the MIB_ANYCASTIPADDRESS_ROW array entries. Any access to a
MIB_ANYCASTIPADDRESS_ROW array entry should assume padding may exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

MIB_ANYCASTIPADDRESS_ROW

MIB_ANYCASTIPADDRESS_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetMulticastIpAddressEntry function
Article • 03/03/2023

The GetMulticastIpAddressEntry function retrieves information for an existing multicast
IP address entry on a local computer.

c++

Row [in, out]
A pointer to a MIB_MULTICASTIPADDRESS_ROW structure entry for a multicast IP
address entry. On successful return, this structure is updated with the properties
for an existing multicast IP address.

GetMulticastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetMulticastIpAddressEntry returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_MULTICASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
multicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the
MIB_MULTICASTIPADDRESS_ROW structure were unspecified.

Syntax

NETIOAPI_API GetMulticastIpAddressEntry(
 Inout PMIB_MULTICASTIPADDRESS_ROW Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_MULTICASTIPADDRESS_ROW structure that the Row
parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_MULTICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetMulticastIpAddressEntry function is used to retrieve an existing
MIB_MULTICASTIPADDRESS_ROW structure entry.

On input, your driver must initialize the following members of the
MIB_MULTICASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetMulticastIpAddressEntry retrieves the other
properties for the multicast IP address and fills in the MIB_MULTICASTIPADDRESS_ROW
structure that the Row parameter points to.

Your driver can call the GetMulticastIpAddressTable function to enumerate the
multicast IP address entries on a local computer.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetMulticastIpAddressTable

MIB_MULTICASTIPADDRESS_ROW

MIB_MULTICASTIPADDRESS_TABLE

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetMulticastIpAddressTable function
Article • 03/03/2023

The GetMulticastIpAddressTable function retrieves the multicast IP address table on a
local computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the
multicast IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the
multicast IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function

Syntax

NETIOAPI_API GetMulticastIpAddressTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_MULTICASTIPADDRESS_TABLE *Table
);

Parameters

returns the multicast IP address table that contains both IPv4 and IPv6 entries.

Table [out]
A pointer to a MIB_MULTICASTIPADDRESS_TABLE structure that contains a table
of anycast IP address entries on the local computer.

GetMulticastIpAddressTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetMulticastIpAddressTable returns one of the following error
codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No anycast IP address entries, as specified in the Family
parameter, were found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetMulticastIpAddressTable function enumerates the multicast IP addresses on a
local computer and returns this information in a MIB_MULTICASTIPADDRESS_TABLE
structure.

GetMulticastIpAddressTable returns the multicast IP address entries in a
MIB_MULTICASTIPADDRESS_TABLE structure in the buffer that the Table parameter
points to. The MIB_MULTICASTIPADDRESS_TABLE structure contains a multicast IP

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

address entry count and an array of MIB_MULTICASTIPADDRESS_ROW structures for
each multicast IP address entry. When these returned structures are no longer required,
your driver should free the memory by calling FreeMibTable.

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_MULTICASTIPADDRESS_TABLE structure that the Table
parameter points to might contain padding for alignment between the NumEntries
member and the first MIB_MULTICASTIPADDRESS_ROW array entry in the Table member
of the MIB_MULTICASTIPADDRESS_TABLE structure. Padding for alignment might also be
present between the MIB_MULTICASTIPADDRESS_ROW array entries. Any access to a
MIB_MULTICASTIPADDRESS_ROW array entry should assume padding might exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetMulticastIpAddressEntry

MIB_MULTICASTIPADDRESS_ROW

MIB_MULTICASTIPADDRESS_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetUnicastIpAddressEntry function
Article • 03/03/2023

The GetUnicastIpAddressEntry function retrieves information for an existing unicast IP
address entry on a local computer.

c++

Row [in, out]
A pointer to a MIB_UNICASTIPADDRESS_ROW structure entry for a unicast IP
address entry. On successful return, this structure is updated with the properties
for an existing unicast IP address.

GetUnicastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetUnicastIpAddressEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
unicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the MIB_UNICASTIPADDRESS_ROW
structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to.

Syntax

NETIOAPI_API GetUnicastIpAddressEntry(
 Inout PMIB_UNICASTIPADDRESS_ROW Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetUnicastIpAddressEntry function is typically used to retrieve an existing
MIB_UNICASTIPADDRESS_ROW structure entry to be modified. A driver can then
change the members in the MIB_UNICASTIPADDRESS_ROW entry that it wants to
modify, and then call the SetUnicastIpAddressEntry function.

On input, your driver must initialize the following members of the
MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points to.

Address
Set to a valid unicast IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetUnicastIpAddressEntry retrieves the other
properties for the unicast IP address and fills in the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to.

Your driver can call the GetUnicastIpAddressTable function to enumerate the unicast IP
address entries on a local computer.

Target
platform

Universal

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

See also

GetUnicastIpAddressTable function
Article • 03/03/2023

The GetUnicastIpAddressTable function retrieves the unicast IP address table on a local
computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the
multicast IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the
multicast IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function

Syntax

NETIOAPI_API GetUnicastIpAddressTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_UNICASTIPADDRESS_TABLE *Table
);

Parameters

returns the multicast IP address table that contains both IPv4 and IPv6 entries.

Table [out]
A pointer to a MIB_UNICASTIPADDRESS_TABLE structure that contains a table of
unicast IP address entries on the local computer.

GetUnicastIpAddressTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetUnicastIpAddressTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No unicast IP address entries, as specified in the Family
parameter, were found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetUnicastIpAddressTable function enumerates the unicast IP addresses on a local
computer and returns this information in an MIB_UNICASTIPADDRESS_TABLE structure.

GetUnicastIpAddressTable returns the unicast IP address entries in a
MIB_UNICASTIPADDRESS_TABLE structure in the buffer that the Table parameter points
to. The MIB_UNICASTIPADDRESS_TABLE structure contains a unicast IP address entry
count and an array of MIB_UNICASTIPADDRESS_ROW structures for each unicast IP

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

address entry. When these returned structures are no longer required, your driver
should free the memory by calling FreeMibTable.

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_UNICASTIPADDRESS_TABLE structure that the Table
parameter points to might contain padding for alignment between the NumEntries
member and the first MIB_UNICASTIPADDRESS_ROW array entry in the Table member of
the MIB_UNICASTIPADDRESS_TABLE structure. Padding for alignment might also be
present between the MIB_UNICASTIPADDRESS_ROW array entries. Any access to a
MIB_UNICASTIPADDRESS_ROW array entry should assume padding might exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

FreeMibTable

GetUnicastIpAddressEntry

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyStableUnicastIpAddressTable

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

InitializeUnicastIpAddressEntry function
Article • 03/03/2023

The InitializeUnicastIpAddressEntry function initializes a
MIB_UNICASTIPADDRESS_ROW structure with default values for a unicast IP address
entry on a local computer.

c++

Row [out]
On entry, a pointer to a MIB_UNICASTIPADDRESS_ROW structure entry for a
unicast IP address entry. On return, the MIB_UNICASTIPADDRESS_ROW structure
that this parameter points to is initialized with default values for a unicast IP
address.

None

Your driver must use the InitializeUnicastIpAddressEntry function to initialize the
members of a MIB_UNICASTIPADDRESS_ROW structure entry with default values for a
unicast IP address for later use with the CreateUnicastIpAddressEntry function.

On input, your driver must pass InitializeUnicastIpAddressEntry a new
MIB_UNICASTIPADDRESS_ROW structure to initialize.

On output, the members of the MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to are initialized as follows.

Syntax

VOID NETIOAPI_API_ InitializeUnicastIpAddressEntry(
 Out PMIB_UNICASTIPADDRESS_ROW Row
);

Parameters

Return value

Remarks

PrefixOrigin
Set to the IpPrefixOriginUnchanged value of the NL_PREFIX_ORIGIN enumeration.

SuffixOrigin
Set to the IpSuffixOriginUnchanged value of the NL_PREFIX_ORIGIN enumeration.

OnLinkPrefixLength
Set to an illegal value.

PreferredLifetime and ValidLifetime
Set to infinite values.

SkipAsSource
Set to FALSE.

All other members
Set to zero.

After a driver calls InitializeUnicastIpAddressEntry, the driver can then change the
members in the MIB_UNICASTIPADDRESS_ROW entry that it wants to modify, and then
call the CreateUnicastIpAddressEntry to add the new unicast IP address to the local
computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetUnicastIpAddressEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetUnicastIpAddressTable

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

SetUnicastIpAddressEntry function
Article • 03/03/2023

The SetUnicastIpAddressEntry function sets the properties of an existing unicast IP
address entry on a local computer.

c++

Row [in]
A pointer to a MIB_UNICASTIPADDRESS_ROW structure entry for an existing
unicast IP address entry.

SetUnicastIpAddressEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, SetUnicastIpAddressEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to was not set to a valid
unicast IPv4 or IPv6 address, or both InterfaceLuid and
InterfaceIndex members of the MIB_UNICASTIPADDRESS_ROW
structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to.

Syntax

NETIOAPI_API SetUnicastIpAddressEntry(
 In const MIB_UNICASTIPADDRESS_ROW *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_UNICASTIPADDRESS_ROW structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and an IPv6 address was specified in the Address
member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetUnicastIpAddressEntry function is typically used to retrieve an existing
MIB_UNICASTIPADDRESS_ROW structure entry to be modified. A driver can then
change the members in the MIB_UNICASTIPADDRESS_ROW entry that it wants to
modify, and then call the SetUnicastIpAddressEntry function.

A driver can call the InitializeUnicastIpAddressEntry function to initialize the members
of a MIB_UNICASTIPADDRESS_ROW structure entry with default values before making
changes. However, the driver typically saves either the InterfaceLuid or InterfaceIndex
member before calling InitializeUnicastIpAddressEntry and restores one of these
members after the call.

Your driver must initialize the following members of the MIB_UNICASTIPADDRESS_ROW
structure that the Row parameter points to.

Address
Set to a valid unicast IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

If the OnLinkPrefixLength member of the MIB_UNICASTIPADDRESS_ROW structure that
the Row parameter points to is set to 255, SetUnicastIpAddressEntry sets the unicast IP
address properties so that the OnLinkPrefixLength member is equal to the length of the
IP address. For a unicast IPv4 address, OnLinkPrefixLength is set to 32. For a unicast
IPv6 address, OnLinkPrefixLength is set to 128. If these settings would result in the
incorrect subnet mask for an IPv4 address or the incorrect link prefix for an IPv6 address,

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

the driver should set this member to the correct value before calling
SetUnicastIpAddressEntry.

SetUnicastIpAddressEntry ignores the DadState, ScopeId, and CreationTimeStamp
members of the MIB_UNICASTIPADDRESS_ROW structure that the Row parameter points
to. These members are set by the network stack and cannot be changed by using the
SetUnicastIpAddressEntry function. The ScopeId member is automatically determined
by the interface that the address was added on.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyUnicastIpAddressChange

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

CreateIpNetEntry2 function
Article • 03/03/2023

The CreateIpNetEntry2 function creates a new neighbor IP address entry on the local
computer.

c++

Row [in]
A pointer to a MIB_IPNET_ROW2 structure entry for an IP route entry.

CreateIpNetEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, CreateIpNetEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if one of the following items occurs:

A NULL pointer is passed in the Row parameter.
The Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to was not set
to a valid unicast, anycast, or multicast IPv4 or IPv6
address.
The PhysicalAddress and PhysicalAddressLength
members of the MIB_IPNET_ROW2 structure were not
set to a valid physical address.
Both InterfaceLuid and InterfaceIndex members of
the MIB_IPNET_ROW2 structure were unspecified.
A loopback address was passed in the Address
member.

Syntax

NETIOAPI_API CreateIpNetEntry2(
 In const MIB_IPNET_ROW2 *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is
returned if the function cannot find the network interface
that is specified by the InterfaceLuid or InterfaceIndex
member of the MIB_IPNET_ROW2 structure that the Row
parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address
was specified in the Address member of the
MIB_IPNET_ROW2 structure that the Row parameter points,
or if no IPv6 stack is located on the local computer and an
IPv6 address was specified in the Address member.

ERROR_OBJECT_ALREADY_EXISTS The object already exists. This error is returned if the Address
member of the MIB_IPNET_ROW2 structure that the Row
parameter points to is a duplicate of an existing neighbor IP
address on the interface that is specified by the
InterfaceLuid or InterfaceIndex member of the
MIB_IPNET_ROW2 structure.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Your driver must initialize the following members of the MIB_IPNET_ROW2 structure
that the Row parameter points to:

Set the Address member to a valid unicast, anycast, or multicast IPv4 or IPv6
address and family.

Set the PhysicalAddress and PhysicalAddressLength members in the
MIB_IPNET_ROW2 structure to a valid physical address.

Set InterfaceLuid or InterfaceIndex to the LUID or index value of the interface.

The InterfaceLuid and InterfaceIndex members are used in the order that is listed
earlier. So if the InterfaceLuid is specified, this member is used to determine the
interface to add the unicast IP address on. If no value was set for the InterfaceLuid
member (the value of this member was set to zero), the InterfaceIndex member is next
used to determine the interface.

The CreateIpNetEntry2 function fails if the IP address that is passed in the Address
member of the MIB_IPNET_ROW2 structure that the Row parameter points to is a

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

duplicate of an existing neighbor IP address on the interface.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

DeleteIpNetEntry2

FlushIpNetTable2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

ResolveIpNetEntry2

SetIpNetEntry2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

DeleteIpNetEntry2 function
Article • 03/03/2023

The DeleteIpNetEntry2 function deletes a neighbor IP address entry on a local
computer.

c++

Row [in]
A pointer to a MIB_IPNET_ROW2 structure entry for a neighbor IP address entry.
On successful return, this entry is deleted.

DeleteIpNetEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, DeleteIpNetEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_IPNET_ROW2 structure that the
Row parameter points to was not set to a valid neighbor IPv4 or
IPv6 address, or both InterfaceLuid and InterfaceIndex
members of the MIB_IPNET_ROW2 structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPNET_ROW2 structure that the Row parameter points to.

Syntax

NETIOAPI_API DeleteIpNetEntry2(
 In const MIB_IPNET_ROW2 *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to, or if no IPv6 stack is
located on the local computer and an IPv6 address was
specified in the Address member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The DeleteIpNetEntry2 function is used to delete a MIB_IPNET_ROW2 structure entry.

On input, your driver must initialize the following members of the MIB_IPNET_ROW2
structure that the Row parameter points to.

Address
Set to a valid neighbor IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, DeleteIpNetEntry2 deletes the neighbor IP
address.

Your driver can call the GetIpNetTable2 function to enumerate the neighbor IP address
entries on a local computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

IRQL < DISPATCH_LEVEL

CreateIpNetEntry2

FlushIpNetTable2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

ResolveIpNetEntry2

SetIpNetEntry2

See also

FlushIpNetTable2 function
Article • 03/03/2023

The FlushIpNetTable2 function flushes the IP neighbor table on a local computer.

c++

Family [in]
The address family to flush.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function flushes the
neighbor IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function flushes the
neighbor IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
flushes the neighbor IP address table that contains both IPv4 and IPv6 entries.

Syntax

NETIOAPI_API FlushIpNetTable2(
 In ADDRESS_FAMILY Family,
 In NET_IFINDEX InterfaceIndex
);

Parameters

InterfaceIndex [in]
The interface index. If the index is specified, the function flushes the neighbor IP
address entries on a specific interface.Ootherwise, the function flushes the
neighbor IP address entries on all the interfaces. To ignore the interface, set this
parameter to zero.

FlushIpNetTable2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, FlushIpNetTable2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is located
on the local computer and AF_INET6 was specified in the Family
parameter. This error is also returned on versions of Windows
where this function is not supported.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The FlushIpNetTable2 function flushes or deletes the neighbor IP addresses on a local
computer. Your driver can use the Family parameter to limit neighbor IP addresses to
delete to a particular IP address family. If neighbor IP addresses for both IPv4 and IPv6
should be deleted, your driver should set the Family parameter to AF_UNSPEC. Your
driver can use the InterfaceIndex parameter to limit neighbor IP addresses to delete to a
particular interface. If neighbor IP addresses for all interfaces should be deleted, your
driver should set the InterfaceIndex parameter to zero.

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpNetEntry2

DeleteIpNetEntry2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

ResolveIpNetEntry2

SetIpNetEntry2

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIpNetEntry2 function
Article • 03/03/2023

The GetIpNetEntry2 function retrieves information for a neighbor IP address entry on
the local computer.

c++

Row [in, out]
A pointer to a MIB_IPNET_ROW2 structure entry for a neighbor IP address entry.
On successful return, this structure is updated with the properties for neighbor IP
address.

GetIpNetEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpNetEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_IPNET_ROW2 structure that the
Row parameter points to was not set to a valid neighbor IPv4 or
IPv6 address, or both InterfaceLuid and InterfaceIndex
members of the MIB_IPNET_ROW2 structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPNET_ROW2 structure that the Row parameter points to.

Syntax

NETIOAPI_API GetIpNetEntry2(
 Inout PMIB_IPNET_ROW2 Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to, or if no IPv6 stack is
located on the local computer and an IPv6 address was
specified in the Address member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetIpNetEntry2 function is used to retrieve a MIB_IPNET_ROW2 structure entry.

On input, your driver must initialize the following members of the MIB_IPNET_ROW2
structure that the Row parameter points to.

Address
Set to a valid neighbor IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetIpNetEntry2 retrieves the other properties for
the neighbor IP address and fills in the MIB_IPNET_ROW2 structure that the Row
parameter points to.

Your driver can call the GetIpNetTable2 function to enumerate the neighbor IP address
entries on a local computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetIpNetTable2

MIB_IPNET_ROW2

See also

GetIpNetTable2 function
Article • 03/03/2023

The GetIpNetTable2 function retrieves the IP neighbor table on a local computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the
neighbor IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the
neighbor IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
returns the neighbor IP address table that contains both IPv4 and IPv6 entries.

Syntax

NETIOAPI_API GetIpNetTable2(
 In ADDRESS_FAMILY Family,
 Out PMIB_IPNET_TABLE2 *Table
);

Parameters

Table [out]
A pointer to a MIB_IPNET_TABLE2 structure that contains a table of neighbor IP
address entries on the local computer.

GetIpNetTable2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpNetTable2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No neighbor IP address entries, as specified in the Family
parameter, were found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetIpNetTable2 function enumerates the neighbor IP addresses on a local
computer and returns this information in a MIB_IPNET_TABLE2 structure.

GetIpNetTable2 returns the neighbor IP address entries in a MIB_IPNET_TABLE2
structure in the buffer that the Table parameter points to. The MIB_IPNET_TABLE2
structure contains a neighbor IP address entry count and an array of MIB_IPNET_ROW2
structures for each neighbor IP address entry. When these returned structures are no
longer required, your driver should free the memory by calling FreeMibTable.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_IPNET_TABLE2 structure that the Table parameter points to
might contain padding for alignment between the NumEntries member and the first
MIB_IPNET_ROW2 array entry in the Table member of the MIB_IPNET_TABLE2 structure.
Padding for alignment might also be present between the MIB_IPNET_ROW2 array
entries. Any access to a MIB_IPNET_ROW2 array entry should assume padding might
exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpNetEntry2

FlushIpNetTable2

FreeMibTable

GetIpNetEntry2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

ResolveIpNetEntry2

SetIpNetEntry2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

ResolveIpNetEntry2 function
Article • 03/03/2023

The ResolveIpNetEntry2 function resolves the physical address for a neighbor IP
address entry on a local computer.

c++

Row [in, out]
A pointer to a MIB_IPNET_ROW2 structure entry for a neighbor IP address entry.
On successful return, this structure is updated with the properties for neighbor IP
address.

SourceAddress [in, optional]
A pointer to an optional source IP address that is used to select the interface to
send the requests on for the neighbor IP address entry.

ResolveIpNetEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, ResolveIpNetEntry2 returns one of the following error codes:

Return code Description

STATUS_BAD_NETWORK_NAME The network name cannot be found. This error is returned if
the network with the neighbor IP address is unreachable.

Syntax

NETIOAPI_API ResolveIpNetEntry2(
 Inout PMIB_IPNET_ROW2 Row,
 _In_opt_ const SOCKADDR_INET *SourceAddress
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Address member of the MIB_IPNET_ROW2 structure that the
Row parameter points to was not set to a valid IPv4 or IPv6
address, or both InterfaceLuid and InterfaceIndex members
of the MIB_IPNET_ROW2 structure were unspecified. This error
is also returned if a loopback address was passed in the
Address member.

STATUS_NOT_FOUND The specified interface could not be found. This error is
returned if the function cannot find the network interface that
is specified by the InterfaceLuid or InterfaceIndex member of
the MIB_IPNET_ROW2 structure that the Row parameter points
to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to, or if no IPv6 stack
is located on the local computer and an IPv6 address was
specified in the Address member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The ResolveIpNetEntry2 function is used to resolve the physical address for a neighbor
IP address entry on a local computer. This function flushes any existing neighbor entry
that matches the IP address on the interface and then resolves the physical address
(MAC) address by sending ARP requests for an IPv4 address or Neighbor Solicitation
(NS) requests for an IPv6 address. If the SourceAddress parameter is specified,
ResolveIpNetEntry2 selects the interface with this source IP address to send the
requests on. If the SourceAddress parameter is not specified (NULL was passed in this
parameter), ResolveIpNetEntry2 automatically selects the best interface to send the
requests on.

Your driver must initialize the following members of the MIB_IPNET_ROW2 structure
that the Row parameter points to.

Address
Set to a valid IPv4 or IPv6 address and family.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

If the IP address that is passed in the Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to is a duplicate of an existing neighbor IP
address on the interface, the ResolveIpNetEntry2 function flushes the existing entry
before resolving the IP address.

On output, when the call is successful, ResolveIpNetEntry2 retrieves the other
properties for the neighbor IP address and fills in the MIB_IPNET_ROW2 structure that
the Row parameter points to. The PhysicalAddress and PhysicalAddressLength
members in the MIB_IPNET_ROW2 structure are initialized to a valid physical address.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpNetEntry2

DeleteIpNetEntry2

FlushIpNetTable2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

SetIpNetEntry2

SetIpNetEntry2 function
Article • 03/03/2023

The SetIpNetEntry2 function sets the physical address of an existing neighbor IP
address entry on a local computer.

c++

Row [in]
A pointer to a MIB_IPNET_ROW2 structure entry for a neighbor IP address entry.

SetIpNetEntry2 return STATUS_SUCCESS if the function succeeds.

If the function fails, SetIpNetEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned in the following situations.

A NULL pointer was passed in the Row parameter.
The Address member of the MIB_IPNET_ROW2 structure
that the Row parameter points to was not set to a valid
unicast, anycast, or multicast IPv4 or IPv6 address.
The PhysicalAddress and PhysicalAddressLength
members of the MIB_IPNET_ROW2 structure were not set
to a valid physical address.
Both InterfaceLuid and InterfaceIndex members of the
MIB_IPNET_ROW2 structure were unspecified.
A loopback address was passed in the Address member.

Syntax

NETIOAPI_API SetIpNetEntry2(
 In PMIB_IPNET_ROW2 Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPNET_ROW2 structure that the Row parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the MIB_IPNET_ROW2
structure that the Row parameter points to, or if no IPv6 stack is
located on the local computer and an IPv6 address was
specified in the Address member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

Your driver must initialize the following members of the MIB_IPNET_ROW2 structure
that the Row parameter points to.

Address
Set to a valid unicast, anycast, or multicast IPv4 or IPv6 address and family.

PhysicalAddress and PhysicalAddressLength
Set to a valid physical address.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

The SetIpNetEntry2 function fails if the IP address that is passed in the Address
member of the MIB_IPNET_ROW2 structure that the Row parameter points to is not an
existing neighbor IP address on the interface that is specified.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpNetEntry2

DeleteIpNetEntry2

FlushIpNetTable2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_ROW2

MIB_IPNET_TABLE2

ResolveIpNetEntry2

See also

FlushIpPathTable function
Article • 03/03/2023

The FlushIpPathTable function flushes the IP path table on a local computer.

c++

Family [in]
The address family to flush.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function flushes the IP
path table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function flushes the IP
path table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
flushes the neighbor IP address table that contains both IPv4 and IPv6 entries.

Syntax

NETIOAPI_API FlushIpPathTable(
 In ADDRESS_FAMILY Family
);

Parameters

FlushIpPathTable returns STATUS_SUCCESS if the function succeeds.

If the function fails, FlushIpPathTable returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is located
on the local computer and AF_INET6 was specified in the Family
parameter. This error is also returned on versions of Windows
where this function is not supported.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The FlushIpPathTable function flushes or deletes the IP path entries on a local
computer. Your driver can use the Family parameter to limit the IP path entries to delete
to a particular IP address family. If IP path entries for both IPv4 and IPv6 should be
deleted, your driver should set the Family parameter to AF_UNSPEC.

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIpPathEntry

GetIpPathTable

MIB_IPPATH_ROW

MIB_IPPATH_TABLE

See also

GetIpPathEntry function
Article • 03/03/2023

The GetIpPathEntry function retrieves information for an IP path entry on a local
computer.

c++

Row [in, out]
A pointer to a MIB_IPPATH_ROW structure entry for an IP path entry. On successful
return, this structure is updated with the properties for IP path entry.

GetIpPathEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpPathEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
si_family member in the Destination member of the
MIB_IPPATH_ROW structure that the Row parameter points to
was not set to AF_INET or AF_INET6, or both InterfaceLuid and
InterfaceIndex members of the MIB_IPPATH_ROW structure
were unspecified. This error is also returned if the si_family
member in the Source member of the MIB_IPPATH_ROW
structure did not match the destination IP address family and
the si_family for the source IP address was not specified as
AF_UNSPEC.

Syntax

NETIOAPI_API GetIpPathEntry(
 Inout PMIB_IPPATH_ROW Row
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPPATH_ROW structure that the Row parameter points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Source and Destination members of the
MIB_IPPATH_ROW structure that the Row parameter points to, or
if no IPv6 stack is located on the local computer and an IPv6
address was specified in the Source and Destination members.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetIpPathEntry function is used to retrieve a MIB_IPPATH_ROW structure entry.

On input, your driver must initialize the following members of the MIB_IPPATH_ROW
structure that the Row parameter points to.

Destination
Set to a valid IPv4 or IPv6 address and family.

Source
Set the address family that is specified in the Source member to the destination IP
address family that is specified in the Destination member, or to AF_UNSPEC.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetIpPathEntry retrieves the other properties for
the IP path entry and fills in the MIB_IPPATH_ROW structure that the Row parameter
points to.

Your driver can call the GetIpPathTable function to enumerate the IP path entries on a
local computer.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FlushIpPathTable

GetIpPathTable

MIB_IPPATH_ROW

MIB_IPPATH_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIpPathTable function
Article • 03/03/2023

The GetIpPathEntry function retrieves information for an IP path entry on a local
computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the IP
path table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the IP
path table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function

Syntax

NETIOAPI_API GetIpPathTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_IPPATH_TABLE *Table
);

Parameters

returns the IP path table that contains both IPv4 and IPv6 entries.

Table [out]
A pointer to a MIB_IPPATH_TABLE structure that contains a table of IP path entries
on the local computer.

GetIpPathEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpPathEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No IP path entries, as specified in the Family parameter, were
found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetIpPathTable function enumerates the IP path entries on a local computer and
returns this information in a MIB_IPPATH_TABLE structure.

GetIpPathTable returns the IP path entries in a MIB_IPPATH_TABLE structure in the buffer
that the Table parameter points to. The MIB_IPPATH_TABLE structure contains an IP path
entry count and an array of MIB_IPPATH_ROW structures for each IP path entry. When
these returned structures are no longer required, your driver should free the memory by
calling FreeMibTable.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_IPPATH_TABLE structure that the Table parameter points to
might contain padding for alignment between the NumEntries member and the first
MIB_IPPATH_ROW array entry in the Table member of the MIB_IPPATH_TABLE structure.
Padding for alignment might also be present between the MIB_IPPATH_ROW array
entries. Any access to a MIB_IPPATH_ROW array entry should assume padding might
exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

FreeMibTable

FlushIpPathTable

GetIpPathEntry

MIB_IPPATH_ROW

MIB_IPPATH_TABLE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

CreateIpForwardEntry2 function
Article • 03/03/2023

The CreateIpForwardEntry2 function creates a new IP route entry on a local computer.

c++

Row [in]
A pointer to a MIB_IPFORWARD_ROW2 structure entry for an IP route entry.

CreateIpForwardEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, CreateIpForwardEntry2 returns one of the following error codes:

Return code Description

Syntax

NETIOAPI_API CreateIpForwardEntry2(
 In const MIB_IPFORWARD_ROW2 *Row
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if one of the following situations occurs:

A NULL pointer is passed in the Row parameter.
The DestinationPrefix member of the
MIB_IPFORWARD_ROW2 structure that the Row
parameter points to was not specified.
The NextHop member of the MIB_IPFORWARD_ROW2
structure was not specified.
Both InterfaceLuid and InterfaceIndex members of
the MIB_IPFORWARD_ROW2 structure were
unspecified.
The PreferredLifetime member of the
MIB_IPFORWARD_ROW2 structure is greater than the
ValidLifetime member.
The SitePrefixLength member of the
MIB_IPFORWARD_ROW2 structure is greater than the
prefix length that is specified by the DestinationPrefix
member.

This error is returned if a NULL pointer is passed in the Row
parameter, the DestinationPrefix member of the
MIB_IPFORWARD_ROW2 structure that is pointed to by the
Row parameter was not specified, the NextHop member of
the MIB_IPFORWARD_ROW2 structure was not specified, or
both InterfaceLuid and InterfaceIndex members of the
MIB_IPFORWARD_ROW2 structure were unspecified. This
error is also returned if the PreferredLifetime member that is
specified in the MIB_IPFORWARD_ROW2 structure is greater
than the ValidLifetime member, or if the SitePrefixLength in
the MIB_IPFORWARD_ROW2 structure is greater than the
prefix length that is specified in the DestinationPrefix
member.

STATUS_NOT_FOUND The specified interface could not be found. This error is
returned if the function cannot find the network interface
that is specified by the InterfaceLuid or InterfaceIndex
member of the MIB_IPNET_ROW2 structure that the Row
parameter points to.

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if the
interface that is specified does not support routes. This error
is returned if no IPv4 stack is located on the local computer
and AF_INET was specified in the address family in the
DestinationPrefix member of the MIB_IPFORWARD_ROW2
structure that the Row parameter points to, or if no IPv6
stack is located on the local computer and AF_INET6 was
specified for the address family in the DestinationPrefix
member.

ERROR_OBJECT_ALREADY_EXISTS The object already exists. This error is returned if the
DestinationPrefix member of the MIB_IPFORWARD_ROW2
structure that the Row parameter points to is a duplicate of
an existing IP route entry on the interface that is specified by
the InterfaceLuid or InterfaceIndex member of the
MIB_IPFORWARD_ROW2 structure.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The CreateIpForwardEntry2 function is used to add a new neighbor IP address entry on
a local computer. Use the InitializeIpForwardEntry function to initialize the members of
a MIB_IPFORWARD_ROW2 structure entry with default values. A driver can then change
the members in the MIB_IPFORWARD_ROW2 entry that it wants to modify and then call
CreateIpForwardEntry2.

Your driver must initialize the following members of the MIB_IPFORWARD_ROW2
structure that the Row parameter points to:

Set DestinationPrefix to a valid IPv4 or IPv6 address prefix.

Set NextHop to a valid IPv4 or IPv6 address and family.

Set InterfaceLuid or InterfaceIndex to the LUID or index value of the interface.

The InterfaceLuid and InterfaceIndex members are used in the order that is listed
earlier. So if the InterfaceLuid is specified, this member is used to determine the
interface to add the IP route entry on. If no value was set for the InterfaceLuid member
(the value of this member was set to zero), the InterfaceIndex member is next used to
determine the interface.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The route metric offset that is specified in the Metric member of the
MIB_IPFORWARD_ROW2 structure that the Row parameter points to represents only part
of the complete route metric. The complete metric is a combination of this route metric
offset added to the interface metric that is specified in the Metric member of the
MIB_IPINTERFACE_ROW structure of the associated interface. A driver can retrieve the
interface metric by calling the GetIpInterfaceEntry function.

The Age and Origin members of the MIB_IPFORWARD_ROW2 structure that the Row
parameter points to are ignored when the CreateIpForwardEntry2 function is called.
These members are set by the network stack and cannot be set by using the
CreateIpForwardEntry2 function.

The CreateIpForwardEntry2 function fails if the DestinationPrefix and NextHop
members of the MIB_IPFORWARD_ROW2 structure that the Row parameter points to are
a duplicate of an existing IP route entry on the interface that is specified in the
InterfaceLuid or InterfaceIndex members.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

DeleteIpForwardEntry2

GetBestRoute2

GetIpForwardEntry2

GetIpForwardTable2

GetIpInterfaceEntry

InitializeIpForwardEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

MIB_IPINTERFACE_ROW

NotifyRouteChange2

SetIpForwardEntry2

DeleteIpForwardEntry2 function
Article • 03/03/2023

The DeleteIpForwardEntry2 function deletes an IP route entry on a local computer.

c++

Row [in]
A pointer to a MIB_IPFORWARD_ROW2 structure entry for an IP route entry. On
successful return, this entry is deleted.

DeleteIpForwardEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, DeleteIpForwardEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
DestinationPrefix member of the MIB_IPFORWARD_ROW2
structure that the Row parameter points to was not specified,
the NextHop member of the MIB_IPFORWARD_ROW2 structure
was not specified, or both InterfaceLuid and InterfaceIndex
members of the MIB_IPFORWARD_ROW2 structure were
unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPFORWARD_ROW2 structure that the Row parameter
points to.

Syntax

NETIOAPI_API DeleteIpForwardEntry2(
 In const MIB_IPFORWARD_ROW2 *Row
);

Parameters

Return value

Return code Description

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address was
specified in the Address member of the
MIB_IPFORWARD_ROW2 structure that the Row parameter
points to, or if no IPv6 stack is located on the local computer
and an IPv6 address was specified in the Address member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The DeleteIpForwardEntry2 function is used to delete a MIB_IPFORWARD_ROW2
structure entry.

On input, your driver must initialize the following members of the
MIB_IPFORWARD_ROW2 structure that the Row parameter points to.

DestinationPrefix
Set to a valid IPv4 or IPv6 address prefix and family.

NextHop
Set to a valid IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, DeleteIpForwardEntry2 deletes the IP route
entry.

The DeleteIpForwardEntry2 function fails if the DestinationPrefix and NextHop
members of the MIB_IPFORWARD_ROW2 structure that the Row parameter points to do
not match an existing IP route entry on the interface that is specified in the
InterfaceLuid or InterfaceIndex members.

Your driver can call the GetIpForwardTable2 function to enumerate the IP route entries
on a local computer.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

GetBestRoute2

GetIpForwardEntry2

GetIpForwardTable2

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

NotifyRouteChange2

SetIpForwardEntry2

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetBestRoute2 function
Article • 03/03/2023

The GetBestRoute2 function retrieves the IP route entry on a local computer for the best
route to the specified destination IP address.

c++

InterfaceLuid [in, optional]
The locally unique identifier (LUID) to specify the network interface that is
associated with an IP route entry.

InterfaceIndex [in]
The local index value to specify the network interface that is associated with an IP
route entry. This index value might change when a network adapter is disabled and
then enabled, or under other circumstances, so this value does not persistent.

SourceAddress [in, optional]
The source IP address. Your driver can omit this parameter and pass a NULL
pointer.

DestinationAddress [in]
The destination IP address.

AddressSortOptions [in]
A set of options that affect how IP addresses are sorted. This parameter is currently
not used.

Syntax

NETIOAPI_API GetBestRoute2(
 _In_opt_ NET_LUID *InterfaceLuid,
 In NET_IFINDEX InterfaceIndex,
 _In_opt_ const SOCKADDR_INET *SourceAddress,
 In const SOCKADDR_INET *DestinationAddress,
 In ULONG AddressSortOptions,
 Out PMIB_IPFORWARD_ROW2 BestRoute,
 Out SOCKADDR_INET *BestSourceAddress
);

Parameters

BestRoute [out]
A pointer to the MIB_IPFORWARD_ROW2 structure for the best route from the
source IP address to the destination IP address.

BestSourceAddress [out]
A pointer to the best source IP address.

GetBestRoute2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetBestRoute2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the DestinationAddress,
BestSourceAddress, or BestRoute parameters. This error is also
returned if both InterfaceLuid and InterfaceIndex parameters
were unspecified. This error is also returned if the
DestinationAddress parameter does not specify an IPv4 or IPv6
address and family

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the network interface that the InterfaceLuid or InterfaceIndex
parameter specifies could not be found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and an IPv4 address and
family was specified in the DestinationAddress parameter, or if
no IPv6 stack is located on the local computer and an IPv4
address and family was specified in the DestinationAddress
parameter.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetBestRoute2 function is used to retrieve a MIB_IPFORWARD_ROW2 structure
entry for the best route from a source IP address to a destination IP address.

On input, your driver must initialize the following parameters.

DestinationAddress
Set to a valid IPv4 or IPv6 address and family.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

InterfaceLuid or InterfaceIndex
These parameters are used in the order that is listed earlier. So if InterfaceLuid is
specified, this parameter is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this parameter was set to zero), the
InterfaceIndex parameter is next used to determine the interface.

In addition, on input, your driver can initialize the SourceAddress parameter to the
preferred IPv4 or IPv6 address and family.

On output, when the call is successful, GetBestRoute2 retrieves an
MIB_IPFORWARD_ROW2 structure for the best route from the source IP address the
destination IP address.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

DeleteIpForwardEntry2

GetIpForwardEntry2

GetIpForwardTable2

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

NotifyRouteChange2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

SetIpForwardEntry2

GetIpForwardEntry2 function
Article • 03/03/2023

The GetIpForwardEntry2 function retrieves information for an IP route entry on a local
computer.

c++

Row [in, out]
A pointer to a MIB_IPFORWARD_ROW2 structure entry for an IP route entry. On
successful return, this structure is updated with the properties for the IP route
entry.

GetIpForwardEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpForwardEntry2 returns one of the following error codes:

Return code Description

Syntax

NETIOAPI_API GetIpForwardEntry2(
 Inout PMIB_IPFORWARD_ROW2 Row
);

Parameters

Return value

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if one of the following situations occurs:

A NULL pointer is passed in the Row parameter.
The DestinationPrefix member of the
MIB_IPFORWARD_ROW2 structure that the Row
parameter points to was not specified.
The NextHop member of the MIB_IPFORWARD_ROW2
structure was not specified.
Both InterfaceLuid and InterfaceIndex members of the
MIB_IPFORWARD_ROW2 structure were unspecified.
The PreferredLifetime member of the
MIB_IPFORWARD_ROW2 structure is greater than the
ValidLifetime member.
The SitePrefixLength member of the
MIB_IPFORWARD_ROW2 structure is greater than the
prefix length that is specified by the DestinationPrefix
member.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPFORWARD_ROW2 structure that the Row parameter
points to.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the address family in the DestinationPrefix member
of the MIB_IPFORWARD_ROW2 structure that the Row
parameter points to, or if no IPv6 stack is located on the local
computer and AF_INET6 was specified for the address family in
the DestinationPrefix member.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The GetIpForwardEntry2 function is used to retrieve a MIB_IPFORWARD_ROW2
structure entry.

On input, your driver must initialize the following members of the
MIB_IPFORWARD_ROW2 structure that the Row parameter points to.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

DestinationPrefix
Set to a valid IPv4 or IPv6 address prefix and family.

NextHop
Set to a valid IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, when the call is successful, GetIpForwardEntry2 retrieves the other
properties for the IP route entry and fills out the MIB_IPFORWARD_ROW2 structure that
the Row parameter points to.

The route metric offset that is specified in the Metric member of the
MIB_IPFORWARD_ROW2 structure that the Row parameter points to represents only part
of the complete route metric. The complete metric is a combination of this route metric
added to the interface metric that is specified in the Metric member of the
MIB_IPINTERFACE_ROW structure of the associated interface. A driver can retrieve the
interface metric by calling the GetIpInterfaceEntry function.

Your driver can call the GetIpForwardTable2 function to enumerate the IP route entries
on a local computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

DeleteIpForwardEntry2

GetBestRoute2

GetIpForwardTable2

GetIpInterfaceEntry

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

MIB_IPINTERFACE_ROW

NotifyRouteChange2

SetIpForwardEntry2

GetIpForwardTable2 function
Article • 03/03/2023

The GetIpForwardTable2 function retrieves the IP route entries on a local computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function returns the IP
routing table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, this function returns the IP
routing table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
returns the IP routing table that contains both IPv4 and IPv6 entries.

Syntax

NETIOAPI_API GetIpForwardTable2(
 In ADDRESS_FAMILY Family,
 Out PMIB_IPFORWARD_TABLE2 *Table
);

Parameters

Table [out]
A pointer to a MIB_IPFORWARD_TABLE2 structure that contains a table of IP route
entries on the local computer.

GetIpForwardTable2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpForwardTable2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Table parameter
or the Family parameter was not specified as AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY Insufficient memory resources are available to complete the
operation.

STATUS_NOT_FOUND No IP route entries, as specified in the Family parameter,
were found.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv4
stack is located on the local computer and AF_INET was
specified in the Family parameter, or if no IPv6 stack is
located on the local computer and AF_INET6 was specified in
the Family parameter. This error is also returned on versions
of Windows where this function is not supported.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The GetIpForwardTable2 function enumerates the IP route entries on a local computer
and returns this information in a MIB_IPFORWARD_TABLE2 structure.

The IP route entries are returned in a MIB_IPFORWARD_TABLE2 structure in the buffer
that the Table parameter points to. The MIB_IPFORWARD_TABLE2 structure contains an
IP route entry count and an array of MIB_IPFORWARD_ROW2 structures for each IP
route entry. When these returned structures are no longer required, your driver should
free the memory by calling FreeMibTable.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must initialize the Family parameter to either AF_INET, AF_INET6, or
AF_UNSPEC.

Note that the returned MIB_IPFORWARD_TABLE2 structure that the Table parameter
points to might contain padding for alignment between the NumEntries member and
the first MIB_IPFORWARD_ROW2 array entry in the Table member of the
MIB_IPFORWARD_TABLE2 structure. Padding for alignment might also be present
between the MIB_IPFORWARD_ROW2 array entries. Any access to a
MIB_IPFORWARD_ROW2 array entry should assume padding might exist.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

DeleteIpForwardEntry2

FreeMibTable

GetBestRoute2

GetIpForwardEntry2

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

NotifyRouteChange2

SetIpForwardEntry2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIpInterfaceEntry function
Article • 03/03/2023

The GetIpInterfaceEntry function retrieves IP information for the specified interface on a
local computer.

c++

Row [in, out]
A pointer to a MIB_IPINTERFACE_ROW structure that, on successful return,
receives information for an interface on the local computer. On input, your driver
must set the InterfaceLuid member or the InterfaceIndex member of the
MIB_IPINTERFACE_ROW to the interface to retrieve information for.

GetIpInterfaceEntry returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetIpInterfaceEntry returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Row parameter, the
Family member of the MIB_IPINTERFACE_ROW structure that the
Row parameter points to was not specified as AF_INET or
AF_INET6, or the InterfaceLuid and InterfaceIndex members of
the MIB_IPINTERFACE_ROW structure were unspecified.

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPINTERFACE_ROW structure that the Row parameter points
to.

Syntax

NETIOAPI_API GetIpInterfaceEntry(
 Inout PMIB_IPINTERFACE_ROW Row
);

Parameters

Return value

Return code Description

Other Use the FormatMessage function to obtain the message string
for the returned error.

On input, your driver must initialize the following members of the
MIB_IPINTERFACE_ROW structure that the Row parameter points to.

Family
Set to either AF_INET or AF_INET6.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

On output, GetIpInterfaceEntry fills in the remaining members of the
MIB_IPINTERFACE_ROW structure that the Row parameter points to.

Your driver must use the InitializeIpInterfaceEntry function to initialize the fields of a
MIB_IPINTERFACE_ROW structure entry with default values. A driver can then change the
fields in the MIB_IPINTERFACE_ROW entry that it wants to modify, and then call the
SetIpInterfaceEntry function.

Unprivileged simultaneous access to multiple networks of different security
requirements creates a security hole and enables an unprivileged driver to accidentally
relay data between the two networks. A typical example is simultaneous access to a
virtual private network (VPN) and the Internet. The Windows Server 2003 and Windows
XP operating systems use a weak host model, where Remote Access Service (RAS)
prevents such simultaneous access by increasing the route metric of all default routes
over other interfaces. Therefore, all traffic is routed through the VPN interface,
disrupting other network connectivity.

On Windows Vista and later versions of the Windows operating systems, by default, a
strong host model is used. If a source IP address is specified in the route lookup by
using the GetBestRoute2 function, the route lookup is restricted to the interface of the
source IP address. The route metric modification by RAS has no effect because the list of
potential routes does not even have the route for the VPN interface, which enables
traffic to the Internet. Your driver can use the DisableDefaultRoutes member of the
MIB_IPINTERFACE_ROW to disable using the default route on an interface. VPN clients

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

can use this member as a security measure to restrict split tunneling when split
tunneling is not required by the VPN client. A VPN client can call the
SetIpInterfaceEntry function to set the DisableDefaultRoutes member to TRUE when it
is required. A VPN client can query the current state of the DisableDefaultRoutes
member by calling the GetIpInterfaceEntry function.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetBestRoute2

GetIfEntry2

GetIfTable2

GetIfTable2Ex

GetIpInterfaceTable

MIB_IF_ROW2

MIB_IF_TABLE2

MIB_IPINTERFACE_ROW

MIB_IPINTERFACE_TABLE

SetIpInterfaceEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

InitializeIpForwardEntry function
Article • 03/03/2023

The InitializeIpForwardEntry function initializes a MIB_IPFORWARD_ROW2 structure
with default values for an IP route entry on a local computer.

c++

Row [out]
On entry, a pointer to a MIB_IPFORWARD_ROW2 structure entry for an IP route
entry.

On return, the MIB_IPFORWARD_ROW2 structure that this parameter points to is
initialized with default values for an IP route entry.

None

Your driver must use the InitializeIpForwardEntry function to initialize the members of a
MIB_IPFORWARD_ROW2 structure entry with default values for an IP route entry for
later use with the CreateIpForwardEntry2 function.

On input, your driver must pass InitializeIpForwardEntry a new MIB_IPFORWARD_ROW2
structure to initialize.

On output, the members of the MIB_IPFORWARD_ROW2 structure that the Row
parameter points to are initialized as follows.

Syntax

VOID NETIOAPI_API_ InitializeIpForwardEntry(
 Out PMIB_IPFORWARD_ROW2 Row
);

Parameters

Return value

Remarks

ValidLifetime and PreferredLifetime
Set to an infinite value,

Loopback, AutoconfigureAddress, Publish, and Immortal
Set to TRUE.

SitePrefixLength, Metric, and Protocol
Set to illegal values.

All other members
Set to zero.

After a driver calls InitializeIpForwardEntry, the driver can then change the members in
the MIB_IPFORWARD_ROW2 entry that it wants to modify, and then call the
CreateIpForwardEntry2 to add the new IP route entry to the local computer.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

DeleteIpForwardEntry2

GetBestRoute2

GetIpForwardEntry2

GetIpForwardTable2

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NotifyRouteChange2

SetIpForwardEntry2

SetIpForwardEntry2 function
Article • 03/03/2023

The SetIpForwardEntry2 function sets the properties of an IP route entry on a local
computer.

c++

Route [in]
A pointer to a MIB_IPFORWARD_ROW2 structure entry for an IP route entry. Your
driver must set the DestinationPrefix member of the MIB_IPFORWARD_ROW2
structure to a valid IP destination prefix and family, set the NextHop member of
MIB_IPFORWARD_ROW2 to a valid IP address and family, and specify the
InterfaceLuid member or the InterfaceIndex member of MIB_IPFORWARD_ROW2.

SetIpForwardEntry2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, SetIpForwardEntry2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Route parameter, the
DestinationPrefix member of the MIB_IPFORWARD_ROW2
structure that the Route parameter points to was not specified,
the NextHop member of the MIB_IPFORWARD_ROW2 structure
was not specified, or both InterfaceLuid and InterfaceIndex
members of the MIB_IPFORWARD_ROW2 structure were
unspecified.

Syntax

NETIOAPI_API SetIpForwardEntry2(
 In const MIB_IPFORWARD_ROW2 *Route
);

Parameters

Return value

Return code Description

STATUS_NOT_FOUND The specified interface could not be found. This error is returned
if the function cannot find the network interface that is specified
by the InterfaceLuid or InterfaceIndex member of the
MIB_IPFORWARD_ROW2 structure that the Route parameter
points to.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The SetIpForwardEntry2 function is used to set the properties for an existing IP route
entry on a local computer.

Your driver must initialize the following members of the MIB_IPFORWARD_ROW2
structure that the Row parameter points to.

DestinationPrefix
Set to a valid IPv4 or IPv6 address prefix and family.

NextHop
Set to a valid IPv4 or IPv6 address and family.

InterfaceLuid or InterfaceIndex
These members are used in the order that is listed earlier. So if InterfaceLuid is
specified, this member is used to determine the interface. If no value was set for
the InterfaceLuid member (the value of this member was set to zero), the
InterfaceIndex member is next used to determine the interface.

The route metric offset that is specified in the Metric member of the
MIB_IPFORWARD_ROW2 structure that Route parameter points to represents only part
of the complete route metric. The complete metric is a combination of this route metric
offset added to the interface metric that is specified in the Metric member of the
MIB_IPINTERFACE_ROW structure of the associated interface. A driver can retrieve the
interface metric by calling the GetIpInterfaceEntry function.

SetIpForwardEntry2 ignores the Age and Origin members of the
MIB_IPFORWARD_ROW2 structure that the Row parameter points to. These members
are set by the network stack and cannot be changed by using the SetIpForwardEntry2
function.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The SetIpForwardEntry2 function fails if the DestinationPrefix and NextHop members
of the MIB_IPFORWARD_ROW2 structure that the Route parameter points to do not
match an an IP route entry on the specified interface.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CreateIpForwardEntry2

DeleteIpForwardEntry2

GetBestRoute2

GetIpForwardEntry2

GetIpForwardTable2

GetIpInterfaceEntry

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

MIB_IPINTERFACE_ROW

NotifyRouteChange2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

FreeMibTable function
Article • 03/03/2023

The FreeMibTable function frees the buffer that is allocated by the functions that return
tables of network interfaces, addresses, and routes (for example, GetIfTable2 and
GetAnycastIpAddressTable).

c++

Memory [in]
A pointer to the buffer to free.

None

The FreeMibTable function is used to free the internal buffers that various functions use
to retrieve tables of interfaces, addresses, and routes. When these tables are no longer
needed, your driver should call FreeMibTable to release the memory that these tables
use.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Syntax

VOID NETIOAPI_API_ FreeMibTable(
 In PVOID Memory
);

Parameters

Return value

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

GetAnycastIpAddressTable

GetIfStackTable

GetIfTable2

GetIfTable2Ex

GetInvertedIfStackTable

GetIpForwardTable2

GetIpInterfaceTable

GetIpNetTable2

GetIpPathTable

GetMulticastIpAddressTable

GetUnicastIpAddressTable

See also

MIB_NOTIFICATION_TYPE enumeration
Article • 03/03/2023

The MIB_NOTIFICATION_TYPE enumeration type defines the notification type that is
passed to a callback function when a notification occurs.

c++

MibParameterNotification
A parameter was changed.

MibAddInstance
A new MIB instance was added.

MibDeleteInstance
An existing MIB instance was deleted.

MibInitialNotification
A notification that is invoked immediately after registration for change notification
completes. This initial notification does not indicate that a change occurred to a
MIB instance. The purpose of this initial notification type is to provide confirmation
that the callback function is properly registered.

The MIB_NOTIFICATION_TYPE enumerated type is used with the callback function that is
specified in the Callback parameter of one of the IP Helper NotifyXxx functions to
specify the notification type.

Syntax

typedef enum _MIB_NOTIFICATION_TYPE {
 MibParameterNotification = 0,
 MibAddInstance = 1,
 MibDeleteInstance = 2,
 MibInitialNotification = 3
} MIB_NOTIFICATION_TYPE, *PMIB_NOTIFICATION_TYPE;

Constants

Remarks

On Windows Vista and later versions of the Windows operating systems, new functions
are provided to register the driver to be notified when an IPv6 or IPv4 interface changes,
an IPv6 or IPv4 unicast address changes, or an IPv6 or IPv4 route changes. These
registration functions require that a callback function be passed that is called when a
change occurs. One of the parameters that is passed to the callback function when a
notification occurs is a parameter that contains a MIB_NOTIFICATION_TYPE value that
indicates the notification type.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

NotifyIpInterfaceChange

NotifyRouteChange2

NotifyStableUnicastIpAddressTable

NotifyTeredoPortChange

NotifyUnicastIpAddressChange

Requirements

See also

IP_ADDRESS_PREFIX structure
Article • 03/03/2023

The IP_ADDRESS_PREFIX structure stores an IP address prefix.

c++

Prefix
The prefix or network part of the address represented as an IP address.

PrefixLength
The length, in bits, of the prefix or network part of the IP address. For a unicast
IPv4 address, any value that is greater than 32 is an illegal value. For a unicast IPv6
address, any value that is greater than 128 is an illegal value. A value of 255 is
typically used to represent an illegal value.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Syntax

typedef struct _IP_ADDRESS_PREFIX {
 SOCKADDR_INET Prefix;
 UINT8 PrefixLength;
} IP_ADDRESS_PREFIX, *PIP_ADDRESS_PREFIX;

Members

Requirements

MIB_ANYCASTIPADDRESS_ROW
structure
Article • 03/03/2023

The MIB_ANYCASTIPADDRESS_ROW structure stores information about an anycast IP
address.

c++

Address
The anycast IP address. This member can be an IPv6 address or an IPv4 address.

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP address.

InterfaceIndex
The local index value for the network interface that is associated with this IP
address. This index value might change when a network adapter is disabled and
then enabled, or under other circumstances, and should not be considered
persistent.

ScopeId
The scope ID of the anycast IP address. This member is applicable only to an IPv6
address. Your driver cannot set this member. This member is automatically
determined by the interface that the address was added on.

Syntax

typedef struct _MIB_ANYCASTIPADDRESS_ROW {
 SOCKADDR_INET Address;
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 SCOPE_ID ScopeId;
} MIB_ANYCASTIPADDRESS_ROW, *PMIB_ANYCASTIPADDRESS_ROW;

Members

Remarks

The GetAnycastIpAddressTable function enumerates the anycast IP addresses on a local
computer and returns this information in a MIB_ANYCASTIPADDRESS_TABLE structure.

The MIB_ANYCASTIPADDRESS_TABLE structure might contain padding for alignment
between the NumEntries member and the first MIB_ANYCASTIPADDRESS_ROW array
entry in the Table member. Padding for alignment might also be present between the
MIB_ANYCASTIPADDRESS_ROW array entries in the Table member. Any access to a
MIB_ANYCASTIPADDRESS_ROW array entry should assume padding might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

CreateAnycastIpAddressEntry

DeleteAnycastIpAddressEntry

GetAnycastIpAddressTable

GetAnycastIpAddressEntry

MIB_ANYCASTIPADDRESS_TABLE

Requirements

See also

MIB_ANYCASTIPADDRESS_TABLE
structure
Article • 03/03/2023

The MIB_ANYCASTIPADDRESS_TABLE structure contains a table of anycast IP address
entries.

c++

NumEntries
A value that specifies the number of anycast IP address entries in the array.

Table
An array of MIB_ANYCASTIPADDRESS_ROW structures that contain anycast IP
address entries.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetAnycastIpAddressTable

MIB_ANYCASTIPADDRESS_ROW

Syntax

typedef struct _MIB_ANYCASTIPADDRESS_TABLE {
 ULONG NumEntries;
 MIB_ANYCASTIPADDRESS_ROW Table[ANY_SIZE];
} MIB_ANYCASTIPADDRESS_TABLE, *PMIB_ANYCASTIPADDRESS_TABLE;

Members

Requirements

See also

MIB_IF_ROW2 structure
Article • 03/03/2023

The MIB_IF_ROW2 structure stores information about a particular interface.

c++

Syntax

typedef struct _MIB_IF_ROW2 {
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 GUID InterfaceGuid;
 WCHAR Alias[IF_MAX_STRING_SIZE + 1];
 WCHAR Description[IF_MAX_STRING_SIZE + 1];
 ULONG PhysicalAddressLength;
 UCHAR PhysicalAddress[IF_MAX_PHYS_ADDRESS_LENGTH];
 UCHAR
 PermanentPhysicalAddress[IF_MAX_PHYS_ADDRESS_LENGTH];
 ULONG Mtu;
 IFTYPE Type;
 TUNNEL_TYPE TunnelType;
 NDIS_MEDIUM MediaType;
 NDIS_PHYSICAL_MEDIUM PhysicalMediumType;
 NET_IF_ACCESS_TYPE AccessType;
 NET_IF_DIRECTION_TYPE DirectionType;
 struct {
 BOOLEAN HardwareInterface :1;
 BOOLEAN FilterInterface :1;
 BOOLEAN ConnectorPresent :1;
 BOOLEAN NotAuthenticated :1;
 BOOLEAN NotMediaConnected :1;
 BOOLEAN Paused :1;
 BOOLEAN LowPower :1;
 BOOLEAN EndPointInterface :1;
 } InterfaceAndOperStatusFlags;
 IF_OPER_STATUS OperStatus;
 NET_IF_ADMIN_STATUS AdminStatus;
 NET_IF_MEDIA_CONNECT_STATE MediaConnectState;
 NET_IF_NETWORK_GUID NetworkGuid;
 NET_IF_CONNECTION_TYPE ConnectionType;
 ULONG64 TransmitLinkSpeed;
 ULONG64 ReceiveLinkSpeed;
 ULONG64 InOctets;
 ULONG64 InUcastPkts;
 ULONG64 InNUcastPkts;
 ULONG64 InDiscards;
 ULONG64 InErrors;
 ULONG64 InUnknownProtos;
 ULONG64 InUcastOctets;

InterfaceLuid
The locally unique identifier (LUID) for the network interface.

InterfaceIndex
The index that identifies the network interface. This index value might change
when a network adapter is disabled and then enabled, and should not be
considered persistent.

InterfaceGuid
The GUID for the network interface.

Alias
A NULL-terminated Unicode string that contains the alias name of the network
interface.

Description
A NULL-terminated Unicode string that contains a description of the network
interface.

PhysicalAddressLength
The length, in bytes, of the physical hardware address that the PhysicalAddress
member specifies.

PhysicalAddress
The physical hardware address of the adapter for this network interface.

PermanentPhysicalAddress
The permanent physical hardware address of the adapter for this network
interface.

 ULONG64 InMulticastOctets;
 ULONG64 InBroadcastOctets;
 ULONG64 OutOctets;
 ULONG64 OutUcastPkts;
 ULONG64 OutNUcastPkts;
 ULONG64 OutDiscards;
 ULONG64 OutErrors;
 ULONG64 OutUcastOctets;
 ULONG64 OutMulticastOctets;
 ULONG64 OutBroadcastOctets;
 ULONG64 OutQLen;
} MIB_IF_ROW2, *PMIB_IF_ROW2;

Members

Mtu
The maximum transmission unit (MTU) size, in bytes, for this network interface.

Type
The interface type as defined by the Internet Assigned Names Authority (IANA).
For more information, see IANAifType-MIB DEFINITIONS . Possible values for the
interface type are listed in the Ipifcons.h header file.

The following table lists common values for the interface type, although many
other values are possible.

Value Meaning

IF_TYPE_OTHER

1

Some other type of network interface

IF_TYPE_ETHERNET_CSMACD

6

An Ethernet network interface

IF_TYPE_ISO88025_TOKENRING

9

A token ring network interface

IF_TYPE_PPP

23

A PPP network interface

IF_TYPE_SOFTWARE_LOOPBACK

24

A software loopback network interface

IF_TYPE_ATM

37

An ATM network interface

IF_TYPE_IEEE80211

71

An IEEE 802.11 wireless network interface

IF_TYPE_TUNNEL

131

A tunnel type encapsulation network interface

IF_TYPE_IEEE1394

144

An IEEE 1394 (Firewire) high performance serial bus
network interface

TunnelType
If the Type member is IF_TYPE_TUNNEL, a TUNNEL_TYPE type that defines the

https://go.microsoft.com/fwlink/p/?linkid=60066
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-tunnel_type

encapsulation method that a tunnel uses.

MediaType
The NDIS media type for the interface. This member can be one of the following
values from the NDIS_MEDIUM enumeration type that is defined in the Ntddndis.h
header file.

Value Meaning

NdisMedium802_3

0

An Ethernet (802.3) network.

NdisMedium802_5

1

A Token Ring (802.5) network.

NdisMediumFddi

2

A Fiber Distributed Data Interface (FDDI) network.

NdisMediumWan

3

A wide area network (WAN). This type covers various forms of
point-to-point and WAN NICs and variant address/header
formats that must be negotiated between the protocol driver
and the underlying driver after the binding is established.

NdisMediumLocalTalk

4

A LocalTalk network.

NdisMediumDix

5

An Ethernet network for which the drivers use the DIX Ethernet
header format.

NdisMediumArcnetRaw

6

An ARCNET network.

NdisMediumArcnet878_2

7

An ARCNET (878.2) network.

NdisMediumAtm

8

An ATM network. Connection-oriented client protocol drivers
can bind themselves to an underlying miniport driver that
returns this value. Otherwise, legacy protocol drivers bind
themselves to the system-supplied LanE intermediate driver,
which reports its medium type as either NdisMedium802_3 or
NdisMedium802_5, depending on how the network
administrator configures the LanE driver.

Value Meaning

NdisMediumWirelessWan

9

A wireless network. NDIS 5. x miniport drivers that support
wireless LAN (WLAN) or wireless WAN (WWAN) packets
declare their medium as NdisMedium802_3 and emulate
Ethernet to higher-level NDIS drivers.

Note This media type is not available for use on Windows Vista
or later versions of Windows.

NdisMediumIrda

10

An infrared (IrDA) network.

NdisMediumBpc

11

A broadcast computer network.

NdisMediumCoWan

12

A wide area network in a connection-oriented environment.

NdisMedium1394

13

An IEEE 1394 (fire wire) network.

NdisMediumInfiniBand

14

An InfiniBand network.

NdisMediumTunnel

15

A tunnel network.

NdisMediumNative802_11

16

A native IEEE 802.11 network.

NdisMediumLoopback

17

An NDIS loopback network.

PhysicalMediumType
The NDIS physical medium type. This member can be one of the following values
from the NDIS_PHYSICAL_MEDIUM enumeration type that is defined in the
Ntddndis.h header file.

Value Meaning

Value Meaning

NdisPhysicalMediumUnspecified

0

The physical medium is none of the following values.
For example, a one-way satellite feed is an unspecified
physical medium.

NdisPhysicalMediumWirelessLan

1

Packets are transferred over a wireless LAN network
through a miniport driver that complies with the
802.11 interface.

NdisPhysicalMediumCableModem

2

Packets are transferred over a DOCSIS-based cable
network.

NdisPhysicalMediumPhoneLine

3

Packets are transferred over standard telephone lines.
This type includes HomePNA media.

NdisPhysicalMediumPowerLine

4

Packets are transferred over wiring that is connected to
a power distribution system.

NdisPhysicalMediumDSL

5

Packets are transferred over a Digital Subscriber Line
(DSL) network. This type includes ADSL, UADSL (G.Lite),
and SDSL.

NdisPhysicalMediumFibreChannel

6

Packets are transferred over a Fibre Channel
interconnect.

NdisPhysicalMedium1394

7

Packets are transferred over an IEEE 1394 bus.

NdisPhysicalMediumWirelessWan

8

Packets are transferred over a Wireless WAN link. This
type includes CDPD, CDMA and GPRS.

NdisPhysicalMediumNative802_11

9

Packets are transferred over a wireless LAN network
through a miniport driver that complies with the
Native 802.11 interface.

Note The Native 802.11 interface is supported in NDIS
6.0 and later versions.

NdisPhysicalMediumBluetooth

10

Packets are transferred over a Bluetooth network.
Bluetooth is a short-range wireless technology that
uses the 2.4 GHz spectrum.

NdisPhysicalMediumInfiniband

11

Packets are transferred over an InfiniBand
interconnect.

Value Meaning

NdisPhysicalMediumUWB

13

Packets are transferred over an ultra wide band
network.

NdisPhysicalMedium802_3

14

Packets are transferred over an Ethernet (802.3)
network.

NdisPhysicalMedium802_5

15

Packets are transferred over a Token Ring (802.5)
network.

NdisPhysicalMediumIrda

16

Packets are transferred over an infrared (IrDA) network.

NdisPhysicalMediumWiredWAN

17

Packets are transferred over a wired WAN network.

NdisPhysicalMediumWiredCoWan

18

Packets are transferred over a wide area network in a
connection-oriented environment.

NdisPhysicalMediumOther

19

Packets are transferred over a network that is not
described by other possible values.

AccessType
A NET_IF_ACCESS_TYPE NDIS network interface access type.

DirectionType
A NET_IF_DIRECTION_TYPE NDIS network interface direction type.

InterfaceAndOperStatusFlags
A set of the following flags that provide information about the interface. These
flags are combined with a bitwise OR operation. If none of the flags applies, this
member is set to zero.

HardwareInterface
The network interface is for hardware.

FilterInterface
The network interface is for a filter module.

ConnectorPresent
A connector is present on the network interface. This value is set if there is a
physical network adapter.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_access_type
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_direction_type

NotAuthenticated
The default port for the network interface is not authenticated. If a network
interface is not authenticated by the target, the network interface is not in an
operational mode. Although this situation applies to both wired and wireless
network connections, authentication is more common for wireless network
connections.

NotMediaConnected
The network interface is not in a media-connected state. If a network cable is
unplugged for a wired network, this value is set. For a wireless network, this
value is set for the network adapter that is not connected to a network.

Paused
The network stack for the network interface is in the paused or pausing state.
This value does not mean that the computer is in a hibernated state.

LowPower
The network interface is in a low power state.

EndPointInterface
The network interface is an endpoint device and not a true network interface
that connects to a network. This value can be set by devices, such as
smartphones, that use networking infrastructure to communicate to the
computer but do not provide connectivity to an external network. These types
of devices must set this flag.

OperStatus
A IF_OPER_STATUS NDIS network interface operational status type.

AdminStatus
The NET_IF_ADMIN_STATUS administrative status type.

MediaConnectState
The NET_IF_MEDIA_CONNECT_STATE connection state type.

NetworkGuid
The GUID that is associated with the network that the interface belongs to.

ConnectionType
A NET_IF_CONNECTION_TYPE NDIS network interface connection type.

TransmitLinkSpeed
The speed, in bits per second, of the transmit link.

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-if_oper_status
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_admin_status
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_connect_state
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_connection_type

ReceiveLinkSpeed
The speed, in bits per second, of the receive link.

InOctets
The number of octets of data that are received without errors through this
interface. This value includes octets in unicast, broadcast, and multicast packets.

InUcastPkts
The number of unicast packets that are received without errors through this
interface.

InNUcastPkts
The number of non-unicast packets that are received without errors through this
interface. This value includes broadcast and multicast packets.

InDiscards
The number of incoming packets that were discarded even though they did not
have errors.

InErrors
The number of incoming packets that were discarded because of errors.

InUnknownProtos
The number of incoming packets that were discarded because the protocol was
unknown.

InUcastOctets
The number of octets of data that are received without errors in unicast packets
through this interface.

InMulticastOctets
The number of octets of data that are received without errors in multicast packets
through this interface.

InBroadcastOctets
The number of octets of data that are received without errors in broadcast packets
through this interface.

OutOctets
The number of octets of data that are transmitted without errors through this
interface. This value includes octets in unicast, broadcast, and multicast packets.

OutUcastPkts
The number of unicast packets that are transmitted without errors through this
interface.

OutNUcastPkts
The number of non-unicast packets that are transmitted without errors through
this interface. This value includes broadcast and multicast packets.

OutDiscards
The number of outgoing packets that were discarded even though they did not
have errors.

OutErrors
The number of outgoing packets that were discarded because of errors.

OutUcastOctets
The number of octets of data that are transmitted without errors in unicast packets
through this interface.

OutMulticastOctets
The number of octets of data that are transmitted without errors in multicast
packets through this interface.

OutBroadcastOctets
The number of octets of data that are transmitted without errors in broadcast
packets through this interface.

OutQLen
The transmit queue length. This field is not currently used.

The values for the Type field are defined in the Ipifcons.h header file. Only the possible
values that are listed in the description of the Type member are currently supported.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetIfEntry2

GetIfTable2

Remarks

Requirements

See also

MIB_IF_TABLE2

NET_IF_ACCESS_TYPE

NET_IF_ADMIN_STATUS

NET_IF_CONNECTION_TYPE

NET_IF_DIRECTION_TYPE

NET_IF_MEDIA_CONNECT_STATE

NET_LUID

TUNNEL_TYPE

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_access_type
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_admin_status
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_connection_type
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_direction_type
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_connect_state
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-tunnel_type

MIB_IF_TABLE2 structure
Article • 03/03/2023

The MIB_IF_TABLE2 structure contains a table of logical and physical interface entries.

c++

NumEntries
The number of interface entries in the array.

Table
An array of MIB_IF_ROW2 structures that contain interface entries.

The GetIfTable2 and GetIfTable2Ex functions enumerate the logical and physical
interfaces on a local computer and return this information in a MIB_IF_TABLE2 structure.

The MIB_IF_TABLE2 structure might contain padding for alignment between the
NumEntries member and the first MIB_IF_ROW2 array entry in the Table member.
Padding for alignment might also be present between the MIB_IF_ROW2 array entries in
the Table member. Any access to a MIB_IF_ROW2 array entry should assume padding
might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Syntax

typedef struct _MIB_IF_TABLE2 {
 ULONG NumEntries;
 MIB_IF_ROW2 Table[ANY_SIZE];
} MIB_IF_TABLE2, *PMIB_IF_TABLE2;

Members

Remarks

Requirements

GetIfTable2

GetIfTable2Ex

MIB_IF_ROW2

See also

MIB_IFSTACK_ROW structure
Article • 03/03/2023

The MIB_IFSTACK_ROW structure represents the relationship between two network
interfaces.

c++

HigherLayerInterfaceIndex
The network interface index for the interface that is higher in the interface stack
table.

LowerLayerInterfaceIndex
The network interface index for the interface that is lower in the interface stack
table.

The relationship between the interfaces in the interface stack is that the interface with
the index in the HigherLayerInterfaceIndex member is immediately above the interface
with the index in the LowerLayerInterfaceIndex member.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Syntax

typedef struct _MIB_IFSTACK_ROW {
 NET_IFINDEX HigherLayerInterfaceIndex;
 NET_IFINDEX LowerLayerInterfaceIndex;
} MIB_IFSTACK_ROW, *PMIB_IFSTACK_ROW;

Members

Remarks

Requirements

See also

GetIfStackTable

GetInvertedIfStackTable

MIB_IFSTACK_TABLE

MIB_INVERTEDIFSTACK_ROW

MIB_INVERTEDIFSTACK_TABLE

MIB_IFSTACK_TABLE structure
Article • 03/03/2023

The MIB_IFSTACK_TABLE structure contains a table of network interface stack row
entries. This table specifies the relationship of the network interfaces on an interface
stack.

c++

NumEntries
The number of interface stack row entries in the array.

Table
An array of MIB_IFSTACK_ROW structures that contain interface stack row entries.

The relationship between the interfaces in the interface stack is that the interface with
the index in the HigherLayerInterfaceIndex member of the MIB_IFSTACK_ROW structure
is immediately above the interface with the index in the LowerLayerInterfaceIndex
member of the MIB_IFSTACK_ROW structure.

The GetIfStackTable function enumerates the network interface stack row entries on a
local computer and returns this information in a MIB_IFSTACK_TABLE structure.

The MIB_IFSTACK_TABLE structure might contain padding for alignment between the
NumEntries member and the first MIB_IFSTACK_ROW array entry in the Table member.
Padding for alignment might also be present between the MIB_IFSTACK_ROW array
entries in the Table member. Any access to a MIB_IFSTACK_ROW array entry should
assume padding might exist.

Syntax

typedef struct _MIB_IFSTACK_TABLE {
 ULONG NumEntries;
 MIB_IFSTACK_ROW Table[ANY_SIZE];
} MIB_IFSTACK_TABLE, *PMIB_IFSTACK_TABLE;

Members

Remarks

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetIfStackTable

GetInvertedIfStackTable

MIB_IFSTACK_ROW

MIB_INVERTEDIFSTACK_ROW

MIB_INVERTEDIFSTACK_TABLE

Requirements

See also

MIB_INVERTEDIFSTACK_ROW structure
Article • 03/03/2023

The MIB_INVERTEDIFSTACK_ROW structure represents the relationship between two
network interfaces.

c++

LowerLayerInterfaceIndex
The network interface index for the interface that is lower in the interface stack
table.

HigherLayerInterfaceIndex
The network interface index for the interface that is higher in the interface stack
table.

The relationship between the interfaces in the interface stack is that the interface with
the index in the HigherLayerInterfaceIndex member is immediately above the interface
with the index in the LowerLayerInterfaceIndex member.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Syntax

typedef struct _MIB_INVERTEDIFSTACK_ROW {
 NET_IFINDEX LowerLayerInterfaceIndex;
 NET_IFINDEX HigherLayerInterfaceIndex;
} MIB_INVERTEDIFSTACK_ROW, *PMIB_INVERTEDIFSTACK_ROW;

Members

Remarks

Requirements

See also

GetIfStackTable

GetInvertedIfStackTable

MIB_IFSTACK_ROW

MIB_IFSTACK_TABLE

MIB_INVERTEDIFSTACK_TABLE

MIB_INVERTEDIFSTACK_TABLE structure
Article • 03/03/2023

The MIB_INVERTEDIFSTACK_TABLE structure contains a table of inverted network
interface stack row entries. This table specifies the relationship of the network interfaces
on an interface stack in reverse order.

c++

NumEntries
The number of inverted interface stack row entries in the array.

Table
An array of MIB_INVERTEDIFSTACK_ROW structures that contain inverted interface
stack row entries.

The relationship between the interfaces in the interface stack is that the interface with
the index in the HigherLayerInterfaceIndex member of the
MIB_INVERTEDIFSTACK_ROW structure is immediately above the interface with the index
in the LowerLayerInterfaceIndex member of the MIB_INVERTEDIFSTACK_ROW structure.

The GetInvertedIfStackTable function enumerates the inverted network interface stack
row entries on a local computer and returns this information in a
MIB_INVERTEDIFSTACK_TABLE structure.

The MIB_INVERTEDIFSTACK_TABLE structure might contain padding for alignment
between the NumEntries member and the first MIB_INVERTEDIFSTACK_ROW array
entry in the Table member. Padding for alignment might also be present between the

Syntax

typedef struct _MIB_INVERTEDIFSTACK_TABLE {
 ULONG NumEntries;
 MIB_INVERTEDIFSTACK_ROW Table[ANY_SIZE];
} MIB_INVERTEDIFSTACK_TABLE, *PMIB_INVERTEDIFSTACK_TABLE;

Members

Remarks

MIB_INVERTEDIFSTACK_ROW array entries in the Table member. Any access to a
MIB_INVERTEDIFSTACK_ROW array entry should assume padding might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetIfStackTable

GetInvertedIfStackTable

MIB_IFSTACK_ROW

MIB_IFSTACK_TABLE

MIB_INVERTEDIFSTACK_ROW

Requirements

See also

MIB_IPFORWARD_ROW2 structure
Article • 03/03/2023

The MIB_IPFORWARD_ROW2 structure stores information about an IP route entry.

c++

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP route entry.

InterfaceIndex
The local index value for the network interface that is associated with this IP route
entry. This index value might change when a network adapter is disabled and then
enabled, or under other circumstances, and should not be considered persistent.

DestinationPrefix
The IP address prefix for the destination IP address for this route.

NextHop
For a remote route, the IP address of the next system or gateway that is along the
route. If the route is to a local loopback address or an IP address on the local link,

Syntax

typedef struct _MIB_IPFORWARD_ROW2 {
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 IP_ADDRESS_PREFIX DestinationPrefix;
 SOCKADDR_INET NextHop;
 UCHAR SitePrefixLength;
 ULONG ValidLifetime;
 ULONG PreferredLifetime;
 ULONG Metric;
 NL_ROUTE_PROTOCOL Protocol;
 BOOLEAN Loopback;
 BOOLEAN AutoconfigureAddress;
 BOOLEAN Publish;
 BOOLEAN Immortal;
 ULONG Age;
 NL_ROUTE_ORIGIN Origin;
} MIB_IPFORWARD_ROW2, *PMIB_IPFORWARD_ROW2;

Members

the next hop is unspecified (all zeros). For a local loopback route, this member
should be an IPv4 address of 0.0.0.0 for an IPv4 route entry or an IPv6 address
address of 0::0 for an IPv6 route entry.

SitePrefixLength
The length, in bits, of the site prefix or network part of the IP address for this route.
For an IPv4 route entry, any value that is greater than 32 is an illegal value. For an
IPv6 route entry, any value that is greater than 128 is an illegal value. A value of
255 is typically used to represent an illegal value.

ValidLifetime
The maximum time, in seconds, that the IP route entry is valid. A value of 0xffffffff
is considered to be infinite.

PreferredLifetime
The preferred time, in seconds, that the IP route entry is valid. A value of 0xffffffff is
considered to be infinite.

Metric
The route metric offset value for this IP route entry. Note the actual route metric
that is used to compute the route preference is the interface metric that is
specified in the Metric member of the MIB_IPINTERFACE_ROW structure added to
the route metric offset that is specified in this Metric member. The semantics of
this metric are determined by the routing protocol that is specified in the Protocol
member. If this metric is not used, its value should be set to -1. This value is
documented in RFC 4292. For more information, see IP Forwarding Table MIB .

Protocol
The NL_ROUTE_PROTOCOL routing mechanism type that this IP route was added
with.

Loopback
A value that specifies if the route is a loopback route (the gateway is on the local
host).

AutoconfigureAddress
A value that specifies if the IP address is autoconfigured.

Publish
A value that specifies if the route is published.

Immortal
A value that specifies if the route is immortal.

https://go.microsoft.com/fwlink/p/?linkid=84065
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_protocol

Age
The number of seconds since the route was added or modified in the network
routing table.

Origin
A NL_ROUTE_ORIGIN IP route origin type.

The GetIpForwardTable2 function enumerates the IP route entries on a local computer
and returns this information in a MIB_IPFORWARD_TABLE2 structure as an array of
MIB_IPFORWARD_ROW2 entries.

The GetIpForwardEntry2 function retrieves a single IP route entry and returns this
information in a MIB_IPFORWARD_ROW2 structure.

An entry with the Prefix and the PrefixLength members of IP_ADDRESS_PREFIX set to
zero in the DestinationPrefix member in the MIB_IPFORWARD_ROW2 structure is
considered a default route. The MIB_IPFORWARD_TABLE2 might contain multiple
MIB_IPFORWARD_ROW2 entries with the Prefix and the PrefixLength members of the
IP_ADDRESS_PREFIX set to zero in the DestinationPrefix member when there are
multiple network adapters installed.

The Metric member of a MIB_IPFORWARD_ROW2 entry is a value that is assigned to an
IP route for a particular network interface that identifies the cost that is associated with
using that route. For example, the metric can be valued in terms of link speed, hop
count, or time delay. Automatic metric is a feature on Windows XP and later versions of
the Windows operating systems that automatically configures the metric for the local
routes that are based on link speed. By default, the automatic metric feature is enabled
(the UseAutomaticMetric member of the MIB_IPINTERFACE_ROW structure is set to
TRUE) on Windows XP and later. You can also manually configure this feature to assign a
specific metric to an IP route.

The route metric that is specified in the Metric member of the MIB_IPFORWARD_ROW2
structure represents only the route metric offset. The complete metric is a combination
of this route metric offset added to the interface metric that is specified in the Metric
member of the MIB_IPINTERFACE_ROW structure of the associated interface. A driver
can retrieve the interface metric by calling the GetIpInterfaceEntry function.

Version Available in Windows Vista and later versions of the Windows operating systems.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_origin

Header Netioapi.h (include Netioapi.h)

CreateIpForwardEntry2

DeleteIpForwardEntry2

GetIpForwardEntry2

GetIpForwardTable2

GetIpInterfaceEntry

IP_ADDRESS_PREFIX

MIB_IPFORWARD_TABLE2

MIB_IPINTERFACE_ROW

NL_ROUTE_ORIGIN

NL_ROUTE_PROTOCOL

SetIpForwardEntry2

See also

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_origin
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_route_protocol

MIB_IPFORWARD_TABLE2 structure
Article • 03/03/2023

The MIB_IPFORWARD_TABLE2 structure contains a table of IP route entries.

c++

NumEntries
A value that specifies the number of IP route entries in the array.

Table
An array of MIB_IPFORWARD_ROW2 structures that contain IP route entries.

The GetIpForwardEntry2 function enumerates the IP route entries on a local computer
and returns this information in a MIB_IPFORWARD_TABLE2 structure.

The GetIpForwardEntry2 function retrieves a single IP route entry and returns this
information in a MIB_IPFORWARD_ROW2 structure.

The MIB_IPFORWARD_TABLE2 structure might contain padding for alignment between
the NumEntries member and the first MIB_IPFORWARD_ROW2 array entry in the Table
member. Padding for alignment might also be present between the
MIB_IPFORWARD_ROW2 array entries in the Table member. Any access to a
MIB_IPFORWARD_ROW2 array entry should assume padding might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Syntax

typedef struct _MIB_IPFORWARD_TABLE2 {
 ULONG NumEntries;
 MIB_IPFORWARD_ROW2 Table[ANY_SIZE];
} MIB_IPFORWARD_TABLE2, *PMIB_IPFORWARD_TABLE2;

Members

Remarks

Requirements

Header Netioapi.h (include Netioapi.h)

GetIpForwardEntry2

GetIpForwardTable2

MIB_IPFORWARD_ROW2

See also

MIB_IPINTERFACE_ROW structure
Article • 03/03/2023

The MIB_IPINTERFACE_ROW structure stores interface management information for a
particular IP address family on a network interface.

c++

Syntax

typedef struct _MIB_IPINTERFACE_ROW {
 ADDRESS_FAMILY Family;
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 ULONG MaxReassemblySize;
 ULONG64 InterfaceIdentifier;
 ULONG MinRouterAdvertisementInterval;
 ULONG MaxRouterAdvertisementInterval;
 BOOLEAN AdvertisingEnabled;
 BOOLEAN ForwardingEnabled;
 BOOLEAN WeakHostSend;
 BOOLEAN WeakHostReceive;
 BOOLEAN UseAutomaticMetric;
 BOOLEAN UseNeighborUnreachabilityDetection;
 BOOLEAN ManagedAddressConfigurationSupported;
 BOOLEAN OtherStatefulConfigurationSupported;
 BOOLEAN AdvertiseDefaultRoute;
 NL_ROUTER_DISCOVERY_BEHAVIOR RouterDiscoveryBehavior;
 ULONG DadTransmits;
 ULONG BaseReachableTime;
 ULONG RetransmitTime;
 ULONG PathMtuDiscoveryTimeout;
 NL_LINK_LOCAL_ADDRESS_BEHAVIOR LinkLocalAddressBehavior;
 ULONG LinkLocalAddressTimeout;
 ULONG ZoneIndices[ScopeLevelCount];
 ULONG SitePrefixLength;
 ULONG Metric;
 ULONG NlMtu;
 BOOLEAN Connected;
 BOOLEAN SupportsWakeUpPatterns;
 BOOLEAN SupportsNeighborDiscovery;
 BOOLEAN SupportsRouterDiscovery;
 ULONG ReachableTime;
 NL_INTERFACE_OFFLOAD_ROD TransmitOffload;
 NL_INTERFACE_OFFLOAD_ROD ReceiveOffload;
 BOOLEAN DisableDefaultRoutes;
} MIB_IPINTERFACE_ROW, *PMIB_IPINTERFACE_ROW;

Family
The address family. Possible values for the address family are listed in the
Winsock2.h header file. Note that the values for the AF_ address family and PF_
protocol family constants are identical (for example, AF_INET and PF_INET), so you
can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for this member are defined in the Ws2def.h header file. Note that the
Ws2def.h header file is automatically included in Netioapi.h and you should never
use Ws2def.h directly.

The following values are currently supported:

AF_INET
The IPv4 address family.

AF_INET6
The IPv6 address family.

AF_UNSPEC
The address family is unspecified.

InterfaceLuid
The locally unique identifier (LUID) for the network interface.

InterfaceIndex
The local index value for the network interface. This index value might change
when a network adapter is disabled and then enabled, or under other
circumstances, and should not be considered persistent.

MaxReassemblySize
The maximum reassembly size, in bytes, of a fragmented IP packet. This member is
currently set to zero and reserved for future use.

InterfaceIdentifier
Reserved for future use. This member is currently set to zero.

MinRouterAdvertisementInterval
The minimum router advertisement interval, in milliseconds, on this IP interface.
This member defaults to 200 for IPv6. This member is applicable only if the
AdvertisingEnabled member is set to TRUE.

Members

MaxRouterAdvertisementInterval
The maximum router advertisement interval, in milliseconds, on this IP interface.
This member defaults to 600 for IPv6. This member is applicable only if the
AdvertisingEnabled member is set to TRUE.

AdvertisingEnabled
A value that indicates if router advertising is enabled on this IP interface. The
default for IPv6 is that router advertisement is enabled only if the interface is
configured to act as a router. The default for IPv4 is that router advertisement is
disabled.

ForwardingEnabled
A value that indicates if IP forwarding is enabled on this IP interface.

WeakHostSend
A value that indicates if weak host send mode is enabled on this IP interface.

WeakHostReceive
A value that indicates if weak host receive mode is enabled on this IP interface.

UseAutomaticMetric
A value that indicates if the IP interface uses automatic metric.

UseNeighborUnreachabilityDetection
A value that indicates if neighbor unreachability detection is enabled on this IP
interface.

ManagedAddressConfigurationSupported
A value that indicates if the IP interface supports managed address configuration
by using DHCP.

OtherStatefulConfigurationSupported
A value that indicates if the IP interface supports other stateful configuration (for
example, route configuration).

AdvertiseDefaultRoute
A value that indicates if the IP interface advertises the default route. This member
is applicable only if the AdvertisingEnabled member is set to TRUE.

RouterDiscoveryBehavior
An NL_ROUTER_DISCOVERY_BEHAVIOR router discovery behavior type.

DadTransmits
The number of consecutive messages that are sent while the driver performs
duplicate address detection on a tentative IP unicast address. A value of zero

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_router_discovery_behavior

indicates that duplicate address detection is not performed on tentative IP
addresses. A value of one indicates a single transmission with no follow up
retransmissions. For IPv4, the default value for this member is 3. For IPv6, the
default value for this member is 1. For IPv6, these messages are sent as IPv6
Neighbor Solicitation (NS) requests. This member is defined as
DupAddrDetectTransmits in RFC 2462. For more information, see IPv6 "Stateless
Address Autoconfiguration" .

BaseReachableTime
The base for random reachable time, in milliseconds. The member is described in
RFC 2461. For more information, see "Neighbor Discovery for IP Version 6
(IPv6)" .

RetransmitTime
The IPv6 Neighbor Solicitation (NS) time-out, in milliseconds. The member is
described in RFC 2461. For more information, see "Neighbor Discovery for IP
Version 6 (IPv6)" .

PathMtuDiscoveryTimeout
The path MTU discovery time-out, in milliseconds.

LinkLocalAddressBehavior
A NL_LINK_LOCAL_ADDRESS_BEHAVIOR link local address behavior type.

LinkLocalAddressTimeout
The link local IP address time-out, in milliseconds.

ZoneIndices
An array that specifies the zone part of scope IDs.

SitePrefixLength
The site prefix length, in bits, of the IP interface address. The length, in bits, of the
site prefix or network part of the IP interface address. For an IPv4 address, any
value that is greater than 32 is an illegal value. For an IPv6 address, any value that
is greater than 128 is an illegal value. A value of 255 is typically used to represent
an illegal value.

Metric
The interface metric. Note that the actual route metric that is used to compute the
route preference is the summation of the route metric offset that is specified in the
Metric member of the MIB_IPFORWARD_ROW2 structure and the interface metric
that is specified in this member.

https://go.microsoft.com/fwlink/p/?linkid=84044
https://go.microsoft.com/fwlink/p/?linkid=84044
https://go.microsoft.com/fwlink/p/?linkid=84044
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_link_local_address_behavior

NlMtu
The network layer MTU size, in bytes.

Connected
A value that indicates if the interface is connected to a network access point.

SupportsWakeUpPatterns
A value that specifies if the network interface supports Wake on LAN.

SupportsNeighborDiscovery
A value that specifies if the IP interface support neighbor discovery.

SupportsRouterDiscovery
A value that specifies if the IP interface support neighbor discovery.

ReachableTime
The base for random reachable time, in milliseconds. The member is described in
RFC 2461. For more information, see Neighbor Discovery for IP Version 6 (IPv6) .

TransmitOffload
A set of flags that indicate the transmit offload capabilities for the IP interface. The
NL_INTERFACE_OFFLOAD_ROD structure is defined in the Nldef.h header file.

ReceiveOffload
A set of flags that indicate the receive offload capabilities for the IP interface. The
NL_INTERFACE_OFFLOAD_ROD structure is defined in the Nldef.h header file.

DisableDefaultRoutes
A value that indicates if using default route on the interface should be disabled.
VPN clients can use this member to restrict split tunneling.

The Family, InterfaceLuid, and InterfaceIndex members uniquely identify a
MIB_IPINTERFACE_ROW entry.

When a unicast packet arrives at a host, IP must determine whether the packet is locally
destined (its destination matches an address that is assigned to an interface of the host).
IP implementations that follow a weak host model accept any locally destined packet,
regardless of the interface that the packet was received on. IP implementations that
follow the strong host model accept only locally destined packets if the destination
address in the packet matches an address that is assigned to the interface that the
packet was received on. The weak host model provides better network connectivity.
However, it also makes hosts susceptible to multihome-based network attacks.

Remarks

https://go.microsoft.com/fwlink/p/?linkid=84044

The current IPv4 implementation in the Windows Server 2003 and Windows XP
operating systems uses the weak host model. The TCP/IP stack on Windows Vista and
later versions of the Windows operating systems supports the strong host model for
both IPv4 and IPv6 and is configured to use the strong host mode by default (the
WeakHostReceive and WeakHostSend members are set to FALSE). You can configure
the TCP/IP stack on Windows Vista and later to use a weak host model.

A metric is a value that is assigned to an IP route for a particular network interface that
identifies the cost that is associated with using that route. For example, the metric can
be valued in terms of link speed, hop count, or time delay. Automatic metric is a feature
on Windows XP and later that automatically configures the metric for the local routes
that are based on link speed. By default, the automatic metric feature is enabled (the
UseAutomaticMetric is set to TRUE) on Windows XP and later. You can also manually
configure this feature to assign a specific metric to an IP route.

The automatic metric feature can be useful when the routing table contains multiple
routes for the same destination. For example, a computer that has a 10 megabit network
interface and a 100 megabit network interface has a default gateway that is configured
on both network interfaces. When UseAutomaticMetric is TRUE, this feature can force
all traffic that is destined for the Internet, for example, to use the fastest network
interface that is available.

The interface metric that is specified in the Metric member represents only the metric
for the interface. The complete routing metric is a combination of this interface metric
added to the route metric offset that is specified in the Metric member of the
MIB_IPFORWARD_ROW2 structure of a route entry that is specified on this interface.

Unprivileged simultaneous access to multiple networks of different security
requirements creates a security hole and enables an unprivileged driver to accidentally
relay data between the two networks. A typical example is simultaneous access to a
virtual private network (VPN) and the Internet. Windows Server 2003 and Windows XP
use a weak host model, where Remote Access Service (RAS) prevents such simultaneous
access by increasing the route metric of all default routes over other interfaces.
Therefore, all traffic is routed through the VPN interface, disrupting other network
connectivity.

On Windows Vista and later, by default, a strong host model is used. If a source IP
address is specified in the route lookup by using the GetBestRoute2 function, the route
lookup is restricted to the interface of the source IP address. The route metric
modification by RAS has no effect because the list of potential routes does not even
have the route for the VPN interface, which enables traffic to the Internet. Your driver
can use the DisableDefaultRoutes member of the MIB_IPINTERFACE_ROW structure to

disable using the default route on an interface. VPN clients can use this member as a
security measure to restrict split tunneling when split tunneling is not required by the
VPN client. A VPN client can call the SetIpInterfaceEntry function to set the
DisableDefaultRoutes member to TRUE when it is required. A VPN client can query the
current state of the DisableDefaultRoutes member by calling the GetIpInterfaceEntry
function.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetBestRoute2

GetIpInterfaceEntry

MIB_IPFORWARD_ROW2

MIB_IPINTERFACE_TABLE

NET_LUID

NL_LINK_LOCAL_ADDRESS_BEHAVIOR

NL_ROUTER_DISCOVERY_BEHAVIOR

SetIpInterfaceEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_link_local_address_behavior
https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_router_discovery_behavior

MIB_IPINTERFACE_TABLE structure
Article • 03/03/2023

The MIB_IPINTERFACE_TABLE structure contains a table of IP interface entries.

c++

NumEntries
The number of IP interface entries in the array.

Table
An array of MIB_IPINTERFACE_ROW structures that contain IP interface entries.

The GetIpInterfaceTable function enumerates the IP interface entries on a local
computer and returns this information in a MIB_IPINTERFACE_TABLE structure.

The MIB_IPINTERFACE_TABLE structure might contain padding for alignment between
the NumEntries member and the first MIB_IPINTERFACE_ROW array entry in the Table
member. Padding for alignment might also be present between the
MIB_IPINTERFACE_ROW array entries in the Table member. Any access to a
MIB_IPINTERFACE_ROW array entry should assume padding might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Syntax

typedef struct _MIB_IPINTERFACE_TABLE {
 ULONG NumEntries;
 MIB_IPINTERFACE_ROW Table[ANY_SIZE];
} MIB_IPINTERFACE_TABLE, *PMIB_IPINTERFACE_TABLE;

Members

Remarks

Requirements

GetIpInterfaceTable

MIB_IPINTERFACE_ROW

See also

MIB_IPNET_ROW2 structure
Article • 03/03/2023

The MIB_IPNET_ROW2 structure stores information about a neighbor IP address.

c++

Address
The neighbor IP address. This member can be an IPv6 address or an IPv4 address.

InterfaceIndex
The local index value for the network interface that is associated with this IP
address. This index value might change when a network adapter is disabled and
then enabled, or under other circumstances, and should not be considered
persistent.

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP address.

Syntax

typedef struct _MIB_IPNET_ROW2 {
 SOCKADDR_INET Address;
 NET_IFINDEX InterfaceIndex;
 NET_LUID InterfaceLuid;
 UCHAR PhysicalAddress[IF_MAX_PHYS_ADDRESS_LENGTH];
 ULONG PhysicalAddressLength;
 NL_NEIGHBOR_STATE State;
 union {
 struct {
 BOOLEAN IsRouter :1;
 BOOLEAN IsUnreachable :1;
 };
 UCHAR Flags;
 };
 union {
 ULONG LastReachable;
 ULONG LastUnreachable;
 } ReachabilityTime;
} MIB_IPNET_ROW2, *PMIB_IPNET_ROW2;

Members

PhysicalAddress
The physical hardware address of the adapter for the network interface that is
associated with this IP address.

PhysicalAddressLength
The length, in bytes, of the physical hardware address that the PhysicalAddress
member specifies. The maximum value that is supported is 32 bytes.

State
An NL_NEIGHBOR_STATE network layer neighbor state type.

IsRouter
A value that indicates if this IP address is a router.

IsUnreachable
A value that indicates if this IP address is unreachable.

Flags
A set of flags that indicate whether the IP address is a router and whether the IP
address is unreachable.

ReachabilityTime
The time that the node assumes that the neighbor is reachable or unreachable
after the node receives information about the reachability of the neighbor.

This union contains the following members:

LastReachable
The time, in milliseconds, that a node assumes that the neighbor will remain
reachable after the node receives a reachability confirmation from the neighbor.

LastUnreachable
The time, in milliseconds, that a node assumes that the neighbor will remain
unreachable after the node fails to receive a reachability confirmation from the
neighbor.

The GetIpNetTable2 function enumerates the neighbor IP addresses on a local
computer and returns this information in an MIB_IPNET_TABLE2 structure. For IPv4, this
information includes addresses determined by using the Address Resolution Protocol
(ARP). For IPv6, this information includes addresses determined by using the Neighbor
Discovery (ND) protocol for IPv6 as specified in RFC 2461. For more information, see
Neighbor Discovery for IP Version 6 (IPv6) .

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_neighbor_state
https://go.microsoft.com/fwlink/p/?linkid=84044

The GetIpNetEntry2 function retrieves a single neighbor IP address and returns this
information in a MIB_IPNET_ROW2 structure.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

CreateIpNetEntry2

GetIpNetEntry2

GetIpNetTable2

MIB_IPNET_TABLE2

NL_NEIGHBOR_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/api/nldef/ne-nldef-nl_neighbor_state

MIB_IPNET_TABLE2 structure
Article • 03/03/2023

The MIB_IPNET_TABLE2 structure contains a table of neighbor IP address entries.

c++

NumEntries
A value that specifies the number of IP network neighbor address entries in the
array.

Table
An array of MIB_IPNET_ROW2 structures that contain IP network neighbor address
entries.

The GetIpNetTable2 function enumerates the neighbor IP addresses on a local
computer and returns this information in an MIB_IPNET_TABLE2 structure. For IPv4, this
information includes addresses determined by using the Address Resolution Protocol
(ARP). For IPv6, this information includes addresses determined by using the Neighbor
Discovery (ND) protocol for IPv6 as specified in RFC 2461. For more information, see
Neighbor Discovery for IP Version 6 (IPv6) .

The MIB_IPNET_TABLE2 structure might contain padding for alignment between the
NumEntries member and the first MIB_IPNET_ROW2 array entry in the Table member.
Padding for alignment might also be present between the MIB_IPNET_ROW2 array
entries in the Table member. Any access to a MIB_IPNET_ROW2 array entry should
assume that padding might exist.

Syntax

typedef struct _MIB_IPNET_TABLE2 {
 ULONG NumEntries;
 MIB_IPNET_ROW2 Table[ANY_SIZE];
} MIB_IPNET_TABLE2, *PMIB_IPNET_TABLE2;

Members

Remarks

https://go.microsoft.com/fwlink/p/?linkid=84044

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetIpNetTable2

MIB_IPNET_ROW2

Requirements

See also

MIB_IPPATH_ROW structure
Article • 03/03/2023

The MIB_IPPATH_ROW structure stores information about an IP path entry.

c++

Source
The source IP address for this IP path entry.

Destination
The destination IP address for this IP path entry.

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP path entry.

InterfaceIndex
The local index value for the network interface that is associated with this IP path
entry. This index value might change when a network adapter is disabled and then
enabled, or under other circumstances, and should not be considered persistent.

Syntax

typedef struct _MIB_IPPATH_ROW {
 SOCKADDR_INET Source;
 SOCKADDR_INET Destination;
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 SOCKADDR_INET CurrentNextHop;
 ULONG PathMtu;
 ULONG RttMean;
 ULONG RttDeviation;
 union {
 ULONG LastReachable;
 ULONG LastUnreachable;
 };
 BOOLEAN IsReachable;
 ULONG64 LinkTransmitSpeed;
 ULONG64 LinkReceiveSpeed;
} MIB_IPPATH_ROW, *PMIB_IPPATH_ROW;

Members

CurrentNextHop
The current IP address of the next system or gateway that is along the route. This
member can change over the lifetime of a path.

PathMtu
The maximum transmission unit (MTU) size, in bytes, to the destination IP address
for this IP path entry.

RttMean
The estimated mean round-trip time (RTT), in milliseconds, to the destination IP
address for this IP path entry.

RttDeviation
The estimated mean deviation for the round-trip time (RTT), in milliseconds, to the
destination IP address for this IP path entry.

LastReachable
The time, in milliseconds, that a node assumes that the destination IP address is
reachable after having received a reachability confirmation.

LastUnreachable
The time, in milliseconds, that a node assumes that the destination IP address is
unreachable after not having received a reachability confirmation.

IsReachable
A value that indicates if the destination IP address is reachable for this IP path
entry.

LinkTransmitSpeed
The estimated speed, in bits per second, of the transmit link to the destination IP
address for this IP path entry.

LinkReceiveSpeed
The estimated speed, in bits per second, of the receive link from the destination IP
address for this IP path entry.

The GetIpPathTable function enumerates the IP path entries on a local computer and
returns this information in a MIB_IPPATH_TABLE structure as an array of
MIB_IPPATH_ROW entries.

The GetIpPathTable function retrieves a single IP path entry and returns this information
in a MIB_IPPATH_TABLE structure.

Remarks

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

FlushIpPathTable

GetIpPathEntry

GetIpPathTable

MIB_IPPATH_TABLE

Requirements

See also

MIB_IPPATH_TABLE structure
Article • 03/03/2023

The MIB_IPPATH_TABLE structure contains a table of IP path entries.

c++

NumEntries
A value that specifies the number of IP path entries in the array.

Table
An array of MIB_IPPATH_ROW structures that contain IP path entries.

The GetIpPathTable function enumerates the IP path entries on a local computer and
returns this information in a MIB_IPPATH_TABLE structure. The FlushIpPathTable function
flushes the IP path table entries on a local computer.

The GetIpPathEntry function retrieves a single IP path entry and returns this information
in a MIB_IPPATH_ROW structure.

The MIB_IPPATH_TABLE structure might contain padding for alignment between the
NumEntries member and the first MIB_IPPATH_ROW array entry in the Table member.
Padding for alignment might also be present between the MIB_IPPATH_ROW array
entries in the Table member. Any access to a MIB_IPPATH_ROW array entry should
assume padding might exist.

Version Available in Windows Vista and later versions of the Windows operating systems.

Syntax

typedef struct _MIB_IPPATH_TABLE {
 ULONG NumEntries;
 MIB_IPPATH_ROW Table[ANY_SIZE];
} MIB_IPPATH_TABLE, *PMIB_IPPATH_TABLE;

Members

Remarks

Requirements

Header Netioapi.h (include Netioapi.h)

FlushIpPathTable

GetIpPathEntry

GetIpPathTable

MIB_IPPATH_ROW

See also

MIB_MULTICASTIPADDRESS_ROW
structure
Article • 03/03/2023

The MIB_MULTICASTIPADDRESS_ROW structure stores information about a multicast IP
address.

c++

Address
The multicast IP address. This member can be an IPv6 address or an IPv4 address.

InterfaceIndex
The local index value for the network interface that is associated with this IP
address. This index value might change when a network adapter is disabled and
then enabled, or under other circumstances, and should not be considered
persistent.

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP address.

ScopeId
The scope ID of the multicast IP address. This member is applicable only to an IPv6
address. Your driver cannot set this member. This member is automatically
determined by the interface that the address was added on.

Syntax

typedef struct _MIB_MULTICASTIPADDRESS_ROW {
 SOCKADDR_INET Address;
 NET_IFINDEX InterfaceIndex;
 NET_LUID InterfaceLuid;
 SCOPE_ID ScopeId;
} MIB_MULTICASTIPADDRESS_ROW, *PMIB_MULTICASTIPADDRESS_ROW;

Members

Remarks

The GetMulticastIpAddressTable function enumerates the multicast IP addresses on a
local computer and returns this information in a MIB_MULTICASTIPADDRESS_TABLE
structure. The GetMulticastIpAddressEntry function retrieves a single multicast IP
address and returns this information in a MIB_MULTICASTIPADDRESS_ROW structure.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

FlushIpPathTable

GetIpPathEntry

GetIpPathTable

GetMulticastIpAddressTable

MIB_IPPATH_ROW

MIB_MULTICASTIPADDRESS_TABLE

Requirements

See also

MIB_MULTICASTIPADDRESS_TABLE
structure
Article • 03/03/2023

The MIB_MULTICASTIPADDRESS_TABLE structure contains a table of multicast IP address
entries.

c++

NumEntries
A value that specifies the number of multicast IP address entries in the array.

Table
An array of MIB_MULTICASTIPADDRESS_ROW structures that contain multicast IP
address entries.

The GetMulticastIpAddressTable function enumerates the multicast IP addresses on a
local computer and returns this information in an MIB_MULTICASTIPADDRESS_TABLE
structure.

The MIB_MULTICASTIPADDRESS_TABLE structure might contain padding for alignment
between the NumEntries member and the first MIB_MULTICASTIPADDRESS_ROW array
entry in the Table member. Padding for alignment might also be present between the
MIB_MULTICASTIPADDRESS_ROW array entries in the Table member. Any access to a
MIB_MULTICASTIPADDRESS_ROW array entry should assume padding might exist.

Syntax

typedef struct _MIB_MULTICASTIPADDRESS_TABLE {
 ULONG NumEntries;
 MIB_MULTICASTIPADDRESS_ROW Table[ANY_SIZE];
} MIB_MULTICASTIPADDRESS_TABLE, *PMIB_MULTICASTIPADDRESS_TABLE;

Members

Remarks

Requirements

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetMulticastIpAddressTable

MIB_MULTICASTIPADDRESS_ROW

See also

MIB_UNICASTIPADDRESS_ROW
structure
Article • 03/03/2023

The MIB_UNICASTIPADDRESS_ROW structure stores information about a unicast IP
address.

c++

Address
The unicast IP address. This member can be an IPv6 address or an IPv4 address.

InterfaceLuid
The locally unique identifier (LUID) for the network interface that is associated with
this IP address.

InterfaceIndex
The local index value for the network interface that is associated with this IP
address. This index value might change when a network adapter is disabled and
then enabled, or under other circumstances, and should not be considered
persistent.

Syntax

typedef struct _MIB_UNICASTIPADDRESS_ROW {
 SOCKADDR_INET Address;
 NET_LUID InterfaceLuid;
 NET_IFINDEX InterfaceIndex;
 NL_PREFIX_ORIGIN PrefixOrigin;
 NL_SUFFIX_ORIGIN SuffixOrigin;
 ULONG ValidLifetime;
 ULONG PreferredLifetime;
 UINT8 OnLinkPrefixLength;
 BOOLEAN SkipAsSource;
 NL_DAD_STATE DadState;
 SCOPE_ID ScopeId;
 LARGE_INTEGER CreationTimeStamp;
} MIB_UNICASTIPADDRESS_ROW, *PMIB_UNICASTIPADDRESS_ROW;

Members

PrefixOrigin
An NL_PREFIX_ORIGIN type that specifies the origin of the prefix or network part
of the IP address.

SuffixOrigin
An NL_SUFFIX_ORIGIN type that specifies the origin of the suffix or host part of
the IP address.

ValidLifetime
The maximum time, in seconds, that the IP address is valid. A value of 0xffffffff is
considered to be infinite.

PreferredLifetime
The preferred time, in seconds, that the IP address is valid. A value of 0xffffffff is
considered to be infinite.

OnLinkPrefixLength
The length, in bits, of the prefix or network part of the IP address. For a unicast
IPv4 address, any value that is greater than 32 is an illegal value. For a unicast IPv6
address, any value that is greater than 128 is an illegal value. A value of 255 is
typically used to represent an illegal value.

SkipAsSource
A value that specifies if the address can be used as an IP source address.

DadState
A NL_DAD_STATE duplicate address detection (DAD) type.

ScopeId
The scope ID of the IP address. This member is applicable only to an IPv6 address.
Your driver cannot set this member. This member is automatically determined by
the interface that the address was added on.

CreationTimeStamp
The time stamp when the IP address was created.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

Requirements

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_UNICASTIPADDRESS_TABLE

NL_DAD_STATE

NL_PREFIX_ORIGIN

NL_SUFFIX_ORIGIN

SetUnicastIpAddressEntry

See also

MIB_UNICASTIPADDRESS_TABLE
structure
Article • 03/03/2023

The MIB_UNICASTIPADDRESS_TABLE structure contains a table of unicast IP address
entries.

c++

NumEntries
A value that specifies the number of unicast IP address entries in the array.

Table
An array of MIB_UNICASTIPADDRESS_ROW structures that contains unicast IP
address entries.

The GetUnicastIpAddressTable function enumerates the unicast IP addresses on a local
computer and returns this information in an MIB_UNICASTIPADDRESS_TABLE structure.

The MIB_UNICASTIPADDRESS_TABLE structure might contain padding for alignment
between the NumEntries member and the first MIB_UNICASTIPADDRESS_ROW array
entry in the Table member. Padding for alignment might also be present between the
MIB_UNICASTIPADDRESS_ROW array entries in the Table member. Any access to a
MIB_UNICASTIPADDRESS_ROW array entry should assume padding might exist.

Syntax

typedef struct _MIB_UNICASTIPADDRESS_TABLE {
 ULONG NumEntries;
 MIB_UNICASTIPADDRESS_ROW Table[ANY_SIZE];
} MIB_UNICASTIPADDRESS_TABLE, *PMIB_UNICASTIPADDRESS_TABLE;

Members

Remarks

Requirements

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Netioapi.h (include Netioapi.h)

GetUnicastIpAddressTable

MIB_UNICASTIPADDRESS_ROW

See also

NL_DAD_STATE enumeration
Article • 03/03/2023

The NL_DAD_STATE enumeration type defines the duplicate address detection (DAD)
state.

c++

NldsInvalid
Reserved for system use. Do not use this value in your driver.

NldsTentative
Reserved for system use. Do not use this value in your driver.

NldsDuplicate
Reserved for system use. Do not use this value in your driver.

NldsDeprecated
Reserved for system use. Do not use this value in your driver.

NldsPreferred
Reserved for system use. Do not use this value in your driver.

IpDadStateInvalid
The DAD state is invalid.

Syntax

typedef enum {
 NldsInvalid,
 NldsTentative,
 NldsDuplicate,
 NldsDeprecated,
 NldsPreferred,
 IpDadStateInvalid = 0,
 IpDadStateTentative,
 IpDadStateDuplicate,
 IpDadStateDeprecated,
 IpDadStatePreferred
} NL_DAD_STATE;

Constants

IpDadStateTentative
The DAD state is tentative.

IpDadStateDuplicate
A duplicate IP address has been detected.

IpDadStateDeprecated
The IP address has been deprecated.

IpDadStatePreferred
The IP address is the preferred address.

The DAD state applies to both IPv4 and IPv6 addresses.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Nldef.h (include Netioapi.h)

Remarks

Requirements

NL_PREFIX_ORIGIN enumeration
Article • 03/03/2023

The NL_PREFIX_ORIGIN enumeration type defines the origin of the prefix or network
part of the IP address.

c++

IpPrefixOriginOther
The IP address prefix was configured by using a source other than those that are
defined in this enumeration. This value applies to an IPv6 or IPv4 address.

IpPrefixOriginManual
The IP address prefix was configured manually. This value applies to an IPv6 or IPv4
address.

IpPrefixOriginWellKnown
The IP address prefix was configured by using a well-known address. This value
applies to an IPv6 link-local address or an IPv6 loopback address.

IpPrefixOriginDhcp
The IP address prefix was configured by using DHCP. This value applies to an IPv4
address configured by using DHCP or an IPv6 address configured by using
DHCPv6.

IpPrefixOriginRouterAdvertisement
The IP address prefix was configured by using router advertisement. This value
applies to an anonymous IPv6 address that was generated after receiving a router
advertisement.

Syntax

typedef enum {
 IpPrefixOriginOther = 0,
 IpPrefixOriginManual,
 IpPrefixOriginWellKnown,
 IpPrefixOriginDhcp,
 IpPrefixOriginRouterAdvertisement,
 IpPrefixOriginUnchanged = 1 << 4
} NL_PREFIX_ORIGIN;

Constants

IpPrefixOriginUnchanged
The IP address prefix should be unchanged. This value is used when setting the
properties for a unicast IP interface when the value for the IP prefix origin should
be unchanged.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Nldef.h (include Netioapi.h)

Requirements

NL_SUFFIX_ORIGIN enumeration
Article • 03/03/2023

The NL_SUFFIX_ORIGIN enumeration type defines the origin of the suffix or host part of
the IP address.

c++

NlsoOther
Reserved for system use. Do not use this value in your driver.

NlsoManual
Reserved for system use. Do not use this value in your driver.

NlsoWellKnown
Reserved for system use. Do not use this value in your driver.

NlsoDhcp
Reserved for system use. Do not use this value in your driver.

NlsoLinkLayerAddress
Reserved for system use. Do not use this value in your driver.

Syntax

typedef enum {
 NlsoOther,
 NlsoManual,
 NlsoWellKnown,
 NlsoDhcp,
 NlsoLinkLayerAddress,
 NlsoRandom,
 IpSuffixOriginOther = 0,
 IpSuffixOriginManual,
 IpSuffixOriginWellKnown,
 IpSuffixOriginDhcp,
 IpSuffixOriginLinkLayerAddress,
 IpSuffixOriginRandom,
 IpSuffixOriginUnchanged = 1 << 4
} NL_SUFFIX_ORIGIN;

Constants

NlsoRandom
Reserved for system use. Do not use this value in your driver.

IpSuffixOriginOther
The IP address suffix was configured by using a source other than those that are
defined in this enumeration. This value applies to an IPv6 or IPv4 address.

IpSuffixOriginManual
The IP address suffix was configured manually. This value applies to an IPv6 or IPv4
address.

IpSuffixOriginWellKnown
The IP address suffix was configured by using a well-known address. This value
applies to an IPv6 link-local address or an IPv6 loopback address.

IpSuffixOriginDhcp
The IP address suffix was configured by using DHCP. This value applies to an IPv4
address configured by using DHCP or an IPv6 address configured by using
DHCPv6.

IpSuffixOriginLinkLayerAddress
The IP address suffix was the link-local address. This value applies to an IPv6 link-
local address or an IPv6 address where the network part was generated based on a
router advertisement and the host part was based on the MAC hardware address.

IpSuffixOriginRandom
The IP address suffix was generated randomly. This value applies to an anonymous
IPv6 address where the host part of the address was generated randomly from the
MAC hardware address after the host received a router advertisement.

IpSuffixOriginUnchanged
The IP address suffix should be unchanged. This value is used when setting the
properties for a unicast IP interface when the value for the IP suffix origin should
be unchanged.

Version Available in Windows Vista and later versions of the Windows operating systems.

Header Nldef.h (include Netioapi.h)

Requirements

CancelMibChangeNotify2 function
Article • 03/03/2023

The CancelMibChangeNotify2 function deregisters a driver change notification for IP
interface changes, IP address changes, IP route changes, and requests to retrieve the
stable Unicast IP address table.

c++

NotificationHandle [in]
The handle that is returned from a notification registration or retrieval function to
indicate which notification to cancel.

CancelMibChangeNotify2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, CancelMibChangeNotify2 returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function.
CancelMibChangeNotify2 returns this error if the
NotificationHandle parameter was a NULL pointer.

Other Use the FormatMessage function to obtain the message string
for the returned error.

The CancelMibChangeNotify2 function deregisters a driver change notification
previously requested for IP interface changes, IP address changes, or IP route changes

Syntax

NETIOAPI_API CancelMibChangeNotify2(
 In HANDLE NotificationHandle
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

on a local computer. These requests are made by calling NotifyIpInterfaceChange,
NotifyRouteChange2, or NotifyUnicastIpAddressChange. The
CancelMibChangeNotify2 function also cancels a previous request to retrieve the stable
unicast IP address table on a local computer. This request is made by calling the
NotifyStableUnicastIpAddressTable function.

The NotificationHandle parameter that is returned to these notification functions is
passed to CancelMibChangeNotify2 to deregister driver change notifications or to
cancel a pending request to retrieve the stable unicast IP address table.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL PASSIVE_LEVEL

NotifyIpInterfaceChange

NotifyRouteChange2

NotifyStableUnicastIpAddressTable

NotifyUnicastIpAddressChange

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NotifyIpInterfaceChange function
Article • 03/03/2023

The NotifyIpInterfaceChange function registers the driver to be notified for changes to
all IP interfaces, IPv4 interfaces, or IPv6 interfaces on a local computer.

c++

Family [in]
The address family to register the driver for change notifications on.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function registers the
driver to be notified only for IPv4 change notifications.

AF_INET6
The IPv6 address family. When this value is specified, this function registers the
driver for only IPv6 change notifications.

Syntax

NETIOAPI_API NotifyIpInterfaceChange(
 In ADDRESS_FAMILY Family,
 In PIPINTERFACE_CHANGE_CALLBACK Callback,
 In PVOID CallerContext,
 In BOOLEAN InitialNotification,
 Inout HANDLE *NotificationHandle
);

Parameters

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
registers the driver to be notified for both IPv4 and IPv6 changes.

Callback [in]
A pointer to the function to call when a change occurs. This function is called when
an interface notification is received.

CallerContext [in]
A user context that is passed to the callback function that is specified in the
Callback parameter when an interface notification is received.

InitialNotification [in]
A value that indicates whether the callback should be invoked immediately after
registration for change notification completes. This initial notification does not
indicate a change occurred to an IP interface. The purpose of this parameter to
provide confirmation that the callback is registered.

NotificationHandle [in, out]
A pointer used to return a handle that can be later used to deregister the change
notification. On success, a notification handle is returned in this parameter. If an
error occurs, NULL is returned.

NotifyIpInterfaceChange returns STATUS_SUCCESS if the function succeeds.

If the function fails, NotifyIpInterfaceChange returns one of the following error codes:

Return code Description

ERROR_INVALID_HANDLE An internal error occurred where an invalid handle was
encountered.

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Family parameter was not either AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY There was insufficient memory.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must set the Family parameter to either AF_INET, AF_INET6, or AF_UNSPEC.

The invocation of the callback function that is specified in the Callback parameter is
serialized. The callback function should be defined as a function of type VOID. The
parameters that are passed to the callback function include the following.

Parameter Description

IN PVOID CallerContext The CallerContext parameter that is passed to the
NotifyIpInterfaceChange function when it is registering the driver for
change notifications.

IN
PMIB_IPINTERFACE_ROW
Row OPTIONAL

A pointer to the MIB_IPINTERFACE_ROW entry for the interface that
was changed. This parameter is a NULL pointer when the
MIB_NOTIFICATION_TYPE value that is passed in the NotificationType
parameter to the callback function is set to MibInitialNotification.
This situation can occur only if the InitialNotification parameter that is
passed to NotifyIpInterfaceChange was set to TRUE when registering
the driver for change notifications.

IN
MIB_NOTIFICATION_TYPE
NotificationType

The notification type. This member can be one of the values from the
MIB_NOTIFICATION_TYPE enumeration type.

To deregister the driver for change notifications, call the CancelMibChangeNotify2
function, passing the NotificationHandle parameter that NotifyIpInterfaceChange
returns.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CancelMibChangeNotify2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

GetIfEntry2

GetIfStackTable

GetIfTable2

GetInvertedIfStackTable

GetIpInterfaceEntry

InitializeIpInterfaceEntry

MIB_IF_ROW2

MIB_IF_TABLE2

MIB_IPINTERFACE_ROW

MIB_NOTIFICATION_TYPE

SetIpInterfaceEntry

NotifyRouteChange2 function
Article • 03/03/2023

The NotifyRouteChange2 function registers the driver to be notified for changes to IP
route entries on a local computer.

c++

Family [in]
The address family to register the driver for change notifications on.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, this function registers the
driver only for IPv4 route change notifications.

AF_INET6
The IPv6 address family. When this value is specified, this function registers the
driver only for IPv6 route change notifications.

Syntax

NETIOAPI_API NotifyRouteChange2(
 In ADDRESS_FAMILY Family,
 In PIPFORWARD_CHANGE_CALLBACK Callback,
 In PVOID CallerContext,
 In BOOLEAN InitialNotification,
 Inout HANDLE *NotificationHandle
);

Parameters

AF_UNSPEC
The address family is unspecified. When this value is specified, this function
registers the driver for both IPv4 and IPv6 route change notifications.

Callback [in]
A pointer to the function to call when a change occurs. This function is called when
an interface notification is received.

CallerContext [in]
A user context that is passed to the callback function that is specified in the
Callback parameter when an interface notification is received.

InitialNotification [in]
A value that indicates whether the callback should be invoked immediately after
registration for change notification completes. This initial notification does not
indicate a change occurred to the IP route. The purpose of this parameter to
provide confirmation that the callback is registered.

NotificationHandle [in, out]
A pointer to a MIB_IPINTERFACE_ROW structure to initialize. On successful return,
the members in this structure are initialized with default information for an
interface on the local computer.

NotifyRouteChange2 returns STATUS_SUCCESS if the function succeeds.

If the function fails, NotifyRouteChange2 returns one of the following error codes.

Return code Description

ERROR_INVALID_HANDLE An internal error occurred where an invalid handle was
encountered.

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Family parameter was not either AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY There was insufficient memory.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must set the Family parameter to either AF_INET, AF_INET6, or AF_UNSPEC.

The invocation of the callback function that is specified in the Callback parameter is
serialized. The callback function should be defined as a function of type VOID. The
parameters that are passed to the callback function include the following.

Parameter Description

IN PVOID CallerContext The CallerContext parameter that is passed to the
NotifyRouteChange2 function when it is registering the driver for
change notifications.

IN
PMIB_IPFORWARD_ROW2
Row OPTIONAL

A pointer to the MIB_IPFORWARD_ROW2 entry for the IP route entry
that was changed. This parameter is a NULL pointer when the
MIB_NOTIFICATION_TYPE value that is passed in the NotificationType
parameter to the callback function is set to MibInitialNotification. This
situation can occur only if the InitialNotification parameter that is
passed to NotifyRouteChange2 was set to TRUE when registering
the driver for change notifications.

IN
MIB_NOTIFICATION_TYPE
NotificationType

The notification type. This member can be one of the values from the
MIB_NOTIFICATION_TYPE enumeration type.

To deregister the driver for change notifications, call the CancelMibChangeNotify2
function, passing the NotificationHandle parameter that NotifyRouteChange2 returns.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CancelMibChangeNotify2

CreateIpForwardEntry2

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

DeleteIpForwardEntry2

GetBestRoute2

GetIpForwardEntry2

GetIpForwardTable2

InitializeIpForwardEntry

MIB_IPFORWARD_ROW2

MIB_IPFORWARD_TABLE2

MIB_NOTIFICATION_TYPE

SetIpForwardEntry2

NotifyUnicastIpAddressChange function
Article • 03/03/2023

The NotifyUnicastIpAddressChange function registers the driver to be notified for
changes to all unicast IP interfaces, unicast IPv4 addresses, or unicast IPv6 addresses on
a local computer.

c++

Family [in]
The address family to register the driver for change notifications on.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, the function registers the
driver only for unicast IPv4 address change notifications.

AF_INET6
The IPv6 address family. When this value is specified, the function registers the
driver only for unicast IPv6 address change notifications.

Syntax

NETIOAPI_API NotifyUnicastIpAddressChange(
 In ADDRESS_FAMILY Family,
 In PUNICAST_IPADDRESS_CHANGE_CALLBACK Callback,
 In PVOID CallerContext,
 In BOOLEAN InitialNotification,
 Inout HANDLE *NotificationHandle
);

Parameters

AF_UNSPEC
The address family is unspecified. When this value is specified, the function
registers the driver for both unicast IPv4 and IPv6 address change notifications.

Callback [in]
A pointer to the function to call when a change occurs. This function is called when
a unicast IP address notification is received.

CallerContext [in]
A user context that is passed to the callback function that is specified in the
Callback parameter when an interface notification is received.

InitialNotification [in]
A value that indicates whether the callback should be called immediately after
registration for change notification completes. This initial notification does not
indicate that a change occurred to a unicast IP address. This parameter provides
confirmation that the callback is registered.

NotificationHandle [in, out]
A pointer that is used to return a handle that your driver can later use to deregister
the driver change notification. On success, a notification handle is returned in this
parameter. If an error occurs, NULL is returned.

NotifyUnicastIpAddressChange returns STATUS_SUCCESS if the function succeeds.

If the function fails, NotifyUnicastIpAddressChange returns one of the following error
codes:

Return code Description

ERROR_INVALID_HANDLE An internal error occurred where an invalid handle was
encountered.

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Family parameter was not either AF_INET,
AF_INET6, or AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY There was insufficient memory.

Other Use the FormatMessage function to obtain the message
string for the returned error.

Return value

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Your driver must set the Family parameter to either AF_INET, AF_INET6, or AF_UNSPEC.

The invocation of the callback function that is specified in the Callback parameter is
serialized. The callback function should be defined as a function of type VOID. The
parameters that are passed to the callback function include the following.

Parameter Description

IN PVOID CallerContext The CallerContext parameter that is passed to the
NotifyUnicastIpAddressChange function when it is registering
the driver for change notifications.

IN
PMIB_UNICASTIPADDRESS_ROW
Row OPTIONAL

A pointer to the MIB_UNICASTIPADDRESS_ROW entry for the
unicast IP address that was changed. This parameter is a NULL
pointer when the MIB_NOTIFICATION_TYPE value that is
passed in the NotificationType parameter to the callback
function is set to MibInitialNotification. This situation can
occur only if the InitialNotification parameter that is passed to
NotifyUnicastIpAddressChange was set to TRUE when
registering the driver for change notifications.

IN MIB_NOTIFICATION_TYPE
NotificationType

The notification type. This member can be one of the values
from the MIB_NOTIFICATION_TYPE enumeration type.

To deregister the driver for change notifications, call the CancelMibChangeNotify2
function, passing the NotificationHandle parameter that NotifyUnicastIpAddressChange
returns.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

CancelMibChangeNotify2

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

MIB_NOTIFICATION_TYPE

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyStableUnicastIpAddressTable

SetUnicastIpAddressEntry

GetTeredoPort function
Article • 03/03/2023

The GetTeredoPort function retrieves the dynamic UDP port number that the Teredo
client uses on a local computer.

c++

Port [out]
A pointer to the UDP port number. On successful return, this parameter is filled
with the port number that the Teredo client uses.

GetTeredoPort returns STATUS_SUCCESS if the function succeeds.

If the function fails, GetTeredoPort returns one of the following error codes:

Return code Description

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if a NULL pointer is passed in the Port parameter.

ERROR_NOT_READY The device is not ready. This error is returned if the Teredo client
is not started on the local computer.

STATUS_NOT_SUPPORTED The request is not supported. This error is returned if no IPv6
stack is located on the local computer.

Other Use the FormatMessage function to obtain the message string
for the returned error.

Syntax

NETIOAPI_API GetTeredoPort(
 Out USHORT *Port
);

Parameters

Return value

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The GetTeredoPort function retrieves the current UDP port number that the Teredo
client usesfor the Teredo service port. The Teredo port is dynamic and can change any
time that the Teredo client is restarted on the local computer. A driver can register to be
notified when the Teredo service port changes by calling the NotifyTeredoPortChange
function.

The Teredo client also uses static UDP port 3544 for listening to multicast traffic that is
sent on multicast IPv4 address 224.0.0.253 as defined in RFC 4380. For more
information, see Teredo: Tunneling IPv6 over UDPthrough Network Address Translations
(NATs) .

The GetTeredoPort function is used primarily by firewall drivers in order to configure the
appropriate exceptions to enable incoming and outgoing Teredo traffic.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

NotifyTeredoPortChange

NotifyStableUnicastIpAddressTable

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84066
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

NotifyStableUnicastIpAddressTable
function
Article • 03/03/2023

The NotifyStableUnicastIpAddressTable function retrieves the stable unicast IP address
table on a local computer.

c++

Family [in]
The address family to retrieve.

Possible values for the address family are listed in the Winsock2.h header file. Note
that the values for the AF_ address family and PF_ protocol family constants are
identical (for example, AF_INET and PF_INET), so you can use either constant.

On Windows Vista and later versions of the Windows operating systems, possible
values for the Family parameter are defined in the Ws2def.h header file. Note that
the Ws2def.h header file is automatically included in Netioapi.h and you should
never use Ws2def.h directly.

The following values are currently supported for the address family:

AF_INET
The IPv4 address family. When this value is specified, the function retrieves the
stable unicast IP address table that contains only IPv4 entries.

AF_INET6
The IPv6 address family. When this value is specified, the function retrieves the

Syntax

NETIOAPI_API NotifyStableUnicastIpAddressTable(
 In ADDRESS_FAMILY Family,
 Out PMIB_UNICASTIPADDRESS_TABLE *Table,
 In PSTABLE_UNICAST_IPADDRESS_TABLE_CALLBACK CallerCallback,
 In PVOID CallerContext,
 Inout HANDLE *NotificationHandle
);

Parameters

stable unicast IP address table that contains only IPv6 entries.

AF_UNSPEC
The address family is unspecified. When this value is specified, the function
retrieves the stable unicast IP address table that contains both IPv4 and IPv6
entries.

Table [out]
A pointer to a MIB_UNICASTIPADDRESS_TABLE structure. When
NotifyStableUnicastIpAddressTable is successful, this parameter returns the stable
unicast IP address table on the local computer.

When NotifyStableUnicastIpAddressTable returns ERROR_IO_PENDING, which
indicates that the I/O request is pending, the stable unicast IP address table is
returned to the function in the CallerCallback parameter.

CallerCallback [in]
A pointer to the function to call with the stable unicast IP address table. This
function is called if NotifyStableUnicastIpAddressTable returns
ERROR_IO_PENDING, which indicates that the I/O request is pending.

CallerContext [in]
A user context that is passed to the callback function that is specified in the
CallerCallback parameter when the stable unicast IP address table is available.

NotificationHandle [in, out]
A pointer that is used to return a handle that your driver can use to cancel the
request to retrieve the stable unicast IP address table. This parameter is returned if
the return value from NotifyStableUnicastIpAddressTable is ERROR_IO_PENDING,
which indicates that the I/O request is pending.

NotifyStableUnicastIpAddressTable returns STATUS_SUCCESS and the stable unicast IP
table is returned in the Table parameter if the function succeeds immediately.

If the I/O request is pending, the function returns ERROR_IO_PENDING and the function
that the CallerCallback parameter points to is called when the I/O request has
completed with the stable unicast IP address table.

If the function fails, NotifyStableUnicastIpAddressTable returns one of the following
error codes:

Return value

Return code DescriptionReturn code Description

ERROR_INVALID_HANDLE An internal error occurred where an invalid handle was
encountered.

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Table parameter was a NULL pointer, the
NotificationHandle parameter was a NULL pointer, or the
Family parameter was not either AF_INET, AF_INET6, or
AF_UNSPEC.

STATUS_NOT_ENOUGH_MEMORY There was insufficient memory.

Other Use the FormatMessage function to obtain the message
string for the returned error.

All unicast IP addresses, except dial-on-demand addresses, are considered stable only if
they are in the preferred state. For a normal unicast IP address entry, this state would
correspond to a DadState member of the MIB_UNICASTIPADDRESS_ROW for the IP
address that is set to IpDadStatePreferred. Every dial-on-demand address defines its
own stability metric. Currently the only dial-on-demand address that the
NotifyStableUnicastIpAddressTable function considers is the unicast IP address that the
Teredo client uses on the local computer.

Your driver must set the Family parameter to either AF_INET, AF_INET6, or AF_UNSPEC.

When NotifyStableUnicastIpAddressTable is successful and returns STATUS_SUCCESS,
the Table parameter returns the stable unicast IP address table on the local computer.

When NotifyStableUnicastIpAddressTable returns ERROR_IO_PENDING, which indicates
that the I/O request is pending, the stable unicast IP address table is returned to the
function in the CallerCallback parameter.

If the unicast IP address that Teredo uses is available on the local computer but not in
the stable (qualified) state, NotifyStableUnicastIpAddressTable returns
ERROR_IO_PENDING and the stable unicast IP address table is eventually returned by
calling the function in the CallerCallback parameter. If the Teredo address is not
available or is in the stable state and the other unicast IP addresses are in a stable state,
the function in the CallerCallback parameter is never called.

The callback function that is specified in the CallerCallback parameter should be defined
as a function of type VOID. The parameters that are passed to the callback function
include the following.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

Parameter Description

IN PVOID CallerContext The CallerContext parameter that is passed to the
NotifyStableUnicastIpAddressTable function when it is
registering the driver for notifications.

IN
PMIB_UNICASTIPADDRESS_TABLE
AddressTable

A pointer to a MIB_UNICASTIPADDRESS_TABLE structure that
contains the stable unicast IP address table on the local
computer.

The NotifyStableUnicastIpAddressTable function is used primarily by drivers that use
the Teredo client.

To cancel the notification after the callback is complete, call the
CancelMibChangeNotify2 function, passing the NotificationHandle parameter that
NotifyStableUnicastIpAddressTable returns.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CancelMibChangeNotify2

CreateUnicastIpAddressEntry

DeleteUnicastIpAddressEntry

GetTeredoPort

GetUnicastIpAddressEntry

GetUnicastIpAddressTable

InitializeUnicastIpAddressEntry

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

MIB_NOTIFICATION_TYPE

MIB_UNICASTIPADDRESS_ROW

MIB_UNICASTIPADDRESS_TABLE

NotifyTeredoPortChange

NotifyUnicastIpAddressChange

SetUnicastIpAddressEntry

NotifyTeredoPortChange function
Article • 03/03/2023

The NotifyTeredoPortChange function registers the driver to be notified for changes to
the UDP port number that the Teredo client uses for the Teredo service port on a local
computer.

c++

Callback [in]
A pointer to the function to call when a Teredo client port change occurs. This
function is called when a Teredo port change notification is received.

CallerContext [in]
A user context that is passed to the callback function that is specified in the
Callback parameter when a Teredo port change notification is received.

InitialNotification [in]
A value that indicates whether the callback should be called immediately after
registration for driver change notification completes. This initial notification does
not indicate that a change occurred to the Teredo client port. This parameter
provides confirmation that the callback is registered.

NotificationHandle [in, out]
A pointer that is used to return a handle that your driver can later use to deregister
the driver change notification. On success, a notification handle is returned in this
parameter. If an error occurs, NULL is returned.

Syntax

NETIOAPI_API NotifyTeredoPortChange(
 In PTEREDO_PORT_CHANGE_CALLBACK Callback,
 In PVOID CallerContext,
 In BOOLEAN InitialNotification,
 Inout HANDLE * NotificationHandle
);

Parameters

Return value

NotifyTeredoPortChange returns STATUS_SUCCESS if the function succeeds.

If the function fails, NotifyTeredoPortChange returns one of the following error codes:

Return code Description

ERROR_INVALID_HANDLE An internal error occurred where an invalid handle was
encountered.

STATUS_INVALID_PARAMETER An invalid parameter was passed to the function. This error is
returned if the Callback parameter is a NULL pointer.

STATUS_NOT_ENOUGH_MEMORY There was insufficient memory.

Other Use the FormatMessage function to obtain the message
string for the returned error.

The invocation of the callback function that is specified in the Callback parameter is
serialized. The callback function should be defined as a function of type VOID. The
parameters that are passed to the callback function include the following.

Parameter Description

IN PVOID CallerContext The CallerContext parameter that is passed to the
NotifyTeredoPortChange function when it is registering the driver for
change notifications.

IN USHORT Port The UDP port number that the Teredo client currently uses. This
parameter is zero when the MIB_NOTIFICATION_TYPE value that is
passed in the NotificationType parameter to the callback function is
set to MibInitialNotification. This situation can occur only if the
InitialNotification parameter that is passed to
NotifyTeredoPortChange was set to TRUE when registering the driver
for change notifications.

IN
MIB_NOTIFICATION_TYPE
NotificationType

The notification type. This member can be one of the values from the
MIB_NOTIFICATION_TYPE enumeration type.

Your driver can use the GetTeredoPort function to retrieve the initial UDP port number
that the Teredo client used for the Teredo service port.

The Teredo port is dynamic and can change any time that the Teredo client is restarted
on the local computer. A driver can register to be notified when the Teredo service port
changes by calling the NotifyTeredoPortChange function.

Remarks

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-formatmessage

The Teredo client also uses static UDP port 3544 for listening to multicast traffic that is
sent on multicast IPv4 address 224.0.0.253 as defined in RFC 4380. For more
information, see Teredo: Tunneling IPv6 over UDPthrough Network Address Translations
(NATs) .

The NotifyTeredoPortChange function is used primarily by firewall drivers to configure
the appropriate exceptions to enable incoming and outgoing Teredo traffic.

To deregister the driver for change notifications, call the CancelMibChangeNotify2
function, passing the NotificationHandle parameter that the NotifyTeredoPortChange
function returns.

Target
platform

Universal

Version Available in Windows Vista and later versions of the Windows operating
systems.

Header Netioapi.h (include Netioapi.h)

Library Netio.lib

IRQL < DISPATCH_LEVEL

CancelMibChangeNotify2

GetTeredoPort

NotifyStableUnicastIpAddressTable

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84066
https://learn.microsoft.com/en-us/windows-hardware/drivers/develop/target-platforms

Roadmap for Developing WFP Callout
Drivers
Article • 11/29/2022

To create a Windows Filtering Platform (WFP) callout driver, follow these steps:

Step 1: Learn about WFP architecture.

For information about WFP, see Windows Filtering Platform. You may find that you
can develop a WFP user-mode application and avoid writing a WFP callout driver.

Step 2: Learn about Windows architecture and drivers.

You must understand the fundamentals of how drivers work in Windows operating
systems. Knowing the fundamentals will help you make appropriate design
decisions and let you streamline your development process. For more information
about driver fundamentals, see Concepts for all driver developers.

Step 3: Determine the Windows driver model for your WFP callout driver.

WFP callout drivers can be written either by using the Windows Driver Model
(WDM) or the Kernel Mode Driver Framework (KMDF). For more information about
how to select a driver model, see Choosing a Driver Model. For more information
about WDM, see Introduction to Windows Drivers and Writing WDM Drivers. For
more information about KMDF, see WDF Driver Development Guide.

Step 4: Determine additional Windows driver design decisions.

For information about how to make additional Windows design decisions, see
Creating Reliable Kernel-Mode Drivers, Programming Issues for 64-Bit Drivers, and
Creating International INF Files.

Step 5: Learn about the Windows driver build, test, and debug processes and tools.

Building a driver differs from building a user-mode application. For information
about Windows driver build, debug, and test processes, driver signing, and
Windows Hardware Lab Kit (HLK) testing, see Building, Debugging, and Testing
Drivers. For information about building, testing, verifying, and debugging tools,
see Driver Development Tools.

Step 6: Review the Windows Filtering Platform (WFP) driver samples in the
Windows driver samples repository on GitHub.

https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/concepts-and-knowledge-for-all-driver-developers
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/choosing-a-driver-model
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-components
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/writing-wdm-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/wdf/
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/creating-reliable-kernel-mode-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/porting-your-driver-to-64-bit-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/creating-international-inf-files
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/
https://go.microsoft.com/fwlink/p/?LinkId=618680
https://go.microsoft.com/fwlink/p/?LinkId=616507

Step 7: Make design decisions about your WFP callout driver.

For information about how to design WFP callout drivers, see Callout Driver
Programming Considerations.

Step 8: Develop, build, test, and debug your WFP callout driver.

For information about WFP callout driver specifics, see Callout Driver Operations
and Callout Driver Installation. For information about functions, structures,
enumerations, or constants that are specific to WFP, see Windows Filtering
Platform Callout Drivers Reference. For information about iterative building,
testing, and debugging, see Overview of Build, Debug, and Test Process. This
process will help ensure that you build a driver that works.

Step 9: Create a driver package for your WFP callout driver.

For more information, see Providing a Driver Package and Callout Driver
Installation.

Step 10: Sign and distribute your WFP callout driver.

The final step is to sign (optional) and distribute the driver. If your driver meets the
quality standards that are defined for the Windows Hardware Lab Kit (HLK), you
can distribute it through the Microsoft Windows Update program. For more
information about how to distribute a driver, see Get started with the hardware
submission process.

These are the basic steps. Additional steps might be necessary based on the needs of
your individual driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/
https://learn.microsoft.com/en-us/windows-hardware/drivers/dashboard/get-started-dashboard-submissions

Introduction to Windows Filtering
Platform (WFP) Callout Drivers
Article • 09/27/2024

This section introduces WFP callout drivers.

For more information about the WFP, see the Windows Filtering Platform
documentation in the Microsoft Windows SDK.

For WFP reference information, see Windows Filtering Platform Callout Drivers.

A callout driver implements one or more callouts. Callouts extend the capabilities of the
Windows Filtering Platform by processing TCP/IP-based network data in ways that are
beyond the scope of the simple filtering functionality. Callouts are typically used to do
the following tasks:

Deep Inspection
Perform complex inspection of the network data to determine which data should be
blocked, which data should be permitted, and which data should be passed to another
filter. An antivirus product, for example, could look for virus signatures.

Packet Modification
Perform modification and reinjection of the network packet headers or data, or both. A
network address translation (NAT) product, for example, could modify the headers on
IPv4 packets.

Stream Modification
Perform modification and reinjection of the network data in a stream. A parental control
product, for example, could remove or replace specific words or phrases in a data
stream.

Data Logging
Log of network traffic data. A network monitoring product, for example, could count the
number of data packets that are discarded for a specific reason.

In addition to processing network data, callout drivers can perform other Windows
Filtering Platform management tasks, such as adding filters to the base filtering engine.
For more information about other tasks that a callout driver can perform, see Calling
Other Windows Filtering Platform Functions.

Purpose of Callout Drivers

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/#windows-filtering-platform-callout-drivers

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

WFP Changes for Windows 8
Article • 12/15/2021

Several changes have been made in the available functions and behavior of the
Windows Filtering Platform that begin with Windows 8. Frequently, to take advantage of
the new features, you must compile or recompile a callout driver that has the
NTDDI_VERSION macro set to NTDDI_WIN8.

New features:
Using Layer 2 Filtering
Using Proxied Connections Tracking
Using Virtual Switch Filtering

New functions:
FwpsCalloutRegister2
FwpsFlowAbort0
FwpsInjectMacReceiveAsync0
FwpsInjectMacSendAsync0
FwpsNetBufferListAssociateContext1
FwpsQueryConnectionRedirectState0
FwpsRedirectHandleCreate0
FwpsRedirectHandleDestroy0
FwpsvSwitchEventsSubscribe0
FwpsvSwitchEventsUnsubscribe0
FwpsvSwitchNotifyComplete0

New callback functions:
FWPS_CALLOUT_CLASSIFY_FN2
FWPS_CALLOUT_NOTIFY_FN2
FWPS_NET_BUFFER_LIST_NOTIFY_FN1
FWPS_VSWITCH_FILTER_ENGINE_REORDER_CALLBACK0
FWPS_VSWITCH_INTERFACE_EVENT_CALLBACK0
FWPS_VSWITCH_LIFETIME_EVENT_CALLBACK0
FWPS_VSWITCH_POLICY_EVENT_CALLBACK0
FWPS_VSWITCH_PORT_EVENT_CALLBACK0
FWPS_VSWITCH_RUNTIME_STATE_RESTORE_CALLBACK0
FWPS_VSWITCH_RUNTIME_STATE_SAVE_CALLBACK0

New structures:
FWPS_FILTER2
FWPS_VSWITCH_EVENT_DISPATCH_TABLE0

New enumerations:
FWPS_CONNECTION_REDIRECT_STATE

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowabort0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectmacreceiveasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectmacsendasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistassociatecontext1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsqueryconnectionredirectstate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandledestroy0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitcheventssubscribe0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitcheventsunsubscribe0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitchnotifycomplete0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_filter_engine_reorder_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_interface_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_lifetime_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_policy_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_port_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_runtime_state_restore_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_runtime_state_save_callback0
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_filter2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_vswitch_event_dispatch_table0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_connection_redirect_state_

FWPS_FIELDS_EGRESS_VSWITCH_ETHERNET
FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V4
FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V6
FWPS_FIELDS_INBOUND_MAC_FRAME_NATIVE
FWPS_FIELDS_INGRESS_VSWITCH_ETHERNET
FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V4
FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V6
FWPS_FIELDS_OUTBOUND_MAC_FRAME_NATIVE
FWPS_VSWITCH_EVENT_TYPE

Renamed enumerations:
FWPS_FIELDS_INBOUND_MAC_FRAME_ETHERNET (was
FWPS_FIELDS_INBOUND_MAC_FRAME_802_3)
FWPS_FIELDS_OUTBOUND_MAC_FRAME_ETHERNET (was
FWPS_FIELDS_OUTBOUND_MAC_FRAME_802_3)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_native_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_native_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_vswitch_event_type_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_ethernet_

WFP Changes for Windows 7
Article • 12/15/2021

Several changes have been made in the available functions and behavior of the
Windows Filtering Platform that begin with Windows 7. Frequently, to take advantage of
the new features, you must compile or recompile a callout driver that has the
NTDDI_VERSION macro set to NTDDI_WIN7.

New functions:
FwpsAcquireClassifyHandle0
FwpsAcquireWritableLayerDataPointer0
FwpsApplyModifiedLayerData0
FwpsCalloutRegister1
FwpsCompleteClassify0
FwpsPendClassify0
FwpsReleaseClassifyHandle0
classifyFn1
notifyFn1
FWPS_NET_BUFFER_LIST_NOTIFY_FN0
FwpsInjectTransportSendAsync1
FwpsNetBufferListAssociateContext0
FwpsNetBufferListGetTagForContext0
FwpsNetBufferListRemoveContext0
FwpsNetBufferListRetrieveContext0
FwpsAleEndpointCreateEnumHandle0
FwpsAleEndpointDestroyEnumHandle0
FwpsAleEndpointEnum0
FwpsAleEndpointGetById0
FwpsAleEndpointGetSecurityInfo0
FwpsAleEndpointSetSecurityInfo0

New structures and enumerations:
FWPS_ALE_ENDPOINT_ENUM_TEMPLATE0
FWPS_ALE_ENDPOINT_PROPERTIES0
FWPS_BIND_REQUEST0
FWPS_CALLOUT1
FWPS_CONNECT_REQUEST0
FWPS_FIELDS_ALE_BIND_REDIRECT_V4
FWPS_FIELDS_ALE_BIND_REDIRECT_V6
FWPS_FIELDS_ALE_CONNECT_REDIRECT_V4
FWPS_FIELDS_ALE_CONNECT_REDIRECT_V6

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquireclassifyhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsapplymodifiedlayerdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscompleteclassify0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendclassify0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreleaseclassifyhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjecttransportsendasync1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistassociatecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistgettagforcontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistretrievecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointcreateenumhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointdestroyenumhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointenum0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointgetbyid0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointgetsecurityinfo0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsaleendpointsetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_ale_endpoint_enum_template0
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_ale_endpoint_properties0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_bind_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout1_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_bind_redirect_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_bind_redirect_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_connect_redirect_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_connect_redirect_v6_

FWPS_FIELDS_ALE_ENDPOINT_CLOSURE_V4
FWPS_FIELDS_ALE_ENDPOINT_CLOSURE_V6
FWPS_FIELDS_ALE_RESOURCE_RELEASE_V4
FWPS_FIELDS_ALE_RESOURCE_RELEASE_V6
FWPS_FIELDS_INBOUND_MAC_FRAME_802_3
FWPS_FIELDS_KM_AUTHORIZATION
FWPS_FIELDS_NAME_RESOLUTION_CACHE_V4
FWPS_FIELDS_NAME_RESOLUTION_CACHE_V6
FWPS_FIELDS_OUTBOUND_MAC_FRAME_802_3
FWPS_FIELDS_STREAM_PACKET_V4
FWPS_FIELDS_STREAM_PACKET_V6
FWPS_FILTER1
FWPS_NET_BUFFER_LIST_EVENT_TYPE0
FWPS_TRANSPORT_SEND_PARAMS1

New documentation topics:
Using Bind or Connect Redirection
Using Packet Tagging
ALE Endpoint Lifetime Management

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_endpoint_closure_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_endpoint_closure_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_release_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_release_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_km_authorization_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_name_resolution_cache_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_name_resolution_cache_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_packet_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_packet_v6_
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_filter1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_net_buffer_list_event_type0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_transport_send_params1_

WFP Changes for Windows Vista SP1
and Windows Server 2008
Article • 12/15/2021

Several changes have been made in the available functions and behavior of the
Windows Filtering Platform that begin with Windows Vista with Service Pack 1 (SP1) and
Windows Server 2008. Frequently, to take advantage of the new features, you must
compile or recompile a callout driver that has the NTDDI_VERSION macro set to
NTDDI_WIN6SP1.

New functions: FwpsConstructIpHeaderForTransportPacket0
FwpsReassembleForwardFragmentGroup0

New FWPS_STREAM_FLAG_RECEIVE_PUSH flag option that is described in
FwpsStreamInjectAsync0

Updated and renamed filtering conditions, listed in Filtering Conditions Available
at Each Filtering Layer

Updated and renamed data field identifiers that were added to
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_XXX and
FWPS_LAYER_INBOUND_ICMP_ERROR_XXX layers, listed in Data Field Identifiers,
together with behavior changes

Additional metadata field identifiers, listed in Metadata Fields and Metadata Fields
at Each Filtering Layer

The following documentation topics are new:
Developing IPsec-Compatible Callout Drivers
Processing Classify Callouts Asynchronously

The following topics contain additional updates: Processing Notify Callouts Stream
Inspection FwpsFlowAssociateContext0 FwpsFlowRemoveContext0 classifyFn
notifyFn FWPS_CALLOUT0 FWPS_INCOMING_METADATA_VALUES0

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsconstructipheaderfortransportpacket0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreassembleforwardfragmentgroup0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreaminjectasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowassociatecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_incoming_metadata_values0_

Callout
Article • 12/15/2021

A callout provides functionality that extends the capabilities of the Windows Filtering
Platform. A callout consists of a set of callout functions and a GUID key that uniquely
identifies the callout. There are several built-in callouts that are included with the
Windows Filtering Platform. Additional callouts can be added by using callout drivers.

Callout Driver
Article • 12/15/2021

A callout driver is a kernel-mode driver that implements one or more callouts. A callout
driver registers its callouts with the filter engine so that the filter engine can call the
callout functions for the callout when the computer processes connections or packets.

Callout Function
Article • 12/15/2021

A callout function is a function that is implemented by a callout driver that is one of the
functions that defines a callout. A callout consists of the following list of callout
functions:

A notifyFn function to process notifications.

A classifyFn function to process classifications.

A flowDeleteFn function to process flow deletions (optional).

The filter engine calls a callout's callout functions so that the callout can process the
network data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_flow_delete_notify_fn0

Filter
Article • 12/15/2021

A filter defines several filtering conditions for filtering TCP/IP network data and an action
that is to be taken on the data if all the filtering conditions are true. If a filter requires
additional processing of the network data, it can specify a callout for the filter's action. If
the filtering conditions for such a filter are all true, the filter engine passes the network
data to the specified callout for additional processing.

Filter Engine
Article • 12/15/2021

The filter engine is a component of the Windows Filtering Platform that stores filters and
performs filter arbitration. Filters are added to the filter engine at designated filtering
layers so that the filter engine can perform the desired filtering action (permit, drop, or a
callout). If a filter in the filter engine specifies a callout for the filter's action, the filter
engine calls the callout's classifyFn function so that the callout can process the network
data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0

Filtering Layer
Article • 12/15/2021

A filtering layer is a point in the TCP/IP network stack where network data is passed to
the filter engine for matching against the current set of filters. Each filtering layer in the
network stack is identified by a unique filtering layer identifier.

When a filter is added to the filter engine, it is added at a designated filtering layer
where it will filter the network data. Specific data fields are made available at each
filtering layer for processing by the filters that have been added to the filter engine at
that layer. If the filter engine passes the network data to a callout for additional
processing, it includes these data fields and any metadata that is available at that
filtering layer.

Run-time Filtering Layer Identifiers (FWPS_XXX) are used by kernel-mode callout drivers.
Management Filtering Layer Identifiers (FWPM_XXX) are used by FwpmXxx functions
that interact with the Base Filtering Engine (BFE) from either user mode or kernel mode
(for example, FwpmFilterAdd0).

The FWPS data types are smaller than their FWPM counterparts: the FWPM filtering
layer identifiers are GUIDs (128 bits), whereas the FWPS filtering layer identifiers are
LUIDs(64 bits). The smaller size for FWPS data types improves system performance
because integer comparisons are faster than GUID comparisons for real-time traffic, and
the kernel memory handles FWPS types more efficiently.

https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilteradd0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/igpupvdev/ns-igpupvdev-_luid

Windows Filtering Platform Architecture
Overview
Article • 12/15/2021

This section provides a brief overview of the Windows Filtering Platform architecture. For
a more thorough discussion of the Windows Filtering Platform architecture, see the
Windows Filtering Platform documentation in the Microsoft Windows SDK.

The following figure shows the basic architecture of the Windows Filtering Platform.

The filter engine is the core of the Windows Filtering Platform. The filter engine
performs all the filtering operations on the TCP/IP-based network data. At key points in
the TCP/IP stack there are filtering layers where network data is passed to the filter
engine for processing. If the filtering conditions for a filter of the filtering layer are all
true, the filter engine applies the filter's action.

Callout drivers provide additional filtering functionality by registering one or more
callouts with the filter engine. Filters in the filter engine can specify a callout for the
filter's action. In this case, the filter engine passes the network data to the specified
callout for additional processing.

The Windows Filtering Platform includes several built-in callouts. See Built-in Callout
Identifiers for a description of each of these callouts.

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page

Callout Driver Operations Topics
Article • 12/15/2021

This section discusses typical callout driver operations and includes the following topics:

Initializing a Callout Driver

Processing Notify Callouts

Processing Classify Callouts

Processing Flow Delete Callouts

Using Packet Tagging

Using Layer 2 Filtering

Using Proxied Connections Tracking

Using Virtual Switch Filtering

Unloading a Callout Driver

In addition to these operations, callout drivers can perform other Windows Filtering
Platform management tasks, such as adding filters to the base filtering engine. For more
information about the tasks that a callout driver can perform, see Calling Other
Windows Filtering Platform Functions.

Initializing a Callout Driver
Article • 12/15/2021

A callout driver initializes itself within its DriverEntry function. The main initialization
tasks are as follows:

Specifying an Unload Function

Creating a Device Object

Registering Callouts with the Filter Engine

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize

Specifying an Unload Function
Article • 12/15/2021

A callout driver must provide an unload function. The operating system calls this
function when the callout driver is unloaded from the system. A callout driver's unload
function must guarantee that the callout driver's callouts are unregistered from the filter
engine before the callout driver is unloaded from system memory. A callout driver
cannot be unloaded from the system if it does not provide an unload function.

How a callout driver specifies an unload function depends on whether the callout driver
is based on the Windows Driver Model (WDM) or the Windows Driver Frameworks
(WDF).

If a callout driver is based on WDM, it specifies an Unload function in its DriverEntry
function. For example:

C++

If a callout driver is based on WDF, it specifies an EvtDriverUnload function in its
DriverEntry function. For example:

WDM-Based Callout Drivers

VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
);

NTSTATUS
 DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath
)
{
 ...

 // Specify the callout driver's Unload function
 DriverObject->DriverUnload = Unload;

 ...
}

WDF-Based Callout Drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdriver/nc-wdfdriver-evt_wdf_driver_unload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-driver_initialize

C++

For information about how to implement a callout driver's unload function, see
Unloading a Callout Driver.

VOID
 Unload(
 IN WDFDRIVER Driver
);

NTSTATUS
 DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath
)
{
 NTSTATUS status;
 WDF_DRIVER_CONFIG config;
 WDFDRIVER driver;

 ...

 // Initialize the driver config structure
 WDF_DRIVER_CONFIG_INIT(&config, NULL);

 // Indicate that this is a non-PNP driver
 config.DriverInitFlags = WdfDriverInitNonPnpDriver;

 // Specify the callout driver's Unload function
 config.EvtDriverUnload = Unload;

 // Create a WDFDRIVER object
 status =
 WdfDriverCreate(
 DriverObject,
 RegistryPath,
 NULL,
 &config,
 &driver
);

 ...

 return status;
}

Creating a Device Object (Windows
Filtering Platform)
Article • 12/15/2021

A callout driver must create a device object before it can register its callouts with the
filter engine. How a callout driver creates a device object depends on whether the
callout driver is based on the Windows Driver Model (WDM) or the Windows Driver
Frameworks (WDF).

If a callout driver is based on WDM, it creates a device object by calling the
IoCreateDevice function. For example:

C++

WDM-Based Callout Drivers

PDEVICE_OBJECT deviceObject;

NTSTATUS
 DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath
)
{
 NTSTATUS status;

 ...

 // Create a device object
 status =
 IoCreateDevice(
 DriverObject,
 0,
 NULL,
 FILE_DEVICE_UNKNOWN,
 FILE_DEVICE_SECURE_OPEN,
 FALSE,
 &deviceObject
);

 ...

 return status;
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocreatedevice

If a callout driver is based on WDF, it creates a framework device object by calling the
WdfDeviceCreate function. To register its callouts with the filter engine, a WDF-based
callout driver must obtain a pointer to the WDM device object that is associated with
the framework device object. A WDF-based callout driver obtains a pointer to this WDM
device object by calling the WdfDeviceWdmGetDeviceObject function. For example:

C++

WDF-Based Callout Drivers

WDFDEVICE wdfDevice;

NTSTATUS
 DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath
)
{
 WDFDRIVER driver;
 PWDFDEVICE_INIT deviceInit;
 PDEVICE_OBJECT deviceObject;
 NTSTATUS status;

 ...

 // Allocate a device initialization structure
 deviceInit =
 WdfControlDeviceInitAllocate(
 driver;
 &SDDL_DEVOBJ_KERNEL_ONLY
);

 // Set the device characteristics
 WdfDeviceInitSetCharacteristics(
 deviceInit,
 FILE_DEVICE_SECURE_OPEN,
 FALSE
);

 // Create a framework device object
 status =
 WdfDeviceCreate(
 &deviceInit,
 WDF_NO_OBJECT_ATTRIBUTES,
 &wdfDevice
);

 // Check status
 if (status == STATUS_SUCCESS) {

 // Initialization of the framework device object is complete
 WdfControlFinishInitializing(

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicecreate
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicewdmgetdeviceobject

 wdfDevice
);

 // Get the associated WDM device object
 deviceObject = WdfDeviceWdmGetDeviceObject(wdfDevice);
 }

 ...

 return status;
}

Registering Callouts with the Filter
Engine
Article • 12/15/2021

After a callout driver has created a device object, it can then register its callouts with the
filter engine. A callout driver can register its callouts with the filter engine at any time,
even if the filter engine is currently not running. To register a callout with the filter
engine, a callout driver calls the FwpsCalloutRegister0 function. For example:

C++

// Prototypes for the callout's callout functions
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT0 *classifyOut
);

NTSTATUS NTAPI
 NotifyFn(
 IN FWPS_CALLOUT_NOTIFY_TYPE notifyType,
 IN const GUID *filterKey,
 IN const FWPS_FILTER0 *filter
);

VOID NTAPI
 FlowDeleteFn(
 IN UINT16 layerId,
 IN UINT32 calloutId,
 IN UINT64 flowContext
);

// Callout registration structure
const FWPS_CALLOUT0 Callout =
{
 { ... }, // GUID key identifying the callout
 0, // Callout-specific flags (none set here)
 ClassifyFn,
 NotifyFn,
 FlowDeleteFn
};

// Variable for the run-time callout identifier
UINT32 CalloutId;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister0

If the call to the FwpsCalloutRegister0 function is successful, the variable pointed to by
the last parameter contains the run-time identifier for the callout. This run-time
identifier corresponds to the GUID that was specified for the callout key.

A single callout driver can implement more than one callout. If a callout driver
implements more than one callout, it calls the FwpsCalloutRegister0 function one time
for each callout that it supports to register each callout with the filter engine.

classifyFn

NTSTATUS
 DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING RegistryPath
)
{
 PDEVICE_OBJECT deviceObject;
 NTSTATUS status;

 ...

 status =
 FwpsCalloutRegister0(
 deviceObject,
 &Callout,
 &CalloutId
);

 ...

 return status;
}

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Processing Notify Callouts
Article • 12/15/2021

The filter engine calls a callout's notifyFn callout function to notify the callout driver
about events that are associated with the callout.

When a filter that specifies a callout for the filter's action is added to the filter engine,
the filter engine calls the callout's notifyFn callout function, passing
FWPS_CALLOUT_NOTIFY_ADD_FILTER in the notifyType parameter.

A callout driver can register a callout with the filter engine after filters that specify the
callout for the filter's action have already been added to the filter engine. In this
situation, the filter engine does not call the callout's notifyFn callout function to notify
the callout about any of the existing filters.

The filter engine only calls the callout's notifyFn callout function to notify the callout
when new filters that specify the callout for the filter's action are added to the filter
engine. In this situation, a callout's notifyFn callout function might not get called for
every filter in the filter engine that specifies the callout for the filter's action.

If a callout driver registers a callout after the filter engine is started and the callout must
receive information about every filter in the filter engine that specifies the callout for the
filter's action, the callout driver must call the appropriate management functions to
enumerate all the filters in the filter engine. The callout driver must sort through the
resulting list of all the filters to find those filters that specify the callout for the filter's
action. See Calling Other Windows Filtering Platform Functions for more information
about calling these functions.

When a filter that specifies a callout for the filter's action is deleted from the filter
engine, the filter engine calls the callout's notifyFn callout function and passes
FWPS_CALLOUT_NOTIFY_DELETE_FILTER in the notifyType parameter and NULL in the
filterKey parameter. The filter engine calls the callout's notifyFn callout function for every
deleted filter in the filter engine that specifies the callout for the filter's action. This
includes any filters that were added to the filter engine before the callout driver
registered the callout with the filter engine. Therefore, a callout might receive filter
delete notifications for filters for which it did not receive filter add notifications.

Filter Addition

Filter Deletion

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0

If the callout's notifyFn callout function does not recognize the kind of notification that
is passed in the notifyType parameter, it should ignore the notification and return
STATUS_SUCCESS.

A callout driver can specify a context to be associated with a filter when the filter is
added to the filter engine. Such a context is opaque to the filter engine. The callout's
classifyFn callout function can use this context to save state information for the next
time that it is called by the filter engine. When the filter is deleted from the filter engine,
the callout driver performs any necessary cleanup of the context.

For example:

C++

// Context structure to be associated with the filters
typedef struct FILTER_CONTEXT_ {
 .
 . // Driver-specific content
 .
} FILTER_CONTEXT, *PFILTER_CONTEXT;

// Memory pool tag for filter context structures
#define FILTER_CONTEXT_POOL_TAG 'fcpt'

// notifyFn callout function
NTSTATUS NTAPI
 NotifyFn(
 IN FWPS_CALLOUT_NOTIFY_TYPE notifyType,
 IN const GUID *filterKey,
 IN const FWPS_FILTER0 *filter
)
{
 PFILTER_CONTEXT context;

 ASSERT(filter != NULL);

 // Switch on the type of notification
 switch(notifyType) {

 // A filter is being added to the filter engine
 case FWPS_CALLOUT_NOTIFY_ADD_FILTER:

 // Allocate the filter context structure
 context =
 (PFILTER_CONTEXT)ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(FILTER_CONTEXT),
 FILTER_CONTEXT_POOL_TAG
);

 // Check the result of the memory allocation
 if (context == NULL) {

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0

 // Return error
 return STATUS_INSUFFICIENT_RESOURCES;
 }

 // Initialize the filter context structure
 ...

 // Associate the filter context structure with the filter
 filter->context = (UINT64)context;

 break;

 // A filter is being removed from the filter engine
 case FWPS_CALLOUT_NOTIFY_DELETE_FILTER:

 // Get the filter context structure from the filter
 context = (PFILTER_CONTEXT)filter->context;

 // Check whether the filter has a context
 if (context) {

 // Cleanup the filter context structure
 ...

 // Free the memory for the filter context structure
 ExFreePoolWithTag(
 context,
 FILTER_CONTEXT_POOL_TAG
);

 }
 break;

 // Unknown notification
 default:

 // Do nothing
 break;
 }

 return STATUS_SUCCESS;
}

Processing Classify Callouts
Article • 12/15/2021

The filter engine calls a callout's classifyFn callout function when there is network data to
be processed by the callout. This occurs when all the filtering conditions are true for a
filter that specifies the callout for the filter's action. If such a filter has no filtering
conditions, the filter engine always calls the callout's classifyFn callout function.

The filter engine passes several different data items to a callout's classifyFn callout
function. These data items include fixed data values, metadata values, raw network data,
filter information, and any flow context. The particular data items that the filter engine
passes to the callout depend on the specific filtering layer and the conditions under
which classifyFn is called. A classifyFn function can use any combination of these data
items to make its filtering decisions.

The implementation of a callout's classifyFn callout function depends on what the
callout is designed to do. The following sections provide examples of some the more
typical functions of a callout:

Using a Callout for Deep Inspection

Using a Callout for Deep Inspection of Stream Data

Inspecting Packet and Stream Data

Modifying Stream Data

Data Logging

Associating Context with a Data Flow

Processing Classify Callouts Asynchronously

Using Bind or Connect Redirection

ALE Endpoint Lifetime Management

Using Packet Tagging

The actual implementation of a particular callout's classifyFn callout function can be
based on a combination of these examples.

For callouts that process data at a filtering layer that supports data flows, the callout's
classifyFn callout function can associate a context with each of the data flows. The
classifyFn function can use this context to save state information for the next time that it

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0

is called by the filter engine for that data flow. For more information about how a callout
function can associate a context with a data flow, see Associating Context with a Data
Flow.

WFP supports asynchronous processing of the classifyFn callout function. For more
information about asynchronous processing, see Processing Classify Callouts
Asynchronously.

Using a Callout for Deep Inspection
Article • 12/15/2021

When a callout is performing deep inspection, its classifyFn callout function can inspect
any combination of the fixed data fields, the metadata fields, and any raw packet data
that is passed to it, and any relevant data that has been stored in a context associated
with the filter or the data flow.

For example:

C++

// classifyFn callout function
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT *classifyOut
)
{
 PNET_BUFFER_LIST rawData;
 ...

 // Test for the FWPS_RIGHT_ACTION_WRITE flag to check the rights
 // for this callout to return an action. If this flag is not set,
 // a callout can still return a BLOCK action in order to VETO a
 // PERMIT action that was returned by a previous filter. In this
 // example the function just exits if the flag is not set.
 if (!(classifyOut->rights & FWPS_RIGHT_ACTION_WRITE))
 {
 // Return without specifying an action
 return;
 }

 // Get the data fields from inFixedValues
 ...

 // Get any metadata fields from inMetaValues
 ...

 // Get the pointer to the raw data
 rawData = (PNET_BUFFER_LIST)layerData;

 // Get any filter context data from filter->context
 ...

 // Get any flow context data from flowContext

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

The value in filter->action.type determines which actions the callout's classifyFn callout
function should return in the actionType member of the structure pointed to by the

 ...

 // Inspect the various data sources to determine
 // the action to be taken on the data
 ...

 // If the data should be permitted...
 if (...) {

 // Set the action to permit the data
 classifyOut->actionType = FWP_ACTION_PERMIT;

 // Check whether the FWPS_RIGHT_ACTION_WRITE flag should be cleared
 if (filter->flags & FWPS_FILTER_FLAG_CLEAR_ACTION_RIGHT)
 {
 // Clear the FWPS_RIGHT_ACTION_WRITE flag
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
 }

 return;
 }

 ...

 // If the data should be blocked...
 if (...) {

 // Set the action to block the data
 classifyOut->actionType = FWP_ACTION_BLOCK;

 // Clear the FWPS_RIGHT_ACTION_WRITE flag
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 return;
 }

 ...

 // If the decision to permit or block should be passed
 // to the next filter in the filter engine...
 if (...) {

 // Set the action to continue with the next filter
 classifyOut->actionType = FWP_ACTION_CONTINUE;

 return;
 }

 ...
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

classifyOut parameter. For more information about these actions, see the
FWPS_ACTION0 structure.

If a callout must perform additional processing of packet data outside its classifyFn
callout function before it can determine whether the data should be permitted or
blocked, it must pend the packet data until the processing of the data is completed. For
information about how to pend packet data, see Types of Callouts and
FwpsPendOperation0.

At some filtering layers, the layerData parameter that is passed by the filter engine to a
callout's classifyFn callout function is NULL.

For information about how to perform deep inspection of stream data, see Using a
Callout for Deep Inspection of Stream Data.

https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_action0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendoperation0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Using a Callout for Deep Inspection of
Stream Data
Article • 12/15/2021

When a callout inspects stream data, its classifyFn callout function can inspect any
combination of the fixed data fields, the metadata fields, and the raw stream data that is
passed to it, and any relevant data that has been stored in a context associated with the
filter or the data flow.

For example:

C++

// classifyFn callout function
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT *classifyOut
)
{
 FWPS_STREAM_CALLOUT_IO_PACKET0 *ioPacket;
 FWPS_STREAM_BUFFER0 *dataStream;
 UINT32 bytesRequired;
 SIZE_T bytesToPermit;
 SIZE_T bytesToBlock;
 ...

 // Get a pointer to the stream callout I/O packet
 ioPacket = (FWPS_STREAM_CALLOUT_IO_PACKET0 *)layerData;

 // Get the data fields from inFixedValues
 ...

 // Get any metadata fields from inMetaValues
 ...

 // Get the pointer to the data stream
 dataStream = ioPacket->dataStream;

 // Get any filter context data from filter->context
 ...

 // Get any flow context data from flowContext
 ...

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

 // Inspect the various data sources to determine
 // the action to be taken on the data
 ...

 // If more stream data is required to make a determination...
 if (...) {

 // Let the filter engine know how many more bytes are needed
 ioPacket->streamAction = FWPS_STREAM_ACTION_NEED_MORE_DATA;
 ioPacket->countBytesRequired = bytesRequired;
 ioPacket->countBytesEnforced = 0;

 // Set the action to continue to the next filter
 classifyOut->actionType = FWP_ACTION_CONTINUE;

 return;
 }
 ...

 // If some or all of the data should be permitted...
 if (...) {

 // No stream-specific action is required
 ioPacket->streamAction = FWPS_STREAM_ACTION_NONE;

 // Let the filter engine know how many of the leading bytes
 // in the stream should be permitted
 ioPacket->countBytesRequired = 0;
 ioPacket->countBytesEnforced = bytesToPermit;

 // Set the action to permit the data
 classifyOut->actionType = FWP_ACTION_PERMIT;

 return;
 }

 ...

 // If some or all of the data should be blocked...
 if (...) {

 // No stream-specific action is required
 ioPacket->streamAction = FWPS_STREAM_ACTION_NONE;

 // Let the filter engine know how many of the leading bytes
 // in the stream should be blocked
 ioPacket->countBytesRequired = 0;
 ioPacket->countBytesEnforced = bytesToBlock;

 // Set the action to block the data
 classifyOut->actionType = FWP_ACTION_BLOCK;

 return;
 }

The value in filter->action.type determines which actions the callout's classifyFn callout
function should return in the actionType member of the structure pointed to by the
classifyOut parameter. For more information about these actions, see the
FWPS_ACTION0 structure.

For more information about packet and stream data inspection, see Inspecting Packet
and Stream Data.

 ...

 // If the decision to permit or block should be passed
 // to the next filter in the filter engine...
 if (...) {

 // No stream-specific action is required
 ioPacket->streamAction = FWPS_STREAM_ACTION_NONE;

 // No bytes are affected by this callout
 ioPacket->countBytesRequired = 0;
 ioPacket->countBytesEnforced = 0;

 return;
 }

 ...
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_action0

Packet Inspection Points
Article • 12/15/2021

Incoming packets that are destined for an address that is assigned to the receiving
computer (local host traffic) traverse up WFP layers in the following order:

IP Packet (Network Layer)
All IP packets, including IP packet fragments, are available for inspection at this layer.
However, when packets are IPsec-protected, deep content inspection or modification
cannot be performed at this layer because the packets are not yet authenticated or
decrypted.

Transport Layer
All stand-alone or fully reassembled packets are available for inspection at this layer.
IPsec-protected packets have been authenticated or decrypted.

Application Layer Enforcement (ALE) Receive or Accept
The very first packet that arrives at a local endpoint is indicated at this layer. For
example, an arriving TCP synchronize (SYN) segment or the first UDP message that is
associated with a UDP flow would be indicated. Packets that are required to re-authorize
a connection, for example, after a firewall policy change, are also indicated at this layer,
and the ALE reauthorization flag will be set.

Datagram Data or Stream
UDP messages and non-ICMP error messages are indicated at the datagram data layer.
This layer allows for inspecting network data on a per datagram basis. At the datagram
layer, the network data is bidirectional. TCP data flows (data streams only) are available
for inspection at the stream layer.

Outgoing packets that originate from an address that is assigned to the sending
computer (local host sourced traffic) traverse down the following WFP layers:

ALE Connect
TCP connection requests (made before the SYN segment is generated) and the first UDP
message that is sent to a remote endpoint are indicated at this layer.

Datagram Data or Stream

Incoming packets

Outgoing packets

UDP messages and non-ICMP error messages are indicated at the datagram data layer.
This layer allows for inspecting network data on a per datagram basis. At the datagram
layer, the network data is bidirectional. TCP data flows (data streams only) are available
for inspection at the stream layer.

Transport and ICMP Error
The transport filtering layer is located in the send path just after a sent packet has been
passed to the network layer for processing but before any network layer processing
takes place. This filtering layer is located at the top of the network layer instead of at the
bottom of the transport layer so that any packets that are sent by third-party transports
or as raw packets are filtered at this layer.

The ICMP Error filtering layer is located in the send path for inspecting received ICMP
error messages for the transport protocol.

IP Packet
IP packet fragments are not indicated; inspection of outgoing IP fragments is currently
unavailable.

IP packets or fragments that do not originate from, or are not destined for, an address
that is assigned to the local computer are available for inspection at the forwarding
layer. For example, if a packet that is destined for a local client is modified to have a
nonlocal destination address and then is injected into the receive path, it will be injected
into the forwarding layer. Similarly, if a packet that originates from a local source
address is modified to have a nonlocal source address, it will be delivered to the
forwarding layer after it is injected into the send path.

WFP Layer Requirements and
Restrictions
Article • 12/15/2021

The following requirements and restrictions apply to WFP layers.

Forwarding Layer
An IP packet will be delivered to the forwarding layer if IP forwarding is enabled for a
packet that originates from, or is destined for, an address that is assigned to the
computer and the packet is sent or received on a different interface than the interface
on which the local address is assigned. By default, IP forwarding is disabled and can be
enabled by using the netsh interface ipv4 set interface command for IPv4 forwarding
or the netsh interface ipv6 set interface command for IPv6 forwarding.

The forwarding layer can forward each received fragment as it arrives or hold the
fragments of an IP payload until all fragments have arrived and then forward them. This
is known as fragment grouping. When fragment grouping is disabled (it is disabled by
default), forwarded IP packet fragments are indicated to WFP one time. When fragment
grouping is enabled, a fragment is indicated to WFP two times--first as the fragment
itself, and again inside a fragment group that is described by a NET_BUFFER_LIST chain.
WFP sets the FWP_CONDITION_FLAG_IS_FRAGMENT_GROUP flag when it indicates
fragment groups to forwarding layer callouts. You can enable fragment grouping by
using the netsh interface {ipv4|ipv6} set global groupforwardedfragments=enabled
command. Fragment grouping is different than reassembly, which is the reconstruction
of the original IP packet at the destination host.

The NET_BUFFER_LIST structure that is indicated at the forwarding layer can describe a
full IP packet, an IP packet fragment, or an IP packet fragment group. While an IP packet
fragment traverses the forwarding layer, it will be indicated two times to the callout: first
as a fragment, and again, as a fragment inside a fragment group.

When a fragment group is indicated, the
FWP_CONDITION_FLAG_IS_FRAGMENT_GROUP flag is passed as an incoming value to
the callout driver's classifyFn callout function. In this case, the NET_BUFFER_LIST
structure pointed to by the NetBufferList parameter is the first node of a
NET_BUFFER_LIST chain with each NET_BUFFER_LIST describing a packet fragment.

A forward injected packet will not be presented to any WFP layer. The injected packet
can be indicated to the callout driver again. To prevent infinite looping, the driver should
first call the FwpsQueryPacketInjectionState0 function before it continues with a call to
the classifyFn callout function, and the driver should permit packets that have the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsquerypacketinjectionstate0

injection state FWPS_PACKET_INJECTION_STATE set to
FWPS_PACKET_INJECTED_BY_SELF or FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF
to pass through unaltered.

You can use the following command to view the current "Group Forwarded Fragments"
setting for the system: netsh interface {ipv4|ipv6} show global.

Network Layer
IP packet fragments, which are indicated only for incoming paths, are indicated at three
points at this layer: first as an IP packet, again as an IP fragment, and a third time as part
of a reassembled IP packet. WFP sets the FWP_CONDITION_FLAG_IS_FRAGMENT flag
when it indicates fragments to network layer callouts.

For example, if a single IP packet is divided into four fragments, the indications for this
packet occur as follows:

1. One indication for each "original" IP packet (4 classifications, or calls to the
callout's classify function)

2. One indication for each "original fragment" (4 classifications)
3. One indication for the final reassembled IP packet (1 classification)

When adding filtering conditions, FWP_MATCH_FLAGS_NONE_SET can be used
together with the FWP_CONDITION_FLAG_IS_FRAGMENT flag to avoid the second
indication(s). These condition flags are meant to prevent classifications the callout driver
does not care about. If the callout has to inspect only full packets (those that have not
been fragmented and reassembled), it has to parse the IP header to avoid processing
fragments that are indicated as IP packets. A callout might do the following steps to
achieve this:

1. Skip the first indication(s) by checking if the More Fragments (MF) flag is set
and/or the Fragment Offset field is not 0.

2. Write a filter that allows all classifications where
FWP_CONDITION_FLAG_IS_FRAGMENT is set.

3. Perform whatever processing is needed on the reassembled packet.

Alternatively, the callout can inspect packets at the transport layer.

Transport Layer and ALE
To be able to coexist with IPsec processing, callouts that inspect packets at the incoming
transport layer must also register at the ALE receive and accept layer. Such a callout can
inspect/modify most of the traffic at the transport layer, but it must also permit packets
that are assigned to the ALE receive/accept layer. Such a callout must also inspect or
modify the packets from the ALE layer. WFP sets the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_packet_injection_state_

FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED metadata flag when it indicates to
the transport layer those packets that require ALE inspection. IPsec processing is
deferred until those packets that create the initial "connection" and those that are
required to re-authorize the connection reach the ALE layer.

Transport layer and ALE layer callouts must register themselves at a sublayer that is of
lower weight than the universal sublayer. The built-in IPsec/ALE enforcement callouts
reside at the universal sublayer.

The following table shows packet types that can be indicated at ALE layers. Be aware
that some ALE layers do not always have a packet associated with their indication.

ALE layer TCP packets UDP packets

Bind (resource assignment) not applicable not applicable

Connect no packet first UDP packet (outgoing)

Receive/Accept SYN (incoming) first UDP packet (incoming)

Flow Established final ACK (incoming &
outgoing)

first UDP packet (incoming &
outgoing)

Packet Indication Format
Article • 12/15/2021

Network data is indicated in WFP as NDIS net buffer lists (NET_BUFFER_LIST). The Next
member of the NET_BUFFER_LIST structure can be used to describe a chain of net buffer
lists. WFP only indicates a single net buffer list to callouts (that is, netBufferList->Next
== NULL), except for the following cases:

WFP can indicate net buffer list chains to callouts from the Stream layer.

WFP indicates net buffer list chains to callouts when it classifies IP packet fragment
groups in the forward path to callouts. Each net buffer list inside the chain
describes a single fragment.

Although a net buffer list can describe a whole packet, for different types of layers, WFP
indicates net buffer lists to callouts at different offsets from the beginning of IP header.
For example, at the incoming network layer, the net buffer list starts after the IP header,
while at the incoming transport layer, the net buffer list starts after the transport header.
IP and transport headers are always described by the first NET_BUFFER structure inside
a net buffer list.

Offsets into the net buffer lists are indicated to callouts by using the ipHeaderSize and
transportHeaderSize members of the FWPS_INCOMING_METADATA_VALUES0
structure. Callouts can use the NDIS functions NdisRetreatNetBufferDataStart and
NdisAdvanceNetBufferDataStart to adjust the offset of the indicated net buffer lists.
However in this case, the callout must undo the offset adjustment before it returns from
the classifyFn function.

In a call to the classifyFn function for outgoing data, a NET_BUFFER_LIST can contain
more than one NET_BUFFER structure, each of which describes an IP packet. If some
packets (for example, net buffers) in a net buffer list are acceptable, but others are not, a
callout driver must do the following:

1. Clone and block the whole net buffer list.

2. Build a new net buffer list that describes the acceptable subset of net buffers.

3. Inject the new net buffer list back into the send path.

Alternatively, the callout can unlink the unwanted net buffers from the net buffer list and
inject the altered net buffer list back into the send path. However, in this case the callout
driver must undo this modification to the cloned net buffer list before it calls the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_incoming_metadata_values0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisretreatnetbufferdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblapi/nf-nblapi-ndisadvancenetbufferdatastart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

FwpsFreeCloneNetBufferList0 function. The callout driver must also save the original
net buffer linkage information as part of its state data.

For more information about data offsets that are used by WFP, see Data Offset
Positions.

Note Callouts that work with decrypted IPSec ESP packets must use the data length of
the NET_BUFFER structure instead of MDL data to determine the packet length. To
obtain the data length, use the NET_BUFFER_DATA_LENGTH macro. For more
information, see Developing IPsec-Compatible Callout Drivers.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsfreeclonenetbufferlist0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_data_length

Types of Callouts
Article • 12/15/2021

The following types of callouts can be used with WFP:

Inline Inspection Callout
This type of callout always returns FWP_ACTION_CONTINUE from the classifyFn
function and does not modify the network traffic in any way. A callout that collects
network statistics is an example of this type of callout.

For this type of callout, the filter action type (specified by the Type member of the
FWPS_ACTION0 structure) should be set to FWP_ACTION_CALLOUT_INSPECTION.

Out-of-band Inspection Callout
This type of callout does not modify network traffic. Instead, it defers any inspection to
be done outside the classifyFn function by "pending" the indicated data and then
reinjecting the pended data back into the TCP/IP stack with one of the packet injection
functions. Pending is implemented by first cloning the indicated data, followed by
returning FWP_ACTION_BLOCK from the classifyFn function that has the
FWPS_CLASSIFY_OUT_FLAG_ABSORB bit set.

Inline Modification Callout
This type of callout modifies network traffic by first making a clone of the indicated data,
then modifying the clone, and finally injecting the modified clone back into the TCP/IP
stack from the classifyFn function. This type of callout also returns FWP_ACTION_BLOCK
from the classifyFn function that has the FWPS_CLASSIFY_OUT_FLAG_ABSORB bit set.

The filter action type for this type of callout should be set to
FWP_ACTION_CALLOUT_TERMINATING.

Out-of-band Modification Callout
This type of callout first references the indicated packet by using the
FwpsReferenceNetBufferList0 function that has the intentToModify parameter set to
TRUE. The callout then returns FWP_ACTION_BLOCK with the
FWPS_CLASSIFY_OUT_FLAG_ABSORB bit set from the classifyFn function. When the
packet is ready to be modified outside classifyFn, the callout clones the referenced
packet (as soon as it is cloned, the original packet can then be dereferenced). The
callout then modifies the clone and injects the modified packet back into the TCP/IP
stack.

The filter action type for this type of callout should be set to
FWP_ACTION_CALLOUT_TERMINATING.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_action0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreferencenetbufferlist0

Redirection Callout
For more information about this type of callout, see Using Bind or Connect Redirection.

There are two types of redirection callouts:

A bind redirection callout allows the callout driver to modify the local address and
local port of a socket.
A connect redirection callout allows the callout driver to modify the remote
address and remote port of a connection.

The filter action type for this type of callout should be set to FWP_ACTION_PERMIT.

For more information about FWPS_CLASSIFY_OUT_FLAG_ABSORB, see
FWPS_CLASSIFY_OUT0. This flag is not valid at any WFP discard layer. Returning
FWP_ACTION_BLOCK with the FWPS_CLASSIFY_OUT_FLAG_ABSORB flag set from the
classifyFn function causes the packet to be silently discarded, in such a way that the
packet will not hit any of the WFP discard layers, nor will it cause audit events to be
generated.

Although cloned net buffer lists can be modified, for example, by adding or removing
net buffers or MDLs, or both, callouts must undo such modifications before they call the
FwpsFreeCloneNetBufferList0 function.

To coexist with other callouts that perform packet inspection, packet modification, or
connection redirection, before a packet is pended with the reference/clone-drop-
reinject mechanism, a callout must "hard"-drop the original packet by clearing the
FWPS_RIGHT_ACTION_WRITE flag in the rights member of the FWPS_CLASSIFY_OUT0
structure returned by the classifyFn function. If the FWPS_RIGHT_ACTION_WRITE flag is
set when classifyFn is called (which means that the packet could be pended and later
reinjected or modified), the callout must not pend the indication and should not change
the current action type; and it must wait for a higher-weight callout to inject the clone
that might be modified.

The FWPS_RIGHT_ACTION_WRITE flag should be set whenever a callout pends a
classification. Your callout driver should test for the FWPS_RIGHT_ACTION_WRITE flag
to check the rights for your callout to return an action. If this flag is not set, your callout
can still return a FWP_ACTION_BLOCK action in order to veto a FWP_ACTION_PERMIT
action that was returned by a previous callout. In the example shown in Using a Callout
for Deep Inspection, the function just exits if the flag is not set.

The FwpsPendOperation0 function is used to pend packets that originate from the
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_XXX,

https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_classify_out0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsfreeclonenetbufferlist0
https://learn.microsoft.com/en-us/windows/win32/api/fwpstypes/ns-fwpstypes-fwps_classify_out0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendoperation0

FWPM_LAYER_ALE_AUTH_LISTEN_XXX, or FWPM_LAYER_ALE_AUTH_CONNECT_XXX
management filtering layers.

The FwpsPendClassify0 function is used to pend packets that originate from the
following run-time filtering layers:

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4 FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6
FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 FWPS_LAYER_ALE_CONNECT_REDIRECT_V6
FWPS_LAYER_ALE_BIND_REDIRECT_V4 FWPS_LAYER_ALE_BIND_REDIRECT_V6

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendclassify0

Packet Injection Functions
Article • 12/15/2021

A callout driver can call the following WFP functions to inject pended or modified packet
data into the TCP/IP stack. The applicable layers from which data can be injected,
together with possible destinations, are listed in the following table.

Injection function Applicable layer Destination

FwpsInjectForwardAsync0 network layer the forwarding data path

FwpsInjectNetworkReceiveAsync0 network layer the receive data path

FwpsInjectNetworkSendAsync0 network layer the send data path

FwpsInjectTransportReceiveAsync0 packet data from the
transport, datagram data,
ICMP error, or ALE layers

the receive data path

FwpsInjectTransportSendAsync0 packet data from the
transport, datagram data,
ICMP error, or ALE layers

the send data path

FwpsStreamInjectAsync0 TCP data segments a data stream

In addition, the FwpsQueryPacketInjectionState0 function is used to inspect the
injection history of packet data.

Cross-layer injection is enabled if the callout can supply all needed information that is
required by the injection function, and the net buffer list has the format expected by the
injection function. For example, a callout can capture a packet at the forward path,
modify its destination address to that of the local computer, and call
FwpsInjectTransportReceiveAsync0 to redirect the packet into the local computer's
TCP/IP stack.

Except for the stream (TCP data) injection, injected incoming packets reenter from the
"bottom" of the stack and WFP layers, while injected outgoing packets reenter from the
"top" of the stack and WFP layers. For example, a UDP packet injected from the
incoming datagram data layer will reenter the stack and traverse the network layer, the
transport layer, the ALE receive or accept layer (optional), and back into the datagram
data layer. Another UDP packet injected from the outgoing network layer will reenter
the stack and traverse the ALE (optional), datagram data, and transport layers, and back
to the network layer.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectforwardasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectnetworkreceiveasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectnetworksendasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjecttransportreceiveasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjecttransportsendasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreaminjectasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsquerypacketinjectionstate0

FwpsInjectTransportReceiveAsync0 automatically bypasses IPsec processing for the
reinjected packet because it had previously gone through IPsec verification.

A packet injected by a WFP callout driver will be re-indicated to the callout except in the
cases in which modification to the packet causes it to miss the original filter conditions.
WFP provides the FwpsQueryPacketInjectionState0 function for callouts to query
whether the packet was injected (or injected earlier) by the callout. To prevent infinite
looping, callouts should permit self-injected packets.

Callouts must adjust the IP or transport layer checksum, or both, after they modify an IP
packet. A callout can set the checksum to 0 for UDP over IPv4 packets. To be compatible
with transport layer checksum offload, and to adjust the full checksum versus pseudo
checksum calculations accordingly, a callout can use the following logic:

C++

If ChecksumInfo.Transmit.NdisPacketTcpChecksum is TRUE, the TCP send operation will
be offloaded. If ChecksumInfo.Transmit.NdisPacketUdpChecksum is TRUE, the UDP send
operation will be offloaded.

In Windows Vista with Service Pack 1 (SP1) and Windows Server 2008, if inMetaValues-
>headerIncludeHeaderLength is greater than 0, the outgoing packet is a RAW send
reinjection that includes an IP header. To perform RAW send reinjections that include an
IP header for Windows Vista with SP1 and Windows Server 2008, you must retreat the
cloned packet by the amount in inMetaValues->headerIncludeHeaderLength and copy
the inMetaValues->headerIncludeHeader over the newly extended space. Then, use
FwpsInjectTransportSendAsync0 with the net buffer list for the packet and leave the
FWPS_TRANSPORT_SEND_PARAMS0 parameter set to NULL. For more information
about retreat operations for net buffer lists, see Retreat and Advance Operations.

Note For raw send operations, the net buffer list must contain only a single net buffer. If
your net buffer list contains more than one net buffer, you have to convert your net
buffer list to a series of net buffer lists, and each in the series must contain a single net
buffer. For more information about net buffer list management, see NET_BUFFER
Architecture.

NDIS_TCP_IP_CHECKSUM_PACKET_INFO ChecksumInfo;
 ChecksumInfo.Value =
 (ULONG) (ULONG_PTR)NET_BUFFER_LIST_INFO(
 NetBufferList,TcpIpChecksumNetBufferListInfo);

Packet Modification Examples
Article • 05/09/2022

The following example code shows how to modify and inspect packets with WFP.

C++

Inline packet Modification from Outgoing Transport
Layers

HANDLE gInjectionHandle;

void
NTAPI
InjectionCompletionFn(
 IN void* context,
 IN OUT NET_BUFFER_LIST* netBufferList,
 IN BOOLEAN dispatchLevel
)
{
 FWPS_TRANSPORT_SEND_PARAMS0* tlSendArgs
 = (FWPS_TRANSPORT_SEND_PARAMS0*)context;

 //
 // TODO: Free tlSendArgs and embedded allocations.
 //

 //
 // TODO: Check netBufferList->Status for injection result
 //

 FwpsFreeCloneNetBufferList0(netBufferList, 0);
}

void
NTAPI
WfpTransportSendClassify(
 IN const FWPS_INCOMING_VALUES0* inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
 IN OUT void* layerData,
 IN const FWPS_FILTER0* filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT0* classifyOut
)
{
 NTSTATUS status;

 NET_BUFFER_LIST* netBufferList = (NET_BUFFER_LIST*)layerData;
 NET_BUFFER_LIST* clonedNetBufferList = NULL;
 FWPS_PACKET_INJECTION_STATE injectionState;

 FWPS_TRANSPORT_SEND_PARAMS0* tlSendArgs = NULL;
 ADDRESS_FAMILY af = AF_UNSPEC;

 injectionState = FwpsQueryPacketInjectionState0(
 gInjectionHandle,
 netBufferList,
 NULL);
 if (injectionState == FWPS_PACKET_INJECTED_BY_SELF ||
 injectionState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF)
 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
 }

 if (!(classifyOut->rights & FWPS_RIGHT_ACTION_WRITE))
 {
 //
 // Cannot alter the action.
 //
 goto Exit;
 }

 //
 // TODO: Allocate and populate tlSendArgs by using information from
 // inFixedValues and inMetaValues.
 // Note: 1) Remote address and controlData (if not NULL) must
 // be deep-copied.
 // 2) IPv4 address must be converted to network order.
 // 3) Handle allocation errors.

 ASSERT(tlSendArgs != NULL);

 status = FwpsAllocateCloneNetBufferList0(
 netBufferList,
 NULL,
 NULL,
 0,
 &clonedNetBufferList);

 if (!NT_SUCCESS(status))
 {
 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 goto Exit;
 }

 //
 // TODO: Perform modification to the cloned net buffer list here.
 //

 //
 // TODO: Set af based on inFixedValues->layerId.
 //
 ASSERT(af == AF_INET || af == AF_INET6);

 //
 // Note: For TCP traffic, FwpsInjectTransportReceiveAsync0 and
 // FwpsInjectTransportSendAsync0 must be queued and run by a DPC.
 //

 status = FwpsInjectTransportSendAsync0(
 gInjectionHandle,
 NULL,
 inMetaValues->transportEndpointHandle,
 0,
 tlSendArgs,
 af,
 inMetaValues->compartmentId,
 clonedNetBufferList,
 InjectionCompletionFn,
 tlSendArgs);

 if (!NT_SUCCESS(status))
 {
 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 goto Exit;
 }

 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
 classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;

 //
 // Ownership of clonedNetBufferList and tlSendArgs
 // now transferred to InjectionCompletionFn.
 //
 clonedNetBufferList = NULL;
 tlSendArgs = NULL;

Exit:

 if (clonedNetBufferList != NULL)
 {
 FwpsFreeCloneNetBufferList0(clonedNetBufferList, 0);
 }
 if (tlSendArgs != NULL)
 {
 //
 // TODO: Free tlSendArgs and embedded allocations.
 //
 }

 return;
}

C++

Out-of-band Packet Modification from Incoming
Datagram Data Layers

typedef struct DD_RECV_CLASSIFY_INFO_ {
 NET_BUFFER_LIST* netBufferList;
 UINT32 nblOffset;
 UINT32 ipHeaderSize;
 UINT32 transportHeaderSize;
 ADDRESS_FAMILY af;
 COMPARTMENT_ID compartmentId;
 IF_INDEX interfaceIndex;
 IF_INDEX subInterfaceIndex;
}DD_RECV_CLASSIFY_INFO;

HANDLE gInjectionHandle;

void
NTAPI
InjectionCompletionFn(
 IN void* context,
 IN OUT NET_BUFFER_LIST* netBufferList,
 IN BOOLEAN dispatchLevel
)
{
 DD_RECV_CLASSIFY_INFO* classifyInfo
 = (DD_RECV_CLASSIFY_INFO*)context;

 //
 // TODO: Remove from queue and free classifyInfo.
 //

 //
 // TODO: Check netBufferList->Status for injection result.
 //

 FwpsFreeCloneNetBufferList0(netBufferList, 0);
}

void
DatagramDataReceiveWorker(
 DD_RECV_CLASSIFY_INFO* classifyInfo
 // ... and other parameters
)
//
// To prevent WFP from making a deep clone (deep-copying MDLs,
// net buffers, net buffer lists, structures, and data mapped by MDLs,
// DatagramDataReceiveWorker should be run by a DPC targeting the
// processor to which the referenced net buffer list was first
// classified. See KeSetTargetProcessorDpc for DPC targeting.
//
{

 NTSTATUS status;
 NET_BUFFER_LIST* clonedNetBufferList;
 ULONG nblOffset =
 NET_BUFFER_DATA_OFFSET(NET_BUFFER_LIST_FIRST_NB(classifyInfo-
>netBufferList));

 //
 // The TCP/IP stack could have retreated the net buffer list by the
 // transportHeaderSize amount; detect the condition here to avoid
 // retreating two times.
 //
 if (nblOffset != classifyInfo->nblOffset)
 {
 ASSERT(classifyInfo->nblOffset - nblOffset == classifyInfo-
>transportHeaderSize);

 classifyInfo->transportHeaderSize = 0;
 }

 //
 // Adjust the net buffer list offset to start by using the IP header.
 //
 NdisRetreatNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(classifyInfo->netBufferList),
 classifyInfo->ipHeaderSize + classifyInfo->transportHeaderSize,
 0,
 NULL
);

 status = FwpsAllocateCloneNetBufferList0(
 classifyInfo->netBufferList,
 NULL,
 NULL,
 0,
 &clonedNetBufferList);

 if (!NT_SUCCESS(status))
 {
 // TODO: Handle error condition.
 goto Exit;
 }

 //
 // Undo the adjustment on the original net buffer list.
 //

 NdisAdvanceNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(classifyInfo->netBufferList),
 classifyInfo->ipHeaderSize + classifyInfo->transportHeaderSize,
 FALSE,
 NULL);

 //
 // Because the clone references the original net buffer list,
 // undo the reference that was claimed during classifyFn.

 //
 FwpsDereferenceNetBufferList0(
 classifyInfo->netBufferList,
 FALSE);
 classifyInfo->netBufferList = NULL;

 //
 // TODO: Modify the cloned net buffer list here.
 // Note: 1) The next protocol field of the IP header could be
 // AH/ESP, in which case the IP header must be rebuilt (and
 // the AH/ESP header removed).
 // 2) The callout must re-calculate the IP checksum.
 //

 status = FwpsInjectTransportReceiveAsync0(
 gInjectionHandle,
 NULL,
 NULL,
 0,
 classifyInfo->af,
 classifyInfo->compartmentId,
 classifyInfo->interfaceIndex,
 classifyInfo->subInterfaceIndex,
 clonedNetBufferList,
 InjectionCompletionFn,
 classifyInfo);

 if (!NT_SUCCESS(status))
 {
 // TODO: Handle error condition.
 goto Exit;
 }

 //
 // Ownership of clonedNetBufferList and classifyInfo is
 // now transferred to InjectionCompletionFn.
 //
 clonedNetBufferList = NULL;
 classifyInfo = NULL;

Exit:

 if (clonedNetBufferList != NULL)
 {
 FwpsFreeCloneNetBufferList0(clonedNetBufferList, 0);
 }
 if (classifyInfo->netBufferList != NULL)
 {
 FwpsDereferenceNetBufferList0(
 classifyInfo->netBufferList,
 FALSE);
 }

 // TODO: Free other resources on error.
}

void
NTAPI
WfpDatagramDataReceiveClassify(
 IN const FWPS_INCOMING_VALUES0* inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
 IN OUT void* layerData,
 IN const FWPS_FILTER0* filter,
 IN UINT64 flowContext,
 OUT FWPS_CLASSIFY_OUT0* classifyOut
)
{
 NTSTATUS status;

 NET_BUFFER_LIST* netBufferList = (NET_BUFFER_LIST*)layerData;
 FWPS_PACKET_INJECTION_STATE injectionState;
 DD_RECV_CLASSIFY_INFO* classifyInfo = NULL;

 injectionState = FwpsQueryPacketInjectionState0(
 gInjectionHandle,
 netBufferList,
 NULL);
 if (injectionState == FWPS_PACKET_INJECTED_BY_SELF ||
 injectionState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF)
 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
 }

 if (!(classifyOut->rights & FWPS_RIGHT_ACTION_WRITE))
 {
 //
 // Cannot alter the action.
 //
 goto Exit;
 }

 //
 // TODO: Allocate and populate classifyInfo by using information
 // from inFixedValues and inMetaValues.
 //

 classifyInfo->nblOffset =
 NET_BUFFER_DATA_OFFSET(NET_BUFFER_LIST_FIRST_NB(netBufferList));

 ASSERT(classifyInfo != NULL);
 ASSERT(classifyInfo->netBufferList != NULL);

 FwpsReferenceNetBufferList0(
 classifyInfo->netBufferList,
 TRUE // intendToModify
);

 //
 // TODO: Queue classifyInfo for out-of-band processing.

The following is example code for an inspection procedure that views packet data
without changing it.

C++

 //

 classifyInfo = NULL; // Ownership transferred on success.

 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
 classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;

Exit:

 if (classifyInfo)
 {
 // TODO: Free object here.
 }

 return;
}

Non-intrusive Out-of-band Inspection from Incoming
Transport Layer and ALE Receive/Accept Layers

typedef struct TL_ALE_RECV_CLASSIFY_INFO_ {
 BOOLEAN aleInfo; // TRUE if information is gathered from Ale
receive/accept layer
 // FALSE if information is gathered from incoming
transport layer

 NET_BUFFER_LIST* netBufferList;
 ADDRESS_FAMILY af;
 COMPARTMENT_ID compartmentId;
 IF_INDEX interfaceIndex;
 IF_INDEX subInterfaceIndex;

 HANDLE aleCompletionCtx;

}TL_ALE_RECV_CLASSIFY_INFO;

HANDLE gInjectionHandle;

void
NTAPI
InjectionCompletionFn(
 IN void* context,
 IN OUT NET_BUFFER_LIST* netBufferList,
 IN BOOLEAN dispatchLevel
)

{
 TL_ALE_RECV_CLASSIFY_INFO* classifyInfo =
(TL_ALE_RECV_CLASSIFY_INFO*)context;

 //
 // TODO: Remove from queue and free classifyInfo.
 //

 //
 // TODO: Check netBufferList->Status for injection result.
 //

 FwpsFreeCloneNetBufferList0(netBufferList, 0);
}

void
TlAleReceiveWorker(
 TL_ALE_RECV_CLASSIFY_INFO* classifyInfo
 // ... and other parameters
)
{
 NTSTATUS status;

 if (classifyInfo->aleInfo)
 {
 FwpsCompleteOperation0(
 classifyInfo->aleCompletionCtx,
 classifyInfo->netBufferList);
 }

 status = FwpsInjectTransportReceiveAsync0(
 gInjectionHandle,
 NULL,
 NULL,
 0,
 classifyInfo->af,
 classifyInfo->compartmentId,
 classifyInfo->interfaceIndex,
 classifyInfo->subInterfaceIndex,
 classifyInfo->netBufferList,
 InjectionCompletionFn,
 classifyInfo);

 if (!NT_SUCCESS(status))
 {
 // TODO: Handle error condition.
 goto Exit;
 }

 //
 // Ownership of classifyInfo now transferred to InjectionCompletionFn.
 //
 classifyInfo = NULL;

Exit:

 if (classifyInfo != NULL)
 {
 FwpsFreeCloneNetBufferList0(classifyInfo->netBufferList, 0);

 // TODO: Remove from queue and free classifyInfo.
 }

 // TODO: Free other resources on error.
}

void
NTAPI
WfpAleReceiveClassify(
 IN const FWPS_INCOMING_VALUES0* inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
 IN OUT void* layerData,
 IN const FWPS_FILTER0* filter,
 IN UINT64 flowContext,
 OUT FWPS_CLASSIFY_OUT0* classifyOut
)
{
 NTSTATUS status;

 NET_BUFFER_LIST* netBufferList = (NET_BUFFER_LIST*)layerData;
 NET_BUFFER_LIST* clonedNetBufferList = NULL;
 FWPS_PACKET_INJECTION_STATE injectionState;
 TL_ALE_RECV_CLASSIFY_INFO* classifyInfo = NULL;

 injectionState = FwpsQueryPacketInjectionState0(
 gInjectionHandle,
 netBufferList,
 NULL);
 if (injectionState == FWPS_PACKET_INJECTED_BY_SELF ||
 injectionState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF)
 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
 }

 if (!(classifyOut->rights & FWPS_RIGHT_ACTION_WRITE))
 {
 //
 // Cannot alter the action.
 //
 goto Exit;
 }
 //
 // Adjust the net buffer list offset so that it starts with the IP
header.
 //
 NdisRetreatNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(netBufferList),
 inMetaValues->ipHeaderSize + inMetaValues->transportHeaderSize,
 0,

 NULL
);

 status = FwpsAllocateCloneNetBufferList0(
 netBufferList,
 NULL,
 NULL,
 0,
 &clonedNetBufferList);

 if (!NT_SUCCESS(status))
 {
 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 goto Exit;
 }

 //
 // Undo the adjustment on the original net buffer list.
 //

 NdisAdvanceNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(netBufferList),
 inMetaValues->ipHeaderSize + inMetaValues->transportHeaderSize,
 FALSE,
 NULL);

 //
 // Note: 1) The next protocol field of the IP header in the clone net
 // buffer list could be AH/ESP, in which case the IP header must be
 // rebuilt (and AH/ESP header removed).
 // 2) The callout must re-calculate the IP checksum.

 //
 // TODO: Allocate and populate classifyInfo by using information from
 // inFixedValues and inMetaValues.
 //

 ASSERT(classifyInfo != NULL);

 classifyInfo->aleInfo = TRUE;

 classifyInfo->netBufferList = clonedNetBufferList;
 clonedNetBufferList = NULL; // Ownership transferred.

 status = FwpsPendOperation0(
 inMetaValues->completionHandle,
 &classifyInfo->aleCompletionCtx);

 if (!NT_SUCCESS(status))
 {
 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 goto Exit;
 }

 //
 // TODO: Queue classifyInfo for out-of-band processing.
 //

 classifyInfo = NULL; // Ownership transferred on success.

 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
 classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;

Exit:

 if (clonedNetBufferList != NULL)
 {
 FwpsFreeCloneNetBufferList0(clonedNetBufferList, 0);
 }
 if (classifyInfo)
 {
 if (classifyInfo->netBufferList)
 {
 FwpsFreeCloneNetBufferList0(classifyInfo->netBufferList, 0);
 }
 // TODO: Free object here.
 }

 return;
}

void
NTAPI
WfpTransportReceiveClassify(
 IN const FWPS_INCOMING_VALUES0* inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0* inMetaValues,
 IN OUT void* layerData,
 IN const FWPS_FILTER0* filter,
 IN UINT64 flowContext,
 OUT FWPS_CLASSIFY_OUT0* classifyOut
)
{
 NTSTATUS status;

 NET_BUFFER_LIST* netBufferList = (NET_BUFFER_LIST*)layerData;
 NET_BUFFER_LIST* clonedNetBufferList = NULL;
 FWPS_PACKET_INJECTION_STATE injectionState;
 TL_ALE_RECV_CLASSIFY_INFO* classifyInfo = NULL;

 injectionState = FwpsQueryPacketInjectionState0(
 gInjectionHandle,
 netBufferList,
 NULL);
 if (injectionState == FWPS_PACKET_INJECTED_BY_SELF ||
 injectionState == FWPS_PACKET_PREVIOUSLY_INJECTED_BY_SELF)

 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
 }

 if (!(classifyOut->rights & FWPS_RIGHT_ACTION_WRITE))
 {
 //
 // Cannot alter the action.
 //
 goto Exit;
 }

 //
 // Let go of the packet if it requires ALE classify; the packet can
 // be inspected from the ALE receive/accept layer. Alternatively,
 // the callout can use the combination of
 // FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY and
 // FWP_MATCH_FLAGS_NONE_SET when you set up
 // filter conditions for the incoming transport layer.
 //
 // Beginning with Windows Vista SP1 and Windows Server 2008,
 // do not use FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY.
 // Use FWPS_IS_METADATA_FIELD_PRESENT macro to check for
 // metadata fields.
 //
#if (NTDDI_VERSION >= NTDDI_WIN6SP1)
 if (FWPS_IS_METADATA_FIELD_PRESENT(inMetaValues,

FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED))
#else
 if ((inFixedValues->layerId == FWPS_LAYER_INBOUND_TRANSPORT_V4 &&
 (inFixedValues-
>incomingValue[FWPS_FIELD_INBOUND_TRANSPORT_V4_FLAGS].value.uint32 &
 FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY)) ||
 (inFixedValues->layerId == FWPS_LAYER_INBOUND_TRANSPORT_V6 &&
 (inFixedValues-
>incomingValue[FWPS_FIELD_INBOUND_TRANSPORT_V6_FLAGS].value.uint32 &
 FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY)))
#endif
 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
 }
 //
 // Adjust the net buffer list offset so that it starts with the IP
header.
 //
 NdisRetreatNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(netBufferList),
 inMetaValues->ipHeaderSize + inMetaValues->transportHeaderSize,
 0,
 NULL
);

 status = FwpsAllocateCloneNetBufferList0(
 netBufferList,
 NULL,
 NULL,
 0,
 &clonedNetBufferList);

 if (!NT_SUCCESS(status))
 {
 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

 goto Exit;
 }

 //
 // Undo the adjustment on the original net buffer list.
 //

 NdisAdvanceNetBufferDataStart(
 NET_BUFFER_LIST_FIRST_NB(netBufferList),
 inMetaValues->ipHeaderSize + inMetaValues->transportHeaderSize,
 FALSE,
 NULL);

 //
 // Notes: 1) The next protocol field of the IP header in the clone net
 // buffer list could be AH/ESP, in which case the IP header must be
 // rebuilt (and AH/ESP header removed).
 // 2) The callout must re-calculate the IP checksum.

 //
 // TODO: Allocate and populate classifyInfo by using information from
 // inFixedValues and inMetaValues.
 //

 ASSERT(classifyInfo != NULL);

 classifyInfo->aleInfo = FALSE;

 classifyInfo->netBufferList = clonedNetBufferList;
 clonedNetBufferList = NULL; // ownership transferred

 //
 // TODO: Queue classifyInfo for out-of-band processing.
 //

 classifyInfo = NULL; // Ownership transferred on success.

 classifyOut->actionType = FWP_ACTION_BLOCK;
 classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;
 classifyOut->flags |= FWPS_CLASSIFY_OUT_FLAG_ABSORB;

Exit:

classifyFn

Types of Callouts

 if (clonedNetBufferList != NULL)
 {
 FwpsFreeCloneNetBufferList0(clonedNetBufferList, 0);
 }
 if (classifyInfo)
 {
 if (classifyInfo->netBufferList)
 {
 FwpsFreeCloneNetBufferList0(classifyInfo->netBufferList, 0);
 }
 // TODO: Free object here.
 }

 return;
}

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Stream Inspection
Article • 10/26/2022

Inline stream modifiers can edit stream data by permitting or blocking a part of the
indicated data by setting the value of the countBytesEnforced member of the
FWPS_STREAM_CALLOUT_IO_PACKET0 structure as they return FWP_ACTION_PERMIT
or FWP_ACTION_BLOCK from the classifyFn callout function. They can also call the
FwpsStreamInjectAsync0 function to add new content to the stream. This content can
be new or can replace blocked data.

To replace a pattern found in the middle of an indicated segment (for example, n bytes
followed by a pattern of p bytes followed by m bytes), the callout would follow these
steps:

1. The callout's classifyFn function is called by using n + p + m bytes.

2. The callout returns FWP_ACTION_PERMIT with the countBytesEnforced member
set to n.

3. The callout's classifyFn function is called again with p + m bytes. WFP will call
classifyFn again if countBytesEnforced is less than the indicated amount.

4. From the classifyFn function, the callout calls the FwpsStreamInjectAsync0 function
to inject the replacement pattern p'. The callout then returns FWP_ACTION_BLOCK
with countBytesEnforced set to p.

5. The callout's classifyFn function is called again with m bytes.

6. The callout returns FWP_ACTION_PERMIT with countBytesEnforced set to m.

If the indicated data is insufficient for the callout to make an inspection decision, it can
set the streamAction member of the FWPS_STREAM_CALLOUT_IO_PACKET0 structure
to FWPS_STREAM_ACTION_NEED_MORE_DATA and set the countBytesRequired
member to the minimal amount WFP should accumulate before the data is indicated
again. When streamAction is set, the callout should return FWP_ACTION_NONE from
the classifyFn function.

WFP can accumulate up to 8 MB of stream data when
FWPS_STREAM_ACTION_NEED_MORE_DATA is set. WFP will set the
FWPS_CLASSIFY_OUT_FLAG_BUFFER_LIMIT_REACHED flag when it calls the callout's

Inline Stream Inspection

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreaminjectasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_

classifyFn function and the buffer space is exhausted. When the latter flag is set, the
callout must accept the indicated data in full. A callout must not return
FWPS_STREAM_ACTION_NEED_MORE_DATA when the
FWPS_CLASSIFY_OUT_FLAG_NO_MORE_DATA flag is set.

For the convenience of being able to scan a stream pattern from a flat buffer, WFP
provides the FwpsCopyStreamDataToBuffer0 utility function, which can copy indicated
stream data into a contiguous buffer.

For out-of-band inspection or modification, a stream callout would follow the similar
pattern as the packet inspection callout: it would first clone all indicated stream
segments for deferred processing, and then it would block those segments. The
inspected or modified data is later injected back into the data stream. When injecting
data out-of-band, the callout must return FWP_ACTION_BLOCK on all indicated
segments to guarantee integrity of the resulting stream. An out-of-band inspection
module must not arbitrarily inject a FIN (which indicates no more data from the sender)
into an outgoing data stream. If the module must drop the connection, its classifyFn
callout function must set the streamAction member of the
FWPS_STREAM_CALLOUT_IO_PACKET0 structure to
FWPS_STREAM_ACTION_DROP_CONNECTION.

Note It is a violation of contract for callouts to switch from out-of-band to inline, and
can cause unexpected behaviors. Ensure out-of-band callouts are meeting each of the
specified criteria.

Because stream data can be indicated as a NET_BUFFER_LIST chain, FWP provides the
FwpsCloneStreamData0 and FwpsDiscardClonedStreamData0 utility functions that
operate on net buffer list chains.

WFP also supports stream data throttling for the incoming direction. If a callout cannot
keep pace with the incoming data rate, it can return FWPS_STREAM_ACTION_DEFER to
"pause" the stream. The stream can then be "resumed" by calling the
FwpsStreamContinue0 function. Deferring a stream with this function causes the TCP/IP
stack to stop ACK-processing incoming data. This causes the TCP sliding window to
decrease toward 0.

For out-of-band stream inspection callouts, FwpsStreamContinue0 must not be called
while the FwpsStreamInjectAsync0 function is called.

Out-of-Band Stream Inspection

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscopystreamdatatobuffer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsclonestreamdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsdiscardclonedstreamdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreamcontinue0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreamcontinue0

Injected stream data will not be re-indicated to the callout, but it will be made available
to stream callouts from lower-weight sublayers.

The Windows Filtering Platform Stream Edit Sample in the Windows driver samples
repository on GitHub shows how to perform inline and out-of-band editing at the
stream layer.

Note Windows Server 2008 and later do not support removal of a stream filter during
the following processes:

The callout is performing out-of-band packet injection.

The callout is requesting more data by setting the streamAction member of the
FWPS_STREAM_CALLOUT_IO_PACKET0 structure to
FWPS_STREAM_ACTION_NEED_MORE_DATA.

The callout is deferring a stream by setting the streamAction member of the
FWPS_STREAM_CALLOUT_IO_PACKET0 structure to
FWPS_STREAM_ACTION_DEFER.

Windows 7 and later support dynamic stream inspections. A dynamic stream inspection
operates on an existing stream data flow, rather than creating and tearing down a new
one. A callout driver that can perform dynamic stream inspections should set the
FWP_CALLOUT_FLAG_ALLOW_MID_STREAM_INSPECTION flag in the Flags member of
the FWPS_CALLOUT1 or FWPS_CALLOUT2 structure.

To perform stream inspections only on connections that the driver is interested in, a
callout can set the FWP_CALLOUT_FLAG_CONDITIONAL_ON_FLOW flag in the Flags
member of the FWPS_CALLOUT0 structure. This callout will be ignored on all other
connections. Performance will be improved and the driver will not have to maintain
unnecessary state data.

The stream layer in WFP follows a strict waterfall model; that is, a callout in this layer will
be allowed to inspect a stream segment only if the previous callout (if any) explicitly

Dynamic Stream Inspection

Avoiding Unnecessary Inspections

Stream Layer Waterfall Model

https://go.microsoft.com/fwlink/p/?LinkId=617933
https://go.microsoft.com/fwlink/p/?LinkId=616507
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout1_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout2_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout0_

permitted it. If a callout blocks an indicated segment, that segment is permanently taken
out of the stream and no callouts will be allowed to inspect it.

Moreover:

1. Every non-inspect callout at the stream layer must explicitly assign a value to the
actionType member of the classifyOut parameter regardless of what value may
have been previously set in that parameter.

2. The FWPS_RIGHT_ACTION_WRITE flag in the rights member of the classifyOut
parameter has no significance in the WFP stream layer. Callouts at this layer should
not check for the presence of this flag. Callouts may process the indicated
layerData parameter regardless of the value of classifyOut->rights.

Modifying Stream Data
Article • 12/15/2021

When a callout processes data at the stream layer, its classifyFn callout function can
modify the data in the data stream. The callout's classifyFn callout function permits
acceptable data in the stream to pass through unaltered, blocks data in the stream that
is to be removed, and injects new or altered data into the stream when it is suitable.

A callout can replace data in the stream with other data by blocking the data that is to
be replaced, and, at the same time, injecting the new data into the stream. In this
situation, the new data is injected into the stream at the same point where the blocked
data is removed from the stream.

For a callout driver to inject data into a data stream, it must first create an injection
handle. This can be the same injection handle that is created for injecting modified
packet data back into the network stack. See Inspecting Packet and Stream Data for
information about how to create an injection handle.

For information about how to modify stream data, see the "Windows Filtering Platform
Stream Edit Sample" in the Hardware Samples code gallery.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://go.microsoft.com/fwlink/p/?LinkId=618052

Data Logging
Article • 12/15/2021

To determine what data should be logged, a callout's classifyFn callout function can
inspect any combination of the data fields, the metadata fields, and any raw data that is
passed to it, as well as any relevant data that has been stored in a context associated
with the filter or the data flow.

For example, if a callout keeps track of how many incoming (inbound) IPv4 packets are
discarded by a filter at the network layer, the callout is added to the filter engine at the
FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD layer. In this situation, the callout's
classifyFn callout function might resemble the following example:

C++

ULONG TotalDiscardCount = 0;
ULONG FilterDiscardCount = 0;

// classifyFn callout function
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT *classifyOut
)
{
 // Increment the total count of discarded packets
 InterlockedIncrement(&TotalDiscardCount);

 // Check whether a discard reason metadata field is present
 if (FWPS_IS_METADATA_FIELD_PRESENT(
 inMetaValues,
 FWPS_METADATA_FIELD_DISCARD_REASON))
 {
 // Check whether it is a general discard reason
 if (inMetaValues->discardMetadata.discardModule ==
 FWPS_DISCARD_MODULE_GENERAL)
 {
 // Check whether discarded by a filter
 if (inMetaValues->discardMetadata.discardReason ==
 FWPS_DISCARD_FIREWALL_POLICY)
 {
 // Increment the count of packets discarded by a filter
 InterlockedIncrement(&FilterDiscardCount);
 }

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

classifyFn

 }
 }

 // Take no action on the data
 classifyOut->actionType = FWP_ACTION_CONTINUE;
}

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Associating Context with a Data Flow
Article • 12/15/2021

For callouts that process data at a filtering layer that supports data flows, the callout
driver can associate a context with each data flow. Such a context is opaque to the filter
engine. The callout's classifyFn callout function can use this context to save state
information specific to the data flow for the next time that it is called by the filter engine
for that data flow. The filter engine passes this context to the callout's classifyFn callout
function through the flowContext parameter. If no context is associated with the data
flow, the flowContext parameter is zero.

To associate a context with a data flow, a callout's classifyFn callout function calls the
FwpsFlowAssociateContext0 function. For example:

C++

// Context structure to be associated with data flows
typedef struct FLOW_CONTEXT_ {
 .
 . // Driver-specific content
 .
} FLOW_CONTEXT, *PFLOW_CONTEXT;

#define FLOW_CONTEXT_POOL_TAG 'fcpt'

// classifyFn callout function
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 IN OUT FWPS_CLASSIFY_OUT *classifyOut
)
{
 PFLOW_CONTEXT context;
 UINT64 flowHandle;
 NTSTATUS status;

 ...

 // Check for the flow handle in the metadata
 if (FWPS_IS_METADATA_FIELD_PRESENT(
 inMetaValues,
 FWPS_METADATA_FIELD_FLOW_HANDLE))
 {
 // Get the flow handle
 flowHandle = inMetaValues->flowHandle;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowassociatecontext0

If a context is already associated with a data flow, it must first be removed before a new
context may be associated with the data flow. To remove a context from a data flow, a
callout's classifyFn callout function calls the FwpsFlowRemoveContext0 function. For
example:

C++

 // Allocate the flow context structure
 context =
 (PFLOW_CONTEXT)ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(FLOW_CONTEXT),
 FLOW_CONTEXT_POOL_TAG
);

 // Check the result of the memory allocation
 if (context == NULL)
 {

 // Handle memory allocation error
 ...
 }
 else
 {

 // Initialize the flow context structure
 ...

 // Associate the flow context structure with the data flow
 status = FwpsFlowAssociateContext0(
 flowHandle,
 FWPS_LAYER_STREAM_V4,
 calloutId,
 (UINT64)context
);

 // Check the result
 if (status != STATUS_SUCCESS)
 {
 // Handle error
 ...
 }
 }
 }

 ...

}

// Context structure to be associated with data flows
typedef struct FLOW_CONTEXT_ {

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowremovecontext0

 ...
} FLOW_CONTEXT, *PFLOW_CONTEXT;

#define FLOW_CONTEXT_POOL_TAG 'fcpt'

// classifyFn callout function
VOID NTAPI
 ClassifyFn(
 IN const FWPS_INCOMING_VALUES0 *inFixedValues,
 IN const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 IN OUT VOID *layerData,
 IN const FWPS_FILTER0 *filter,
 IN UINT64 flowContext,
 OUT FWPS_CLASSIFY_OUT *classifyOut
)
{
 PFLOW_CONTEXT context;
 UINT64 flowHandle;
 NTSTATUS status;

 ...

 // Check for the flow handle in the metadata
 if (FWPS_IS_METADATA_FIELD_PRESENT(
 inMetaValues,
 FWPS_METADATA_FIELD_FLOW_HANDLE))
 {
 // Get the flow handle
 flowHandle = inMetaValues->flowHandle;

 // Check whether there is a context associated with the data flow
 if (flowHandle != 0)
 {
 // Get a pointer to the flow context structure
 context = (PFLOW_CONTEXT)flowContext;

 // Remove the flow context structure from the data flow
 status = FwpsFlowRemoveContext0(
 flowHandle,
 FWPS_LAYER_STREAM_V4,
 calloutId
);

 // Check the result
 if (status != STATUS_SUCCESS)
 {
 // Handle error
 ...
 }

 // Cleanup the flow context structure
 ...

 // Free the memory for the flow context structure
 ExFreePoolWithTag(

In the previous examples, the calloutId variable contains the run-time identifier for the
callout. The run-time identifier is the same identifier that was returned to the callout
driver when the callout driver registered the callout with the filter engine.

 context,
 FLOW_CONTEXT_POOL_TAG
);
 }
 }

 ...

}

Processing Classify Callouts
Asynchronously
Article • 12/15/2021

A WFP callout driver can authorize or deny a network operation, or admit or discard a
network packet, by returning the action types FWP_ACTION_PERMIT,
FWP_ACTION_CONTINUE, or FWP_ACTION_BLOCK from the classifyFn callout function.
Frequently a callout driver cannot return an inspection decision from its classifyFn
function until the indicated information, such as classifiable fields, metadata, or packets,
can be forwarded for processing to another component, such as a user-mode
application. In these cases a decision may have to be made asynchronously at some
later time.

WFP supports asynchronous processing of the classifyFn callout function. However, the
mechanism for doing this differs according to the different layers.

Asynchronous ALE Classify
A callout driver must call the FwpsPendOperation0 function from classifyFn. The
asynchronous operation must be completed with a call to the
FwpsCompleteOperation0 function.

Asynchronous Packet Classify
A callout driver should return FWP_ACTION_BLOCK from the classifyFn function, with
the FWPS_CLASSIFY_OUT_FLAG_ABSORB flag set. Network packets must be referenced
or cloned. The asynchronous operation is completed by either reinjecting the cloned or
modified packet or by silently discarding the packet.

Asynchronous ALE Classify That Includes Packets
A combination of the previous two procedures is used: the classify operation is pended
and the packet is referenced or cloned, and at some time later the call to classifyFn is
completed and the cloned packet is reinjected or discarded.

ALE Connect vs. Receive/Accept Layers
When FwpsCompleteOperation0 is called to complete a pended classify operation at an
ALE connect layer (FWPS_LAYER_ALE_AUTH_CONNECT_V4 or
FWPS_LAYER_ALE_AUTH_CONNECT_V6), an ALE reauthorization classify operation is

General Rules for Asynchronous Processing

Special Cases and Considerations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendoperation0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscompleteoperation0

triggered at the respective ALE connect layer. The callout driver should return an
inspection decision from this reauthorization classify operation. You can detect an ALE
reauthorization classify operation by checking whether the
FWP_CONDITION_FLAG_IS_REAUTHORIZE flag is set.

The callout driver must maintain a unique state for each pended ALE_AUTH_CONNECT
classify operation in such a way that the inspection decision for each classify operation
can be looked up during a FwpsCompleteOperation0-triggered reauthorization. If
packets are referenced or cloned during a pended ALE_AUTH_CONNECT classify
operation (for example, for non-TCP connections), they can be reinjected after
reauthorization occurs.

When FwpsCompleteOperation0 is called during with a classify operation at an ALE
receive/accept layer (FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4 or
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6), FwpsCompleteOperation0 does not
trigger an ALE reauthorization. Instead a new call to classifyFn is made again when the
cloned packet is reinjected incoming if the modification was not significant enough to
bypass the filter. Permitting the self-injected clone from the ALE_RECV_ACCEPT layer
effectively authorizes the incoming connection. If the incoming connection is not to be
allowed, discard the incoming packet after it calls FwpsCompleteOperation0.

ALE Reauthorization
A callout driver can be reclassified at an ALE connect or receive/accept layer for events
such as a policy change (for example, adding or removing a filter at the layer), detecting
a new arrival interface, and re-keying a connection by using IPsec. Such a
reauthorization cannot be pended by calling FwpsCompleteOperation0, and it is not
necessary to do so. A callout driver should use the rules listed previously to process
packets that are indicated during reauthorization.

Be aware that both incoming and outgoing packet can be reauthorized at
ALE_AUTH_CONNECT or ALE_RECV_ACCEPT layers. For example, an incoming packet can
be reauthorized at the ALE_AUTH_CONNECT layer. A callout driver must not assume that
the direction of the packet is the same as the direction of the connection.

ALE_FLOW_ESTABLISHED Layers
Asynchronous processing is not supported at these layers
(FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4 or
FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6).

INBOUND_TRANSPORT Layers
A callout driver must not perform asynchronous processing of packets that require ALE
classify processing at an incoming (inbound) transport layer
(FWPS_LAYER_INBOUND_TRANSPORT_V4 or

FWPS_LAYER_INBOUND_TRANSPORT_V6). Doing this can interfere with flow creation.
When WFP calls the classifyFn callout function at an incoming transport layer, it sets the
FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED flag for those packets that require
ALE classify processing. A callout driver should permit such packets from an
INBOUND_TRANSPORT layer and should defer processing them until they reach an
ALE_RECV_ACCEPT layer.

STREAM Layers
At a stream layer (FWPS_LAYER_STREAM_V4 or FWPS_LAYER_STREAM_V6), TCP data
segments are indicated instead of an IP or TCP header. The stream layer is also where a
chain of net buffer lists can be indicated in one call to the classifyFn callout function.
WFP makes available specialized clone and injection functions, FwpsCloneStreamData0
and FwpsStreamInjectAsync0, for stream layer callouts to use.

Because of the ordered delivery nature of stream layer data, a callout driver must
continue to clone and absorb data as long any stream data is still pending. Mixing
asynchronous and synchronous operations for a given stream flow can result in
undefined behavior.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsclonestreamdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsstreaminjectasync0

Using Bind or Connect Redirection
Article • 09/27/2024

The connect/bind redirection feature of the Windows Filtering Platform (WFP) enables
application layer enforcement (ALE) callout drivers to inspect and, if desired, redirect
connections.

This feature is available in Windows 7 and later.

Note The ClassifyFunctions_ProxyCallouts.cpp module in the WFP driver sample
includes code that demonstrates connect/bind redirection.

A WFP connection redirection callout redirects an application's connection request so
that the application connects to a proxy service instead of the original destination. The
proxy service has two sockets: one for the redirected original connection and one for the
new proxied outbound connection.

A WFP redirect record is a buffer of opaque data that WFP must set on an outbound
proxy connection at the FWPM_LAYER_ALE_AUTH_CONNECT_REDIRECT_V4 and
FWPM_LAYER_ALE_AUTH_CONNECT_REDIRECT_V6 layers, so that the redirected
connection and the original connection are logically related.

Changing the local address and port of a flow is only supported in the bind-redirect
layer. This functionality isn't supported in the connect-redirect layer.

Callout drivers can preform redirection at the following layers, which are called "redirect
layers":

FWPM_LAYER_ALE_BIND_REDIRECT_V4 (FWPS_LAYER_ALE_BIND_REDIRECT_V4)

FWPM_LAYER_ALE_BIND_REDIRECT_V6 (FWPS_LAYER_ALE_BIND_REDIRECT_V6)

FWPM_LAYER_ALE_CONNECT_REDIRECT_V4
(FWPS_LAYER_ALE_CONNECT_REDIRECT_V4)

FWPM_LAYER_ALE_CONNECT_REDIRECT_V6
(FWPS_LAYER_ALE_CONNECT_REDIRECT_V6)

The layer at which redirection is performed determines the effect of the change.
Changes at connect layers affect only the flow being connected. Changes at bind layers
affect all connections that are using that socket.

Layers Used for Redirection

https://go.microsoft.com/fwlink/p/?LinkId=618934
https://go.microsoft.com/fwlink/p/?LinkId=618934

The redirect layers are only available for Windows 7 and later versions of Windows.
Callout drivers that support classification at these layers must register using
FwpsCalloutRegister1 or higher, not the older FwpsCalloutRegister0 function.

To redirect a connection, the callout driver must obtain a writable copy of the TCP 4-
tuple information, make changes to it as needed, and apply the changes. A set of new
functions are provided to obtain writable layer data and to apply it through the engine.
Callout drivers have the option of making changes either inline in their classifyFn
functions, or asynchronously in another function.

Callout drivers that implement redirection must use classifyFn1 or later instead of
classifyFn0 as their classification callout function. To use classifyFn1 or later, the callout
must be registered by calling FwpsCalloutRegister1 or later, not the older
FwpsCalloutRegister0.

To perform redirection inline a callout driver must perform the following steps in its
implementation of classifyFn:

1. Call FwpsRedirectHandleCreate0 to obtain a handle that can be used to redirect
TCP connections. This handle should be cached and used for all redirections. (This
step is omitted for Windows 7 and earlier.)

2. In Windows 8 and later, you must query the redirection state of the connection by
using the FwpsQueryConnectionRedirectState0 function in your callout driver.
This must be done to prevent infinite redirecting.

3. Call FwpsAcquireClassifyHandle0 to obtain a handle that will be used for
subsequent function calls.

） Important

 Redirection is not available for use with all types of network traffic. The types of
packets that are supported for redirection are shown in the following list:

TCP
UDP

Raw UDPv4 without the header include option

Raw ICMP

Performing Redirection

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutregister0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsqueryconnectionredirectstate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquireclassifyhandle0

4. Call FwpsAcquireWritableLayerDataPointer0 to get the writable data structure for
the layer in which classifyFn was called. Cast the writableLayerData out parameter
to the structure corresponding to the layer, either FWPS_BIND_REQUEST0 or
FWPS_CONNECT_REQUEST0.

Starting with Windows 8, if your callout driver is redirecting to a local service, you
must call FwpsRedirectHandleCreate0 to fill in the localRedirectHandle member
of the FWPS_CONNECT_REQUEST0 structure in order to make local proxying work.

5. Make changes to the layer data as needed:

a. Save the original destination in the local redirect context as shown in the
following example:

C++

b. Modify the remote address as shown in the following example:

C++

c. If your callout driver is redirecting to a local service, it should set the local proxy
PID in the localRedirectTargetPID member of the FWPS_CONNECT_REQUEST0

FWPS_CONNECT_REQUEST* connectRequest = redirectContext-
>connectRequest;
// Replace "..." with your own redirect context size
connectRequest->localRedirectContextSize = ...;
// Store original destination IP/Port information in the
localRedirectContext member
connectRequest->localRedirectContext = ExAllocatePoolWithTag(…);

// Ensure we don't need to worry about crossing any of the TCP/IP
stack's zones
if(INETADDR_ISANY((PSOCKADDR)&(connectRequest-
>localAddressAndPort)))
{
 INETADDR_SETLOOPBACK((PSOCKADDR)&(connectRequest-
>remoteAddressAndPort));
}
else
{
 INETADDR_SET_ADDRESS((PSOCKADDR)&(connectRequest-
>remoteAddressAndPort),
 INETADDR_ADDRESS((PSOCKADDR)&
(connectRequest->localAddressAndPort)));
}
INETADDR_SET_PORT((PSOCKADDR)&connectRequest->remoteAddressAndPort,
 RtlUshortByteSwap(params->proxyPort));

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_bind_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0

structure.

d. If your callout driver is redirecting to a local service, it should set the redirect
handle returned by FwpsRedirectHandleCreate0 in the localRedirectHandle
member of the FWPS_CONNECT_REQUEST0 structure.

6. Call FwpsApplyModifiedLayerData0 to apply the changes made to the data.

7. In your proxy service (which could be in user mode or kernel mode), you must
query redirect records and contexts as shown in the following example:

C++

8. In your proxy service (which could be in user mode or kernel mode), you must set
redirect records on the proxy connection socket as shown in the following example
to create a new outbound socket:

C++

9. Call FwpsReleaseClassifyHandle0 to release the classification handle obtained in
step 2.

10. Call FwpsRedirectHandleDestroy0 to destroy the handle that was obtained in step
1.

To perform redirection asynchronously a callout driver must perform the following steps:

BYTE* redirectRecords;
BYTE redirectContext[CONTEXT_SIZE];
listenSock = WSASocket(…);
result = bind(listenSock, …);
result = listen(listenSock, …);
clientSock = WSAAccept(listenSock, …);
// opaque data to be set on proxy connection
result = WSAIoctl(clientSock,
 SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS,
 redirectRecords, …);
// callout allocated data, contains original destination information
result = WSAIoctl(clientSock,
 SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT,
 redirectContext, …);
// extract original destination IP and port from above context

proxySock = WSASocket(…);
result = WSAIoctl(
 proxySock,
 SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS,
 redirectRecords, …);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsapplymodifiedlayerdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreleaseclassifyhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandledestroy0

1. Call FwpsRedirectHandleCreate0 to obtain a handle that can be used to redirect
TCP connections. (This step is omitted for Windows 7 and earlier.)

2. In Windows 8 and later, you must query the redirection state of the connection by
using the FwpsQueryConnectionRedirectState0 function in your callout driver.

3. Call FwpsAcquireClassifyHandle0 to obtain a handle that will be used for
subsequent function calls. This step and steps 2 and 3 are performed in the callout
driver's classifyFn callout function.

4. Call FwpsPendClassify0 to put the classification in a pending state as shown in the
following example:

C++

5. Send the classification handle and the writable layer data to another function for
asynchronous processing. The remaining steps are performed in that function, not
in the callout driver's implementation of classifyFn.

6. Call FwpsAcquireWritableLayerDataPointer0 to get the writable data structure for
the layer in which classifyFn was called. Cast the writableLayerData out parameter
to the structure corresponding to the layer, either FWPS_BIND_REQUEST0 or
FWPS_CONNECT_REQUEST0.

Starting with Windows 8, if your callout driver is redirecting locally, you must call
FwpsRedirectHandleCreate0 to fill in the localRedirectHandle member of the
FWPS_CONNECT_REQUEST0 structure in order to make proxying work.

7. Store any callout-specific context information in a private context structure as
shown in the following example:

FwpsPendClassify(
 redirectContext->classifyHandle,
 0,
 &redirectContext->classifyOut);
classifyOut->actionType = FWP_ACTION_BLOCK;
classifyOut->rights &= ~FWPS_RIGHT_ACTION_WRITE;

７ Note

If you are targeting Windows 7, you must perform the following steps in a separate
worker function. If you are targeting Windows 8 or later, you can perform all steps
for asynchronous redirection from within the classifyFn and ignore Step 5.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsqueryconnectionredirectstate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquireclassifyhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendclassify0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsacquirewritablelayerdatapointer0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_bind_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0

C++

8. Make changes to the layer data as needed.

9. Call FwpsApplyModifiedLayerData0 to apply the changes made to the data. Set
the FWPS_CLASSIFY_FLAG_REAUTHORIZE_IF_MODIFIED_BY_OTHERS flag if you
wish to be re-authorized in the event that another callout modifies the data
further.

10. Call FwpsCompleteClassify0 to complete the classify operation asynchronously as
shown in the following example:

C++

11. Call FwpsReleaseClassifyHandle0 to release the classification handle obtained in
step 1.

It's possible that more than one callout driver will initiate connect redirection for the
same flow. Callouts that perform connect redirection should be aware of other requests
and respond appropriately.

The FWPS_RIGHT_ACTION_WRITE flag should be set whenever a callout pends a
classification. Your callout should test for the FWPS_RIGHT_ACTION_WRITE flag to
check the rights for your callout to return an action. If this flag isn't set, your callout can
still return a FWP_ACTION_BLOCK action in order to veto a FWP_ACTION_PERMIT
action that was returned by a previous callout.

In Windows 8 and later, your callout driver must query the redirection state of the
connection (to see if your callout driver or another callout driver has modified it) by
using the FwpsQueryConnectionRedirectState0 function. If the connection is redirected
by your callout driver, or if it was previously redirected by your callout driver, the callout

redirectContext->classifyHandle = classifyHandle;
redirectContext->connectRequest = connectRequest;
redirectContext->classifyOut = *classifyOut; // deep copy
// store original destination IP, port

FwpsCompleteClassify(
 redirectContext->classifyHandle,
 0,
 &redirectContext->classifyOut);
classifyOut->actionType = FWP_ACTION_PERMIT;
classifyOut->rights |= FWPS_RIGHT_ACTION_WRITE;

Handling Connect Redirection from Multiple Callouts

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsapplymodifiedlayerdata0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscompleteclassify0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreleaseclassifyhandle0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsqueryconnectionredirectstate0

driver should do nothing. Otherwise, it should also check for local redirection as shown
in the following example:

C++

If the connection is to a local proxy, your callout driver shouldn't attempt to redirect it.

Callout drivers that use connect redirection should register at the ALE authorization
connect layer (FWPS_LAYER_ALE_AUTH_CONNECT_V4 or
FWPS_LAYER_ALE_AUTH_CONNECT_V6) and check the following two metadata values
for indications where the FWP_CONDITION_FLAG_IS_CONNECTION_REDIRECTED flag
is set:

FWPS_METADATA_FIELD_LOCAL_REDIRECT_TARGET_PID contains the process
identifier for the process that is responsible for the redirected flow.

FWPS_METADATA_FIELD_ORIGINAL_DESTINATION contains the address of the
original destination for the flow.

The FWPS_CONNECT_REQUEST0 structure contains a member called
localRedirectTargetPID. For any loopback connect redirection to be valid, this field must
be populated with the PID of the process that will be responsible for the redirected flow.
This is the same data that the engine passes at the ALE authorization connect layers as
FWPS_METADATA_FIELD_LOCAL_REDIRECT_TARGET_ID.

Starting with Windows 8, the proxy service needs to issue the
SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS and
SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT IOCTLs, using WSAIoctl, against
the original endpoint of the proxy service. Additionally, the
SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS IOCTL must be issued, using
WSAIoctl, on the new (proxied) socket.

FwpsAcquireWritableLayerDataPointer(...,(PVOID*)&connectRequest), ...);
if(connectRequest->previousVersion->modifierFilterId != filterId)
{
 if(connectRequest->previousVersion->localRedirectHandle)
 {
 classifyOut->actionType = FWP_ACTION_PERMIT;
 classifyOut->rights &= FWPS_RIGHT_ACTION_WRITE;
 FwpsApplyModifiedLayerData(
 classifyHandle,
 (PVOID)connectRequest,
 FWPS_CLASSIFY_FLAG_REAUTHORIZE_IF_MODIFIED_BY_OTHERS);
 }
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsaioctl

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

WFP Version-Independent Names and Targeting Specific Versions of Windows

Related topics

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows/desktop/FWP/wfp-version-independent-names-and-targeting-specific-versions-of-windows

ALE Endpoint Lifetime Management
Article • 12/15/2021

A callout driver that supports application layer enforcement (ALE) may need to allocate
resources to process indications. This topic describes how to configure a callout driver
to release such resources when the associated endpoint is closed. ALE endpoint lifetime
management is supported in Windows 7 and later versions of Windows.

To manage resources associated with ALE endpoints, a callout driver can register at the
following layers:

FWPS_LAYER_ALE_RESOURCE_RELEASE_V4
(FWPM_LAYER_ALE_RESOURCE_RELEASE_V4)

FWPS_LAYER_ALE_RESOURCE_RELEASE_V6
(FWPM_LAYER_ALE_RESOURCE_RELEASE_V6)

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4
(FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V4)

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6
(FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V6)

An ALE resource release layer is indicated for every indication at the corresponding ALE
resource assignment layer (for example,
FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4). To ensure that callout drivers can
match the release layer to the assignment layer, the
FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE metadata field is provided at
both layers and each endpoint is assigned a unique handle.

ALE endpoint closure layers are invoked differently depending on the type of endpoint.
For TCP connections, an ALE endpoint closure is indicated for every ALE authorize
connect layer (for example FWPS_LAYER_ALE_AUTH_CONNECT_V4) or ALE authorize
receive accept layer (for example FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4) indication.
As with ALE resource release indications, the engine assigns a unique handle for each
endpoint and passes it in the FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE
metadata field. For non-TCP endpoints, an ALE endpoint closure layer is invoked for
each endpoint regardless of the number of unique remote peers the socket
communicates with. An ALE endpoint closure layer is also invoked for each TCP listening
socket.

Callouts registered for an ALE endpoint closure layer can pend classification. This
enables the callout to reinject any packets queued for asynchronous processing before

the endpoint is shut down. To pend classification, the callout driver must call
FwpsPendClassify0 followed by a call to FwpsCompleteClassify0 when processing is
complete.

When applicable, the engine will indicate a unique handle for the parent endpoint in the
FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE metadata field. This enables the
callout driver to track parent/child relationships, if required.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpspendclassify0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscompleteclassify0

Processing Flow Delete Callouts
Article • 12/15/2021

When a data flow that is being processed by a callout is stopped, the filter engine calls
the callout's flowDeleteFn callout function if the callout driver previously associated a
context with the data flow. A callout's flowDeleteFn callout function performs any
necessary clean up of the context that the callout driver associated with the data flow
before the data flow is stopped.

For example:

C++

The filter engine automatically removes the context that a callout associated with a data
flow when the data flow is stopped. Therefore, a callout is not required to call the
FwpsFlowRemoveContext0 function from its flowDeleteFn callout function to remove
the context from the data flow.

// Context structure to be associated with data flows
typedef struct FLOW_CONTEXT_ {
 ...
} FLOW_CONTEXT, *PFLOW_CONTEXT;

#define FLOW_CONTEXT_POOL_TAG 'fcpt'

// flowDeleteFn callout function
VOID NTAPI
 FlowDeleteFn(
 IN UINT16 layerId,
 IN UINT32 calloutId,
 IN UINT64 flowContext
)
{
 PFLOW_CONTEXT context;

 // Get the flow context structure
 context = (PFLOW_CONTEXT)flowContext;

 // Cleanup the flow context structure
 ...

 // Free the memory for the flow context structure
 ExFreePoolWithTag(
 context,
 FLOW_CONTEXT_POOL_TAG
);
}

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_flow_delete_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsflowremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_flow_delete_notify_fn0

Using Packet Tagging
Article • 12/15/2021

A callout driver can tag packets of interest and receive notification of events that
happen to the tagged packets. Packet tagging is supported in Windows 7 and later
versions of Windows.

To use packet tagging, the callout driver must implement the
FWPS_NET_BUFFER_LIST_NOTIFY_FN0 or FWPS_NET_BUFFER_LIST_NOTIFY_FN1 callback
function. This function will receive all of the status notifications for the tagged packets.
Before individual packets can be tagged, the callout driver must obtain a special context
tag by calling FwpsNetBufferListGetTagForContext0. The callout driver can use the
same context tag for some or all of the tagged packets. For example, a callout driver
might differentiate between types of tagged packets by using different context tags.

To tag packets, the callout driver uses NET_BUFFER_LIST structures. The callout driver
makes calls to FwpsNetBufferListAssociateContext0 to tag individual NET_BUFFER_LIST
structures. The context the callout driver associates with the packet is an arbitrary
unsigned 64-bit value. When an event is triggered, the
FWPS_NET_BUFFER_LIST_NOTIFY_FN0 or FWPS_NET_BUFFER_LIST_NOTIFY_FN1 callback
passes the context as an input parameter so that the callout driver can identify
individual tagged packets. The context is not used or evaluated by the filtering engine. It
is only passed to the callback for use by the callout driver.

Contexts are removed from tagged packets automatically when the packets leave the
stack. However, if the packets never enter the TCP/IP stack — for example, in the case of
an NDIS filter driver — the contexts will need to be removed manually by calling
FwpsNetBufferListRemoveContext0 with the netBufferList parameter set to NULL.

If a callout needs to abort tagging operations early, contexts can be removed by calling
FwpsNetBufferListRemoveContext0. Removing a context generally triggers an
FWPS_NET_BUFFER_LIST_CONTEXT_REMOVED event. For more information about the
events that can be triggered, see the FWPS_NET_BUFFER_LIST_EVENT_TYPE0
enumeration. In some cases no event will be triggered, such as when the packet never
enters the TCP/IP stack for processing.

When a tagged packet is cloned, the callout driver can move or copy the context to the
clone packet. To move the context (in the case of a clone), the callout driver must call
FwpsNetBufferListRetrieveContext0 with the removeContext parameter set to TRUE.
Then the context can be associated with the new packet. The process for copying the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistgettagforcontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistassociatecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_net_buffer_list_event_type0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistretrievecontext0

context (in the case of a duplication) is the same except that the removeContext
parameter of FwpsNetBufferListRetrieveContext0 must be set to FALSE.

Packets tagged from TCP/IP layers can be retrieved from an NDIS filter driver. The
reverse is also true. Packet tagging is not available from stream layers where no packets
are indicated except data segments.

A callout driver can retrieve the context for a packet outside of the
FWPS_NET_BUFFER_LIST_NOTIFY_FN0 or FWPS_NET_BUFFER_LIST_NOTIFY_FN1 function
by calling FwpsNetBufferListRetrieveContext0. Typically, a callout driver will retrieve the
context in its classifyFn callback.

classifyFn

FWPS_NET_BUFFER_LIST_EVENT_TYPE0

FWPS_NET_BUFFER_LIST_NOTIFY_FN0

FWPS_NET_BUFFER_LIST_NOTIFY_FN1

FwpsNetBufferListAssociateContext0

FwpsNetBufferListGetTagForContext0

FwpsNetBufferListRemoveContext0

FwpsNetBufferListRetrieveContext0

NET_BUFFER_LIST

NDIS Filter Drivers

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistretrievecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_net_buffer_list_event_type0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_net_buffer_list_notify_fn1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistassociatecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistgettagforcontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistremovecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsnetbufferlistretrievecontext0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

Using Layer 2 Filtering
Article • 12/15/2021

Layer 2 filtering is supported in Windows 8 and later versions of Windows.

This WFP feature allows filtering on fields of the layer 2 MAC header. These layers are
invoked on a per-packet basis for all packets that are sent or received by the host
machine. The layers are invoked prior to packet reassembly on the inbound path and
after packet fragmentation on the outbound path. These layers are accessed from an
NDIS lightweight filter (LWF) driver.

This section includes the following topics:

Injecting MAC Frames
Classifying Chained Network Buffer Lists
WFP Layer 2 Layers and Fields

A callback driver calls the FwpsInjectMacReceiveAsync0 function to reinject a previously
absorbed MAC frame (or a clone of the frame) back to the layer 2 inbound data path it
was intercepted from, or to inject an invented MAC frame in the inbound data path.

A callback driver calls the FwpsInjectMacSendAsync0 function to reinject a previously
absorbed MAC frame (or a clone of the frame) back to the layer 2 outbound data path it
was intercepted from, or to inject an invented MAC frame in the outbound data path.

The netBufferLists parameter can be a NET_BUFFER_LIST chain. However the completion
function could be invoked multiple times each, completing a segment (or single
NET_BUFFER_LIST) of the chain.

Injected frames could get classified again if the packets match the same filter as
originally classified. Therefore, as with callouts at IP layers, layer 2 callouts must also

７ Note

A callout should not inject packets at a layer if it does not already have a
corresponding filter at that layer. The injection of the NET_BUFFER_LIST structures
should be coordinated with the filter addition and removal so that injection is only
performed when the filter exists in the corresponding layer. In addition, providers
should not remove filters that belong to other providers.

Injecting MAC Frames

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectmacreceiveasync0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectmacsendasync0

protect against infinite packet inspection by calling FwpsQueryPacketInjectionState0.

Also, you must have callouts at the layer where you inject. Otherwise, your injected
NET_BUFFER_LIST will not be completed to your completion function, and the
NET_BUFFER_LIST will go further up the stack. In this case, the behavior is undefined,
because NDIS will try to pass the injected NET_BUFFER_LIST to the next component in
the stack.

The NET_BUFFER_LISTStatus member contains the stack injection’s status result. The
stack injection’s status result is the status that the stack puts in the NET_BUFFER_LIST
after a WFP injection function returns STATUS_SUCCESS. You should use the
NT_SUCCESS macro to check the stack injection's status in the Status member. If the
Status value is STATUS_SUCCESS, the injection succeeded with no further information.
Status member values that are greater than STATUS_SUCCESS mean that the injection
succeeded, but there might be more information about the injection that should be
considered. Status member values that are less than STATUS_SUCCESS mean that the
injection failed for the reason specified in the Status member.

By default, a callout driver can only classify network buffer lists individually. However, a
callout driver can classify NET_BUFFER_LIST chains for better performance, if it does both
of the following:

Specifies the FWP_CALLOUT_FLAG_ALLOW_L2_BATCH_CLASSIFY flag in the Flags
member of the FWPS_CALLOUT2 structure.
Registers a classifyFn2 function that can classify NET_BUFFER_LIST chains.

Classifying Chained Network Buffer Lists

２ Warning

However, if a callout driver does set the
FWP_CALLOUT_FLAG_ALLOW_L2_BATCH_CLASSIFY flag, it cannot use the
following functions to modify NET_BUFFER_LISTs.

FwpsReferenceNetBufferList0

FwpsDereferenceNetBufferList0

FwpsAllocateCloneNetBufferList0

FwpsFreeCloneNetBufferList0

With this flag set, FwpsAllocateCloneNetBufferList0 will always return an
INVALID_PARAMETER error. This may unexpectedly cause a 3rd party callout driver

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsquerypacketinjectionstate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_callout2_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsreferencenetbufferlist0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsdereferencenetbufferlist0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsallocateclonenetbufferlist0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsfreeclonenetbufferlist0

Run-time Filtering Layer Identifiers for virtual switch filtering include:

FWPS_LAYER_INBOUND_MAC_FRAME_ETHERNET

FWPS_LAYER_OUTBOUND_MAC_FRAME_ETHERNET

FWPS_LAYER_INBOUND_MAC_FRAME_NATIVE

FWPS_LAYER_OUTBOUND_MAC_FRAME_NATIVE

Data Field Identifiers for virtual switch filtering include:

FWPS_FIELDS_INBOUND_MAC_FRAME_ETHERNET

FWPS_FIELDS_OUTBOUND_MAC_FRAME_ETHERNET

FWPS_FIELDS_INBOUND_MAC_FRAME_NATIVE

FWPS_FIELDS_OUTBOUND_MAC_FRAME_NATIVE

to fail to manage the reference count of NET_BUFFER_LISTs, causing send and
receive operations to stop.

WFP Layer 2 Layers and Fields

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_native_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_native_

Using Proxied Connections Tracking
Article • 12/06/2022

Proxied connections tracking is supported in Windows 8 and later versions of Windows.

This WFP feature facilitates tracking of redirection “records” from the initial redirect of a
connection to the final connection to the destination. WFP also allows a callout driver to
redirect connections.

With the presence of multiple proxies (for example, developed by different ISVs) the
connection used by one party to communicate with the final destination could in turn
be redirected by a 2nd party; and that new connection could again be redirected by the
original party. Without connection tracking, the original connection might never reach
its final destination as it gets stuck in the infinite proxy loop.

Additions to the Data Field Identifiers to support connection tracking include:

FWPS_FIELD_Xxx_ALE_ORIGINAL_APP_ID
The full path of the original application for proxy connections. If the application has not
been proxied, this path is identical to the xxx_ALE_APP_ID.

FWPS_FIELD_Xxx_PACKAGE_ID
The package identifier is a security identifier (SID) that identifies the associated
AppContainer process.

A callout driver calls the FwpsRedirectHandleCreate0 function to create a handle that
can be used to redirect TCP connections.

This section includes the following topics:

Using a Redirection Handle

Querying the Redirect State

Before an ALE connect redirection callout can redirect connections to a local process, it
must obtain a redirect handle with the FwpsRedirectHandleCreate0 function and put the

Proxied Connections Tracking

Redirecting Connections

Using a Redirection Handle

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0

handle in the FWPS_CONNECT_REQUEST0 structure. The callout modifies the structure
in the classifyFn for the ALE connect redirect layers.

The FWPS_CONNECT_REQUEST0 structure contains the following members for
redirection:

Term Description

localRedirectHandle The redirect handle that the callout driver
created by calling the
FwpsRedirectHandleCreate0 function.

localRedirectContext A callout driver context area that the callout
driver allocated by calling the
ExAllocatePoolWithTag function.

localRedirectContextSize The size, in bytes, of the callout supplied
context area.

After a callout driver has finished using a redirect handle, it must call the
FwpsRedirectHandleDestroy0 function to destroy the handle.

A callout driver calls the FwpsQueryConnectionRedirectState0 function to get the
redirect state of a connection. The FWPS_CONNECTION_REDIRECT_STATE enumeration
is the return type for a call to the FwpsQueryConnectionRedirectState0 function.

If the redirect status is FWPS_CONNECTION_NOT_REDIRECTED, the
ALE_CONNECT_REDIRECT callout can proceed to proxy the connection.

If the redirect status is FWPS_CONNECTION_REDIRECTED_BY_SELF, the
ALE_CONNECT_REDIRECT callout should return
FWP_ACTION_PERMIT/FWP_ACTION_CONTINUE.

If the redirect status is FWPS_CONNECTION_REDIRECTED_BY_OTHER, the
ALE_CONNECT_REDIRECT callout could proceed to proxy the connection if it does not
trust the other inspector’s result.

If the redirect status is FWPS_CONNECTION_PREVIOUSLY_REDIRECTED_BY_SELF, the
ALE_CONNECT_REDIRECT callout must not perform redirection even if other inspectors’
results are not acceptable. In this case, it must either permit or block the connection (at
the ALE_AUTH_CONNECT layer).

Querying the Redirect State

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandlecreate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-exallocatepoolwithtag
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsredirecthandledestroy0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsqueryconnectionredirectstate0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_connection_redirect_state_

Using Virtual Switch Filtering
Article • 12/15/2021

Virtual Switch Filtering is supported in Windows 8 and later versions of Windows.

This WFP feature allows filtering on fields of the MAC header, IP header, and upper
protocol ports as well as virtual switch specific fields such as virtual port (VPort) and
virtual machine identifier (VM ID). These layers are invoked on a per-packet basis for all
packets traversing the virtual switch. These layers are accessed from a virtual switch
extension filter—a type of NDIS lightweight filter (LWF) driver.

A callout driver calls the FwpsvSwitchEventsSubscribe0 function to register callback
entry points for virtual switch layer events.

The entry points for the callback notification functions are specified in an
FWPS_VSWITCH_EVENT_DISPATCH_TABLE0 structure. The callback functions that are
available include:

FWPS_VSWITCH_FILTER_ENGINE_REORDER_CALLBACK0
FWPS_VSWITCH_INTERFACE_EVENT_CALLBACK0
FWPS_VSWITCH_LIFETIME_EVENT_CALLBACK0
FWPS_VSWITCH_POLICY_EVENT_CALLBACK0
FWPS_VSWITCH_PORT_EVENT_CALLBACK0
FWPS_VSWITCH_RUNTIME_STATE_RESTORE_CALLBACK0
FWPS_VSWITCH_RUNTIME_STATE_SAVE_CALLBACK0

The FWPS_VSWITCH_EVENT_TYPE enumeration defines the values for the eventType
parameter of the virtual switch notification functions.

The callout driver must eventually call FwpsvSwitchEventsUnsubscribe0 to free the
system resources.

If a callout driver returns STATUS_PENDING from a WFP notification function, WFP will
return STATUS_PENDING to the OID request handler. The callout driver must call the
FwpsvSwitchNotifyComplete0 function to complete the pending operation. After the
FwpsvSwitchNotifyComplete0 call, WFP calls the NdisFOidRequestComplete function
to complete the OID for the virtual switch.

Callbacks should not add or delete WFP filters synchronously in the context of the
notification functions. In addition, if the notification function allows the callback to

Overview of Virtual Switch Filtering

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitcheventssubscribe0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_vswitch_event_dispatch_table0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_filter_engine_reorder_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_interface_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_lifetime_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_policy_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_port_event_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_runtime_state_restore_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_vswitch_runtime_state_save_callback0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_vswitch_event_type_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitcheventsunsubscribe0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsvswitchnotifycomplete0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequestcomplete

return STATUS_PENDING, and the callout returns STATUS_PENDING, the callout should
not add or delete WFP filters before completing the notification.

Run-time Filtering Layer Identifiers for virtual switch filtering include:

FWPS_LAYER_INGRESS_VSWITCH_ETHERNET
FWPS_LAYER_EGRESS_VSWITCH_ETHERNET
FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V4
FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V6
FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V4
FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V6

Data Field Identifiers for virtual switch filtering include:

FWPS_FIELDS_EGRESS_VSWITCH_ETHERNET
FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V4
FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V6
FWPS_FIELDS_INGRESS_VSWITCH_ETHERNET
FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V4
FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V6

For WFP virtual switch callouts, traffic from port 0 (the default port ID) is trusted and
should not be filtered. This is because, generally, traffic over port 0 originates from other
extensions in the driver stack and is thus treated by the data path as privileged and
trusted. Virtual switch extensions will sparingly use port 0 for situations such as
originating a control packet, which should not be filtered and rejected by any underlying
extensions. For more information about Hyper-V extensible switch source port
mofification, see Modifying a Packet's Extensible Switch Source Port Data.

When defining a matching rule for filtering, virtual switch callouts should not use the
MAC address as a basis for comparison. MAC addresses can change at runtime, and

WFP Virtual Switch Filter Layer and Fields

Guidance For WFP Virtual Switch Callout
Writers

Port 0 Traffic

Callout Matching Rules

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v6_

some ports may generate traffic from multiple MAC addresses. Instead, callouts should
use a more durable matching rule such as NIC ID, which will not change.

WFP cannot be enabled on an IOV switch and is blocked by the OS if an attempt is
made to enable it.

Installers for WFP virtual switch callouts should not modify the WFP extension enabled
state; that is, they should not enable or disable WFP itself.

I/O Virtualization (IOV) and WFP Coexistence

Enabling or Disabling WFP

Unloading a Callout Driver
Article • 12/15/2021

To unload a callout driver, the operating system calls the callout driver's unload function.
For more information about how to specify a callout driver's unload function, see
Specifying an Unload Function.

A callout driver's unload function guarantees that the callout driver's callouts are
unregistered from the filter engine before the callout driver is unloaded from system
memory. A callout driver calls either the FwpsCalloutUnregisterById0 function or the
FwpsCalloutUnregisterByKey0 function to unregister a callout from the filter engine. A
callout driver must not return from its unload function until after it has successfully
unregistered all its callouts from the filter engine.

After a callout driver has unregistered all its callouts from the filter engine, it must delete
the device object that it created before it originally registered its callouts. A callout
driver that is based on the Windows Driver Model (WDM) calls the IoDeleteDevice
function to delete the device object. A callout driver that is based on the Windows
Driver Frameworks (WDF) calls the WdfObjectDelete function to delete the framework
device object.

A callout driver must also destroy any packet injection handle that it previously created
by calling the FwpsInjectionHandleDestroy0 function before it returns from its unload
function.

For example:

C++

// Device object
PDEVICE_OBJECT deviceObject;

// Variable for the run-time callout identifier
UINT32 CalloutId;

// Injection handle
HANDLE injectionHandle;

// Unload function
VOID
 Unload(
 IN PDRIVER_OBJECT DriverObject
)
{
 NTSTATUS status;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutunregisterbyid0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpscalloutunregisterbykey0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iodeletedevice
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfobject/nf-wdfobject-wdfobjectdelete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsinjectionhandledestroy0

The previous example assumes a WDM-based callout driver. For a WDF-based callout
driver, the only difference is the parameter that is passed to the callout driver's unload
function and how the callout driver deletes the framework device object.

C++

 // Unregister the callout
 status =
 FwpsCalloutUnregisterById0(
 CalloutId
);

 // Check result
 if (status == STATUS_DEVICE_BUSY)
 {
 // For each data flow that is being processed by the
 // callout that has an associated context, clean up
 // the context and then call FwpsFlowRemoveContext0
 // to remove the context from the data flow.
 ...

 // Finish unregistering the callout
 status =
 FwpsCalloutUnregisterById0(
 CalloutId
);
 }

 // Check status
 if (status != STATUS_SUCCESS)
 {
 // Handle error
 ...
 }

 // Delete the device object
 IoDeleteDevice(
 deviceObject
);

 // Destroy the injection handle
 status =
 FwpsInjectionHandleDestroy0(
 injectionHandle
);

 // Check status
 if (status != STATUS_SUCCESS)
 {
 // Handle error
 ...
 }
}

WDFDEVICE wdfDevice;

VOID
 Unload(
 IN WDFDRIVER Driver;
)
{

 ...

 // Delete the framework device object
 WdfObjectDelete(
 wdfDevice
);

 ...
}

Callout Driver Installation
Article • 12/15/2021

This section discusses callout driver installation and includes the following topics:

INF Files for Callout Drivers

Installation of Callout Drivers

Digital Signatures for Callout Drivers

INF Files for Callout Drivers
Article • 12/15/2021

A Windows Filtering Platform callout driver is installed by a setup information file (INF)
file. INF files for callout drivers contain only the following INF file sections:

INF Version Section

INF SourceDisksNames Section

INF SourceDisksFiles Section

INF DestinationDirs Section

INF DefaultInstall Section

INF DefaultInstall.Services Section

INF Strings Section

For example:

INF

;
; Example callout driver INF file
;

[Version]
Signature = "$Windows NT$"
Provider = %Msft%
CatalogFile = "ExampleCalloutDriver.cat"
DriverVer = 01/15/05,1.0

[SourceDisksNames]
1 = %DiskName%

[SourceDisksFiles]
ExampleCalloutDriver.sys = 1

[DestinationDirs]
DefaultDestDir = 12 ; %windir%\system32\drivers
ExampleCalloutDriver.DriverFiles = 12 ; %windir%\system32\drivers

[DefaultInstall]
OptionDesc = %Description%
CopyFiles = ExampleCalloutDriver.DriverFiles

[DefaultInstall.Services]
AddService = %ServiceName%,,ExampleCalloutDriver.Service

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-version-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksnames-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-sourcedisksfiles-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-destinationdirs-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-defaultinstall-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-defaultinstall-services-section
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-strings-section

[DefaultUninstall]
DelFiles = ExampleCalloutDriver.DriverFiles

[DefaultUninstall.Services]
DelService = ExampleCalloutDriver,0x200 ; SPSVCINST_STOPSERVICE

[ExampleCalloutDriver.DriverFiles]
ExampleCalloutDriver.sys,,,0x00000040 ; COPYFLG_OVERWRITE_OLDER_ONLY

[ExampleCalloutDriver.Service]
DisplayName = %ServiceName%
Description = %ServiceDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 0 ; SERVICE_BOOT_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %12%\ExampleCalloutDriver.sys

[Strings]
Msft = "Microsoft Corporation"
DiskName = "Example Callout Driver Installation Disk"
Description = "Example Callout Driver"
ServiceName = "ExampleCalloutDriver"
ServiceDesc = "Example Callout Driver"

Installation of Callout Drivers
Article • 12/15/2021

A callout driver can be installed by right-clicking the driver's setup information file (INF)
file and selecting Install from the pop-up menu that appears.

After a callout driver has been successfully installed, it can be loaded (started) by typing
the following at the command prompt:

C++

Depending on the value specified for the StartType entry in the [drivername.Services]
section of the INF file, the callout driver might be automatically loaded the next time
that the system is restarted. A callout driver should usually specify zero
(SERVICE_BOOT_START) for this value so that the driver is loaded and its callouts are
registered before the filter engine is started. See the INF AddService Directive for more
information.

A callout driver that is currently loaded can be unloaded (stopped) by typing the
following at the command prompt:

C++

A callout driver can also be installed, loaded (started), unloaded (stopped), and/or
uninstalled by writing a user-mode application that calls the Win32 Service Control
Manager API. For more information about Win32 service control functions, such as
CreateService, OpenService, StartService, ControlService, and DeleteService, see the
Microsoft Windows SDK.

net start drivername

net stop drivername

７ Note

Starting in Windows 8 and later, callout drivers cannot be viewed or managed in
the Device Manager because the Plug-and-Play (PnP) manager no longer creates
device representations for non-PnP (legacy) devices.

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/inf-addservice-directive
https://learn.microsoft.com/en-us/windows/win32/services/service-reference

Digital Signatures for Callout Drivers
Article • 09/12/2022

To guarantee the quality and integrity of the driver, all drivers must be digitally signed.
This includes Windows Filtering Platform callout drivers.

For more information, see the following topics:

Driver Signing
Windows Hardware Lab Kit (HLK)

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://learn.microsoft.com/en-us/windows-hardware/test/hlk/

Callout Driver Programming
Considerations
Article • 12/15/2021

Consider the following topics when you program a Windows Filtering Platform callout
driver.

If the desired filtering can be done by using the standard filtering functionality that is
built in to the Windows Filtering Platform, independent software vendors (ISVs) should
write user-mode management applications to configure the filter engine instead of
writing kernel-mode callout drivers. A kernel-mode callout driver should only be written
when you must process the network data in ways that cannot be handled by the
standard, built-in filtering functionality. For information about how to write a user-mode
Windows Filtering Platform management application, see the Windows Filtering
Platform documentation in the Microsoft Windows SDK.

A callout driver should filter the network data at the highest possible filtering layer in
the network stack. For example, if the desired filtering task can be handled at the stream
layer, it should not be implemented at the network layer. For more information about
recommendations of the filtering layers your driver should use to guarantee
compatibility with IPsec in Windows, see Developing IPsec-Compatible Callout Drivers.

Usually, if a callout has been added to the filter engine at one of the ALE flow established
filtering layers (FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4 or
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6), its classifyFn callout function should never
return FWP_ACTION_BLOCK for the action. A decision to authorize or reject a connection
should not be made at one of the ALE flow established filtering layers. Such a decision
should always be made at one of the other ALE filtering layers.

The only valid reason for such a classifyFn callout function to return
FWP_ACTION_BLOCK for the action is if an error occurs that could pose a potential
security risk if the established connection is not ended. In this case, returning

User Mode vs. Kernel Mode

Choice of Filtering Layer

Blocking at the Application Layer Enforcement (ALE) Flow
Established Layers

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0

FWP_ACTION_BLOCK for the action closes the connection to prevent the potential
security risk from being exploited.

Because the filter engine typically calls a callout's callout functions at IRQL =
DISPATCH_LEVEL, make sure that these functions complete their execution as quickly as
possible to keep the system running efficiently. Extended execution at IRQL =
DISPATCH_LEVEL can adversely affect the overall performance of the system.

Callouts should recalculate IP checksums before they call packet injection functions that
inject into the receive data path because the checksum in the original packet might not
be correct when the packet is reassembled from IP packet fragments. There is no
reliable mechanism that indicates whether a net buffer list is reassembled from
fragments.

Because of the TCP stack's locking behavior, a callout at the transport layer cannot inject
a new or cloned TCP packet from the classifyFn callout function. If inline injection is
desired, the callout must queue a DPC to perform the injection.

The MDL that describes the IP header in a net buffer list
(NET_BUFFER_CURRENT_MDL(NET_BUFFER_LIST_FIRST_NB(netBufferList))) must be
pointer-aligned when one of the packet injection functions is used to inject packet data
into an outgoing path. Because an incoming packet's IP header MDL may be pointer-
aligned, a callout must rebuild the IP header (if not already aligned) when injecting an
incoming packet into an outgoing path.

Windows Filtering Platform Callout Drivers

Callout Function Execution Time

Injecting Into the Receive Data Path

Inline Injection of TCP Packet from Transport Layers

Outgoing IP Header Alignment

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_current_mdl
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_list_first_nb

Porting Packet-Processing Drivers and
Apps to WFP
Article • 12/15/2021

Windows Filtering Platform (WFP) enables TCP/IP packet filtering, inspection, and
modification, connection monitoring or authorization, IPsec rules and processing, and
RPC filtering. Generally, you must convert your TCP/IP filtering or connection monitoring
component in Windows XP and Windows Server 2003 to use a WFP user-mode
application or service, a WFP kernel-mode callout driver, or both for Windows Vista and
Windows Server 2008 and later. The following table lists the existing methods for packet
processing in Windows XP and Windows Server 2003 and how you must change them in
Windows Vista and Windows Server 2008 and later to use WFP.

Note As of Windows 8, the Transport Driver Interface (TDI) feature and Layered Service
Providers (LSPs) feature are deprecated.

Existing method in Windows XPand
Windows Server 2003

New method in Windows Vista and
Windows Server 2008 and later

Firewall hook or filter hook driver for simple
packet filtering.

User-mode application or service that uses the
WFP Win32 API.

Firewall hook or filter hook driver for deep
packet inspection or modification.

IP layer, Transport layer, or Application Layer
Enforcement (ALE) layer callout driver and
optional user-mode application or service that
uses the WFP Win32 API.

Transport Driver Interface (TDI) filter driver for
simple packet filtering.

User-mode application or service that uses the
WFP Win32 API.

TDI filter driver for deep packet or stream
inspection or modification.

Transport layer, Stream layer, and/or ALE callout
driver and optional user-mode application or
service that uses the WFP Win32 API

https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page

Existing method in Windows XPand
Windows Server 2003

New method in Windows Vista and
Windows Server 2008 and later

TDI filter driver for TCP connection or User
Datagram Protocol (UDP) traffic management.

For TCP connection management: ALE callout
driver and optional user-mode application or
service that uses the WFP Win32 API.

For TCP proxying:

In Windows Vista: Packet modification
callout driver.
In Windows 7 and later: ALE_REDIRECT
layer callout driver.

For MAC-level filtering:

In Windows 8 and later: MAC_FRAME
layer callout driver.
In Windows Vista and Windows 7: NDIS
lightweight filter driver.

For UDP traffic management: Stream or
Datagram Data layer callout driver and optional
user-mode application or service that uses the
WFP Win32 API.

Windows Sockets LSP for simple packet
filtering.

User-mode application or service that uses the
WFP Win32 API.

Windows Sockets LSP for deep packet
inspection or modification.

IP layer, ALE, Transport (such as Datagram
Data), or Stream layer callout driver and
optional user-mode application or service that
uses the WFP Win32 API.

Network Device Interface Specification (NDIS)
intermediate driver for simple packet filtering.

For IP-based filtering: User-mode application or
service that uses the WFP Win32 API.

For MAC-based filtering:

In Windows 8 and later: MAC_FRAME
layer callout driver.
In Windows Vista and Windows 7: NDIS
lightweight filter driver.

https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page

Existing method in Windows XPand
Windows Server 2003

New method in Windows Vista and
Windows Server 2008 and later

NDIS intermediate driver for TCP connection or
UDP traffic management.

TCP connection management: ALE callout
driver and optional user-mode application or
service that uses the WFP Win32 API.

UDP traffic management: ALE or Transport layer
callout driver and optional user-mode
application or service that uses the WFP Win32
API.

NDIS lightweight filter driver to perform media
access control (MAC)-level filtering.

In Windows 8 and later: MAC_FRAME layer
callout driver.

In Windows Vista and Windows 7: NDIS
lightweight filter driver.

https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page
https://learn.microsoft.com/en-us/windows/desktop/FWP/windows-filtering-platform-start-page

Developing IPsec-Compatible Callout
Drivers
Article • 12/15/2021

To be fully compatible with the Windows implementation of IPsec that begins with
Windows Vista and Windows Server 2008, a callout driver should be registered at one of
the following run-time filtering layers:

TCP Packet Filtering
Stream Layers:

FWPS_LAYER_STREAM_V4

FWPS_LAYER_STREAM_V6

Non-TCP and Non-Error ICMP Packet Filtering
Datagram-Data Layers:

FWPS_LAYER_DATAGRAM_DATA_V4

FWPS_LAYER_DATAGRAM_DATA_V6

FWPS_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPS_LAYER_DATAGRAM_DATA_V6_DISCARD

Except for the case when incoming packets must be rebuilt before they are receive-
injected from a datagram-data layer, callout drivers that are registered at these data
layers are compatible with IPsec.

Network and forwarding layers are incompatible with IPsec because at these layers IPsec
traffic has not yet been decrypted or verified. IPsec policies are enforced at the transport
layer, which occurs after a network layer classify operation.

The following run-time filtering layers are incompatible with IPsec because IPsec
processing in Windows occurs below the following layers:

FWPS_LAYER_INBOUND_IPPACKET_V4

Layers That Are Compatible With IPsec

Layers That Are Incompatible With IPsec

FWPS_LAYER_INBOUND_IPPACKET_V6

FWPS_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWPS_LAYER_OUTBOUND_IPPACKET_V4

FWPS_LAYER_OUTBOUND_IPPACKET_V6

FWPS_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

To make a callout driver that is registered with a transport layer
(FWPS_LAYER_XXX_TRANSPORT_V4 or _V6) compatible with IPsec, follow these
guidelines:

1. Register the callout at ALE authorize receive/accept layers
(FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4 or
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6) in addition to transport layers
(FWPS_LAYER_XXX_TRANSPORT_V4 or _V6).

2. To prevent interference with internal Windows IPsec processing, register the callout
at a sublayer that has a lower weight than FWPM_SUBLAYER_UNIVERSAL. Use the
FwpmSubLayerEnum0 function to find the sublayer's weight. For information
about this function, see the Windows Filtering Platform documentation in the
Microsoft Windows SDK.

3. An incoming transport packet that requires ALE classification must be inspected at
the ALE authorize receive/accept layers
(FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4 or
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6). Such a packet must be permitted
from incoming transport layers. Beginning with Windows Vista with Service Pack 1
(SP1) and Windows Server 2008, use the
FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED metadata flag to determine
whether the incoming packet will be indicated to the
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4 and
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6 filtering layers. This metadata flag
replaces the FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY condition flag that
was used in Windows Vista.

Special Considerations for Transport Layers

https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayerenum0
https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page

4. To prevent interference with internal Windows IPsec processing, do not intercept
IPsec tunnel-mode traffic at transport layers if the IPsec traffic is not yet
detunneled. The following code example shows how to bypass such packets.

C++

5. After an IPsec-protected packet is decrypted and verified at the transport layer, the
AH/ESP header remains in the IP header. If such a packet has to be reinjected back
into the TCP/IP stack, the IP header must be rebuilt to remove the AH/ESP header.
Beginning with Windows Vista with SP1 and Windows Server 2008, you can do this
by cloning the packet and calling the
FwpsConstructIpHeaderForTransportPacket0 function that has the
headerIncludeHeaderSize parameter set to the IP header size of the cloned packet.

6. At the ALE receive/accept layer, a callout can detect IPsec-protected traffic by
checking whether the FWP_CONDITION_FLAG_IS_IPSEC_SECURED flag is set. At
transport layers, a callout can detect IPsec-protected traffic by calling the
FwpsGetPacketListSecurityInformation0 function and checking whether the
FWPS_PACKET_LIST_INFORMATION0 flag is set in the queryFlags parameter.

When the engine indicates decrypted encapsulating security payload (ESP) packets, it
truncates them to exclude trailing ESP data. Because of the way the engine handles such
packets, the MDL data in the NET_BUFFER structure does not reflect the correct packet
length. The correct length can be obtained by using the NET_BUFFER_DATA_LENGTH
macro to retrieve the data length of the NET_BUFFER structure.

FWPS_PACKET_LIST_INFORMATION0 packetInfo = {0};
FwpsGetPacketListSecurityInformation0(
 layerData,
 FWPS_PACKET_LIST_INFORMATION_QUERY_IPSEC |
 FWPS_PACKET_LIST_INFORMATION_QUERY_INBOUND,
 &packetInfo
);

if (packetInfo.ipsecInformation.inbound.isTunnelMode &&
 !packetInfo.ipsecInformation.inbound.isDeTunneled)
{
 classifyOut->actionType = FWP_ACTION_PERMIT;
 goto Exit;
}

Working With IPsec ESP Packets

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsconstructipheaderfortransportpacket0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nf-fwpsk-fwpsgetpacketlistsecurityinformation0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nblaccessors/nf-nblaccessors-net_buffer_data_length

Calling Other Windows Filtering
Platform Functions
Article • 06/30/2022

Many of the other Windows Filtering Platform functions that are available to user-mode
management applications are also available to callout drivers. This enables a callout
driver to perform management tasks, such as adding filters to the filter engine. The only
difference between the user-mode and kernel-mode versions of these functions is the
data type that is returned. The user-mode functions return Win32 error codes, whereas
the kernel-mode functions return the equivalent NTSTATUS codes.

Most of the Windows Filtering Platform management functions require a handle to an
open session to the filter engine as a parameter. The following topics discuss how a
callout driver can open and close a session to the filter engine.

Opening a Session to the Filter Engine

Closing a Session to the Filter Engine

For a list of the other Windows Filtering Platform functions that can be called from a
callout driver, see Other Windows Filtering Platform Functions. For more information
about how to use these functions, see the Windows Filtering Platform documentation in
the Microsoft Windows SDK.

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page

Opening a Session to the Filter Engine
Article • 12/15/2021

A callout driver must open a session to the filter engine to perform management tasks
such as adding filters to the filter engine. A callout driver opens a session to the filter
engine by calling the FwpmEngineOpen0 function. For example:

C++

After a callout driver has successfully opened a session to the filter engine, it can use the
returned handle to call the other Windows Filtering Platform management functions.

HANDLE engineHandle;
NTSTATUS status;

// Open a session to the filter engine
status =
 FwpmEngineOpen0(
 NULL, // The filter engine on the local system
 RPC_C_AUTHN_WINNT, // Use the Windows authentication service
 NULL, // Use the calling thread's credentials
 NULL, // There are no session-specific parameters
 &engineHandle // Pointer to a variable to receive the handle
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpmk/nf-fwpmk-fwpmengineopen0

Closing a Session to the Filter Engine
Article • 12/15/2021

After a callout driver has performed the desired management tasks, it should close the
session to the filter engine. A callout driver does this by calling the FwpmEngineClose0
function. For example:

C++

status =
 FwpmEngineClose0(
 engineHandle // An handle to the open session
);

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpmk/nf-fwpmk-fwpmengineclose0

Windows Filtering Platform constants
Article • 12/15/2021

This section describes constants used in Windows Filtering Platform callout drivers.

Built-in callout identifiers

Filtering layer identifiers

Filtering conditions

Metadata fields

Data field identifiers

Data offset positions

Discard reason identifiers

Windows Filtering Platform Callout Drivers reference

In this section

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Built-in callout identifiers
Article • 12/15/2021

The identifiers for the callouts that are built into the Windows Filtering Platform are each
represented by a GUID. These identifiers are defined as follows.

Built-in callout identifier Callout description

FWPM_CALLOUT_IPSEC_INBOUND_TRANSPORT_V4

FWPM_CALLOUT_IPSEC_INBOUND_TRANSPORT_V6

Verifies that each received packet
that is supposed to arrive over a
transport mode security
association arrives securely. This
callout is applicable at the
transport layer.

FWPM_CALLOUT_IPSEC_OUTBOUND_TRANSPORT_V4

FWPM_CALLOUT_IPSEC_OUTBOUND_TRANSPORT_V6

Indicates to IPsec the outbound
traffic that must be secured over
transport mode security
associations. This callout is
applicable at the transport layer.

FWPM_CALLOUT_IPSEC_INBOUND_TUNNEL_V4

FWPM_CALLOUT_IPSEC_INBOUND_TUNNEL_V6

Verifies that each received packet
that is supposed to arrive over a
tunnel mode security association
arrives securely. This callout is
applicable at the transport layer.

FWPM_CALLOUT_IPSEC_OUTBOUND_TUNNEL_V4

FWPM_CALLOUT_IPSEC_OUTBOUND_TUNNEL_V6

Indicates to IPsec the outbound
traffic that must be secured over
tunnel mode security associations.
This callout is applicable at the
transport layer.

FWPM_CALLOUT_IPSEC_FORWARD_INBOUND_TUNNEL_V4

FWPM_CALLOUT_IPSEC_FORWARD_INBOUND_TUNNEL_V6

Verifies that each received packet
that is supposed to arrive over a
tunnel mode security association
arrives securely. This callout is
applicable at the forward layer.

７ Note

The V4 and V6 suffixes at the end of the callout identifiers indicate whether the
callout is for the IPv4 network stack or the IPv6 network stack.

Built-in callout identifier Callout description

FWPM_CALLOUT_IPSEC_FORWARD_OUTBOUND_TUNNEL_V4

FWPM_CALLOUT_IPSEC_FORWARD_OUTBOUND_TUNNEL_V6

Indicates to IPsec the outbound
traffic that must be secured over a
tunnel mode security association.
This callout is applicable at the
forward layer.

FWPM_CALLOUT_IPSEC_INBOUND_INITIATE_SECURE_V4

FWPM_CALLOUT_IPSEC_INBOUND_INITIATE_SECURE_V6

Verifies that each incoming
connection that is supposed to
arrive securely does so. This
callout is applicable at the ALE
accept layer.

FWPM_CALLOUT_IPSEC_ALE_CONNECT_V4

FWPM_CALLOUT_IPSEC_ALE_CONNECT_V6

Applies IPsec policy modifiers to
client applications.

FWPM_CALLOUT_WFP_TRANSPORT_LAYER_V4_SILENT_DROP

FWPM_CALLOUT_WFP_TRANSPORT_LAYER_V6_SILENT_DROP

Silently drops all incoming
packets for which TCP does not
have a listening endpoint. This
callout is applicable at the
inbound transport layer.

FWPM_CALLOUT_TCP_CHIMNEY_CONNECT_LAYER_V4

FWPM_CALLOUT_TCP_CHIMNEY_CONNECT_LAYER_V6

Enables or disables TCP chimney
offload for each outgoing
connection.

FWPM_CALLOUT_TCP_CHIMNEY_ACCEPT_LAYER_V4

FWPM_CALLOUT_TCP_CHIMNEY_ACCEPT_LAYER_V6

Enables or disables TCP chimney
offload for each incoming
connection.

Management filtering layer identifiers
Article • 12/15/2021

The management filtering layer identifiers are generally used by user-mode applications
and are each represented by a GUID, which is 128 bits in size. These identifiers are
defined as follows.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_INBOUND_IPPACKET_V4

FWPM_LAYER_INBOUND_IPPACKET_V6

This filtering layer is located in the
receive path just after the IP header
of a received packet has been
parsed but before any IP header
processing takes place. No IPsec
decryption or reassembly has
occurred.

FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD

This filtering layer is located in the
receive path for processing any
received packets that have been
discarded at the network layer.

FWPM_LAYER_OUTBOUND_IPPACKET_V4

FWPM_LAYER_OUTBOUND_IPPACKET_V6

This filtering layer is located in the
send path just before the sent
packet is evaluated for
fragmentation. All IP header
processing is complete and all
extension headers are in place. Any
IPsec authentication and encryption
has already occurred.

FWPM_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPM_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

This filtering layer is located in the
send path for processing any sent
packets that have been discarded at
the network layer.

FWPM_LAYER_IPFORWARD_V4

FWPM_LAYER_IPFORWARD_V6

This filtering layer is located in the
forwarding path at the point where a
received packet is forwarded.

７ Note

The V4 and V6 suffixes at the end of the layer identifiers indicate whether the layer
is located in the IPv4 network stack or in the IPv6 network stack.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_IPFORWARD_V4_DISCARD

FWPM_LAYER_IPFORWARD_V6_DISCARD

This filtering layer is located in the
forwarding path for processing any
forwarded packets that have been
discarded at the forward layer.

FWPM_LAYER_INBOUND_TRANSPORT_V4

FWPM_LAYER_INBOUND_TRANSPORT_V6

This filtering layer is located in the
receive path just after a received
packet's header has been parsed by
the network stack at the transport
layer, but before any transport layer
processing takes place.

FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD

This filtering layer is located in the
receive path for processing any
received packets that have been
discarded at the transport layer.

FWPM_LAYER_OUTBOUND_TRANSPORT_V4

FWPM_LAYER_OUTBOUND_TRANSPORT_V6

This filtering layer is located in the
send path just after a sent packet
has been passed to the network
layer for processing but before any
network layer processing takes
place.

This filtering layer is located at the
top of the network layer instead of
at the bottom of the transport layer
so that any packets that are sent by
third-party transports or as raw
packets are filtered at this layer.

FWPM_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPM_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

This filtering layer is located in the
send path for processing any sent
packets that have been discarded at
the transport layer.

FWPM_LAYER_STREAM_V4

FWPM_LAYER_STREAM_V6

This filtering layer is located in the
stream data path. This layer allows
for processing network data on a per
stream basis. At the stream layer, the
network data is bidirectional.

FWPM_LAYER_STREAM_V4_DISCARD

FWPM_LAYER_STREAM_V6_DISCARD

This filtering layer is reserved for
future use.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_DATAGRAM_DATA_V4

FWPM_LAYER_DATAGRAM_DATA_V6

This filtering layer is located in the
datagram data path. This layer
allows for processing network data
on a per datagram basis. At the
datagram layer, the network data is
bidirectional.

FWPM_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPM_LAYER_DATAGRAM_DATA_V6_DISCARD

This filtering layer is located in the
datagram data path for processing
any datagrams that have been
discarded.

FWPM_LAYER_INBOUND_ICMP_ERROR_V4

FWPM_LAYER_INBOUND_ICMP_ERROR_V6

This filtering layer is located in the
receive path for processing received
ICMP messages for the transport
protocol.

FWPM_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD

FWPM_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

This filtering layer is located in the
receive path for processing received
ICMP messages that have been
discarded.

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6

This filtering layer is located in the
send path for processing sent ICMP
messages for the transport protocol.

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

This filtering layer is located in the
send path for processing sent ICMP
messages that have been discarded.

FWPM_LAYER_ALE_AUTH_CONNECT_V4

FWPM_LAYER_ALE_AUTH_CONNECT_V6

This filtering layer allows for
authorizing connect requests for
outgoing TCP connections, as well as
authorizing outgoing non-TCP traffic
based on the first packet sent.

FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

This filtering layer allows for
processing connect requests for
outgoing TCP connections that have
been discarded, as well as
processing authorizations for
outgoing non-TCP traffic that have
been discarded.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6

This filtering layer allows for
notification of when a TCP
connection has been established, or
when non-TCP traffic has been
authorized.

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

This filtering layer allows for
processing when an established TCP
connection has been discarded at
the flow established layer, as well as
when authorized non-TCP traffic has
been discarded at the flow
established layer.

FWPM_LAYER_ALE_AUTH_LISTEN_V4

FWPM_LAYER_ALE_AUTH_LISTEN_V6

This filtering layer allows for
authorizing TCP listen requests.

FWPM_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPM_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

This filtering layer allows for
processing TCP listen requests that
have been discarded.

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6

This filtering layer allows for
authorizing accept requests for
incoming TCP connections, as well as
authorizing incoming non-TCP traffic
based on the first packet received.

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

This filtering layer allows for
processing accept requests for
incoming TCP connections that have
been discarded, as well as
processing authorizations for
incoming non-TCP traffic that have
been discarded.

FWPM_LAYER_ALE_AUTH_ROUTE_V4

FWPM_LAYER_ALE_AUTH_ROUTE_V6

This filtering layer allows for
inspecting and filtering the route
and path parameters of bind and
connect requests.

FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V4

FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V6

This filtering layer is used as an
opportunity to reclaim resources
allocated by the callout driver in any
of the ALE_AUTH_CONNECT or
ALE_AUTH_RECV_ACCEPT layers.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

This filtering layer allows for
authorizing transport port
assignments, bind requests,
promiscuous mode requests, and
raw mode requests.

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

This filtering layer allows for
processing the following discarded
items: transport port assignments,
bind requests, promiscuous mode
requests, and raw mode requests.

FWPM_LAYER_ALE_RESOURCE_RELEASE_V4

FWPM_LAYER_ALE_RESOURCE_RELEASE_V6

This filtering layer is used as an
opportunity to reclaim resources
allocated by the callout driver in any
of the ALE_RESOURCE_ASSIGNMENT
layers.

FWPM_LAYER_IPSEC_KM_DEMUX_V4

FWPM_LAYER_IPSEC_KM_DEMUX_V6

This filtering layer is used to
determine which keying modules are
invoked when the local system is the
initiator. This is a user-mode filtering
layer.

FWPM_LAYER_IPSEC_V4

FWPM_LAYER_IPSEC_V6

This filtering layer allows the keying
module to look up quick-mode
policy information when negotiating
quick-mode security associations.
This is a user-mode filtering layer.

FWPM_LAYER_IKEEXT_V4

FWPM_LAYER_IKEEXT_V6

This filtering layer allows the IKE and
authenticated IP modules to look up
main-mode policy information when
negotiating main-mode security
associations. This is a user-mode
filtering layer.

FWPM_LAYER_RPC_UM This filtering layer allows for
inspecting the RPC data fields that
are available in user mode. This is a
user-mode filtering layer.

FWPM_LAYER_RPC_EPMAP This filtering layer allows for
inspecting the RPC data fields that
are available in user mode during
endpoint resolution. This is a user-
mode filtering layer.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_RPC_EP_ADD This filtering layer allows for
inspecting the RPC data fields that
are available in user mode when a
new endpoint is added. This is a
user-mode filtering layer.

FWPM_LAYER_RPC_PROXY_CONN This filtering layer allows for
inspecting RpcProxy connection
requests. This is a user-mode
filtering layer.

FWPM_LAYER_RPC_PROXY_IF This filtering layer allows for
inspecting the interface used for
RpcProxy connections. This is a user-
mode filtering layer.

FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET This filtering layer allows for
inspecting the MAC frame data at
the inbound lower (to the NDIS
protocol driver) layer. Note:
Available only on Windows 8 and
later.

FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET This filtering layer allows for
inspecting the MAC frame data at
the outbound upper (to the NDIS
protocol driver) layer. Note:
Available only on Windows 8 and
later.

FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE This filtering layer allows for
inspecting the MAC frame data at
the inbound lower (to the NDIS
miniport driver) layer. Note:
Available only on Windows 8 and
later.

FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE This filtering layer allows for
inspecting the MAC frame data at
the outbound lower (to the NDIS
miniport driver) layer. Note:
Available only on Windows 8 and
later.

Management filtering layer identifier Filtering layer description

FWPM_LAYER_INGRESS_VSWITCH_ETHERNET This filtering layer allows for
inspecting the ingress 802.3 data of
the Hyper-V extensible switch. Note:
Available only on Windows 8 and
later.

FWPM_LAYER_EGRESS_VSWITCH_ETHERNET This filtering layer allows for
inspecting the egress 802.3 data of
the Hyper-V extensible switch. Note:
Available only on Windows 8 and
later.

FWPM_LAYER_INGRESS_VSWITCH_TRANSPORT_V4

FWPM_LAYER_INGRESS_VSWITCH_TRANSPORT_V6

This filtering layer allows for
inspecting the ingress transport data
of the Hyper-V extensible switch.
Note: Available only on Windows 8
and later.

FWPM_LAYER_EGRESS_VSWITCH_TRANSPORT_V4

FWPM_LAYER_EGRESS_VSWITCH_TRANSPORT_V6

This filtering layer allows for
inspecting the egress transport data
of the Hyper-V extensible switch.
Note: Available only on Windows 8
and later.

Run-time filtering layer identifiers
Article • 12/15/2021

The run-time filtering layer identifiers are used by kernel-mode callout drivers and are
each represented by a locally unique identifier (LUID), which is 64 bits in size. These
identifiers are constant values in the FWPS_BUILTIN_LAYERS enumeration that is defined
in Fwpsk.h. These identifiers are defined as follows:

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_INBOUND_IPPACKET_V4

FWPS_LAYER_INBOUND_IPPACKET_V6

This filtering layer is located in the
receive path just after the IP header
of a received packet has been parsed
but before any IP header processing
takes place. No IPsec decryption or
reassembly has occurred.

FWPS_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_INBOUND_IPPACKET_V6_DISCARD

This filtering layer is located in the
receive path for processing any
received packets that have been
discarded at the network layer.

FWPS_LAYER_OUTBOUND_IPPACKET_V4

FWPS_LAYER_OUTBOUND_IPPACKET_V6

This filtering layer is located in the
send path just before the sent packet
is evaluated for fragmentation. All IP
header processing is complete and all
extension headers are in place. Any
IPsec authentication and encryption
has already occurred.

FWPS_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

This filtering layer is located in the
send path for processing any sent
packets that have been discarded at
the network layer.

FWPS_LAYER_IPFORWARD_V4

FWPS_LAYER_IPFORWARD_V6

This filtering layer is located in the
forwarding path at the point where a
received packet is forwarded.

７ Note

The V4 and V6 suffixes at the end of the run-time layer identifiers indicate whether
the layer is located in the IPv4 network stack or in the IPv6 network stack.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/igpupvdev/ns-igpupvdev-_luid

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_IPFORWARD_V4_DISCARD

FWPS_LAYER_IPFORWARD_V6_DISCARD

This filtering layer is located in the
forwarding path for processing any
forwarded packets that have been
discarded at the forward layer.

FWPS_LAYER_INBOUND_TRANSPORT_V4

FWPS_LAYER_INBOUND_TRANSPORT_V6

This filtering layer is located in the
receive path just after a received
packet's header has been parsed by
the network stack at the transport
layer, but before any transport layer
processing takes place.

FWPS_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_INBOUND_TRANSPORT_V6_DISCARD

This filtering layer is located in the
receive path for processing any
received packets that have been
discarded at the transport layer.

FWPS_LAYER_OUTBOUND_TRANSPORT_V4

FWPS_LAYER_OUTBOUND_TRANSPORT_V6

This filtering layer is located in the
send path just after a sent packet has
been passed to the network layer for
processing but before any network
layer processing takes place.

This filtering layer is located at the
top of the network layer instead of at
the bottom of the transport layer so
that any packets that are sent by
third-party transports or as raw
packets are filtered at this layer.

FWPS_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

This filtering layer is located in the
send path for processing any sent
packets that have been discarded at
the transport layer.

FWPS_LAYER_STREAM_V4

FWPS_LAYER_STREAM_V6

This filtering layer is located in the
stream data path. This layer allows
for processing network data on a per
stream basis. At the stream layer, the
network data is bidirectional.

FWPS_LAYER_STREAM_V4_DISCARD

FWPS_LAYER_STREAM_V6_DISCARD

This filtering layer is reserved for
future use.

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_DATAGRAM_DATA_V4

FWPS_LAYER_DATAGRAM_DATA_V6

This filtering layer is located in the
datagram data path. This layer allows
for processing network data on a per
datagram basis. At the datagram
layer, the network data is
bidirectional.

FWPS_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPS_LAYER_DATAGRAM_DATA_V6_DISCARD

This filtering layer is located in the
datagram data path for processing
any datagrams that have been
discarded.

FWPS_LAYER_INBOUND_ICMP_ERROR_V4

FWPS_LAYER_INBOUND_ICMP_ERROR_V6

This filtering layer is located in the
receive path for processing received
ICMP messages for the transport
protocol.

FWPS_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD

FWPS_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

This filtering layer is located in the
receive path for processing received
ICMP messages that have been
discarded.

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6

This filtering layer is located in the
send path for processing sent ICMP
messages for the transport protocol.

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

This filtering layer is located in the
send path for processing sent ICMP
messages that have been discarded.

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

This filtering layer allows for
authorizing transport port
assignments, bind requests,
promiscuous mode requests, and raw
mode requests.

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

This filtering layer allows for
processing the following discarded
items: transport port assignments,
bind requests, promiscuous mode
requests, and raw mode requests.

FWPS_LAYER_ALE_AUTH_LISTEN_V4

FWPS_LAYER_ALE_AUTH_LISTEN_V6

This filtering layer allows for
authorizing TCP listen requests.

FWPS_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPS_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

This filtering layer allows for
processing TCP listen requests that
have been discarded.

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6

This filtering layer allows for
authorizing accept requests for
incoming TCP connections, as well as
authorizing incoming non-TCP traffic
based on the first packet received.

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

This filtering layer allows for
processing accept requests for
incoming TCP connections that have
been discarded, as well as processing
authorizations for incoming non-TCP
traffic that have been discarded.

FWPS_LAYER_ALE_AUTH_CONNECT_V4

FWPS_LAYER_ALE_AUTH_CONNECT_V6

This filtering layer allows for
authorizing connect requests for
outgoing TCP connections, as well as
authorizing outgoing non-TCP traffic
based on the first packet sent.

FWPS_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

This filtering layer allows for
processing connect requests for
outgoing TCP connections that have
been discarded, as well as processing
authorizations for outgoing non-TCP
traffic that have been discarded.

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6

This filtering layer allows for
notification of when a TCP
connection has been established, or
when non-TCP traffic has been
authorized.

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

This filtering layer allows for
processing when an established TCP
connection has been discarded at the
flow established layer, as well as
when authorized non-TCP traffic has
been discarded at the flow
established layer.

FWPS_LAYER_RESERVED1_V4

FWPS_LAYER_RESERVED1_V6

This filtering layer is not supported.

FWPS_LAYER_NAME_RESOLUTION_CACHE_V4

FWPS_LAYER_NAME_RESOLUTION_CACHE_V6

This filtering layer allows for querying
the names recently resolved by the
system.

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_ALE_RESOURCE_RELEASE_V4

FWPS_LAYER_ALE_RESOURCE_RELEASE_V6

This filtering layer is used as an
opportunity to reclaim resources
allocated by the callout driver in any
of the ALE_RESOURCE_ASSIGNMENT
layers.

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6

This filtering layer is used as an
opportunity to reclaim resources
allocated by the callout driver in any
of the ALE_AUTH_CONNECT or
ALE_AUTH_RECV_ACCEPT layers.

FWPS_LAYER_ALE_CONNECT_REDIRECT_V4

FWPS_LAYER_ALE_CONNECT_REDIRECT_V6

This filtering layer allows for the
redirecting of connect requests to a
different IPV4/ IPV6 address and
TCP/UDP port.

FWPS_LAYER_ALE_BIND_REDIRECT_V4

FWPS_LAYER_ALE_BIND_REDIRECT_V6

This filtering layer allows for the
redirecting of bind requests to a
different local IPV4/ IPV6 address
and/or local TCP/UDP port.

FWPS_LAYER_INBOUND_MAC_FRAME_ETHERNET This filtering layer allows for
inspecting the MAC frame data at the
inbound lower (to the NDIS protocol
driver) layer. Note: Available only on
Windows 8 and later.

FWPS_LAYER_OUTBOUND_MAC_FRAME_ETHERNET This filtering layer allows for
inspecting the MAC frame data at the
outbound upper (to the NDIS
protocol driver) layer. Note: Available
only on Windows 8 and later.

FWPS_LAYER_INBOUND_MAC_FRAME_NATIVE This filtering layer allows for
inspecting the MAC frame data at the
inbound lower (to the NDIS miniport
driver) layer. Note: Available only on
Windows 8 and later.

FWPS_LAYER_OUTBOUND_MAC_FRAME_NATIVE This filtering layer allows for
inspecting the MAC frame data at the
outbound lower (to the NDIS
miniport driver) layer. Note: Available
only on Windows 8 and later.

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_INGRESS_VSWITCH_ETHERNET This filtering layer allows for
inspecting the ingress 802.3 data of
the Hyper-V extensible switch. Note:
Available only on Windows 8 and
later.

FWPS_LAYER_EGRESS_VSWITCH_ETHERNET This filtering layer allows for
inspecting the egress 802.3 data of
the Hyper-V extensible switch. Note:
Available only on Windows 8 and
later.

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V4

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V6

This filtering layer allows for
inspecting the ingress transport data
of the Hyper-V extensible switch.
Note: Available only on Windows 8
and later.

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V4

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V6

This filtering layer allows for
inspecting the egress transport data
of the Hyper-V extensible switch.
Note: Available only on Windows 8
and later.

FWPS_LAYER_STREAM_PACKET_V4

FWPS_LAYER_STREAM_PACKET_V6

This filtering layer allows for
inspection of network data on a per-
TCP packet basis, including
handshake and flow control
exchanges. At the stream packet
layer, the network data is
bidirectional.

FWPS_LAYER_IPSEC_KM_DEMUX_V4

FWPS_LAYER_IPSEC_KM_DEMUX_V6

This filtering layer is used to
determine which keying modules are
invoked when the local system is the
initiator. This is a user-mode filtering
layer.

FWPS_LAYER_IPSEC_V4

FWPS_LAYER_IPSEC_V6

This filtering layer allows the keying
module to look up quick-mode
policy information when negotiating
quick-mode security associations.
This is a user-mode filtering layer.

Run-time filtering layer identifier Filtering layer description

FWPS_LAYER_IKEEXT_V4

FWPS_LAYER_IKEEXT_V6

This filtering layer allows the IKE and
authenticated IP modules to look up
main-mode policy information when
negotiating main-mode security
associations. This is a user-mode
filtering layer.

FWPS_LAYER_RPC_UM This filtering layer allows for
inspecting the RPC data fields that
are available in user mode. This is a
user-mode filtering layer.

FWPS_LAYER_RPC_EPMAP This filtering layer allows for
inspecting the RPC data fields that
are available in user mode during
endpoint resolution. This is a user-
mode filtering layer.

FWPS_LAYER_RPC_EP_ADD This filtering layer allows for
inspecting the RPC data fields that
are available in user mode when a
new endpoint is added. This is a user-
mode filtering layer.

FWPS_LAYER_RPC_PROXY_CONN This filtering layer allows for
inspecting RpcProxy connection
requests. This is a user-mode filtering
layer.

FWPS_LAYER_RPC_PROXY_IF This filtering layer allows for
inspecting the interface used for
RpcProxy connections. This is a user-
mode filtering layer.

FWPS_LAYER_KM_AUTHORIZATION This filtering layer allows for
authorizing security association
establishment.

Each run-time layer identifier has an associated run-time data field identifier that
represents a set of constant values. These data field identifiers are declared as
FWPS_FIELDS_XXX enumerations in Fwpsk.h. For more information, see Data Field
Identifiers.

Filtering condition identifiers
Article • 12/15/2021

The filtering condition identifiers are each represented by a GUID. These identifiers are
described in the following table.

Filtering condition identifier Description

FWPM_CONDITION_ARRIVAL_INTERFACE_INDEX The index of the arrival network
interface, as enumerated by the
network stack.
WFP uses the Arrival interface to
match this condition. The Arrival
Interface is the first interface the
packet sees before entering the
IP stack inbound from the
network, before weak-host or
forwarding are performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an inbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
inbound connection on a
response outbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of
arrival interface conditions, the
next hop class of interface
conditions will have a valid
interface on outbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

Filtering condition identifier Description

FWPM_CONDITION_ARRIVAL_INTERFACE_TYPE The type of the arrival network
interface, as defined by the
Internet Assigned Numbers
Authority (IANA). For more
information, see IANAifType-MIB
Definitions .
WFP uses the Arrival interface to
match this condition. The Arrival
Interface is the first interface the
packet sees before entering the
IP stack inbound from the
network, before weak-host or
forwarding are performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an inbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
inbound connection on a
response outbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of
arrival interface conditions, the
next hop class of interface
conditions will have a valid
interface on outbound packets.
Note that this is vailable only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

Filtering condition identifier Description

FWPM_CONDITION_ARRIVAL_TUNNEL_TYPE The encapsulation method used
by a tunnel if the IfType member
of the IP_ADAPTER_ADDRESSES
structure is IF_TYPE_TUNNEL.
The tunnel type is defined by
the IANA. For more information,
see IANAifType-MIB
Definitions and the Windows
SDK IP Helper documentation.
WFP uses the Arrival interface to
match this condition. The Arrival
Interface is the first interface the
packet sees before entering the
IP stack inbound from the
network, before weak-host or
forwarding are performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an inbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
inbound connection on a
response outbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of
arrival interface conditions, the
next hop class of interface
conditions will have a valid
interface on outbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

https://learn.microsoft.com/en-us/windows/win32/api/iptypes/ns-iptypes-ip_adapter_addresses_lh
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

Filtering condition identifier Description

FWPM_CONDITION_IP_ARRIVAL_INTERFACE The LUID for the network
interface that is associated with
the arrival IP address.
WFP uses the Arrival interface to
match this condition. The Arrival
Interface is the first interface the
packet sees before entering the
IP stack inbound from the
network, before weak-host or
forwarding are performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an inbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
inbound connection on a
response outbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of
arrival interface conditions, the
next hop class of interface
conditions will have a valid
interface on outbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/igpupvdev/ns-igpupvdev-_luid

Filtering condition identifier Description

FWPM_CONDITION_NEXTHOP_INTERFACE_INDEX The index of the arrival network
interface, as enumerated by the
network stack.
WFP uses the Next Hop interface
to match this condition. The
Next Hop Interface is the last
interface the packet sees before
leaving the IP stack outbound
towards the network, after
weak-host or forwarding are
performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an outbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
outbound connection on a
response inbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of next
hop interface conditions, the
arrival class of interface
conditions will have a valid
interface on inbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

Filtering condition identifier Description

FWPM_CONDITION_NEXTHOP_INTERFACE_TYPE The type of the arrival network
interface, as defined by the
Internet Assigned Numbers
Authority (IANA). For more
information, see IANAifType-MIB
Definitions .
WFP uses the Next Hop interface
to match this condition. The
Next Hop Interface is the last
interface the packet sees before
leaving the IP stack outbound
towards the network, after
weak-host or forwarding are
performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an outbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
outbound connection on a
response inbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of next
hop interface conditions, the
arrival class of interface
conditions will have a valid
interface on inbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

Filtering condition identifier Description

FWPM_CONDITION_NEXTHOP_TUNNEL_TYPE The encapsulation method used
by a tunnel if the IfType member
of the IP_ADAPTER_ADDRESSES
structure is IF_TYPE_TUNNEL.
The tunnel type is defined by
the IANA. For more information,
see IANAifType-MIB
Definitions and the Windows
SDK IP Helper documentation.
WFP uses the Next Hop interface
to match this condition. The
Next Hop Interface is the last
interface the packet sees before
leaving the IP stack outbound
towards the network, after
weak-host or forwarding are
performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an outbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
outbound connection on a
response inbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of next
hop interface conditions, the
arrival class of interface
conditions will have a valid
interface on inbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

https://learn.microsoft.com/en-us/windows/win32/api/iptypes/ns-iptypes-ip_adapter_addresses_lh
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

Filtering condition identifier Description

FWPM_CONDITION_IP_NEXTHOP_INTERFACE The LUID for the network
interface that is associated with
the arrival IP addres
WFP uses the Next Hop interface
to match this condition. The
Next Hop Interface is the last
interface the packet sees before
leaving the IP stack outbound
towards the network, after
weak-host or forwarding are
performed.
This condition is asymmetric for
reauthorization purposes, as it is
intrinsically an outbound
condition. This means that WFP
will use an empty value on this
condition when reauthorizing an
outbound connection on a
response inbound packet.
To handle reauthorization a
second filter must be used. This
second filter can either permit or
block the empty values, or use a
different condition that will have
a valid value for such
circumstance. In the case of next
hop interface conditions, the
arrival class of interface
conditions will have a valid
interface on inbound packets.
Note that this is available only in
Windows Server 2008 R2,
Windows 7, and later versions of
Windows.

FWPM_CONDITION_IP_LOCAL_ADDRESS The local IP address.

FWPM_CONDITION_IP_REMOTE_ADDRESS The remote IP address.

FWPM_CONDITION_IP_SOURCE_ADDRESS The source IP address for
forwarded packets.

FWPM_CONDITION_IP_DESTINATION_ADDRESS The destination IP address for
forwarded packets.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/igpupvdev/ns-igpupvdev-_luid

Filtering condition identifier Description

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE The local IP address type. The
possible condition values are:
- NlatUnspecified
- NlatUnicast
- NlatAnycast
- NlatMulticast
- NlatBroadcast

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE The destination IP address type.
The possible condition values
are:
- NlatUnspecified
- NlatUnicast
- NlatAnycast
- NlatMulticast
- NlatBroadcast

FWPM_CONDITION_IP_LOCAL_INTERFACE The LUID for the network
interface associated with the
local IP address.

FWPM_CONDITION_IP_FORWARD_INTERFACE The LUID for the network
interface on which the packet
being forwarded is to be sent
out.

FWPM_CONDITION_IP_PROTOCOL The IP protocol number, as
specified in RFC 1700 .

FWPM_CONDITION_IP_LOCAL_PORT The local transport protocol port
number.

FWPM_CONDITION_IP_REMOTE_PORT The remote transport protocol
port number.

FWPM_CONDITION_ICMP_TYPE The ICMP type field, as specified
in RFC 792 .

FWPM_CONDITION_ICMP_CODE The ICMP code field, as specified
in RFC 792 .

https://tools.ietf.org/html/rfc1700
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792

Filtering condition identifier Description

FWPM_CONDITION_EMBEDDED_LOCAL_ADDRESS_TYPE The local IP address type that is
embedded in the ICMP packet.
The possible condition values
are:
- NlatUnspecified
- NlatUnicast
- NlatAnycast
- NlatMulticast
- NlatBroadcast

FWPM_CONDITION_EMBEDDED_REMOTE_ADDRESS The remote IP address that is
embedded in the ICMP packet.

FWPM_CONDITION_EMBEDDED_PROTOCOL The IP protocol number that is
embedded in the ICMP packet,
as specified in RFC 1700 .

FWPM_CONDITION_EMBEDDED_LOCAL_PORT The local transport protocol port
number that is embedded in the
ICMP packet.

FWPM_CONDITION_EMBEDDED_REMOTE_PORT The remote transport protocol
port number that is embedded
in the ICMP packet.

FWPM_CONDITION_FLAGS A bitwise OR of a combination
of filtering condition flags. For
information about the possible
flags, see Filtering Condition
Flags.

https://tools.ietf.org/html/rfc1700

Filtering condition identifier Description

FWPM_CONDITION_DIRECTION The direction of the datagram
traffic or data flow. The possible
condition values are:
- FWP_DIRECTION_INBOUND
- FWP_DIRECTION_OUTBOUND

In datagram data layers and
stream packet layers, this
condition specifies the direction
of the packet.
In stream layers and ALE flow
established layers, this condition
specifies the direction of the
connection (for example, when a
local application initiates the
connection, an inbound packet
has
FWPM_CONDITION_DIRECTION
set to
FWP_DIRECTION_OUTBOUND).

FWPM_CONDITION_INTERFACE_INDEX The index of the network
interface, as enumerated by the
network stack.

FWPM_CONDITION_INTERFACE_TYPE The bus type of the network
interface.

FWPM_CONDITION_SUB_INTERFACE_INDEX The index of the logical network
interface, as enumerated by the
network stack.

FWPM_CONDITION_SOURCE_INTERFACE_INDEX The index of the source network
interface for forwarded packets,
as enumerated by the network
stack.

FWPM_CONDITION_SOURCE_SUB_INTERFACE_INDEX The index of the source logical
network interface for forwarded
packets, as enumerated by the
network stack.

FWPM_CONDITION_DESTINATION_INTERFACE_INDEX The index of the destination
network interface for forwarded
packets, as enumerated by the
network stack.

Filtering condition identifier Description

FWPM_CONDITION_DESTINATION_SUB_INTERFACE_INDEX The index of the destination
logical network interface for
forwarded packets, as
enumerated by the network
stack.

FWPM_CONDITION_ALE_APP_ID The full path of the application.

FWPM_CONDITION_ALE_USER_ID The identification of the local
user.

FWPM_CONDITION_ALE_REMOTE_USER_ID The identification of the remote
user.

FWPM_CONDITION_ALE_REMOTE_MACHINE_ID The identification of the remote
machine.

FWPM_CONDITION_ALE_PROMISCUOUS_MODE The raw socket mode that is
allowed or denied. The possible
condition values are:
- SIO_RCVALL
- SIO_RCVALL_IGMPMCAST
- SIO_RCVALL_MCAST
For a description of these raw
socket modes, see WSAIoctl in
the Microsoft Windows SDK
documentation.

FWPM_CONDITION_ALE_SIO_FIREWALL_SYSTEM_PORT Reserved for internal use.

FWPM_CONDITION_ALE_NAP_CONTEXT Reserved for internal use.

FWPM_CONDITION_REMOTE_USER_TOKEN The identification of the remote
user.

FWPM_CONDITION_RPC_IF_UUID The UUID of the RPC interface.

FWPM_CONDITION_RPC_IF_VERSION The version of the RPC interface.

FWPM_CONDITION_RCP_IF_FLAG Reserved for internal use.

FWPM_CONDITION_DCOM_APP_ID The identification of the COM
application.

FWPM_CONDITION_IMAGE_NAME The name of the application.

https://learn.microsoft.com/en-us/windows/win32/api/winsock2/nf-winsock2-wsaioctl

Filtering condition identifier Description

FWPM_CONDITION_RPC_PROTOCOL The RPC protocol. The possible
condition values are:
- RPC_PROTSEQ_TCP
- RPC_PROTSEQ_HTTP
- RPC_PROTSEQ_NMP

FWPM_CONDITION_RPC_AUTH_TYPE The authentication service type.
For more information about
authentication service types, see
Authentication-Service
Constants in the RPC section of
the Windows SDK
documentation.

FWPM_CONDITION_RPC_AUTH_LEVEL The authentication service level.
For more information about
authentication service levels, see
Authentication-Level Constants
in the RPC section of the
Windows SDK documentation.

FWPM_CONDITION_SEC_ENCRYPT_ALGORITHM The certificate based security
service provider interface (SSPI)
encryption algorithm.

FWPM_CONDITION_SEC_KEY_SIZE The certificate based security
service provider interface (SSPI)
encryption key size.

FWPM_CONDITION_IP_LOCAL_ADDRESS_V4 The local IPv4 address.

FWPM_CONDITION_IP_LOCAL_ADDRESS_V6 The local IPv6 address.

FWPM_CONDITION_PIPE The name of the remote named
pipe.

FWPM_CONDITION_IP_REMOTE_ADDRESS_V4 The remote IPv4 address.

FWPM_CONDITION_IP_REMOTE_ADDRESS_V6 The remote IPv6 address.

FWPM_CONDITION_PROCESS_WITH_RPC_IF_UUID The UUID of the process with
the RPC interface.

FWPM_CONDITION_RPC_EP_VALUE Reserved for internal use.

FWPM_CONDITION_RPC_EP_FLAGS Reserved for internal use.

FWPM_CONDITION_CLIENT_TOKEN The identification of the client
when using RpcProxy.

https://learn.microsoft.com/en-us/windows/desktop/Rpc/authentication-service-constants
https://learn.microsoft.com/en-us/windows/desktop/Rpc/authentication-level-constants

Filtering condition identifier Description

FWPM_CONDITION_RPC_SERVER_NAME The name of the RPC server
when using RpcProxy.

FWPM_CONDITION_RPC_SERVER_PORT The port on the RPC server when
using RpcProxy.

FWPM_CONDITION_RPC_PROXY_AUTH_TYPE The RPC proxy authentication
service type. For more
information about
authentication service types, see
Authentication-Service
Constants in the RPC section of
the Windows SDK
documentation.

FWPM_CONDITION_TUNNEL_TYPE The encapsulation method used
by a tunnel.

FWPM_CONDITION_CLIENT_CERT_KEY_LENGTH The secure socket layer (SSL) key
length in the client certificate.

FWPM_CONDITION_CLIENT_CERT_OID The object identifier (OID) in the
client certificate.

FWPM_CONDITION_INTERFACE_MAC_ADDRESS The physical address of the
sending or receiving network
interface.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_LOCAL_ADDRESS The physical address of the local
network interface. For inbound
traffic this is the destination
MAC address in the frame. For
outbound traffic this is the
source MAC address of the
frame.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

https://learn.microsoft.com/en-us/windows/desktop/Rpc/authentication-service-constants

Filtering condition identifier Description

FWPM_CONDITION_MAC_REMOTE_ADDRESS The physical address of the
remote network interface. For
inbound traffic this is the source
MAC address in the frame. For
outbound traffic this is the
destination MAC address of the
frame.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_ETHER_TYPE The type indicated in the MAC
frame. This value is 0x800 for
IPv4 traffic, 0x86DD for IPv6
traffic or, 0x806 for ARP traffic.
All of the possible values are
defined as NDIS_ETH_TYPE_Xxx
in ntddndis.h.

FWPM_CONDITION_VLAN_ID The identifier of the VLAN in the
ETHERNET SNAP header.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_NDIS_PORT The port number identifying a
miniport adapter port.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_NDIS_MEDIA_TYPE The type of the NDIS medium
specified as one of the
NDIS_MEDIUM enumeration
values.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_NDIS_PHYSICAL_MEDIA_TYPE The type of the physical medium
for the communicating interface
specified as one of the
NDIS_PHYSICAL_MEDIUM
enumeration values.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_medium

Filtering condition identifier Description

FWPM_CONDITION_L2_FLAGS A bitwise OR of a combination
of filtering condition flags for
the MAC layers. For information
about the possible flags, see
Filtering Condition L2 Flags.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_LOCAL_ADDRESS_TYPE The Datalink type of the local
MAC address. This is one of the
values that are defined in the
DL_ADDRESS_TYPE enumeration
in FwpmTypes.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_REMOTE_ADDRESS_TYPE The Datalink type of the remote
MAC address. This is one of the
values that are defined in the
DL_ADDRESS_TYPE enumeration
in FwpmTypes.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_INTERFACE The LUID for the network
interface that is associated with
the local MAC address.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_ALE_PACKAGE_ID The security identifier (SID) of
the AppContainer restricted
package.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_SOURCE_ADDRESS The physical address of the
network interface that created
the MAC frame.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

https://learn.microsoft.com/en-us/windows/win32/api/fwpmtypes/ne-fwpmtypes-dl_address_type
https://learn.microsoft.com/en-us/windows/win32/api/fwpmtypes/ne-fwpmtypes-dl_address_type

Filtering condition identifier Description

FWPM_CONDITION_MAC_DESTINATION_ADDRESS The physical address of the
network interface to which the
frame is destined.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_SOURCE_ADDRESS_TYPE The Datalink type of the MAC
Address for the interface that
created the frame. This is one of
the values that are defined in
the DL_ADDRESS_TYPE
enumeration in FwpmTypes.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_MAC_DESTINATION_ADDRESS_TYPE The Datalink type of the MAC
Address for the interface to
which the frame is destined. This
is one of the values that are
defined in the
DL_ADDRESS_TYPE enumeration
in FwpmTypes.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_IP_SOURCE_PORT The transport protocol source
port number.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_IP_DESTINATION_PORT The transport protocol
destination port number.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_VSWITCH_ID The GUID of the virtual switch.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

https://learn.microsoft.com/en-us/windows/win32/api/fwpmtypes/ne-fwpmtypes-dl_address_type
https://learn.microsoft.com/en-us/windows/win32/api/fwpmtypes/ne-fwpmtypes-dl_address_type

Filtering condition identifier Description

FWPM_CONDITION_VSWITCH_NETWORK_TYPE The type of network that is
associated with the virtual
switch. This is one of the values
that are defined in the
FWP_VSWITCH_NETWORK_TYPE
enumeration in FwpTypes.h.
Note Supported in Windows 8
and later versions of Windows.

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID The GUID of the interface of the
virtual switch that created the
frame.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_ID The GUID of the interface of the
virtual switch to which the frame
is destined.
Note Supported in Windows 8
and later versions of Windows.

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE The type of the virtual switch
interface that created the frame.
This is one of the values that are
defined in the
NDIS_NIC_SWITCH_TYPE
enumeration in Ntddndis.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_TYPE The type of the virtual switch
interface to which the frame is
destined. This is one of the
values that are defined in the
NDIS_NIC_SWITCH_TYPE
enumeration in Ntddndis.h.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID Unique identifier of the vSwitch
source virtual machine.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

https://learn.microsoft.com/en-us/windows/win32/api/fwptypes/ne-fwptypes-fwp_vswitch_network_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_nic_switch_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_nic_switch_type

Filtering condition identifier Description

FWPM_CONDITION_VSWITCH_DESTINATION_VM_ID Unique identifier of the vSwitch
destination virtual machine.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID Unique identifier for the vSwitch
network. Cannot be used in
conjunction with VLAN_IDs.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_ALE_PACKAGE_ID The security identifier (SID) of an
app container.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_ALE_ORIGINAL_APP_ID The original full path of the
application before alteration
from proxying. Note that if
proxying is not involved, then
this will be the same as the
FWPM_CONDITION_ALE_APP_ID.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

FWPM_CONDITION_QM_MODE The quick mode (QM) mode.
Note Supported in Windows 8,
Windows Server 2012, and later
versions of Windows.

Filtering condition flags
Article • 12/06/2022

The filtering condition flags are each represented by a bit field. These flags are defined as follows:

Filtering condition flag Description

FWP_CONDITION_FLAG_IS_LOOPBACK

0x00000001

Indicates that the network traffic is loopback traffic.

This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_IPPACKET_V4
FWPM_LAYER_INBOUND_IPPACKET_V6
FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD
FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD
FWPM_LAYER_OUTBOUND_IPPACKET_V4
FWPM_LAYER_OUTBOUND_IPPACKET_V6
FWPM_LAYER_OUTBOUND_IPPACKET_V4_DISCARD
FWPM_LAYER_OUTBOUND_IPPACKET_V6_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V4
FWPM_LAYER_INBOUND_TRANSPORT_V6
FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V4
FWPM_LAYER_OUTBOUND_TRANSPORT_V6
FWPM_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_DATAGRAM_DATA_V4
FWPM_LAYER_DATAGRAM_DATA_V6
FWPM_LAYER_DATAGRAM_DATA_V4_DISCARD
FWPM_LAYER_DATAGRAM_DATA_V6_DISCARD
FWPM_LAYER_INBOUND_ICMP_ERROR_V4
FWPM_LAYER_INBOUND_ICMP_ERROR_V6
FWPM_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD
FWPM_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD
FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4
FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6
FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD
FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

FWP_CONDITION_FLAG_IS_IPSEC_SECURED Indicates that the network traffic is protected by IPsec.

７ Note

This topic contains filtering condition flags for kernel mode WFP callout drivers. For information
about filtering condition flags that are shared between user mode and kernel mode, or if you are
looking for information about a flag that isn't listed here, see Filtering Condition Flags.

https://learn.microsoft.com/en-us/windows/desktop/FWP/filtering-condition-flags-

0x00000002 This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_TRANSPORT_V4
FWPM_LAYER_INBOUND_TRANSPORT_V6
FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

FWP_CONDITION_FLAG_IS_REAUTHORIZE

0x00000004

Indicates a policy change (as opposed to a new connection).

This flag is applicable at the following filtering layers:
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

This flag is also applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_ALE_BIND_REDIRECT_V4
FWPM_LAYER_ALE_BIND_REDIRECT_V6

FWP_CONDITION_FLAG_IS_WILDCARD_BIND

0x00000008

Indicates that the application specified a wildcard address
when binding to a local network address.

This flag is applicable at the following filtering layers:
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

FWP_CONDITION_FLAG_IS_RAW_ENDPOINT

0x00000010

Indicates that the local endpoint that is sending and receiving
traffic is a raw endpoint.

This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_TRANSPORT_V4
FWPM_LAYER_INBOUND_TRANSPORT_V6
FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V4
FWPM_LAYER_OUTBOUND_TRANSPORT_V6
FWPM_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_DATAGRAM_DATA_V4
FWPM_LAYER_DATAGRAM_DATA_V6
FWPM_LAYER_DATAGRAM_DATA_V4_DISCARD
FWPM_LAYER_DATAGRAM_DATA_V6_DISCARD
FWPM_LAYER_INBOUND_ICMP_ERROR_V4
FWPM_LAYER_INBOUND_ICMP_ERROR_V6
FWPM_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD
FWPM_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

This flag is applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_ALE_CONNECT_REDIRECT_V4
FWPM_LAYER_ALE_CONNECT_REDIRECT_V6
FWPM_LAYER_ALE_BIND_REDIRECT_V4
FWPM_LAYER_ALE_BIND_REDIRECT_V6

FWP_CONDITION_FLAG_IS_FRAGMENT

0x00000020

Indicates that the NET_BUFFER_LIST structure passed to a
callout driver is an IP packet fragment.

This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_IPPACKET_V4
FWPM_LAYER_INBOUND_IPPACKET_V6
FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD
FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWP_CONDITION_FLAG_IS_FRAGMENT_GROUP

0x00000040

Indicates that the NET_BUFFER_LIST structure passed to a
callout driver describes a linked list of packet fragments.

This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_IPPACKET_V4
FWPM_LAYER_INBOUND_IPPACKET_V6
FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD
FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWP_CONDITION_FLAG_IS_IPSEC_NATT_RECLASSIFY

0x00000080

This flag is set when an NAT Traversal (UDP port 4500) packet
is indicated. Once the decapsulation occurs, the flag is set for
the reclassify using the information from the encapsulated
packet.

This flag is applicable at the following filtering layers:
FWPM_LAYER_INBOUND_TRANSPORT_V4
FWPM_LAYER_INBOUND_TRANSPORT_V6
FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V4
FWPM_LAYER_OUTBOUND_TRANSPORT_V6
FWPM_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

FWP_CONDITION_FLAG_REQUIRES_ALE_CLASSIFY

0x00000100

Indicates that the packet has not yet reached the ALE
receive/accept layer
(FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4 or
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6), where its
connection state will be tracked.

This flag is applicable at the following filtering layers:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

FWPM_LAYER_INBOUND_TRANSPORT_V4
FWPM_LAYER_INBOUND_TRANSPORT_V6
FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD
FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD

FWP_CONDITION_FLAG_IS_IMPLICIT_BIND

0x00000200

Indicates that the socket was not explicitly bound. If the
sender calls send without first calling bind, Windows Sockets
performs an implicit bind.

This flag is applicable at the following filtering layers:
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

FWP_CONDITION_FLAG_IS_REASSEMBLED

0x00000400

Indicates that the packet has been reassembled from a group
of fragments.

This flag is applicable at the following filtering layers in
Windows Server 2008, Windows Vista with Service Pack 1
(SP1), and later versions of Windows:
FWPM_LAYER_INBOUND_IPPACKET_V4
FWPM_LAYER_INBOUND_IPPACKET_V6
FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD
FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWP_CONDITION_FLAG_IS_NAME_APP_SPECIFIED

0x00004000

Indicates that the name of the peer machine that the
application is expecting to connect to has been obtained by
calling a function such as WSASetSocketPeerTargetName
and not by using the caching heuristics.

This flag is applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWP_CONDITION_FLAG_IS_PROMISCUOUS

0x00008000

Reserved for future use.

FWP_CONDITION_FLAG_IS_AUTH_FW

0x00010000

Indicates that a packet matches authenticated firewall
policies. Only connections matching the "Allow the
connection if it is secure" firewall rule option will have this
flag set. For more information, see How to Enable
Authenticated Firewall Bypass.

Note This flag is supported only in Windows
Server 2008 and Windows Vista. It is deprecated
in later Windows versions.

https://learn.microsoft.com/en-us/windows/win32/api/ws2tcpip/nf-ws2tcpip-wsasetsocketpeertargetname
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc753463(v=ws.10)

This flag is also applicable at the following filtering layers in
Windows Server 2008, Windows Vista with SP1, and later
versions of Windows:
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

This flag is also applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

FWP_CONDITION_FLAG_IS_RECLASSIFY

0x00020000

This flag is set when the IPV6_PROTECTION_LEVEL socket
option is set on a previously authorized socket.

This flag is applicable at the following filtering layers:
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6
FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_LISTEN_V6
FWPM_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

FWP_CONDITION_FLAG_IS_OUTBOUND_PASS_THRU

0x00040000

Indicates that the packet is weak-host sent, which means that
it isn't leaving this network interface and therefore must be
forwarded to another interface.

This flag is applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_IPFORWARD_V4
FWPM_LAYER_IPFORWARD_V6
FWPM_LAYER_IPFORWARD_V4_DISCARD
FWPM_LAYER_IPFORWARD_V6_DISCARD

FWP_CONDITION_FLAG_IS_INBOUND_PASS_THRU

0x00080000

Indicates that the packet is weak-host received, which means
that it isn't destined for the receiving network interface and
therefore must be forwarded to another interface.

This flag is applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_IPFORWARD_V4
FWPM_LAYER_IPFORWARD_V6
FWPM_LAYER_IPFORWARD_V4_DISCARD
FWPM_LAYER_IPFORWARD_V6_DISCARD

FWP_CONDITION_FLAG_IS_CONNECTION_REDIRECTED

0x00100000

Indicates that the connection was redirected by an
ALE_CONNECT_REDIRECT callout function.

https://learn.microsoft.com/en-us/windows/desktop/WinSock/ipv6-protection-level

This flag is applicable at the following filtering layers in
Windows Server 2008 R2, Windows 7, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWP_CONDITION_FLAG_IS_PROXY_CONNECTION

0x00200000

Indicates that the connection has been proxied, and therefore
previous redirect records exist.

This flag is applicable at the following filtering layers in
Windows Server 2012, Windows 8, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD
FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD
FWPM_LAYER_ALE_CONNECT_REDIRECT_V4
FWPM_LAYER_ALE_CONNECT_REDIRECT_V6

FWP_CONDITION_FLAG_IS_APPCONTAINER_LOOPBACK

0x00400000

Indicates that the traffic is going to and from an
AppContainer that is using loopback.

This flag is applicable at the following filtering layers in
Windows Server 2012, Windows 8, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWP_CONDITION_FLAG_IS_NON_APPCONTAINER_LOOPBACK

0x00800000

Indicates that the traffic is going to and from a standard app
(not an AppContainer) that is using loopback.

This flag is applicable at the following filtering layers in
Windows Server 2012, Windows 8, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWP_CONDITION_FLAG_IS_RESERVED Reserved for future use.

0x01000000

FWP_CONDITION_FLAG_IS_HONORING_POLICY_AUTHORIZE

0x02000000

Indicates that the current classification is being performed to
honor the intention of a redirected Universal Windows app to
connect to a specified host. Such a classification will contain
the same classifiable field values as if the app were never
redirected. The flag also indicates that a future classification
will be invoked to match the effective redirected destination.
If the app is redirected to a proxy service for inspection, it
also means a future classification will be invoked on the proxy
connection. Callouts should use
FWPS_FIELD_ALE_AUTH_CONNECT_V4_ALE_ORIGINAL_APP_ID
to find the appid of the (original) redirected connection.

This flag is applicable at the following filtering layers in
Windows Server 2012, Windows 8, and later versions of
Windows:
FWPM_LAYER_ALE_AUTH_CONNECT_V4
FWPM_LAYER_ALE_AUTH_CONNECT_V6
FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD
FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

Filtering condition L2 flags
Article • 12/15/2021

The filtering condition L2 flags are each represented by a bit field. These flags are
defined as follows:

Filtering condition flag Description

FWP_CONDITION_L2_IS_NATIVE_ETHERNET

0x00000001

Tests if the data passed to a callout driver describes
a native Ethernet packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

Tests if the data passed to a callout driver describes
a WIFI packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_WIFI

0x00000002

Tests if the data passed to a callout driver describes
a native Wi-Fi packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_MOBILE_BROADBAND

0x00000004

Tests if the data passed to a callout driver describes
a mobile broadband packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET

FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_WIFI_DIRECT_DATA

0x00000008

Tests if the data passed to a callout driver describes
a WIFI direct data packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_VM2VM

0x00000010

Tests if the data passed to a callout driver describes
a native virtual machine to virtual machine packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_MALFORMED_PACKET

0x00000020

Tests if the data passed to a callout driver describes
a malformed Ethernet packet.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IS_IP_FRAGMENT_GROUP

0x00000040

Tests if the data passed to a callout driver describes
a part of an IP fragment group.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWP_CONDITION_L2_IF_CONNECTOR_PRESENT

0x00000080

Tests if a network interface connector is present on
the underlying network adapter.

This flag should be set for a physical adapter.

This flag is applicable at the following filtering layers
in Windows 8, Windows Server 2012, and later
versions of Windows:
FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET
FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE
FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

Filtering condition data types
Article • 12/15/2021

The data type for the condition value for each filtering condition is specified as an
FWP_DATA_TYPE value as follows.

Filtering condition identifier Condition value data type

FWPM_CONDITION_IP_LOCAL_ADDRESS For an IPv4 address:
FWP_V4_ADDR_MASK or
FWP_UINT32

For an IPv6 address:
FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_IP_REMOTE_ADDRESS For an IPv4 address:
FWP_V4_ADDR_MASK or
FWP_UINT32

For an IPv6 address:
FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_IP_SOURCE_ADDRESS For an IPv4 address:
FWP_V4_ADDR_MASK or
FWP_UINT32

For an IPv6 address:
FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_IP_DESTINATION_ADDRESS For an IPv4 address:
FWP_V4_ADDR_MASK or
FWP_UINT32

For an IPv6 address:
FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_IP_LOCAL_INTERFACE FWP_UINT64

FWPM_CONDITION_IP_FORWARD_INTERFACE FWP_UINT64

FWPM_CONDITION_IP_PROTOCOL FWP_UINT8

FWPM_CONDITION_IP_LOCAL_PORT FWP_UINT16

FWPM_CONDITION_IP_REMOTE_PORT FWP_UINT16

FWPM_CONDITION_ICMP_TYPE FWP_UINT16

FWPM_CONDITION_ICMP_CODE FWP_UINT16

FWPM_CONDITION_EMBEDDED_LOCAL_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_EMBEDDED_REMOTE_ADDRESS For an IPv4 address:
FWP_V4_ADDR_MASK or
FWP_UINT32

For an IPv6 address:
FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_EMBEDDED_PROTOCOL FWP_UINT8

FWPM_CONDITION_EMBEDDED_LOCAL_PORT FWP_UINT16

FWPM_CONDITION_EMBEDDED_REMOTE_PORT FWP_UINT16

FWPM_CONDITION_FLAGS FWP_UINT32

FWPM_CONDITION_DIRECTION FWP_UINT32

FWPM_CONDITION_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_SUB_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_SOURCE_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_SOURCE_SUB_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_DESTINATION_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_DESTINATION_SUB_INTERFACE_INDEX FWP_UINT32

FWPM_CONDITION_ALE_APP_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_ALE_USER_ID FWP_SECURITY_DESCRIPTOR_TYPE

FWPM_CONDITION_ALE_REMOTE_USER_ID FWP_SECURITY_DESCRIPTOR_TYPE

FWPM_CONDITION_ALE_REMOTE_MACHINE_ID FWP_SECURITY_DESCRIPTOR_TYPE

FWPM_CONDITION_ALE_PROMISCUOUS_MODE FWP_UNIT32

FWPM_CONDITION_ALE_SIO_FIREWALL_SYSTEM_PORT FWP_UINT32

FWPM_CONDITION_ALE_NAP_CONTEXT FWP_UINT32

FWPM_CONDITION_REMOTE_USER_TOKEN FWP_SECURITY_DESCRIPTOR_TYPE

FWPM_CONDITION_RPC_IF_UUID FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_RPC_IF_VERSION FWP_UINT16

FWPM_CONDITION_RPC_IF_FLAG FWP_UINT32

FWPM_CONDITION_DCOM_APP_ID FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_IMAGE_NAME FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_RPC_PROTOCOL FWP_UINT8

FWPM_CONDITION_RPC_AUTH_TYPE FWP_UINT8

FWPM_CONDITION_RPC_AUTH_LEVEL FWP_UINT8

FWPM_CONDITION_SEC_ENCRYPT_ALGORITHM FWP_UINT32

FWPM_CONDITION_SEC_KEY_SIZE FWP_UINT32

FWPM_CONDITION_IP_LOCAL_ADDRESS_V4 FWP_V4_ADDR_MASK or
FWP_UINT32

FWPM_CONDITION_IP_LOCAL_ADDRESS_V6 FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_PIPE FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_IP_REMOTE_ADDRESS_V4 FWP_V4_ADDR_MASK or
FWP_UINT32

FWPM_CONDITION_IP_REMOTE_ADDRESS_V6 FWP_V6_ADDR_MASK or
FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_PROCESS_WITH_RPC_IF_UUID FWP_BYTE_ARRAY16_TYPE

FWPM_CONDITION_RPC_EP_VALUE FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_RPC_EP_FLAGS FWP_UINT32

FWPM_CONDITION_CLIENT_TOKEN FWP_SECURITY_DESCRIPTOR_TYPE

FWPM_CONDITION_RPC_SERVER_NAME FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_RPC_SERVER_PORT FWP_UINT16

FWPM_CONDITION_RPC_PROXY_AUTH_TYPE FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_CLIENT_CERT_KEY_LENGTH FWP_UINT32

FWPM_CONDITION_CLIENT_CERT_OID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_INTERFACE_MAC_ADDRESS FWP_BYTE_ARRAY6_TYPE

FWPM_CONDITION_LOCAL_MAC_ADDRESS FWP_BYTE_ARRAY6_TYPE

FWPM_CONDITION_REMOTE_MAC_ADDRESS FWP_BYTE_ARRAY6_TYPE

FWPM_CONDITION_ETHER_TYPE FWP_UINT16

FWPM_CONDITION_VLAN_ID FWP_UINT16

FWPM_CONDITION_NDIS_PORT FWP_UINT16

FWPM_CONDITION_NDIS_MEDIA_TYPE FWP_UINT16

FWPM_CONDITION_NDIS_PHYSICAL_MEDIA_TYPE FWP_UINT16

FWPM_CONDITION_L2_FLAGS FWP_UINT16

FWPM_CONDITION_LOCAL_MAC_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_REMOTE_MAC_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_INTERFACE FWP_UINT64

FWPM_CONDITION_PACKAGE_ID FWP_SID

FWPM_CONDITION_MAC_SOURCE_ADDRESS FWP_BYTE_ARRAY6_TYPE

FWPM_CONDITION_MAC_DESTINATION_ADDRESS FWP_BYTE_ARRAY6_TYPE

FWPM_CONDITION_MAC_SOURCE_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_MAC_DESTINATION_ADDRESS_TYPE FWP_UINT8

FWPM_CONDITION_IP_SOURCE_PORT FWP_UINT16

FWPM_CONDITION_IP_DESTINATION_PORT FWP_UINT16

FWPM_CONDITION_VSWITCH_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_VSWITCH_NETWORK_TYPE FWP_UINT8

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE FWP_UINT8

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_TYPE FWP_UINT8

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_VSWITCH_DESTINATION_VM_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID FWP_UINT16

FWPM_CONDITION_ALE_PACKAGE_ID FWP_SID

FWPM_CONDITION_ALE_ORIGINAL_APP_ID FWP_BYTE_BLOB_TYPE

FWPM_CONDITION_QM_MODE FWP_UINT32

Filtering conditions available at each filtering
layer
Article • 12/15/2021

The filtering conditions that are available at each filtering layer are as follows.

Management filtering layer identifier Available filtering conditions

FWPM_LAYER_INBOUND_IPPACKET_V4

FWPM_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPM_LAYER_INBOUND_IPPACKET_V6

FWPM_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_OUTBOUND_IPPACKET_V4

FWPM_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPM_LAYER_OUTBOUND_IPPACKET_V6

FWPM_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_IPFORWARD_V4

FWPM_LAYER_IPFORWARD_V4_DISCARD

FWPM_LAYER_IPFORWARD_V6

FWPM_LAYER_IPFORWARD_V6_DISCARD

FWPM_CONDITION_IP_SOURCE_ADDRESS

FWPM_CONDITION_IP_DESTINATION_ADDRESS

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

７ Note

The V4 and V6 suffixes at the end of the layer identifiers indicate whether the layer is located in the
IPv4 network stack or in the IPv6 network stack.

FWPM_CONDITION_IP_FORWARD_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_SOURCE_INTERFACE_INDEX

FWPM_CONDITION_SOURCE_SUB_INTERFACE_INDEX

FWPM_CONDITION_DESTINATION_INTERFACE_INDEX

FWPM_CONDITION_DESTINATION_SUB_INTERFACE_INDEX

FWPM_LAYER_INBOUND_TRANSPORT_V4

FWPM_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPM_LAYER_INBOUND_TRANSPORT_V6

FWPM_LAYER_INBOUND_TRANSPORT_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_OUTBOUND_TRANSPORT_V4

FWPM_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPM_LAYER_OUTBOUND_TRANSPORT_V6

FWPM_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_STREAM_V4

FWPM_LAYER_STREAM_V4_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_LAYER_STREAM_V6

FWPM_LAYER_STREAM_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_DIRECTION

FWPM_LAYER_DATAGRAM_DATA_V4

FWPM_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPM_LAYER_DATAGRAM_DATA_V6

FWPM_LAYER_DATAGRAM_DATA_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_DIRECTION

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_INBOUND_ICMP_ERROR_V4

FWPM_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD

FWPM_LAYER_INBOUND_ICMP_ERROR_V6

FWPM_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_ARRIVAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ICMP_TYPE

FWPM_CONDITION_ICMP_CODE

FWPM_CONDITION_EMBEDDED_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_EMBEDDED_REMOTE_ADDRESS

FWPM_CONDITION_EMBEDDED_PROTOCOL

FWPM_CONDITION_EMBEDDED_LOCAL_PORT

FWPM_CONDITION_EMBEDDED_REMOTE_PORT

FWPM_CONDITION_ARRIVAL_INTERFACE_INDEX

FWPM_CONDITION_ARRIVAL_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

Note In Windows Vista, this flag was called
FWPM_CONDITION_ARRIVAL_SUB_INTERFACE_INDEX. In
Windows Vista with Service Pack 1 (SP1) and later, both names
are valid.

FWPM_CONDITION_ARRIVAL_TUNNEL_TYPE

FWPM_CONDITION_INTERFACE_INDEX

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_INTERFACE_INDEX. In
Windows Vista with SP1 and later, both names are valid.

FWPM_CONDITION_INTERFACE_TYPE

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_INTERFACE_TYPE. In
Windows Vista with SP1 and later, both names are valid.

FWPM_CONDITION_TUNNEL_TYPE

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_TUNNEL_TYPE. In Windows Vista
with SP1 and later, both names are valid.

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6

FWPM_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ICMP_TYPE

FWPM_CONDITION_ICMP_CODE

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_ALE_PROMISCUOUS_MODE

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_TUNNEL_TYPE

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_AUTH_LISTEN_V4

FWPM_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPM_LAYER_ALE_AUTH_LISTEN_V6

FWPM_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_TUNNEL_TYPE

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6

FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_IP_ARRIVAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_ALE_REMOTE_USER_ID

FWPM_CONDITION_ALE_REMOTE_MACHINE_ID

FWPM_CONDITION_ALE_SIO_FIREWALL_SYSTEM_PORT

FWPM_CONDITION_ALE_NAP_CONTEXT

FWPM_CONDITION_ARRIVAL_INTERFACE_INDEX

FWPM_CONDITION_ARRIVAL_INTERFACE_TYPE

FWPM_CONDITION_SUB_INTERFACE_INDEX

Note In Windows Vista, this flag was called
FWPM_CONDITION_ARRIVAL_SUB_INTERFACE_INDEX. In
Windows Vista with SP1 and later, both names are valid.

FWPM_CONDITION_ARRIVAL_TUNNEL_TYPE

FWPM_CONDITION_INTERFACE_INDEX

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_INTERFACE_INDEX. In
Windows Vista with SP1 and later, both names are valid.

FWPM_CONDITION_INTERFACE_TYPE

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_INTERFACE_TYPE. In
Windows Vista with SP1 and later, both names are valid.

FWPM_CONDITION_TUNNEL_TYPE

Note In Windows Vista, this flag was called
FWPM_CONDITION_LOCAL_TUNNEL_TYPE. In Windows Vista
with SP1 and later, both names are valid.

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_AUTH_CONNECT_V4

FWPM_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPM_LAYER_ALE_AUTH_CONNECT_V6

FWPM_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_ALE_REMOTE_USER_ID

FWPM_CONDITION_ALE_REMOTE_MACHINE_ID

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_TUNNEL_TYPE

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_DIRECTION

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_ALE_REMOTE_USER_ID

FWPM_CONDITION_ALE_REMOTE_MACHINE_ID

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_TUNNEL_TYPE

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_NAME_RESOLUTION_CACHE_V4

FWPM_LAYER_NAME_RESOLUTION_CACHE_V6

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_PEER_NAME

FWPM_LAYER_ALE_RESOURCE_RELEASE_V4

FWPM_LAYER_ALE_RESOURCE_RELEASE_V6

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V4

FWPM_LAYER_ALE_ENDPOINT_CLOSURE_V6

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_CONNECT_REDIRECT_V4

FWPM_LAYER_ALE_CONNECT_REDIRECT_V6

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_ORIGINAL_APP_ID

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_ALE_BIND_REDIRECT_V4

FWPM_LAYER_ALE_BIND_REDIRECT_V6

FWPM_CONDITION_ALE_APP_ID

FWPM_CONDITION_ALE_USER_ID

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_FLAGS

FWPM_CONDITION_ALE_PACKAGE_ID

FWPM_LAYER_STREAM_PACKET_V4

FWPM_LAYER_STREAM_PACKET_V6

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_CONDITION_IP_LOCAL_INTERFACE

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_SUB_INTERFACE_INDEX

FWPM_CONDITION_DIRECTION

FWPM_CONDITION_FLAGS

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_TUNNEL_TYPE

FWPM_LAYER_INBOUND_MAC_FRAME_ETHERNET

FWPM_LAYER_OUTBOUND_MAC_FRAME_ETHERNET

FWPM_CONDITION_INTERFACE_MAC_ADDRESS

FWPM_CONDITION_MAC_LOCAL_ADDRESS

FWPM_CONDITION_MAC_REMOTE_ADDRESS

FWPM_CONDITION_MAC_LOCAL_ADDRESS_TYPE

FWPM_CONDITION_MAC_REMOTE_ADDRESS_TYPE

FWPM_CONDITION_ETHER_TYPE

FWPM_CONDITION_VLAN_ID

FWPM_CONDITION_INTERFACE

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_NDIS_PORT

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE

FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE

FWPM_CONDITION_NDIS_MEDIA_TYPE

FWPM_CONDITION_NDIS_PHYSICAL_MEDIA_TYPE

FWPM_CONDITION_INTERFACE

FWPM_CONDITION_INTERFACE_TYPE

FWPM_CONDITION_INTERFACE_INDEX

FWPM_CONDITION_NDIS_PORT

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_INGRESS_VSWITCH_ETHERNET FWPM_CONDITION_MAC_SOURCE_ADDRESS

FWPM_CONDITION_MAC_SOURCE_ADDRESS_TYPE

FWPM_CONDITION_MAC_DESTINATION_ADDRESS

FWPM_CONDITION_MAC_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_ETHER_TYPE

FWPM_CONDITION_VLAN_ID

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID

FWPM_CONDITION_VSWITCH_ID

FWPM_CONDITION_VSWITCH_NETWORK_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_EGRESS_VSWITCH_ETHERNET FWPM_CONDITION_MAC_SOURCE_ADDRESS

FWPM_CONDITION_MAC_SOURCE_ADDRESS_TYPE

FWPM_CONDITION_MAC_DESTINATION_ADDRESS

FWPM_CONDITION_MAC_DESTINATION_ADDRESS_TYPE

FWPM_CONDITION_ETHER_TYPE

FWPM_CONDITION_VLAN_ID

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID

FWPM_CONDITION_VSWITCH_ID

FWPM_CONDITION_VSWITCH_NETWORK_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_ID

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_DESTINATION_VM_ID

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_INGRESS_VSWITCH_TRANSPORT_V4

FWPM_LAYER_INGRESS_VSWITCH_TRANSPORT_V6

FWPM_CONDITION_IP_SOURCE_ADDRESS

FWPM_CONDITION_IP_DESTINATION_ADDRESS

FWPM_CONDITION_P_PROTOCOL

FWPM_CONDITION_IP_SOURCE_PORT

FWPM_CONDITION_IP_DESTINATION_PORT

FWPM_CONDITION_VLAN_ID

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID

FWPM_CONDITION_VSWITCH_ID

FWPM_CONDITION_VSWITCH_NETWORK_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_EGRESS_VSWITCH_TRANSPORT_V4

FWPM_LAYER_EGRESS_VSWITCH_TRANSPORT_V6

FWPM_CONDITION_IP_SOURCE_ADDRESS

FWPM_CONDITION_IP_DESTINATION_ADDRESS

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_SOURCE_PORT

FWPM_CONDITION_IP_DESTINATION_PORT

FWPM_CONDITION_VLAN_ID

FWPM_CONDITION_VSWITCH_TENANT_NETWORK_ID

FWPM_CONDITION_VSWITCH_ID

FWPM_CONDITION_VSWITCH_NETWORK_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_ID

FWPM_CONDITION_VSWITCH_SOURCE_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_SOURCE_VM_ID

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_ID

FWPM_CONDITION_VSWITCH_DESTINATION_INTERFACE_TYPE

FWPM_CONDITION_VSWITCH_DESTINATION_VM_ID

FWPM_CONDITION_L2_FLAGS

FWPM_LAYER_IPSEC_KM_DEMUX_V4

FWPM_LAYER_IPSEC_KM_DEMUX_V6

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_LAYER_IPSEC_V4

FWPM_LAYER_IPSEC_V6

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_CONDITION_IP_PROTOCOL

FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_IP_REMOTE_PORT

FWPM_LAYER_IKEEXT_V4

FWPM_LAYER_IKEEXT_V6

FWPM_CONDITION_IP_LOCAL_ADDRESS

FWPM_CONDITION_IP_REMOTE_ADDRESS

FWPM_LAYER_RPC_UM FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_REMOTE_USER_TOKEN

FWPM_CONDITION_RPC_IF_UUID

FWPM_CONDITION_RPC_IF_VERSION

FWPM_CONDITION_RPC_PROTOCOL

FWPM_CONDITION_RPC_IF_FLAG

FWPM_CONDITION_DCOM_APP_ID

FWPM_CONDITION_IMAGE_NAME

FWPM_CONDITION_RPC_AUTH_TYPE

FWPM_CONDITION_RPC_AUTH_LEVEL

FWPM_CONDITION_SEC_ENCRYPT_ALGORITHM

FWPM_CONDITION_SEC_KEY_SIZE

FWPM_CONDITION_IP_LOCAL_ADDRESS_V4

FWPM_CONDITION_IP_LOCAL_ADDRESS_V6

FWPM_CONDITION_PIPE

FWPM_CONDITION_IP_REMOTE_ADDRESS_V4

FWPM_CONDITION_IP_REMOTE_ADDRESS_V6

FWPM_LAYER_RPC_EPMAP FWPM_CONDITION_IP_LOCAL_PORT

FWPM_CONDITION_REMOTE_USER_TOKEN

FWPM_CONDITION_RPC_IF_UUID

FWPM_CONDITION_RPC_IF_VERSION

FWPM_CONDITION_RPC_PROTOCOL

FWPM_CONDITION_RPC_AUTH_TYPE

FWPM_CONDITION_RPC_AUTH_LEVEL

FWPM_CONDITION_SEC_ENCRYPT_ALGORITHM

FWPM_CONDITION_SEC_KEY_SIZE

FWPM_CONDITION_IP_LOCAL_ADDRESS_V4

FWPM_CONDITION_IP_LOCAL_ADDRESS_V6

FWPM_CONDITION_PIPE

FWPM_CONDITION_IP_REMOTE_ADDRESS_V4

FWPM_CONDITION_IP_REMOTE_ADDRESS_V6

FWPM_LAYER_RPC_EP_ADD FWPM_CONDITION_RPC_PROTOCOL

FWPM_CONDITION_PROCESS_WITH_RPC_IF_UUID

FWPM_CONDITION_RPC_EP_VALUE

FWPM_CONDITION_RPC_EP_FLAGS

FWPM_LAYER_RPC_PROXY_CONN FWPM_CONDITION_CLIENT_TOKEN

FWPM_CONDITION_RPC_SERVER_NAME

FWPM_CONDITION_RPC_SERVER_PORT

FWPM_CONDITION_RPC_PROXY_AUTH_TYPE

FWPM_CONDITION_CLIENT_CERT_KEY_LENGTH

FWPM_CONDITION_CLIENT_CERT_OID

FWPM_LAYER_RPC_PROXY_IF FWPM_CONDITION_RPC_IF_UUID

FWPM_CONDITION_RPC_IF_VERSION

FWPM_CONDITION_CLIENT_TOKEN

FWPM_CONDITION_RPC_SERVER_NAME

FWPM_CONDITION_RPC_SERVER_PORT

FWPM_CONDITION_RPC_PROXY_AUTH_TYPE

FWPM_CONDITION_CLIENT_CERT_KEY_LENGTH

FWPM_CONDITION_CLIENT_CERT_OID

FWPM_LAYER_KM_AUTHORIZATION FWPM_CONDITION_REMOTE_ID

FWPM_CONDITION_AUTHENTICATION_TYPE

FWPM_CONDITION_KM_TYPE

FWPM_CONDITION_DIRECTION

FWPM_CONDITION_KM_MODE

FWPM_CONDITION_IPSEC_POLICY_KEY

FWPM_CONDITION_KM_AUTH_NAP_CONTEXT

Metadata field identifiers
Article • 12/15/2021

The metadata field identifiers are each represented by a bit-field. These identifiers are defined
as follows:

Metadata field identifier Description

FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED The inbound packet will also be indicated
to the
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V4
and
FWPM_LAYER_ALE_AUTH_RECV_ACCEPT_V6
filtering layers. Note: Supported in
Windows Server 2008, Windows Vista with
Service Pack 1 (SP1), and later.

FWPS_METADATA_FIELD_COMPARTMENT_ID The identifier of the routing compartment
in which the packet was received or is
being sent.

FWPS_METADATA_FIELD_COMPLETION_HANDLE The completion handle used to pend the
current filtering operation.

FWPS_METADATA_FIELD_DESTINATION_INTERFACE_INDEX The index of the network interface where
the outgoing packet is to be sent.

FWPS_METADATA_FIELD_DESTINATION_PREFIX The destination IPV4 or IPV6 address and
subnet mask for the outgoing packets.
Note: Supported starting with Windows 7.

FWPS_METADATA_FIELD_DISCARD_REASON The reason that the data was discarded.

FWPS_METADATA_FIELD_ETHER_FRAME_LENGTH This metadata field identifier is not
currently supported.

FWPS_METADATA_FIELD_FLOW_HANDLE The handle for the data flow.

FWPS_METADATA_FIELD_FORWARD_LAYER_INBOUND_PASS_THRU The packet that traverses the
FWPM_LAYER_IPFORWARD_V4 or
FWPM_LAYER_IPFORWARD_V6 forward
layer is locally destined (its destination
matches an address that is assigned to an
interface of the host). Note: Supported in
Windows Server 2008, Windows Vista with
SP1, and later.

Metadata field identifier Description

FWPS_METADATA_FIELD_FORWARD_LAYER_OUTBOUND_PASS_THRU The packet that traverses the
FWPM_LAYER_IPFORWARD_V4 or
FWPM_LAYER_IPFORWARD_V6 forward
layer originated locally. Note: Supported
in Windows Server 2008, Windows Vista
with SP1, and later.

FWPS_METADATA_FIELD_FRAGMENT_DATA The fragment data for a received packet
fragment.

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE The Identifier and Sequence Number fields
of an ICMP Echo Request or Echo Reply
packet. Note: Supported starting with
Windows 7.

FWPS_METADATA_FIELD_IP_HEADER_SIZE The size of the IP header.

FWPS_METADATA_FIELD_LOCAL_REDIRECT_TARGET_PID The Process ID that a connection was
redirected to. Note: Supported starting
with Windows 7.

FWPS_METADATA_FIELD_ORIGINAL_DESTINATION A SOCKADDR_STORAGE structure that
indicate the packet's original destination.
Note: Supported starting with Windows 7.

FWPS_METADATA_FIELD_PACKET_DIRECTION The direction of network traffic (inbound or
outbound).

FWPS_METADATA_FIELD_PACKET_SYSTEM_CRITICAL Reserved for system use. Do not use.
Note: Supported in Windows Server 2008,
Windows Vista with SP1, and later.

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE The handle of the endpoint's parent socket.
Note: Supported starting with Windows 7.

FWPS_METADATA_FIELD_PATH_MTU The path maximum transmission unit (path
MTU) for an outgoing packet.

FWPS_METADATA_FIELD_PROCESS_ID The process ID for the process that owns
the endpoint.

FWPS_METADATA_FIELD_PROCESS_PATH The full path to the process that owns the
endpoint.

FWPS_METADATA_FIELD_REDIRECT_RECORD_HANDLE The redirect records handle indicated to
ALE_CONNECT_REDIRECT callout by the
classify metadata. Note: Supported
starting with Windows 8.

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID The remote scope identifier to be used in
outbound transport layer injection.

FWPS_METADATA_FIELD_RESERVED Reserved for system use. Do not use.

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ms740504(v=vs.85)

Metadata field identifier Description

FWPS_METADATA_FIELD_SOURCE_INTERFACE_INDEX The index of the network interface where
the incoming packet was received.

FWPS_METADATA_FIELD_SUB_PROCESS_TAG Reserved for system use.

FWPS_METADATA_FIELD_SYSTEM_FLAGS System flags that are used internally by the
filter engine.

FWPS_METADATA_FIELD_TOKEN The token used to validate the permissions
for the user.

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA An optional socket control data object.

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE The handle for the end of the packet to be
injected into the outbound transport layer.

FWPS_METADATA_FIELD_TRANSPORT_HEADER_INCLUDE_HEADER The IP header if the packet is sent from a
raw socket. Note: Supported in Windows
Server 2008, Windows Vista with SP1, and
later.

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE The size of the transport header.

Metadata field L2 identifiers
Article • 12/15/2021

Windows 8 and Windows Server 2012 introduce metadata field L2 identifiers.

The metadata field L2 identifiers are each represented by a bit field. These identifiers are
defined as follows:

Metadata field identifier Description

FWPS_L2_METADATA_FIELD_ETHERNET_MAC_HEADER_SIZE The size, in bytes, of the MAC
header.

FWPS_L2_METADATA_FIELD_VSWITCH_DESTINATION_PORT_ID The identifier for the destination
port on the virtual switch.

FWPS_L2_METADATA_FIELD_VSWITCH_PACKET_CONTEXT A HANDLE to the virtual switch
packet context.

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_NIC_INDEX The index for the source NIC on
the virtual switch.

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_PORT_ID The identifier for the source port
on the virtual switch.

FWPS_L2_METADATA_FIELD_WIFI_OPERATION_MODE The current Native 802.11
operation mode.

Metadata field identifiers

Metadata fields at each filtering layer

FWPS_INCOMING_METADATA_VALUES0

Related topics

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_incoming_metadata_values0_

Metadata fields at each filtering layer
Article • 12/15/2021

The following table lists the possible metadata fields that are available by layer. Some fields are
available only under specific circumstances. For example, the metadata field
FWPS_METADATA_FIELD_FRAGMENT_DATA is available for inbound IP packet layers only if the packet is
fragmented. Layers that are not listed in the table do not have any available metadata fields.

Run-time filtering layer identifier Metadata fields

FWPS_LAYER_INBOUND_IPPACKET_V4

FWPS_LAYER_INBOUND_IPPACKET_V6

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_FRAGMENT_DATA

FWPS_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_FRAGMENT_DATA

FWPS_LAYER_OUTBOUND_IPPACKET_V4

FWPS_LAYER_OUTBOUND_IPPACKET_V6

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_FRAGMENT_DATA

FWPS_METADATA_FIELD_PATH_MTU

FWPS_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_FRAGMENT_DATA

FWPS_METADATA_FIELD_PATH_MTU

FWPS_LAYER_IPFORWARD_V4

FWPS_LAYER_IPFORWARD_V6

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_LAYER_IPFORWARD_V4_DISCARD

FWPS_LAYER_IPFORWARD_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_LAYER_INBOUND_TRANSPORT_V4

FWPS_LAYER_INBOUND_TRANSPORT_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_INBOUND_TRANSPORT_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ALE_CLASSIFY_REQUIRED

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_OUTBOUND_TRANSPORT_V4

FWPS_LAYER_OUTBOUND_TRANSPORT_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_STREAM_V4

FWPS_LAYER_STREAM_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_LAYER_STREAM_V4_DISCARD

FWPS_LAYER_STREAM_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_LAYER_DATAGRAM_DATA_V4

FWPS_LAYER_DATAGRAM_DATA_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPS_LAYER_DATAGRAM_DATA_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_LAYER_INBOUND_ICMP_ERROR_V4

FWPS_LAYER_INBOUND_ICMP_ERROR_V6

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_LISTEN_V4

FWPS_LAYER_ALE_AUTH_LISTEN_V6

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPS_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PACKET_DIRECTION

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PACKET_DIRECTION

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_CONNECT_V4

FWPS_LAYER_ALE_AUTH_CONNECT_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_PACKET_DIRECTION

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_COMPLETION_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_METADATA_FIELD_PACKET_DIRECTION

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

FWPS_METADATA_FIELD_DISCARD_REASON

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_PROCESS_PATH

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_RESERVED

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_INBOUND_MAC_FRAME_802_3 FWPS_METADATA_FIELD_ETHER_FRAME_LENGTH

FWPS_LAYER_ALE_RESOURCE_RELEASE_V4

FWPS_LAYER_ALE_RESOURCE_RELEASE_V6

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_CONNECT_REDIRECT_V4

FWPS_LAYER_ALE_CONNECT_REDIRECT_V6

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_PARENT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_ICMP_ID_AND_SEQUENCE

FWPS_METADATA_FIELD_LOCAL_REDIRECT_TARGET_PID

FWPS_METADATA_FIELD_REDIRECT_RECORD_HANDLE

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_ALE_BIND_REDIRECT_V4

FWPS_LAYER_ALE_BIND_REDIRECT_V6

FWPS_METADATA_FIELD_TOKEN

FWPS_METADATA_FIELD_PROCESS_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_LOCAL_REDIRECT_TARGET_PID

FWPS_METADATA_FIELD_SUB_PROCESS_TAG

FWPS_LAYER_STREAM_PACKET_V4

FWPS_LAYER_STREAM_PACKET_V6

FWPS_METADATA_FIELD_FLOW_HANDLE

FWPS_METADATA_FIELD_IP_HEADER_SIZE

FWPS_METADATA_FIELD_SYSTEM_FLAGS

FWPS_METADATA_FIELD_TRANSPORT_HEADER_SIZE

FWPS_METADATA_FIELD_COMPARTMENT_ID

FWPS_METADATA_FIELD_TRANSPORT_ENDPOINT_HANDLE

FWPS_METADATA_FIELD_TRANSPORT_CONTROL_DATA

FWPS_METADATA_FIELD_REMOTE_SCOPE_ID

FWPS_LAYER_INGRESS_VSWITCH_ETHERNET

FWPS_LAYER_EGRESS_VSWITCH_ETHERNET

FWPS_L2_METADATA_FIELD_ETHERNET_MAC_HEADER_SIZE

FWPS_L2_METADATA_FIELD_WIFI_OPERATION_MODE

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_PORT_ID

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_NIC_INDEX

FWPS_L2_METADATA_FIELD_VSWITCH_PACKET_CONTEXT

FWPS_L2_METADATA_FIELD_VSWITCH_DESTINATION_PORT_ID

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V4

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V6

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V4

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V6

FWPS_L2_METADATA_FIELD_WIFI_OPERATION_MODE

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_PORT_ID

FWPS_L2_METADATA_FIELD_VSWITCH_SOURCE_NIC_INDEX

FWPS_L2_METADATA_FIELD_VSWITCH_PACKET_CONTEXT

FWPS_L2_METADATA_FIELD_VSWITCH_DESTINATION_PORT_ID

Data field identifiers
Article • 12/15/2021

The run-time filtering layers are associated with data field identifiers. These identifiers represent
a set of constant values that are declared as FWPS_FIELDS_XXX enumerations in Fwpsk.h.

The following table lists the run-time filtering layers and the associated data field
enumerations.

Run-time filtering layer Data field enumeration

FWPS_LAYER_INBOUND_IPPACKET_V4
FWPS_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPS_FIELDS_INBOUND_IPPACKET_V4

FWPS_LAYER_INBOUND_IPPACKET_V6
FWPS_LAYER_INBOUND_IPPACKET_V6_DISCARD

FWPS_FIELDS_INBOUND_IPPACKET_V6

FWPS_LAYER_OUTBOUND_IPPACKET_V4
FWPS_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPS_FIELDS_OUTBOUND_IPPACKET_V4

FWPS_LAYER_OUTBOUND_IPPACKET_V6
FWPS_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

FWPS_FIELDS_OUTBOUND_IPPACKET_V6

FWPS_LAYER_IPFORWARD_V4
FWPS_LAYER_IPFORWARD_V4_DISCARD

FWPS_FIELDS_IPFORWARD_V4

FWPS_LAYER_IPFORWARD_V6
FWPS_LAYER_IPFORWARD_V6_DISCARD

FWPS_FIELDS_IPFORWARD_V6

FWPS_LAYER_INBOUND_TRANSPORT_V4
FWPS_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPS_FIELDS_INBOUND_TRANSPORT_V4

FWPS_LAYER_INBOUND_TRANSPORT_V6
FWPS_LAYER_INBOUND_TRANSPORT_V6_DISCARD

FWPS_FIELDS_INBOUND_TRANSPORT_V6

FWPS_LAYER_OUTBOUND_TRANSPORT_V4
FWPS_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPS_FIELDS_OUTBOUND_TRANSPORT_V4

FWPS_LAYER_OUTBOUND_TRANSPORT_V6
FWPS_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

FWPS_FIELDS_OUTBOUND_TRANSPORT_V6

FWPS_LAYER_STREAM_V4
FWPS_LAYER_STREAM_V4_DISCARD

FWPS_FIELDS_STREAM_V4

FWPS_LAYER_STREAM_V6
FWPS_LAYER_STREAM_V6_DISCARD

FWPS_FIELDS_STREAM_V6

FWPS_LAYER_DATAGRAM_DATA_V4
FWPS_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPS_FIELDS_DATAGRAM_DATA_V4

FWPS_LAYER_DATAGRAM_DATA_V6
FWPS_LAYER_DATAGRAM_DATA_V6_DISCARD

FWPS_FIELDS_DATAGRAM_DATA_V6

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_ippacket_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_ippacket_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_ippacket_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_ippacket_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipforward_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipforward_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_transport_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_transport_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_datagram_data_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_datagram_data_v6_

FWPS_LAYER_STREAM_PACKET_V4 FWPS_FIELDS_STREAM_PACKET_V4

FWPS_LAYER_STREAM_PACKET_V6 FWPS_FIELDS_STREAM_PACKET_V6

FWPS_LAYER_INBOUND_ICMP_ERROR_V4
FWPS_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD

FWPS_FIELDS_INBOUND_ICMP_ERROR_V4

FWPS_LAYER_INBOUND_ICMP_ERROR_V6
FWPS_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

FWPS_FIELDS_INBOUND_ICMP_ERROR_V6

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4
FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPS_FIELDS_OUTBOUND_ICMP_ERROR_V4

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6
FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

FWPS_FIELDS_OUTBOUND_ICMP_ERROR_V6

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4
FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPS_FIELDS_ALE_RESOURCE_ASSIGNMENT_V4

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6
FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

FWPS_FIELDS_ALE_RESOURCE_ASSIGNMENT_V6

FWPS_LAYER_ALE_RESOURCE_RELEASE_V4 FWPS_FIELDS_ALE_RESOURCE_RELEASE_V4

FWPS_LAYER_ALE_RESOURCE_RELEASE_V6 FWPS_FIELDS_ALE_RESOURCE_RELEASE_V6

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4 FWPS_FIELDS_ALE_ENDPOINT_CLOSURE_V4

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_packet_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_stream_packet_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_icmp_error_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_icmp_error_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_icmp_error_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_icmp_error_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_assignment_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_assignment_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_release_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_resource_release_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_endpoint_closure_v4_

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6 FWPS_FIELDS_ALE_ENDPOINT_CLOSURE_V6

FWPS_LAYER_ALE_AUTH_LISTEN_V4
FWPS_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPS_FIELDS_ALE_AUTH_LISTEN_V4

FWPS_LAYER_ALE_AUTH_LISTEN_V6
FWPS_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

FWPS_FIELDS_ALE_AUTH_LISTEN_V6

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPS_FIELDS_ALE_AUTH_RECV_ACCEPT_V4

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6
FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

FWPS_FIELDS_ALE_AUTH_RECV_ACCEPT_V6

FWPS_LAYER_ALE_BIND_REDIRECT_V4 FWPS_FIELDS_ALE_BIND_REDIRECT_V4

FWPS_LAYER_ALE_BIND_REDIRECT_V6 FWPS_FIELDS_ALE_BIND_REDIRECT_V6

FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 FWPS_FIELDS_ALE_CONNECT_REDIRECT_V4

FWPS_LAYER_ALE_CONNECT_REDIRECT_V6 FWPS_FIELDS_ALE_CONNECT_REDIRECT_V6

FWPS_LAYER_ALE_AUTH_CONNECT_V4
FWPS_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPS_FIELDS_ALE_AUTH_CONNECT_V4

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_endpoint_closure_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_listen_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_listen_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_recv_accept_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_recv_accept_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_bind_redirect_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_bind_redirect_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_connect_redirect_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_connect_redirect_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_connect_v4_

FWPS_LAYER_ALE_AUTH_CONNECT_V6
FWPS_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

FWPS_FIELDS_ALE_AUTH_CONNECT_V6

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4
FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPS_FIELDS_ALE_FLOW_ESTABLISHED_V4

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6
FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

FWPS_FIELDS_ALE_FLOW_ESTABLISHED_V6

FWPS_LAYER_NAME_RESOLUTION_CACHE_V4 FWPS_FIELDS_NAME_RESOLUTION_CACHE_V4

FWPS_LAYER_NAME_RESOLUTION_CACHE_V6 FWPS_FIELDS_NAME_RESOLUTION_CACHE_V6

FWPS_LAYER_INBOUND_MAC_FRAME_ETHERNET FWPS_FIELDS_INBOUND_MAC_FRAME_ETHERNET

FWPS_LAYER_OUTBOUND_MAC_FRAME_ETHERNET FWPS_FIELDS_OUTBOUND_MAC_FRAME_ETHERNET

FWPM_LAYER_INBOUND_MAC_FRAME_NATIVE FWPS_FIELDS_INBOUND_MAC_FRAME_NATIVE

FWPM_LAYER_OUTBOUND_MAC_FRAME_NATIVE FWPS_FIELDS_OUTBOUND_MAC_FRAME_NATIVE

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_auth_connect_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_flow_established_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ale_flow_established_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_name_resolution_cache_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_name_resolution_cache_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_inbound_mac_frame_native_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_outbound_mac_frame_native_

FWPS_LAYER_IPSEC_KM_DEMUX_V4 FWPS_FIELDS_IPSEC_KM_DEMUX_V4

FWPS_LAYER_IPSEC_KM_DEMUX_V6 FWPS_FIELDS_IPSEC_KM_DEMUX_V6

FWPS_LAYER_IPSEC_V4 FWPS_FIELDS_IPSEC_V4

FWPS_LAYER_IPSEC_V6 FWPS_FIELDS_IPSEC_V6

FWPS_LAYER_IKEEXT_V4 FWPS_FIELDS_IKEEXT_V4

FWPS_LAYER_IKEEXT_V6 FWPS_FIELDS_IKEEXT_V6

FWPS_LAYER_RPC_UM FWPS_FIELDS_RPC_UM

FWPS_LAYER_RPC_EPMAP FWPS_FIELDS_RPC_EPMAP

FWPS_LAYER_RPC_EP_ADD FWPS_FIELDS_RPC_EP_ADD

FWPS_LAYER_RPC_PROXY_CONN FWPS_FIELDS_RPC_PROXY_CONN

FWPS_LAYER_RPC_PROXY_IF FWPS_FIELDS_RPC_PROXY_IF_IF

FWPS_LAYER_KM_AUTHORIZATION FWPS_FIELDS_KM_AUTHORIZATION

FWPS_LAYER_INGRESS_VSWITCH_ETHERNET FWPS_FIELDS_INGRESS_VSWITCH_ETHERNET

FWPS_LAYER_EGRESS_VSWITCH_ETHERNET FWPS_FIELDS_EGRESS_VSWITCH_ETHERNET

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V4 FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V4

WPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V6 FWPS_FIELDS_INGRESS_VSWITCH_TRANSPORT_V6

Note Supported in Windows 7 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipsec_km_demux_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipsec_km_demux_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipsec_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ipsec_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ikeext_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ikeext_v6_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_rpc_um_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_rpc_epmap_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_rpc_ep_add_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_rpc_proxy_conn_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_rpc_proxy_if_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_km_authorization_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_ethernet_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_ingress_vswitch_transport_v6_

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V4 FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V4

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V6 FWPS_FIELDS_EGRESS_VSWITCH_TRANSPORT_V6

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

Note Supported in Windows 8 and later
versions of Windows.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v4_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ne-fwpsk-fwps_fields_egress_vswitch_transport_v6_

Data offset positions
Article • 12/15/2021

When the filter engine calls a callout driver's classifyFn callout function, it passes a
pointer to a structure in the layerData parameter. For the layers that filter packet data,
the pointer references a NET_BUFFER_LIST structure. Depending on the filtering layer at
which the classifyFn callout function is called, the filter engine passes a pointer in the
layerData* parameter to one of the following structures:

For the stream layer, the layerData parameter contains a pointer to an
FWPS_STREAM_CALLOUT_IO_PACKET0 structure. The streamData member of this
structure contains a pointer to an FWPS_STREAM_DATA0 structure.

The netBufferListChain member of the FWPS_STREAM_DATA0 structure contains a
pointer to a NET_BUFFER_LIST structure.

For all the other layers, the layerData parameter contains a pointer to a
NET_BUFFER_LIST structure.

The NET_BUFFER_LIST structure contains a linked list of NET_BUFFER structures. Within
the NET_BUFFER_DATA structure of each NET_BUFFER structure, the DataOffset member
points to a specific position in the packet data. The position that the DataOffset
member points to depends on the filtering layer at which the filter engine calls the
callout driver's classifyFn callout function.

For each filtering layer, the position in the packet data as specified by the DataOffset
member is defined as follows:

Run-time filtering layer identifier (starting with
Windows Vista)

Position in the packet data

FWPS_LAYER_INBOUND_IPPACKET_V4

FWPS_LAYER_INBOUND_IPPACKET_V6

The beginning of the transport
header.

FWPS_LAYER_INBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_INBOUND_IPPACKET_V6_DISCARD

The offset where the TCP/IP stack
stopped processing.

７ Note

The layerData parameter might be NULL, depending on the layer being filtered and
the conditions under which the driver's classifyFn callout function is called.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_callout_io_packet0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_data0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-fwps_stream_data0_
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_data
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/nc-fwpsk-fwps_callout_classify_fn0

FWPS_LAYER_OUTBOUND_IPPACKET_V4

FWPS_LAYER_OUTBOUND_IPPACKET_V6

The beginning of the IP header.

FWPS_LAYER_OUTBOUND_IPPACKET_V4_DISCARD

FWPS_LAYER_OUTBOUND_IPPACKET_V6_DISCARD

The offset where the TCP/IP stack
stopped processing.

FWPS_LAYER_IPFORWARD_V4

FWPS_LAYER_IPFORWARD_V6

The beginning of the IP header.

FWPS_LAYER_IPFORWARD_V4_DISCARD

FWPS_LAYER_IPFORWARD_V6_DISCARD

The beginning of the IP header.

FWPS_LAYER_INBOUND_TRANSPORT_V4

FWPS_LAYER_INBOUND_TRANSPORT_V6

The beginning of the data.

FWPS_LAYER_INBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_INBOUND_TRANSPORT_V6_DISCARD

The beginning of the data.

FWPS_LAYER_OUTBOUND_TRANSPORT_V4

FWPS_LAYER_OUTBOUND_TRANSPORT_V6

The beginning of the transport
header.

FWPS_LAYER_OUTBOUND_TRANSPORT_V4_DISCARD

FWPS_LAYER_OUTBOUND_TRANSPORT_V6_DISCARD

The beginning of the transport
header.

FWPS_LAYER_STREAM_V4

FWPS_LAYER_STREAM_V6

The beginning of the data.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

Note The position in the
packet data contains no IP,
IPv6, and transport headers.

FWPS_LAYER_STREAM_V4_DISCARD

FWPS_LAYER_STREAM_V6_DISCARD

The beginning of the data.

FWPS_LAYER_DATAGRAM_DATA_V4

FWPS_LAYER_DATAGRAM_DATA_V6

For inbound datagrams: The
beginning of the data.

For outbound datagrams: The
beginning of the transport header.

FWPS_LAYER_DATAGRAM_DATA_V4_DISCARD

FWPS_LAYER_DATAGRAM_DATA_V6_DISCARD

For inbound datagrams: The
beginning of the data.

For outbound datagrams: The
beginning of the transport header.

FWPS_LAYER_INBOUND_ICMP_ERROR_V4

FWPS_LAYER_INBOUND_ICMP_ERROR_V6

The beginning of the inner IP header.

FWPS_LAYER_INBOUND_ICMP_ERROR_V4_DISCARD

FWPS_LAYER_INBOUND_ICMP_ERROR_V6_DISCARD

The beginning of the inner IP header.

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6

The beginning of the ICMP header.

Note The position in the
packet data contains no IP,
IPv6, or transport headers.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V4_DISCARD

FWPS_LAYER_OUTBOUND_ICMP_ERROR_V6_DISCARD

The beginning of the ICMP header.

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6

Not applicable.

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V4_DISCARD

FWPS_LAYER_ALE_RESOURCE_ASSIGNMENT_V6_DISCARD

Not applicable.

FWPS_LAYER_ALE_AUTH_LISTEN_V4

FWPS_LAYER_ALE_AUTH_LISTEN_V6

Not applicable.

FWPS_LAYER_ALE_AUTH_LISTEN_V4_DISCARD

FWPS_LAYER_ALE_AUTH_LISTEN_V6_DISCARD

Not applicable.

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6

For inbound packet direction: The
beginning of the data.

For outbound packet direction: The
beginning of the transport header.

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_RECV_ACCEPT_V6_DISCARD

For inbound packet direction: The
beginning of the data.

For outbound packet direction: The
beginning of the transport header.

FWPS_LAYER_ALE_AUTH_CONNECT_V4 For non-TCP traffic: The beginning of
the transport header.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

FWPS_LAYER_ALE_AUTH_CONNECT_V6 For TCP traffic: Not applicable.

FWPS_LAYER_ALE_AUTH_CONNECT_V4_DISCARD

FWPS_LAYER_ALE_AUTH_CONNECT_V6_DISCARD

For non-TCP traffic: The beginning of
the transport header.

For TCP traffic: Not applicable.

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6

For inbound packet direction: The
beginning of the data.

For outbound packet direction: The
beginning of the transport header.

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V4_DISCARD

FWPS_LAYER_ALE_FLOW_ESTABLISHED_V6_DISCARD

For inbound packet direction: The
beginning of the data.

For outbound packet direction: The
beginning of the transport header.

FWPS_LAYER_IPSEC_KM_DEMUX_V4

FWPS_LAYER_IPSEC_KM_DEMUX_V6

Not applicable.

FWPS_LAYER_IPSEC_V4

FWPS_LAYER_IPSEC_V6

Not applicable.

FWPS_LAYER_IKEEXT_V4

FWPS_LAYER_IKEEXT_V6

Not applicable.

FWPS_LAYER_RPC_UM Not applicable.

FWPS_LAYER_RPC_EPMAP Not applicable.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

Note For inbound packets
received on the ICMP
socket of the TCP/IP stack,
the offset is the beginning
of the ICMP header.

FWPS_LAYER_RPC_EP_ADD Not applicable.

FWPS_LAYER_RPC_PROXY_CONN Not applicable.

FWPS_LAYER_RPC_PROXY_IF Not applicable.

Run-time filtering layer identifier (starting with
Windows 7)

Position in the packet data

FWPS_LAYER_NAME_RESOLUTION_CACHE_V4

FWPS_LAYER_NAME_RESOLUTION_CACHE_V6

Not applicable.

FWPS_LAYER_ALE_RESOURCE_RELEASE_V4

FWPS_LAYER_ALE_RESOURCE_RELEASE_V6

Not applicable.

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V4

FWPS_LAYER_ALE_ENDPOINT_CLOSURE_V6

Not applicable.

FWPS_LAYER_ALE_CONNECT_REDIRECT_V4

FWPS_LAYER_ALE_CONNECT_REDIRECT_V6

Not applicable.

FWPS_LAYER_ALE_BIND_REDIRECT_V4

FWPS_LAYER_ALE_BIND_REDIRECT_V6

Not applicable.

Note For these filtering
layers, the layerData
parameter contains a
pointer to an
FWPS_CONNECT_REQUEST
0 structure. This structure
does not reference a
NET_BUFFER_LIST structure
that describes packet data.

Note For these filtering
layers, the layerData
parameter contains a
pointer to an
FWPS_BIND_REQUEST0
structure. This structure
does not reference a
NET_BUFFER_LIST structure
that describes packet data.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_connect_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/fwpsk/ns-fwpsk-_fwps_bind_request0
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

FWPS_LAYER_STREAM_PACKET_V4

FWPS_LAYER_STREAM_PACKET_V6

For inbound packet direction: The
beginning of the data.

For outbound packet direction: The
beginning of the transport header.

FWPS_LAYER_KM_AUTHORIZATION Not applicable.

Run-time filtering layer identifier (starting with
Windows 8)

Position in the packet data

FWPS_LAYER_INBOUND_MAC_FRAME_ETHERNET The beginning of the IP header.

FWPS_LAYER_OUTBOUND_MAC_FRAME_ETHERNET The beginning of the MAC header.

FWPS_LAYER_INBOUND_MAC_FRAME_NATIVE The beginning of the MAC header.

FWPS_LAYER_OUTBOUND_MAC_FRAME_NATIVE The beginning of the MAC header.

FWPS_LAYER_INGRESS_VSWITCH_ETHERNET The beginning of the ethernet
header.

FWPS_LAYER_EGRESS_VSWITCH_ETHERNET The beginning of the ethernet
header.

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V4 The beginning of the IP header.

FWPS_LAYER_INGRESS_VSWITCH_TRANSPORT_V6 The beginning of the IP header.

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V4 The beginning of the IP header.

FWPS_LAYER_EGRESS_VSWITCH_TRANSPORT_V6 The beginning of the IP header.

General discard reasons
Article • 12/15/2021

The identifiers for the possible reasons that the data is discarded by the filter engine are
as follows. These identifiers are constant values in the
FWPS_GENERAL_DISCARD_REASON enumeration that is defined in Fwpstypes.h.

Discard reason identifier Discard reason description

FWPS_DISCARD_FIREWALL_POLICY An FWP_ACTION_BLOCK action was returned from a filtering
decision.

FWPS_DISCARD_IPSEC Reserved.

Network layer discard reasons
Article • 12/15/2021

The identifiers for the possible reasons that data is discarded by one of the network
layers are as follows. These identifiers are constant values in the IP_DISCARD_REASON
enumeration that is defined in Fwpsk.h.

Discard reason identifier Discard reason description

IpDiscardBadSourceAddress The outgoing packet's source address is a multicast
address, a broadcast address, or an IPv6 address that
contains an embedded IPv4 loopback or unspecified
address.

IpDiscardNotLocallyDestined The received packet's destination address does not exist
on the system, and no appropriate forwarding interface
exists.

IpDiscardProtocolUnreachable There is either no transport protocol handler for the
received packet or the transport protocol handler refused
to process the packet.

IpDiscardPortUnreachable There is no application that is receiving packets on the
received packet's destination port.

IpDiscardBadLength A length field specified within the received packet is
inconsistent with the packet's length.

IpDiscardMalformedHeader The received packet contains a recognized extension
header or option whose contents are invalid.

IpDiscardNoRoute The received packet cannot be forwarded to its
destination address because the system's routing table
does not contain a route to that destination.

IpDiscardBeyondScope The received packet cannot be forwarded because the
packet's incoming and outgoing network interfaces have
different zone indexes for the packet's zone level.

IpDiscardInspectionDrop Reserved for internal use by the network stack.

IpDiscardTooManyDecapsulations The received packet cannot be forwarded to its
destination address because there are too many
decapsulations.

IpDiscardAdministrativelyProhibited Reserved for internal use by the network stack.

IpDiscardHopLimitExceeded The received packet's hop limit or time-to-live limit has
been exceeded.

Discard reason identifier Discard reason description

IpDiscardAddressUnreachable The outgoing packet cannot be sent to the packet's
destination address either because the destination does
not exist or packets are not allowed to be sent to that
destination.

IpDiscardRscPacket The outgoing packet cannot be sent because it is a
receive-side coalesced (RSC) packet.

IpDiscardArbitrationUnhandled Reserved for internal use by the network stack.

IpDiscardInspectionAbsorb The outgoing packet cannot be sent because WFP took
ownership of the packet.

IpDiscardDontFragmentMtuExceeded Reserved for internal use by the network stack.

IpDiscardBufferLengthExceeded Reserved for internal use by the network stack.

IpDiscardAddressResolutionTimeout Reserved for internal use by the network stack.

IpDiscardAddressResolutionFailure Reserved for internal use by the network stack.

IpDiscardIpsecFailure Reserved for internal use by the network stack.

IpDiscardExtensionHeadersFailure Reserved for internal use by the network stack.

IpDiscardAllocationFailure Reserved for internal use by the network stack.

Transport layer discard reasons
Article • 12/15/2021

The identifiers for the possible reasons that data is discarded by one of the transport
layers are as follows. These identifiers are constant values in the INET_DISCARD_REASON
enumeration that is defined in Fwpsk.h.

Discard reason identifier Discard reason description

InetDiscardSourceUnspecified The outgoing packet's source address is
unspecified.

InetDiscardDestinationMulticast The outgoing packet's destination address
is an unspecified address, and the transport
does not support multicast addresses.

InetDiscardHeaderInvalid The packet's transport protocol header is
invalid.

InetDiscardChecksumInvalid The checksum in the packet's transport
protocol header is invalid.

InetDiscardEndpointNotFound The endpoint specified in the packet's
header could not be found.

InetDiscardConnectedPath The packet remote address does not match
the remote address of a connected
endpoint.

InetDiscardSessionState The packet cannot be delivered based on
network layer information.

InetDiscardReceiveInspection The connection was closed due to a receive
inspection failure.

InetDiscardAckInvalid The packet is an invalid ACK segment.

InetDiscardExpectedSyn A SYN segment was expected.

InetDiscardRst The packet is an invalid RST segment.

InetDiscardSynRcvdSyn A TCP connection in SYN_RCVD state
received another SYN segment.

InetDiscardSimultaneousConnect A TCP connection has encountered the
simultaneous-connect condition.

InetDiscardPawsFailed A TCP PAWS check failed.

Discard reason identifier Discard reason description

InetDiscardLandAttack The packet was detected as part of a Land
Attack.

InetDiscardMissedReset An SYN segment outside the receive
window was received on a SYN_RCVD
connection. An RST may have been missed.

InetDiscardOutsideWindow A TCP segment was outside the receive
window.

InetDiscardDuplicateSegment A duplicate TCP segment was received.

InetDiscardClosedWindow The TCP receive window was closed.

InetDiscardTcbRemoved The TCP connection was closed.

InetDiscardFinWait2 The TCP connection is closing.

InetDiscardReassemblyConflict A TCP data reassembly conflict was
encountered on reception of a FIN
segment.

InetDiscardFinReceived A FIN was already received on a TCP
connection; no more data can be received.

InetDiscardListenerInvalidFlags A segment with invalid flags was received
by a listening TCP socket.

InetDiscardUrgentDeliveryAllocationFailure There is insufficient memory for URG
delivery on a TCP connection.

InetDiscardTcbNotInTcbTable A TCP connection was closed due to urgent
delivery.

InetDiscardTimeWaitTcbReceivedRstOutsideWindow A TIME_WAIT state TCP connection
received an RSP segment outside the
window.

InetDiscardTimeWaitTcbSynAndOtherFlags A TIME_WAIT state TCP connection
received a segment with SYN and one or
more incompatible flags.

InetDiscardTimeWaitTcb A TIME_WAIT state TCP connection
received an invalid segment.

WFP user mode management functions
Article • 12/15/2021

The semantics of the Windows Filtering Platform user-mode management functions are
exactly the same when called from a callout driver as when called from a user-mode
application, except that the return type is an NTSTATUS code instead of a Win32 error
code.

These functions are documented in the Management Functions section of the user-
mode WFP Functions documentation.

Callers of all of these functions except FwpmFreeMemory0 must be running at IRQL =
PASSIVE_LEVEL. Callers of FwpmFreeMemory0 must be running at IRQL <=
DISPATCH_LEVEL.

FwpmCalloutAdd0
FwpmCalloutCreateEnumHandle0
FwpmCalloutDeleteById0
FwpmCalloutDeleteByKey0
FwpmCalloutDestroyEnumHandle0
FwpmCalloutEnum0
FwpmCalloutGetById0
FwpmCalloutGetByKey0
FwpmCalloutGetSecurityInfoByKey0
FwpmCalloutSetSecurityInfoByKey0

FwpmConnectionCreateEnumHandle0
FwpmConnectionDestroyEnumHandle0
FwpmConnectionEnum0
FwpmConnectionGetById0

７ Note

The kernel-mode version of each function is defined in fwpmk.h. The user-mode
version of each function is defined in fwpmu.h.

Callout Management

Connection Object Management

https://learn.microsoft.com/en-us/windows/desktop/FWP/fwp-mgmt-functions
https://learn.microsoft.com/en-us/windows/desktop/FWP/fwp-functions
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfreememory0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutadd0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutcreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutdeletebyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutdeletebykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutgetbyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutgetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutgetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmcalloutsetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectioncreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectiondestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectionenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectiongetbyid0

FwpmConnectionGetSecurityInfo0
FwpmConnectionSetSecurityInfo0

FwpmNetEventCreateEnumHandle0
FwpmNetEventDestroyEnumHandle0
FwpmNetEventEnum:

FwpmNetEventEnum0 (Windows Vista)
FwpmNetEventEnum1 (Windows 7)
FwpmNetEventEnum2 (Windows 8)

FwpmNetEventsGetSecurityInfo0
FwpmNetEventsSetSecurityInfo0

FwpmFilterAdd0
FwpmFilterCreateEnumHandle0
FwpmFilterDeleteById0
FwpmFilterDeleteByKey0
FwpmFilterDestroyEnumHandle0
FwpmFilterEnum0
FwpmFilterGetById0
FwpmFilterGetByKey0
FwpmFilterGetSecurityInfoByKey0
FwpmFilterSetSecurityInfoByKey0

FwpmLayerCreateEnumHandle0
FwpmLayerDestroyEnumHandle0
FwpmLayerEnum0
FwpmLayerGetById0
FwpmLayerGetByKey0
FwpmLayerGetSecurityInfoByKey0
FwpmLayerSetSecurityInfoByKey0

Event Management

Filter Management

Layer Management

Provider Context Management

https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectiongetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmconnectionsetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventcreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventenum1
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventenum2
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventsgetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmneteventssetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilteradd0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfiltercreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilterdeletebyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilterdeletebykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilterdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfilterenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfiltergetbyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfiltergetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfiltergetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmfiltersetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayercreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayerdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayerenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayergetbyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayergetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayergetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmlayersetsecurityinfobykey0

[FwpmProviderContextAdd:
FwpmProviderContextAdd0 (Windows Vista)
FwpmProviderContextAdd1 (Windows 7)
FwpmProviderContextAdd2 (Windows 8)

FwpmProviderContextCreateEnumHandle0
FwpmProviderContextDeleteById0
FwpmProviderContextDeleteByKey0
FwpmProviderContextDestroyEnumHandle0
FwpmProviderContextEnum:

FwpmProviderContextEnum0 (Windows Vista)
FwpmProviderContextEnum1 (Windows 7)
FwpmProviderContextEnum2 (Windows 8)

FwpmProviderContextGetById:
FwpmProviderContextGetById0 (Windows Vista)
FwpmProviderContextGetById1 (Windows 7)
FwpmProviderContextGetById2 (Windows 8)

FwpmProviderContextGetByKey:
FwpmProviderContextGetByKey0 (Windows Vista)
FwpmProviderContextGetByKey1 (Windows 7)
FwpmProviderContextGetByKey2 (Windows 8)

FwpmProviderContextGetSecurityInfoByKey0
FwpmProviderContextSetSecurityInfoByKey0

FwpmProviderAdd0
FwpmProviderCreateEnumHandle0
FwpmProviderDeleteByKey0
FwpmProviderDestroyEnumHandle0
FwpmProviderEnum0
FwpmProviderGetByKey0
FwpmProviderGetSecurityInfoByKey0
FwpmProviderSetSecurityInfoByKey0

FwpmEngineClose0
FwpmEngineGetOption0
FwpmEngineGetSecurityInfo0
FwpmEngineOpen0

Provider Management

Session Management

https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextadd0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextadd1
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextadd2
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextcreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextdeletebyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextdeletebykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextenum1
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextenum2
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbyid0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbyid1
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbyid2
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbykey1
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetbykey2
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextgetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercontextsetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovideradd0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidercreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmproviderdeletebykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmproviderdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmproviderenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidergetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidergetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmprovidersetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmengineclose0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmenginegetoption0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmenginegetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmengineopen0

FwpmEngineSetOption0
FwpmEngineSetSecurityInfo0
FwpmSessionCreateEnumHandle0
FwpmSessionDestroyEnumHandle0
FwpmSessionEnum0

FwpmSubLayerAdd0
FwpmSubLayerCreateEnumHandle0
FwpmSubLayerDeleteByKey0
FwpmSubLayerDestroyEnumHandle0
FwpmSubLayerEnum0
FwpmSubLayerGetByKey0
FwpmSubLayerGetSecurityInfoByKey0
FwpmSubLayerSetSecurityInfoByKey0

FwpmTransactionAbort0
FwpmTransactionBegin0
FwpmTransactionCommit0

FwpmvSwitchEventsGetSecurityInfo0
FwpmvSwitchEventsSetSecurityInfo0

Sublayer Management

Transaction Management

vSwitch Management

https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmenginesetoption0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmenginesetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsessioncreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsessiondestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsessionenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayeradd0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayercreateenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayerdeletebykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayerdestroyenumhandle0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayerenum0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayergetbykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayergetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmsublayersetsecurityinfobykey0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmtransactionabort0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmtransactionbegin0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmtransactioncommit0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmvswitcheventsgetsecurityinfo0
https://learn.microsoft.com/en-us/windows/win32/api/fwpmu/nf-fwpmu-fwpmvswitcheventssetsecurityinfo0

Internet Key Exchange functions
Article • 12/06/2022

The semantics of the following functions are exactly the same when called from a callout
driver as when called from a user-mode application except that the return type is an
NTSTATUS code instead of a Win32 error code. For a description of each of these
functions, see the Windows Filtering Platform.

Callers of these functions must be running at IRQL = PASSIVE_LEVEL.

IkeextGetStatistics0
IkeextSaCreateEnumHandle0
IkeextSaDbGetSecurityInfo0
IkeextSaDbSetSecurityInfo0
IkeextSaDeleteById0
IkeextSaDestroyEnumHandle0
IkeextSaEnum0
IkeextSaGetById0

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page

IPsec functions
Article • 12/06/2022

The semantics of the following functions are exactly the same when called from a callout
driver as when called from a user-mode application except that the return type is an
NTSTATUS code instead of a Win32 error code. For a description of each of these
functions, see the Windows Filtering Platform.

Callers of these functions must be running at IRQL = PASSIVE_LEVEL.

FwpmIPsecTunnelAdd0
FwpmIPsecTunnelDeleteByKey0
IPsecGetStatistics0
IPsecSaContextAddInbound0
IPsecSaContextAddOutbound0
IPsecSaContextCreate0
IPsecSaContextCreateEnumHandle0
IPsecSaContextDeleteById0
IPsecSaContextDestroyEnumHandle0
IPsecSaContextEnum0
IPsecSaContextExpire0
IPsecSaContextGetById0
IPsecSaContextGetSpi0
IPsecSaCreateEnumHandle0
IPsecSaDbGetSecurityInfo0
IPsecSaDbSetSecurityInfo0
IPsecSaDestroyEnumHandle0
IPsecSaEnum0

https://learn.microsoft.com/en-us/windows/win32/fwp/windows-filtering-platform-start-page

System Area Networks Overview
Article • 12/15/2021

A system area network (SAN) is a group of devices that are linked by a high-speed, high-
performance connection. A SAN connection uses Internet Protocol (IP) addresses, which
are assigned by TCP/IP to each SAN network interface controller (NIC), to determine
data routing. It also uses a reliable transport, which is built into the SAN, to perform
data delivery. A SAN can include, for example, clusters of client and server computers.

This section includes:

Supporting System Area Networks

Windows Sockets Direct

Supporting System Area Networks
Topics
Article • 12/15/2021

This section describes the performance benefits that client and server computers can
achieve by interfacing with a SAN, as well as the software components that you must
implement and supply. These matters are discussed in the following topics:

Introduction to System Area Networks

Using a SAN with Windows Sockets Applications

Creating Components for Using a SAN

Virtual Interface Architecture and Support for SAN

Introduction to System Area Networks
Article • 01/29/2022

A system area network (SAN) is a high-performance, connection-oriented network that
can link a cluster of computers. A SAN delivers high bandwidth (1 Gbps or greater) with
low latency. A SAN is typically switched by hubs that support eight or more nodes. The
cable lengths between nodes on a SAN range from a few meters to a few kilometers.

Unlike existing network technologies such as Ethernet and ATM, a SAN offers a reliable
transport service; that is, a SAN guarantees to deliver uncorrupted data in the same
order in which it was sent. Connection endpoints in a SAN are not required to use the
TCP/IP protocol stack to transfer data unless traffic must be routed between subnets.
SAN-local communication can use a native SAN transport, bypassing the TCP/IP
protocol stack.

A SAN network interface controller (NIC), a transport driver for the SAN NIC, or a
combination of both exposes a private transport interface. However, because most
networking applications are written to use TCP/IP through Windows Sockets, they
cannot use a SAN directly. The Windows Sockets Direct components shown in the
following figure let these applications benefit from using a SAN transparently without
requiring modification. Windows Sockets Direct is part of:

Microsoft Windows 2000 Datacenter Server

Microsoft Windows 2000 Advanced Server SP2

Microsoft Windows 2000 Server Appliance Kit SP2

Microsoft Windows Server 2003

The following figure shows the architecture required to support a SAN. The shaded
areas represent components that a SAN NIC vendor supplies to enable using a SAN.

The following is a description of the components shown in this figure.

Windows Sockets application
Application that interfaces with Windows Sockets for network services.

Windows Sockets
The Windows Sockets interface (Ws2_32.dll).

Windows Sockets SPI
The Windows Sockets service provider interface (SPI).

Windows Sockets switch
The Windows Sockets switches between use of the standard TCP/IP service provider and
particular SAN service providers.

TCP/IP service provider
A user-mode DLL and associated kernel-mode proxy driver that comprise the standard
base Windows Sockets service provider for TCP/IP. The proxy driver exposes a TDI
interface.

TCP/IP
The standard TCP/IP protocol driver.

SAN service provider
The user-mode DLL portion of the SAN service provider.

Proxy driver for a SAN service provider
The kernel-mode proxy driver of the SAN service provider.

NDIS miniport driver
The NDIS miniport driver that supports communication to the SAN NIC using the
standard TCP/IP protocol driver.

SAN transport
A reliable transport service, which can be fully implemented in the NIC, fully
implemented in software, or implemented in a combination of both hardware and
software.

SAN NIC
The physical SAN network interface controller (NIC).

A kernel-mode provider for a particular SAN. (Reserved for future use.)

Using a SAN with Windows Sockets Applications

Creating Components for Using a SAN

Virtual Interface Architecture and Support for SAN

Supporting System Area Networks

Using a SAN with Windows Sockets
Applications
Article • 12/15/2021

Windows Sockets applications can benefit from using a system area network (SAN).
These applications can use a SAN to transfer data in bulk form and to drop data directly
onto the SAN network, without copying across the user-kernel boundary, using a
technology called Windows Sockets Direct. Windows Sockets Direct lets these
applications use a SAN transparently.

For each Windows Sockets application, Windows Sockets Direct can either:

Route data traffic that flows over a SAN directly to the SAN.

The system-supplied Windows Sockets switch component of Windows Sockets
Direct routes data traffic for a SAN that originates from a Windows Sockets
application directly to the SAN NIC to be transferred over the SAN network. The
switch uses that SAN's particular Windows Sockets service provider to transfer
data.

Route data traffic that flows over other networks through TCP/IP.

To route data traffic that is not for a specific SAN from a Windows Sockets
application, the switch must use the TCP/IP service provider. Non-SAN-specific
data traffic includes, for example, datagrams, multicast, and connections that must
be routed. Non-SAN-specific data traffic is then routed through TCP/IP and the
NDIS miniport driver to the SAN NIC.

Creating Components for Using a SAN
Article • 12/15/2021

Windows Sockets applications can benefit from using a system area network (SAN). To
use a SAN, these applications must have a SAN service provider DLL and a proxy driver
for that DLL.

To use a specific SAN to transfer data, you also need a reliable transport for that SAN. If
a reliable transport is not fully implemented in the SAN NIC hardware, you need a
transport driver for the SAN. If required, a SAN transport driver is specified by the SAN
NIC vendor and communicates with its overlying SAN proxy driver and underlying SAN
NIC through private interfaces.

For information about implementing a SAN service provider DLL and its proxy driver, see
Windows Sockets Direct. Note, however, that this section does not specify how to write
a SAN transport driver.

You need an NDIS miniport driver to transfer data that must flow over networks other
than your specific SAN such as Ethernet, ATM, or another SAN. TCP/IP uses the NDIS
miniport driver to send data both to the SAN NIC and over such networks.

For information about implementing miniport and transport drivers, see Miniport Drivers
and TDI Transports and Their Clients.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565587(v=vs.85)

Virtual Interface Architecture and
Support for SAN
Article • 12/15/2021

The Virtual Interface (VI) architecture, proposed by Compaq, Intel, and Microsoft, is a
design for an interface between a SAN NIC and a host computer system. This
architecture represents only one aspect of design with regard to system area networks
(SAN). There are alternate designs that share the same fundamental characteristics.

The VI architecture defines a set of capabilities and characteristics for SAN interconnects.
For example, the VI architecture includes support for remote direct memory access
(RDMA) operations. The VI architecture also describes specific mechanisms for
interacting with a SAN NIC to manage endpoints and connections, and to process data
transfer requests.

The Windows Sockets switch works with a broader class of SAN interconnects beyond
those that use the VI architecture. SAN extensions to the Windows Sockets service
provider interface (SPI) shield the switch from the hardware interface for a particular
SAN NIC. That hardware interface is encapsulated within a SAN service provider DLL and
its kernel-mode proxy driver. These components are supplied by a SAN vendor. For
more information about SAN extensions, see Windows Sockets SPI Extensions for SANs.

Windows Sockets Direct Overview
Article • 12/15/2021

Microsoft Windows Sockets Direct is a technology that, when possible, routes data at
high speed and with high performance to and from Windows Sockets applications
through a system area network (SAN) instead of the TCP/IP transport and an NDIS
miniport driver.

Windows Sockets Direct is included in:

Microsoft Windows 2000 Datacenter Server

Microsoft Windows 2000 Advanced Server SP2

Microsoft Windows 2000 Server Appliance Kit SP2

Microsoft Windows Server 2003

The following topics describe Windows Sockets Direct features and operations, the
software components that enable Windows Sockets Direct, and the requirements for
writing a SAN service provider and its associated proxy driver:

Windows Sockets Direct Architecture

Windows Sockets Direct Component Operation

Creating a Service Provider for a SAN

Creating a Proxy Driver for a SAN Service Provider

Windows Sockets Direct Architecture
Article • 12/15/2021

Windows Sockets Direct provides a high-speed, high-performance connection between
two network nodes on the same system area network (SAN) by mapping a SAN
transport interface directly into an application process. This SAN connection enables
user-mode processes to perform direct input and output (I/O) without copying across
the user-kernel boundary.

The SAN architecture figure in Introduction to System Area Networks shows how
Windows Sockets Direct provides a SAN connection. The shaded areas in the figure
represent components that a SAN NIC vendor must supply to enable use of a SAN.

The following paragraphs describe the components that appear in the figure.

Each SAN network interface controller (NIC) uses the following software components to
provide support for NDIS and for Windows Sockets Direct.

An NDIS miniport driver for a SAN NIC provides support for NDIS so that it can
communicate with Windows Sockets applications using a standard TCP/IP protocol
driver. This NDIS miniport driver supports standard media types such as Ethernet
or ATM.

The SAN service provider DLL and its associated proxy driver provide support for
Windows Sockets Direct. These Windows Sockets Direct components export the
native transport semantics of an interconnect for the SAN to Windows Sockets
applications. These semantics can include, for example, address family and
message orientation.

The SAN NIC vendor supplies the NDIS miniport driver and Windows Sockets Direct
components. The SAN NIC vendor might also supply a SAN transport driver if transport
service is not implemented fully in the NIC. The proxy driver for a SAN service provider
DLL and possibly a SAN transport driver are contained either in the NDIS miniport driver
or in separate drivers, at the discretion of the SAN NIC vendor.

Supplied Components for SAN Network Interface
Controllers

Windows Sockets Switch Components

The Windows Sockets switch is an operating system-supplied component of Windows
Sockets Direct. The switch is a Windows Sockets service provider that is layered on top
of TCP/IP and SAN service providers. The Windows operating system inserts the switch
between the Windows Sockets interface and the other service providers. For clarity, the
switch appears in the figure as a separate entity. However, the switch and the base
TCP/IP service provider are actually implemented in the same DLL. The switch performs
the following actions:

Makes the installed collection of SAN service providers and the standard TCP/IP
provider look like a single provider to Windows Sockets applications.

Chooses, on a per-connection basis, whether to use a native SAN service provider
or the standard TCP/IP provider to service an application socket.

Emulates TCP/IP semantics when using a native SAN service provider.

The top and bottom interfaces of the switch conform to the Windows Sockets Service
Provider Interface (SPI). The switch's bottom interface uses extensions to the Windows
Sockets SPI to take advantage of a SAN's capabilities. Those extensions are described in
Windows Sockets SPI Extensions for SANs and fully documented in the Windows
Sockets Direct Reference.

The switch manages application access to all networks. A computer can contain multiple
SAN NICs from multiple vendors, as well as one or more LAN and WAN NICs, such as a
LAN NIC that supports an Ethernet network. The switch manages application access to
all networks associated with these NICs transparently.

As with any NIC exposed through NDIS, the TCP/IP protocol driver assigns one or more
IP addresses to each SAN NIC. The Windows Sockets switch and SAN service providers
determine these assignments, as described in Receiving and Translating NIC Addresses.
The switch uses this IP address information to determine which SAN service provider to
use for a given socket connection. SAN service providers use this IP address information
to translate IP addresses into native SAN addresses.

The switch works closely with the standard base TCP/IP service provider to obtain
functionality that SAN service providers do not support. The TCP/IP service provider
supports listening for connections on multiple providers and synchronization across
multiple providers.

The TCP/IP service provider also handles all communication over standard LAN and
WAN interconnects, raw IP sockets, all UDP sockets, and connections between subnets.

TCP/IP Functions

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565857(v=vs.85)

Windows Sockets Direct Component
Operation Topics
Article • 12/15/2021

This sections describes Windows Sockets Direct operations, including the operation of
the Windows Sockets switch, a SAN service provider, and the SAN service provider's
associated proxy driver.

This section includes the following topics:

Installing Windows Sockets Direct Components

Initializing the Use of a SAN

Setting Up a SAN Connection

Transferring Data on a SAN

Synchronizing Operations on a SAN

Shutting Down the Use of a SAN

Blocking Calls for a SAN

Duplicating Socket Handles for a SAN

Handling Socket Options and Control Codes for a SAN

Handling Microsoft Extensions to Windows Sockets

Installing Windows Sockets Direct
Components
Article • 12/15/2021

The following topics describe how Windows Sockets Direct components (that is, the
Windows Sockets switch and individual SAN service providers) are installed:

Installing the Windows Sockets Switch

Installing a SAN Service Provider

Installing the Windows Sockets Switch
Article • 12/15/2021

Microsoft Windows installs the Windows Sockets switch as a layered service provider,
with the Windows Sockets service provider interface (SPI) as both the top and bottom
interface. The switch exports the protocol characteristics of TCP/IP just like the TCP/IP
service provider. The switch is the first visible TCP/IP provider, which makes the switch
the default choice for applications that open sockets for the WSK address families.

Installing a SAN Service Provider
Article • 12/06/2022

A SAN service provider is typically installed as a base Windows Sockets service provider
that interfaces with the Windows Sockets switch. Although a SAN service provider can
be installed for direct use by an application instead, the Windows Sockets Direct
technology does not support using a SAN service provider in this manner. A SAN service
provider that is installed for direct use by an application exports its native address family
and protocol characteristics rather than those of TCP/IP protocol.

A SAN service provider that is indirectly exposed to applications through the Windows
Sockets switch must set the PFL_HIDDEN flag in the dwProviderFlags member of the
SAN service provider's WSAPROTOCOL_INFOW structure. To install the SAN service
provider on the operating system, the SAN service provider's installation mechanism
passes this structure in a call to the WSCInstallProvider function. The SAN service
provider's installation mechanism can be for example, a setup program or a function
exported by the SAN service provider and called by a INF file directive.

The SAN service provider's installation mechanism must add a value of type
REG_BINARY to the following key in the registry before the SAN service provider can be
detected by the Windows Sockets switch as a base Windows Sockets service provider:

Console

This value contains the binary representation of the value in the ProviderId member
from the WSAPROTOCOL_INFOW structure. This value registers a SAN service provider
with the Windows Sockets switch. This member contains the globally unique identifier
(GUID) that the vendor assigned to the SAN service provider.

The vendor can also assign a unique name that represents this GUID, for example:

Trademarked name of the product

Unique numeric value

Textual representation of the GUID

To register a SAN service provider

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Winsock\
Parameters\TCP on SAN

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565963(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wscinstallprovider

1. The switch calls the WSAProviderConfigChange function to detect Windows
Sockets provider installation and removal events.

2. After a new Windows Sockets service provider is installed, the switch calls the
WSCEnumProtocols function to query the Windows Sockets catalog and the list of
SAN service providers in the registry to determine whether the new service
provider controls a SAN. For more information about WSCEnumProtocols, see the
Windows SDK.

3. If the switch detects a new SAN service provider, the switch initializes that service
provider as described in Initializing a SAN Service Provider.

4. The switch also calls the following functions of the newly installed SAN service
provider after the SAN service provider is initialized to service any existing listening
sockets bound to the wildcard IP address (0.0.0.0) (the wildcard IP address implies
that the SAN service provider should accept incoming connection requests from all
NICs it controls):

WSPSocket
Creates a socket

WSPBind
Binds the socket to the wildcard IP address

WSPListen
Sets the socket to acknowledge and queue incoming connection requests until
accepted by the switch

Note Beginning with Windows Vista, the wildcard IP address 0.0.0.0 is not
available. Also beginning with Windows Vista, if the IPAutoconfigurationEnabled
registry key is set to a value of 0, automatic IP address assignment is disabled, and
no IP address is assigned. In this case, the ipconfig command line tool will not
display an IP address. If the key is set to a nonzero value, an IP address is
automatically assigned. This key can be located at the following paths in the
registry:

HKEY_LOCAL_MACHINE\SYSTEM\Current Control
Set\Services\Tcpip\Parameters\IPAutoconfigurationEnabled

HKEY_LOCAL_MACHINE\SYSTEM\Current Control
Set\Services\Tcpip\Parameters\Interfaces\GUID\IPAutoconfigurationEnabled

Initializing the Use of a SAN
Article • 12/15/2021

The following topics describe how to initialize the use of a SAN:

Initializing a SAN Service Provider

Receiving and Translating NIC Addresses

Initializing a SAN Service Provider
Article • 12/06/2022

The Windows Sockets switch initializes a SAN service provider as described in the
following figure.

After Windows loads the Windows Sockets switch DLL into an application's process, the
following sequence of events occur.

To initialize a SAN service provider

1. The switch detects and loads the TCP/IP provider and then queries the list of SAN
service providers in the registry to detect all of those providers, as described in
Installing a SAN Service Provider. The switch calls each detected provider's
WSPStartupEx function to initiate use of that provider.

2. In the WSPStartupEx call, the switch passes a pointer to a WSAPROTOCOL_INFOW
structure that contains the TCP/IP provider's protocol information. The TCP/IP
provider's protocol indicates to the SAN service provider that it has been initialized
by the switch rather than by other layered service providers or the Windows
Sockets interface. The switch passes the TCP/IP provider's protocol information
instead of the SAN service provider's transport information, as suggested in the
Windows Sockets service provider Interface (SPI) section of the Microsoft Windows
SDK documentation.

Because a SAN service provider can detect that it is initialized by the switch, it can
expose the appropriate set of entry-point functions to the switch. If the SAN

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566321(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565963(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/winsock/winsock-spi

service provider is initialized directly by an application, it can expose another set of
entry-point functions to that application. If a SAN service provider is layered under
the switch, that provider must adhere to the extensions and behavior described in
this section.

3. A SAN service provider's proxy driver obtains the list of IP addresses assigned to
each NIC under its control as described in Registering for SAN NIC Notifications.
The SAN service provider uses a private interface to retrieve this list from its proxy
driver. The switch calls a SAN service provider's WSPSocket function to create a
socket. The switch uses this socket to retrieve the complete list of IP addresses
assigned to the NICs under control of the SAN service provider's proxy driver. The
switch retrieves this list as described in Receiving and Translating NIC Addresses.
Based on this list and the lists of other SAN service providers, the switch builds a
table that maps local IP subnets to SAN service providers.

4. The Windows Sockets switch must retrieve pointers to the SAN service provider's
entry-point functions that extend Windows Sockets service provider Interface (SPI)
for use with SANs. To retrieve each of these extended functions, the Windows
Sockets switch calls a SAN service provider's WSPIoctl function and passes the
SIO_GET_EXTENSION_FUNCTION_POINTER command code along with the GUID
whose value identifies one of these extended functions.

For a complete description of these functions, see Windows Sockets SPI Extensions
for SANs.

5. The switch can create threads to support listening sockets as well as nonblocking
connect requests, as described in Setting Up a SAN Connection.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566319(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)

Receiving and Translating NIC
Addresses
Article • 12/15/2021

The Windows Sockets switch always uses the WSK address families, which contain IP
addresses, when it interacts with SAN service providers and SAN NICs. The switch does
not use a SAN's native address family. Therefore, a SAN service provider must use its
associated proxy driver to retrieve the list of IP addresses assigned to its NICs. The SAN
service provider uses these IP addresses when interacting with its proxy driver. The
proxy driver must translate between IP addresses and native addresses.

During initialization, a proxy driver typically registers with Transport Driver Interface
(TDI) for address change notifications. All Plug and Play (PnP) aware transports,
including TCP/IP, supply address change notifications through TDI to clients that have
registered for such notifications.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

During initialization, a proxy driver calls the TdiRegisterPnPHandlers function to register
for address change notifications. In this call, the proxy driver passes pointers to callback
functions for address additions and deletions in the AddAddressHandlerV2 and
DelAddressHandlerV2 members of the TDI_CLIENT_INTERFACE_INFO structure. After the
proxy driver registers to receive these notifications, TDI promptly indicates all currently
active network addresses using the add-address callback.

TDI passes the following parameters to a proxy driver's add-address or delete-address
callback functions:

Address
Pointer to a TA_ADDRESS structure that describes the network address assigned to or
removed from the NIC. In the case of TCP/IP, this pointer is actually a pointer to a
TA_ADDRESS_IP structure.

DeviceName
Pointer to a Unicode string that identifies the transport-to-NIC binding with which the
address is associated. In case of TCP/IP, the Unicode string has the following format:

\Device\Tcpip_{NIC-GUID}

Registering for Address Change Notification

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565062(v=vs.85)

where NIC-GUID is the globally unique identifier assigned by the network configuration
subsystem to the NIC.

The preceding structure definitions are defined in the tdi.h header file. The preceding
registration and callback functions are defined in the tdikrnl.h header file. These header
files are available in the Microsoft Windows Driver Development Kit (DDK) and the
Windows Driver Kit (WDK). Detailed information about TDI PnP notifications is included
in TDI Client Callbacks and TDI Client Event and PnP Notification Handlers.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

A SAN service provider's proxy driver uses add-address and delete-address notifications
to maintain the list of IP addresses assigned to each NIC under its control. The proxy
driver uses this list to translate between one or more IP addresses assigned to a SAN
NIC by the TCP/IP transport and native SAN addresses. The proxy driver must also
supply a device-control routine that makes the list of IP addresses assigned to a NIC
available to the Windows Sockets switch whenever the switch makes an
SIO_ADDRESS_LIST_QUERY control-code query. The proxy driver's DriverEntry routine
must specify an entry point for this device-control routine.

The Windows Sockets switch maintains a list of all IP addresses assigned to each SAN
NIC. To retrieve IP addresses for this inclusive list, the switch calls each SAN service
provider 's WSPIoctl function, passing the SIO_ADDRESS_LIST_QUERY control code. Each
SAN service provider, in turn, queries its associated proxy driver for its individual list of
IP addresses assigned to its SAN NICs. After the switch is notified of an address change,
it again queries each SAN service provider for updates in each individual list.

Maintaining a List of IP Addresses

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565081(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565082(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)

Setting Up a SAN Connection
Article • 12/15/2021

During connection setup, the Windows Sockets switch determines which service
provider will service the TCP socket. This provider will handle most subsequent
operations on the socket. Regardless of whether the switch chooses a SAN service
provider, the TCP/IP provider exclusively handles a few types of setup operations.

This section describes the connection setup operations that a SAN service provider
performs and the connection setup operations that the TCP/IP provider handles. This
information is provided in the following topics:

Creating and Binding SAN Sockets

Initiating a Connection

Listening for Connections on a SAN

Accepting Connection Requests

Registering Memory for Operations on a SAN

Caching Registered Memory

Creating and Binding SAN Sockets
Article • 12/15/2021

If the Windows Sockets switch determines that it can route data through a SAN
connection rather than through the TCP/IP stack, it requests the appropriate SAN service
provider to create, bind, and set options for a socket on which the data can be
transferred.

The socket created by the SAN service provider is a companion to the socket that the
TCP/IP service provider created at the request of the application, either from or to which
the data is being transferred. The companion socket created by the SAN service provider
has the same options as the socket created by the TCP/IP service provider, if the SAN
service provider supports those options.

The companion socket also has the same IP address and TCP port as the socket that was
created by the TCP/IP service provider. The SAN data is transferred through the
companion socket created by the SAN service provider rather than the socket created
by the TCP/IP service provider. The SAN socket is not visible to the application. From the
application's perspective, the data is transferred on the socket that it requested to be
created for the data transfer.

Note The switch always uses the TCP/IP service provider to transfer data over raw
sockets. The switch therefore never requests a SAN service provider to create a raw
socket.

The following figure shows an overview of how the Windows Sockets switch creates a
companion socket. The sequence in the sections that follow describe creating a
companion socket in more detail.

Initiating Creation of a TCP/IP Socket

1. After the Windows Sockets switch receives a WSPSocket call that was initiated by
an application, the switch calls the TCP/IP provider's WSPSocket function to
request the TCP/IP provider to create a socket.

2. The Windows Sockets switch returns the descriptor for the created socket to the
application and stores this descriptor in a private data structure that is associated
with the socket.

From the application's perspective, the socket created by the TCP/IP provider is the
socket used for data transfers, whether the switch uses the TCP/IP service provider
or the SAN service provider to transfer the data.

1. The switch receives a WSPBind call if an application requests to bind the socket to
a specific network interface controller (NIC) or to the wildcard IP address (0.0.0.0).
A socket bound to the wildcard IP address can listen for incoming connection
requests from all NICs.

Note Beginning with Windows Vista, the wildcard IP address 0.0.0.0 is not
available. Also beginning with Windows Vista, if the IPAutoconfigurationEnabled
registry key is set to a value of 0, automatic IP address assignment is disabled, and
no IP address is assigned. In this case, the ipconfig command line tool will not
display an IP address. If the key is set to a nonzero value, an IP address is
automatically assigned. This key can be located at the following paths in the
registry:

HKEY_LOCAL_MACHINE\SYSTEM\Current Control
Set\Services\Tcpip\Parameters\IPAutoconfigurationEnabled

HKEY_LOCAL_MACHINE\SYSTEM\Current Control
Set\Services\Tcpip\Parameters\Interfaces\GUID\IPAutoconfigurationEnabled

2. The switch forwards this call to the TCP/IP service provider by calling the TCP/IP
provider's WSPBind function.

1. The switch determines whether to use a SAN service provider for data transfer on a
socket after the application initiates a WSPListen or WSPConnect call to the
switch, as described in Setting Up a SAN Connection.

Binding a TCP/IP Socket

Service Provider Determination

2. If the switch determines that it cannot use a SAN service provider for a data
transfer, the switch routes the data transfer through the TCP/IP service provider.

3. If the switch chooses a SAN service provider to service an application's socket, the
switch calls the SAN service provider's WSPSocket function to create a companion
socket.

1. The SAN service provider's WSPSocket function initializes an internal data
structure in which it stores information about the companion socket.

2. The SAN service provider's WSPSocket function must next call the
WPUCreateSocketHandle function to acquire a socket descriptor from the switch.

3. The SAN service provider must store the switch's socket descriptor in its internal
data structure for the companion socket and must return its own descriptor for the
companion socket to complete the WSPSocket call. The socket descriptor returned
by the SAN service provider can be any meaningful value, such as a pointer to a
private data structure.

4. To perform an operation on the socket, the switch supplies the socket descriptor
that was returned by the SAN service provider to the appropriate function of the
SAN service provider. Similarly, the SAN service provider must supply the socket
descriptor that was acquired from the switch in the WPUCreateSocketHandle call
if the SAN service provider makes any of the following up calls:

WPUQuerySocketHandleContext

WPUCloseSocketHandle

WPUCompleteOverlappedRequest

1. If a SAN service provider's WSPSocket function completes successfully, the switch
immediately calls the SAN service provider's WSPBind function to assign a local IP
address and TCP port to the socket.

2. The switch assigns the same IP address and TCP port to the SAN socket as was
assigned to the socket that was created by the TCP/IP provider. The SAN service
provider must translate this TCP/IP address into its native format.

Initiating Creation of a Companion Socket

Binding a Companion Socket

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566319(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566268(v=vs.85)

3. The switch supplies a fully qualified IP address and TCP port (that is, nonzero
values) to the SAN service provider's WSPBind function unless an application
requested to listen for incoming connections from all NICs. In the later case, the
switch supplies the wildcard IP address to the SAN service provider's WSPBind
function.

If the application specified any socket options, the switch stores those options.
After creating the SAN socket, the switch calls the SAN service provider's
WSPSetSockOpt function for each supported option that was specified by the
application to immediately set these options for the SAN socket.

If a SAN service provider fails any of the preceding calls to its WSPSocket,
WSPBind, or WSPSetSockOpt functions, the switch calls the SAN service provider's
WSPCloseSocket function to destroy the SAN socket. The switch then uses the
TCP/IP provider to continue servicing the application socket. Note that, after the
switch establishes a connection using a SAN service provider, the switch cannot
use the TCP/IP provider to service the application's socket. In this case, the switch
returns the appropriate error to the application.

After the switch sets up the companion socket, the switch calls either the
WSPListen or WSPConnect function for the SAN service provider to perform the
operation that caused the SAN service provider to originally set up the socket. For
example, if an application originally requested to listen for incoming connections,
the switch calls the SAN service provider's WSPListen function.

Setting Options for a Companion Socket

Failing a Companion Socket Call

Connecting the Companion Socket

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566318(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566297(v=vs.85)

Initiating a Connection
Article • 12/15/2021

After the Windows Sockets switch receives a WSPConnect call that was initiated by an
application, the switch compares the destination address of the connect request with
addresses in the switch's table of IP subnets that SAN service providers serve. If one of
those subnets includes this destination address, the switch calls the WSPSocket and
WSPBind functions of the corresponding SAN service provider to create and bind a
socket, as described in Creating and Binding SAN Sockets. The switch processes the
application's connect request using the SAN socket. If the destination address of the
connect request is not on a SAN subnet, or if the SAN service provider fails to create
and bind a socket, the switch uses the TCP/IP provider to establish the connection.

The following figure shows an overview of how the Windows Sockets switch requests a
connection with a remote peer. The sequence and sections that follow describe the
connection request in more detail.

After creating and binding the SAN socket, the switch executes a connect request, using
the SAN socket in nonblocking mode, as described in the following procedure.

To execute a connect request

1. The switch calls the SAN service provider's WSPEventSelect function. In this call,
the switch passes the FD_CONNECT code and the event object to be associated
with that code. The call to WSPEventSelect requests notification of connection
events and informs the SAN service provider that any subsequent WSPConnect
call executes in nonblocking mode.

2. After the WSPEventSelect function returns, the switch calls the SAN service
provider's WSPConnect function. In this call, the switch passes the destination

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566319(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566268(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566287(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566275(v=vs.85)

address in the format of one of the WSK address families. The SAN service
provider's proxy driver maps this destination address to a native address and
attempts to establish the connection.

3. If the SAN service provider's WSPConnect function can complete or fail the
connection operation immediately, it returns the appropriate success or failure
code. If the SAN service provider's WSPConnect function cannot complete a
connection request immediately, the SAN service provider's connection operation
proceeds asynchronously in another thread. The SAN service provider's
WSPConnect function returns with the error WSAEWOULDBLOCK to indicate that
the socket is marked as nonblocking and that the connection operation cannot be
completed immediately.

4. After the connection operation completes, the SAN service provider calls the
Win32 SetEvent function to signal the event object that was previously registered
in the WSPEventSelect call.

5. After the event object is signaled, the switch calls the SAN service provider's
WSPEnumNetworkEvents function to obtain the result of the connection
operation.

Note After the switch establishes a connection through a SAN service provider, the
switch can no longer use the TCP/IP provider for that connection. SAN service providers
must fully implement all functionality required to service an established connection.

If the SAN service provider's WSPConnect function fails, the switch calls the SAN service
provider's WSPCloseSocket function to destroy the SAN socket. The switch then calls
the TCP/IP service provider's WSPConnect function to forward the connection operation
to the TCP/IP service provider unless the SAN service provider returned one of the
following error codes as the result of its connection operation:

WSAECONNRESET
Indicates that no application is listening on the specified port at the destination address

WSAECONNREFUSED
Indicates that the remote application actively refused the connection request

WSAEHOSTUNREACH
Indicates that the destination address does not exist

Destroying the SAN Socket

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566284(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)

These preceding error codes guarantee that an attempt to establish the connection
through TCP/IP will also fail. A SAN service provider must not return one of these error
codes if it cannot make that guarantee. For example, if a target computer that does not
support Windows Sockets Direct exists on the SAN but can only communicate through
NDIS, the SAN service provider cannot return WSAEHOSTUNREACH as the result of a
failed SAN connection request to this target because a connection request through the
TCP/IP provider might succeed. In this case, the SAN service provider should return
WSAETIMEDOUT.

After the switch establishes a connection through a SAN service provider, the switch
calls the SAN service provider's WSPRegisterMemory extension function to preregister
the memory for the buffer array that is to receive incoming messages. The switch next
calls the SAN service provider's WSPRecv function to post one or more buffers to
receive incoming message data from the remote peer. The switch then negotiates a
session with its remote peer by exchanging a pair of messages that contain initial flow
control information. After the switch negotiates a session, it completes the WSPConnect
call that the application initiated. The application can then begin sending and receiving
data on the connection. For more information, see Accepting Connection Requests.

After a connection is established over a SAN socket, the switch does not call the SAN
service provider's WSPConnect function. The switch internally handles applications that
initiate a call to the switch's WSPConnect function to poll for connection requests.

Session Negotiation

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)

Listening for Connections on a SAN
Article • 12/15/2021

The following figure shows an overview of how the Windows Sockets switch sets a SAN
socket to acknowledge and queue--that is, listen for--incoming connection requests
from a remote peer. The topics that follow describe the listening process in more detail.

When the Windows Sockets switch receives a WSPListen call that was initiated by an
application, the switch always calls the TCP/IP provider's WSPListen function first to set
the TCP/IP provider's socket to acknowledge and queue incoming connection requests.
If the application's socket is bound to the IP address of a SAN NIC or to the wildcard IP
address, the switch also uses the appropriate SAN service provider to create and bind an
additional socket. For more information, see Creating and Binding SAN Sockets.

After requesting a SAN service provider to create and bind the SAN socket, the switch
calls the WSPListen function of the SAN service provider to cause the SAN socket to
listen for incoming connections and to specify a limit on the number of incoming
connection requests that the SAN service provider can queue.

The switch accepts incoming connections only in nonblocking mode. The switch calls
the SAN service provider's WSPEventSelect function to put a socket in nonblocking
mode and to request notification of incoming connection events. In this call, the switch
passes the FD_ACCEPT code and the event object to be associated with that code. After
the SAN service provider receives a connection request on its socket that was previously
established for listening, the SAN service provider calls the Win32 SetEvent function to
signal the associated event object. The switch listens for incoming connection events in
a dedicated thread and accepts or rejects the connection after the event object is
signaled. For more information, see Accepting Connection Requests.

Listening for Incoming Connection Requests

Setting Up to Accept Incoming Connections

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566297(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566287(v=vs.85)

If a connection request arrives and the SAN service provider's backlog of connection
requests is full, the SAN service provider should immediately indicate to the remote peer
that it refuses the connection request. In this case, the SAN service provider does not
signal the event object to inform the switch to accept or reject the connection request.
The SAN service provider on the remote peer must then fail its connection operation
that was initiated by a WSPConnect call with the WSAECONNREFUSED error code.

Indicating Refusal of a Connection Request to a Remote
Peer

Accepting Connection Requests
Article • 12/15/2021

If an application calls the WSAAccept, accept, or AcceptEx function to accept an
incoming connection request on a socket, the Windows Sockets switch always forwards
this call to the TCP/IP service provider. If an incoming connection request arrives from a
non-SAN network, it flows through the NDIS path and the TCP/IP service provider
handles it. If a connection request arrives from a remote peer on a SAN, the switch acts
as an intermediary between the TCP/IP service provider and the SAN service provider in
determining whether to accept the connection request and in completing the
application's WSAAccept, accept, or AcceptEx function.

The following figure shows an overview of the interaction between the Windows Sockets
switch and the SAN service provider in determining whether to accept or reject an
incoming connection request. The sequences and sections that follow describe
acceptance determination in more detail.

To accept or reject a connect request

1. On receiving an incoming connection request from a remote peer, the SAN service
provider signals an event object as described in Listening for Connections on a
SAN.

2. The Windows Sockets switch calls the SAN service provider's
WSPEnumNetworkEvents function to receive the FD_ACCEPT event code.

3. On receiving the FD_ACCEPT event code, the switch calls the SAN service provider's
WSPAccept function to accept or reject the incoming connection request.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566284(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)

4. In the switch's call to the SAN service provider's WSPAccept function, the switch
specifies a condition function. The SAN service provider must call this condition
function in the same thread in which the WSPAccept function was called before
returning from the WSPAccept call.

5. The switch returns the CF_ACCEPT or CF_REJECT code from this condition function
to indicate that it accepts or rejects the connection request, respectively.

If an application accepts an incoming connection request, the switch returns the
CF_ACCEPT code to the SAN service provider to complete the switch's condition
function. On receiving CF_ACCEPT, the SAN service provider initializes an internal data
structure in which it stores information about the accepting socket. The SAN service
provider's WSPAccept function must next call the WPUCreateSocketHandle function to
acquire a descriptor for the accepting socket from the switch. The SAN service provider
must store the switch's descriptor in its internal data structure for the accepting socket
and must return its own descriptor for the accepting socket to complete the WSPAccept
call. The switch must supply the SAN service provider's internal descriptor for the
accepting socket when calling the SAN service provider's functions, while the SAN
service provider must supply the switch's socket descriptor in up calls to the switch.

Before successfully completing WSPAccept, the SAN service provider should call the
Win32 ResetEvent function to reset the event object. Doing so enables the SAN service
provider to later call the Win32 SetEvent function to signal the switch to accept the next
incoming connection request.

If an application rejects an incoming connection request, the switch returns the
CF_REJECT code to the SAN service provider to complete the switch's condition function.
On receiving CF_REJECT, the SAN service provider should return the
WSAECONNREFUSED error code to the switch to complete the WSPAccept call.

Before a SAN service provider can indicate to a remote peer that it accepts or refuses
the remote peer's connection request, the SAN service provider must call the switch's
condition function. Depending on the value that the switch's condition function returns,

Accepting a Connection Request and Creating an
Accepting Socket

Rejecting a Connection Request

Indicating Acceptance or Refusal of a Connection Request
to a Remote Peer

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)

the SAN service provider should make one of the following indications to the remote
peer:

If the switch's condition function returns CF_ACCEPT, the SAN service provider should
indicate that it accepts the remote peer's connection request. The SAN service provider
on the remote peer can then successfully complete its connection operation that was
initiated by a WSPConnect call.

If the switch's condition function returns CF_REJECT, the SAN service provider should
indicate that it refuses the remote peer's connection request. The SAN service provider
on the remote peer must fail its connection operation that was initiated by a
WSPConnect call with the WSAECONNREFUSED error code.

After the switch has successfully used a SAN service provider to accept a connection
request from a remote peer, the switch negotiates a session with that peer.

To negotiate a session

1. The switch at the remote peer calls the SAN service provider's WSPRecv function
to post a set of receive buffers.

2. The switch at the remote peer calls the SAN service provider's WSPSend function
to send a session negotiation message to the switch at the local accepting
endpoint. This message includes the number of receive buffers that the switch at
the remote peer posted.

3. The switch at the local accepting endpoint calls the local SAN service provider's
WSPRecv function to post its own receive buffers, but it might not be able to do so
in time to receive the session negotiation message. If the local switch does not
post a receive buffer in time and if the underlying NIC does not support flow
control, the SAN service provider at the local accepting endpoint must buffer the
remote switch's session negotiation message in its own private receive buffers.
When the switch posts receive buffers, the SAN service provider copies data from
its private receive buffers to the switch buffers on a one-to-one basis until all of
the data has been copied from the private buffers to the switch buffers.

The SAN service provider performs normal receive processing on subsequent
switch buffers--that is, it posts all such switch buffers to the receive queue on the
NIC.

Session Negotiation

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)

Note that a SAN service provider must not drop a connection simply because the
switch did not post a receive buffer before the session negotiation message
arrived. The maximum length of a session negotiation message is 256 bytes.

4. The switch at the local accepting endpoint posts its receive buffers before
responding to the session negotiation message. The local switch calls the local
SAN service provider's WSPSend function to respond to the session negotiation
message. The local switch's response includes the number of receive buffers that
the local switch posted. From this point forward, the local switch guarantees that
the posted set of receive buffers is of sufficient size to receive any message that
arrives on the connection.

5. If an application specifies an initial receive buffer in its AcceptEx call, the switch
waits until it receives the first data message from its remote peer before
completing the application's AcceptEx call.

6. If the application cancels its own accept call, the switch calls the appropriate SAN
service provider's WSPCloseSocket function to close the accepting SAN socket.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)

Registering Memory for Operations on
a SAN
Article • 12/15/2021

The Windows Sockets switch calls a SAN service provider's extension functions to
register all data buffers for sending and receiving messages and for RDMA operations
on a system area network. These extension functions register a buffer to a region of
physical memory for use on a particular SAN socket that is connected to a remote peer.
For a description of these extension functions, see the Windows Sockets SPI Extensions
for SANs.

The switch calls a SAN service provider's WSPRegisterMemory extension function on
behalf of an application that runs in a local process to register data buffers that can be
accessed only by that process. The buffer handles that WSPRegisterMemory returns are
valid only in the context of the local process that performed the registration. The switch
calls WSPRegisterMemory to register buffers that serve as the message receiving buffer
in a call to the WSPRecv function or the message sending buffer in a call to the
WSPSend function. The switch also calls WSPRegisterMemory to register buffers that
serve as the local receiving RDMA buffer in a call to the WSPRdmaRead extension
function or the local RDMA source in a call to the WSPRdmaWrite extension function.
After the local process finishes using buffers that were registered with
WSPRegisterMemory, the switch calls the WSPDeregisterMemory extension function to
release those buffers.

The switch calls the SAN service provider's WSPRegisterRdmaMemory extension
function on behalf of an application that runs in a local process to register RDMA
buffers that both local and remote processes can access. The buffer descriptors that
WSPRegisterRdmaMemory returns are valid only for RDMA data transfer operations
that a remote peer initiates in the context of the peer's connection to the SAN socket on
which the registration was performed. The switch at the remote peer connection uses
these RDMA buffers as either the target in a call to the WSPRdmaWrite extension
function or the source in a call to the WSPRdmaRead extension function. After the local
and remote processes finish using buffers that were registered with
WSPRegisterRdmaMemory, the switch calls the WSPDeregisterRdmaMemory
extension function to release those buffers.

Registering Data Buffers

Managing Memory Access

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566279(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)

A SAN service provider must prevent unauthorized access to registered memory.

Memory must be registered and accessible as follows:

Memory registered for local access should be available only to the process in which the
switch called WSPRegisterMemory.

Memory registered for both local and remote access can be accessed by either the
process in which the switch called WSPRegisterRdmaMemory to register memory, or by
the remote peer that is connected to the SAN socket to which the memory is registered.

Memory must be accessible only while registered and while the connection is
established. A SAN service provider must ensure that it does not inadvertently make
such memory accessible to other processes running on the same computer or on other
computers on the SAN.

Memory registered only for read access must not be available for write access. Memory
registered only for write access must not be available for read access.

The switch registers two virtually contiguous regions of memory for each connected TCP
socket to use for negotiating a data-transfer session. The switch uses one region of
memory to provide message buffers containing send data when calling a SAN service
provider's WSPSend function. The switch uses the other region of memory to post
message buffers to receive data when calling a SAN service provider's WSPRecv
function.

The switch typically registers RDMA buffers only if it transfers application data in RDMA
operations.

Before the switch closes a socket, the switch calls either WSPDeregisterMemory or
WSPDeregisterRdmaMemory functions of a SAN service provider to release any
memory that a pending data transfer operation is not currently using. The SAN service
provider must also release memory associated with outstanding data transfer
operations.

Using Registered Memory

Caching Registered Memory
Article • 12/06/2022

SAN service providers can cache RDMA buffers that are exposed for either local or
remote access to improve performance.

The Windows Sockets switch calls a SAN service provider's WSPRegisterMemory
extension function on behalf of an application to register all data buffers that serve as
either the local receiving RDMA buffer in a call to the WSPRdmaRead extension function
or the local RDMA source in a call to the WSPRdmaWrite extension function. As part of
this registration process, the SAN service provider must lock down these buffers to
regions of physical memory and register them with the SAN NIC. Both of these
operations are resource intensive. Therefore, the SAN service provider should use
caching to reduce the overhead of these registrations. If the SAN service provider uses
caching, the performance of applications that reuse buffers for data transfers improves.

SAN service providers should cache and release RDMA buffers that are exposed for local
access as described in the following list:

1. When the switch calls the WSPDeregisterMemory extension function to release a
buffer, the SAN service provider should leave the buffer registered with the SAN
NIC and locked down to a region of physical memory. The SAN service provider
should also add the buffer to a cache of registered buffers, in case the buffer is
used again in a subsequent RDMA operation, and secure possession of the buffer
as described in the next list item.

2. A SAN service provider caches memory registrations based on virtual addresses.
When the SAN service provider caches a buffer's registration, the SAN service
provider's proxy driver must call the MmSecureVirtualMemory function to secure
possession of that registered buffer so that the operating system notifies the
switch if the buffer is released (for example, if an application calls the VirtualFree
function to release a virtual address range back to the operating system).

3. When the switch subsequently calls WSPRegisterMemory to register a buffer, the
SAN service provider should check its cache to determine if the buffer is already
registered. If the SAN service provider finds the buffer in its cache, the SAN service
provider should not perform any further registration action.

Caching RDMA Buffers Exposed for Local Access

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566279(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmsecurevirtualmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree

4. Before the virtual-to-physical mappings of the registered buffer subsequently
change, the switch calls each SAN service provider's
WSPMemoryRegistrationCacheCallback extension function. Each SAN service
provider's proxy driver, in turn, must call the MmUnsecureVirtualMemory function
to release ownership of the buffer. In addition, each SAN service provider must
remove the buffer from its cache and must remove the buffer registration from the
SAN NIC.

5. Before the connection between a local SAN socket and a remote peer is closed, the
SAN service provider should release any cached buffers.

Note The proxy driver must use the try/except mechanism around code that accesses a
user-mode buffer that was secured through a call to MmSecureVirtualMemory to
prevent operating system crashes. For more information about how a proxy driver
secures and releases buffers, see Securing and Releasing Ownership of Virtual
Addresses.

The Windows Sockets switch calls a SAN service provider's WSPRegisterRdmaMemory
extension function to register all data buffers that serve as either the remote RDMA
target of a remote WSPRdmaWrite call or the remote RDMA source of a remote
WSPRdmaRead call. That is, the switch exposes these buffers for access by a remote
peer. After data transfers from these buffers are completed, the switch calls the SAN
service provider's WSPDeregisterRdmaMemory extension function to release these
buffers so that they are no longer accessible from the remote peer.

SAN service providers should cache RDMA buffers that are exposed for remote access
as described in the following list:

1. When the Switch calls WSPDeregisterRdmaMemory to release a buffer, the SAN
service provider should leave the buffer locked in physical memory and registered
with the SAN NIC. The SAN service provider should also add the buffer to a cache
of registered buffers, in case the buffer is used again in a subsequent RDMA
operation. However, the SAN service provider should take appropriate action to
ensure that the remote peer can no longer access the buffer. Note If the buffer
can only be made inaccessible by the SAN service provider removing the buffer
registration from the SAN NIC, the SAN service provider must do so. However, the
SAN service provider should leave the buffer locked down to a region of physical
memory. This scenario does not provide the best possible performance but is
better than no caching.

Caching RDMA Buffers Exposed for Remote Access

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566299(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmunsecurevirtualmemory
https://learn.microsoft.com/en-us/cpp/c-language/try-except-statement-c
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)

2. To cache RDMA buffers exposed for remote access, the SAN service provider and
its proxy driver should use the caching techniques as described in the preceding
list for RDMA buffers that are exposed for local access.

3. When the switch subsequently calls WSPRegisterRdmaMemory to register a
buffer, the SAN service provider should check its cache to determine if the buffer is
already registered. If the SAN service provider finds the buffer in its cache, the SAN
service provider should simply expose the buffer for remote access, no further
registration action is required. However, if the buffer registration was previously
removed from the SAN NIC, the SAN service provider should register the buffer
again.

4. To release RDMA buffers exposed for remote access, the SAN service provider and
its proxy driver should use the techniques as described in the preceding list.

Transferring Data on a SAN
Article • 12/15/2021

Many system area networks (SANs) lack flow control; therefore, the Windows Sockets
switch uses a lightweight session protocol to transfer data on a SAN. The following
topics describe features of the switch's session protocol that enable data transfer
operations for a SAN service provider:

Using Session Protocol

Sending Urgent Data on a SAN

Completing Data Transfer Requests

Using Session Protocol
Article • 12/15/2021

The Windows Sockets switch uses its session protocol to transfer data over a SAN
connection. If the switch transfers a small amount of data, it transfers that data within a
control message. Each control message consists of a header and an optional payload of
application data. If the switch transfers a large amount of data, it transfers that data
using RDMA operations.

This section describes how to set up and perform a data transfer.

Note Depending on the behavior of applications that load the switch, the switch
optimizes its session protocol to reduce the overhead involved in transferring
application data.

This section also provides examples of how the switch's session protocol performs data
transfers. However, these examples do not include definitive descriptions of these
operations.

The switch allocates a pool of control message buffers for each connected socket. The
switch then makes calls to the SAN service provider's WSPRegisterMemory function to
register those message buffers to regions of physical memory. The switch uses part of
the buffer pool to send flow control information to a remote peer when calling a SAN
service provider's WSPSend function. The switch uses the other part of the pool to post
message buffers to receive flow control information from a remote peer when calling a
SAN service provider's WSPRecv function. After the switch receives control messages, it
immediately consumes them. After consuming control messages, the switch calls the
SAN service provider's WSPRecv function and passes receive buffers to post them again
so they can receive additional control messages from a remote peer.

The size of the data transfer affects how the switch will handle the data transfer
operation.

If an application requests to send a small amount of data, the switch transfers that data
as described in Sending Urgent Data on a SAN.

Setting Up a Data Transfer

Transferring Application Data

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)

If an application requests to send a large amount of data, the switch copies the initial
portion of the data to a control message buffer that is used for sending. The header for
this control message contains information that specifies the amount of application data.
The switch then calls the SAN service provider's WSPSend function to send this control
message to the SAN socket's remote peer.

How the switch completes the transfer of application data depends on whether the
service provider supports the WSPRdmaRead function.

The following figure shows an overview of how the switch completes the transfer of
application data if the SAN service provider at the remote peer supports a
WSPRdmaRead function. The sequence that follows describes transferring application
data in more detail.

The local switch must call the SAN service provider's WSPRegisterRdmaMemory
function to register RDMA memory for read access. In this case, the control header
for the message buffer also identifies the descriptor for the RDMA memory that
holds the application's remaining data.
The switch at the remote peer then calls WSPRdmaRead to transfer application
data from RDMA memory to receiving buffers that the switch at the remote peer
previously registered with WSPRegisterMemory calls. The SAN service provider
transmits the buffered data in the background. Doing so allows applications that
do not post more than one send at a time to post another send request while the
SAN service provider sends buffered data.
The switch at the remote peer then calls WSPSend to send a control message to
the local switch to indicate that the transfer is complete.

Data Transfer to a Provider That Supports the
WSPRdmaRead Function

To transfer data when the remote peer supports
WSPRdmaRead

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)

The local switch calls the WSPDeregisterRdmaMemory function to release RDMA
memory.
The local switch completes the application's send request. If the switch cannot
register memory for the application's data buffers or if temporary memory cannot
be fully allocated, it completes an application's send request with the
WSAENOBUFS error code.

The following figure shows an overview of how the switch completes the transfer of
application data if the SAN service provider at the remote peer does not support a
WSPRdmaRead function. The sequence that follows describes transferring application
data in more detail.

The switch at the remote peer calls WSPRegisterRdmaMemory to register RDMA
memory for write access.
The switch at the remote peer then calls WSPSend to send a control message to
the local switch that indicates the location of RDMA memory to which the local
switch can write.
The local switch calls the WSPRdmaWrite function to transfer application data to
the RDMA memory. The SAN service provider transmits the buffered data in the
background. Doing so allows applications that do not post more than one send at
a time to post another send request while the SAN service provider sends buffered
data.
The local switch calls the WSPGetOverlappedResult function to obtain the results
of the transfer. For more information, see Completing Data Transfer Requests.

Data Transfer to a Provider That Does Not Support the
WSPRdmaRead Function

To transfer data when the remote peer does not support
WSPRdmaRead

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566288(v=vs.85)

The local switch calls WSPSend to send a control message to the remote peer to
indicate that the transfer is complete.
The switch at the remote peer calls WSPDeregisterRdmaMemory to release RDMA
memory.
The local switch completes the application's send request. If the switch cannot
register memory for the application's data buffers or if temporary memory cannot
be allocated, it completes an application's send request with the WSAENOBUFS
error code.

Transferring Data on a SAN

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)

Sending Urgent Data on a SAN
Article • 12/15/2021

If an application sends urgent data on a SAN, the Windows Sockets switch transfers that
data as described in the following sequence:

1. For requests to send urgent data, the switch receives a WSPSend call in which the
MSG_OOB flag is set.

2. The switch copies the urgent data to the payload portion of a control message
buffer.

3. The switch calls the appropriate SAN service provider's WSPSend function to
transmit the urgent data contained in the control message to the remote peer
connection for a SAN socket. The SAN NIC in turn transmits the urgent data.

4. The switch at the remote peer receives the transmitted data into receive buffers
that it posted with the WSPRecv function.

5. The switch at the remote peer copies the received data from the receive buffers to
private storage.

6. The switch at the remote peer calls WSPRecv to repost the receive buffers.

7. The switch at the remote peer delivers the data to an application in accordance
with standard Windows Sockets procedures.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)

Completing Data Transfer Requests
Article • 12/06/2022

The Windows Sockets switch transfers data on a SAN socket asynchronously. Whenever
the switch calls the SAN service provider's WSPSend, WSPRecv, WSPRdmaWrite, or
WSPRdmaRead data-transfer function, it specifies a pointer to an overlapped structure
(WSAOVERLAPPED) and NULL for a completion routine. Even if the switch calls the SAN
service provider's WSPEventSelect function to indicate that the socket is in nonblocking
mode, the SAN service provider is not required to implement nonblocking semantics for
these data-transfer functions.

As described in the Windows Sockets API and SPI documentation in the Microsoft
Windows SDK documentation, both blocking and nonblocking sockets treat overlapped
operations the same. That is, the SAN service provider starts the particular data transfer
operation and then immediately returns control to the switch. These data-transfer
functions return error code WSA_IO_PENDING to indicate that an asynchronous
operation started and that completion of that operation occurs later. After the operation
completes, the SAN service provider signals completion if the switch requires
completion notification as described in following paragraphs.

Because the switch always specifies NULL for a completion routine for overlapped data
transfer operations, a SAN service provider is not required to support completion
through the use of asynchronous procedure calls (APCs).

Whenever possible, the switch attempts to call the SAN service provider's
WSPGetOverlappedResult function to poll for completion of data transfer requests. In
this way, the switch can avoid the overhead associated with active overlapped
completion mechanisms. To indicate to a SAN service provider that the switch does not
require completion notification for a particular overlapped data transfer operation, the
switch sets the low-order bit of the hEvent member in the WSAOVERLAPPED structure
to one. The SAN service provider must not notify the switch of the completion of
requests submitted in this manner.

If the switch requires notification of the completion of an overlapped data transfer
operation, it sets the low-order bit of the hEvent member in the WSAOVERLAPPED
structure to zero. The SAN service provider must complete data transfer operations that
are initiated in this way by calling the WPUCompleteOverlappedRequest function to
signal completion. In this call, the SAN service provider passes a pointer to the
WSAOVERLAPPED structure that corresponds to a completed data transfer operation. In
this WPUCompleteOverlappedRequest call, the SAN service provider also passes the
socket descriptor that was acquired from the switch in a call to the

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566287(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/winsock/windows-sockets-start-page-2
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566288(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565952(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wpucompleteoverlappedrequest

WPUCreateSocketHandle function. The switch receives completion notifications,
matches them to an application's I/O requests, and completes those I/O requests, as
appropriate, for the application.

https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wpucreatesockethandle

Synchronizing Operations on a SAN
Article • 12/15/2021

The Windows Sockets switch uses its session protocol to handle almost all
synchronization between a SAN service provider and applications. That is, the switch, in
conjunction with the TCP/IP provider, handles most WSPAsyncSelect, WSPEventSelect,
and WSPSelect calls from applications. The switch does not forward these calls to a SAN
service provider except when specifying the FD_ACCEPT and FD_CONNECT network
event codes in calls to a SAN service provider's WSPEventSelect function, as described
in Setting Up a SAN Connection.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566287(v=vs.85)

Shutting Down the Use of a SAN
Article • 12/15/2021

The following topics describe how to terminate the use of a SAN:

Shutting Down a SAN Connection

Closing a SAN Socket

Cleaning up a Process for a SAN

Shutting Down a SAN Connection
Article • 12/15/2021

The Windows Sockets switch uses its session protocol to shut down a connection to a
SAN socket. That is, the switch handles WSPRecvDisconnect, WSPSendDisconnect, and
WSPShutdown calls from applications. The switch does not forward these calls to a SAN
service provider. The switch uses its session protocol to disable the reception and
transmission of data on a SAN socket.

Closing a SAN Socket
Article • 12/06/2022

After the Windows Sockets switch on either side of a connection calls a SAN service
provider's WSPCloseSocket function, the SAN service provider performs the following
procedure to close a SAN socket:

1. Each SAN service provider on either side of the connection tears down the
connection and completes receive requests-- WSPRecv function calls--by returning
the appropriate error code at the lpErrno parameter. For example, a SAN service
provider returns WSAECONNRESET to indicate that the remote peer reset the
connection.

Each SAN service provider also signals completion of pending overlapped
operations for the SAN socket to be closed. The SAN service provider calls the
WPUCompleteOverlappedRequest function to signal completion of an overlapped
operation. In this call, the SAN service provider passes a pointer to the
WSAOVERLAPPED structure that is associated with the overlapped operation. The
SAN service provider also passes the WSA_OPERATION_ABORTED error code to
specify that the overlapped operation was canceled because the SAN socket was
closed. Before signaling completion of an overlapped operation, the SAN service
provider should release any memory that was required for the operation.

2. After the SAN service provider is done making up-calls--calls to functions that are
prefixed with WPU--to the switch using the handle to the SAN socket that was
obtained through a WPUCreateSocketHandle up-call, the SAN service provider
must make a final up-call to the switch by calling the WPUCloseSocketHandle
function to close the socket handle. The SAN service provider then cleans up
everything related to the SAN socket. Up-calls are function calls from the switch's
up-call dispatch table. The switch provides a pointer to this up-call dispatch table
when it calls the SAN service provider's WSPStartupEx function to start using the
provider.

As long as a SAN service provider performs the preceding procedure to close a SAN
socket, the switch takes care of everything else.

To prevent race conditions between a SAN service provider and the switch initiating
socket closures, the SAN service provider should never release data structures related to
a SAN socket until the switch calls WSPCloseSocket.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wpucompleteoverlappedrequest
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565952(v=vs.85)
https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wpucreatesockethandle
https://learn.microsoft.com/en-us/windows/win32/api/ws2spi/nf-ws2spi-wpuclosesockethandle
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566321(v=vs.85)

Cleaning up a Process for a SAN
Article • 12/15/2021

When an application is ready to clean up the process in which it is running, it initiates a
call to the Windows Sockets switch's WSPCleanup function. The switch, in turn, calls the
WSPCleanup function of the TCP/IP provider and all SAN service providers. All providers
are expected to release any resources that they were using. Resources can include, for
example, objects used to synchronize events and memory used to perform data
transfers.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566270(v=vs.85)

Blocking Calls for a SAN
Article • 12/15/2021

The Windows Sockets switch handles blocking calls and the cancellation of such calls
internally or forwards them to the TCP/IP service provider. The switch never calls a
WSPCancelBlockingCall function for a SAN service provider to cancel a blocking request
that is in progress. Therefore, a SAN service provider is not required to implement a
WSPCancelBlockingCall function.

The switch handles the following blocking requests and corresponding cancellations in
the following ways:

When an application requests to connect a SAN socket to a specific destination
address in blocking mode, the switch receives a blocking WSPConnect call. The
switch forwards the connect request in nonblocking mode to the appropriate SAN
service provider's WSPConnect function. If the switch must cancel this connection
request for some reason, it calls the SAN service provider's WSPCloseSocket
function. The SAN service provider must promptly abort the connection request
and release resources for the socket.

When the switch receives a blocking request that was initiated by an application to
perform a data transfer operation on a SAN socket, it forwards the data transfer
request in an overlapped (nonblocking) manner to the appropriate SAN service
provider. For example, if the switch receives a synchronous (blocking) WSPSend
call, it calls the appropriate SAN service provider's WSPSend function in an
overlapped (nonblocking) manner. If the application later cancels the data transfer
operation and the switch has control of the application's buffer, the switch
completes the application's request with a failure status. If the application's buffer
is involved in an outstanding RDMA operation, the switch waits for the operation
to complete. If an RDMA transfer takes too long to complete, the switch calls the
appropriate SAN service provider's WSPCloseSocket function to close the
connection in an abortive manner, thereby forcing completion.

Note If an application cancels a blocking call, it cannot rely on a connection being
preserved. Only the WSPCloseSocket call is guaranteed to succeed on the socket after
the cancellation of a blocking request. For more information, see the Windows Sockets
SPI documentation in the Microsoft Windows SDK.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)

Duplicating Socket Handles for a SAN
Article • 12/15/2021

Multiple applications that run in different processes can use the Windows Sockets switch
to perform operations on a shared underlying socket. However, only one application at
a time can perform operations on that shared underlying socket.

To use a shared underlying socket, an application must retrieve a duplicate handle to
that underlying socket in one of the following ways:

Directly, by calling the Windows Sockets WSADuplicateSocket function

The call is made in the context of the controlling process (the process in which the
socket was created).

Indirectly, by calling the Win32 DuplicateHandle function

The call is made in the context of a noncontrolling process (other than the process
in which the socket was created).

Using the handle inheritance mechanism

A child process (the noncontrolling process) inherits all or some of the handles
created in its parent process (the controlling process).

During graceful connection closure

If an application in the controlling process closes a socket and exits while some
data still remains to be sent, this remaining data is buffered in the Windows
Sockets DLL. Another application in the context of the system service process (the
noncontrolling process) subsequently sends this data.

The Windows Sockets switch, in conjunction with the TCP/IP provider, detects and
handles each of the preceding conditions. The switch allows only one process at a time
to execute operations that either transfer data or change state for an underlying shared
socket. Processes dynamically swap control of the underlying socket, as required, to
execute requested operations. The switch serializes operations that different processes
request to perform on a shared socket and executes those operations in first-in-first-out
(FIFO) order. The switch waits for all in-progress operations to complete before
swapping control of an underlying socket to another process. Logically, the switch takes
control of the underlying socket away from the controlling process as soon as a
noncontrolling process requests a qualifying operation. After control is taken away, the
switch treats the original controlling process like a noncontrolling process if the original

controlling process requests qualifying operations. Note that the switch takes no action
on a duplicate socket handle until the noncontrolling process actually uses the duplicate
socket handle for a data transfer or state-change operation.

Both the switch and the appropriate SAN service provider are loaded into all processes
that share access to a particular underlying socket. The switch maintains its own socket
context and connection state information in all processes that share the socket. The SAN
service provider is required to maintain its socket context and connection state
information only in the process that has control of the underlying socket at any given
point in time. The SAN service provider must swap control of its context and connection
state information from the current controlling process to the next controlling process
whenever the switch requires the swap as described in the following sequence. To
minimize the amount of resources that are required for swapping, a SAN service
provider can maintain its context and connection state information in all processes that
share an underlying socket.

Because the switch does not create the SAN socket that corresponds to an application
socket until an application calls either the connect or listen function, the switch cannot
request that the SAN service provider perform a swap operation before the application
socket is connected or listening. Even after the application socket is connected or
listening, one of the following conditions must be met before the switch requests that
the SAN service provider swap control of the socket:

A process that does not control the socket initiates a data transfer. The SAN service
provider does not swap control of the socket until all data transfer operations that
were initiated by the controlling process have completed.

A process that does not control the socket calls the WSAAccept, WSPAccept, or
AcceptEx function to start a connection-acceptance operation on a listening
socket. The SAN service provider does not swap control of the socket until all
accept requests that were initiated by the controlling process have completed.

The switch performs the following steps to swap control of a connected SAN socket
from the controlling process to the next-controlling process (For an overview of the
swapping process, see the table in the Remarks section of the documentation for the
WSPDuplicateSocket function.):

1. The switch suspends processing of new requests from the application in the
controlling process. When all send and RDMA operations in progress on the SAN
socket have completed, the switch calls the SAN service provider's WSPSend
function to send a message to a connected peer to request a suspension of the
session and calls the SAN service provider's WSPDeregisterMemory function to
release all local buffers used for send operations. As a result, the switch at the peer

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566282(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566279(v=vs.85)

connection suspends processing of new application requests, waits for all send and
RDMA operations in progress on the SAN socket to complete, and releases all
RDMA memory. The peer connection next sends a reply message indicating that
the session is suspended. On receiving this confirmation message, the switch at the
local endpoint calls the SAN service provider's WSPDeregisterRdmaMemory
function to release all RDMA memory. At this point, SAN sockets at both endpoints
of the connection can only have receive requests pending. These receive requests
remain pending on the remote peer's SAN socket to permit reactivation of the
session. The receive requests on the local SAN socket in the controlling process are
completed in the next step. While the connection is suspended, the switch at the
remote peer connection queues new blocking or overlapped requests, buffers new
nonblocking sends up to the SO_SNDBUF setting, fails new nonblocking sends
after the buffer limit is reached, and fails all new nonblocking receives with
WSAEWOULDBLOCK. The local switch in the controlling process handles new
requests on the application socket as if the process did not have control of the
socket.

2. After the session is suspended, the switch calls the SAN service provider's
WSPDuplicateSocket function in the controlling process to direct the SAN service
provider to transfer the socket context into the address space of the next-
controlling process. The switch specifies the next-controlling process in the
dwProcessId parameter of WSPDuplicateSocket. The WSPDuplicateSocket function
must call the WPUCompleteOverlappedRequest function to complete all
outstanding receive requests on the socket with a success status and zero bytes.
The SAN service provider must also automatically release all buffers associated
with these requests. The SAN service provider releases all buffers since the switch
does not request any more operations on the SAN socket after
WSPDuplicateSocket returns. The only possible exception is a WSPCloseSocket
function call, as described in the next step. After WSPDuplicateSocket returns, the
switch saves the value in the dwProviderReserved member of the
WSAPROTOCOL_INFOW structure to which the lpProtocolInfo output parameter
points. The switch uses this value to identify the underlying socket in the context of
the next-controlling process. Therefore, the value in dwProviderReserved must
uniquely identify the underlying socket and the connection for that socket across
all processes on the system. In addition, this value must be valid only in the context
of the process that the switch specified in the dwProcessId parameter of
WSPDuplicateSocket.

3. After the socket context is transferred into the address space of the next-
controlling process, the switch calls the SAN service provider's WSPSocket function
in the context of the next-controlling process. In this call, the switch passes the

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566319(v=vs.85)

value for the underlying socket that was returned in the WSPDuplicateSocket call
to the dwProviderReserved member of the WSAPROTOCOL_INFOW structure to
which the lpProtocolInfo input parameter points. If the next-controlling process did
not request the creation of the SAN socket, the SAN service provider must create a
new socket and call the WPUCreateSocketHandle function to obtain a handle, as
required for any new socket. If the SAN socket was created in the context of the
next-controlling process, the SAN service provider can reactivate the former socket
and return the same descriptor for the socket that was used previously. In this
case, the SAN service provider should not call WPUCreateSocketHandle, but
should continue to use the original socket handle that the switch provided.
Alternatively, the SAN service provider can create a new socket, regardless of
whether a socket previously existed in the process. In this case, the switch must call
the SAN service provider's WSPCloseSocket function in the context of the next-
controlling process to dispose of the former socket descriptor.

4. The switch restarts processing of new requests from the application in the next-
controlling process.

The switch duplicates a listening socket in a similar manner, except that the switch is not
required to suspend a session. The switch waits until it completes all WSPAccept calls
that were initiated by an application's accept and AcceptEx calls before calling the SAN
service provider's WSPDuplicateSocket function in the controlling process.

Because the switch suspends processing of new requests on a SAN socket prior to
calling the SAN service provider's WSPDuplicateSocket function, the SAN service
provider can release all resources associated with a local endpoint in the controlling
process. The SAN service provider can even terminate an underlying connection. If the
SAN service provider closes an underlying connection in the controlling process, the
SAN service provider must reestablish the connection after the switch calls the SAN
service provider's WSPSocket function within the next-controlling process. After the
WSPSocket call returns, the SAN socket within the next-controlling process must be in
the same state, from the switch's perspective, as the SAN socket in the controlling
process was prior to the switch calling the SAN service provider's WSPDuplicateSocket
function.

If a SAN NIC supports sharing resources between endpoints that run in different
processes, the SAN service provider does not have to release resources for a local
endpoint in the controlling process prior to receiving a WSPDuplicateSocket call. In
such a case, the SAN socket associated with a local endpoint remains inactive in the
former-controlling process until the switch either swaps the socket context back from
the next-controlling process or calls the SAN service provider's WSPCloseSocket
function to explicitly close the socket. Because most applications perform their final

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)

access to the socket in the process that originally created it--generally to close the
connection--the SAN service provider can improve performance if the SAN service
provider preserves the socket context in the controlling process after the switch swaps
control of the socket to the next-controlling process.

Note that, in all cases, a SAN socket descriptor must remain valid until the switch calls
the SAN service provider's WSPCloseSocket function to explicitly close the socket. Even
if the SAN service provider releases all resources for the socket in a particular process
prior to receiving a WSPDuplicateSocket call, the SAN service provider must not reuse
the descriptor for the socket until the switch calls WSPCloseSocket on that descriptor.

An unexpected process exit or some other error condition can interrupt a SAN service
provider's socket-duplication operation. For example, a shortage of resources can cause
such an interruption. The switch treats such error conditions as it does any other error
situation. If necessary, the switch closes all descriptors that are associated with the
underlying socket in all processes to forcefully terminate the socket's connection. If at all
possible, the SAN service provider at the remote peer should complete WSPRecv calls
that receive incoming data with an appropriate error code, such as WSAECONNRESET.
This error code informs the remote peer of the connection termination. If the switch at
the remote peer does not receive this connection-termination indication, the switch at
the remote peer times out a suspended connection if the system that requested the
suspension fails.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)

Handling Socket Options and Control
Codes for a SAN
Article • 12/15/2021

The Windows Sockets switch, in conjunction with the TCP/IP provider, handles most
WSPGetSockOpt, WSPSetSockOpt, and WSPIoctl calls initiated by applications. These
requests are generally to set and retrieve options and operating parameters associated
with an application's socket. The switch does not generally forward these calls to a SAN
service provider except as described in the following sections.

The Windows Sockets switch calls a SAN service provider's WSPGetSockOpt function
and passes one of the following socket options to retrieve the current value of that
option, if the SAN service provider supports that option:

SO_DEBUG
SAN service providers are not required to support this option. They are encouraged, but
not required, to supply output debug information if applications set the SO_DEBUG
option.

SO_MAX_MSG_SIZE
A SAN service provider must support this option if the underlying SAN transport is
message-oriented and the transport limits the amount of data that the switch can send
in a call to the SAN service provider's WSPSend function. The switch does not
subsequently pass send requests to the SAN service provider that exceed the size that
the SAN service provider returns for the value of this option.

SO_MAX_RDMA_SIZE
A SAN service provider must support this option if the underlying SAN transport limits
the amount of data that the switch can transfer in calls to either the SAN service
provider's WSPRdmaRead or WSPRdmaWrite function. The switch does not
subsequently pass RDMA transfer requests to the SAN service provider that exceed the
size that the SAN service provider returns for the value of this option.

SO_RDMA_THRESHOLD_SIZE
A SAN service provider supports this option to indicate its preference for the minimum
amount of data that the switch can transfer in calls to either the SAN service provider's
WSPRdmaRead or WSPRdmaWrite function. However, the switch can set the actual
threshold to a value different from the value returned by the SAN service provider. The

Retrieving SAN socket options

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566292(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)

switch subsequently calls the WSPRdmaRead or WSPRdmaWrite function to transfer
data blocks (RDMA transfers) that exceed the size of this threshold and the WSPSend or
WSPRecv function to transfer data blocks (message-oriented transfers) that are less than
or equal to the size of this threshold.

SO_GROUP_ID, SO_GROUP_PRIORITY
A SAN service provider must support these options if it supports quality of service
(QoS). Otherwise, the switch forwards these options to the TCP/IP provider, which
maintains default values. A SAN service provider indicates that it supports QoS by
setting the XP1_QOS_SUPPORTED bit in the dwServiceFlags member of the
WSAPROTOCOL_INFO structure.

The Windows Sockets switch calls a SAN service provider's WSPSetSockOpt function
and passes one of the following socket options to set a value for that option, if the SAN
service provider supports that option:

SO_DEBUG
For a description of this socket option, see the preceding list.

SO_GROUP_PRIORITY
For a description of this socket option, see the preceding list.

The Windows Sockets switch calls a SAN service provider's WSPIoctl function and
passes one of the following control codes to set or retrieve information for that SAN
service provider, if the SAN service provider supports that control code:

SIO_GET_EXTENSION_FUNCTION_POINTER
Retrieves a pointer to an extension function that a SAN service provider must support.
For more information about extension functions, see Windows Sockets SPI Extensions
for SANs. The input buffer of the WSPIoctl call contains the GUID whose value identifies
the specified extension function. The SAN service provider returns the pointer to the
requested function in WSPIoctl's output buffer. The following table contains GUIDs for
extension functions that a SAN service provider can support:

Extension function GUID

WSPRegisterMemory {C0B422F5-F58C-11d1-AD6C-00C04FA34A2D}

WSPDeregisterMemory {C0B422F6-F58C-11d1-AD6C-00C04FA34A2D}

Setting SAN socket options

Accessing SAN socket information

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566318(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566279(v=vs.85)

Extension function GUID

WSPRegisterRdmaMemory {C0B422F7-F58C-11d1-AD6C-00C04FA34A2D}

WSPDeregisterRdmaMemory {C0B422F8-F58C-11d1-AD6C-00C04FA34A2D}

WSPRdmaWrite {C0B422F9-F58C-11d1-AD6C-00C04FA34A2D}

WSPRdmaRead {C0B422FA-F58C-11d1-AD6C-00C04FA34A2D}

WSPMemoryRegistrationCacheCallback {E5DA4AF8-D824-48CD-A799-6337A98ED2AF}

SIO_GET_QOS, SIO_GET_GROUP_QOS, SIO_SET_QOS, SIO_SET_GROUP_QOS
A SAN service provider must support these control codes if it supports QoS. Otherwise,
the switch forwards these options to the TCP/IP provider, which maintains default
values. A provider indicates that it supports QoS by setting the XP1_QOS_SUPPORTED
bit in the dwServiceFlags member of the WSAPROTOCOL_INFO structure.

SIO_ADDRESS_LIST_QUERY
Retrieves the list of local IP addresses that are assigned to the network interface cards
(NICs) that the SAN service provider controls. The SAN service provider uses a
SOCKET_ADDRESS_LIST structure, defined as follows, to return the list in WSPIoctl's
output buffer:

C++

The members of this structure contain the following information:

iAddressCount
Specifies the number of address structures in the list.

Address
Array of IP address structures.

The switch uses this IOCTL code internally to decide whether to use a given SAN service
provider to execute an application's requests to make connections or to listen for
incoming connections. The switch forwards actual application requests for the list of
local IP addresses to the TCP/IP provider. The switch also uses the TCP/IP provider to
detect changes in address lists that all SAN service providers service. After TCP/IP
reports a change, the switch queries all SAN service providers to refresh their lists.

typedef struct _SOCKET_ADDRESS_LIST {
 INT iAddressCount;
 SOCKET_ADDRESS Address[1];
} SOCKET_ADDRESS_LIST, FAR * LPSOCKET_ADDRESS_LIST;

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566299(v=vs.85)

Handling Microsoft Extensions to
Windows Sockets
Article • 12/15/2021

The Windows Sockets switch handles all Microsoft-specific Windows Sockets extension
functions internally. The Windows Sockets documentation in the Microsoft Windows
SDK defines an extension as a mechanism that exposes advanced transport functionality
to application programs. These extension functions are: TransmitFile, AcceptEx, and
GetAcceptExSockAddrs. The switch converts these calls, as necessary, and forwards
them to the appropriate SAN service provider function: WSPSend, WSPAccept,
WSPRdmaWrite, or WSPRdmaRead.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)

Creating a Service Provider for a SAN
Article • 12/15/2021

This section provides a brief description of the functions that make up the interface
between a SAN service provider DLL and the Windows Sockets switch. The SAN service
provider DLL exports a single entry point for its initialization function WSPStartupEx.
The SAN service provider's WSPStartupEx function in turn makes most of the other
interface functions accessible to the Windows Sockets switch through a dispatch table.
The remaining interface functions are supplied to the switch through calls to the SAN
service provider's WSPIoctl function. The interface functions include Windows Sockets
SPI functions and SAN-specific extensions to the Windows Sockets SPI interface.

The Windows Sockets Direct reference provides detailed information about these
functions as implemented in a SAN service provider. Do not use the Microsoft Windows
SDK descriptions of the Windows Sockets SPI functions. The Windows SDK descriptions
do not contain SAN-specific requirements.

This section also lists the Windows Sockets SPI functions that a SAN service provider is
not required to supply.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566321(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565857(v=vs.85)

Windows Sockets SPI Functions
Required for SANs
Article • 12/15/2021

This section describes the functions of the Windows Sockets SPI that a SAN service
provider DLL must supply. These functions are defined in Ws2spi.h and are fully
documented in the Windows Sockets Direct Reference section:

WSPAccept
Conditionally accepts a connection for a socket that is listening for connections, based
on the return value of a supplied condition function.

WSPBind
Associates the local IP address, or name, of a network interface with a socket. This
network interface is serviced by the SAN service provider.

WSPCleanup
Terminates use of the SAN service provider DLL.

WSPCloseSocket
Closes a socket.

WSPConnect
Establishes the connection of a socket to a peer, exchanges connect data, and specifies
required quality of service (QoS) based on the supplied flow specification.

WSPDuplicateSocket
Retrieves a WSAPROTOCOL_INFOW structure that can be used to create a new socket
descriptor for a shared socket in the context of another process.

WSPEnumNetworkEvents
Reports occurrences of network events for a socket.

WSPEventSelect
Specifies an event object for a socket. This event object is subsequently set by the
occurrence of the supplied set of network events.

WSPGetOverlappedResult
Returns the results of an asynchronous (overlapped) operation on a socket. This
operation previously indicated that it was pending completion.

WSPGetQOSByName
Initializes a QoS structure based on a named template, or retrieves an enumeration of

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565857(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566266(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566268(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566270(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566273(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566275(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566282(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566284(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566287(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566288(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566290(v=vs.85)

the available template names.

A SAN service provider DLL that supports QoS must fully implement
WSPGetQOSByName. If the SAN service provides does not support QoS, its
WSPGetQOSByName function must at least return the error WSAEOPNOTSUPP.

WSPGetSockOpt
Retrieves the current value of an option for a socket.

WSPIoctl
Sets or retrieves operating parameters associated with a socket.

WSPListen
Establishes a socket to listen for incoming connections.

WSPRecv
Receives data on a connected socket.

WSPSend
Sends data on a connected socket.

WSPSetSockOpt
Sets the value of an option for a socket.

WSPSocket
Creates a socket that uses the TCP/IP protocol and asynchronous (overlapped) data
transfer.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566292(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566297(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566309(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566316(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566318(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566319(v=vs.85)

Windows Sockets SPI Functions not
Required for SANs
Article • 12/15/2021

This section describes the functions of the Windows Sockets SPI that a SAN service
provider is not required to implement. These functions are defined in Ws2spi.h.

WSPAddressToString
The Windows Sockets switch uses the TCP/IP provider to convert all components of a
SOCKADDR structure into a human-readable numeric string that represents the IP
address of a socket.

WSPAsyncSelect
The Windows Sockets switch uses its session protocol internally to handle notification of
network events for a socket, if necessary.

WSPCancelBlockingCall
The Windows Sockets switch internally handles the cancellation of blocking requests
that are in progress. Therefore, it never issues cancel blocking calls to a SAN service
provider DLL. The Windows Sockets switch can either:

Cancel an outstanding connect request by closing the SAN socket. The SAN service
provider DLL should abort the connect request.

Cancel outstanding send and receive requests by discarding data for those requests if
the switch buffers that data internally, or by waiting for those requests to complete if
they are RDMA transfers to or from application buffers. For lengthy RDMA transfers, the
switch can close the connection altogether.

The Windows Sockets SPI documentation in the Microsoft Windows SDK warns that if a
blocking call is canceled, an application cannot rely on a connection being preserved. In
this case, the only call that is guaranteed to succeed on the socket after the cancellation
of a blocking request is WSPCloseSocket.

WSPGetPeerName The Windows Sockets switch caches the IP address of a peer when
the switch establishes a connection to the peer in a WSPConnect call or accepts a
connection to the peer in a WSPAccept call. The switch provides this cached value to
applications, if necessary.

WSPGetSockName The Windows Sockets switch caches the local IP address for a socket
when the switch associates the address with the socket in a WSPBind call or accepts a

connection to a peer in a WSPAccept call. The switch provides this cached value to
applications, if necessary.

WSPJoinLeaf The Windows Sockets switch exclusively uses the TCP/IP provider to
handle multipoint sessions.

WSPRecvDisconnect The Windows Sockets switch internally handles termination of data
reception on a socket and retrieves any incoming disconnect data from the remote
party.

WSPRecvFrom The current version of Windows Sockets Direct does not support SAN
service providers handling sockets that receive datagrams with User Datagram Protocol
(UDP) semantics. Therefore, the Windows Sockets switch calls a SAN service provider's
WSPRecv function on a connected socket to receive stream data with Transmission
Control Protocol (TCP) semantics.

WSPSelect The Windows Sockets switch uses its session protocol internally in
cooperation with the TCP/IP provider to determine the status of sockets, if necessary.

WSPSendDisconnect The Windows Sockets switch internally handles termination of the
connection for a socket and sends disconnect data to the remote party.

WSPSendTo The current version of Windows Sockets Direct does not support SAN
service providers handling sockets that send datagrams with User Datagram Protocol
(UDP) semantics. Therefore, the Windows Sockets switch calls a SAN service provider's
WSPSend function on a connected socket to send stream data with Transmission
Control Protocol (TCP) semantics.

WSPShutdown The Windows Sockets switch internally disables the reception and
transmission of data on a socket.

WSPStartup The Windows Sockets switch does not call WSPStartup to start the
operation of a SAN service provider. The switch instead uses the SAN service provider's
WSPStatupEx function.

WSPStringToAddress The Windows Sockets switch uses the TCP/IP provider to convert a
human-readable numeric string that represents the IP address of a socket into a socket
address structure (SOCKADDR) that is suitable to pass to Windows Sockets routines that
take such a structure.

Windows Sockets SPI Extensions for
SANs
Article • 12/15/2021

This section provides a brief description of the SAN extension functions that a SAN
service provider DLL must supply. These functions extend the Windows Sockets SPI for
use with a SAN. The extended functions are defined in Ws2san.h and are fully
documented in the Windows Sockets Direct Reference section.

Except for the WSPStartupEx function, the extended functions listed in this section are
retrieved by the Windows Sockets switch. To retrieve the entry point to each of these
extended functions, the Windows Sockets switch calls a SAN service provider's WSPIoctl
function and passes the SIO_GET_EXTENSION_FUNCTION_POINTER command code
along with the GUID whose value identifies one of these extended functions.

A SAN service provider must implement all of the following extension functions with the
exception of the WSPRdmaRead and WSPMemoryRegistrationCacheCallback
functions. If a SAN service provider does not support either the WSPRdmaRead or
WSPMemoryRegistrationCacheCallback extension function, its WSPIoctl function must
return the error WSAEOPNOTSUPP when the Windows Sockets switch requests the entry
point to either WSPRdmaRead or WSPMemoryRegistrationCacheCallback.

WSPStartupEx
Initiates the Windows Sockets switch's use of a SAN service provider.

WSPRegisterMemory
Registers a buffer array that a socket uses as either the local source or the local target of
a data transfer operation. Such a socket can use this buffer array as the source buffer in
WSPRdmaWrite and WSPSend calls and the receiving buffer in WSPRdmaRead and
WSPRecv calls.

WSPDeregisterMemory
Releases a buffer array that was registered by a previous call to the
WSPRegisterMemory function.

WSPRegisterRdmaMemory
Registers an RDMA buffer array that is exposed to a remote peer connection for
transferring data to or from that peer connection. A socket at the remote peer can use
this RDMA buffer array as the target buffer in a WSPRdmaWrite call and the source
buffer in a WSPRdmaRead call.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565857(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566296(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566321(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566311(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566279(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566313(v=vs.85)

WSPDeregisterRdmaMemory
Releases a buffer array that was registered by a previous call to the
WSPRegisterRdmaMemory function.

WSPMemoryRegistrationCacheCallback
Releases ownership of an application's buffer and the lock between the buffer and
physical memory and removes the buffer from the SAN service provider's cache and the
buffer registration from the SAN NIC.

WSPRdmaRead
Transfers data from an RDMA buffer in the address space that a socket's remote peer
can access to a buffer in the address space that the local socket can access.

WSPRdmaWrite
Transfers data from a source buffer in the address space that a local socket can access to
a target RDMA buffer in the address space that the socket's remote peer can access.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566281(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566299(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566304(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566306(v=vs.85)

Creating a Proxy Driver for a SAN
Service Provider
Article • 12/15/2021

A proxy driver for a SAN service provider is a kernel-mode driver that performs tasks
required by the Windows Sockets switch and the SAN service provider. Such tasks
include managing memory and determining the IP addresses of network interface
controllers (NICs) that are under the proxy driver's control. The proxy driver is not
required to be a Windows Driver Model (WDM) driver. That is, it is not required to
support Plug and Play or power management. For more information about developing a
kernel-mode driver, see Kernel-Mode Driver Components.

Different vendors might use different underlying technologies to implement their SAN
network interface controllers (NICs), therefore Windows Sockets Direct does not specify
an interface between a SAN service provider and its proxy driver or between the proxy
driver and a SAN transport.

A SAN NIC vendor must implement a transport interface that is suitable for its
underlying technologies. A vendor can implement this interface in the SAN NIC, in a
kernel-mode driver for the SAN NIC, or both. A SAN service provider maps this interface
directly into a user-mode process's address space. A vendor must ensure that all buffers
passed across this interface are locked down and registered with the SAN NIC.

The following sections describe how to create a proxy driver for a SAN service provider
DLL:

Initializing and Unloading a SAN Proxy Driver

Allocating and Releasing Memory for a SAN Proxy Driver

Securing and Releasing Ownership of Virtual Addresses

Registering for SAN NIC Notifications

Translating to a SAN Native Address

Implementing IOCTLs for a SAN Service Provider

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/kernel-mode-driver-components

Initializing and Unloading a SAN Proxy
Driver
Article • 12/15/2021

In addition to creating and initializing a device object for the driver object, the proxy
driver's DriverEntry routine can register to be notified when NICs under the driver's
control are either added or removed. For more information, see Registering for SAN NIC
Notifications.

If the proxy driver's SAN service provider sends I/O control requests down to the proxy
driver, then DriverEntry must specify an entry point that enables device control. The
provider might request, for example, to retrieve the list of IP addresses assigned to the
driver's NICs. An entry point for this request is an IRP_MJ_DEVICE_CONTROL dispatch
routine that returns the list of IP addresses assigned to the driver's NICs. For more
information, see Implementing IOCTLs for a SAN Service Provider.

The DriverEntry routine must specify an entry point for a routine that unloads the proxy
driver. This unload routine removes the device that was created in DriverEntry.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control

Allocating and Releasing Memory for a
SAN Proxy Driver
Article • 12/15/2021

The proxy driver must set up access to user buffers so that the Windows Sockets switch
can transfer control messages and perform RDMA operations. To request this type of
buffer access, the proxy driver sets a bit in the Flags member of its device object to
DO_DIRECT_IO. The proxy driver must also allocate or release memory that is used for
message transfer and RDMA whenever requested to do so. When the Windows Sockets
switch requests a SAN service provider to register or release memory, the SAN service
provider requests its proxy driver to respectively allocate or release physical memory.
For more information about setting up buffer access and allocating and releasing
memory, see Memory Management and Buffer Management.

A proxy driver must allocate memory that can be accessed for RDMA operations. The
proxy driver can allocate low memory for RDMA operations even on an system that is
configured so that no physical memory below 4 GB can be allocated. (This is called a
NOLOWMEM configuration.) The proxy driver calls either the
MmAllocateContiguousMemorySpecifyCache function or its own DMA
AllocateCommonBuffer function to retrieve low memory.

To retrieve a pointer to its DMA AllocateCommonBuffer function, the proxy driver
performs the following steps:

1. Zero-initializes a DEVICE_DESCRIPTION structure and then writes relevant
information for its SAN NIC to this structure.

2. Calls IoGetDmaAdapter to retrieve a pointer to the DMA adapter structure for its
SAN NIC. In this call, the driver passes a pointer to the filled-in
DEVICE_DESCRIPTION structure. IoGetDmaAdapter returns a pointer to a DMA
adapter structure that contains a pointer to a DMA_OPERATIONS structure.
DMA_OPERATIONS contains pointers to a system-defined set of DMA functions.
One of these functions is AllocateCommonBuffer, which allocates a physically
contiguous DMA buffer.

Allocating Low Memory for RDMA

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/managing-memory-for-drivers
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/index
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-mmallocatecontiguousmemoryspecifycache
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-pallocate_common_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_device_description
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iogetdmaadapter
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_dma_operations

Securing and Releasing Ownership of
Virtual Addresses
Article • 12/15/2021

The proxy driver must secure ownership of the virtual addresses of user-mode buffers
whenever the SAN service provider for the proxy driver caches those buffers. For more
information about caching buffers, see Caching Registered Memory. The proxy driver
secures ownership of a user-mode buffer, so that the operating system notifies the
Windows Sockets switch if the buffer is released back to the operating system by an
application. To secure ownership of a buffer, the proxy driver must call the
MmSecureVirtualMemory function. In this call, the proxy driver passes a pointer to the
starting address of the buffer and the size, in bytes, of the buffer.

If the virtual-to-physical mappings for the cached buffer are scheduled to change, the
switch is notified and calls the SAN service provider's
WSPMemoryRegistrationCacheCallback function to remove the buffer registration from
the SAN NIC and the buffer from the SAN service provider's cache. The SAN service
provider's proxy driver, in turn, must call the MmUnsecureVirtualMemory function to
release ownership of the buffer. In this call, the proxy driver passes the handle to the
buffer that was previously returned from the MmSecureVirtualMemory call.

Note A driver that tries to access a user-mode buffer that was secured through a call to
MmSecureVirtualMemory can potentially bring down the operating system. Therefore,
when the proxy driver accesses such a user-mode buffer, it must also use the try/except
mechanism around the code that accesses the buffer. For more information about
try/except, see the Visual C++ documentation.

A SAN service provider can send I/O control (IOCTL) requests to the proxy driver to
secure and release ownership of a buffer. For more information, see Implementing
IOCTLs for a SAN Service Provider.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmsecurevirtualmemory
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff566299(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-mmunsecurevirtualmemory

Registering for SAN NIC Notifications
Article • 12/15/2021

When a proxy driver receives a request from its associated SAN service provider to
supply the list of IP addresses assigned to NICs under the driver's control, the driver
determines and passes this list to the provider.

In order to obtain these IP addresses, the proxy driver must register with the Transport
Driver Interface (TDI) to receive address change notifications. The proxy driver calls the
TdiRegisterPnPHandlers function. In this call, this proxy driver passes pointers to
callback functions in the AddAddressHandlerV2 and DelAddressHandlerV2 members of
the TDI_CLIENT_INTERFACE_INFO structure to specify callback functions for address
additions and deletions. After the TdiRegisterPnPHandlers function has returned
successfully, TDI immediately indicates all currently active network addresses to the
proxy driver, using the address-addition callback. The indication contains both network
addresses and identifiers for the devices to which those addresses are bound.

Whenever TDI calls either of these callback functions to indicate address additions or
deletions, the proxy driver requires the following parameters:

Address
Pointer to a TA_ADDRESS structure that describes the network address either assigned
to or removed from the NIC. In the case of TCP/IP, this pointer is actually be a pointer to
a TA_ADDRESS_IP structure.

DeviceName
Pointer to a Unicode string that identifies the transport-to-NIC binding with which the
address is associated. In case of TCP/IP, the Unicode string has the following format:
\Device\Tcpip_{NIC-GUID}, where NIC-GUID is the globally unique identifier assigned by
the network configuration subsystem to the NIC.

The preceding structure definitions are defined in the tdi.h header file. The preceding
registration and callback functions are defined in the tdikrnl.h header file. These header
files are available in the Microsoft Windows Driver Development Kit (DDK) and the
Windows Driver Kit (WDK). For detailed information about TDI Plug and Play (PnP)
notifications, see TDI Client Callbacks and TDI Client Event and PnP Notification
Handlers.

At system startup, TDI calls the proxy driver's address-addition callback to indicate all
currently active IP addresses. TDI also calls this callback whenever the TCP/IP transport
protocol registers a new IP address with TDI. The proxy driver includes in its list of IP
addresses only those addresses assigned to the proxy driver's NICs. The driver's

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565062(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565081(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565082(v=vs.85)

address-addition callback should return control promptly if the driver does not
recognize the NIC at DeviceName.

TDI calls the proxy driver's address-removal callback whenever the TCP/IP transport
protocol indicates to TDI that a NIC has been removed. If the IP address of the NIC
belongs to one of the proxy driver's NICs, the proxy driver removes the IP address from
the list.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Translating to a SAN Native Address
Article • 12/15/2021

The Windows Sockets switch always uses the WSK address families to interact with a
SAN service provider, not the SAN's native address family. Therefore, a proxy driver for a
SAN service provider must translate between WSK address families and native addresses
accordingly.

A proxy driver uses TDI Plug and Play (PnP) notifications to maintain the list of IP
addresses assigned to each NIC under its control, as described in Registering for SAN
NIC Notifications. The proxy driver uses this list to translate between native SAN
addresses and IP addresses.

The proxy driver receives requests from its SAN service provider that contain IP
addresses. These requests include, for example, the request to bind to a specific NIC and
the request to connect to a remote peer. The proxy driver must translate to native SAN
addresses to complete these requests. The proxy driver also receives incoming
connection requests from remote peers that contain SAN native addresses of those
remote peers. The proxy driver must translate to the IP addresses of those remote peers
to complete these requests.

Note TDI will not be supported in Microsoft Windows versions after Windows Vista. Use
Windows Filtering Platform or Winsock Kernel instead.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

Implementing IOCTLs for a SAN Service
Provider
Article • 12/15/2021

If a SAN service provider sends I/O control (IOCTL) requests to the proxy driver, the
driver should implement an IRP_MJ_DEVICE_CONTROL dispatch routine to process
these requests. An IOCTL request can be a request to retrieve the list of IP addresses
assigned to the driver's NICs, for example, or a request to allocate or release memory.
The DriverEntry routine must specify an entry point for the dispatch routine.

The proxy driver's device control routine calls the IoGetCurrentIrpStackLocation
function, in which the device control routine passes a pointer to the IRP that was passed
to the routine. The device control routine then determines which IOCTL request was
received and processes the request accordingly.

After the current IOCTL request completes, the device control routine calls the
IoCompleteRequest function and passes the status of the operation. This status is
returned to the SAN service provider.

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iogetcurrentirpstacklocation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iocompleterequest

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Introduction to Remote NDIS (RNDIS)
Article • 09/27/2024

Remote NDIS (RNDIS) is a bus-independent class specification for Ethernet (802.3)
network devices on dynamic Plug and Play (PnP) buses such as USB, 1394, Bluetooth,
and InfiniBand. Remote NDIS defines a bus-independent message protocol between a
host computer and a Remote NDIS device over abstract control and data channels.
Remote NDIS is precise enough to allow vendor-independent class driver support for
Remote NDIS devices on the host computer.

Microsoft Windows versions beginning with Windows XP include a Remote NDIS driver
for USB devices. This NDIS miniport driver, Rndismp.sys, is implemented and maintained
by Microsoft and is distributed as part of all supported Windows versions. You can find it
in the %SystemRoot%\System32\drivers directory.

To use this driver with a USB device, an IHV must provide an INF file that follows the
template in Remote NDIS INF Template.

Remote NDIS messages are sent to a Remote NDIS device from the host, and a Remote
NDIS device responds with an appropriate completion message. Messages are also sent
in an unsolicited fashion from a Remote NDIS device to the host.

This section includes:

Overview of Remote NDIS (RNDIS)

Remote NDIS Communication

Remote NDIS To USB Mapping

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Overview of Remote NDIS (RNDIS)
Article • 09/27/2024

Remote NDIS (RNDIS) eliminates the need for hardware vendors to write an NDIS
miniport device driver for a network device attached to the USB bus. Remote NDIS
accomplishes this by defining a bus-independent message set and a description of how
this message set operates over the USB bus. Because this Remote NDIS interface is
standardized, one set of host drivers can support any number of networking devices
attached to the USB bus. This significantly reduces the development burden on device
manufacturers, improves the overall stability of the system because no new drivers are
required, and improves the end-user experience because there are no drivers to install
to support a new USB bus-connected network device. Currently Microsoft Windows
provides support for Remote NDIS over USB.

The following figure shows the replacement of the device manufacturer's NDIS miniport
with the combination of a Remote NDIS miniport driver and a USB transport driver. The
device manufacturer can therefore concentrate on device implementation and not have
to develop a Windows NDIS device driver.

Microsoft provides an NDIS miniport driver, Rndismp.sys, which implements the Remote
NDIS message set and communicates with generic bus transport drivers, which in turn
communicate with the appropriate bus driver. This NDIS miniport driver is implemented
and maintained by Microsoft and is distributed as part of Windows.

Feedback

The following Remote NDIS message set mirrors the semantics of the NDIS miniport
driver interface:

Initializing, resetting, and halting device operation

Transmitting and receiving networking data packets

Setting and querying device operational parameters

Indicating media link status and monitoring device status

Microsoft also provides a USB bus transport driver that implements a mechanism for
carrying the Remote NDIS messages across the USB bus. This driver transports
standardized Remote NDIS messages between the Remote NDIS miniport driver and the
bus-specific driver, such as USB. The bus-specific drivers are also required to map any
bus-specific requirements, such as power management, into standardized Remote NDIS
messages. The transport driver for USB 1.1 and 2.0 is implemented and maintained by
Microsoft and distributed as part of Windows.

This structure allows a single device driver to be used for any Remote NDIS device for
which there's a bus-specific transport layer. In addition, only one bus transport layer is
required for all network devices on a specific bus.

This section includes the following articles:

Benefits of Remote NDIS

Remote NDIS Concepts and Definitions

Remote NDIS File Naming Conventions

Remote NDIS Messaging

Remote NDIS Device Control

Remote NDIS INF Template

Types of Remote NDIS Devices

USB class drivers included in Windows

Related article

https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/supported-usb-classes

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Benefits of Remote NDIS
Article • 03/14/2023

Remote NDIS is an extension of the well-understood and time-tested NDIS architecture.
NDIS defines a function-call interface for device-specific NDIS miniport drivers. This
interface defines primitives to send and receive network data, and to query and set
configuration parameters and statistics. Remote NDIS leverages NDIS by defining a
message wrapping for the NDIS miniport driver interface, thus moving the NDIS-
handling code from a miniport driver into the device itself. In this and other ways,
Remote NDIS allows for a wide range of device functionality and performance levels.
The Remote NDIS model has many advantages:

Extensibility without change to the bus-specific message transport mechanisms

Ability to support more protocols over more buses in a short time

Driver architecture that has been proven for both networking and external bus
device models

Value-added mechanisms that already exist in the NDIS network stack are supported for
Remote NDIS devices.

Remote NDIS Concepts and Definitions
Article • 03/14/2023

This section presents an overview of the Remote NDIS requirements on the
communication channel and lower-layer drivers that are used to communicate between
the host and the Remote NDIS device. Device state transitions and major operations
such as initialization, halt and reset are also described in this section.

Control Channel

The control channel must be reliable and ensure sequenced delivery. It is used for
all communication except for the transmission of network data packets. All
required control messages, except REMOTE_NDIS_HALT_MSG and
REMOTE_NDIS_INDICATE_STATUS_MSG, are request and response exchanges
initiated by the host. The device must respond within the time-out period as
specified for each bus.

Data Channel

The data channel is used exclusively for the transmission of network data packets.
It may consist of multiple subchannels (for example, for varying quality of service)
as defined for the appropriate bus.

Initialization and Teardown

The control and data channels are initialized and set up as specified for the
appropriate bus. The host sends a REMOTE_NDIS_INITIALIZE_MSG message to the
Remote NDIS device. The Remote NDIS device provides information about its type
(connectionless or connection-oriented), supported medium, and version in the
response message REMOTE_NDIS_INITIALIZE_CMPLT.

Either the host or the Remote NDIS device can tear down the communication
channel through the REMOTE_NDIS_HALT_MSG message. All outstanding requests
and packets are discarded on receipt of this message.

Device State Definitions

Following bus-level initialization, the device is said to be in the RNDIS-uninitialized
state. Upon receiving a REMOTE_NDIS_INITIALIZE_MSG and responding with a
REMOTE_NDIS_INITIALIZE_CMPLT with a status of RNDIS_STATUS_SUCCESS, the
device enters the RNDIS-initialized state.

https://learn.microsoft.com/en-us/previous-versions/ff570613(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570617(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570621(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570613(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)

Upon receiving REMOTE_NDIS_SET_MSG specifying a nonzero filter value for
OID_GEN_CURRENT_PACKET_FILTER, the device enters the RNDIS-data-initialized
state.

When in the state RNDIS-data-initialized, reception of a REMOTE_NDIS_SET_MSG
specifying a zero filter value for OID_GEN_CURRENT_PACKET_FILTER forces the
device back to the RNDIS-initialized state.

Reception of REMOTE_NDIS_HALT_MSG or a bus-level disconnect or hard-reset at
any time forces the device to the RNDIS-uninitialized state.

Halt

At any time that the device is in the RNDIS-initialized or RNDIS-data-initialized
state, the host computer may terminate the Remote NDIS functionality of the
device by sending REMOTE_NDIS_HALT_MSG to the device.

Resetting the Communication Channel

The communication channel is reset when an error, such as message time-out,
occurs. The host may initiate a reset at any time when the device is in the RNDIS-
initialized state by sending the message REMOTE_NDIS_RESET_MSG to the device
and the device must send a response message when it has completed the reset.
For example, the host may initiate a reset when an error, such as a message time-
out, has occurred.

Note that this is a soft reset in the sense that any handles (for example, VCs for
connection-oriented devices) continue to be valid after the reset. The Remote NDIS
device discards all outstanding requests and packets as part of the reset process.
The remote device might reset some of its hardware components, but keeps the
communication channel intact.

If the Remote NDIS device performs a reboot, this event is equivalent to "Remove"
followed by "Add" Plug and Play events. The host NDIS miniport driver will be
halted and removed, and a new instance will be added and started. All bus-level
and Remote NDIS initialization will be re-executed. A Remote NDIS device may
reboot itself in the event of a critical device failure.

Flow Control

The Remote NDIS device may need to exercise flow control to prevent the host
from overflowing its data buffers with packets. Any flow control provisions or
requirements are bus specific.

Numeric Byte Ordering

https://learn.microsoft.com/en-us/previous-versions/ff570648(v=vs.85)

All numeric values in Remote NDIS messages must be coded in little-endian format
(least significant byte first).

NDIS Message Encapsulation

There is no Remote NDIS specification for the way NDIS messages are
encapsulated in native bus messages or primitives.

Remote NDIS File Naming Conventions
Article • 03/14/2023

In order to support legacy Remote NDIS devices, multiple Remote NDIS drivers have
been included with various versions of Windows. The following table lists the Remote
NDIS driver names used in each version of Windows.

Remote NDIS file name Windows version in which this driver is
available

Rndismp.sys Usb8023.sys These binaries are shipped only for legacy
device support. No Remote NDIS device INF file
should reference these drivers.

Rndismpy.sys Usb8023y.sys Windows 2000. Were provided separately from
the operating system. These are the only
binaries for which Microsoft grants
redistribution rights.

Rndismpx.sys Usb8023x.sys Netrndis.inf Windows XP SP2 and later
Windows XP x64
Windows Server 2003 SP1 (x86, x64, ia64)
and later
Windows Vista (x86, x64) and later

The Rndismpx.sys and Usb8023x.sys binaries
ship as part of the operating system. The
Netrndis.inf file is an internal file that is part of
the operating system. All these files must be
referenced by the IHV-provided INF file as
described in Remote NDIS INF Template.

Note Remote NDIS is not supported on Windows 98/Me/SE or prior versions.

Remote NDIS Messaging
Article • 03/14/2023

There are two types of Remote NDIS messages: control messages and data messages.
Control messages allow the host and Remote NDIS device to communicate with each
other over the communication channel. Data messages contain the message data
information needed for the communication between the host and device and are
communicated over the data channel.

Remote NDIS Control Messages

Remote NDIS control messages can be sent by the host to the Remote NDIS device
and by the Remote NDIS device to the host. The following Remote NDIS control
messages must be supported by an Ethernet 802.3 connectionless device:

REMOTE_NDIS_INITIALIZE_MSG

REMOTE_NDIS_INITIALIZE_CMPLT

REMOTE_NDIS_HALT_MSG

REMOTE_NDIS_QUERY_MSG

REMOTE_NDIS_QUERY_CMPLT

REMOTE_NDIS_SET_MSG

REMOTE_NDIS_SET_CMPLT

REMOTE_NDIS_RESET_MSG

REMOTE_NDIS_RESET_CMPLT

REMOTE_NDIS_INDICATE_STATUS_MSG

REMOTE_NDIS_KEEPALIVE_MSG

REMOTE_NDIS_KEEPALIVE_CMPLT

Remote NDIS Data Message

A Remote NDIS device must send and receive data through Remote NDIS data
packets contained in the REMOTE_NDIS_PACKET_MSG message structure. Remote
NDIS data packets may also contain out of band data as well as the data that goes
across the network.

https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570621(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570613(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570641(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570638(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570651(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570648(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570645(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570617(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570629(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570626(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570635(v=vs.85)

Both connectionless (for example, 802.3) and connection-oriented (for example,
ATM) devices use the same REMOTE_NDIS_PACKET_MSG message structure, in
order to facilitate common code for packet processing.

Remote NDIS Device Control
Article • 03/14/2023

The host uses REMOTE_NDIS_QUERY_MSG and REMOTE_NDIS_SET_MSG to control the
operation of the Remote NDIS device. An NDIS object ID (OID) is used with each such
message to identify a device operational parameter or statistics counter. The lists of
Remote NDIS OIDs are broken down into two groups: general OID and 802.3-specific
OID. Additionally, each group includes a subsection of statistic OID queries. The general
OIDs are required of any networking device.

Remote NDIS INF Template
Article • 09/27/2024

Microsoft provides an NDIS miniport driver, Rndismp.sys, which implements the Remote
NDIS message set and communicates with generic bus transport drivers, which in turn
communicate with the appropriate bus driver. This NDIS miniport driver is implemented
and maintained by Microsoft and is distributed as part of all supported Windows
versions. You can find it in the %SystemRoot%\System32\drivers directory.

To use the Remote NDIS driver with a USB device, an IHV must provide an INF file
according to one of the following templates:

RNDIS INF template for NDIS 5.1 (Windows XP and later)
RNDIS INF template for NDIS 6.0 (Windows 7 and later)

INF

RNDIS INF template for NDIS 5.1 (Windows XP and later)

; Remote NDIS template device setup file
; Copyright (c) Microsoft Corporation
;
; This is the template for the INF installation script
; for the RNDIS-over-USB host driver.
; This INF works for Windows XP SP2, Windows XP x64,
; Windows Server 2003 SP1 x86, x64, and ia64, and
 ; Windows Vista x86 and x64.
; This INF will work with Windows XP, Windows XP SP1,
; and Windows 2003 after applying specific hotfixes.

[Version]
Signature = "$Windows NT$"
Class = Net
ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318}
Provider = %Microsoft%
DriverVer = 06/21/2006,6.0.6000.16384
;CatalogFile = device.cat
PnpLockdown = 1

[Manufacturer]
%Microsoft% = RndisDevices,NTx86,NTamd64,NTia64

; Decoration for x86 architecture
[RndisDevices.NTx86]
%RndisDevice% = RNDIS.NT.5.1, USB\VID_xxxx&PID_yyyy

; Decoration for x64 architecture
[RndisDevices.NTamd64]

INF

%RndisDevice% = RNDIS.NT.5.1, USB\VID_xxxx&PID_yyyy

; Decoration for ia64 architecture
[RndisDevices.NTia64]
%RndisDevice% = RNDIS.NT.5.1, USB\VID_xxxx&PID_yyyy

;@@@ This is the common setting for setup
[ControlFlags]
ExcludeFromSelect=*

; DDInstall section
; References the in-build Netrndis.inf
[RNDIS.NT.5.1]
Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
BusType = 15
; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF
include = netrndis.inf
needs = Usb_Rndis.ndi
AddReg = Rndis_AddReg_Vista

; DDInstal.Services section
[RNDIS.NT.5.1.Services]
include = netrndis.inf
needs = Usb_Rndis.ndi.Services

; Optional registry settings. You can modify as needed.
[RNDIS_AddReg_Vista]
HKR, NDI\params\VistaProperty, ParamDesc, 0, %Vista_Property%
HKR, NDI\params\VistaProperty, type, 0, "edit"
HKR, NDI\params\VistaProperty, LimitText, 0, "12"
HKR, NDI\params\VistaProperty, UpperCase, 0, "1"
HKR, NDI\params\VistaProperty, default, 0, " "
HKR, NDI\params\VistaProperty, optional, 0, "1"

; No sys copyfiles - the sys files are already in-build
; (part of the operating system).

; Modify these strings for your device as needed.
[Strings]
Microsoft = "Microsoft Corporation"
RndisDevice = "Remote NDIS based Device"
Vista_Property = "Optional Vista Property"

RNDIS INF template for NDIS 6.0 (Windows 7 and later)

; Remote NDIS template device setup file
; Copyright (c) Microsoft Corporation
;
; This is the template for the INF installation script for the RNDIS-over-
USB

; host driver that leverages the newer NDIS 6.x miniport (rndismp6.sys) for
; improved performance. This INF works for Windows 7, Windows Server 2008
R2,
; and later operating systems on x86, amd64 and ia64 platforms.

[Version]
Signature = "$Windows NT$"
Class = Net
ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318}
Provider = %Microsoft%
DriverVer = 07/21/2008,6.0.6000.16384
;CatalogFile = device.cat
PnpLockdown = 1

[Manufacturer]
%Microsoft% = RndisDevices,NTx86,NTamd64,NTia64

; Decoration for x86 architecture
[RndisDevices.NTx86]
%RndisDevice% = RNDIS.NT.6.0, USB\VID_xxxx&PID_yyyy

; Decoration for x64 architecture
[RndisDevices.NTamd64]
%RndisDevice% = RNDIS.NT.6.0, USB\VID_xxxx&PID_yyyy

; Decoration for ia64 architecture
[RndisDevices.NTia64]
%RndisDevice% = RNDIS.NT.6.0, USB\VID_xxxx&PID_yyyy

;@@@ This is the common setting for setup
[ControlFlags]
ExcludeFromSelect=*

; DDInstall section
; References the in-build Netrndis.inf
[RNDIS.NT.6.0]
Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
BusType = 15
; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF
include = netrndis.inf
needs = usbrndis6.ndi
AddReg = Rndis_AddReg
*IfType = 6 ; IF_TYPE_ETHERNET_CSMACD.
*MediaType = 16 ; NdisMediumNative802_11
*PhysicalMediaType = 14 ; NdisPhysicalMedium802_3

; DDInstal.Services section
[RNDIS.NT.6.0.Services]
include = netrndis.inf
needs = usbrndis6.ndi.Services

; Optional registry settings. You can modify as needed.
[RNDIS_AddReg]
HKR, NDI\params\RndisProperty, ParamDesc, 0, %Rndis_Property%
HKR, NDI\params\RndisProperty, type, 0, "edit"

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Overview of Remote NDIS (RNDIS)

USB class drivers included in Windows

HKR, NDI\params\RndisProperty, LimitText, 0, "12"
HKR, NDI\params\RndisProperty, UpperCase, 0, "1"
HKR, NDI\params\RndisProperty, default, 0, " "
HKR, NDI\params\RndisProperty, optional, 0, "1"

; No sys copyfiles - the sys files are already in-build
; (part of the operating system).

; Modify these strings for your device as needed.
[Strings]
Microsoft = "Microsoft Corporation"
RndisDevice = "Remote NDIS6 based Device"
Rndis_Property = "Optional RNDIS Property"

Related topics

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/usbcon/supported-usb-classes

Types of Remote NDIS Devices
Article • 03/14/2023

Remote NDIS supports Ethernet 802.3 connectionless devices for Microsoft Windows
Me and Windows XP.

Remote NDIS Communication
Article • 03/14/2023

This section includes the following topics:

Remote NDIS Control Messages

Remote NDIS Data Message

Setting Device-Specific Parameters

Example Connectionless (802.3) Initialization Sequence

Remote NDIS OIDs

Remote NDIS Version

Status Values

REMOTE_NDIS_INITIALIZE_MSG
Article • 03/03/2023

This message is sent by the host to a Remote NDIS device to initialize the network
connection. It is sent through the control channel and only when the device is not in a
state initialized by Remote NDIS.

Offset Size Field Description

0 4 MessageType Specifies the type of message
being sent. Set to 0x00000002.

4 4 MessageLength Specifies in bytes the total
length of this message, from
the beginning of the message.

8 4 RequestId Specifies the Remote NDIS
message ID value. This value is
used to match messages sent
by the host with device
responses.

12 4 MajorVersion Specifies the Remote NDIS
protocol version implemented
by the host. The current
specification uses
RNDIS_MAJOR_VERSION = 1.

16 4 MinorVersion Specifies the Remote NDIS
protocol version implemented
by the host. The current
specification uses
RNDIS_MINOR_VERSION = 0.

20 4 MaxTransferSize Specifies the maximum size in
bytes of any single bus data
transfer that the host expects
to receive from the device.
Typically, each bus data
transfer accommodates a
single Remote NDIS message.
However, the device may
bundle several Remote NDIS
messages that contain data
packets into a single transfer
(see
REMOTE_NDIS_PACKET_MSG).

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_INITIALIZE_CMPLT
Article • 12/15/2021

The REMOTE_NDIS_INITIALIZE_CMPLT message is sent by the Remote NDIS device to
the host in response to a REMOTE_NDIS_INITIALIZE_MSG message. In the
REMOTE_NDIS_INITIALIZE_CMPLT message, the device reports its medium type, Remote
NDIS version numbers, and its type (connectionless or connection-oriented or both).

Offset Size Field Description

0 4 MessageType Specifies the type of message being
sent. Set to 0x80000002.

4 4 MessageLength Specifies in bytes the total length of
this message, from the beginning of
the message.

8 4 RequestId Specifies the Remote NDIS message
ID value. This value is used to match
messages sent by the host with
device responses.

12 4 Status Specifies RNDIS_STATUS_SUCCESS if
the device initialized successfully;
otherwise, it specifies an error code
that indicates the failure.

16 4 MajorVersion Specifies the highest Remote NDIS
major protocol version supported
by the device.

20 4 MinorVersion Specifies the highest Remote NDIS
minor protocol version supported
by the device.

24 4 DeviceFlags Specifies the miniport driver type as
either connectionless or connection-
oriented. This value can be one of
the following:

RNDIS_DF_CONNECTIONLESS
0x00000001

RNDIS_DF_CONNECTION_ORIENTED
0x00000002

Offset Size Field Description

28 4 Medium Specifies the medium supported by
the device. Set to
RNDIS_MEDIUM_802_3
(0x00000000)

32 4 MaxPacketsPerMessage Specifies the maximum number of
Remote NDIS data messages that
the device can handle in a single
transfer to it. This value should be at
least one.

36 4 MaxTransferSize Specifies the maximum size in bytes
of any single bus data transfer that
the device expects to receive from
the host.

40 4 PacketAlignmentFactor Specifies the byte alignment that
the device expects for each Remote
NDIS message that is part of a
multimessage transfer to it. This
value is specified in powers of 2. For
example, this value is set to three to
indicate 8-byte alignment. This
value has a maximum setting of
seven, which specifies 128-byte
alignment.

44 4 AFListOffset Reserved for connection-oriented
devices. Set value to zero.

48 4 AFListSize Reserved for connection-oriented
devices. Set value to zero.

The Status field should be set to RNDIS_STATUS_SUCCESS if the device initialized
successfully; otherwise, it is set to an error code that indicates the failure. The device
should return the highest Remote NDIS protocol version that it can support, in
MajorVersion and MinorVersion--the combined version number should be less than or
equal to the version number the host specified in the REMOTE_NDIS_INITIALIZE_MSG
message.

The AFListSize and AFListOffset fields are relevant only for connection-oriented devices
that include a call manager. Connectionless devices should set these fields to zero.

Remarks

In this message, the Remote NDIS device indicates the following:

Highest Remote NDIS protocol version number that the device can support. The
combined version number should be less than or equal to the version number that
the host specifies in the REMOTE_NDIS_INITIALIZE_MSG message. This allows the
device to fall back to a compatibility mode when the host implements a Remote
NDIS protocol version that is lower than that supported by the device.

Maximum size in bytes of a single data transfer that the device expects to receive
from the host. The device can specify the byte alignment it expects for each
Remote NDIS message that is part of a multimessage transfer to it. This alignment
value is specified in terms of powers of two. For example, this value is set to 3 to
indicate 8-byte alignment.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_HALT_MSG
Article • 03/14/2023

This message is sent by the host to terminate the network connection. Unlike the other
host-initiated control messages, the device does not respond to
REMOTE_NDIS_HALT_MSG.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000003.

4 4 MessageLength Specifies in bytes the
total length of this
message from the
beginning of the
message.

8 4 RequestId Specifies the Remote
NDIS message ID
value. This value is
used to match
messages sent by the
host with device
responses.

It is optional for the device to implement REMOTE_NDIS_HALT_MSG. If implemented,
the device sends this message to the host through the control channel only when the
device is in a state initialized by Remote NDIS. The device must terminate all
communication immediately after sending this message. Sending this message causes
the device to enter a state not initialized by Remote NDIS.

All outstanding requests and packets should be discarded on receipt of this message.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Remarks

Requirements

Header Rndis.h (include Rndis.h)

REMOTE_NDIS_QUERY_MSG
Article • 03/03/2023

This message is sent to a Remote NDIS device from a host when it needs to query the
device for its characteristics, statistics information, or status. The parameter or statistics
counter being queried for is identified by means of an NDIS Object Identifier (OID). The
host may send REMOTE_NDIS_QUERY_MSG to the device through the control channel at
any time that the device is in either a state initialized by Remote NDIS. The Remote NDIS
device will respond to this message by sending a REMOTE_NDIS_QUERY_CMPLT to the
host.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000004.

4 4 MessageLength Specifies in bytes the
total length of this
message, from the
beginning of the
message.

8 4 RequestId Specifies the Remote
NDIS message ID
value. This value is
used to match
messages sent by the
host with device
responses.

12 4 Oid Specifies the NDIS
OID that identifies the
parameter being
queried.

16 4 InformationBufferLength Specifies in bytes the
length of the input
data for the query.
Set to zero when
there is no OID input
buffer.

Offset Size Field Description

20 4 InformationBufferOffset Specifies the byte
offset, from the
beginning of the
RequestId field, at
which input data for
the query is located.
Set to zero if there is
no OID input buffer.

24 4 DeviceVcHandle Reserved for
connection-oriented
devices. Set to zero.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_QUERY_CMPLT
Article • 03/03/2023

A Remote NDIS device will respond to a REMOTE_NDIS_QUERY_MSG message with a
REMOTE_NDIS_QUERY_CMPLT message. This message is used to relay the result of a
query for a device parameter or statistics counter to the host. The Remote NDIS device
also returns the requested information to the host in this message.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent. Set to
0x80000004.

4 4 MessageLength Specifies, in bytes, the total
length of this message,
from the beginning of the
message.

8 4 RequestId Specifies the Remote NDIS
message ID value. This
value is copied from the
REMOTE_NDIS_QUERY_MSG
being responded to.

12 4 Status Specifies the status of
processing the OID query
request.

16 4 InformationBufferLength Specifies, in bytes, the
length of the response data
for the query. Set to zero
when there is no OID result
buffer.

20 4 InformationBufferOffset Specifies the byte offset,
from the beginning of the
RequestId field, at which
response data for the query
is located. Set to zero if
there is no response data.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.

Requirements

Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

REMOTE_NDIS_SET_MSG
Article • 03/03/2023

This message is sent to a Remote NDIS device from a host, when it requires to set the
value of some operational parameter on the device. The specific parameter being set is
identified by means of an Object Identifier (OID), and the value it is to be set to is
contained in an information buffer sent along with the message. The host may send
REMOTE_NDIS_SET_MSG to the device through the control channel at any time that the
device is in a state initialized by Remote NDIS. The Remote NDIS device will respond to
this message by sending a REMOTE_NDIS_SET_CMPLT to the host.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000005.

4 4 MessageLength Specifies, in bytes, the
total length of this
message, from the
beginning of the
message.

8 4 RequestId Specifies the Remote
NDIS message ID
value. This value is
used to match
messages sent by the
host with device
responses.

12 4 Oid Specifies the NDIS
OID that identifies the
parameter being set.

16 4 InformationBufferLength Specifies, in bytes, the
length of the input
data for the request.

20 4 InformationBufferOffset Specifies the byte
offset, from the
beginning of the
RequestId field, at
which input data for
the request is located.

Offset Size Field Description

24 4 DeviceVcHandle Reserved for
connection-oriented
devices. Set to zero.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_SET_CMPLT
Article • 03/03/2023

A Remote NDIS device will respond to a REMOTE_NDIS_SET_MSG message with a
REMOTE_NDIS_SET_CMPLT message. This message is used to relay the result of setting
the value of a device operational parameter to the host.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent. Set
to 0x80000005.

4 4 MessageLength Specifies, in bytes, the
total length of this
message, from the
beginning of the
message.

8 4 RequestId Specifies the Remote
NDIS message ID value.
This value is copied
from the
REMOTE_NDIS_SET_MSG
being responded to.

12 4 Status Specifies the status of
processing the OID set
request.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_RESET_MSG
Article • 03/03/2023

This message is sent to a Remote NDIS device from a host to reset the device and return
status. The host may send REMOTE_NDIS_RESET_MSG to the device through the control
channel at any time that the device is in a state initialized by Remote NDIS. The Remote
NDIS device will respond to this message by sending a REMOTE_NDIS_RESET_CMPLT to
the host.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000006.

4 4 MessageLength Specifies, in bytes, the
total length of this
message, from the
beginning of the
message.

8 4 Reserved Reserved. Set to zero.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_RESET_CMPLT
Article • 03/03/2023

A Remote NDIS device will respond to a REMOTE_NDIS_RESET_MSG message from the
host by resetting the device and returning the status of the request in the
REMOTE_NDIS_RESET_CMPLT message.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x80000006.

4 4 MessageLength Specifies, in bytes, the
total length of this
message, from the
beginning of the
message.

8 4 Status Specifies the status of
processing the Reset
request.

12 4 AddressingReset Indicates if addressing
information (multicast
address list, packet
filter) has been lost
during the concluded
reset operation. If the
device requires the
host to resend
addressing
information, set this
field to one; otherwise
set it to zero.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_INDICATE_STATUS_MSG
Article • 03/03/2023

This message is sent from a Remote NDIS device to a host to indicate a change in the
status of the device. A REMOTE_NDIS_INDICATE_STATUS_MSG message can also be used
to indicate an error event, such as an unrecognized message. The Remote NDIS device
may send this message at any time that it is in a state initialized by Remote NDIS. There
is no response to this message.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000007.

4 4 MessageLength Specifies, in bytes, the
total length of this
message, from the
beginning of the
message.

8 4 Status Specifies the current
status of the host
request.

12 4 StatusBufferLength Specifies the length of
the status data, in
bytes.

16 4 StatusBufferOffset Specifies the byte
offset, from the
beginning of this
message, at which
Rndis_Diagnostic_Info
status data for the
device indication is
located.

The most common use of REMOTE_NDIS_INDICATE_STATUS_MSG is to indicate the state
of the link for an 802.3 device. A status value of RNDIS_STATUS_MEDIA_CONNECT
indicates a transition from disconnected (for example no 802.3 link pulse) to connected
state (802.3 link pulse detected). A status value of RNDIS_STATUS_MEDIA_DISCONNECT
indicates a transition from connected to disconnected state. The device must send

Remarks

REMOTE_NDIS_INDICATE_STATUS_MSG with one of these values every time the 802.3
link state changes. No status buffer is required to return these two common indications.

In the specific case where this message is sent in response to a host message that the
device could not handle, the Status field must be set to RNDIS_STATUS_INVALID_DATA,
and the Rndis_Diagnostic_Info status buffer is formatted as follows.

Offset Size Field Description

0 4 DiagStatus Contains status information about
the error itself (for example,
RNDIS_STATUS_NOT_SUPPORTED)

4 4 ErrorOffset Specifies the zero-based byte
offset in the original message at
which the error was detected.

If the error condition was caused by an Remote NDIS message (for example, the device
can't recognize a particular RNDIS message), then the device should append the original
message at the end of the status message defined above.

This message is used to report an error condition only in circumstances where the
device is not able to generate a response message with appropriate status. Examples of
appropriate usage are:

On receiving a message with unsupported message type.

On receiving a REMOTE_NDIS_PACKET_MSG with unacceptable contents.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_KEEPALIVE_MSG
Article • 03/03/2023

The host sends this message periodically when there has been no other control or data
traffic from the device to the host for the bus-defined KeepAliveTimeoutPeriod. This
message is sent by the host at least every RNDIS_KEEPALIVE_TIMEOUT seconds, in the
absence of other message traffic, to detect the state of the remote device. The remote
device may use the same message in the reverse direction, but it is not required.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent.
Set to 0x00000008.

4 4 MessageLength Specifies in bytes the
total length of this
message, from the
beginning of the
message.

8 4 RequestId Specifies the Remote
NDIS message ID
value. This value is
used to match
messages sent by the
host with device
responses.

The host will not send a REMOTE_NDIS_KEEPALIVE_MSG message until
RNDIS_KEEPALIVE_TIMEOUT seconds have elapsed since the last message received from
the remote device. This avoids unnecessary exchange of keep-alive messages when the
communication channel is active.

The device can optionally send this message to the host as well. For example, the device
may use this message to trigger a response from the host for computing round-trip
delay time. If implemented, the device must send REMOTE_NDIS_KEEPALIVE_MSG
through the control channel and only when the device is in a state initialized by Remote
NDIS.

Remarks

The host sends a REMOTE_NDIS_KEEPALIVE_MSG message to the device through the
control channel to check the health of the device. When the device is in a state
initialized by Remote NDIS, the host sends this message periodically when there has
been no other control or data traffic from the device to the host for the
KeepAliveTimeoutPeriod. KeepAliveTimeoutPeriod is bus-dependent and is defined in the
appropriate bus-mapping specifications.

Upon receiving this message, the remote device must return a response whose Status
field indicates whether the device solicits a REMOTE_NDIS_RESET_MSG message from
the host.

The device does not have to perform any specific action if it stops seeing
REMOTE_NDIS_KEEPALIVE_MSG messages from the host.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Requirements

REMOTE_NDIS_KEEPALIVE_CMPLT
Article • 03/03/2023

A Remote NDIS device will respond to a REMOTE_NDIS_KEEPALIVE_MSG message from
the host by sending back a REMOTE_NDIS_KEEPALIVE_CMPLT response message. If the
returned Status is not RNDIS_STATUS_SUCCESS, the host will send
REMOTE_NDIS_RESET_MSG to reset the device.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent. Set to
0x80000008.

4 4 MessageLength Specifies, in bytes, the total
length of this message,
from the beginning of the
message.

8 4 RequestId Specifies the Remote NDIS
message ID value. This
value is used to match
messages sent by the host
with device responses.

12 4 Status Specifies the current status
of the device. If the
returned Status is not
RNDIS_STATUS_SUCCESS,
the host will send an
REMOTE_NDIS_RESET_MSG
message to reset the
device.

If the device implements the option of sending REMOTE_NDIS_KEEPALIVE_MSG, the
host will respond with REMOTE_NDIS_KEEPALIVE_CMPLT through the control channel.

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.

Remarks

Requirements

Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Remote NDIS Data Message
Article • 03/14/2023

A Remote NDIS device encapsulates NDIS packets to transfer them across the data
channel. Data messages are used to do this because they can contain out-of-band
(OOB) data or per-packet information.

The data message that is used to encapsulate data for transfer across the data channel
is described in the following topic:

REMOTE_NDIS_PACKET_MSG

REMOTE_NDIS_PACKET_MSG
Article • 03/03/2023

REMOTE_NDIS_PACKET_MSG encapsulates NDIS data packets to form a single data
message.

Concatenating multiple REMOTE_NDIS_PACKET_MSG elements forms a multipacket
message. Each individual REMOTE_NDIS_PACKET_MSG component is constructed as
described below. The difference from the single-packet message is that the
MessageLength field in each REMOTE_NDIS_PACKET_MSG header includes some
additional padding bytes. These padding bytes are appended to all but the last
REMOTE_NDIS_PACKET_MSG so that the succeeding REMOTE_NDIS_PACKET_MSG starts
at an appropriate byte boundary. For messages sent from the device to the host, this
padding should result in each REMOTE_NDIS_PACKET_MSG starting at a byte offset that
is a multiple of 8 bytes starting from the beginning of the multipacket message. When
the host sends a multipacket message to the device, it will adhere to the
PacketAlignmentFactor that the device specifies.

The REMOTE_NDIS_PACKET_MSG format is defined in the following table.

Offset Size Field Description

0 4 MessageType Specifies the type of
message being sent. Set to
0x1.

4 4 MessageLength Message length in bytes,
including appended packet
data, OOB data, per-packet
information data, and both
internal and external
padding.

8 4 DataOffset Specifies the offset in bytes
from the start of the
DataOffset field of this
message to the start of the
data. This is an integer
multiple of 4.

12 4 DataLength Specifies the number of
bytes in the data content of
this message.

Offset Size Field Description

16 4 OOBDataOffset Specifies the offset in bytes
of the first OOB data record
from the start of the
DataOffset field of this
message. Set to zero if there
is no OOB data. Otherwise,
this is an integer multiple of
4.

20 4 OOBDataLength Specifies in bytes the total
length of the OOB data.

24 4 NumOOBDataElements Specifies the number of
OOB records in this
message.

28 4 PerPacketInfoOffset Specifies in bytes the offset
from the beginning of the
DataOffset field in the
REMOTE_NDIS_PACKET_MSG
data message to the start of
the first per-packet
information data record. Set
to zero if there is no per-
packet data. Otherwise, this
is an integer multiple of 4.

32 4 PerPacketInfoLength Specifies in bytes the total
length of the per-packet
information contained in
this message.

36 4 VcHandle Reserved for connection-
oriented devices. Set to zero.

40 4 Reserved Reserved. Set to zero.

The format of a single OOB data record is indicated in the following table.

Offset Size Field Description

0 4 Size Length in bytes of this
OOB header and
appended OOB data
and padding. This is
an integer multiple of
4.

Offset Size Field Description

4 4 Type None defined for
802.3 devices.

8 4 ClassInformationOffset The byte offset from
the beginning of this
OOB data record to
the beginning of the
OOB data.

(N) ... OOB Data OOB Data; consult
Microsoft Windows
Driver Development
Kit (DDK)
documentation for
more information.

Note (N) is equal to the value of ClassInformationOffset.

The following table defines the format of a per-packet information data record.

Offset Size Field Description

0 4 Size Length in bytes of this per-packet
header and appended per-packet data
and padding. This value is an integer
multiple of 4.

4 4 Type Set to one of the legal values for
NDIS_PER_PACKET_INFO_FROM_PACKET,
as described in the Windows 2000
Driver Development Kit (DDK).

8 4 PerPacketInformationOffset The byte offset from the beginning of
this per-packet information data record
to the beginning of the per-packet
information data.

(N) ... Per-Packet Data Per-Packet Data; consult Windows 2000
DDK documentation for more
information.

Note (N) is equal to the value of PerPacketInformationOffset.

Remarks

Each REMOTE_NDIS_PACKET_MSG may contain one or more OOB data records.
NumOOBDataElements indicates the number of OOB data records in this message. The
OOB data records must appear in sequence. The OOBDataLength field indicates the
length in bytes of the entire OOB data block. The OOBDataOffset field indicates the byte
offset from the beginning of the DataOffset field to the beginning of the OOB data
block. For more information about OOB packet data, see the NDIS specification in the
Windows 2000 DDK.

If multiple OOB data blocks are attached to a REMOTE_NDIS_PACKET_MSG message,
each subsequent OOB data record must immediately follow the previous OOB record's
data.

No OOB information is currently defined for 802.3 devices.

Each REMOTE_NDIS_PACKET_MSG may contain one or more per-packet-info data
records. Per-packet-info is used to convey packet metadata, such as TCP checksum. The
PerPacketInfoOffset field indicates the byte offset from the beginning of the DataOffset
field to the beginning of the per-packet information data record. The OOBDataLength
field indicates the byte length of the per-packet information data record. For more
information about per-packet information data, see the Windows 2000 DDK.

If there are multiple per-packet information data blocks, each subsequent per-packet
information data record must immediately follow the previous per-packet information
record's data.

A Remote NDIS device must send and receive data through NDIS data packets. The bus
that the device uses determines how these packets are passed from host to device and
device to host. It could be shared memory or, in the case of USB, Isoch and Bulk pipes.
NDIS packets may also contain out-of-band (OOB) data as well as the data that goes
across the network.

A Remote NDIS device transfers NDIS packets, encapsulated as
REMOTE_NDIS_PACKET_MSG across the data channel. Both connectionless (such as
802.3) and connection-oriented (such as ATM) devices use the same packet message
structure to facilitate common code for packet processing. Each
REMOTE_NDIS_PACKET_MSG message contains information about a single network
data unit (such s an Ethernet 802.3 frame).

For more information about out-of-band packet data or per-packet-info data, see the
Windows 2000 DDK NDIS sections.

Requirements

Version Available in Microsoft Windows XP and later
versions of the Windows operating systems.
Also available in Windows 2000 as
redistributable binaries.

Header Rndis.h (include Rndis.h)

Multipacket Messages
Article • 12/15/2021

Multiple REMOTE_NDIS_PACKET_MSG messages may be sent in a single transfer, in
either direction. A multipacket message is formed by concatenating multiple
REMOTE_NDIS_PACKET_MSG elements. The maximum length of such a transfer is
governed by the MaxTransferSize parameter passed in the
REMOTE_NDIS_INITIALIZE_MSG and response messages. The host will also limit the
number of messages it bundles into a single transfer to the MaxPacketsPerMessage
parameter returned by the device in the REMOTE_NDIS_INITIALIZE_CMPLT response
message.

The difference from the single-packet message case is that the MessageLength field in
each REMOTE_NDIS_PACKET_MSG header includes some additional padding bytes.
These padding bytes are added to all but the last REMOTE_NDIS_PACKET_MSG such
that the succeeding REMOTE_NDIS_PACKET_MSG starts at an appropriate byte
boundary. For messages sent from the device to the host, this padding should result in
each REMOTE_NDIS_PACKET_MSG starting at a byte offset that is a multiple of 8 bytes
starting from the beginning of the multipacket message. When the host sends a
multipacket message to the device, it will adhere to the PacketAlignmentFactor specified
by the device in the REMOTE_NDIS_INITIALIZE_CMPLT response message.

Note that neither the combined length of a multipacket message nor the number of
REMOTE_NDIS_PACKET_MSG elements in a combined message is given explicitly in any
Remote NDIS defined field. The combined length is implicit in the bus-specific transfer
mechanism, and the host or device must walk the MessageLength fields of the combined
message to determine the number of combined messages.

The following table is an example of a multipacket message that is made up of two
REMOTE_NDIS_PACKET_MSGs, sent from the host to the device. During the
REMOTE_NDIS_INITIALIZE_MSG exchange, the device requested a
PacketAlignmentFactor of 3 (an alignment along an 8-byte boundary).

Offset Size Field Value

0 4 MessageType 0x1

4 4 MessageLength 72 (includes 2
padding bytes; see
below)

8 4 DataOffset 36

https://learn.microsoft.com/en-us/previous-versions/ff570635(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570621(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570635(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570621(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570635(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)

Offset Size Field Value

12 4 DataLength 26

16 4 OOBDataOffset 0

20 4 OOBDataLength 0

24 4 NumOOBDataElements 0

28 4 PerPacketInfoOffset 0

32 4 PerPacketInfoLength 0

36 4 VcHandle 0

40 4 Reserved 0

44 26 Payload (data) Some network data
of 26 bytes in
length

70 2 Padding Doesn't matter -
unused

72 4 MessageType (start of second
REMOTE_NDIS_PACKET_MSG)

0x1

76 4 MessageLength 60

80 4 DataOffset 36

84 4 DataLength 16

88 4 OOBDataOffset 0

92 4 OOBDataLength 0

96 4 NumOOBDataElements 0

100 4 PerPacketInfoOffset 0

104 4 PerPacketInfoLength 0

108 4 VcHandle 0

112 4 Reserved 0

116 16 Payload (data) Some network data
of 16 bytes in
length

https://learn.microsoft.com/en-us/previous-versions/ff570635(v=vs.85)

Setting Device-Specific Parameters
Article • 12/15/2021

It is expected that most Remote NDIS devices will function well without the need to
configure parameters on the host. However, there may be cases where proper network
operation requires some configuration on the host. If the device supports configurable
parameters, then it should include the following optional OID in the list of supported
OIDs it reports in response to a query for OID_GEN_SUPPORTED_LIST:

C++

If the device supports the OID_GEN_RNDIS_CONFIG_PARAMETER OID, the host uses it to
set device-specific parameters, soon after the device enters a state initialized by Remote
NDIS from the uninitialized state. The host will send zero or more
REMOTE_NDIS_SET_MSGs to the device, with OID_GEN_RNDIS_CONFIG_PARAMETER as
the OID value to set. Each such REMOTE_NDIS_SET_MSG corresponds to one device-
specific parameter that is configured on the host.

The InformationBuffer associated with each such REMOTE_NDIS_SET_MSG has the
following format. Note that the Offset values are relative to the beginning of the
information buffer.

Offset Size Field Description

0 4 ParameterNameOffset Specifies the byte
offset from the
beginning of the
ParameterNameOffset
field at which a
Unicode character
string representing
the parameter name is
located. The string
does not include a
NULL terminator.

4 4 ParameterNameLength Specifies the byte
length of the
parameter name
string.

#define OID_GEN_RNDIS_CONFIG_PARAMETER 0x0001021B

https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)

Offset Size Field Description

8 4 ParameterType Specifies the data
type of the parameter
value. This is one of
the following: 0 -
numeric value; 2 -
string value.

12 4 ParameterValueOffset Specifies the byte
offset from the
beginning of the
ParameterNameOffset
field at which the
parameter value is
located.

16 4 ParameterValueLength Specifies the byte
length of the
parameter value.

The device sends a REMOTE_NDIS_SET_CMPLT in response to each
REMOTE_NDIS_SET_MSG, after applying the parameter value. If the parameter setting is
acceptable, it returns a status of RNDIS_STATUS_SUCCESS in the response. If the
parameter setting is not acceptable, and the device cannot apply a useful default value
for this parameter, then the device returns an appropriate error status value (see section
on status values). If an error status is returned, then the host will initiate a halt process
for the device.

Device-specific parameters are expected to be configured in the Windows registry. The
keys that define parameter values are typically created in the registry during the process
of device installation. The list of keys, type information, default values and optional
range of valid values are specified in the INF file for the device. For more information
about using an INF to set up configuration parameters in the registry for network
devices, consult the Windows 2000 Driver Development Kit (DDK).

https://learn.microsoft.com/en-us/previous-versions/ff570651(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)

Example Connectionless (802.3)
Initialization Sequence
Article • 12/15/2021

This section describes the general order of events that a device can expect upon startup as
a Remote NDIS connectionless device. Because the basic operation of Remote NDIS is the
same, regardless of the underlying bus, the require bus enumeration and start up process
has been left out of the example.

Host Device Description

REMOTE_NDIS_INITIALIZE_MSG Hosts sends Remote NDIS
Initialization message to device.

REMOTE_NDIS_INITIALIZE_CMPLT Device response with Initialize
Complete message.

Receiving. Successful
Initialization

Host starts accepting data on
incoming data channel. (Example:
on USB starts doing reads on IN
pipe).

REMOTE_NDIS_QUERY_MSG

AND

REMOTE_NDIS_SET_MSG

REMOTE_NDIS_QUERY_CMPLT

OR

REMOTE_NDIS_SET_CMPLT

Host initiates a series of sets and
queries to determine state of
device and to setup initial
parameters. The device responses
appropriately with the correct
complete messages. The following
NDIS OIDs may be queried:
OID_802_3_CURRENT_ADDRESS,
OID_802_3_MAXIMUM_LIST_SIZE,
and so on.

REMOTE_NDIS_SET_MSG Host sends an
OID_GEN_CURRENT_PACKET_FILTER
OID with a nonzero filter value to
the device. At this point the device
should start sending data packets
on the incoming data channel. The
host will also start sending data
packets on the outgoing data
channel.

https://learn.microsoft.com/en-us/previous-versions/ff570624(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570621(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570641(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570638(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570651(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/ff570654(v=vs.85)

Remote NDIS OIDs
Article • 03/14/2023

This section lists the required and optional NDIS OIDs for Remote NDIS Ethernet
devices. The list takes into account the unique properties of a Remote NDIS device and
the Remote NDIS miniport driver, so the list is not identical to the list that a normal
NDIS connectionless miniport driver would support. Some OIDs are both set and query
OIDs; if a mandatory OID is defined as both, then it must be supported by a Remote
NDIS device for both REMOTE_NDIS_SET_MSG and REMOTE_NDIS_QUERY_MSG. For a
detailed explanation of the OIDs, see the Microsoft Windows Driver Development Kit
(DDK).

The following lists of Remote NDIS OIDs are broken down into two groups -- general
OID and 802.3 specific OID. Additionally, each group includes a subsection of statistic
OID queries. The general OIDs are required for any networking device.

General OIDs
General Statistic OIDs
802.3 OIDs
802.3 Statistic OIDs
Optional Power Management OIDs
Optional Network Wake Up OIDs

General OIDs
Article • 12/15/2021

The following table lists the general OIDs for Remote NDIS Ethernet devices.

Support OID Description

Required OID_GEN_SUPPORTED_LIST List of supported OIDs.

Required OID_GEN_HARDWARE_STATUS Hardware status.

Required OID_GEN_MEDIA_SUPPORTED Media types supported
(encoded).

Required OID_GEN_MEDIA_IN_USE Media types in use
(encoded).

Required OID_GEN_MAXIMUM_FRAME_SIZE Maximum frame size in
bytes.

Required OID_GEN_LINK_SPEED Link speed in units of 100
bps.

Required OID_GEN_TRANSMIT_BLOCK_SIZE Minimum amount of
storage, in bytes, that a
single packet occupies in
the transmit buffer space
of the NIC.

Required OID_GEN_RECEIVE_BLOCK_SIZE Amount of storage, in
bytes, that a single packet
occupies in the receive
buffer space of the NIC.

Required OID_GEN_VENDOR_ID Vendor NIC code.

Required OID_GEN_VENDOR_DESCRIPTION Vendor network card
description.

Required OID_GEN_VENDOR_DRIVER_VERSION Vendor-assigned version
number of driver.

Required OID_GEN_CURRENT_PACKET_FILTER Current packet filter
(encoded).

Required OID_GEN_MAXIMUM_TOTAL_SIZE Maximum total packet
length in bytes.

Support OID Description

Optional OID_GEN_RNDIS_CONFIG_PARAMETER Device-specific
configuration parameter
(set only).

Optional OID_GEN_PHYSICAL_MEDIUM Information about the
underlying physical
medium.

Required OID_GEN_MEDIA_CONNECT_STATUS Status of the NIC network
connection.

Optional OID_GEN_MAC_OPTIONS A bitmask that specifies
optional properties of the
NIC. Must be supported
only by NICs that support
802.1p packet priority.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562331(v=vs.85)

General Statistic OIDs
Article • 12/15/2021

The following table lists the general statistic OIDs for Remote NDIS Ethernet devices.

Support OID Description

Required OID_GEN_XMIT_OK Frames transmitted without
errors

Required OID_GEN_RCV_OK Frames received without
errors

Required OID_GEN_XMIT_ERROR Frames transmitted with
errors

Required OID_GEN_RCV_ERROR Frames received with errors

Required OID_GEN_RCV_NO_BUFFER Frame missed, no buffers

Optional OID_GEN_DIRECTED_BYTES_XMIT Directed bytes transmitted
without errors

Optional OID_GEN_DIRECTED_FRAMES_XMIT Directed frames
transmitted without errors

Optional OID_GEN_MULTICAST_BYTES_XMIT Multicast bytes transmitted
without errors

Optional OID_GEN_MULTICAST_FRAMES_XMIT Multicast frames
transmitted without errors

Optional OID_GEN_BROADCAST_BYTES_XMIT Broadcast bytes
transmitted without errors

Optional OID_GEN_BROADCAST_FRAMES_XMIT Broadcast frames
transmitted without errors

Optional OID_GEN_DIRECTED_BYTES_RCV Directed bytes received
without errors

Optional OID_GEN_DIRECTED_FRAMES_RCV Directed frames received
without errors

Optional OID_GEN_MULTICAST_BYTES_RCV Multicast bytes received
without errors

Optional OID_GEN_MULTICAST_FRAMES_RCV Multicast frames received
without errors

Support OID Description

Optional OID_GEN_BROADCAST_BYTES_RCV Broadcast bytes received
without errors

Optional OID_GEN_BROADCAST_FRAMES_RCV Broadcast frames received
without errors

Optional OID_GEN_RCV_CRC_ERROR Frames received with
circular redundancy check
(CRC) or frame check
sequence (FCS) errors

Optional OID_GEN_TRANSMIT_QUEUE_LENGTH Length of transmit queue

802.3 OIDs
Article • 12/15/2021

The following table lists the specific 802.3 OIDs for Remote NDIS Ethernet devices.

Support OID Description

Required OID_802_3_PERMANENT_ADDRESS Permanent station address

Required OID_802_3_CURRENT_ADDRESS Current station address

Required OID_802_3_MULTICAST_LIST Current multicast address list

Optional OID_802_3_MAC_OPTIONS NIC flags (encoded)

Required OID_802_3_MAXIMUM_LIST_SIZE Maximum size of multicast
address list

802.3 Statistic OIDs
Article • 12/15/2021

The following table lists the 802.3 statistic OIDs for Remote NDIS Ethernet devices.

Support OID Description

Optional OID_802_3_XMIT_DEFERRED Frames transmitted after
deferral

Optional OID_802_3_XMIT_MAX_COLLISIONS Frames not transmitted
due to collisions

Optional OID_802_3_RCV_OVERRUN Frames not received due to
overrun

Optional OID_802_3_XMIT_UNDERRUN Frames not transmitted
due to underrun

Optional OID_802_3_XMIT_HEARTBEAT_FAILURE Frames transmitted with
heartbeat failure

Optional OID_802_3_XMIT_TIMES_CRS_LOST Times carrier sense signal
lost during transmission

Optional OID_802_3_XMIT_LATE_COLLISIONS Late collisions detected

Optional Power Management OIDs
Article • 12/15/2021

For NDIS to consider a device power-management -- aware, it must respond to the
three power management OIDs listed in the following table. If the device returns a
failure status code in response to a query for OID_PNP_CAPABILITIES, then the host will
consider the device as not being power manageable. NDIS decides whether to query
this OID based on the underlying bus technology that the Remote NDIS device is
connected to. Some buses are power-manageable, such as USB, so it is expected that
these types of Remote NDIS devices will support the minimal OIDs to be considered
power-manageable.

Support OID Description

Optional OID_PNP_CAPABILITIES The NIC's Power Management
abilities

Optional OID_PNP_QUERY_POWER A query to determine whether
the device can transition to a
specific power state.

Optional OID_PNP_SET_POWER A command to set the device
to specified power state

Optional Network Wake Up OIDs
Article • 12/15/2021

To support network wake up events, a Remote NDIS device must additionally support
the OID_PNP_ENABLE_WAKE_UP OID that is used by both the network protocols
(TCP/IP) and NDIS to enable the wake up capabilities. Additionally, the options listed in
the following table are available to enable specific types of wake up patterns. For further
details, consult the Microsoft Windows 2000 Driver Development Kit (DDK).

Support OID Description

Optional OID_PNP_ENABLE_WAKE_UP The Remote NDIS device's
wake-up capabilities that
can be enabled

Optional OID_PNP_ADD_WAKE_UP_PATTERN Wake-up patterns that the
Remote NDIS miniport
driver should load into the
device

Optional OID_PNP_REMOVE_WAKE_UP_PATTERN Wake-up patterns that the
Remote NDIS miniport
driver should remove from
the device

Remote NDIS Version
Article • 03/14/2023

The following table defines the Remote NDIS protocol version identifiers exchanged
between host and device.

Version Identifier Value Description

RNDIS_MAJOR_VERSION 1 Remote NDIS Major Version

RNDIS_MINOR_VERSION 0 Remote NDIS Minor Version

Status Values
Article • 12/15/2021

The Remote NDIS status values are generally equivalent to the 32-bit status values that
are defined in the Microsoft Windows 2000 Driver Development Kit (DDK). The specific
Remote NDIS status values used in this specification are listed below, others can be
inferred from the Windows 2000 DDK or online documentation. A device may return any
semantically correct Remote NDIS status value in a Status field of a message that it
generates.

Status Identifier Value Description

RNDIS_STATUS_SUCCESS 0x00000000 Success

RNDIS_STATUS_FAILURE 0xC00000001 Unspecified error (equivalent to
STATUS_UNSUCCESSFUL)

RNDIS_STATUS_INVALID_DATA 0xC0010015 Invalid data error

RNDIS_STATUS_NOT_SUPPORTED 0xC00000BB Unsupported request error

RNDIS_STATUS_MEDIA_CONNECT 0x4001000B Device is connected to network
medium (equivalent to
NDIS_STATUS_MEDIA_CONNECT
from Windows 2000 DDK)

RNDIS_STATUS_MEDIA_DISCONNECT 0x4001000C Device is disconnected from
network medium (equivalent to
NDIS_STATUS_MEDIA_DISCONNECT
from Windows 2000 DDK)

RNDIS_STATUS_Xxx ... Equal to NDIS_STATUS_Xxx values
defined in Windows 2000 DDK or
online documentation

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Remote NDIS To USB Mapping overview
Article • 09/27/2024

A USB Remote NDIS device is implemented as a USB Communication Device Class (CDC)
device with two interfaces. A Communication Class interface, of type Abstract Control,
and a Data Class interface combine to form a single functional unit representing the USB
Remote NDIS device. The Communication Class interface includes a single endpoint for
event notification and uses the shared bidirectional Control endpoint for control
messages. The Data Class interface includes two bulk endpoints for data traffic.

This section includes the following topics:

USB-Level Initialization

USB-Level Termination

Control Channel Characteristics

Data Channel Characteristics

Power Management

Timer Constants

USB 802.3 Device Sample

７ Note

 An understanding of the Universal Serial Bus (USB) Specification versions 1.1 and
2.0 is required. The USB Communication Device Class (CDC) Specifications are
suggested as references. These documents can be found at https://www.usb.org .

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://www.usb.org/
https://www.usb.org/

USB-Level Initialization
Article • 12/15/2021

The host issues standard USB requests to obtain a set of standard USB descriptors for
the device. The relevant portions of those descriptors are given below. See the USB
Specification for generic USB device initialization.

USB Device Descriptor
Article • 12/15/2021

The device returns a USB Device Descriptor as defined in the USB Specification. The
following table defines the prominent fields of the USB Device Descriptor.

Offset (bytes) Field Size (bytes) Value Description

4 bDeviceClass 1 02h Communication
Device Class
code.

5 bDeviceSubClass 1 00h Communication
Device Subclass
code, unused at
this time.

6 bDeviceProtocol 1 00h Communication
Device Protocol
code, unused at
this time.

USB Configuration Descriptor
Article • 12/15/2021

The device returns a Configuration Descriptor as defined in the USB Specification. See
the USB Specification for details.

Communication Class Interface
Article • 12/15/2021

The Communication Class interface is described by a USB interface descriptor, three
class-specific descriptors, and an endpoint descriptor for the notification endpoint. The
notification endpoint descriptor is a standard USB Interrupt-type IN endpoint descriptor
whose wMaxPacketSize field is 8 bytes. The following table defines the prominent fields
of the Communication Class interface descriptor.

Offset (bytes) Field Size (bytes) Value Description

5 bInterfaceClass 1 02h Communication
Interface Class
code.

6 bInterfaceSubClass 1 02h Communication
Interface Class
SubClass code
for Abstract
Control Model.

7 bInterfaceProtocol 1 FFh Communication
Interface Class
Protocol code for
vendor specific
protocol.

Data Class Interface
Article • 12/15/2021

The Data Class interface is described by a standard USB Interface Descriptor followed by
two endpoint descriptors. The two endpoint descriptors in the Data Class interface
define standard USB Bulk-type endpoints: one Bulk-IN and one Bulk-OUT. The following
table defines the prominent fields of the Data Class Interface Descriptor.

Offset (bytes) Field Size (bytes) Value Description

5 bInterfaceClass 1 0Ah Data Interface
Class code.

6 bInterfaceSubClass 1 00h Data Class
SubClass code.

7 bInterfaceProtocol 1 00h Data Class
Protocol code.

USB-Level Termination
Article • 12/15/2021

See the USB Specification for a description of generic USB bus-level termination.

Control Channel Characteristics
Article • 12/15/2021

The Control channel for the device is its USB Control endpoint. A control message from
the host to the device is sent as a SEND_ENCAPSULATED_COMMAND transfer. This
transfer is defined in the following table.

BmRequestType bRequest wValue wIndex wLength Data

0x21 0x00 0x0000 bInterfaceNumber
field of
Communication
Class interface
descriptor

Byte length
of control
message
block

Control
message
block

The host does not continuously poll the USB Control endpoint for input control
messages. Upon placing a control message on its Control endpoint, the device must
return a notification on the Communication Class interface's Interrupt IN endpoint,
which is polled by the host whenever the device can return control messages. The
transfer from the device's interrupt IN endpoint to the host is a standard USB Interrupt
IN transfer. The only defined device notification is the RESPONSE_AVAILABLE
notification, defined in the following table.

Offset (bytes) Length (bytes) Field Data

0 4 Notification RESPONSE_AVAILABLE
(0x00000001)

4 4 Reserved 0

Upon receiving the RESPONSE_AVAILABLE notification, the host reads the control
message from the Control endpoint using a GET_ENCAPSULATED_RESPONSE transfer,
defined in the following table.

bmRequestType bRequest wValue wIndex wLength Data

0xA1 0x01 0x0000 bInterfaceNumber
field of
Communication
Class interface
descriptor

0x0400 (this
is the
minimum
byte length
of the buffer
posted by
host)

Control
message
block

If for some reason the device receives a GET_ENCAPSULATED_RESPONSE and is unable
to respond with a valid data on the Control endpoint, then it should return a one-byte
packet set to 0x00, rather than stalling the Control endpoint.

Data Channel Characteristics
Article • 12/15/2021

The data channel for the device consists of the Bulk IN and OUT endpoints in the Data
Class interface.

A single USB data transfer in either direction may consist of a single
REMOTE_NDIS_PACKET_MSG or a longer multipacket message.

The USB transfer to send a data message from the host to the device is a standard USB
bulk transfer to the Bulk OUT endpoint of the Data Class interface.

The USB transfer to send a data message from the device to the host is a standard USB
bulk transfer from the Bulk IN endpoint of the Data Class interface. The host will read up
to the number of bytes indicated by the MaxTransferSize field of
REMOTE_NDIS_INITIALIZE_MSG, which will be no greater than 0x4000 bytes for a USB
1.1 device.

USB Short Packets
Article • 12/15/2021

USB passes data over the wire in the form of USB packets, which should not be confused
with NDIS or networking packets. The maximum length of a USB packet to or from a
USB endpoint is limited to the value of the wMaxPacketSize field of the endpoint's
descriptor. For bulk pipes the maximum packet size is 64 bytes. Due to constraints of
certain USB host controllers, there is a penalty associated with using short USB packets
(for example, those of less then 64 bytes, when streaming data).

To work around this limitation, Remote NDIS USB devices may append zero-byte
padding to data messages so that a short packet will not occur (within the constraints of
the MaxTransferSize field of REMOTE_NDIS_INITIALIZE_MSG). The MessageLength field
of the final REMOTE_NDIS_PACKET_MSG does not include these appended padding
bytes.

If the device has transmitted its last available REMOTE_NDIS_PACKET_MSG (so no more
are left in the device's queue), then it is acceptable to send a short USB packet.

If the last REMOTE_NDIS_PACKET_MSG of a device-send Remote NDIS data message
(without any zero-byte padding) ends with a USB packet whose length is exactly the
wMaxPacketSize for that endpoint, then the device may send an additional one-byte
zero packet as an appended part of the transfer. Some device implementations are
simplified by this allowance.

Similarly, some device-side USB chipsets do not detect the end of a received USB
transfer that ends with a USB packet whose length is the wMaxPacketSize for that
endpoint. For this reason, the host must append a one-byte zero packet to a data
transfer that otherwise would have a length that is a multiple of the wMaxPacketSize of
the receiving endpoint. USB Remote NDIS devices must tolerate the appended byte. The
MessageLength field of the final REMOTE_NDIS_PACKET_MSG does not include this
appended byte.

Flow Control
Article • 12/15/2021

Flow control for a USB Remote NDIS device is defined by the USB Specification.

Since all communication on USB is based on a host to device transaction, all the host
must do to slow the flow of data is stop issuing IN tokens to the device on the bulk
pipe. If the device needs to assert flow control, then it should NAK data transfers from
the host until it is able to process data again. For a detailed explanation of this process,
review Section 8.4.4 in the USB Specification, version 1.1.

USB Remote NDIS power management
Article • 03/14/2023

A USB Remote NDIS device must support the Power Management OIDs as well as
Network wake-up OIDs that are listed in the Microsoft Windows 2000 Driver
Development Kit (DDK) under NDIS OIDs. See the USB specification for a description of
USB bus-level power management.

Timer Constants
Article • 12/15/2021

The ControlTimeoutPeriod for a USB Remote NDIS device is 10 seconds.

The KeepAliveTimeoutPeriod for a USB Remote NDIS device is 5 seconds.

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

USB 802.3 Device Sample
Article • 03/22/2024

This section contains a sample set of descriptors for a USB Remote NDIS Ethernet
Device. It includes a CDC Communication Class interface and a CDC Data Class interface.
The Device Descriptor is returned independently. The Configuration descriptor and all
following descriptors are returned as a single block in the order shown.

Control messages are sent on the Control endpoint. Notification messages are sent on
the Interrupt In endpoint in the CDC Communication Class interface. Data messages are
sent on the Bulk In and Bulk Out endpoints in the CDC Data Class interface. String
descriptors are not shown.

The Remote NDIS implementation in Windows Millennium Edition assumes that the
Communication Class interface precedes the Data Class interface. Vendors should
choose this descriptor ordering so that devices initialize correctly on Windows
Millennium Edition.

If any portion of this sample contradicts a controlling specification, follow the
specification.

This sample in this section includes:

Device Descriptor

Configuration Descriptor

Interface Descriptor for Communication Class Interface

Notification Endpoint Descriptor

Interface Descriptor for Data Class Interface

Data In Endpoint Descriptor

Data Out Endpoint Descriptor

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance

Device Descriptor
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x12 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x01 DEVICE
descriptor

2 bcdUSB 2 0x0110 1.1 - current
revision of USB
spec

4 bDeviceClass 1 0x02 Communication
Device Class

5 bDeviceSubClass 1 0x00 Unused

6 bDeviceProtocol 1 0x00 Unused

7 bMaxPacketSize0 1 0x08 Max packet size
on control pipe

8 idVendor 2 0xXXXX Vendor ID

10 idProduct 2 0xXXXX Product ID

12 bcdDevice 2 0xXXXX Device Release
Code

14 iManufacturer 1 0x01 Index of
manufacturer
string

15 iProduct 1 0x02 Index of product
string

16 iSerialNumber 1 0x03 Index of device
serial number
string

17 bNumConfigurations 1 0x01 One
configuration

Configuration Descriptor
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x09 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x02 CONFIGURATION
descriptor

2 wTotalLength 2 0x003E Length of the
total
configuration
block, including
this descriptor
and all following
descriptors, in
bytes

4 bNumInterfaces 1 0x02 Two interfaces

5 bConfigurationValue 1 0x01 ID of this
configuration

6 iConfiguration 1 0x00 Unused

7 bmAttributes 1 0x80 Bus Powered

8 MaxPower 1 0x64 200 mA

Interface Descriptor for Communication
Class Interface
Article • 12/15/2021

Offset Field Size Value Description

1 bDescriptorType 1 0x04 INTERFACE
descriptor

2 bInterfaceNumber 1 0x00 Index of this
interface

3 bAlternateSetting 1 0x00 Index of this
setting

4 bNumEndpoints 1 0x01 1 endpoint

5 bInterfaceClass 1 0x02 Communication
Class

6 bInterfaceSubclass 1 0x02 Abstract Control
Model

7 bInterfaceProtocol 1 0xFF Vendor-specific
protocol

8 iInterface 1 0x00 Unused

Notification Endpoint Descriptor
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x07 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x05 ENDPOINT
descriptor

2 bEndpointAddress 1 0x81 Endpoint 1 IN

3 bmAttributes 1 0x03 Interrupt
Endpoint

4 wMaxPacketSize 2 0x0008 8 byte maximum
packet size

6 bInterval 1 0x01 Polling interval

Interface Descriptor for Data Class
Interface
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x09 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x04 INTERFACE
descriptor

2 bInterfaceNumber 1 0x01 Index of this
interface

3 bAlternateSetting 1 0x00 Index of this
setting

4 bNumEndpoints 1 0x02 2 endpoints

5 bInterfaceClass 1 0x0A Data Class

6 bInterfaceSubclass 1 0x00 Unused

7 bInterfaceProtocol 1 0x00 Unused

8 iInterface 1 0x00 Unused

Data In Endpoint Descriptor
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x07 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x05 ENDPOINT
descriptor

2 bEndpointAddress 1 0x82 Endpoint 2 IN

3 bmAttributes 1 0x02 Bulk Endpoint

4 wMaxPacketSize 2 0x0040 64 byte
maximum packet
size

6 bInterval 1 0x00 Unused

Data Out Endpoint Descriptor
Article • 12/15/2021

Offset Field Size Value Description

0 bLength 1 0x07 Size of this
descriptor, in
bytes

1 bDescriptorType 1 0x05 ENDPOINT
descriptor

2 bEndpointAddress 1 0x03 Endpoint 3 OUT

3 bmAttributes 1 0x02 Bulk Endpoint

4 wMaxPacketSize 2 0x0040 64 byte
maximum packet
size

6 bInterval 1 0x00 Unused

Kernel Mode SDK Topics for Network
Drivers
Article • 12/15/2021

This section lists header files and topics for kernel mode Windows network drivers. The
header files in this section are included in the Windows Software Development Kit (SDK)
instead of the Windows Driver Kit (WDK) as they are also shared with user mode
networking applications.

This section contains:

Mstcpip.h
Ntddndis.h
Ws2def.h

） Important

This section's header topics contains pages for definitions, OIDs, status indications,
and other data structures that are not part of network driver reference. Reference
topics include structures, enumerations, functions, and callbacks.

For more information about network driver reference for these headers, see
Network driver reference in SDK header files.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/mt808525(v=vs.85)

Mstcpip.h
Article • 12/15/2021

This section contains kernel mode network driver topics for the Mstcpip.h header. This
header is included in the Windows SDK as it is also shared with user mode networking
applications.

The Mstcpip.h header contains definitions for Microsoft-specific extensions to the core
Winsock definitions.

SIO_LOOPBACK_FAST_PATH control code
SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT control code
SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS control code
SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS control code

In this section

SIO_LOOPBACK_FAST_PATH control
code
Article • 03/03/2023

Important The SIO_LOOPBACK_FAST_PATH is deprecated and is not recommended to
be used in your code.

The SIO_LOOPBACK_FAST_PATH socket I/O control code allows a WSK application to
configure a TCP socket for faster operations on the loopback interface.

To use this IOCTL, a WSK application calls the WskControlSocket function with the
following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_LOOPBACK_FAST_PATH

Level 0

InputSize The size, in bytes, of the input buffer.

InputBuffer A pointer to the input buffer. This parameter
contains a pointer to a Boolean value that
indicates if the socket should be configured for
fast loopback operations.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp A pointer to an IRP.

An application can use the SIO_LOOPBACK_FAST_PATH IOCTL to improve the
performance of loopback operations on a TCP socket. This IOCTL requests that the
TCP/IP stack use a special fast path for loopback operations on this socket. The
SIO_LOOPBACK_FAST_PATH IOCTL can be used only with TCP sockets. This IOCTL must
be used on both sides of the loopback session. The TCP loopback fast path is supported
using either the IPv4 or IPv6 loopback interface.

The socket that plans to initiate the connection request must apply this IOCTL before
making the connection request. The socket that is listening for the connection request

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

must apply this IOCTL before accepting the connection.

Once an application establishes the connection on a loopback interface using the fast
path, all packets for the lifetime of the connection must use the fast path.

Applying SIO_LOOPBACK_FAST_PATH to a socket which will be connected to a non-
loopback path will have no effect.

This TCP loopback optimization results in packets that flow through Transport Layer (TL)
instead of the traditional loopback through Network Layer. This optimization improves
the latency for loopback packets. Once an applications opts in for a connection level
setting to use the loopback fast path, all packets will follow the loopback path. For
loopback communications, congestion and packet drop are not expected. The notion of
congestion control and reliable delivery in TCP will be unnecessary. This, however, is not
true for flow control. Without flow control, the sender can overwhelm the receive buffer,
leading to erroneous TCP loopback behavior. The flow control in the TCP optimized
loopback path is maintained by placing send requests in a queue. When the receive
buffer is full, the TCP/IP stack guarantees that the sends won't complete until the queue
is serviced, maintaining flow control.

TCP fast path loopback connections in the presence of a Windows Filtering Platform
(WFP) callout for connection data must take the unoptimized slow path for loopback. So
WFP filters will prevent this new loopback fast path from being used. When a WFP filter
is enabled, the system will use the slow path even if the SIO_LOOPBACK_FAST_PATH
IOCTL was set. This ensues that user-mode applications have the full WFP security
capability.

By default, SIO_LOOPBACK_FAST_PATH is disabled.

Only a subset of the TCP/IP socket options are supported when the
SIO_LOOPBACK_FAST_PATH IOCTL is used to enable the loopback fast path on a socket.
The list of supported options includes the following:

IP_TTL
IP_UNICAST_IF
IPV6_UNICAST_HOPS
IPV6_UNICAST_IF
IPV6_V6ONLY
SO_CONDITIONAL_ACCEPT
SO_EXCLUSIVEADDRUSE
SO_PORT_SCALABILITY
SO_RCVBUF
SO_REUSEADDR

https://learn.microsoft.com/en-us/windows/desktop/WinSock/so-conditional-accept
https://learn.microsoft.com/en-us/windows/desktop/WinSock/so-exclusiveaddruse
https://learn.microsoft.com/en-us/windows/desktop/WinSock/so-port-scalability

TCP_BSDURGENT

A WSK application must specify a pointer to an IRP and a completion routine when
calling the WskControlSocket function for this type of request. The application must not
release the buffer till the WSK subsystem has completed the IRP. When it completes the
IRP, the subsystem invokes the completion routine. In the completion routine, the
application must check the IRP status and release all resources that it had previously
allocated for the request.

For more information about WSK IRP handling, see Using IRPs with Winsock Kernel
Functions.

When completing the IRP, the subsystem will set Irp->IoStatus.Status to
STATUS_SUCCESS if the request is successful. Otherwise, Irp->IoStatus.Status will be set
to STATUS_INVALID_BUFFER_SIZE or STATUS_NOT_SUPPORTED if the call is not
successful.

Minimum supported client Windows 8

Minimum supported server Windows Server 2012

Header Mstcpip.h

IRQL PASSIVE_LEVEL

SIO_LOOPBACK_FAST_PATH (SDK)

Using IRPs with Winsock Kernel Functions

Return value

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows/win32/winsock/sio-loopback-fast-path

SIO_QUERY_WFP_CONNECTION_REDIRE
CT_CONTEXT control code
Article • 03/03/2023

The SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT socket I/O control operation
allows a Winsock client to retrieve the redirect context for a redirect record for a
redirected connection.

A WFP redirect record is a buffer of opaque data that WFP must set on an outbound
proxy connection so that the redirected connection and the original connection are
logically related.

Note The SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS query can only be
used if the connection was redirected at the
FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 or
FWPS_LAYER_ALE_CONNECT_REDIRECT_V6 layer by a WFP client.

For more information about redirection, see Using Bind or Connect Redirection.

To query the redirect context for a redirect record, a Winsock client calls the
WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT

Level 0

InputSize 0

InputBuffer NULL

OutputSize The size, in bytes, of the buffer that is pointed to by
the OutputBuffer parameter.

OutputBuffer A pointer to the buffer that receives the redirect
context for the redirect record for the accepted TCP
connection. The size of the buffer is specified in the
OutputSize parameter.

OutputSizeReturned A pointer to a ULONG-typed variable that receives the
number of bytes of data that is copied into the buffer
that is pointed to by the OutputBuffer parameter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

Irp A pointer to an IRP.

The caller can perform this query in either of the following ways:

It can set the OutputBuffer to a large buffer approximately 1 KB in size. If the
output buffer size is not large enough, WskControlSocket will return
STATUS_BUFFER_TOO_SMALL and OutputSizeReturned will contain the required
size of the buffer. A larger buffer can then be allocated and WskControlSocket
called again with the SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT
request and OutputBuffer set to the larger buffer.
Or it can set the OutputSize parameter to 0 and the OutputBuffer to NULL and then
call WskControlSocket. Upon completion, the WskControlSocket function
retrieves the output buffer size, in bytes, in the OutputSizeReturned parameter. An
appropriately sized buffer can then be allocated and WskControlSocket called
again with the SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT request and
OutputBuffer set to the buffer.

Note It is also possible to perform this query in a user-mode application by using
SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT (SDK).

For this type of request, the Winsock client must specify a pointer to an IRP and a
pointer to its completion routine. The IRP can be passed to the client by a higher driver
or the client can choose to allocate the IRP. To specify the completion routine, the client
must call IoSetCompletionRoutine. For more details, see Using IRPs with Winsock
Kernel Functions.

The Winsock client must not free the allocated buffer till the IRP is completed by WSK
subsystem. When the WSK subsystem completes the IRP, it notifies the client by
invoking the completion routine. A reference to that buffer is passed to the client by the
WSK subsystem in the Context parameter of the completion routine. The size of the
buffer is stored in Irp->IoStatus.Information.

The client can get the status of the IRP by checking Irp->IoStatus.Status. Irp-
>IoStatus.Status will be set to STATUS_SUCCESS if the request is successful. Otherwise, it
will contain STATUS_INTEGER_OVERFLOW, STATUS_NOT_FOUND,
STATUS_BUFFER_TOO_SMALL, or STATUS_ACCESS_DENIED if the call is not successful.

Minimum supported client Windows 8

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows/win32/winsock/sio-query-wfp-connection-redirect-context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutine

Minimum supported server Windows Server 2012

Header Mstcpip.h

IRQL PASSIVE_LEVEL

Using Bind or Connect Redirection

Using IRPs with Winsock Kernel Functions

SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS

SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT (SDK)

See also

https://learn.microsoft.com/en-us/windows/win32/winsock/sio-query-wfp-connection-redirect-context

SIO_QUERY_WFP_CONNECTION_REDIRE
CT_RECORDS control code
Article • 03/03/2023

The SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS socket I/O control operation
allows a Winsock client to retrieve the redirect record for a redirected connection.

A WFP redirect record is a buffer of opaque data that WFP must set on an outbound
proxy connection so that the redirected connection and the original connection are
logically related.

Note The SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS query can only be
used if the connection was redirected at the
FWPS_LAYER_ALE_CONNECT_REDIRECT_V4 or
FWPS_LAYER_ALE_CONNECT_REDIRECT_V6 layer by a WFP client.

For more information about redirection, see Using Bind or Connect Redirection.

To query the redirect record for the redirected connection, a Winsock client calls the
WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS

Level 0

InputSize 0

InputBuffer NULL

OutputSize The size, in bytes, of the buffer that is pointed to by
the OutputBuffer parameter.

OutputBuffer A pointer to the buffer that receives the redirect
record for the accepted TCP connection. The size of
the buffer is specified in the OutputSize parameter.

OutputSizeReturned A pointer to a ULONG-typed variable that receives the
number of bytes of data that is copied into the buffer
that is pointed to by the OutputBuffer parameter.

Irp A pointer to an IRP.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

The caller can perform this query in either of the following ways:

It can set the OutputBuffer to a large buffer approximately 1 KB in size. If the
output buffer size is not large enough, WskControlSocket will return a
STATUS_BUFFER_TOO_SMALL and OutputSizeReturned will contain the required
size of the buffer. A larger buffer can then be allocated and WskControlSocket
called again with the SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS
request and OutputBuffer set to the larger buffer.
Or it can set the OutputSize parameter to 0 and the OutputBuffer to NULL and then
call WskControlSocket. Upon completion, the WskControlSocket function
retrieves the output buffer size, in bytes, in the OutputSizeReturned parameter. An
appropriately sized buffer can then be allocated and WskControlSocket called
again with the SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS request and
OutputBuffer set to the buffer.

Note It is also possible to perform this query in a user-mode application by using
SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS (SDK).

For this type of request, the Winsock client must specify a pointer to an IRP and a
pointer to its completion routine. The IRP can be passed to the client by a higher driver
or the client can choose to allocate the IRP. To specify the completion routine, the client
must call IoSetCompletionRoutine. For more details, see Using IRPs with Winsock
Kernel Functions.

The Winsock client must not free the allocated buffer till the IRP is completed by WSK
subsystem. When the WSK subsystem completes the IRP, it notifies the client by
invoking the completion routine. A reference to that buffer is passed to the client by the
WSK subsystem in the Context parameter of the completion routine. The size of the
buffer is stored in Irp->IoStatus.Information.

The client can get the status of the IRP by checking Irp->IoStatus.Status. Irp-
>IoStatus.Status will be set to STATUS_SUCCESS if the request is successful. Otherwise, it
will contain STATUS_INTEGER_OVERFLOW, STATUS_NOT_FOUND,
STATUS_BUFFER_TOO_SMALL, or STATUS_ACCESS_DENIED if the call is not successful.

Minimum supported client Windows 8

Minimum supported server Windows Server 2012

Header Mstcpip.h

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows/win32/winsock/sio-query-wfp-connection-redirect-records
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-iosetcompletionroutine

IRQL PASSIVE_LEVEL

Using Bind or Connect Redirection

Using IRPs with Winsock Kernel Functions

SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT

SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS (SDK)

SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS

See also

https://learn.microsoft.com/en-us/windows/win32/winsock/sio-query-wfp-connection-redirect-records

SIO_SET_WFP_CONNECTION_REDIRECT_
RECORDS control code
Article • 03/03/2023

The SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS socket I/O control operation
allows a Winsock client to specify the redirect record to the new TCP socket used for
connecting to the final destination.

A WFP redirect record is a buffer of opaque data that WFP must set on an outbound
proxy connection so that the redirected connection and the original connection are
logically related.

For more information about redirection, see Using Bind or Connect Redirection.

To set the redirect record to the new TCP socket used for connecting to the final
destination, a Winsock client calls the WskControlSocket function with the following
parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS

Level 0

InputSize The size of the redirect record pointed to by the
InputBuffer parameter.

InputBuffer A pointer to the redirect record associated with the
socket.

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

Irp A pointer to an IRP.

The Winsock client must allocate a buffer and specify a pointer to the buffer and its size
in InputBuffer and InputSize.

A Winsock client must specify a pointer to an IRP and a completion routine when calling
the WskControlSocket function for this type of request. The client must not release the
buffer till the WSK subsystem has completed the IRP. When it completes the IRP, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

subsystem invokes the completion routine. In the completion routine, the client must
check the IRP status and release all resources that it had previously allocated for the
request.

Note It is also possible to perform this query in a user-mode application by using
SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS (SDK).

For more information about WSK IRP handling, see Using IRPs with Winsock Kernel
Functions.

The client can get the status of the IRP by checking Irp->IoStatus.Status. Irp-
>IoStatus.Status will be set to STATUS_SUCCESS if the request is successful. Otherwise, it
will contain STATUS_INTEGER_OVERFLOW, or STATUS_ACCESS_DENIED if the call is not
successful.

Minimum supported client Windows 8

Minimum supported server Windows Server 2012

Header Mstcpip.h

IRQL PASSIVE_LEVEL

Using Bind or Connect Redirection

Using IRPs with Winsock Kernel Functions

SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS

SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS (SDK)

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/winsock/sio-set-wfp-connection-redirect-records
https://learn.microsoft.com/en-us/windows/win32/winsock/sio-set-wfp-connection-redirect-records

Ntddndis.h
Article • 12/15/2021

This section contains kernel mode network driver topics for the Ntddndis.h header. This
header is included in the Windows SDK as it is also shared with user mode networking
applications.

The Ntddndis.h header contains definitions for constants and types for interfacing with
network drivers.

GUID_NDIS_GEN_PCI_DEVICE_CUSTOM_PROPERTIES
OID_802_3_ADD_MULTICAST_ADDRESS
OID_802_3_CURRENT_ADDRESS
OID_802_3_DELETE_MULTICAST_ADDRESS
OID_802_3_MAC_OPTIONS
OID_802_3_MAXIMUM_LIST_SIZE
OID_802_3_MULTICAST_LIST
OID_802_3_PERMANENT_ADDRESS

） Important

Bias-free communication

Microsoft supports a diverse and inclusive environment. This article contains
references to terminology that the Microsoft style guide for bias-free
communication recognizes as exclusionary. The word or phrase is used in this
article for consistency because it currently appears in the software. When the
software is updated to remove the language, this article will be updated to be in
alignment.

７ Note

This section's topics contains pages for definitions and OIDs, which are not part of
network driver DDI reference.

For DDI reference for this header, see ntddndis.h header.

In this section

https://learn.microsoft.com/en-us/style-guide/bias-free-communication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis

OID_802_3_RCV_OVERRUN
OID_802_3_XMIT_DEFERRED
OID_802_3_XMIT_HEARTBEAT_FAILURE
OID_802_3_XMIT_LATE_COLLISIONS
OID_802_3_XMIT_MAX_COLLISIONS
OID_802_3_XMIT_TIMES_CRS_LOST
OID_802_3_XMIT_UNDERRUN
OID_CO_ADD_ADDRESS
OID_CO_ADD_PVC
OID_CO_ADDRESS_CHANGE
OID_CO_AF_CLOSE
OID_CO_DELETE_ADDRESS
OID_CO_DELETE_PVC
OID_CO_GET_ADDRESSES
OID_CO_GET_CALL_INFORMATION
OID_CO_SIGNALING_DISABLED
OID_CO_SIGNALING_ENABLED
OID_CO_TAPI_ADDRESS_CAPS
OID_CO_TAPI_CM_CAPS
OID_CO_TAPI_GET_CALL_DIAGNOSTICS
OID_CO_TAPI_LINE_CAPS
OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS
OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS
OID_CO_TAPI_TRANSLATE_TAPI_SAP
OID_GEN_ADMIN_STATUS
OID_GEN_ALIAS
OID_GEN_BROADCAST_BYTES_RCV
OID_GEN_BROADCAST_BYTES_XMIT
OID_GEN_BROADCAST_FRAMES_RCV
OID_GEN_BROADCAST_FRAMES_XMIT
OID_GEN_BYTES_RCV
OID_GEN_BYTES_XMIT
OID_GEN_CO_BYTES_RCV
OID_GEN_CO_BYTES_XMIT
OID_GEN_CO_BYTES_XMIT_OUTSTANDING
OID_GEN_CO_DRIVER_VERSION
OID_GEN_CO_GET_NETCARD_TIME
OID_GEN_CO_GET_TIME_CAPS
OID_GEN_CO_HARDWARE_STATUS
OID_GEN_CO_LINK_SPEED

OID_GEN_CO_MAC_OPTIONS
OID_GEN_CO_MEDIA_CONNECT_STATUS
OID_GEN_CO_MEDIA_IN_USE
OID_GEN_CO_MEDIA_SUPPORTED
OID_GEN_CO_MINIMUM_LINK_SPEED
OID_GEN_CO_NETCARD_LOAD
OID_GEN_CO_PROTOCOL_OPTIONS
OID_GEN_CO_RCV_CRC_ERROR
OID_GEN_CO_RCV_PDUS_ERROR
OID_GEN_CO_RCV_PDUS_NO_BUFFER
OID_GEN_CO_RCV_PDUS_OK
OID_GEN_CO_SUPPORTED_GUIDS
OID_GEN_CO_SUPPORTED_LIST
OID_GEN_CO_TRANSMIT_QUEUE_LENGTH
OID_GEN_CO_VENDOR_DESCRIPTION
OID_GEN_CO_VENDOR_DRIVER_VERSION
OID_GEN_CO_VENDOR_ID
OID_GEN_CO_XMIT_PDUS_ERROR
OID_GEN_CO_XMIT_PDUS_OK
OID_GEN_CURRENT_LOOKAHEAD
OID_GEN_CURRENT_PACKET_FILTER
OID_GEN_DEVICE_PROFILE
OID_GEN_DIRECTED_BYTES_RCV
OID_GEN_DIRECTED_BYTES_XMIT
OID_GEN_DIRECTED_FRAMES_RCV
OID_GEN_DIRECTED_FRAMES_XMIT
OID_GEN_DISCONTINUITY_TIME
OID_GEN_DRIVER_VERSION
OID_GEN_ENUMERATE_PORTS
OID_GEN_FRIENDLY_NAME
OID_GEN_HARDWARE_STATUS
OID_GEN_HD_SPLIT_CURRENT_CONFIG
OID_GEN_HD_SPLIT_PARAMETERS
OID_GEN_INIT_TIME_MS
OID_GEN_INTERFACE_INFO
OID_GEN_INTERRUPT_MODERATION
OID_GEN_ISOLATION_PARAMETERS
OID_GEN_LAST_CHANGE
OID_GEN_LINK_PARAMETERS
OID_GEN_LINK_SPEED

OID_GEN_LINK_SPEED_EX
OID_GEN_LINK_STATE
OID_GEN_MAC_OPTIONS
OID_GEN_MACHINE_NAME
OID_GEN_MAX_LINK_SPEED
OID_GEN_MAXIMUM_FRAME_SIZE
OID_GEN_MAXIMUM_LOOKAHEAD
OID_GEN_MAXIMUM_SEND_PACKETS
OID_GEN_MAXIMUM_TOTAL_SIZE
OID_GEN_MEDIA_CAPABILITIES
OID_GEN_MEDIA_CONNECT_STATUS
OID_GEN_MEDIA_CONNECT_STATUS_EX
OID_GEN_MEDIA_DUPLEX_STATE
OID_GEN_MEDIA_IN_USE
OID_GEN_MEDIA_SENSE_COUNTS
OID_GEN_MEDIA_SUPPORTED
OID_GEN_MINIPORT_RESTART_ATTRIBUTES
OID_GEN_MULTICAST_BYTES_RCV
OID_GEN_MULTICAST_BYTES_XMIT
OID_GEN_MULTICAST_FRAMES_RCV
OID_GEN_MULTICAST_FRAMES_XMIT
OID_GEN_NDIS_RESERVED_1
OID_GEN_NDIS_RESERVED_2
OID_GEN_NDIS_RESERVED_5
OID_GEN_NETWORK_LAYER_ADDRESSES
OID_GEN_OPERATIONAL_STATUS
OID_GEN_PCI_DEVICE_CUSTOM_PROPERTIES
OID_GEN_PHYSICAL_MEDIUM
OID_GEN_PHYSICAL_MEDIUM_EX
OID_GEN_PORT_AUTHENTICATION_PARAMETERS
OID_GEN_PORT_STATE
OID_GEN_PROMISCUOUS_MODE
OID_GEN_PROTOCOL_OPTIONS
OID_GEN_RCV_CRC_ERROR
OID_GEN_RCV_DISCARDS
OID_GEN_RCV_ERROR
OID_GEN_RCV_LINK_SPEED
OID_GEN_RCV_NO_BUFFER
OID_GEN_RCV_OK
OID_GEN_RECEIVE_BLOCK_SIZE

OID_GEN_RECEIVE_BUFFER_SPACE
OID_GEN_RECEIVE_HASH
OID_GEN_RECEIVE_SCALE_CAPABILITIES
OID_GEN_RECEIVE_SCALE_PARAMETERS
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2
OID_GEN_RESET_COUNTS
OID_GEN_RNDIS_CONFIG_PARAMETER
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
OID_GEN_STATISTICS
OID_GEN_SUPPORTED_GUIDS
OID_GEN_SUPPORTED_LIST
OID_GEN_TRANSMIT_BLOCK_SIZE
OID_GEN_TRANSMIT_BUFFER_SPACE
OID_GEN_TRANSMIT_QUEUE_LENGTH
OID_GEN_TRANSPORT_HEADER_OFFSET
OID_GEN_UNKNOWN_PROTOS
OID_GEN_VENDOR_DESCRIPTION
OID_GEN_VENDOR_DRIVER_VERSION
OID_GEN_VENDOR_ID
OID_GEN_VLAN_ID
OID_GEN_XMIT_DISCARDS
OID_GEN_XMIT_ERROR
OID_GEN_XMIT_LINK_SPEED
OID_GEN_XMIT_OK
OID_IP4_OFFLOAD_STATS
OID_IP6_OFFLOAD_STATS
OID_NDK_CONNECTIONS
OID_NDK_LOCAL_ENDPOINTS
OID_NDK_SET_STATE
OID_NDK_STATISTICS
OID_NIC_SWITCH_ALLOCATE_VF
OID_NIC_SWITCH_CREATE_SWITCH
OID_NIC_SWITCH_CREATE_VPORT
OID_NIC_SWITCH_CURRENT_CAPABILITIES
OID_NIC_SWITCH_DELETE_SWITCH
OID_NIC_SWITCH_DELETE_VPORT
OID_NIC_SWITCH_ENUM_SWITCHES
OID_NIC_SWITCH_ENUM_VFS
OID_NIC_SWITCH_ENUM_VPORTS
OID_NIC_SWITCH_FREE_VF

OID_NIC_SWITCH_HARDWARE_CAPABILITIES
OID_NIC_SWITCH_PARAMETERS
OID_NIC_SWITCH_VF_PARAMETERS
OID_NIC_SWITCH_VPORT_PARAMETERS
OID_OFFLOAD_ENCAPSULATION
OID_PACKET_COALESCING_FILTER_MATCH_COUNT
OID_PD_CLOSE_PROVIDER
OID_PD_OPEN_PROVIDER
OID_PD_QUERY_CURRENT_CONFIG
OID_PM_ADD_PROTOCOL_OFFLOAD
OID_PM_ADD_WOL_PATTERN
OID_PM_CURRENT_CAPABILITIES
OID_PM_GET_PROTOCOL_OFFLOAD
OID_PM_HARDWARE_CAPABILITIES
OID_PM_PARAMETERS
OID_PM_PROTOCOL_OFFLOAD_LIST
OID_PM_REMOVE_PROTOCOL_OFFLOAD
OID_PM_REMOVE_WOL_PATTERN
OID_PM_WOL_PATTERN_LIST
OID_PNP_ADD_WAKE_UP_PATTERN
OID_PNP_CAPABILITIES
OID_PNP_ENABLE_WAKE_UP
OID_PNP_QUERY_POWER
OID_PNP_REMOVE_WAKE_UP_PATTERN
OID_PNP_SET_POWER
OID_PNP_WAKE_UP_ERROR
OID_PNP_WAKE_UP_OK
OID_PNP_WAKE_UP_PATTERN_LIST
OID_QOS_CURRENT_CAPABILITIES
OID_QOS_HARDWARE_CAPABILITIES
OID_QOS_OFFLOAD_CREATE_SQ
OID_QOS_OFFLOAD_CURRENT_CAPABILITIES
OID_QOS_OFFLOAD_DELETE_SQ
OID_QOS_OFFLOAD_ENUM_SQS
OID_QOS_OFFLOAD_HARDWARE_CAPABILITIES
OID_QOS_OFFLOAD_SQ_STATS
OID_QOS_OFFLOAD_UPDATE_SQ
OID_QOS_OPERATIONAL_PARAMETERS
OID_QOS_PARAMETERS
OID_QOS_REMOTE_PARAMETERS

OID_RECEIVE_FILTER_ALLOCATE_QUEUE
OID_RECEIVE_FILTER_CLEAR_FILTER
OID_RECEIVE_FILTER_CURRENT_CAPABILITIES
OID_RECEIVE_FILTER_ENUM_FILTERS
OID_RECEIVE_FILTER_ENUM_QUEUES
OID_RECEIVE_FILTER_FREE_QUEUE
OID_RECEIVE_FILTER_GLOBAL_PARAMETERS
OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES
OID_RECEIVE_FILTER_MOVE_FILTER
OID_RECEIVE_FILTER_PARAMETERS
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE
OID_RECEIVE_FILTER_QUEUE_PARAMETERS
OID_RECEIVE_FILTER_SET_FILTER
OID_SRIOV_BAR_RESOURCES
OID_SRIOV_CURRENT_CAPABILITIES
OID_SRIOV_HARDWARE_CAPABILITIES
OID_SRIOV_PF_LUID
OID_SRIOV_PROBED_BARS
OID_SRIOV_READ_VF_CONFIG_BLOCK
OID_SRIOV_READ_VF_CONFIG_SPACE
OID_SRIOV_RESET_VF
OID_SRIOV_SET_VF_POWER_STATE
OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK
OID_SRIOV_VF_SERIAL_NUMBER
OID_SRIOV_VF_VENDOR_DEVICE_ID
OID_SRIOV_WRITE_VF_CONFIG_BLOCK
OID_SRIOV_WRITE_VF_CONFIG_SPACE
OID_SWITCH_FEATURE_STATUS_QUERY
OID_SWITCH_NIC_ARRAY
OID_SWITCH_NIC_CONNECT
OID_SWITCH_NIC_CREATE
OID_SWITCH_NIC_DELETE
OID_SWITCH_NIC_DISCONNECT
OID_SWITCH_NIC_REQUEST
OID_SWITCH_NIC_RESTORE
OID_SWITCH_NIC_RESTORE_COMPLETE
OID_SWITCH_NIC_SAVE
OID_SWITCH_NIC_SAVE_COMPLETE
OID_SWITCH_NIC_UPDATED
OID_SWITCH_PARAMETERS

OID_SWITCH_PORT_ARRAY
OID_SWITCH_PORT_CREATE
OID_SWITCH_PORT_DELETE
OID_SWITCH_PORT_FEATURE_STATUS_QUERY
OID_SWITCH_PORT_PROPERTY_ADD
OID_SWITCH_PORT_PROPERTY_DELETE
OID_SWITCH_PORT_PROPERTY_ENUM
OID_SWITCH_PORT_PROPERTY_UPDATE
OID_SWITCH_PORT_TEARDOWN
OID_SWITCH_PORT_UPDATED
OID_SWITCH_PROPERTY_ADD
OID_SWITCH_PROPERTY_DELETE
OID_SWITCH_PROPERTY_ENUM
OID_SWITCH_PROPERTY_UPDATE
OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG
OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES
OID_TCP_CONNECTION_OFFLOAD_PARAMETERS
OID_TCP_OFFLOAD_CURRENT_CONFIG
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES
OID_TCP_OFFLOAD_PARAMETERS
OID_TCP_RSC_STATISTICS
OID_TCP_TASK_IPSEC_ADD_SA
OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
OID_TCP_TASK_IPSEC_DELETE_SA
OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA
OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA
OID_TCP_TASK_OFFLOAD
OID_TCP4_OFFLOAD_STATS
OID_TCP6_OFFLOAD_STATS
OID_TUNNEL_INTERFACE_RELEASE_OID
OID_TUNNEL_INTERFACE_SET_OID
OID_WAN_CO_GET_COMP_INFO
OID_WAN_CO_GET_INFO
OID_WAN_CO_GET_LINK_INFO
OID_WAN_CO_GET_STATS_INFO
OID_WAN_CO_SET_COMP_INFO
OID_WAN_CO_SET_LINK_INFO

OID_WWAN_AUTH_CHALLENGE
OID_WWAN_BASE_STATIONS_INFO
OID_WWAN_CONNECT
OID_WWAN_CREATE_MAC
OID_WWAN_DELETE_MAC
OID_WWAN_DEVICE_CAPS
OID_WWAN_DEVICE_CAPS_EX
OID_WWAN_DEVICE_RESET
OID_WWAN_DEVICE_SERVICE_COMMAND
OID_WWAN_DEVICE_SERVICE_SESSION
OID_WWAN_DEVICE_SERVICE_SESSION_WRITE
OID_WWAN_DEVICE_SERVICES
OID_WWAN_DEVICE_SLOT_MAPPING_INFO
OID_WWAN_DRIVER_CAPS
OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS
OID_WWAN_ENUMERATE_DEVICE_SERVICES
OID_WWAN_LTE_ATTACH_CONFIG
OID_WWAN_LTE_ATTACH_STATUS
OID_WWAN_HOME_PROVIDER
OID_WWAN_MODEM_CONFIG_INFO
OID_WWAN_MODEM_LOGGING_CONFIG
OID_WWAN_MPDP
OID_WWAN_NETWORK_BLACKLIST
OID_WWAN_NETWORK_IDLE_HINT
OID_WWAN_NITZ
OID_WWAN_PACKET_SERVICE
OID_WWAN_PCO
OID_WWAN_PIN
OID_WWAN_PIN_EX
OID_WWAN_PIN_EX2
OID_WWAN_PIN_LIST
OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS
OID_WWAN_PREFERRED_PROVIDERS
OID_WWAN_PRESHUTDOWN
OID_WWAN_PROVISIONED_CONTEXTS
OID_WWAN_RADIO_STATE
OID_WWAN_READY_INFO
OID_WWAN_REGISTER_STATE
OID_WWAN_SAR_CONFIG
OID_WWAN_SAR_TRANSMISSION_STATUS

OID_WWAN_SERVICE_ACTIVATION
OID_WWAN_SIGNAL_STATE
OID_WWAN_SLOT_INFO
OID_WWAN_SMS_CONFIGURATION
OID_WWAN_SMS_DELETE
OID_WWAN_SMS_READ
OID_WWAN_SMS_SEND
OID_WWAN_SMS_STATUS
OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS
OID_WWAN_SYS_CAPS_INFO
OID_WWAN_UICC_ACCESS_BINARY
OID_WWAN_UICC_ACCESS_RECORD
OID_WWAN_UICC_APP_LIST
OID_WWAN_UICC_FILE_STATUS
OID_WWAN_UICC_RESET
OID_WWAN_USSD
OID_WWAN_VENDOR_SPECIFIC
OID_WWAN_VISIBLE_PROVIDERS

GUID_NDIS_GEN_PCI_DEVICE_CUSTOM_
PROPERTIES
Article • 03/14/2023

WMI clients can use the GUID_NDIS_GEN_PCI_DEVICE_CUSTOM_PROPERTIES method
GUID to determine the current link state.

NDIS handles this GUID and miniport drivers do not receive an OID query.

When a WMI client issues a GUID_NDIS_GEN_PCI_DEVICE_CUSTOM_PROPERTIES WMI
method request, NDIS returns the PCI custom properties of a PCI device for the miniport
adapter. The WMI method identifier should be NDIS_WMI_DEFAULT_METHOD_ID, and
the WMI input buffer should contain an NDIS_WMI_METHOD_HEADER structure.

The data buffer that NDIS returns with this GUID contains an
NDIS_PCI_DEVICE_CUSTOM_PROPERTIES structure.

Version Supported in NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_PCI_DEVICE_CUSTOM_PROPERTIES

NDIS_WMI_METHOD_HEADER

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pci_device_custom_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pci_device_custom_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_wmi_method_header

OID_802_3_ADD_MULTICAST_ADDRESS
Article • 02/18/2023

As a set request, NDIS and overlying protocol drivers use the
OID_802_3_ADD_MULTICAST_ADDRESS OID request to add an 802.3 multicast address
to the multicast address list of a miniport adapter. The multicast address is an array of 6
bytes. Adding an address enables that address to receive multicast packets.

Version Information

Windows Vista
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains the 6-
byte address to be added to the multicast address list.

The OID_802_3_ADD_MULTICAST_ADDRESS OID request can add only one address. To
add more than one address, the overlying driver must issue multiple
OID_802_3_ADD_MULTICAST_ADDRESS OID requests.

NDIS miniport drivers do not receive this OID request directly. Instead, NDIS
consolidates each sequence of OID_802_3_ADD_MULTICAST_ADDRESS and
OID_802_3_DELETE_MULTICAST_ADDRESS OID requests into a single
OID_802_3_MULTICAST_LIST OID request, which it sends to the miniport driver.

To receive multicast packets, the overlying driver must use the
OID_GEN_CURRENT_PACKET_FILTER OID to set the packet filter
NDIS_PACKET_TYPE_MULTICAST flag.

The miniport driver can set a limit on the number of multicast addresses that the
multicast address list can contain. To specify the maximum number of multicast
addresses, the miniport driver sets the MaxMulticastListSize member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that it passes to the
NdisMSetMiniportAttributes function. For miniport drivers that are based on NDIS
versions before NDIS 6.0, NDIS queries the maximum number of multicast addresses by
sending an OID_802_3_MAXIMUM_LIST_SIZE OID request. NDIS returns

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

NDIS_STATUS_MULTICAST_FULL if an OID_802_3_ADD_MULTICAST_ADDRESS request
exceeds this limit.

To delete a previously added multicast address, make a set request with the
OID_802_3_DELETE_MULTICAST_ADDRESS OID. The overlying driver can add a given
multicast address multiple times. If NDIS succeeds the first add request for a given
multicast address, NDIS will succeed all subsequent add requests for that address. To
delete a multicast address that was added more than once, the overlying driver must
delete the address the same number of times that it added the address.

Header Ntddndis.h (include Ndis.h)

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NDIS_OID_REQUEST

NdisMSetMiniportAttributes

OID_802_3_DELETE_MULTICAST_ADDRESS

OID_802_3_MAXIMUM_LIST_SIZE

OID_802_3_MULTICAST_LIST

OID_GEN_CURRENT_PACKET_FILTER

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_802_3_CURRENT_ADDRESS
Article • 02/18/2023

The address the NIC is currently using.

The network management software cannot set the current station address using the
NDIS interface library. It must set this address as a configuration parameter.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_DELETE_MULTICAST_ADDRE
SS
Article • 02/18/2023

As a set request, NDIS and overlying protocol drivers use the
OID_802_3_DELETE_MULTICAST_ADDRESS OID to delete a previously added multicast
address from the multicast address list of a miniport adapter. The multicast address is an
array of 6 bytes. Deleting an address disables that address so that it can no longer
receive multicast packets.

Version Information

Windows Vista
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains the 6-
byte address to be deleted from the multicast address list.

The OID_802_3_DELETE_MULTICAST_ADDRESS OID request can delete only one address.
To delete more than one address, the protocol driver must issue multiple
OID_802_3_DELETE_MULTICAST_ADDRESS OID requests.

NDIS miniport drivers do not receive this OID request directly. Instead, NDIS
consolidates each sequence of OID_802_3_ADD_MULTICAST_ADDRESS and
OID_802_3_DELETE_MULTICAST_ADDRESS OID requests into a single
OID_802_3_MULTICAST_LIST OID request.

To replace or delete the entire multicast list, the protocol driver can use the
OID_802_3_MULTICAST_LIST OID request.

To add an address to the list, the protocol driver can use the
OID_802_3_ADD_MULTICAST_ADDRESS OID request.

The overlying protocol driver can add a given multicast address multiple times by
sending multiple OID_802_3_ADD_MULTICAST_ADDRESS OID requests. If NDIS succeeds
the first add request for a given multicast address, NDIS will succeed all subsequent add

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

requests for that address. To delete a multicast address that was added more than once,
the overlying driver must delete the address the same number of times that it added the
address.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

Header Ntddndis.h (include Ndis.h)

OID_802_3_ADD_MULTICAST_ADDRESS

OID_802_3_MAXIMUM_LIST_SIZE

OID_802_3_MULTICAST_LIST

Return status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

OID_802_3_MAC_OPTIONS
Article • 02/18/2023

A protocol can use this OID to determine features supported by the underlying driver,
which could be emulating Ethernet.

The underlying driver returns zero, indicating that it supports no options.

Note This OID is obsolete for NDIS 6 drivers.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_MAXIMUM_LIST_SIZE
Article • 02/18/2023

NDIS and overlying protocol drivers use the OID_802_3_MAXIMUM_LIST_SIZE OID
request to query or set the maximum number of 6-byte multicast addresses that the
miniport adapter's multicast address list can hold.

This multicast address list is shared by all protocol drivers that are bound to the
miniport adapter. Because it is a shared resource, a protocol driver can receive
NDIS_STATUS_MULTICAST_FULL from the miniport adapter in response to an
OID_802_3_MULTICAST_LIST OID set request, even if the number of elements in the list
is less than the number that NDIS previously returned for an
OID_802_3_MAXIMUM_LIST_SIZE OID query request.

Header Ntddndis.h (include Ndis.h)

OID_802_3_ADD_MULTICAST_ADDRESS

OID_802_3_DELETE_MULTICAST_ADDRESS

OID_802_3_MULTICAST_LIST

Requirements

See also

OID_802_3_MULTICAST_LIST
Article • 02/18/2023

As a set request, NDIS and overlying protocol drivers use the
OID_802_3_MULTICAST_LIST OID request to replace the current multicast address list on
a miniport adapter. If an address is present in the list, that address is enabled to receive
multicast packets.

As a query request, NDIS and protocol drivers use the OID_802_3_MULTICAST_LIST OID
request to obtain the current multicast address list.

NDIS handles OID_802_3_MULTICAST_LIST query requests for miniport drivers, so
miniport drivers never receive these query requests.

Miniport drivers that support multicast address lists must support
OID_802_3_MULTICAST_LIST set requests.

For a set request, the InformationBuffer member of the NDIS_OID_REQUEST structure
contains the multicast address list as an array of addresses.

Each address is an array of 6 bytes.
The InformationBufferLength member contains the length, in bytes, of the
InformationBuffer array.
If there are duplicate addresses in the list in the InformationBuffer member, NDIS
removes the duplicates before sending the OID_802_3_MULTICAST_LIST set
request to the miniport driver.
If the InformationBufferLength member is zero, the miniport driver must clear the
multicast address list.
If the InformationBufferLength member is greater than zero, the miniport driver
must replace any existing multicast address list with the list in the
InformationBuffer member.

The miniport adapter's multicast address list is shared by all protocol drivers that are
bound to the miniport adapter. NDIS controls access to this list. If multiple protocol
drivers try to modify the list at the same time, NDIS combines their requests into a
single OID_802_3_MULTICAST_LIST set request, which it sends to the miniport driver.

When a miniport adapter is initialized, it resets the NIC so the multicast address list is
zero. NDIS also initializes the packet filter so it does not allow the protocol driver to
receive multicast packets.

To receive a multicast packet, the protocol driver must later do one of the following:

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

Set the packet filter to include the NDIS_PACKET_TYPE_MULTICAST flag. At any
time, it can disable multicast packet reception by canceling this flag. The order in
which the protocol driver enables reception for multicast packets is not important.
For more information, see the OID_GEN_CURRENT_PACKET_FILTER OID request.
Set the packet filter to include the NDIS_PACKET_TYPE_ALL_MULTICAST flag,
which enables all multicast packets, and do the filtering itself.

The miniport driver can set a limit on the number of multicast addresses that the
multicast address list can contain. NDIS returns NDIS_STATUS_MULTICAST_FULL if a
protocol driver exceeds this limit or if it specifies an invalid multicast address.

For a query request, NDIS returns a multicast address list that is the union of all
multicast address lists for all protocol bindings.

Header Ntddndis.h (include Ndis.h)

OID_802_3_ADD_MULTICAST_ADDRESS

OID_802_3_DELETE_MULTICAST_ADDRESS

OID_802_3_MAXIMUM_LIST_SIZE

OID_GEN_CURRENT_PACKET_FILTER

Requirements

See also

OID_802_3_PERMANENT_ADDRESS
Article • 02/18/2023

The address of the NIC encoded in the hardware.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_RCV_OVERRUN
Article • 02/18/2023

The number of frames not received due to overrun errors on the NIC.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_DEFERRED
Article • 02/18/2023

The number of frames successfully transmitted after the NIC defers transmission at least
once.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_HEARTBEAT_FAILURE
Article • 02/18/2023

The number of frames successfully transmitted without detection of the collision-detect
heartbeat.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_LATE_COLLISIONS
Article • 02/18/2023

The number of collisions detected after the normal window.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_MAX_COLLISIONS
Article • 02/18/2023

The number of frames not transmitted due to excessive collisions.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_TIMES_CRS_LOST
Article • 02/18/2023

The number of times the CRS signal has been lost during packet transmission.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_802_3_XMIT_UNDERRUN
Article • 02/18/2023

The number of frames not transmitted due to underrun errors on the NIC.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_ADD_ADDRESS
Article • 02/18/2023

The OID_CO_ADD_ADDRESS OID is sent by a client to a call manager to specify an alias
address for a host. The alias address is formatted as a CO_ADDRESS structure, defined as
follows:

c++

The members of this structure contain the following information:

AddressSize
Specifies the size in bytes of the structure at Address.

Address
Specifies a variable-length array that contains the alias address. The address format is
specific to the signaling protocol used by the call manager.

This OID is typically used to specify a well-known address at which a host offers a
particular service. For example, a client could specify a well-known address for a LAN
emulation server. The call manager's response to this OID is specific to the signaling
protocol used by the call manager. An ATM call manager, for example, sends a message
to the switch that notifies the switch of the alias address.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _CO_ADDRESS{
 ULONG AddressSize;
 UCHAR Address[1];
} CO_ADDRESS, *PCO_ADDRESS;

Requirements

OID_CO_ADD_PVC
Article • 02/18/2023

The OID_CO_ADD_PVC OID is sent by a client to a call manager to add a permanent
virtual connection (PVC) to the call manager's list of configured PVCs. The PVC is
formatted as a CO_PVC structure, defined as follows:

c++

The members of this structure contain the following information:

NdisAfHandle
Specifies the NDIS-supplied handle returned by NdisClOpenAddressFamilyEx.

PvcParameters
A formatted CO_SPECIFIC_PARAMETERS structure. This structure contains protocol-
specific parameters that describe the PVC.

A PVC is configured manually by an administrator. A client that monitors such activity
notifies a call manager of a newly configured PVC by sending this OID to the call
manager. Other clients can then use the newly-configured PVC.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _CO_PVC {
 NDIS_HANDLE NdisAfHandle;
 CO_SPECIFIC_PARAMETERS PvcParameters;
} CO_PVC, *PCO_PVC;

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545396(v=vs.85)

OID_CO_ADDRESS_CHANGE
Article • 02/18/2023

The OID_CO_ADDRESS_CHANGE OID is sent by the call manager to each client that
opened an address family with the call manager. This action is taken in response to a
change in the switch address that the call manager uses. For example, the call manager
sends this request if someone disconnects the NIC from one switch and plugs it into
another switch. Each notified client must send an OID_CO_GET_ADDRESSES query to the
call manager to retrieve a list of currently valid addresses.

The call manager also sends OID_CO_ADDRESS_CHANGE to a client immediately after
the client opens an address family with the call manager. This ensures that a client that
opens an address family after the switch address has changed is notified of the change.
The client must then must then send an OID_CO_GET_ADDRESSES query to the call
manager.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_AF_CLOSE
Article • 02/18/2023

The OID_CO_AF_CLOSE OID is sent by a call manager that must unbind itself from an
underlying miniport driver. Before unbinding itself from the miniport driver, the call
manager sends this OID to each client that has an address family open with the call
manager. In response, the client should do the following:

1. If the client has any active multipoint connections, call NdisClDropParty as many
times as necessary until only a single party remains active on each multipoint VC

2. Call NdisClCloseCall as many times as necessary to close all calls still open with the
call manager

3. Call NdisClDeregisterSap as many times as necessary to deregister all SAPs that the
client has registered with the call manager

4. Call NdisClCloseAddressFamily to close the address family referenced by
NdisAfHandle in the request that contained OID_CO_AF_CLOSE

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscldropparty
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclclosecall
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclderegistersap
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclcloseaddressfamily

OID_CO_DELETE_ADDRESS
Article • 02/18/2023

The OID_CO_DELETE_ADDRESS OID is sent by a client to a call manager to delete an
alias address for a host. The alias address is formatted as a CO_ADDRESS structure,
defined as follows:

c++

The members of this structure contain the following information:

AddressSize
Specifies the size in bytes of the structure at Address .

Address
Specifies a variable-length array that contains the alias address. The address format is
specific to the signaling protocol used by the call manager.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _CO_ADDRESS {
 ULONG AddressSize;
 UCHAR Address[1];
} CO_ADDRESS, *PCO_ADDRESS;

Requirements

OID_CO_DELETE_PVC
Article • 02/18/2023

The OID_CO_DELETE_PVC OID is sent by a client to a call manager to delete a
permanent virtual connection (PVC) from the call manager's list of configured PVCs. The
PVC is formatted as a CO_PVC structure, defined as follows:

c++

The members of this structure contain the following information:

NdisAfHandle
Specifies the NDIS-supplied handle returned by NdisClOpenAddressFamilyEx.

PvcParameters
A formatted CO_SPECIFIC_PARAMETERS structure. This structure contains protocol-
specific parameters that describe the PVC.

A PVC is removed manually by an administrator. A client that monitors such activity
notifies a call manager of a PVC that has been removed by sending this OID to the call
manager.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _CO_PVC {
 NDIS_HANDLE NdisAfHandle;
 CO_SPECIFIC_PARAMETERS PvcParameters;
} CO_PVC, *PCO_PVC;

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclopenaddressfamilyex

OID_CO_GET_ADDRESSES
Article • 02/18/2023

The OID_CO_GET_ADDRESSES OID is used by the client to make a query to the call
manager. This query is made in response to the call manager sending an
OID_CO_ADDRESS_CHANGE to the client. In response to this query, the call manager
sends the client an address list that is formatted as a CO_ADDRESS_LIST structure,
defined as follows:

c++

The members of this structure contain the following information:

NumberOfAddressesAvailable
Specifies the maximum number of addresses in the call manager's list of addresses.
Regardless of the actual number of addresses that the call manager returns to the client
at AddressList, the size of the buffer at AddressList is always
NumberOfAddressesAvailable multiplied by the address size, which is a fixed size
specific to the call manager.

NumberOfAddresses
Specifies the number of addresses that the call manager has written to AddressList.

AddressList
The alias address is formatted as a CO_ADDRESS structure, defined as follows:

c++

The members of this structure contain the following information:

AddressSize
Specifies the size in bytes of the structure at Address .

typedef struct _CO_ADDRESS_LIST {
 ULONG NumberOfAddressesAvailable;
 ULONG NumberOfAddresses;
 CO_ADDRESS AddressList;
} CO_ADDRESS_LIST, *PCO_ADDRESS_LIST;

typedef struct _CO_ADDRESS {
 ULONG AddressSize;
 UCHAR Address[1];
} CO_ADDRESS, *PCO_ADDRESS;

Address
Specifies a variable-length array that contains the list of addresses. The address format
is specific to the signaling protocol used by the call manager.

The AddressList contains network addresses at which the local host can be reached. The
AddressList returned to a particular client contains addresses that are common to all
clients, as well as any addresses that the client itself has added to call manager's list of
addresses with OID_CO_ADD_ADDRESS.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_GET_CALL_INFORMATION
Article • 02/18/2023

The OID_CO_GET_CALL_INFORMATION OID is reserved for future use.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_SIGNALING_DISABLED
Article • 02/18/2023

The OID_CO_SIGNALING_DISABLED OID is sent by a call manager to indicate that it
cannot make calls or dispatch incoming calls. The call manager sends this OID to each
client that has an address family open with the call manager.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_SIGNALING_ENABLED
Article • 02/18/2023

The OID_CO_SIGNALING_ENABLED OID is sent by a call manager to indicate that it is
ready to make calls and dispatch incoming calls. The call manager sends this OID to
each client that has an address family open with the call manager.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_TAPI_ADDRESS_CAPS
Article • 02/18/2023

The OID_CO_TAPI_ADDRESS_CAPS OID requests a call manager or an integrated
miniport call manager (MCM) driver to return the telephony capabilities for a specified
address on a specified line.

This request uses a CO_TAPI_ADDRESS_CAPS structure, which is defined as follows:

c++

The members of this structure contain the following information:

ulLineID
Specifies the zero-based line identifier of the line on which the given address is located.

ulAddressID
Specifies the zero-based address identifier on the line for which capabilities should be
returned.

ulFlags
These flags are reserved.

LineAddressCaps
Specifies the telephony capabilities of an address, formatted as a LINE_ADDRESS_CAPS
structure. For more information about this structure, see the Microsoft Windows SDK
and the ndistapi.h header file.

After querying the line capabilities of a call manager's or MCM driver's device with
OID_CO_TAPI_LINE_CAPS, a connection-oriented client queries the capabilities of the
address(es) for each line as follows:

If the previous query of OID_CO_TAPI_LINE_CAPS indicated that the line supports
only one address or that all addresses on the line have the same address

typedef struct _CO_TAPI_ADDRESS_CAPS {
 IN ULONG ulLineID;
 IN ULONG ulAddressID;
 OUT ULONG ulFlags;
 OUT LINE_ADDRESS_CAPS LineAddressCaps;
} CO_TAPI_ADDRESS_CAPS, *PCO_TAPI_ADDRESS_CAPS;

Remarks

capabilities, the client queries OID_CO_TAPI_ADDRESS_CAPS once to determine the
capabilities of all the addresses on the line. In this case, the address capabilities
returned by the call manager or MCM driver apply to all addresses on the line.

If a line supports multiple addresses that have dissimilar capabilities, the client
queries OID_CO_TAPI_ADDRESS_CAPS once for each address on the line. In this
case, the address capabilities returned by the call manager or MCM driver apply to
a specified address on a specified line.

The call manager or MCM driver returns the address capabilities for a specified address
in LineAddressCaps.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_TAPI_CM_CAPS
Article • 02/18/2023

The OID_CO_TAPI_CM_CAPS OID requests a call manager or an integrated miniport call
manager (MCM) driver to return the number of lines supported by its device (the device
for which it provides call management services). This OID also requests the call manager
or MCM driver to indicate whether these lines have dissimilar line capabilities.

This request uses a CO_TAPI_CM_CAPS structure, which is defined as follows:

c++

The members of this structure contain the following information:

ulCoTapiVersion
Specifies the TAPI version supported by the call manager or MCM driver. The call
manager or MCM driver should set this to CO_TAPI_VERSION.

ulNumLines
Specifies the number of lines supported by the device.

ulFlags
If the device supports multiple lines that have dissimilar line capabilities or if the
addresses on any of these lines have dissimilar address capabilities, the call manager or
MCM driver sets the CO_TAPI_FLAG_PER_LINE_CAPS bit in ulFlags; otherwise, the call
manager or MCM driver clears this bit. All undefined bits are reserved for future use and
must be set to 0.

A connection-oriented client uses the information returned from this OID to determine
how it will query the line capabilities of the call manager's or MCM driver's device with
OID_CO_TAPI_LINE_CAPS.

typedef struct _CO_TAPI_CM_CAPS {
 OUT ULONG ulCoTapiVersion;
 OUT ULONG ulNumLines;
 OUT ULONG ulFlags;
} CO_TAPI_CM_CAPS, *PCO_TAPI_CM_CAPS;

Remarks

Requirements

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

OID_CO_TAPI_GET_CALL_DIAGNOSTICS
Article • 02/18/2023

The OID_CO_TAPI_GET_CALL_DIAGNOSTICS OID requests a call manager or MCM driver
to return diagnostic information about a failed call or a call torn down by the remote
TAPI party.

This request uses a CO_TAPI_CALL_DIAGNOSTICS structure, which is defined as follows:

c++

ulOrigin
Specifies the origination of the call as one of the following LINECALLORIGIN_ constants:

LINECALLORIGIN_OUTBOUND
The call is an outgoing call.

LINECALLORIGIN_INTERNAL
The call is incoming and originated internally (on the same PBX, for example).

LINECALLORIGIN_EXTERNAL The call is incoming and originated externally.

LINECALLORIGIN_UNKNOWN
The call is incoming. Its origin is currently unknown but may become known later.

LINECALLORIGIN_UNAVAIL
The call is incoming. Its origin is not available and will never be known.

LINECALLORIGIN_CONFERENCE
The call handle is for a conference call--that is, for the application's connection to
the conference bridge in the switch.

ulReason
Specifies the reason for the call as one of the following LINECALLREASON_ constants:

LINECALLREASON_DIRECT
The call is direct.

typedef struct _CO_TAPI_CALL_DIAGNOSTICS {
 OUT ULONG ulOrigin;
 OUT ULONG ulReason;
 OUT NDIS_VAR_DATA_DESC DiagInfo;
} CO_TAPI_CALL_DIAGNOSTICS, *PCO_TAPI_CALL_DIAGNOSTICS;

LINECALLREASON_FWDBUSY
The call was forwarded from a busy extension.

LINECALLREASON_FWDNOANSWER
The call was forwarded after some number of rings from an unanswered extension.

LINECALLREASON_FWDUNCOND
The call was forwarded unconditionally from another number.

LINECALLREASON_PICKUP
The call was picked up from another extension.

LINECALLREASON_UNPARK
The call was retrieved as a parked call.

LINECALLREASON_REDIRECT
The call was redirected to this station.

LINECALLREASON_CALLCOMPLETION
The call was the result of a call completion request.

LINECALLREASON_TRANSFER
The call was transferred from another number. Party identifier information may
indicate who the caller is and from where the call was transferred.

LINECALLREASON_REMINDER
The call is a reminder (or "recall") that the user has a call parked or on hold for a
potentially long time.

LINECALLREASON_UNKNOWN
The reason for the call is currently unknown but may become known later.

LINECALLREASON_UNAVAIL
The reason for the call is unavailable and cannot become known later.

DiagInfo
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset to, as well as the
length of, optional diagnostic information supplied by the call manager or MCM driver.
The content and format of the diagnostic information is driver-determined.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)

OID_CO_TAPI_LINE_CAPS
Article • 02/18/2023

The OID_CO_TAPI_LINE_CAPS OID requests a call manager or an integrated miniport call
manager (MCM) driver to return the telephony capabilities for a specified line. This OID
also requests the call manager or MCM driver to indicate whether addresses on this line
have dissimilar telephony capabilities.

This request uses a CO_TAPI_LINE_CAPS structure, defined as follows, to query the
telephony capabilities of a specified line:

c++

The members of this structure contain the following information:

ulLineID
Specifies the line for which telephony capabilities should be returned. ulLineID is a zero-
based identifier.

ulFlags
If the line supports multiple addresses that have dissimilar telephony capabilities, the
call manager or MCM driver sets the CO_TAPI_FLAG_PER_ADDRESS_CAPS bit in ulFlags;
otherwise, the call manager or MCM driver clears this bit. All undefined bits are reserved
and must be set to 0.

LineDevCaps
Specifies the telephony capabilities of a line, formatted as a LINE_DEV_CAPS structure.
For more information about this structure, see the Microsoft Windows SDK and the
ndistapi.h header file.

After querying the telephony capabilities of a call manager's or MCM driver's device
with OID_CO_TAPI_CM_CAPS, a connection-oriented client queries the telephony
capabilities of the line(s) supported by the device.

typedef struct _CO_TAPI_LINE_CAPS {
 IN ULONG ulLineID;
 OUT ULONG ulFlags;
 OUT LINE_DEV_CAPS LineDevCaps;
} CO_TAPI_LINE_CAPS, *PCO_TAPI_LINE_CAPS;

Remarks

If all lines supported by the device have the same line capabilities and all the
addresses on these lines have the same address capabilities, the client queries
OID_CO_TAPI_LINE_CAPS once to obtain the line capabilities of the device. In this
case, the line capabilities returned by the call manager or MCM driver apply to all
the lines supported by the device.
If the device supports multiple lines with dissimilar capabilities, however, and/or if
addresses on these lines have dissimilar address capabilities, the client queries
OID_CO_TAPI_LINE_CAPS once for each line supported by the device to obtain the
capabilities of each line.

The ulFlags setting determines how many times the client subsequently queries the
capabilities of the address(es) on the line:

If the line supports only one address, or if the line supports multiple addresses that
have the same address capabilities, the client queries
OID_CO_TAPI_ADDRESS_CAPS once.
If the line supports multiple addresses that have dissimilar capabilities, the client
must query OID_CO_TAPI_ADDRESS_CAPS once for each address on the line.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_CO_TAPI_TRANSLATE_NDIS_CALLPA
RAMS
Article • 03/14/2023

The OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS OID requests a call manager or MCM
driver to translate NDIS call parameters (passed in a CO_CALL_PARAMETERS structure to
the client's ProtocolClIncomingCall function) to TAPI call parameters. The client uses the
translated TAPI call parameters returned by the call manager or MCM driver to
determine whether to accept or reject the incoming call.

This request uses a CO_TAPI_TRANSLATE_NDIS_CALLPARAMS structure, which is defined
as follows:

c++

The members of this structure contain the following information:

ulFlags
The client must set the CO_TAPI_FLAG_INCOMING_CALL bit in ulFlags.

NdisCallParams
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset from the beginning
of the NDIS_VAR_DATA_DESC structure to a CO_CALL_PARAMETERS structure. The
NDIS_VAR_DATA_DESC structure also contains the length of the CO_CALL_PARAMETERS
structure. The client fills in the CO_CALL_PARAMETERS structure with the NDIS call
parameters to be translated to TAPI call parameters.

LineCallInfo
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset from the beginning
of the NDIS_VAR_DATA_DESC structure to a LINE_CALL_INFO structure. The
NDIS_VAR_DATA_DESC structure also contains the length of the CO_CALL_PARAMETERS
structure. The LINE_CALL_INFO structure specifies the TAPI call parameters into which
the given NDIS call parameters have been translated. For more information about the
LINE_CALL_INFO structure, see the Windows SDK and the ndistapi.h header file.

typedef struct _CO_TAPI_TRANSLATE_NDIS_CALLPARAMS {
 IN ULONG ulFlags;
 IN NDIS_VAR_DATA_DESC NdisCallParams;
 OUT NDIS_VAR_DATA_DESC LineCallInfo;
} CO_TAPI_TRANSLATE_NDIS_CALLPARAMS, *PCO_TAPI_TRANSLATE_NDIS_CALLPARAMS;

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_cl_incoming_call
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)

If the request is successful, the call manager or MCM driver fills in the
LINE_CALL_PARAMS structure referred to by LineCallInfo with the translated TAPI call
parameters. The call manager or MCM driver must allocate the LINE_CALL_INFO
structure within the flat memory section referred to LineCallInfo. The client writes the
total length of the LINE_CALL_INFO structure to LineCallInfo.Length.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_CO_TAPI_TRANSLATE_TAPI_CALLPA
RAMS
Article • 02/18/2023

The OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS OID requests a call manager or
integrated call manager miniport (MCM) driver to translate TAPI call parameters to NDIS
call parameters. The client that queries this OID uses the returned NDIS call parameters
as an input (formatted as a CO_CALL_PARAMETERS structure) to NdisClMakeCall, with
which the client places an outgoing call.

This OID uses a CO_TAPI_TRANSLATE_TAPI_CALLPARAMS structure, which is defined as
follows:

c++

The members of this structure contain the following information:

ulLineID
Specifies a zero-based line identifier to which the outgoing call will be directed.

ulAddressID
Specifies a zero-based address identifier (on the line specified by ulLineID) to which the
outgoing call will be directed.

ulFlags
The client must set the CO_TAPI_FLAG_OUTGOING_CALL bit in ulFlags. The client can
optionally set the CO_TAPI_USE_DEFAULT_CALLPARAMS bit in ulFlags to require the call
manager or MCM driver to ignore the LineCallParams and return the default NDIS call
parameters for the device.

DestAddress
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset from the beginning
of the NDIS_VAR_DATA_DESC structure to a destination address formatted as a character
array. The NDIS_VAR_DATA_DESC structure also contains the length of the destination

typedef struct _CO_TAPI_TRANSLATE_TAPI_CALLPARAMS {
 IN ULONG ulLineID;
 IN ULONG ulAddressID;
 IN ULONG ulFlags;
 IN NDIS_VAR_DATA_DESC DestAddress;
 IN NDIS_VAR_DATA_DESC LineCallParams;
 OUT NDIS_VAR_DATA_DESC NdisCallParams;
} CO_TAPI_TRANSLATE_TAPI_CALLPARAMS, *PCO_TAPI_TRANSLATE_TAPI_CALLPARAMS;

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclmakecall
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)

address. The destination address is the address to which the outgoing call will be
directed.

LineCallParams
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset from the beginning
of the NDIS_VAR_DATA_DESC structure to a LINE_CALL_PARAMS structure. The
NDIS_VAR_DATA_DESC structure also contains the length of the LINE_CALL_PARAMS
structure. The LINE_CALL_PARAMS structure specifies the TAPI call parameters to be
translated into NDIS call parameters. For more information about the
LINE_CALL_PARAMS structure, see the Microsoft Windows SDK and the ndistapi.h
header file.

NdisCallParams
Specifies an NDIS_VAR_DATA_DESC structure that contains an offset from the beginning
of the NDIS_VAR_DATA_DESC structure to a CO_CALL_PARAMETERS structure. The
NDIS_VAR_DATA_DESC structure also contains the length of the CO_CALL_PARAMETERS
structure. The CO_CALL_PARAMETERS structure specifies the NDIS call parameters into
which the given TAPI call parameters have been translated.

If the request is successful, the call manager or MCM driver fills in the
CO_CALL_PARAMETERS structure referenced by NdisCallParams with the translated
NDIS call parameters. The call manager or MCM driver must allocate the
CO_CALL_PARAMETERS structure within the flat memory section referred to by
NdisCallParams. The client writes the total length of the CO_CALL_PARAMETERS
structure to NdisCallParams.Length.

If the client sets the CO_TAPI_USE_DEFAULT_CALLPARAMS bit in ulFlags, the client does
not specify TAPI call parameters. In this case, the call manager or MCM driver should
return the default NDIS call parameters for the device. If there are no default NDIS call
parameters for the device, the call manager or MCM driver should return
NDIS_STATUS_FAILURE.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545384(v=vs.85)

OID_CO_TAPI_TRANSLATE_TAPI_SAP
Article • 02/18/2023

The OID_CO_TAPI_TRANSLATE_TAPI_SAP OID requests a call manager or integrated
MCM driver to prepare one or more SAPs from TAPI call parameters. The client that
queries this OID uses an NDIS SAP returned by the call manager or MCM driver as an
input (formatted as a CO_SAP structure) to NdisClRegisterSap, which the client calls to
register a SAP on which to receive incoming calls.

This request uses a CO_TAPI_TRANSLATE_SAP structure, which is defined as follows:

c++

The members of this structure contain the following information:

ulLineID
Specifies a zero-based line identifier.

ulAddressID
Specifies a zero-based address identifier on the line specified by ulLineID.

ulMediaModes
Specifies the media mode of the information stream of calls that the client is interested
in, as one or more of the following LINEMEDIAMODE_constants:

LINEMEDIAMODE_UNKNOWN
A media stream exists but its mode is currently unknown and may become known
later. This corresponds to a call with an unclassified media type. In typical analog
telephony environments, the media mode of an incoming call may be unknown
until after the call has been answered and the media stream has been filtered to
make a determination.

If the LINEMEDIAMODE_UNKNOWN flag is set, other media flags can also be set.
This signifies that the media is unknown but that it is likely to be one of the other
indicated media modes.

typedef struct _CO_TAPI_TRANSLATE_SAP {
 IN ULONG ulLineID;
 IN ULONG ulAddressID;
 IN ULONG ulMediaModes;
 IN ULONG Reserved;
 OUT ULONG NumberOfSaps;
 OUT NDIS_VAR_DATA_DESC NdisSapParams[1];
} CO_AF_TAPI_SAP, *PCO_AF_TAPI_SAP;

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545392(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisclregistersap

LINEMEDIAMODE_INTERACTIVEVOICE
The presence of voice energy on the call, and the call is treated as an interactive
call with humans on both ends.

LINEMEDIAMODE_AUTOMATEDVOICE
The presence of voice energy on the call, and the voice is locally handled by an
automated application.

LINEMEDIAMODE_DATAMODEM
A data modem session on the call.

LINEMEDIAMODE_G3FAX
A group 3 fax is being sent or received over the call.

LINEMEDIAMODE_G4FAX
A group 4 fax is being sent or received over the call.

LINEMEDIAMODE_TDD
A TDD (telecommunication device for the deaf) session on the call.

LINEMEDIAMODE_DIGITALDATA
Digital data is being sent or received over the call.

LINEMEDIAMODE_TELETEX
A teletex session on the call. (Teletex is one of the telematic services.)

LINEMEDIAMODE_VIDEOTEX
A videotex session on the call. (Videotex is one the telematic services.)

LINEMEDIAMODE_TELEX
A telex session on the call. (Telex is one of the telematic services.)

LINEMEDIAMODE_MIXED
A mixed session on the call. (Mixed is one of the ISDN telematic services.)

LINEMEDIAMODE_ADSI
An ADSI (Analog Display Service Interfaces) session on the call.

LINEMEDIAMODE_VOICEVIEW
The media mode of the call is VoiceView.

Reserved
This is reserved. The client must set this field to 0.

NumberOfSaps
Specifies the number of NDIS_VAR_DATA_DESC structures contained in the buffer at

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559020(v=vs.85)

NdisSapParams.

NdisSapParams
Specifies a variable-length array that contains one or more NDIS_VAR_DATA_DESC
structures. Each NDIS_VAR_DATA_DESC structure contains an offset to, as well as the
length of, a CO_SAP structure. Each CO_SAP structure specifies a service access point
(SAP) on which a connection-oriented client can receive incoming calls.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff545392(v=vs.85)

OID_GEN_ADMIN_STATUS
Article • 02/18/2023

As a query, use the OID_GEN_ADMIN_STATUS OID to determine the administrative
status for an interface (ifAdminStatus from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

The administrative status is the status that the system administrator requested.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the query succeeds, the interface provider returns NDIS_STATUS_SUCCESS, and the
result of the query can be one of the values in the NET_IF_ADMIN_STATUS enumeration.

Header Ntddndis.h (include Ndis.h)

NET_IF_ADMIN_STATUS

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_admin_status
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_admin_status

OID_GEN_ALIAS
Article • 02/18/2023

As a query, use the OID_GEN_ALIAS OID to obtain the alias string for an interface (ifAlias
from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

An NDIS network interface provider can assign unique alias strings for its interfaces. If
the name should remain associated with the same interface, the provider can make the
strings persistent after the computer restarts and reinitializations.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is an
alias string that is returned in an NDIS_IF_COUNTED_STRING structure.

Header Ntddndis.h (include Ndis.h)

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054

OID_GEN_BROADCAST_BYTES_RCV
Article • 02/18/2023

As a query, the OID_GEN_BROADCAST_BYTES_RCV OID specifies the number of bytes in
broadcast packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_BROADCAST_BYTES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_BROADCAST_BYTES_XMIT OID specifies the number of bytes in
broadcast packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_BROADCAST_FRAMES_RCV
Article • 02/18/2023

As a query, the OID_GEN_BROADCAST_FRAMES_RCV OID specifies the number of
broadcast packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count from this OID, combined with the count from
OID_GEN_MULTICAST_FRAMES_RCV, is identical to the ifInNUcastPkts counter described
in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_BROADCAST_FRAMES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_BROADCAST_FRAMES_XMIT OID specifies the number of
broadcast packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count from this OID, combined with the count from
OID_GEN_MULTICAST_FRAMES_XMIT, is identical to the ifOutNUcastPkts counter
described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_BYTES_RCV
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_BYTES_RCV OID to determine
the total number of bytes that a miniport adapter received.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID for miniport drivers. See the OID_GEN_STATISTICS OID for more
information about statistics.

The total byte count is the sum of the receive-directed byte count, receive-multicast
byte count and receive-broadcast byte count. This value is the same as the sum of the
values that are returned by the OID_GEN_DIRECTED_BYTES_RCV,
OID_GEN_MULTICAST_BYTES_RCV, and OID_GEN_BROADCAST_BYTES_RCV OIDs.

The count is identical to the ifInOctets counter described in RFC 2863.

Header Ntddndis.h (include Ndis.h)

OID_GEN_BROADCAST_BYTES_RCV

OID_GEN_DIRECTED_BYTES_RCV

OID_GEN_MULTICAST_BYTES_RCV

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_BYTES_XMIT
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_BYTES_XMIT OID to determine
the total bytes that a miniport adapter transmitted.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID for miniport drivers. See the OID_GEN_STATISTICS OID for more
information about statistics.

The total byte count is the sum of the transmit-directed byte count, transmit-multicast
byte count and transmit-broadcast byte count. This value is the same as the sum of the
values that are returned by the OID_GEN_DIRECTED_BYTES_XMIT,
OID_GEN_MULTICAST_BYTES_XMIT, and OID_GEN_BROADCAST_BYTES_XMIT OIDs.

The count is identical to the ifOutOctets counter described in RFC 2863.

Header Ntddndis.h (include Ndis.h)

OID_GEN_BROADCAST_BYTES_XMIT

OID_GEN_DIRECTED_BYTES_XMIT

OID_GEN_MULTICAST_BYTES_XMIT

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_CO_BYTES_RCV
Article • 02/18/2023

The OID_GEN_CO_BYTES_RCV OID specifies the number of bytes in PDUs received
without errors.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_BYTES_XMIT
Article • 02/18/2023

The OID_GEN_CO_BYTES_XMIT OID specifies the number of bytes in PDUs transmitted
without errors.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_BYTES_XMIT_OUTSTANDI
NG
Article • 02/18/2023

The OID_GEN_CO_BYTES_XMIT_OUTSTANDING OID specifies the number of bytes in
PDUs that are queued for transmission.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_DRIVER_VERSION
Article • 02/18/2023

The NDIS version in use by the NIC driver. This OID is two bytes in length; the high byte
is the major version number, and the low byte is the minor version number.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_GET_NETCARD_TIME
Article • 02/18/2023

The OID_GEN_CO_GET_NETCARD_TIME OID requests the miniport driver to return a
NIC's local time, as derived from a clock on the NIC or from the network. The time is
formatted as a GEN_GET_NETCARD_TIME structure, defined as follows:

c++

The member of this structure contains the following information:

ReadTime
The NIC's local time.

The miniport driver specified the units for its local time in the ClockPrecision element of
the GEN_GET_TIME_CAPS structure that the miniport driver returned in response to a
previous OID_GEN_CO_GET_TIME_CAPS query.

If the miniport driver set the READABLE_LOCAL_CLOCK flag in its response to an
OID_GEN_CO_GET_TIME_CAPS query, the NIC derives its local time from an onboard
clock. If the miniport driver set the CLOCK_NETWORK_DERIVED flag in its response to an
OID_GEN_CO_GET_TIME_CAPS query, the NIC derives its local time from the network.

If the local time is derived from an onboard clock, the miniport driver should be able to
report the clock precision in parts per million. In general, a network-derived clock is
preferable, because it is likely to be more precise and can be used to synchronize many
machines attached to the same network or switch.

The miniport driver must return its local time synchronously in its response to the
OID_GEN_CO_GET_NETCARD_TIME query since this query synchronizes protocol drivers
with the NIC's local time. Protocol drivers should send the

７ Note

OID_GEN_CO_GET_NETCARD_TIME is the same as OID_GEN_GET_NETCARD_TIME.

typedef struct _GEN_GET_NETCARD_TIME{
 ULONGLONG ReadTime;
} GEN_GET_NETCARD_TIME, *PGEN_GET_NETCARD_TIME;

Remarks

OID_GEN_CO_GET_NETCARD_TIME query several times in succession to filter out
response-time latencies.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_GET_TIME_CAPS
Article • 02/18/2023

The OID_GEN_CO_GET_TIME_CAPS OID requests a miniport driver to return its
capabilities for reporting a NIC's local time formatted as a GEN_GET_TIME_CAPS
structure, which is defined as follows:

c++

The members of this structure contain the following information:

Flags
The following flags can be ORed together. All unspecified flags must be set to zero.

READABLE_LOCAL_CLOCK
When set, indicates the presence of a readable clock on the NIC. Even without such a
hardware clock, a miniport driver can use the system clock by calling
NdisGetCurrentSystemTime, so long as it reports the correct precision in the
ClockPrecision member.

CLOCK_NETWORK_DERIVED
When set, indicates that the NIC's local time is derived from the network connection, as
opposed to a free-running, onboard clock.

CLOCK_PRECISION
When set, indicates that the ClockPrecision member contains valid information.

RECEIVE_TIME_INDICATION_CAPABLE
When set, indicates that the NIC hardware can note the local time at which it receives
the first cell of a received PDU and that the miniport driver propagates this receive time
for each PDU when indicating the packet to a protocol.

７ Note

OID_GEN_CO_GET_TIME_CAPS is the same as OID_GEN_GET_TIME_CAPS.

typedef struct _GEN_GET_TIME_CAPS{
 ULONG Flags;
 ULONG ClockPrecision;
} GEN_GET_TIME_CAPS, *PGEN_GET_TIME_CAPS;

TIMED_SEND_CAPABLE
When set, indicates that the NIC can schedule a packet for transmission according to its
local time. Protocols can use NDIS_SET_PACKET_TIME_TO_SEND to set the TimeToSend
timestamp in the out-of-band data block of a packet descriptor. Setting the timestamp
does not affect when the packet is actually transmitted; instead, the timestamp is used
for recordkeeping. A protocol driver can use the timestamp to determine how long it
takes to complete the sending of a paket.

TIME_STAMP_CAPABLE
When set, indicates that the NIC can stamp (in the appropriate field of the outgoing
packet) the time at which the first byte of the packet is transmitted and that the NIC can
retrieve this time from the same field of an inbound packet.

ClockPrecision
Specifies the clock precision in parts per million. For this information to be considered
valid, the CLOCK_PRECISION flag must be set.

A miniport driver can provide support for certain timing parameters even in the absence
of a local or network clock. In particular, a miniport driver can use the system clock for
receive time indications, timed sends, and even time stamping. A NIC-based clock is
better since it is likely to provide higher precision and to be accessible with lower
latencies than the system clock. In all cases, the miniport driver must specify the
precision of the clock that it uses. This allows protocols to determine how to best use
the miniport driver's timing support.

If the miniport driver reports the presence of a readable clock, it must be prepared to
immediately respond to an OID_GEN_GET_NETCARD_TIME query. The miniport driver's
response to this call is time-critical and therefore must be synchronous.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_CO_HARDWARE_STATUS
Article • 02/18/2023

The OID_GEN_CO_HARDWARE_STATUS OID specifies the current hardware status of the
underlying NIC, as one of the following NDIS_HARDWARE_STATUS-type values:

NdisHardwareStatusReady
Available and capable of sending and receiving data over the wire.

NdisHardwareStatusInitializing
Initializing.

NdisHardwareStatusReset
Resetting.

NdisHardwareStatusClosing
Closing.

NdisHardwareStatusNotReady
Not ready.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_LINK_SPEED
Article • 02/18/2023

The OID_GEN_CO_LINK_SPEED OID requests the miniport driver to return its current
transmit and receive speeds formatted as an NDIS_CO_LINK_SPEED structure, which is
defined as follows:

c++

The members of this structure contain the following information:

Outbound
The current transmit speed of the NIC. The unit of measurement is 100bps, so a value of
100,000 represents a hardware bit rate of 10 Mbps.

Inbound
The current receive speed of the NIC. The unit of measurement is 100bps, so a value of
100,000 represents a hardware bit rate of 10 Mbps.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _NDIS_CO_LINK_SPEED{
 ULONG Outbound;
 ULONG Inbound;
} NDIS_CO_LINK_SPEED, *PNDIS_CO_LINK_SPEED;

Requirements

OID_GEN_CO_MAC_OPTIONS
Article • 02/18/2023

The OID_GEN_CO_MAC_OPTIONS OID is reserved. Do not use it in your code.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_MEDIA_CONNECT_STATUS
Article • 02/18/2023

The OID_GEN_CO_MEDIA_CONNECT_STATUS OID requests the miniport driver to return
the connection status of the NIC on the network as one of the following system-defined
values:

NdisMediaStateConnected

NdisMediaStateDisconnected

When a miniport driver senses that the network connection has been lost, it should call
NdisMCoIndicateStatus with NDIS_STATUS_MEDIA_DISCONNECT. When the connection
is restored, it should call NdisMCoIndicateStatus with NDIS_STATUS_MEDIA_CONNECT.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

OID_GEN_CO_MEDIA_IN_USE
Article • 02/18/2023

A complete list of the media types the NIC is currently supporting, defined as some,
none (also called the NULL filter), or all of the following:

NdisMedium802_3
Ethernet (802.3).

NdisMedium802_5
Token Ring (802.5).

NdisMediumFddi
FDDI.

NdisMediumWan
WAN.

NdisMediumLocalTalk
LocalTalk.

NdisMediumDix
DIX.

NdisMediumArcnetRaw
ARCNET (raw).

NdisMediumArcnet878_2
ARCNET (878.2).

NdisMediumWirelessWan
Various types of NdisWirelessXxx media.

NdisMediumAtm
ATM.

If the underlying miniport driver returns NULL for this query or if an experimental media
type is used, the driver must indicate receives with NdisMCoIndicateReceivePacket.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553455(v=vs.85)

OID_GEN_CO_MEDIA_SUPPORTED
Article • 02/18/2023

A complete list of the media types the NIC supports, as a proper subset of the following
system-defined values:

NdisMedium802_3
Ethernet (802.3).

NdisMedium802_5
Token Ring (802.5).

NdisMediumFddi
FDDI.

NdisMediumWan
WAN.

NdisMediumLocalTalk
LocalTalk.

NdisMediumDix
DEC/Intel/Xerox (DIX) Ethernet.

NdisMediumArcnetRaw
ARCNET (raw).

NdisMediumArcnet878_2
ARCNET (878.2).

NdisMediumWirelessWan
Various types of NdisWirelessXxx media.

NdisMediumAtm
ATM.

NdisMediumIrda
Reserved for future use on Windows 2000 and later platforms.

A LAN-emulation driver for ATM networks declares its medium as NdisMedium802_3 ,
rather than NdisMediumAtm. Such a driver emulates Ethernet to higher-level NDIS

Remarks

drivers, complies with the ATM Forum's LANE, and provides UNI signaling support.

A wireless-WAN NIC driver must report its medium type as NdisMediumWirelessWan.
However, such a miniport driver also must provide NdisWWDIXEthernetFrames header
format to any bound protocol that selects this format, and the miniport driver can
provide its NIC's native header format as well. To support existing LAN-based protocols,
the driver writer can provide an NDIS intermediate driver to "translate" a wireless NIC's
native header formats and medium-specific information into a form understood by
existing protocols.

If the underlying miniport driver returns NULL for this query or if an experimental media
type is used, the driver must indicate receives with NdisMCoIndicateReceivePacket.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553455(v=vs.85)

OID_GEN_CO_MINIMUM_LINK_SPEED
Article • 02/18/2023

The OID_GEN_CO_MINIMUM_LINK_SPEED OID requests the miniport driver to return its
minimum transmit and receive speeds formatted as an NDIS_CO_LINK_SPEED structure,
which is defined as follows:

c++

The members of this structure contain the following information:

Outbound
The minimum transmit speed of the NIC. The unit of measurement is 100bps, so a value
of 100,000 represents a hardware bit rate of 10 Mbps.

Inbound
The minimum receive speed of the NIC. The unit of measurement is 100bps, so a value
of 100,000 represents a hardware bit rate of 10 Mbps.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

typedef struct _NDIS_CO_LINK_SPEED{
 ULONG Outbound;
 ULONG Inbound;
} NDIS_CO_LINK_SPEED, *PNDIS_CO_LINK_SPEED;

Requirements

OID_GEN_CO_NETCARD_LOAD
Article • 02/18/2023

The OID_GEN_CO_NETCARD_LOAD OID returns the relative load on the transmit system
of a connection-oriented miniport driver. The miniport driver derives this number by
calculating the difference between the amount of data delivered for transmission from
protocols and the amount of data actually sent, as indicated by the packets returned to
protocols with NdisMCoSendComplete. The result is the amount of outstanding transmit
data in the miniport driver at any time.

Because this statistic changes at a very high frequency, the miniport driver port should
filter it. The simplest filtering method is to maintain a running average of samples of the
outstanding transmit data. For example, each time MiniportCoSendPackets is called, the
miniport driver could add the submitted packet size to a miniport driver-defined
variable called OutstandingBytes. Each time the miniport driver calls
NdisMCoSendComplete, the miniport driver would then subtract the returned packet
size from OutstandingBytes. The miniport driver must also maintain a running average,
which is the value that the miniport driver should return in response to the
OID_GEN_CO_NETCARD_LOAD query. This variable, which could be called
RunningAverage, must be updated on each MiniportCoSendPackets, as follows:

c++

In this case, 1 < C < 128. Larger values of C produce smoother filtering.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

７ Note

OID_GEN_CO_NETCARD_LOAD is the same as OID_GEN_NETCARD_LOAD.

RunningAverage = [(RunningAverage * C) + (OutstandingBytes * (128 - C))] /
128;

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553475(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff549426(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553475(v=vs.85)

OID_GEN_CO_PROTOCOL_OPTIONS
Article • 02/18/2023

A bitmask that defines optional properties of the protocol driver. A protocol informs
NDIS of its properties, which can optionally take advantage of them. If the protocol
driver does not set its flags on a binding, NDIS assumes they are all clear.

The following flags are currently defined:

NDIS_PROT_OPTION_ESTIMATED_LENGTH
Indicates that packets can be indicated at the worst-case estimate of packet size, instead
of an exact value, to this protocol.

NDIS_PROT_OPTION_NO_LOOPBACK
The protocol does not require loopback support on the binding.

NDIS_PROT_OPTION_NO_RSVD_ON_RCVPKT
The protocol does not use the ProtocolReserved section of indicated receive packets.
This allows NDIS to indicate a receive packet to more than one protocol.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_RCV_CRC_ERROR
Article • 02/18/2023

The OID_GEN_CO_RCV_CRC_ERROR OID specifies the number of PDUs received with
cyclic redundancy check (CRC) errors.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_RCV_PDUS_ERROR
Article • 02/18/2023

The OID_GEN_CO_RCV_PDUS_ERROR OID specifies the number of PDUs that a NIC
received but did not indicate to bound protocols due to errors.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_RCV_PDUS_NO_BUFFER
Article • 02/18/2023

The OID_GEN_CO_RCV_PDUS_NO_BUFFER OID specifies the number of PDUs that the
NIC could not receive because of a lack of NIC receive buffer space. Instead of providing
the exact number, some NICs provide only the number of times that they have missed at
least one PDU because of such a problem.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_RCV_PDUS_OK
Article • 02/18/2023

The OID_GEN_CO_RCV_PDUS_OK OID specifies the number of PDUs the NIC received
without errors and indicated to bound protocols.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_SUPPORTED_GUIDS
Article • 02/18/2023

The OID_GEN_CO_SUPPORTED_GUIDS OID requests the miniport driver to return an
array of structures of the type NDIS_GUID. Each structure in the array specifies the
mapping of a custom GUID (globally unique identifier) to either a custom OID or to an
NDIS_STATUS that the miniport driver sends through NdisMCoIndicateStatusEx.

The NDIS_GUID structure is defined as follows:

c++

The members of this structure contain the following information:

Guid
The custom GUID defined for the miniport driver.

Oid
The custom OID to which Guid maps.

Status
The NDIS_STATUS to which Guid maps.

Size
When the fNDIS_GUID_ARRAY flag is set, Size specifies the size in bytes of each data
item in the array returned by the miniport driver. If the fNDIS_GUID_ANSI_STRING or
fNDIS_GUID_NDIS_STRING flag is set, Size is set to -1. Otherwise, Size specifies the size
in bytes of the data item that the GUID represents.

Flags
The following flags can be ORed together to indicate whether the GUID maps to an OID
or to an NDIS_STATUS string and to indicate the type of data supplied for the GUID:

fNDIS_GUID_TO_OID
When set, indicates that the NDIS_GUID structure maps a GUID to an OID.

typedef struct _NDIS_GUID {
 GUID Guid;
 union {
 NDIS_OID Oid;
 NDIS_STATUS Status;
 };
 ULONG Size;
 ULONG Flags;
} NDIS_GUID, *PNDIS_GUID;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

fNDIS_GUID_TO_STATUS
When set, indicates that the NDIS_GUID structure maps a GUID to an NDIS_STATUS
string.

fNDIS_GUID_ANSI_STRING
When set, indicates that a null-terminated ANSI string is supplied for the GUID.

fNDIS_GUID_UNICODE_STRING
When set, indicates that a Unicode string is supplied for the GUID.

fNDIS_GUID_ARRAY
When set, indicates that an array of data items is supplied for the GUID. The specified
Size indicates the length of each data item in the array.

fNDIS_GUID_ALLOW_READ
When set, indicates that all users are allowed to query this GUID.

fNDIS_GUID_ALLOW_WRITE
When set, indicates that all users are allowed to set this GUID.

Note that all custom GUIDs registered by a miniport driver must set either
fNDIS_GUID_TO_OID or fNDIS_GUID_TO_STATUS (never set both). All other flags may be
combined by using the OR operator as applicable.

In the following example, an NDIS_GUID structure maps a GUID to
OID_GEN_CO_RCV_PDUS_NO_BUFFER:

C++

Remarks

７ Note

By default, custom WMI GUIDs supplied by a miniport driver are only accessible to
users with administrator privileges. A user with administrator privileges can always
read or write to a custom GUID if the miniport driver supports the read or write
operation for that GUID. Set the fNDIS_GUID_ALLOW_READ and
fNDIS_GUID_ALLOW_WRITE flags to allow all users to access a custom GUID.

NDIS_GUID NdisGuid = {{0x0a214809, 0xe35f, 0x11d0, 0x96, 0x92, 0x00,
 0xc0, 0x4f, 0xc3, 0x35, 0x8c},
 GUID_NDIS_GEN_CO_RCV_PDUS_NO_BUFFER,
 OID_GEN_CO_RCV_PDUS_NO_BUFFER,

A GUID is an identifier used by Windows Management Instrumentation (WMI) to obtain
or set information. NDIS intercepts a GUID sent by WMI to an NDIS driver, maps the
GUID to an OID, and sends the OID to the driver. The driver returns the data item(s) to
NDIS, which then returns the data to WMI.

NDIS also translates changes in NIC status into GUIDs recognized by WMI. When a
miniport driver reports a change in NIC status with NdisMCoIndicateStatusEx, NDIS
translates the NDIS_STATUS indicated by the miniport driver into a GUID that NDIS
sends to WMI.

If a connection-oriented miniport driver supports customs GUIDs, it must support
OID_GEN_CO_SUPPORTED_GUIDS, which returns to NDIS the mapping of custom GUIDs
to custom OIDs or NDIS_STATUS strings. After querying the miniport driver with
OID_GEN_CO_SUPPORTED_GUIDS, NDIS registers the miniport driver's custom GUIDs
with WMI.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

 4,
 fNDIS_GUID_TO_OID};

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

OID_GEN_CO_SUPPORTED_LIST
Article • 02/18/2023

The OID_GEN_CO_SUPPORTED_LIST OID specifies an array of OIDs for objects that the
underlying driver or its NIC supports. Objects include general, media-specific, and
implementation-specific objects.

The underlying driver should order the OID list it returns in increasing numeric order.
NDIS forwards a subset of the returned list to protocols that make this query. That is,
NDIS filters any supported statistics OIDs out of the list since protocols never make
statistics queries subsequently.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_TRANSMIT_QUEUE_LENGT
H
Article • 02/18/2023

The OID_GEN_CO_TRANSMIT_QUEUE_LENGTH OID specifies the number of PDUs
currently queued for transmission, whether on the NIC or in a driver-internal queue. The
number returned is always the total number of PDUs currently queued, which can
include unsubmitted send requests queued in the NDIS library.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_VENDOR_DESCRIPTION
Article • 02/18/2023

A pointer to a null-terminated, counted string describing the NIC.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_VENDOR_DRIVER_VERSIO
N
Article • 02/18/2023

The vendor-assigned version number of the NIC driver.

This OID is two bytes in length; the low-order half of the return value specifies the minor
version, while the high-order half specifies the major version.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_VENDOR_ID
Article • 02/18/2023

A 3-byte IEEE-registered vendor code, followed by a single byte that the vendor assigns
to identify a particular NIC.

The IEEE code uniquely identifies the vendor and is the same as the three bytes
appearing at the beginning of the NIC hardware address.

Vendors without an IEEE-registered code should use the value 0xFFFFFF.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_XMIT_PDUS_ERROR
Article • 02/18/2023

The OID_GEN_CO_XMIT_PDUS_ERROR OID specifies the number of PDUs a NIC failed to
transmit.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CO_XMIT_PDUS_OK
Article • 02/18/2023

The OID_GEN_CO_XMIT_PDUS_OK OID specifies the number of PDUs transmitted
without errors.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_CURRENT_LOOKAHEAD
Article • 02/18/2023

As a query, the OID_GEN_CURRENT_LOOKAHEAD OID returns the number of bytes of
received packet data that will be indicated to the protocol driver. This specification does
not include the header.

As a set, the OID_GEN_CURRENT_LOOKAHEAD OID specifies the number of bytes of
received packet data that the miniport driver should indicate to the protocol driver. This
specification does not include the header.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory. (see Remarks section)

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS handles query and unsuccessful set requests for NDIS 6.0 and later miniport
drivers. NDIS obtains the information from the miniport driver during initialization and
miniport adapter restart. However, NDIS sends valid set requests to the miniport driver.

For a query, NDIS returns the largest lookahead size from among all the bindings. A
protocol driver can set a suggested value for the number of bytes to be used in its
binding; however, the underlying miniport driver is never required to limit its indications
to the value set.

If the underlying driver supports multipacket receive indications, bound protocol drivers
are given full net packets on every indication. Consequently, this value is identical to
that returned for OID_GEN_RECEIVE_BLOCK_SIZE.

Remarks

Header Ntddndis.h (include Ndis.h)

OID_GEN_RECEIVE_BLOCK_SIZE

Requirements

See also

OID_GEN_CURRENT_PACKET_FILTER
Article • 02/18/2023

As a query, the OID_GEN_CURRENT_PACKET_FILTER OID reports the types of net packets
that are in receive indications from a miniport driver.

As a set, the OID_GEN_CURRENT_PACKET_FILTER OID specifies the types of net packets
for which a protocol receives indications from a miniport driver.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory. (see Remarks section)

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

For NDIS 6.0 and later miniport drivers, the query is not requested and the set is
mandatory. NDIS handles the query for miniport drivers. The miniport driver reports the
packet filter information during initialization.

The miniport driver reports its medium type as one for which the system provides a filter
library. The packet filter uses the OR operation to inclusively combine the following
types:

NDIS_PACKET_TYPE_DIRECTED
Directed packets. Directed packets contain a destination address equal to the station
address of the NIC.

NDIS_PACKET_TYPE_MULTICAST
Multicast address packets sent to addresses in the multicast address list.

Remarks

A protocol driver can receive Ethernet (802.3) multicast packets by specifying the
multicast or functional address packet type. Setting the multicast address list or
functional address determines which multicast address groups the NIC driver enables.

NDIS_PACKET_TYPE_ALL_MULTICAST
All multicast address packets, not just the ones enumerated in the multicast address list.

NDIS_PACKET_TYPE_BROADCAST
Broadcast packets.

NDIS_PACKET_TYPE_PROMISCUOUS
Specifies all packets regardless of whether VLAN filtering is enabled or not and whether
the VLAN identifier matches or not.

NDIS_PACKET_TYPE_ALL_FUNCTIONAL
All functional address packets, not just the ones in the current functional address.

NDIS_PACKET_TYPE_ALL_LOCAL
All packets sent by installed protocols and all packets indicated by the NIC that is
identified by a given NdisBindingHandle .

NDIS_PACKET_TYPE_FUNCTIONAL
Functional address packets sent to addresses included in the current functional address.

NDIS_PACKET_TYPE_GROUP
Packets sent to the current group address.

NDIS_PACKET_TYPE_MAC_FRAME
NIC driver frames that a Token Ring NIC receives.

NDIS_PACKET_TYPE_SMT
SMT packets that an FDDI NIC receives.

NDIS_PACKET_TYPE_SOURCE_ROUTING
All source routing packets. If the protocol driver sets this bit, the NDIS library attempts
to act as a source routing bridge.

For miniport adapters whose media type is NdisMedium802_3 or NdisMedium802_5,
NDIS disables packet reception, along with multicast and functional addresses during a
call to the NdisOpenAdapterEx function.

For miniport adapters with all other media types, the protocol driver can begin receiving
packets at any time during the NdisOpenAdapterEx call. Note that the protocol can
even receive packets before NdisOpenAdapterEx returns. In general, packet filtering is

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

best effort, and protocol drivers must be prepared to handle receive indications even
when the packet filter is zero.

For a query, NDIS returns the binding filters that are combined using the OR operator.

For a set, the specified packet filter replaces the previous packet filter for the binding. If
the miniport driver previously enabled a packet type but the protocol driver does not
specify that type in a new filter, the protocol driver will not receive packets of this type.

For miniport adapters whose media type is NdisMedium802_3 or NdisMedium802_5, if
the miniport driver does not set a bit for a particular packet type in response to this
query, the protocol driver will not receive packets of that type. Consequently, a protocol
driver can disable packet reception by calling the NdisOidRequest or
NdisCoOidRequest function using a filter of zero.

For miniport adapters with all other media types, NDIS does not check the packet type.
For these media types, a protocol driver cannot disable packet reception by specifying a
filter of zero.

When a miniport driver's MiniportInitializeEx function is called, the miniport driver's
packet filter should be set to zero. When the packet filter is zero, receive indications are
disabled. After a miniport driver's MiniportInitializeEx function has returned, a protocol
driver can set OID_GEN_CURRENT_PACKET_FILTER to a nonzero value, thereby enabling
the miniport driver to indicate received packets to that protocol.

If promiscuous mode is enabled with the NDIS_PACKET_TYPE_PROMISCUOUS bit, the
protocol driver continues to receive packets even if the sending network node does not
direct them to it. NDIS then sends the protocol driver all packets the NIC receives.

Setting a specific packet filter does not alter the packet filter for other protocol drivers
that are bound to (or above) the same NIC. For example, if one bound protocol enables
promiscuous mode, other bound protocol drivers do not receive packets that they have
not specifically requested with their own packet filters.

Native 802.11 Packet Filters

The Native 802.11 miniport driver must only support the following standard packet filter
types:

NDIS_PACKET_TYPE_DIRECTED

NDIS_PACKET_TYPE_MULTICAST

NDIS_PACKET_TYPE_BROADCAST

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

NDIS_PACKET_TYPE_PROMISCUOUS

When enabled, these standard packet filters are only applicable to 802.11 data packets.

In addition, the Native 802.11 miniport driver must support the following packet filter
types, which are specific to the Native 802.11 media:

NDIS_PACKET_TYPE_802_11_RAW_DATA
An 802.11 media access control (MAC) protocol data unit (MPDU) frame, which contains
all of the data in the format received by the 802.11 station. When this filter is set, the
driver must indicate every unmodified MPDU fragment before it indicates the MAC
service data unit (MSDU) packet reassembled from the MPDU fragments.

If an MPDU fragment is encrypted, it must not decrypt the fragment before it is
indicated. However, the miniport driver must decrypt each MPDU fragment before
reassembling and indicating the MSDU packet.

If enabled, this filter type only affects other standard packet filters, such as
NDIS_PACKET_TYPE_DIRECTED or NDIS_PACKET_TYPE_BROADCAST.

For more information about the method for indicating raw 802.11 data packets, see
Indicating Raw 802.11 Packets.

NDIS_PACKET_TYPE_802_11_DIRECTED_MGMT
Directed 802.11 management packets. Directed packets contain a destination address
equal to the station address of the NIC.

NDIS_PACKET_TYPE_802_11_MULTICAST_MGMT
Multicast 802.11 management packets sent to addresses in the multicast address list.

NDIS_PACKET_TYPE_802_11_ALL_MULTICAST_MGMT
All multicast 802.11 management packets received by the 802.11 station, regardless of
whether the destination address in the 802.11 MAC header is in the multicast address
list.

NDIS_PACKET_TYPE_802_11_BROADCAST_MGMT
Broadcast 802.11 management packets received by the 802.11 station.

NDIS_PACKET_TYPE_802_11_PROMISCUOUS_MGMT
All 802.11 management packets received by the 802.11 station.

NDIS_PACKET_TYPE_802_11_RAW_MGMT
An 802.11 MPDU management frame, which contains all of the data in the format
received by the 802.11 station. When this filter is set, the driver must indicate every

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/indicating-raw-802-11-packets

unmodified MPDU fragment before it indicates the MAC management protocol data
unit (MMPDU) packet reassembled from the MPDU fragments.

If enabled, this filter type only affects other 802.11 management packet filters, such as
NDIS_PACKET_TYPE_802_11_DIRECTED_MGMT or
NDIS_PACKET_TYPE_802_11_MULTICAST_MGMT.

For more information about the method for indicating raw 802.11 management packets,
see Indicating Raw 802.11 Packets.

NDIS_PACKET_TYPE_802_11_DIRECTED_CTRL
Directed 802.11 control packets. Directed packets contain a destination address equal to
the station address of the NIC.

NDIS_PACKET_TYPE_802_11_BROADCAST_CTRL
Broadcast 802.11 control packets received by the 802.11 station.

NDIS_PACKET_TYPE_802_11_PROMISCUOUS_CTRL
All 802.11 control packets received by the 802.11 station.

If a miniport driver is operating in Native 802.11 Network Monitor (NetMon) or
Extensible Access Point (AP) modes, the driver must enable the following packet filters
through a set request of OID_GEN_CURRENT_PACKET_FILTER.

NDIS_PACKET_TYPE_PROMISCUOUS

NDIS_PACKET_TYPE_802_11_RAW_DATA

NDIS_PACKET_TYPE_802_11_PROMISCUOUS_MGMT

NDIS_PACKET_TYPE_802_11_RAW_MGMT

NDIS_PACKET_TYPE_802_11_PROMISCUOUS_CTRL

A miniport driver operating in other Native 802.11 modes besides NetMon must not
enable these packet filter settings, with the exception of
NDIS_PACKET_TYPE_802_11_PROMISCUOUS_CTRL. A miniport driver that is not
operating in NetMon mode can optionally enable
NDIS_PACKET_TYPE_802_11_PROMISCUOUS_CTRL through a set request of
OID_GEN_CURRENT_PACKET_FILTER.

Note When the miniport driver is in Native 802.11 modes other than NetMon, and
OID_GEN_CURRENT_PACKET_FILTER is set, the driver must not fail the set request if any
promiscuous or raw filter settings are enabled in the OID data.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/indicating-raw-802-11-packets

For more information about the NetMon and ExtAP operating modes, see the following
topics:

Network Monitor Operation Mode

Extensible Access Point Operation Mode

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NdisCoOidRequest

NdisOidRequest

NdisOpenAdapterEx

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/network-monitor-operation-mode
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/extensible-access-point-operation-mode
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

OID_GEN_DEVICE_PROFILE
Article • 02/18/2023

The OID_GEN_DEVICE_PROFILE OID is obsolete. NDIS and NDIS drivers do not use this
OID.

Version Not supported.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_DIRECTED_BYTES_RCV
Article • 02/18/2023

As a query, the OID_GEN_DIRECTED_BYTES_RCV OID specifies the number of bytes in
directed packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count is identical to the ifInUcastPkts counter described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_DIRECTED_BYTES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_DIRECTED_BYTES_XMIT OID specifies the number of bytes in
directed packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_DIRECTED_FRAMES_RCV
Article • 02/18/2023

As a query, the OID_GEN_DIRECTED_FRAMES_RCV OID specifies the number of directed
packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_DIRECTED_FRAMES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_DIRECTED_FRAMES_XMIT OID specifies the number of
directed packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count is identical to the ifOutUcastPkts counter described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_DISCONTINUITY_TIME
Article • 02/18/2023

As a query, use the OID_GEN_DISCONTINUITY_TIME OID to determine the discontinuity
time of a network interface (ifCounterDiscontinuityTime from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

This OID returns the time, starting from the last computer restart, when the interface
had a discontinuity in maintaining the statistics counters. For example, there was a
discontinuity because the interface was disabled or the associated adapter was removed
from the computer. For more information about the statistics counters, see
OID_GEN_STATISTICS. To get the current time, an interface provider can call the
NdisGetSystemUpTimeEx function.

If no such discontinuity occurred since the last re-initialization of the interface this value
should be zero. If the interface provider does not track discontinuity time, this value
should be zero.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is a
ULONG64 value that specifies the discontinuity time, in milliseconds, since the last
computer restart.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetsystemuptimeex

NDIS Network Interface OIDs

OID_GEN_DRIVER_VERSION
Article • 02/18/2023

As a query, the OID_GEN_DRIVER_VERSION OID specifies the NDIS version in use by the
miniport driver.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS handles this OID for NDIS 6.0 and later miniport drivers.

The high byte is the major version number; the low byte is the minor version number.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_ENUMERATE_PORTS
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_ENUMERATE_PORTS OID to
determine the characteristics of the active NDIS ports that are associated with an
underlying miniport adapter.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID and miniport drivers do not receive this OID query.

If the query succeeds, NDIS returns NDIS_STATUS_SUCCESS and provides the results of
the query in an NDIS_PORT_ARRAY structure. The NumberOfPorts member of
NDIS_PORT_ARRAY contains the number of active ports that are associated with the
miniport adapter. The Ports member of NDIS_PORT_ARRAY contains a list of pointers to
NDIS_PORT_CHARACTERISTICS structures. Each NDIS_PORT_CHARACTERISTICS
structure defines the characteristics of a single NDIDS port.

Header Ntddndis.h (include Ndis.h)

NDIS_PORT_ARRAY

NDIS_PORT_CHARACTERISTICS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_characteristics

OID_GEN_FRIENDLY_NAME
Article • 02/18/2023

As a query, the OID_GEN_FRIENDLY_NAME OID returns the friendly name of a miniport
adapter.

The OID_GEN_FRIENDLY_NAME OID returns the friendly name of a miniport adapter.

Friendly names are intended to help the user quickly and accurately identify a miniport
adapter--for example, "PCI Ethernet Adapter" and "Virtual Private Networking Adapter"
are considered friendly names.

Version Supported for NDIS 5.1 and later drivers in
Windows Vista and later versions of Windows
and later versions of Windows. Supported for
NDIS 5.1 drivers in Windows XP.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_HARDWARE_STATUS
Article • 02/18/2023

As a query, the OID_GEN_HARDWARE_STATUS OID specifies the current hardware status
of the underlying NIC.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Obsolete.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The OID_GEN_HARDWARE_STATUS OID specifies the current hardware status of the
underlying NIC as one of the following NDIS_HARDWARE_STATUS-type values:

NdisHardwareStatusReady
Available and capable of sending and receiving data over the wire

NdisHardwareStatusInitializing
Initializing

NdisHardwareStatusReset
Resetting

NdisHardwareStatusClosing
Closing

NdisHardwareStatusNotReady
Not ready

Remarks

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_HD_SPLIT_CURRENT_CONFIG
Article • 02/18/2023

As a query, overlying drivers or administrative utilities can use the
OID_GEN_HD_SPLIT_CURRENT_CONFIG OID to determine the current header-data split
configuration of a miniport adapter. A system administrator can use the GUID that is
associated with this OID through the WMI interface.

NDIS handles this OID on behalf of the miniport driver. NDIS maintains the current
header-data split configuration information based on the miniport driver initialization
attributes and the NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG status indication.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_HD_SPLIT_CURRENT_CONFIG structure.

Version Supported in NDIS 6.1 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_HD_SPLIT_CURRENT_CONFIG

NDIS_OID_REQUEST

NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_current_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_GEN_HD_SPLIT_PARAMETERS
Article • 02/18/2023

As a set, NDIS and overlying drivers or user-mode applications use the
OID_GEN_HD_SPLIT_PARAMETERS OID to set the current header-data split settings of a
miniport adapter. NDIS 6.1 and later miniport drivers that provide header-data split
services must support this OID. Otherwise, this OID is optional.

The InformationBuffer member of NDIS_OID_REQUEST structure contains an
NDIS_HD_SPLIT_PARAMETERS structure.

NDIS might set the OID_GEN_HD_SPLIT_PARAMETERS OID when an NDIS 5.x protocol
driver binds to an NDIS 6.1 miniport. NDIS processes this OID before passing it to the
miniport driver and updates the miniport adapter's *HeaderDataSplit standardized
keyword, if required. If header-data split is disabled, NDIS does not send this OID to the
miniport adapter.

NDIS will send this OID to the miniport driver only if header-data split was enabled with
the NDIS_HD_SPLIT_ENABLE_HEADER_DATA_SPLIT flag in the
NDIS_HD_SPLIT_ATTRIBUTES structure during miniport initialization.

Version Supported in NDIS 6.1 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_HD_SPLIT_ATTRIBUTES

NDIS_HD_SPLIT_PARAMETERS

NDIS_OID_REQUEST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_hd_split_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hd_split_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_GEN_INIT_TIME_MS
Article • 02/18/2023

As a query, the OID_GEN_INIT_TIME_MS OID returns the time in milliseconds that a
driver required to initialize.

The OID_GEN_INIT_TIME_MS OID returns the time in milliseconds that a driver required
to initialize.

Version Supported for NDIS 5.1 and later drivers in
Windows Vista and later versions of Windows
and later versions of Windows. Supported for
NDIS 5.1 drivers in Windows XP.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_INTERFACE_INFO
Article • 02/18/2023

As a query, use the OID_GEN_INTERFACE_INFO OID to obtain the current state and
statistics information for a network interface.

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the query succeeds, the interface provider returns NDIS_STATUS_SUCCESS, and the
result of the query is an NDIS_INTERFACE_INFORMATION structure. This structure
contains information that changes during the lifetime of the interface.

Header Ntddndis.h (include Ndis.h)

NDIS_INTERFACE_INFORMATION

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-ndis_interface_information

OID_GEN_INTERRUPT_MODERATION
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_INTERRUPT_MODERATION OID
to determine if interrupt moderation is enabled on a miniport adapter. If the query
succeeds, NDIS returns an NDIS_INTERRUPT_MODERATION_PARAMETERS structure
that contains the current interrupt moderation settings.

As a set, NDIS and overlying drivers use the OID_GEN_INTERRUPT_MODERATION OID to
enable or disable the interrupt moderation on a miniport adapter.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory. Set and query.

For a query, if a miniport driver does not support interrupt moderation, the driver must
specify NdisInterruptModerationNotSupported in the InterruptModeration member of
the NDIS_INTERRUPT_MODERATION_PARAMETERS structure.

For a set, if the driver reported NdisInterruptModerationNotSupported in response to
the OID_GEN_INTERRUPT_MODERATION query, the driver should return
NDIS_STATUS_INVALID_DATA in response to the set request. The miniport driver receives
an NDIS_INTERRUPT_MODERATION_PARAMETERS structure. If the
InterruptModeration member of NDIS_INTERRUPT_MODERATION_PARAMETERS is set
to NdisInterruptModerationEnabled, the miniport driver should enable interrupt
moderation. Otherwise, it should disable interrupt moderation.

Header Ntddndis.h (include Ndis.h)

NDIS_INTERRUPT_MODERATION_PARAMETERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_interrupt_moderation_parameters

OID_GEN_ISOLATION_PARAMETERS
Article • 02/18/2023

NDIS and overlying drivers issue an object identifier (OID) request of
OID_GEN_ISOLATION_PARAMETERS to obtain the multi-tenancy configuration (isolation)
parameters that are set on a VM network adapter's port.

Although each routing domain is configured separately on the port, this OID returns
parameters for all of the routing domains in a single query.

An overlying driver should issue this OID in two steps:

1. Io query the required buffer size, issue the OID query with the Size member of the
Header member of the NDIS_ISOLATION_PARAMETERS structure set to
NDIS_SIZEOF_NDIS_ISOLATION_PARAMETERS_REVISION_1. (See
NDIS_STATUS_INVALID_LENGTH below.)

2. Issue the OID with an InformationBuffer of the required size.

If the OID query request is completed successfully, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains the
following data, in order:

1. An NDIS_ISOLATION_PARAMETERS structure

2. One or more NDIS_ROUTING_DOMAIN_ENTRY structures, one for each routing
domain

3. One or more NDIS_ROUTING_DOMAIN_ISOLATION_ENTRY structures, grouped
by routing domain

In each NDIS_ROUTING_DOMAIN_ENTRY structure, the FirstIsolationInfoEntryOffset
member contains the offset from the beginning of the OID information buffer (that is,
the beginning of the buffer that the InformationBuffer member of the
NDIS_OID_REQUEST structure points to) to the first
NDIS_ROUTING_DOMAIN_ISOLATION_ENTRY for that routing domain. The offset in the
NextIsolationInfoEntryOffset member of the last structure in the list is zero.

If no multi-tenancy configuration parameters are set on the VM network adapter, the
network adapter miniport driver sets the DATA.QUERY_INFORMATION.BytesWritten
member of the NDIS_OID_REQUEST structure to zero and returns
NDIS_STATUS_SUCCESS. In this case, the data within the
DATA.QUERY_INFORMATION.InformationBuffer member is not modified by the
miniport driver.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_isolation_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_isolation_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_isolation_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_isolation_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

The VM network adapter miniport driver returns one of the following status codes for
this OID request:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to return the requested information. The
VM network adapter miniport driver sets the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size, in bytes, that is
required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.40 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_ISOLATION_PARAMETERS

NDIS_OID_REQUEST

NDIS_ROUTING_DOMAIN_ENTRY

NDIS_ROUTING_DOMAIN_ISOLATION_ENTRY

NDIS_STATUS_ISOLATION_PARAMETERS_CHANGE

Remarks

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_isolation_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_routing_domain_isolation_entry

OID_GEN_LAST_CHANGE
Article • 02/18/2023

As a query, use the OID_GEN_LAST_CHANGE OID to determine the time of the last
operational state change of a network interface (ifLastChange from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

This OID returns the time, starting from the last computer restart, when the interface
entered its current operational state. For more information about the operational state,
see NDIS_STATUS_OPER_STATUS and OID_GEN_OPERATIONAL_STATUS. To get the
current time, an interface provider can call the NdisGetSystemUpTimeEx function.

If the current operational state was entered before the last reinitialization of the
interface, this value should be zero. . If the interface provider does not track operational
state change time, the value should be zero.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is a
ULONG64 value that specifies the state change time, in milliseconds, since the last
computer restart.

Header Ntddndis.h (include Ndis.h)

OID_GEN_OPERATIONAL_STATUS

NDIS_STATUS_OPER_STATUS

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetsystemuptimeex

NdisGetSystemUpTimeEx

NDIS Network Interface OIDs

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisgetsystemuptimeex

OID_GEN_LINK_PARAMETERS
Article • 02/18/2023

As a set, NDIS and overlying drivers use the OID_GEN_LINK_PARAMETERS OID to set the
current link state of a miniport adapter. The miniport driver receives the duplex state,
link speeds, and pause functions in an NDIS_LINK_PARAMETERS structure.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

The NDIS_LINK_PARAMETERS structure is defined as follows:

ManagedCPlusPlus

This structure contains the following members:

Header
The NDIS_OBJECT_HEADER structure for the NDIS_LINK_PARAMETERS structure. Set the
Type member of the structure that Header specifies to NDIS_OBJECT_TYPE_DEFAULT,
the Revision member to NDIS_LINK_PARAMETERS_REVISION_1, and the Size member to
NDIS_SIZEOF_LINK_PARAMETERS_REVISION_1.

MediaDuplexState
The media duplex state. This value is the same as the value that is returned by the
OID_GEN_MEDIA_DUPLEX_STATE OID.

XmitLinkSpeed
The transmit link speed in bits per second.

RcvLinkSpeed
The receive link speed in bits per second.

 typedef struct _NDIS_LINK_PARAMETERS {
 NDIS_OBJECT_HEADER Header;
 NDIS_MEDIA_DUPLEX_STATE MediaDuplexState;
 ULONG64 XmitLinkSpeed;
 ULONG64 RcvLinkSpeed;
 NDIS_SUPPORTED_PAUSE_FUNCTIONS PauseFunctions;
 ULONG AutoNegotiationFlags;
 } NDIS_LINK_PARAMETERS, *PNDIS_LINK_PARAMETERS;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

PauseFunctions
The type of support for the IEEE 802.3 pause frames. This member must be one of the
following pause functions:

NdisPauseFunctionsUnsupported
The adapter or link partner does not support pause frames.

NdisPauseFunctionsSendOnly
The adapter and link partner support only sending pause frames from the adapter to the
link partner.

NdisPauseFunctionsReceiveOnly
The adapter and link partner support only sending pause frames from the link partner to
the adapter

NdisPauseFunctionsSendAndReceive
The adapter and link partner support sending and receiving pause frames in both
transmit and receive directions.

AutoNegotiationFlags
The auto-negotiation settings for the miniport adapter. This member is created from a
bitwise OR of the following flags:

NDIS_LINK_STATE_XMIT_LINK_SPEED_AUTO_NEGOTIATED
The adapter should auto-negotiate the transmit link speed with the link partner. If this
flag is not set, the miniport driver should set the transmit link speed to the value that is
specified in the XmitLinkSpeed member.

NDIS_LINK_STATE_RCV_LINK_SPEED_AUTO_NEGOTIATED
The adapter should auto-negotiate the receive link speed with the link partner. If this
flag is not set, the miniport driver should set the receive link speed to the value that is
specified in the RcvLinkSpeed member.

NDIS_LINK_STATE_DUPLEX_AUTO_NEGOTIATED
The adapter should auto-negotiate the duplex state with the link partner. If this flag is
not set, the miniport driver should set the duplex state to the value that is specified in
the MediaDuplexState member.

NDIS_LINK_STATE_PAUSE_FUNCTIONS_AUTO_NEGOTIATED
The miniport driver should auto-negotiate the support for pause frames with the other
end. If this flag is not set, the miniport driver should use the pause frame support that is
specified in the PauseFunctions member.

Note Setting OID_GEN_LINK_PARAMETERS can cause a loss of connectivity. Miniport
drivers must reconfigure the miniport adapter when this OID is set. For example, the
miniport driver can reset the miniport adapter with the resulting loss of existing
connections. The specific mechanism for reconfiguration is application dependent.

If the link state of the miniport adapter changes because of the
OID_GEN_LINK_PARAMETERS set request, the miniport driver should generate an
NDIS_STATUS_LINK_STATE status indication to notify NDIS and overlying drivers of the
new link state.

Header Ntddndis.h (include Ndis.h)

NDIS_OBJECT_HEADER

NDIS_STATUS_LINK_STATE

OID_GEN_MEDIA_DUPLEX_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

OID_GEN_LINK_SPEED
Article • 02/18/2023

As a query, the OID_GEN_LINK_SPEED OID specifies the maximum speed of the NIC.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later miniport drivers
Obsolete. (see Remarks section)

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The OID_GEN_LINK_STATE is the NDIS 6.0 and later and later equivalent of this OID.
However NDIS 6.0 and later miniport drivers must use the NDIS_STATUS_LINK_STATE
status indication instead to indicate link speed changes.

The unit of measurement is 100 bps, so a value of 100,000 represents a hardware bit
rate of 10 Mbps.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_LINK_STATE

OID_GEN_LINK_STATE

Remarks

Requirements

See also

OID_GEN_LINK_SPEED_EX
Article • 02/18/2023

As a query, the OID_GEN_LINK_SPEED_EX OID provides the transmit and receive link
speeds of an interface.

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

NDIS uses this OID to query the link speed of an NDIS network interface provider. Only
NDIS interface providers, and therefore not miniport drivers or filter drivers, must
support this OID as an OID request.

This OID returns the link speeds in an NDIS_LINK_SPEED structure.

Miniport drivers supply the link speed during initialization and provide updated link
speeds with status indications.

To specify the link speeds in a miniport driver, set the XmitLinkSpeed and RcvLinkSpeed
members of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the
miniport driver passes to the NdisMSetMiniportAttributes function.

Header Ntddndis.h (include Ndis.h)

NDIS_LINK_SPEED

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NdisMSetMiniportAttributes

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_speed
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_speed
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

NDIS Network Interface OIDs

OID_GEN_LINK_STATE
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_LINK_STATE OID to determine
the current link state of a miniport adapter. The miniport driver receives the link state in
an NDIS_LINK_STATE structure.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

Miniport drivers supply the link state during initialization and provide updates with
status indications.

To specify the link state, set the MediaConnectState, MediaDuplexState,
XmitLinkSpeed, RcvLinkSpeed, PauseFunctions, and AutoNegotiationFlags members of
the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the miniport
driver passes to the NdisMSetMiniportAttributes function.

If a miniport driver does not support this OID, the driver should return
NDIS_STATUS_NOT_SUPPORTED. If the miniport driver supports this OID, it returns the
connection state, duplex state, and link speeds in an NDIS_LINK_STATE structure.

Header Ntddndis.h (include Ndis.h)

NDIS_LINK_STATE

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NDIS_OBJECT_HEADER

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

NdisMSetMiniportAttributes

OID_GEN_MEDIA_CONNECT_STATUS_EX

OID_GEN_MEDIA_DUPLEX_STATE

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_GEN_MAC_OPTIONS
Article • 02/18/2023

As a query, the OID_GEN_MAC_OPTIONS OID specifies a bitmask that defines optional
properties of the underlying driver or a NIC.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS handles this OID for NDIS 6.0 and later miniport drivers.

A protocol that initiates this query can determine which of the flags the underlying
driver sets, and can optionally take advantage of them.

The following flags are currently defined:

NDIS_MAC_OPTION_COPY_LOOKAHEAD_DATA
The protocol driver is free to access indicated data by any means. Some fast-copy
functions have trouble accessing on-board device memory. Miniport drivers that
indicate data out of mapped device memory should never set this flag. If a miniport
driver does set this flag, it relaxes the restriction on fast-copy functions.

NDIS_MAC_OPTION_RECEIVE_SERIALIZED
The miniport driver indicates packets in a serial manner. That is, such a driver does not
enter a new receive indication until the previous receive, if any, has been completed.

Remarks

NDIS_MAC_OPTION_TRANSFERS_NOT_PEND
The miniport driver never completes receive indications asynchronously.

A miniport driver that indicates receive operations with the
NdisMIndicateReceiveNetBufferLists function should set this flag.

NDIS_MAC_OPTION_NO_LOOPBACK
The NIC has no internal loopback support so NDIS will manage loopbacks on behalf of
this driver. A miniport driver cannot provide its own software loopback as efficiently as
NDIS, so every miniport driver should set this flag unless a NIC has hardware loopback
support. WAN miniport drivers must set this flag.

NDIS_MAC_OPTION_FULL_DUPLEX
The miniport driver supports full-duplex transmits and indications on SMP platforms.

Note This flag has been deprecated for use by NDIS 5.0 and later miniport drivers. NDIS
5.0 and later ignores this flag.

NDIS_MAC_OPTION_EOTX_INDICATION
This flag is obsolete.

NDIS_MAC_OPTION_8021P_PRIORITY
The NIC and its driver support 802.1p packet priority. For more information, see Packet
Priority. Packet-priority values are received in NET_BUFFER structures from higher-layer
drivers. The appropriate information is generated in the MAC headers of packets and
transmitted over the network. In addition, this NIC and its driver support extracting the
appropriate information from the MAC headers of packets received from the network.
This information is forwarded in NET_BUFFER structures to higher-layer drivers.

Note NDIS 6.0 and later and later and later miniport drivers must set the
NDIS_MAC_OPTION_8021P_PRIORITY flag.

NDIS_MAC_OPTION_SUPPORTS_MAC_ADDRESS_OVERWRITE
NDIS sets this flag when a miniport driver calls the NdisReadNetworkAddress function.

NDIS_MAC_OPTION_RECEIVE_AT_DPC
This flag is obsolete.

NDIS_MAC_OPTION_8021Q_VLAN
The miniport driver can assign and remove VLAN identifier (ID) marking in the MAC
headers of packets. The driver maintains a configured VLAN ID for each NIC that the
driver handles. The driver filters out incoming packets that do not belong to the VLAN
to which a NIC is associated and marks outgoing packets with the VLAN ID. During the
driver's MiniportInitializeEx function for a particular NIC, the driver initially sets the NIC's

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562331(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadnetworkaddress
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

VLAN ID to zero. The driver's MiniportInitializeEx function then reads the following
configuration parameter from the registry, and, if the parameter is present, sets the
NIC's VLAN ID to the parameter's value.

syntax

NDIS_MAC_OPTION_RESERVED
Reserved for NDIS internal use.

Note A miniport driver that sets the NDIS_MAC_OPTION_8021Q_VLAN flag must also
set the NDIS_MAC_OPTION_8021P_PRIORITY flag. In other words, a miniport driver that
supports 802.1Q must also support 802.1p.

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NdisReadNetworkAddress

NET_BUFFER

VlanId, REG_DWORD

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadnetworkaddress
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer

OID_GEN_MACHINE_NAME
Article • 02/18/2023

As a set, the OID_GEN_MACHINE_NAME OID indicates the local computer name to a
miniport driver.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

The information buffer passed in this request contains an array of Unicode characters
that represents the local computer name. The InformationBufferLength value that is
supplied to the MiniportOidRequest function specifies the length of this array in bytes,
not including a NULL terminator.

NDIS sets OID_GEN_MACHINE_NAME only once after a miniport driver completes
initialization. Under Windows XP, NDIS does not dynamically notify miniport drivers of a
change in the computer name. After changing the computer name, a user must restart
the computer so that NDIS notifies miniport drivers of the new computer name.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

MiniportOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

OID_GEN_MAX_LINK_SPEED
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_MAX_LINK_SPEED OID to
determine the maximum supported transmit and receive link speeds of a miniport
adapter.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

The miniport driver supplies the maximum link speed during initialization.

To specify the maximum link speeds, set the MaxXmitLinkSpeed and MaxRcvLinkSpeed
members of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the
miniport driver passes to the NdisMSetMiniportAttributes function. If a miniport driver
does not support this OID, the driver should return NDIS_STATUS_NOT_SUPPORTED. If
the miniport driver supports this OID, it returns the maximum link speeds in an
NDIS_LINK_SPEED structure.

Header Ntddndis.h (include Ndis.h)

NDIS_LINK_SPEED

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NdisMSetMiniportAttributes

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_speed
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_link_speed
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_GEN_MAXIMUM_FRAME_SIZE
Article • 02/18/2023

As a query, the OID_GEN_MAXIMUM_FRAME_SIZE OID specifies the maximum network
packet size, in bytes, that the NIC supports. This specification does not include a header.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not Requested.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The miniport driver supplies the maximum frame size during initialization and during a
restart. NDIS handles this OID query for NDIS 6.0 and later miniport drivers.

In response to this query from requesting transports, the miniport driver should indicate
the maximum frame size that the transports can send, excluding the header. A miniport
driver that emulates another medium type for binding to a transport must ensure that
the maximum frame size for a protocol-supplied net packet does not exceed the size
limitations for the true network medium. The same is true for a miniport driver that
supports a NIC that requires inserting fields in frames. For example, to determine the
maximum transfer unit (MTU), transports send this query to a NIC.

If the miniport driver supports 802.1p packet priority and 802.1Q virtual LAN (VLAN)
tags, based on prior actions, if the miniport driver expects that frames must traverse old
networks before priority values are removed, that miniport driver might indicate a
smaller value in response to this query.

Remarks

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_MAXIMUM_LOOKAHEAD
Article • 02/18/2023

As a query, the OID_GEN_MAXIMUM_LOOKAHEAD OID specifies the maximum number
of bytes that the NIC can provide as lookahead data. This specification does not include
a header.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS 6.0 and later miniport drivers do not receive this OID request. NDIS handles this
OID with a cached value that miniport drivers supply during initialization.

Upper-layer drivers examine lookahead data to determine whether a packet that is
associated with the lookahead data is intended for one or more of their clients.

If the underlying driver supports multipacket receive indications, bound protocol drivers
are given full net packets on every indication. Consequently, this value is identical to
that returned for OID_GEN_RECEIVE_BLOCK_SIZE.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

OID_GEN_RECEIVE_BLOCK_SIZE

OID_GEN_MAXIMUM_SEND_PACKETS
Article • 02/18/2023

As a query, the OID_GEN_MAXIMUM_SEND_PACKETS OID specifies the maximum
number of send packet descriptors that a miniport driver's MiniportSendPackets function
can accept.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later miniport drivers
Obsolete.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS ignores any value returned by a deserialized driver in response to a query of
OID_GEN_MAXIMUM_SEND_PACKETS. NDIS does not adjust the size of the array of
packet descriptors that it supplies to a deserialized miniport driver's
MiniportSendPackets function.

Header Ntddndis.h (include Ndis.h)

MiniportSendPackets

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff550524(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff550524(v=vs.85)

OID_GEN_MAXIMUM_TOTAL_SIZE
Article • 02/18/2023

As a query, the OID_GEN_MAXIMUM_TOTAL_SIZE OID specifies the maximum total
packet length, in bytes, the NIC supports. This specification includes the header.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The returned length specifies the largest packet size for the underlying medium. Thus,
the returned length depends on the particular medium. A protocol driver might use this
returned length as a gauge to determine the maximum size packet that a miniport
driver could forward to the protocol driver. If the protocol driver preallocates buffers, it
allocates buffers accordingly. The returned length also specifies the largest packet that a
protocol driver can pass to the NdisSendNetBufferLists function.

If the miniport driver for a NIC enables 802.1p packet priority(that is, the miniport driver
specifies the NDIS_MAC_OPTION_8021P_PRIORITY bit in the OID_GEN_MAC_OPTIONS
OID bitmask), then the miniport driver must specify its maximum total packet length as
4 bytes less than the maximum size of packets received or sent over the network. For
example, if a NIC that has 802.1p packet priority enabled receives and sends packets on
the wire that are 1514 bytes in length, the miniport driver for the NIC must report its
maximum total packet length as 1510 bytes. The miniport driver must never indicate up
to the bound protocol driver packets received over the network that are longer than the
packet size specified by OID_GEN_MAXIMUM_TOTAL_SIZE. That is, even if the miniport
driver receives packets over the network that are not marked with priority values but are

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562331(v=vs.85)

still the maximum size that the underlying medium supports, the miniport driver can
only indicate up packets that are no longer than the size specified by
OID_GEN_MAXIMUM_TOTAL_SIZE.

Header Ntddndis.h (include Ndis.h)

NdisSendNetBufferLists

OID_GEN_MAC_OPTIONS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndissendnetbufferlists

OID_GEN_MEDIA_CAPABILITIES
Article • 02/18/2023

The OID_GEN_MEDIA_CAPABILITIES OID is obsolete. NDIS and NDIS drivers do not use
this OID.

Version Not supported.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_MEDIA_CONNECT_STATUS
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_CONNECT_STATUS OID requests the connection status
of the NIC on the network.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS handles this OID for NDIS 6.0 and later miniport drivers.

The OID_GEN_MEDIA_CONNECT_STATUS OID requests the connection status of the NIC
on the network as one of the following system-defined values:

NdisMediaStateConnected

NdisMediaStateDisconnected

When a miniport driver senses that the network connection has been lost, it must also
call the NdisMIndicateStatusEx or NdisMCoIndicateStatusEx function with
NDIS_STATUS_MEDIA_DISCONNECT (for NDIS 5.1) or NDIS_STATUS_LINK_STATE with
MediaConnectStateDisconnected in the MediaConnectState property (for NDIS 6.x).
When the connection is restored, it must then call NdisM(Co)IndicateStatus with
NDIS_STATUS_MEDIA_CONNECT (for NDIS 5.1) or NDIS_STATUS_LINK_STATE with
MediaConnectStateConnected in the MediaConnectState property (for NDIS 6.x).

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex

Header Ntddndis.h (include Ndis.h)

NdisMCoIndicateStatusEx

NdisMIndicateStatusEx

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismcoindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

OID_GEN_MEDIA_CONNECT_STATUS_EX
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_CONNECT_STATUS_EX OID returns the connection
state of an interface.

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

NDIS uses this OID to query the connection state of an NDIS network interface provider.
Only NDIS interface providers, and therefore not miniport drivers or filter drivers, must
support this OID as an OID request.

If the query succeeds, the interface provider returns NDIS_STATUS_SUCCESS, and the
result of the query can be one of the values in the NET_IF_MEDIA_CONNECT_STATE
enumeration.

Miniport drivers supply the media connect status during initialization and provide
updates with status indications.

To specify the connection state in a miniport driver, set the MediaConnectState member
of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the miniport
driver passes to the NdisMSetMiniportAttributes function.

Header Ntddndis.h (include Ndis.h)

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NdisMSetMiniportAttributes

NET_IF_MEDIA_CONNECT_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_connect_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_connect_state

NDIS Network Interface OIDs

OID_GEN_MEDIA_DUPLEX_STATE
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_DUPLEX_STATE OID returns the duplex state of an
interface.

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

NDIS uses this OID to query the duplex state of an NDIS network interface provider.
Only NDIS interface providers, and therefore not miniport drivers or filter drivers, must
support this OID as an OID request.

If the query succeeds, the interface provider returns NDIS_STATUS_SUCCESS, and the
result of the query can be one of the values in the NET_IF_MEDIA_DUPLEX_STATE
enumeration.

Miniport drivers supply the media duplex state during initialization and provide updates
with status indications.

To specify the duplex state in a miniport driver, set the MediaDuplexState member of
the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure that the miniport
driver passes to the NdisMSetMiniportAttributes function.

Header Ntddndis.h (include Ndis.h)

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NET_IF_MEDIA_DUPLEX_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_duplex_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_media_duplex_state

NdisMSetMiniportAttributes

NDIS Network Interface OIDs

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_GEN_MEDIA_IN_USE
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_IN_USE OID specifies a complete list of the media
types that the NIC currently uses.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Obsolete.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

NDIS 6.0 and later miniport drivers do not receive this OID request. NDIS handles this
OID with a cached value that miniport drivers supply during initialization.

This OID provides the same information as the OID_GEN_MEDIA_SUPPORTED OID.

Header Ntddndis.h (include Ndis.h)

OID_GEN_MEDIA_SUPPORTED

Remarks

Requirements

See also

OID_GEN_MEDIA_SENSE_COUNTS
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_SENSE_COUNTS OID returns the number of times the
miniport adapter reported a media state change.

The OID_GEN_MEDIA_SENSE_COUNTS OID returns the number of times the miniport
adapter reported a media state change.

Version Supported for NDIS 5.1 and later drivers in
Windows Vista and later versions of Windows
and later versions of Windows. Supported for
NDIS 5.1 drivers in Windows XP.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_MEDIA_SUPPORTED
Article • 02/18/2023

As a query, the OID_GEN_MEDIA_SUPPORTED OID specifies the media types that a NIC
can support but not necessarily the media types that the NIC currently uses.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Obsolete.

The following media types were added for NDIS 6.0 and later drivers:

NdisMediumTunnel

NdisMediumLoopback

NdisMediumNative802_11

The following media types were added for NDIS 6.20 and later drivers:

NdisMediumIP

NDIS 5.1 miniport drivers
Mandatory. See OID_GEN_MEDIA_SUPPORTED (NDIS 5.1).

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory. See OID_GEN_MEDIA_SUPPORTED (NDIS 5.1).

NDIS 6.0 and later miniport drivers do not receive this OID request. NDIS handles this
OID with a cached value that miniport drivers supply during initialization.

These media types are listed as a proper subset of the following system-defined values:

NdisMedium802_3
Ethernet (802.3).

Remarks

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560254(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560254(v=vs.85)

Note NDIS 5.x miniport drivers that conform to the 802.11 interface must use this
media type. For more information about the 802.11 interface, see 802.11 Wireless LAN
Miniport Drivers.

NdisMedium802_5
Token Ring (802.5). This media type is not supported for NDIS 6.0 and later drivers.

Note Starting with Windows 8, the operating system will not support this media type
for any miniport drivers.

NdisMediumFddi
FDDI. This media type is not supported on Windows Vista and later versions of
Windows.

NdisMediumWan
WAN

NdisMediumLocalTalk
LocalTalk

NdisMediumDix
DEC/Intel/Xerox (DIX) Ethernet

NdisMediumArcnetRaw
ARCNET (raw). This media type is not supported on Windows Vista and later versions of
Windows.

NdisMediumArcnet878_2
ARCNET (878.2). This media type is not supported on Windows Vista and later versions
of Windows.

NdisMediumAtm
ATM. This media type is not supported for NDIS 6.0 and later drivers.

NdisMediumNative802_11
Native 802.11. This media type is used by miniport drivers that conform to the Native
802.11 interface. For more information about this interface, see Native 802.11 Wireless
LAN Miniport Drivers.

NdisMediumWirelessWan
Various types of NdisWirelessXxx media. This media type is not available for use
beginning with Windows Vista and later versions of Windows.

NdisMediumIrda
Infrared (IrDA).

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff543933(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560648(v=vs.85)

NdisMediumCoWan
Connection-oriented WAN.

NdisMedium1394
IEEE 1394 (firewire) bus. This media type is not supported on Windows Vista and later
versions of Windows.

NdisMediumBpc
Broadcast PC network.

NdisMediumInfiniBand
InfiniBand network.

NdisMediumTunnel
Tunnel network.

NdisMediumLoopback
NDIS loopback network.

NdisMediumIP
A generic medium that is capable of sending and receiving raw IP packets.

NDIS 5. x miniport drivers that support wireless LAN (WLAN) or wireless WAN (WWAN)
packets appear to the operating system and to NDIS as Ethernet packets. These NDIS
drivers must provide support for WWAN or WLAN networks as Ethernet networks. Such
drivers declare their medium as NdisMedium802_3 and emulate Ethernet to higher-
level NDIS drivers. Such drivers must also declare in OID_GEN_PHYSICAL_MEDIUM the
appropriate physical medium that they support..

For more information about NDIS 5.X WLAN miniport drivers, see 802.11 Wireless LAN
Miniport Drivers.

NDIS 6.0 and later miniport drivers that support the WLAN media transfer packets that
appear to the operating system and to NDIS as IEEE 802.11 packets. These NDIS drivers
must provide support for WLAN networks as Native 802.11 miniport drivers. Such
drivers declare their medium as NdisMediumNative802_11.

For more information about Native 802.11 miniport drivers, see Native 802.11 Wireless
LAN Miniport Drivers.

If the underlying miniport driver returns NULL for this query, or if an experimental media
type is used, the driver must indicate receive operations using the
NdisMIndicateReceiveNetBufferLists function. Any protocol that is bound to such an
underlying miniport driver receives all such indications, that is, the protocol driver
cannot filter receive operations with OID_GEN_CURRENT_PACKET_FILTER.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff543933(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560648(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

Header Ntddndis.h (include Ndis.h)

NdisMIndicateReceiveNetBufferLists

OID_GEN_CURRENT_PACKET_FILTER

OID_GEN_PHYSICAL_MEDIUM

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

OID_GEN_MINIPORT_RESTART_ATTRIBU
TES
Article • 02/18/2023

The OID_GEN_MINIPORT_RESTART_ATTRIBUTES OID identifies general attributes for the
propagation of miniport adapter restart attributes in an NDIS driver stack.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

The OID_GEN_MINIPORT_RESTART_ATTRIBUTES OID is not used to issue OID query or
set requests.

If the Oid member in the NDIS_RESTART_ATTRIBUTES structure is
OID_GEN_MINIPORT_RESTART_ATTRIBUTES, the Data member of the structure contains
an NDIS_RESTART_GENERAL_ATTRIBUTES structure.

Header Ntddndis.h (include Ndis.h)

NDIS_RESTART_ATTRIBUTES

NDIS_RESTART_GENERAL_ATTRIBUTES

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_restart_general_attributes

OID_GEN_MULTICAST_BYTES_RCV
Article • 02/18/2023

As a query, the OID_GEN_MULTICAST_BYTES_RCV OID specifies the number of bytes in
multicast/functional packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_MULTICAST_BYTES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_MULTICAST_BYTES_XMIT OID specifies the number of bytes in
multicast/functional packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_MULTICAST_FRAMES_RCV
Article • 02/18/2023

As a query, the OID_GEN_MULTICAST_FRAMES_RCV OID specifies the number of
multicast/functional packets that are received without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count from this OID, combined with the count from
OID_GEN_BROADCAST_FRAMES_RCV, is identical to the ifInNUcastPkts counter
described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_MULTICAST_FRAMES_XMIT
Article • 02/18/2023

As a query, the OID_GEN_MULTICAST_FRAMES_XMIT OID specifies the number of
multicast/functional packets that are transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The count from this OID, combined with the count from
OID_GEN_BROADCAST_FRAMES_XMIT, is identical to the ifOutNUcastPkts counter
described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_NDIS_RESERVED_1
Article • 03/14/2023

The OID_GEN_NDIS_RESERVED_1 OID is reserved for NDIS. NDIS drivers do not use this
OID.

Version Reserved for NDIS.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_NDIS_RESERVED_2
Article • 03/14/2023

The OID_GEN_NDIS_RESERVED_2 OID is reserved for NDIS. NDIS drivers do not use this
OID.

Version Reserved for NDIS.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_NDIS_RESERVED_5
Article • 03/14/2023

The OID_GEN_NDIS_RESERVED_5 OID is reserved for NDIS. NDIS drivers do not use this
OID.

Version Reserved for NDIS.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_GEN_NETWORK_LAYER_ADDRESSE
S
Article • 02/18/2023

As a set, the OID_GEN_NETWORK_LAYER_ADDRESSES OID notifies underlying miniport
driver and other layered drivers about the list of network-layer addresses that are
associated with bound instances.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

A bound instance is the binding between the calling transport and a driver set up by a
call to NdisOpenAdapterEx. Transports use TRANSPORT_ADDRESS and TA_ADDRESS
structures to notify underlying miniport drivers and other layered drivers about the list
of network-layer addresses. Miniport drivers and other layered drivers use compatible
NETWORK_ADDRESS_LIST and NETWORK_ADDRESS structures, defined as follows, to
set the list of network-layer addresses on a bound interface.

C++

Remarks

typedef struct _NETWORK_ADDRESS_LIST {
 LONG AddressCount;
 USHORT AddressType;
 NETWORK_ADDRESS Address[1];
} NETWORK_ADDRESS_LIST, *PNETWORK_ADDRESS_LIST;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

The members of this structure contain the following information:

AddressCount
Specifies the number of network-layer addresses listed in the array in the Address
member.

AddressType
Specifies the protocol type that sends this OID. This member is only valid if the
AddressCount member is set to zero. The AddressCount member is set to zero to notify
a miniport driver or other layered driver to clear the list of network-layer addresses on a
bound interface. The protocol can be one of the following values:

NDIS_PROTOCOL_ID_DEFAULT
Default protocol

NDIS_PROTOCOL_ID_TCP_IP
TCP/IP protocol

NDIS_PROTOCOL_ID_IPX
NetWare IPX protocol

NDIS_PROTOCOL_ID_NBF
NetBIOS protocol

Address
Array of network-layer addresses of type NETWORK_ADDRESS. The AddressCount
member specifies the number of elements in this array.

C++

The members of this structure contain the following information:

AddressLength
Specifies the size, in bytes, of this network-layer address. The Address member contains
the array of bytes that specify this address.

AddressType
Specifies the protocol type that sends this OID and this network-layer address. This
member is only valid if the AddressCount member in the NETWORK_ADDRESS_LIST

typedef struct _NETWORK_ADDRESS {
 USHORT AddressLength;
 USHORT AddressType;
 UCHAR Address[1];
} NETWORK_ADDRESS, *PNETWORK_ADDRESS;

structure is set to a nonzero value. The AddressCount member in
NETWORK_ADDRESS_LIST is set to a nonzero value to notify a miniport driver or other
layered driver to change the list of network-layer addresses on a bound interface.
Protocol types are defined in the preceding list.

Address
Array of bytes that specify this network-layer address. The AddressLength member
specifies the number of bytes in this array.

The transport can call the NdisOidRequest function and can pass an
NDIS_OID_REQUEST structure that is filled with the
OID_GEN_NETWORK_LAYER_ADDRESSES code. This call notifies a bound instance of a
change in the addresses that are associated with that instance. In this call, the transport
also passes the bound instance in the NdisBindingHandle parameter. The bound
instance is the binding set up between the transport and the underlying miniport driver
or other layered driver. For this call, the transport should fill the InformationBuffer
member of NDIS_OID_REQUEST with a pointer to a TRANSPORT_ADDRESS structure.
TRANSPORT_ADDRESS corresponds to a NETWORK_ADDRESS_LIST structure and should
contain the list of network-layer addresses.

Suppose a transport passes addresses through an intermediate driver down to an
underlying miniport driver. If the intermediate driver also requires the addresses, it
should take note of them before passing them on to the underlying miniport driver. An
underlying miniport driver, especially an old driver, can return a status value of
NDIS_STATUS_NOT_SUPPORTED or NDIS_STATUS_SUCCESS. The underlying miniport
driver propagates the status of the operation back up towards the transport. If the
intermediate driver must continue receiving address notifications, and if it is necessary,
the intermediate driver should change the status to NDIS_STATUS_SUCCESS.Otherwise,
the transport might interpret NDIS_STATUS_NOT_SUPPORTED as an indication that the
underlying miniport driver does not require that the transport issue additional address
updates. If NDIS_STATUS_SUCCESS is returned, transports are obligated to continue
notifying underlying drivers of any change in associated addresses, including addition
and deletion of addresses.

A protocol can set the AddressCount member of TRANSPORT_ADDRESS to zero to
notify a miniport driver or other layered driver to clear the list of network-layer
addresses on a bound interface. If AddressCount is set to zero, the AddressType
member in NETWORK_ADDRESS_LIST is valid and the AddressType members in
NETWORK_ADDRESS structures are not valid. On the other hand, a protocol can set
AddressCount to a nonzero value to notify a miniport driver or other layered driver to
change the list of network-layer addresses on a bound interface. In this case, the

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

AddressType member in NETWORK_ADDRESS_LIST is not valid and the AddressType
members in NETWORK_ADDRESS structures are valid.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NdisOidRequest

NdisOpenAdapterEx

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenadapterex

OID_GEN_OPERATIONAL_STATUS
Article • 02/18/2023

As a query, use the OID_GEN_OPERATIONAL_STATUS OID to determine the current
operational status of a network interface (ifOperStatus from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

NDIS handles this OID for miniport adapters and filter modules, and only NDIS network
interface providers receive this OID query.

If the query succeeds, the interface provider returns NDIS_STATUS_SUCCESS, and the
result of the query can be one of the values in the NET_IF_OPER_STATUS enumeration.

Header Ntddndis.h (include Ndis.h)

NET_IF_OPER_STATUS

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_oper_status
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ne-ifdef-net_if_oper_status

OID_GEN_PCI_DEVICE_CUSTOM_PROPER
TIES
Article • 02/18/2023

As a query, overlying drivers use the OID_GEN_PCI_DEVICE_CUSTOM_PROPERTIES OID
to get the PCI custom properties of a device.

NDIS handles OID_GEN_PCI_DEVICE_CUSTOM_PROPERTIES and miniport drivers do not
receive an OID query.

This query is optional for other NDIS drivers.

NDIS returns an NDIS_PCI_DEVICE_CUSTOM_PROPERTIES structure that contains the
PCI custom properties.

For non-PCI miniport adapters, NDIS fails OID_GEN_PCI_DEVICE_CUSTOM_PROPERTIES
with the NDIS_STATUS_INVALID_DEVICE_REQUEST status code.

Version Supported in NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_PCI_DEVICE_CUSTOM_PROPERTIES

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pci_device_custom_properties
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pci_device_custom_properties

OID_GEN_PHYSICAL_MEDIUM
Article • 02/18/2023

As a query, the OID_GEN_PHYSICAL_MEDIUM OID specifies the types of physical media
that the NIC supports. This OID is essentially an extension of
OID_GEN_MEDIA_SUPPORTED.

Note This OID is supported in NDIS 6.0 and 6.1. For NDIS 6.20 and later, use
OID_GEN_PHYSICAL_MEDIUM_EX.

NDIS handles this OID for miniport drivers. The miniport driver supplies the physical
medium value during initialization.

Miniport drivers report a physical media type to differentiate their physical media from
media that they declared to support in the OID_GEN_MEDIA_SUPPORTED OID query.
These media types are listed as a proper subset of the following system-defined values
from the NDIS_PHYSICAL_MEDIUM enumeration:

NdisPhysicalMediumUnspecified The physical medium is none of the preceding
mediums. For example, a one-way satellite feed is an unspecified physical medium.

NdisPhysicalMediumWirelessLan Packets are transferred over a wireless LAN network
through a miniport driver that conforms to the 802.11 interface. For more information
about this interface, see. 802.11 Wireless LAN Miniport Drivers

NdisPhysicalMediumCableModem Packets are transferred over a DOCSIS-based cable
network.

NdisPhysicalMediumPhoneLine Packets are transferred over standard phone lines.
Includes, for example, HomePNA media. NdisPhysicalMediumPowerLine Packets are
transferred over wiring that is connected to a power distribution system.

NdisPhysicalMediumDSL Packets are transferred over a Digital Subscriber Line (DSL)
network. Includes, for example, ADSL and UADSL (G.Lite).
NdisPhysicalMediumFibreChannel Packets are transferred over a Fibre Channel
interconnect.

NdisPhysicalMedium1394 Packets are transferred over an IEEE 1394 bus.

Version Information

Remarks

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff543933(v=vs.85)

NdisPhysicalMediumWirelessWan Packets are transferred over a Wireless WAN link.
Includes, for example, CDPD, CDMA, and GPRS.

NdisPhysicalMediumNative802_11 Packets are transferred over a wireless LAN network
through a miniport driver that conforms to the Native 802.11 interface. For more
information about this interface, see Native 802.11 Wireless LAN Miniport Drivers.

Note The Native 802.11 interface is supported in NDIS 6.0 and later versions.

NdisPhysicalMediumBluetooth Packets are transferred over a Bluetooth network.
Bluetooth is a short-range wireless technology that uses the 2.4 GHz spectrum.

NdisPhysicalMediumInfiniband The Infiniband physical medium. Packets are transferred
over an infiniband interconnect.

NdisPhysicalMediumUWB The Ultra Wideband (UWB) physical medium. Packets are
transferred over a UWB network. UWB is a radio frequency platform that personal area
networks can use to wirelessly communicate over short distances at high speeds.

NdisPhysicalMedium802_3 The Ethernet (802.3) physical medium. Packets are
transferred over a wired LAN through a miniport driver that conforms to the 802.3
interface specification. This medium type does not include devices that emulate 802.3.

NdisPhysicalMedium802_5 The Token Ring physical medium. (802.5 is not supported in
NDIS 6.0 and later drivers.) Packets are transferred over a Token Ring network through a
miniport driver that conforms to the 802.5 interface specification.

NdisPhysicalMediumIrda The infrared (IrDA) physical medium. Packets are transferred
over a nonvisible, infrared light spectrum IrDA network.

NdisPhysicalMediumWiredWAN The wired, wide area network (WAN) physical medium.
Packets are transferred over a wired WAN.

NdisPhysicalMediumWiredCoWan The wired, connection-oriented WAN physical
medium. Packets are transferred over a wired WAN in a connection-oriented
environment.

NdisPhysicalMediumOther The physical medium is none of the preceding mediums.
NdisPhysicalMediumOther specifies a new physical medium type that is not present in
the NDIS_PHYSICAL_MEDIUM enumeration.

NDIS supports the OID_GEN_PHYSICAL_MEDIUM OID for miniport adapters that support
newer networks, even though those networks transfer packets that appear to the
operating system and to NDIS as standard and well known media types.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/ff560648(v=vs.85)

Newer networks transfer packets that might appear like standard media but that might
have new features or slight differences from the standard. This OID was developed so
upper-layer drivers and applications could determine the actual networks to which a NIC
connects. After retrieving information about underlying networks, upper-layer drivers
and applications could use this information to modify how such drivers and applications
behave.

To clearly distinguish an 802.3 NIC from an emulated 802.3 NIC for which there is no
physical medium type defined, NDIS 6.0 and later versions require 802.3 miniport drivers
to report NdisPhysicalMedium802_3.

Version Supported in NDIS 6.0 and 6.1. For NDIS 6.20
and later, use OID_GEN_PHYSICAL_MEDIUM_EX
instead.

Header Ntddndis.h (include Ndis.h)

OID_GEN_MEDIA_SUPPORTED

OID_GEN_PHYSICAL_MEDIUM_EX

Requirements

See also

OID_GEN_PHYSICAL_MEDIUM_EX
Article • 02/18/2023

As a query, the OID_GEN_PHYSICAL_MEDIUM_EX OID specifies the types of physical
media that a miniport adapter supports.

NDIS handles this OID for NDIS 6.0 and later miniport drivers. The miniport driver
supplies the physical medium value during initialization.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_PHYSICAL_MEDIUM enumeration value.

Note The difference between OID_GEN_PHYSICAL_MEDIUM_EX and
OID_GEN_PHYSICAL_MEDIUM is that the OID_GEN_PHYSICAL_MEDIUM_EX version does
not override the NdisPhysicalMedium802_3 type as NdisPhysicalMediumUnspecified
whereas OID_GEN_PHYSICAL_MEDIUM still does. We recommend that all 6.x drivers use
the EX version. OID_GEN_PHYSICAL_MEDIUM_EX is exposed through a WMI GUID.

Miniport drivers report a physical media type to differentiate their physical media from
media that they declared to support in the OID_GEN_MEDIA_SUPPORTED OID query.

NDIS supports the OID_GEN_PHYSICAL_MEDIUM_EX OID for miniport adapters that
support newer networks, even though those networks transfer packets that appear to
the operating system and to NDIS as standard, well-known media types.

Newer networks transfer packets that might appear like standard media, but that might
have new features or slight differences from the standard. This OID exists so upper-layer
drivers and applications can determine the actual networks to which a NIC connects.
After retrieving information about underlying networks, upper-layer drivers and
applications can use this information to modify how such drivers and applications
behave.

To clearly distinguish an 802.3 NIC from an emulated 802.3 NIC for which there is no
physical medium type defined, NDIS 6.0 and later and later versions require 802.3
miniport drivers to report an NdisPhysicalMedium802_3 media type.

Version Supported in NDIS 6.20 and later. Not

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

requested for miniport drivers. (See Remarks
section.)

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

OID_GEN_MEDIA_SUPPORTED

OID_GEN_PHYSICAL_MEDIUM

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_GEN_PORT_AUTHENTICATION_PAR
AMETERS
Article • 02/18/2023

As a set, NDIS and overlying drivers use the
OID_GEN_PORT_AUTHENTICATION_PARAMETERS OID to set the current state of an
NDIS port.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional. Mandatory for NDIS ports. (see Remarks section)

Miniport drivers that support NDIS ports must support this OID.

If a miniport driver does not support this OID, the miniport driver should return
NDIS_STATUS_NOT_SUPPORTED.

If the miniport driver supports this OID, the driver returns NDIS_STATUS_SUCCESS and
provides the receive port direction, port control state, and authenticate state in an
NDIS_PORT_AUTHENTICATION_PARAMETERS structure.

Header Ntddndis.h (include Ndis.h)

NDIS_PORT_AUTHENTICATION_PARAMETERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_authentication_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_authentication_parameters

OID_GEN_PORT_STATE
Article • 02/18/2023

As a query, overlying drivers use the OID_GEN_PORT_STATE OID to get the current state
of the port that is specified in the PortNumber member of the NDIS_OID_REQUEST
structure.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID and miniport drivers do not receive this OID query.

If the query succeeds, NDIS returns NDIS_STATUS_SUCCESS and returns the port state
information in an NDIS_PORT_STATE structure.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PORT_STATE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_port_state

OID_GEN_PROMISCUOUS_MODE
Article • 02/18/2023

As a query, use the OID_GEN_PROMISCUOUS_MODE OID to determine whether a
network interface is promiscuous or not (ifPromiscuousMode from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the interface provider returns NDIS_STATUS_SUCCESS and if the interface accepts only
packets that are addressed to that interface, the result value should be FALSE. This value
should be TRUE if the interface accepts all network packets.

Header Ntddndis.h (include Ndis.h)

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054

OID_GEN_PROTOCOL_OPTIONS
Article • 02/18/2023

As a set, the OID_GEN_PROTOCOL_OPTIONS OID specifies a bitmask that defines
optional properties of the protocol driver.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. This OID is for protocol drivers.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

A protocol informs NDIS of its properties, which can optionally take advantage of them.
If the protocol driver does not set its flags on a binding, NDIS assumes they are all clear.

The following flags are currently defined:

NDIS_PROT_OPTION_ESTIMATED_LENGTH
Specifies that packets can be indicated at the worst-case estimate of packet size, instead
of an exact value, to this protocol.

NDIS_PROT_OPTION_NO_LOOPBACK
Specifies that the protocol does not require loopback support on the binding.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_RCV_CRC_ERROR
Article • 02/18/2023

As a query, the OID_GEN_RCV_CRC_ERROR OID specifies the number of frames that are
received with checksum errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

The value for the OID_GEN_RCV_DISCARDS OID includes CRC errors. For general
information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_RCV_DISCARDS
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_RCV_DISCARDS OID to
determine the number of receive discards on a miniport adapter.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID for miniport drivers. See the OID_GEN_STATISTICS OID for more
information about statistics.

The count is identical to the ifInDiscards counter described in RFC 2863.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_RCV_ERROR
Article • 02/18/2023

As a query, the OID_GEN_RCV_ERROR OID specifies the number of frames that a NIC
receives but does not indicate to the protocols due to errors.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 drivers
Mandatory.

The count is identical to the ifInErrors counter described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_RCV_LINK_SPEED
Article • 02/18/2023

As a query, use the OID_GEN_RCV_LINK_SPEED OID to determine the receive link speed
of a network interface.

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is a
ULONG64 value that indicates the receive link speed of the interface, in bits per second.

Header Ntddndis.h (include Ndis.h)

NDIS Network Interface OIDs

Remarks

Requirements

See also

OID_GEN_RCV_NO_BUFFER
Article • 02/18/2023

As a query, the OID_GEN_RCV_NO_BUFFER OID specifies the number of frames that the
NIC cannot receive due to lack of NIC receive buffer space. Some NICs do not provide
the exact number of missed frames; they provide only the number of times at least one
frame is missed.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 drivers
Mandatory.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_RCV_OK
Article • 02/18/2023

As a query, the OID_GEN_RCV_OK OID specifies the number of frames that the NIC
receives without errors and indicates to bound protocols.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later drivers
Mandatory.

NDIS 5.1 drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 drivers
Mandatory.

OID_GEN_RCV_OK specifies the number of frames that are received without errors.
However, the OID_GEN_STATISTICS does not include this information.

NOTE: Statistics OIDs are mandatory for NDIS 6.0 and later miniport drivers unless NDIS
handles them. For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_RECEIVE_BLOCK_SIZE
Article • 02/18/2023

As a query. the OID_GEN_RECEIVE_BLOCK_SIZE OID specifies the amount of storage, in
bytes, that a single packet occupies in the receive buffer space of the NIC.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The OID_GEN_RECEIVE_BLOCK_SIZE OID specifies the amount of storage, in bytes, that a
single packet occupies in the receive buffer space of a NIC.

The same information can be obtained from the current and maximum lookahead size.
However, one of these OIDs can be mandatory to verify each other. Also protocol
drivers can determine if the underlying driver indicates full-packet receives by
comparing the values that driver returns for the OID_GEN_CURRENT_LOOKAHEAD and
OID_GEN_RECEIVE_BLOCK_SIZE OIDs.

Header Ntddndis.h (include Ndis.h)

OID_GEN_CURRENT_LOOKAHEAD

Remarks

Requirements

See also

OID_GEN_RECEIVE_BUFFER_SPACE
Article • 02/18/2023

As a query, the OID_GEN_RECEIVE_BUFFER_SPACE OID specifies the amount of memory
on the NIC that is available for buffering receive data.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

A protocol driver can use this OID as a guide for advertising its receive window after it
establishes sessions with remote nodes.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_RECEIVE_HASH
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_RECEIVE_HASH OID to obtain
the current receive hash calculation settings of a miniport adapter. NDIS returns an
NDIS_RECEIVE_HASH_PARAMETERS structure that contains the current receive hash
settings.

As a set, NDIS and overlying drivers use the OID_GEN_RECEIVE_HASH OID to configure
the receive hash calculations on a miniport adapter. The miniport driver receives an
NDIS_RECEIVE_HASH_PARAMETERS structure.

For NDIS miniport drivers, the query is not requested.

Support for this OID set is optional for miniport drivers, including those that support
RSS.

An overlying driver can use the OID_GEN_RECEIVE_HASH OID to enable and configure
hash calculations on received frames without enabling RSS.

Note Protocol drivers must disable receive hash calculations before they enable RSS. If
RSS is enabled, a protocol driver disables RSS before it enables receive hash calculations.
A miniport driver should fail a set request with NDIS_STATUS_INVALID_OID or
NDIS_STATUS_NOT_SUPPORTED to enable receive hash calculations if
OID_GEN_RECEIVE_SCALE_PARAMETERS is currently enabled.

Note The secret key is appended after the NDIS_RECEIVE_HASH_PARAMETERS
structure members.

Version Supported in NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_RECEIVE_HASH_PARAMETERS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_hash_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_hash_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_hash_parameters

OID_GEN_RECEIVE_SCALE_CAPABILITIES
Article • 02/18/2023

As a query, overlying drivers can use the OID_GEN_RECEIVE_SCALE_CAPABILITIES OID to
query the receive side scaling (RSS) capabilities of a NIC and its miniport driver.

NDIS miniport drivers do not receive this OID request. NDIS handles the query for
miniport drivers.

The miniport driver returns the RSS capabilities in an
NDIS_RECEIVE_SCALE_CAPABILITIES structure.

Version Supported in NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_RECEIVE_SCALE_CAPABILITIES

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_capabilities

OID_GEN_RECEIVE_SCALE_PARAMETERS
Article • 02/18/2023

As a query, NDIS and overlying drivers can use the
OID_GEN_RECEIVE_SCALE_PARAMETERS OID to query the current receive side scaling
(RSS) parameters of a NIC. NDIS returns an NDIS_RECEIVE_SCALE_PARAMETERS
structure that defines the current RSS parameters.

As a set, NDIS and overlying drivers use the OID_GEN_RECEIVE_SCALE_PARAMETERS
OID to set the current RSS parameters of a NIC. The miniport driver receives an
NDIS_RECEIVE_SCALE_PARAMETERS structure that defines the RSS parameters.

For NDIS miniport drivers, the query is not requested and the set is required for drivers
that support RSS. NDIS handles the query for miniport drivers.

The TCP/IP driver configures IPv4 and IPv6 with a single OID set request of
OID_GEN_RECEIVE_SCALE_PARAMETERS. That is, when the stack should enable RSS for
both IPv4 and IPv6, it sets both of the corresponding flags in the HashInformation
member of the NDIS_RECEIVE_SCALE_PARAMETERS structure and sends one OID
request. Also, IPv4 and IPv6 use the same secret key and the key will always be 40 bytes,
even if only IPv4 is enabled.

The underlying miniport adapter must use the most recent
OID_GEN_RECEIVE_SCALE_PARAMETERS OID settings it has received. For example, if the
miniport gets an OID_GEN_RECEIVE_SCALE_PARAMETERS OID with the IPv4 hash types
missing, it must disable IPv4 RSS if it was previously enabled.

Note An overlying driver can use the OID_GEN_RECEIVE_HASH OID to enable and
configure hash calculations on received frames without enabling RSS.

７ Note

In RSSv2, this OID is only used to query current RSS parameters of a given scaling
entity. For miniport drivers that support RSSv2, see
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 for setting RSS parameters other than
the indirection table.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters

Note Protocol drivers must disable receive hash calculations (OID_GEN_RECEIVE_HASH)
before they enable RSS. If RSS is enabled, a protocol driver disables RSS before it
enables receive hash calculations. A miniport driver should fail a set request with
NDIS_STATUS_INVALID_OID or NDIS_STATUS_NOT_SUPPORTED to enable RSS if
OID_GEN_RECEIVE_HASH is currently enabled.

Note The indirection table and secret key are appended after the
NDIS_RECEIVE_SCALE_PARAMETERS structure members. For more information about
the indirection table and secret key, see NDIS_RECEIVE_SCALE_PARAMETERS.

Version Supported in NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_RECEIVE_SCALE_PARAMETERS

OID_GEN_RECEIVE_HASH

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters

OID_GEN_RECEIVE_SCALE_PARAMETERS
_V2
Article • 02/18/2023

The OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 OID is sent to RSSv2-capable miniport
drivers to set run-time parameters, other than the indirection table, for a scaling entity.
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 replaces the
OID_GEN_RECEIVE_SCALE_PARAMETERS OID from RSSv1 and is not visible to NDIS Light
Weight Filters (LWFs) before NDIS 6.80. This OID is a Regular OID and can be issued as a
Query or Set request. It is issued at IRQL == PASSIVE_LEVEL. It can target a given VPort,
when the NDIS_OID_REQUEST_FLAGS_VPORT_ID_VALID flag is set at NIC switch creation.
Otherwise, it targets the physical NIC in the Native RSS case.

As a Query, NDIS and overlying drivers can use
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 to query the RSS parameters of a NIC. NDIS
returns an NDIS_RECEIVE_SCALE_PARAMETERS_V2 structure that defines the current RSS
parameters.

As a Set, the purpose of this OID is to perform the following actions:

Initially configure the scaling entity (a miniport adapter in Native RSS mode or a
VPort in VMQ mode).
Enable or disable RSS.
When in RSS mode, perform non-timing-critical management functions such as
changing the hash key, hash type and hash function, number of queues, or number
of indirection table entries for the scaling entity.

Enabling RSS and setting RSS parameters can be performed in one step.. After the upper
layer enables RSS using this OID, the initial state of the scaling entity is as follows:

２ Warning

Some information in this topic relates to prereleased product, which may be
substantially modified before it's commercially released. Microsoft makes no
warranties, express or implied, with respect to the information provided here.

RSSv2 is preview only in Windows 10, version 1809.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters_v2

The primary processor becomes inactive.
The default processor becomes active.
All the ITEs become active.
The miniport driver starts calculation of the RSS hash, setting of the corresponding
OOB for all packets, and directing packets to a processor specified by the
indirection table entry or default processor parameter.

After RSS is enabled, the upper layer issues the
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES OID to move ITEs to different
processors. In RSSv2, the DefaultQueue and PrimaryProcessor are also moved to a
different processor using OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES.

During the process of disabling RSS, the upper layer will point all ITEs to the primary
processor before invoking this OID to turn RSS off. After this point, receive traffic should
target the primary processor. However, miniport drivers should not expect the disabling
of RSS before VPort deletion. The upper layer can set the receive filter on the VPort to
zero, thus ensuring that no receive traffic is flowing through the VPort, then proceed to
delete the VPort without disabling RSS.

The upper layer will ensure that important invariants are not violated before performing
management functions. For example:

Before changing the number of queues, the upper layer will ensure that the
indirection table does not reference more processors than configured for a VPort.
Before changing the number of indirection table entries for VMMQ-RESTRICTED
adapters, the upper layer will ensure that the content of the indirection table is
normalized to the power of 2.

This OID returns the following status codes when an error occurs:

Status code Error condition

NDIS_STATUS_INVALID_LENGTH The OID was malformed.

NDIS_STATUS_NO_QUEUES The number of queues is being changed when RSS is
enabled, but the current indirection table references more
processors than the new number of queues.

Error conditions and status codes

Status code Error condition

NDIS_STATUS_INVALID_DATA The indirection table is being reduced in size, but
does not contain a power-of-two repeat pattern.
During an RSS state transition (to on or off), a
processor from a steering parameter that becomes
active does not belong to the adapter's RSS
processor set. Note that inactive steering parameters
are only tracking writes to the processor and are not
enforced. Enforcement happens during RSS state
transition when the parameter becomes active.

NDIS_STATUS_INVALID_PARAMETER Other fields, either in the header or the OID itself, contain
invalid values.

Version: Windows 10, version 1709 Header: Ntddndis.h (include Ndis.h)

Receive Side Scaling Version 2 (RSSv2)
OID_GEN_RECEIVE_SCALE_PARAMETERS
NDIS_RECEIVE_SCALE_PARAMETERS_V2
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters_v2

OID_GEN_RESET_COUNTS
Article • 02/18/2023

As a query, the OID_GEN_RESET_COUNTS OID returns the number of times the miniport
adapter was reset.

The OID_GEN_RESET_COUNTS OID returns the number of times the miniport adapter
was reset.

Version Supported for NDIS 5.1 and later drivers in
Windows Vista and later versions of Windows
and later versions of Windows. Supported for
NDIS 5.1 drivers in Windows XP.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_RNDIS_CONFIG_PARAMETER
Article • 03/14/2023

As a set, the OID_GEN_RNDIS_CONFIG_PARAMETER is used to set device-specific
parameters. The host uses it with RNDIS devices only.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For RNDIS devices only.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

The OID_GEN_RNDIS_CONFIG_PARAMETER is used with RNDIS devices. The host uses it
to set device-specific parameters. It is not used by miniport drivers. For more
information about this OID, see Setting Device-Specific Parameters.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_RSS_SET_INDIRECTION_TABLE
_ENTRIES
Article • 02/18/2023

The OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES OID is sent to RSSv2-capable
miniport drivers to perform moves of individual indirection table entries. This OID is a
Synchronous OID, meaning it cannot return NDIS_STATUS_PENDING. It is issued as a
Method request only, at IRQL == DISPATCH_LEVEL.

This call uses the XxxSynchronousOidRequest entry point, where Xxx is either Miniport or
Filter depending on the type of driver receiving the request. This entry point causes a
system bug check if it sees an NDIS_STATUS_PENDING return status.

OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES uses the
NDIS_RSS_SET_INDIRECTION_ENTRIES structure to instruct a miniport adapter to
synchronously perform a set of actions, where each action moves a single entry of the
RSS indirection table of a specified VPort to a target specified CPU.

This OID must execute and complete in the processor context that issued it. Miniport
drivers must fully execute this OID upon returning NDIS_STATUS_SUCCESS to the upper
layer. This means that the miniport driver should be prepared to receive back-to-back
OID requests to move multiple ITEs on a new processor immediately after the first move
finishes with NDIS_STATUS_SUCCESS.

２ Warning

Some information in this topic relates to prereleased product, which may be
substantially modified before it's commercially released. Microsoft makes no
warranties, express or implied, with respect to the information provided here.

RSSv2 is preview only in Windows 10, version 1809.

Remarks

 Tip

Fully executing this OID means that the miniport driver must be ready to
successfully attempt another action to move an ITE. It does not prescribe where in-

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entries

Upper layer protocols issue OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES to set ITEs
and/or the primary and default processor parameters to point to different processors.

This OID can be issued for either active or inactive traffic steering parameters. For more
information about steering parameters, see Receive side scaling version 2 (RSSv2). For
parameters/ITEs in the inactive state, the miniport driver should validate and cache the
target processor until the next relevant RSS state change (enablement or disablement).
At that point, cached processor numbers become active and are used for directing the
traffic. Updates to active parameters (which must also be validated) should be taken
immediately into effect to direct the traffic.

OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES must be issued to a miniport adapter
with the NDIS_OID_REQUEST_FLAGS_VPORT_ID_VALID flag cleared. This is because of
the possibility of different VPorts being referenced by different elements in the array.

This OID is invoked only at IRQL == DISPATCH_LEVEL.

Miniport drivers should be prepared to handle at least as many indirection table entry
move actions as they advertise in the NDIS_NIC_SWITCH_CAPABILITIES structure. This is
defined in the NumberOfIndirectionTableEntriesPerNonDefaultVPort or
NumberOfIndirectionTableEntriesForDefaultVPort member of that structure, or 128 in
Native RSS mode.

Miniport drivers should attempt to execute as many entries as they can and update the
EntryStatus member of each NDIS_RSS_SET_INDIRECTION_ENTRY with the result of the
operation.

The OID handler for OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES is expected to
behave as follows:

A return of NDIS_STATUS_PENDING is not permitted due to the OID's Synchronous
call type.
Finalize any incoming ITE moves that were destined for the current CPU (previously
initiated on remote processors).
It is strongly recommended for miniport drivers to perform a full parameter
validation pass. If not possible, perform one-by-one validation and execution of

flight receive traffic is indicated right after the queue move, which can either be on
the source CPU or the target CPU.

OID handler for
OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entry

array entries. Miniport drivers should specifically check if all the referenced objects
are valid:

Returning NDIS_STATUS_PENDING in the EntryStatus field for an ITE is not
permitted.
The miniport adapter exists and is in a good state. Else, set the EntryStatus field
of the entry to NDIS_STATUS_ADAPTER_NOT_FOUND,
NDIS_STATUS_ADAPTER_NOT_READY, etc.
Each VPort exists and is in a good state. Else, set the EntryStatus field of the
entry to NDIS_STATUS_INVALID_PORT, NDIS_STATUS_INVALID_PORT_STATE, etc.
Each indirection table entry index is within the configured range. This range is
either 0xFFFF or is in the [0...NumberOfIndirectionTableEntries - 1] range set by
the OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 OID. The 0xFFFF and 0xFFFE
entry indices have special meanings: 0xFFFF defines the default processor, while
0xFFFE defines the primary processor. On error, the handler sets the EntryStatus
field of the entry to NDIS_STATUS_INVALID_PARAMETER.
The upper layer and the miniport driver expect that the ITE points to the current
processor (actor CPU) before the move. In other words, the ITE cannot be
redirected remotely. If this is not true, set the EntryStatus field of the entry to
NDIS_STATUS_NOT_ACCEPTED.
All target processors are valid and are part of the miniport adapter's RSS set.
Else, set the EntryStatus field of the entry to NDIS_STATUS_INVALID_DATA.

Either subsequently or as part of the parameter validation pass, validate the
resource situation. Validate that the number of queues to be used after a full batch
move (evacuation) does not exceed the NumberOfQueues set in the
NDIS_RECEIVE_SCALE_PARAMETERS_V2 structure during an
OID_GEN_RECEIVE_SCALE_PARAMETERS_V2 request. Otherwise,
NDIS_STATUS_NO_QUEUES is returned. NDIS_STATUS_NO_QUEUES should be used
for all conditions that represent a violation of the configured number of queues.
NDIS_STATUS_RESOURCES should only be used to designate transient out-of-
memory conditions.
As part of resource checks, for each scaling entity (for example, VPort), the
miniport driver must handle a condition when all ITEs that point to the currrent
CPU are moved away from it..

If all of the above checks pass, the miniport driver should be able to unconditionally
apply the new configuration and must set the EntryStatus field of each entry to
NDIS_STATUS_SUCCESS.

In general, the handler for this OID should be very light weight. It should not call NDIS
or operating system services other than for possible synchronization operations like
spinlocks and NdisMConfigMSIXTableEntry.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismconfigmsixtableentry

The miniport driver should not call NDIS to indicate status or PnP events.

The miniport driver should also not use receive/transmit complete indications in the
context of this OID handler, as doing so leads to recursion. The upper layer can invoke
this OID from the context of receive or transmit indications.

Miniport drivers should recognize and handle a special request that moves all
indirection table entries away from the current CPU. Because RSSv2 operates with
individual ITE moves, miniport drivers must guarantee the atomicity of the overall
operation. If it encounters an error in the middle of a batch while processing the
corresponding array of move commands, the miniport driver should revert all
commands that were already performed and mark all commands as "failed" in the per-
command EntryStatus field. The upper layer protocol always expects the "move all ITEs"
batch to contain either all commands marked as "succeeded," or all commands marked
as "failed," and it will assume that traffic obeys the resulting state (either before or after
the move). If the upper layer sees only some entries marked as "failed," it will bug check
the system and point to the miniport driver as the cause.

To aid the miniport driver's handling of the "move all ITEs" command, and to avoid
deadlocks, upper layer protocols group move commands in the batch in pairs of
SwitchId + VPortId fields, such that:

Commands that the upper layer wants to be executed together, as part of the
"move all" command, for the same VPort are placed consecutively in the overall
batch.
The miniport driver should not attempt to execute the overall command batch,
which may target different VPorts, in a "move all" fashion. Only the group of
commands that target the same VPort (tagged with the same SwitchId + VPortId
pair) need to be executed conforming to the "move all" semantics.
When the upper layer does not care about "move all" semantics, it might interleave
commands to the same VPort with commands to different VPort(s). In this case, if
the second group of commands to the same VPort can't be executed because of a
"number of queues" violation, the miniport driver marks that group with the
corresponding status code (NDIS_STATUS_NO_QUEUES) and the upper layer takes
responsibility for recovering.

For example, if the upper layer protocol interleaves a series of commands like this:

VPort=1 ITE[0,1]

VPort=2 ITE[0]

Moving all indirection table entries

VPort=1 ITE[2]

The miniport driver does not need to attempt to atomically execute all four move
commands, or all three move commands for VPort=1 (ITE[0,1,2]). It only needs to
execute the VPort=1 ITE[0,1] group in a "move all" fashion, then the VPort=2 ITE[0]
group, then VPort=1 ITE[2] . All three command groups might have a different
outcome. For example, the groups for VPort=1 ITE[0,1] and VPort=2 ITE[0] might
succeed, and the VPort=1 ITE[2] group might fail. The outcome should be reflected in
the corresponding EntryStatus member of each command structure. This way, the
miniport driver does not need to take precautions for safe execution of the overall batch
(for example, lock the whole adapter). Only those commands that target a specific VPort
need to be serialized, finer-grained per-VPort locking can be used, and certain
deadlocks are avoided.

This OID returns the following status codes when an error occurs:

Status code Error condition

NDIS_STATUS_INVALID_LENGTH The OID was malformed.

NDIS_STATUS_INVALID_PARAMETER Other fields, either in the header or in the OID itself (but
not in individual command entries) contain invalid values.

Version: Windows 10, version 1709 Header: Ntddndis.h (include Ndis.h)

Receive Side Scaling Version 2 (RSSv2)
NDIS_RSS_SET_INDIRECTION_ENTRIES
NDIS_RSS_SET_INDIRECTION_ENTRY
NDIS_NIC_SWITCH_CAPABILITIES

７ Note

The entire group of the command entries must be marked with the same entry
status.

Error conditions and status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entries
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rss_set_indirection_entry
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities

OID_GEN_RECEIVE_SCALE_PARAMETERS_V2
NDIS_RECEIVE_SCALE_PARAMETERS_V2

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_scale_parameters_v2

OID_GEN_STATISTICS
Article • 02/06/2024

As a query, NDIS and overlying drivers use the OID_GEN_STATISTICS OID to obtain
statistics of an adapter or a miniport driver.

Note: General statistics OIDs count all traffic through the network adapter including
Network Direct Kernel (NDK) traffic. NDK statistics may be counted separately with
OID_NDK_STATISTICS.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

The NDIS_STATISTICS_INFO structure is defined as follows:

ManagedCPlusPlus

This structure contains the following members:

 typedef struct _NDIS_STATISTICS_INFO {
 NDIS_OBJECT_HEADER Header;
 ULONG SupportedStatistics;
 ULONG64 ifInDiscards;
 ULONG64 ifInErrors;
 ULONG64 ifHCInOctets;
 ULONG64 ifHCInUcastPkts;
 ULONG64 ifHCInMulticastPkts;
 ULONG64 ifHCInBroadcastPkts;
 ULONG64 ifHCOutOctets;
 ULONG64 ifHCOutUcastPkts;
 ULONG64 ifHCOutMulticastPkts;
 ULONG64 ifHCOutBroadcastPkts;
 ULONG64 ifOutErrors;
 ULONG64 ifOutDiscards;
 ULONG64 ifHCInUcastOctets;
 ULONG64 ifHCInMulticastOctets;
 ULONG64 ifHCInBroadcastOctets;
 ULONG64 ifHCOutUcastOctets;
 ULONG64 ifHCOutMulticastOctets;
 ULONG64 ifHCOutBroadcastOctets;
 } NDIS_STATISTICS_INFO, *PNDIS_STATISTICS_INFO;

Header
The NDIS_OBJECT_HEADER structure for the NDIS_STATISTICS_INFO structure. Set the
Type member of the structure that Header specifies to NDIS_OBJECT_TYPE_DEFAULT,
the Revision member to NDIS_STATISTICS_INFO_REVISION_1, and the Size member to
NDIS_SIZEOF_STATISTICS_INFO_REVISION_1.

SupportedStatistics
The set of statistics that the miniport driver supports.

Note NDIS 6.0 and later drivers must support all statistics and must report them when
queried for OID_GEN_STATISTICS.

The value is the bitwise OR of the following flags:

NDIS_STATISTICS_FLAGS_VALID_DIRECTED_FRAMES_RCV
The data in the ifHCInUcastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_MULTICAST_FRAMES_RCV
The data in the ifHCInMulticastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_BROADCAST_FRAMES_RCV
The data in the ifHCInBroadcastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_BYTES_RCV
The data in the ifHCInOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_RCV_DISCARDS
The data in the ifInDiscards member is valid.

NDIS_STATISTICS_FLAGS_VALID_RCV_ERROR
The data in the ifInErrors member is valid.

NDIS_STATISTICS_FLAGS_VALID_DIRECTED_FRAMES_XMIT
The data in the ifHCOutUcastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_MULTICAST_FRAMES_XMIT
The data in the ifHCOutMulticastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_BROADCAST_FRAMES_XMIT
The data in the ifHCOutBroadcastPkts member is valid.

NDIS_STATISTICS_FLAGS_VALID_BYTES_XMIT
The data in the ifHCOutOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_XMIT_ERROR
The data in the ifOutErrors member is valid.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

NDIS_STATISTICS_FLAGS_VALID_XMIT_DISCARDS
The data in the ifOutDiscards member is valid.

NDIS_STATISTICS_FLAGS_VALID_DIRECTED_BYTES_RCV
The data in the ifHCInUcastOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_MULTICAST_BYTES_RCV
The data in the ifHCInMulticastOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_BROADCAST_BYTES_RCV
The data in the ifHCInBroadcastOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_DIRECTED_BYTES_XMIT
The data in the ifHCOutUcastOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_MULTICAST_BYTES_XMIT
The data in the ifHCOutMulticastOctets member is valid.

NDIS_STATISTICS_FLAGS_VALID_BROADCAST_BYTES_XMIT
The data in the ifHCOutBroadcastOctets member is valid.

ifInDiscards
The dropped-receive-buffer error count. This is the same value that
OID_GEN_RCV_DISCARDS returns.

ifInErrors
The receive error count. This count is the same value that OID_GEN_RCV_ERROR returns.

ifHCInOctets
The sum of the receive-directed byte count, receive-multicast byte count, and receive-
broadcast byte count. This sum is the same value that OID_GEN_BYTES_RCV returns.

ifHCInUcastPkts
The number of directed packets that are received without errors. This number is the
same value that OID_GEN_DIRECTED_FRAMES_RCV returns.

ifHCInMulticastPkts
The number of multicast/functional packets that are received without errors. This
number is the same value that OID_GEN_MULTICAST_FRAMES_RCV returns.

ifHCInBroadcastPkts
The number of broadcast packets that are received without errors. This number is the
same value that OID_GEN_BROADCAST_FRAMES_RCV returns.

ifHCOutOctets
The sum of the transmit-directed byte count, transmit-multicast byte count and
transmit-broadcast byte count. This sum is the same value that OID_GEN_BYTES_XMIT
returns.

ifHCOutUcastPkts
The number of directed packets that are transmitted without errors. This number is the
same value that OID_GEN_DIRECTED_FRAMES_XMIT returns.

ifHCOutMulticastPkts
The number of multicast/functional packets that are transmitted without errors. This
number is the same value that OID_GEN_MULTICAST_FRAMES_XMIT returns.

ifHCOutBroadcastPkts
The number of broadcast packets that are transmitted without errors. This number is the
same value that OID_GEN_BROADCAST_FRAMES_XMIT returns.

ifOutErrors
The transmit error count. This count is the same value that OID_GEN_XMIT_ERROR
returns.

ifOutDiscards
The number of packets that is discarded by the interface. This is same as the value that
is returned by querying the OID_GEN_XMIT_DISCARDS OID.

ifHCInUcastOctets
The number of bytes in directed packets that are received without errors. This count is
the same value that OID_GEN_DIRECTED_BYTES_RCV returns.

ifHCInMulticastOctets
The number of bytes in multicast/functional packets that are received without errors.
This count is the same value that OID_GEN_MULTICAST_BYTES_RCV returns.

ifHCInBroadcastOctets
The number of bytes in broadcast packets that are received without errors. This count is
the same value that OID_GEN_BROADCAST_BYTES_RCV returns.

ifHCOutUcastOctets
The number of bytes in directed packets that are transmitted without errors. This count
is the same value that OID_GEN_DIRECTED_BYTES_XMIT returns.

ifHCOutMulticastOctets
The number of bytes in multicast/functional packets that are transmitted without errors.
This count is the same value that OID_GEN_MULTICAST_BYTES_XMIT returns.

ifHCOutBroadcastOctets
The number of bytes in broadcast packets that are transmitted without errors. This
count is the same value that OID_GEN_BROADCAST_BYTES_XMIT returns.

Miniport drivers must implement the statistics counters and report the correct statistics
values. The statistics counters are unsigned 64-bit values. The miniport driver returns the
statistics in an NDIS_STATISTICS_INFO structure.

Header Ntddndis.h (include Ndis.h)

NDIS_OBJECT_HEADER

OID_GEN_BROADCAST_BYTES_RCV

OID_GEN_BROADCAST_BYTES_XMIT

OID_GEN_BROADCAST_FRAMES_RCV

OID_GEN_BROADCAST_FRAMES_XMIT

OID_GEN_BYTES_RCV

OID_GEN_BYTES_XMIT

OID_GEN_DIRECTED_BYTES_RCV

OID_GEN_DIRECTED_BYTES_XMIT

OID_GEN_DIRECTED_FRAMES_RCV

OID_GEN_DIRECTED_FRAMES_XMIT

OID_GEN_MULTICAST_FRAMES_RCV

OID_GEN_MULTICAST_FRAMES_XMIT

Remarks

Requirements

ﾉ Expand table

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/objectheader/ns-objectheader-ndis_object_header

OID_GEN_MULTICAST_BYTES_RCV

OID_GEN_MULTICAST_BYTES_XMIT

OID_GEN_RCV_DISCARDS

OID_GEN_RCV_ERROR

OID_GEN_XMIT_DISCARDS

OID_GEN_XMIT_ERROR

OID_GEN_SUPPORTED_GUIDS
Article • 02/18/2023

As a query, the OID_GEN_SUPPORTED_GUIDS OID requests the miniport driver to return
an array of structures of the type NDIS_GUID.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

Each structure in the array specifies the mapping of a custom GUID (globally unique
identifier) to either a custom OID or to an NDIS_STATUS that the miniport driver sends
through the NdisMIndicateStatusEx function.

The NDIS_GUID structure is defined as follows:

C++

The members of this structure contain the following information:

Remarks

typedef struct _NDIS_GUID {
 GUID Guid;
 union {
 NDIS_OID Oid;
 NDIS_STATUS Status;
 };
 ULONG Size;
 ULONG Flags;
} NDIS_GUID, *PNDIS_GUID;

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

Guid
Specifies the custom GUID defined for the miniport driver.

Oid
Specifies the custom OID to which Guid maps.

Status
Specifies the NDIS_STATUS to which Guid maps.

Size
Specifies the size in bytes of each data item in the array returned by the miniport driver.
If the fNDIS_GUID_ANSI_STRING or fNDIS_GUID_NDIS_STRING flag is set, Size is set to
-1. Otherwise, Size specifies the size in bytes of the data item that the GUID represents.
This member is specified only when the fNDIS_GUID_ARRAY flag is set.

Flags
The following flags can be combined by the OR operator to indicate whether the GUID
maps to an OID or to an NDIS_STATUS string and to indicate the type of data that is
supplied for the GUID:

fNDIS_GUID_TO_OID
Indicates that the NDIS_GUID structure maps a GUID to an OID.

fNDIS_GUID_TO_STATUS
Indicates that the NDIS_GUID structure maps a GUID to an NDIS_STATUS string.

fNDIS_GUID_ANSI_STRING
Indicates that a null-terminated ANSI string is supplied for the GUID.

fNDIS_GUID_UNICODE_STRING
Indicates that a Unicode string is supplied for the GUID.

fNDIS_GUID_ARRAY
Indicates that an array of data items is supplied for the GUID. The specified Size
indicates the length of each data item in the array.

fNDIS_GUID_ALLOW_READ
When set, indicates that all users are allowed to use this GUID to obtain information.

fNDIS_GUID_ALLOW_WRITE
When set, indicates that all users are allowed to use this GUID to set information.

Note By default, custom WMI GUIDs supplied by a miniport driver are only accessible
to users with administrator privileges. A user with administrator privileges can always
read or write to a custom GUID if the miniport driver supports the read or write

operation for that GUID. Set the fNDIS_GUID_ALLOW_READ and
fNDIS_GUID_ALLOW_WRITE flags to allow all users to access a custom GUID.

Note that all custom GUIDs registered by a miniport driver must set either
fNDIS_GUID_TO_OID or fNDIS_GUID_TO_STATUS (never set both). All other flags may be
combined by using the OR operator as applicable.

In the following example, an NDIS_GUID structure maps a GUID to
OID_802_3_MULTICAST_LIST:

C++

A GUID is an identifier used by Windows Management Instrumentation (WMI) to obtain
or set information. NDIS intercepts a GUID sent by WMI to an NDIS driver, it maps the
GUID to an OID, and sends the OID to the driver. The driver returns the data items to
NDIS, which then returns the data to WMI.

NDIS also translates changes in NIC status into GUIDs that are recognized by WMI.
When a miniport driver reports a change in NIC status using the NdisMIndicateStatusEx
function, NDIS translates the NDIS_STATUS indicated by the miniport driver into a GUID
that NDIS sends to WMI.

If a miniport driver supports customs GUIDs, it must support
OID_GEN_SUPPORTED_GUIDS. This OID returns to NDIS the mapping of custom GUIDs
to custom OIDs or NDIS_STATUS strings. After querying the miniport driver using
OID_GEN_SUPPORTED_GUIDS, NDIS registers the miniport driver's custom GUIDs with
WMI.

Header Ntddndis.h (include Ndis.h)

NdisMIndicateStatusEx

NDIS_GUID NdisGuid = {{0x44795701, 0xa61b, 0x11d0, 0x8d, 0xd4,
 0x00, 0xc0, 0x4f, 0xc3,
 0x35, 0x8c},
 OID_802_3_MULTICAST_LIST,
 6,
 fNDIS_GUID_TO_OID | fNDIS_GUID_ARRAY};

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

OID_GEN_SUPPORTED_LIST
Article • 02/18/2023

As a query, the OID_GEN_SUPPORTED_LIST OID specifies an array of OIDs for objects
that the miniport driver or a NIC supports. Objects include general, media-specific, and
implementation-specific objects.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested.

NDIS 5.1 miniport drivers
Mandatory. See OID_GEN_SUPPORTED_LIST (NDIS 5.1).

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory. See OID_GEN_SUPPORTED_LIST (NDIS 5.1).

NDIS 6.0 and later miniport drivers do not receive this OID request. NDIS handles this
OID with a cached value that miniport drivers supply during initialization.

To specify the list of supported OIDs during initialization, a miniport driver sets the
SupportedOidList member of the NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES
structure and passes the structure to the NdisMSetMiniportAttributes function.

NDIS forwards a subset of the provided list to protocol drivers that make this query.
That is, NDIS filters any supported statistics OIDs out of the list because protocol drivers
never make statistics queries.

If a miniport driver lists an OID in its supported OIDs list, it must fully support the OID.
That is, the miniport driver must return valid data when it responds to a query or set
request for the OIDs that it includes in the list. For example, the OID_GEN_STATISTICS
OID is a required OID for NDIS 6.0 and later miniport drivers. If a miniport driver does
not support the statistics in hardware or software and returns incorrect statistics
information, the driver cannot specify OID_GEN_STATISTICS in its supported OIDs list.

Remarks

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560258(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff560258(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Duplicates might appear in the supported OIDs list. Drivers are not required to
guarantee that there is only one entry for each OID in the list.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Requirements

See also

OID_GEN_TRANSMIT_BLOCK_SIZE
Article • 02/18/2023

As a query, the OID_GEN_TRANSMIT_BLOCK_SIZE OID specifies the minimum number of
bytes that a single net packet occupies in the transmit buffer space of the NIC.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The OID_GEN_TRANSMIT_BLOCK_SIZE OID specifies the minimum number of bytes that
a single net packet occupies in the transmit buffer space of the NIC. For example, a NIC
that has a transmit space divided into 256-byte pieces would have a transmit block size
of 256 bytes. To calculate the total transmit buffer space on such a NIC, its driver
multiplies the number of transmit buffers on the NIC by its transmit block size.

For other NICs, the transmit block size is identical to its maximum packet size.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_TRANSMIT_BUFFER_SPACE
Article • 02/18/2023

As a query, the OID_GEN_TRANSMIT_BUFFER_SPACE OID specifies the amount of
memory, in bytes, on the NIC that is available for buffering transmit data.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

A protocol can use this OID as a guide for sizing the amount of transmit data per send.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_TRANSMIT_QUEUE_LENGTH
Article • 02/18/2023

As a query, the OID_GEN_TRANSMIT_QUEUE_LENGTH OID specifies the number of
packets that are currently queued for transmission, whether on the NIC or in a driver-
internal queue.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later drivers
Optional.

NDIS 5.1 drivers
Optional.

Windows XP
Supported.

NDIS 5.1 drivers
Optional.

For queries, the number returned is always the total number of packets currently
queued. This number can include unsubmitted send requests queued in the NDIS
library.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_TRANSPORT_HEADER_OFFSET
Article • 02/18/2023

As a set, the OID_GEN_TRANSPORT_HEADER_OFFSET OID indicates the size of additional
headers for packets that a particular transport sends and receives.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

A transport informs miniport drivers and other layered drivers of this header size; these
drivers can then use this information when processing packets. For example, a driver
could use the sublayer header size obtained from the transport to locate the beginning
of higher layer information in packets, such as the start of the IP header; the driver could
then parse and adjust the fields of the IP protocol header as appropriate. Transports use
a TRANSPORT_HEADER_OFFSET structure, defined as follows, to indicate this header
size.

C++

The members of this structure contain the following information:

Remarks

typedef struct _TRANSPORT_HEADER_OFFSET {
 USHORT ProtocolType;
 USHORT HeaderOffset;
} TRANSPORT_HEADER_OFFSET, *PTRANSPORT_HEADER_OFFSET;

ProtocolType
Specifies the protocol type that sends this OID and that subsequently sends and
receives packets using the specified sublayer header size. The protocol is one of the
following values:

NDIS_PROTOCOL_ID_DEFAULT
Default protocol

NDIS_PROTOCOL_ID_TCP_IP
TCP/IP protocol

NDIS_PROTOCOL_ID_IPX
NetWare IPX protocol

NDIS_PROTOCOL_ID_NBF
NetBIOS protocol

HeaderOffset
Specifies the size, in bytes, of the sublayer header that precedes the protocol header for
packets that the protocol subsequently sends to or receives from the miniport driver or
other layered driver. For example, sizeof(Ethernet header) + sizeof(SNAP header).

Typically, transports calculate the header size of packets from information that is
retrieved from miniport drivers. To request the maximum total packet size in bytes that a
NIC supports, including the header, transports use the OID_GEN_MAXIMUM_TOTAL_SIZE
OID. To request the maximum packet size in bytes that a NIC supports, not including a
header, transports use the OID_GEN_MAXIMUM_FRAME_SIZE OID. To calculate the
maximum header size, transports subtract the maximum frame size from the maximum
total size.

If a transport transmits packets that contain sublayer header information, the transport
must know the sublayer header size of these packets and must inform underlying
miniport drivers and other layered drivers about the size so that the drivers can process
the packets. Sending and receiving particular sublayer header information within a
packet may be an option that can be set in the registry for a particular protocol.
Transports could then obtain information about sublayer headers from the registry and
pass the header size down to miniport drivers or other layered drivers.

For example, if a transport handles packets from the Fiber Distributed Data Interface
medium, the transport must send a set request to underlying miniport drivers and other
layered drivers using OID_GEN_TRANSPORT_HEADER_OFFSET to inform those drivers
about the size of the packets' sublayer header. (FDDI is not supported in Windows Vista
and later versions of Windows.) These packets from FDDI could contain Logical Link

Control (LLC) information. This LLC information could in turn include an LLC header and
other headers such as Sub-Network Access Protocol (SNAP). The transport determines
from the registry to use LLC/SNAP and passes the header size of the LLC/SNAP
segments of packets to miniport drivers.

This OID is optional for miniport drivers and other layered drivers. Because this OID is
optional, drivers are not required to respond to requests that transports make using this
OID.

Header Ntddndis.h (include Ndis.h)

OID_GEN_MAXIMUM_FRAME_SIZE

OID_GEN_MAXIMUM_TOTAL_SIZE

Requirements

See also

OID_GEN_UNKNOWN_PROTOS
Article • 02/18/2023

As a query, use the OID_GEN_UNKNOWN_PROTOS OID to determine the unknown-
protocol packet count of a network interface (ifInUnknownProtos from RFC 2863).

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

The unknown-protocol statistics counter specifies the number of packets that were
received through the interface that were discarded because the associated protocol was
unknown or unsupported.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is a
ULONG64 value that specifies the number of packets.

Header Ntddndis.h (include Ndis.h)

NDIS Network Interface OIDs

Remarks

Requirements

See also

https://go.microsoft.com/fwlink/p/?linkid=84054

OID_GEN_VENDOR_DESCRIPTION
Article • 02/18/2023

As a query, the OID_GEN_VENDOR_DESCRIPTION OID points to a null-terminated
Unicode string describing the Network Interface Controller (NIC).

Set requests are not supported.

This OID is mandatory for NDIS 6.0 and later miniport drivers.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_VENDOR_DRIVER_VERSION
Article • 02/18/2023

As a query, the OID_GEN_VENDOR_DRIVER_VERSION OID specifies the vendor-assigned
version number of the miniport driver.

Set requests are not supported.

The low-order half of the return value specifies the minor version; the high-order half
specifies the major version.

This OID is mandatory for NDIS 6.0 and later miniport drivers.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_VENDOR_ID
Article • 02/18/2023

As a query, the OID_GEN_VENDOR_ID OID specifies a three-byte IEEE-registered vendor
code, followed by a single byte that the vendor assigns to identify a particular NIC.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Mandatory.

NDIS 5.1 miniport drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Mandatory.

The IEEE code uniquely identifies the vendor and is the same as the three bytes
appearing at the beginning of the NIC hardware address.

Vendors without an IEEE-registered code should use the value 0xFFFFFF.

Independent hardware vendor's filter drivers or intermediate drivers might query this
OID.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_GEN_VLAN_ID
Article • 02/18/2023

As a query, the OID_GEN_VLAN_ID OID reports the configured VLAN identifier (ID) for a
NIC.

As a set, the OID_GEN_VLAN_ID OID specifies the configured VLAN identifier (ID) for an
NIC that the miniport driver handles.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Optional.

NDIS 5.1 miniport drivers
Optional.

Windows XP
Supported.

NDIS 5.1 miniport drivers
Optional.

The information buffer passed in this request contains an NDIS_VLAN_ID data type. This
NDIS_VLAN_ID value contains the VLAN ID in the 12 least significant bits per the IEEE
802.1Q-2005 standard. Higher order bits of the NDIS_VLAN_ID value are reserved and
must be set to 0. Note that NDIS defines NDIS_VLAN_ID as a ULONG.

When a transport uses OID_GEN_VLAN_ID in a query, the miniport driver returns the
current configured VLAN ID for the NIC. When used in a set, the miniport driver sets the
NIC's current configured VLAN ID to the specified value.

During the miniport driver's MiniportInitializeEx function for a particular NIC, the driver
initially sets the NIC's VLAN ID to zero. The driver's MiniportInitializeEx function then
reads the following configuration parameter from the registry, and, if the parameter is
present, sets the NIC's VLAN ID to the parameter's value.

syntax

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

VlanId, REG_DWORD

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

OID_GEN_XMIT_DISCARDS
Article • 02/18/2023

As a query, NDIS and overlying drivers use the OID_GEN_XMIT_DISCARDS OID to
determine the number of transmit discards on a miniport adapter.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later miniport drivers
Not requested. (see Remarks section)

NDIS handles this OID for miniport drivers. See the OID_GEN_STATISTICS OID for more
information about statistics.

The count that this OID returns is the number of packets that is discarded by the
interface. The count is identical to the ifOutDiscards counter described in RFC 2863.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_XMIT_ERROR
Article • 02/18/2023

As a query, the OID_GEN_XMIT_ERROR OID specifies the number of frames that a NIC
fails to transmit.

Version Information

Windows Vista and later versions of Windows
Obsolete.

NDIS 6.0 and later drivers
Not requested. Use OID_GEN_STATISTICS instead.

NDIS 5.1 drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 drivers
Mandatory.

The count is identical to the ifOutErrors counter described in RFC 2863.

For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_GEN_XMIT_LINK_SPEED
Article • 02/18/2023

As a query, use the OID_GEN_XMIT_LINK_SPEED OID to determine the transmit link
speed of a network interface.

Version Information

Windows Vista and later
Supported.

NDIS 6.0 and later miniport drivers
Not requested. For NDIS interface providers only.

Only NDIS network interface providers, and therefore not miniport drivers or filter
drivers, must support this OID as an OID request.

If the interface provider returns NDIS_STATUS_SUCCESS, the result of the query is a
ULONG64 value that indicates the transmit link speed of the interface, in bits per
second.

Header Ntddndis.h (include Ndis.h)

NDIS Network Interface OIDs

Remarks

Requirements

See also

OID_GEN_XMIT_OK
Article • 02/18/2023

As a query, the OID_GEN_XMIT_OK OID specifies the number of frames that are
transmitted without errors.

Version Information

Windows Vista and later versions of Windows
Supported.

NDIS 6.0 and later drivers
Mandatory.

NDIS 5.1 drivers
Mandatory.

Windows XP
Supported.

NDIS 5.1 drivers
Mandatory.

OID_GEN_XMIT_OK specifies the number of frames that are transmitted without errors.
However, the OID_GEN_STATISTICS does not include this information.

NOTE: Statistics OIDs are mandatory for NDIS 6.0 and later miniport drivers unless NDIS
handles them. For general information about statistics OIDs, see General Statistics.

Header Ntddndis.h (include Ndis.h)

OID_GEN_STATISTICS

Remarks

Requirements

See also

OID_IP4_OFFLOAD_STATS
Article • 02/18/2023

The host stack queries the OID_IP4_OFFLOAD_STATS OID to obtain statistics on IPv4
datagrams that an offload target has processed on offloaded TCP connections. The host
stack sets this OID to cause an offload target to reset the counters for such statistics to
zero.

In response to a query of OID_IP4_OFFLOAD_STATS, an offload target supplies a filled-in
IP_OFFLOAD_STATS structure. The IP_OFFLOAD_STATS structure contains the statistics for
IPv4 datagrams processed on offloaded TCP connections.

In response to a set of OID_IP4_OFFLOAD_STATS, an offload target should reset all of its
IPv4 statistics counters for offloaded TCP connections to zero.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ip_offload_stats

OID_IP6_OFFLOAD_STATS
Article • 02/18/2023

The host stack queries the OID_IP6_OFFLOAD_STATS OID to obtain statistics on IPv6
datagrams that an offload target has processed on offloaded TCP connections. The host
stack sets this OID to cause an offload target to reset the counters for such statistics to
zero.

In response to a query of OID_IP6_OFFLOAD_STATS, an offload target supplies a filled-in
IP_OFFLOAD_STATS structure. The IP_OFFLOAD_STATS structure contains the statistics for
IPv6 datagrams processed on offloaded TCP connections.

In response to a set of OID_IP6_OFFLOAD_STATS, an offload target should reset all of its
IPv6 statistics counters for offloaded TCP connections to zero.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ip_offload_stats

OID_NDK_CONNECTIONS
Article • 02/18/2023

As a query, NDIS and overlying drivers or user-mode applications use the
OID_NDK_CONNECTIONS OID to query the list of active Network Direct connections
from the miniport adapter.

NDIS 6.30 and later miniport drivers that provide NDK services must support this OID.
Otherwise, this OID is optional.

NDIS issues this OID to obtain the list of active Network Direct connections from an
adapter. The adapter must return the list of connections with the
NDIS_NDK_CONNECTIONS structure at the InformationBuffer member of the
NDIS_OID_REQUEST structure.

This structure is variable-sized based on the number of connections that are returned.
The size of the connection array, as element count, is specified in the Count member.

Minimum supported client None supported

Minimum supported server Windows Server 2012

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NDK_CONNECTIONS

NDIS_OID_REQUEST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_connections
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_connections
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NDK_LOCAL_ENDPOINTS
Article • 02/18/2023

As a query, NDIS and overlying drivers or user-mode applications use the
OID_NDK_LOCAL_ENDPOINTS OID to the list of active Network Direct listeners and
shared endpoints on a miniport adapter.

NDIS 6.30 and later miniport drivers that provide NDK services must support this OID.
Otherwise, this OID is optional.

NDIS issues this OID to obtain the list of active Network Direct listeners and shared
endpoints from an adapter. The adapter is required to return the list of listeners and
shared endpoints in the NDIS_NDK_LOCAL_ENDPOINTS structure at InformationBuffer
member of the NDIS_OID_REQUEST structure.

This structure is variable-sized based on the number of local endpoints that are
returned. The size of the local endpoint array, as element count, is specified in the Count
member.

Minimum supported client None supported

Minimum supported server Windows Server 2012

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NDK_LOCAL_ENDPOINTS

NDIS_OID_REQUEST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_local_endpoints
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_local_endpoints
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NDK_SET_STATE
Article • 02/18/2023

As a set request, NDIS and overlying drivers use the OID_NDK_SET_STATE OID to set the
state of the miniport adapter's NDK functionality.

NDIS 6.30 and later miniport drivers that provide NDK services must support this OID.
Otherwise, this OID is optional.

NDIS issues this OID with the InformationBuffer member of the NDIS_OID_REQUEST
structure pointing to a BOOLEAN and InformationBufferLength member equal to
sizeof(BOOLEAN).

If the BOOLEAN value is TRUE and the *NetworkDirect keyword value is nonzero,
the miniport adapter's NDK functionality must be enabled.

The miniport driver can read the *NetworkDirect keyword value by doing the
following:

1. Call NdisOpenConfigurationEx with the NDIS handle that the
NdisMRegisterMiniportDriver function returned when the miniport driver
was initialized. For more information about calling
NdisOpenConfigurationEx, see Reading the Registry in an NDIS 6.0 Miniport
Driver.

2. Call NdisReadConfiguration, passing:

"*NetworkDirect" for the Keyword parameter

NdisParameterInteger for the ParameterType parameter

If the BOOLEAN value is FALSE, the NDK functionality of the miniport adapter must
be disabled.

To enable or disable its NDK functionality, the miniport driver's MiniportOidRequest
callback function should follow the steps in Enabling and Disabling NDK Functionality.

Note An NDK-capable miniport driver must never call NdisMNetPnPEvent from the
context of its MiniportOidRequest function, because doing so could cause a deadlock.
Instead, it should call NdisMNetPnPEvent from some other context or queue a work
item.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisopenconfigurationex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismregisterminiportdriver
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/reading-the-registry-in-an-ndis-6-0-miniport-driver
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

An NDK-capable miniport driver's MiniportOidRequest function must return
STATUS_SUCCESS for an OID_NDK_SET_STATE OID request unless a failure occurs. The
driver must not return NDIS_STATUS_PENDING.

Minimum supported client None supported

Minimum supported server Windows Server 2012

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NdisMNetPnPEvent

NdisQueueIoWorkItem

NdisReadConfiguration

NDK_ADAPTER

OID_NDK_SET_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismnetpnpevent
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisqueueioworkitem
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisreadconfiguration
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndkpi/ns-ndkpi-_ndk_adapter

OID_NDK_STATISTICS
Article • 02/18/2023

As a query, NDIS and overlying drivers or user-mode applications use the
OID_NDK_STATISTICS OID to get the NDK statistics of a miniport adapter.

NDIS 6.30 and later miniport drivers that provide NDK services must support this OID.
Otherwise, this OID is optional.

Note NDIS supports this OID with the direct OID request interface. For more
information about the direct OID request interface, see NDIS 6.1 Direct OID Request
Interface.

NDIS issues this OID with the InformationBuffer member of the NDIS_OID_REQUEST
structure pointing to an NDIS_NDK_STATISTICS_INFO structure.

The NDK-capable miniport driver must provide the CounterSet member, which is a
NDIS_NDK_PERFORMANCE_COUNTERS structure.

The counters are published to tools such as perfmon (see the NetworkDirect Activity
performance counter) and made available programmatically with the Performance Data
Helper (PDH) and Performance Library (PERFLIB) programming interfaces. For more
information about these interfaces, see Performance Counters.

These counters are also available by calling the Get-NetAdapterStatistics PowerShell
cmdlet with the RdmaStatistics attribute. For more information about the
RdmaStatistics attribute, see MSFT_NetAdapterStatisticsSettingData.

Minimum supported client None supported

Minimum supported server Windows Server 2012

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_statistics_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_performance_counters
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc731067(v=ws.11)
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/hh997022(v=ws.11)
https://learn.microsoft.com/en-us/windows/desktop/PerfCtrs/performance-counters-portal
https://learn.microsoft.com/en-us/powershell/module/netadapter/get-netadapterstatistics
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/netadaptercimprov/msft-netadapterstatisticssettingdata

Kernel Mode Performance Monitoring

NDIS_NDK_PERFORMANCE_COUNTERS

NDIS_NDK_STATISTICS_INFO

NDIS_OID_REQUEST

https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/kernel-mode-performance-monitoring
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_performance_counters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ndk_statistics_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_ALLOCATE_VF
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_NIC_SWITCH_ALLOCATE_VF to allocate resources for a PCI Express (PCIe) Virtual
Function (VF). The VF is exposed on a network adapter that supports the single root I/O
virtualization (SR-IOV) interface.

Overlying drivers issue this OID method request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID method request is required for PF
miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_VF_PARAMETERS structure.

The PF miniport driver allocates software resources for a VF when the driver handles an
object identifier (OID) method request of OID_NIC_SWITCH_ALLOCATE_VF. Even though
the hardware resources have been allocated for a VF, it is considered to be
nonoperational until the PF miniport driver successfully completes the
OID_NIC_SWITCH_ALLOCATE_VF.

For more information about how to allocate VF resources, see Allocating Resources for a
Virtual Function.

Note After an overlying driver requests resource allocation for a VF, that driver is the
only component that can request the freeing of the resources for the same VF. The
overlying driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the
VF resources. Before the overlying driver can be halted, it must free the resources for
each VF that was allocated by the driver's OID_NIC_SWITCH_ALLOCATE_VF request.

The PF miniport driver returns one of the following status codes for the OID method
request of OID_NIC_SWITCH_ALLOCATE_VF.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

Status Code Description

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VF_PARAMETERS structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_VF_PARAMETERS).
The PF miniport driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_MAKE_RID

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_CREATE_VPORT

NDIS_NIC_SWITCH_VF_PARAMETERS

OID_NIC_SWITCH_FREE_VF

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndis_make_rid
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters

OID_NIC_SWITCH_CREATE_SWITCH
Article • 02/18/2023

NDIS issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_SWITCH to create a NIC switch on a network adapter. When it
handles this OID request, the miniport driver allocates the resources for the NIC switch
on the adapter.

NDIS issues this OID method request to the miniport driver of the network adapter's PCI
Express (PCIe) Physical Function (PF). This OID method request is required for PF
miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

Note Overlying drivers, such as protocol or filter drivers, cannot issue OID method
requests of OID_NIC_SWITCH_CREATE_SWITCH to the PF miniport driver.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_PARAMETERS structure.

When it receives the OID method request of OID_NIC_SWITCH_CREATE_SWITCH, the PF
miniport driver must do the following:

1. If the PF miniport driver supports static switch creation and configuration, it
creates the NIC switch when NDIS calls MiniportInitializeEx. When the driver
handles this OID request, it must verify the configuration parameters in the
NDIS_NIC_SWITCH_PARAMETERS structure. The parameters must be the same as
those used by the driver to create the switch during the call to MiniportInitializeEx.
If this is not true, the driver must fail the OID request.

For more information, see Static Creation of a NIC Switch.

2. If the PF miniport driver supports dynamic switch creation and configuration, the
driver must validate the configuration values of the
NDIS_NIC_SWITCH_PARAMETERS structure and create the NIC switch based on
these values.

For more information, see Dynamic Creation of a NIC Switch.

3. The PF miniport driver must allocate the necessary hardware and software
resources for the default VPort on the NIC switch.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

Note The default VPort is always created through an OID request of
OID_NIC_SWITCH_CREATE_SWITCH and deleted through an OID request of
OID_NIC_SWITCH_DELETE_SWITCH. OID requests of
OID_NIC_SWITCH_CREATE_VPORT and OID_NIC_SWITCH_DELETE_VPORT are used
for the creation and deletion of nondefault VPorts on the NIC switch.

4. The PF miniport driver that supports dynamic switch creation and configuration
must enable SR-IOV virtualization on the switch by calling
NdisMEnableVirtualization. This call configures the NumVFs member and the VF
Enable bit in the SR-IOV Extended Capability structure of the adapter's PCI Express
(PCIe) configuration space.

For more information about the SR-IOV configuration space, see the PCI-SIG
Single Root I/O Virtualization and Sharing 1.1 specification.

Note If the PF miniport driver supports static switch creation, it enables SR-IOV
virtualization after it creates the switch when MiniportInitializeEx is called.

If the PF miniport driver successfully completes the OID method request of
OID_NIC_SWITCH_CREATE_SWITCH, it allows the following to occur:

VFs can be allocated on the NIC switch through OID method requests of
OID_NIC_SWITCH_ALLOCATE_VF.

Nondefault VPorts can be created on the NIC switch through OID method requests
of OID_NIC_SWITCH_CREATE_VPORT.

For more information on how to handle this OID request, see Handling the
OID_NIC_SWITCH_CREATE_SWITCH Request.

The PF miniport driver returns one of the following status codes for the OID method
request of OID_NIC_SWITCH_CREATE_SWITCH.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the SR-IOV interface or is not enabled to use
the interface.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://pcisig.com/specifications/iov/single_root
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize

Status Code Description

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_PARAMETERS structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_PARAMETERS). The
PF miniport driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NDIS_OID_REQUEST

NDIS_NIC_SWITCH_PARAMETERS

NdisMEnableVirtualization

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_CREATE_VPORT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization

OID_NIC_SWITCH_CREATE_VPORT
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_NIC_SWITCH_CREATE_VPORT to create a nondefault virtual port (VPort) on a
network adapter's NIC switch. This OID method request also attaches the created VPort
to the network adapter's PCI Express (PCIe) Physical Function (PF) or a previously
allocated PCIe Virtual Function (VF).

Overlying drivers issue this OID method request to the miniport driver for the network
adapter's PF. This OID method request is required for PF miniport drivers that support
the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure.

The overlying driver initializes the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure
with the configuration information about the nondefault VPort to be created. The
configuration information includes the PCIe function to which the nondefault VPort is
attached and the number of queue pairs for the nondefault VPort.

When the PF miniport driver is issued the OID request, the driver allocates the hardware
and software resources associated with the specified nondefault VPort. After all the
resources are successfully allocated, the PF miniport driver completes the OID
successfully by returning NDIS_STATUS_SUCCESS from MiniportOidRequest.

If the OID_NIC_SWITCH_CREATE_VPORT request completes successfully, the PF miniport
driver and the overlying driver must retain the VPortId value of the nondefault VPort for
successive operations. The VPortId value is used during these operations:

NDIS and the overlying drivers use the VPortId value to identify the nondefault
VPort in successive OID requests related to this VPort, such as
OID_NIC_SWITCH_VPORT_PARAMETERS and OID_NIC_SWITCH_DELETE_VPORT.

During send operations, NDIS specifies the VPortId value to identify the VPort
from which a packet was sent. This value is specified within the out-of-band (OOB)
NDIS_NET_BUFFER_LIST_FILTERING_INFO data of the NET_BUFFER_LIST structure.

During receive operations, the PF miniport driver specifies the VPortId value to
which a packet is to be forwarded. This value is also specified in the OOB

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info

NDIS_NET_BUFFER_LIST_FILTERING_INFO data of the NET_BUFFER_LIST structure.

For more information, see Creating a Virtual Port.

Note The default VPort always exists and is not created though an OID request of
OID_NIC_SWITCH_CREATE_VPORT. The default VPort has an identifier of
NDIS_DEFAULT_VPORT_ID. When the PF miniport driver creates a NIC switch, the driver
automatically attaches the default VPort to the PF of the network adapter.

NDIS or the PF miniport driver returns one of the following status codes for the OID
method request of OID_NIC_SWITCH_CREATE_SWITCH.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the SR-IOV interface or is not enabled to use the
interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_VPORT_PARAMETERS).
The PF miniport driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to
the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportOidRequest

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_net_buffer_list_filtering_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

NDIS_NIC_SWITCH_PARAMETERS

NDIS_NIC_SWITCH_VPORT_PARAMETERS

NDIS_OID_REQUEST

NET_BUFFER_LIST

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_DELETE_VPORT

OID_NIC_SWITCH_PARAMETERS

OID_NIC_SWITCH_VPORT_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_CURRENT_CAPABILITI
ES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_NIC_SWITCH_CURRENT_CAPABILITIES to obtain the currently enabled hardware
capabilities of the NIC switch in a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

Starting with NDIS 6.20, miniport drivers supply the currently enabled NIC switch
hardware capabilities on the network adapter when its MiniportInitializeEx function is
called. The driver initializes an NDIS_NIC_SWITCH_CAPABILITIES structure with the NIC
switch hardware capabilities and sets the CurrentNicSwitchCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a pointer to
the NDIS_NIC_SWITCH_CAPABILITIES structure. The miniport driver then calls the
NdisMSetMiniportAttributes function and sets the MiniportAttributes parameter to a
pointer to an NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Note Starting with NDIS 6.30, miniport drivers that support the single root I/O
virtualization (SR-IOV) interface must register the enabled hardware capabilities of the
NIC switch. Drivers register these capabilities by calling NdisMSetMiniportAttributes.

Overlying protocol and filter drivers do not have to issue OID query requests of
OID_NIC_SWITCH_CURRENT_CAPABILITIES. NDIS provides the currently enabled NIC
switch hardware capabilities of a network adapter to these drivers in the following way:

NDIS reports the currently enabled NIC switch hardware capabilities of an
underlying network adapter to overlying protocol drivers in the
NicSwitchCapabilities member of the NDIS_BIND_PARAMETERS structure during
the bind operation.

NDIS reports the currently enabled NIC switch hardware capabilities of an
underlying network adapter to overlying filter drivers in the NicSwitchCapabilities
member of the NDIS_FILTER_ATTACH_PARAMETERS structure during the attach
operation.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters

NDIS handles the OID query request of the OID_NIC_SWITCH_CURRENT_CAPABILITIES
request for miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_NIC_SWITCH_CURRENT_CAPABILITIES request, it returns
one of the following status codes:

Status Code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer points to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_CAPABILITIES). The
miniport driver must set the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_FILTER_ATTACH_PARAMETERS

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_NIC_SWITCH_CAPABILITIES

NDIS_OID_REQUEST

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_DELETE_SWITCH
Article • 02/18/2023

NDIS issues an object identifier (OID) set request of OID_NIC_SWITCH_DELETE_SWITCH
to delete a NIC switch from a network adapter.

NDIS issues this OID set request to the miniport driver of the network adapter's PCI
Express (PCIe) Physical Function (PF). This OID set request is required for PF miniport
drivers that support the single root I/O virtualization (SR-IOV) interface.

Note Overlying drivers, such as protocol or filter drivers, cannot issue this OID method
request to the PF miniport driver.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_DELETE_SWITCH_PARAMETERS structure.

An OID set request of OID_NIC_SWITCH_DELETE_SWITCH deletes a NIC switch that was
previously created through an OID method request of
OID_NIC_SWITCH_CREATE_SWITCH.

When it receives the OID method request of OID_NIC_SWITCH_DELETE_SWITCH, the PF
miniport driver must do the following:

1. If the PF miniport driver supports static creation and configuration of NIC switches,
it must free the software resources associated with the specified NIC switch.
However, the driver can only free the hardware resources for the NIC switch when
MiniportHaltEx is called.

For more information about static NIC switch creation, see Static Creation of a NIC
Switch.

2. If the PF miniport driver supports the dynamic creation and configuration of NIC
switches, it must free the hardware and software resources associated with the
specified NIC switch.

For more information about dynamic NIC switch creation, see Dynamic Creation of
a NIC Switch.

3. If the PF miniport driver supports the dynamic creation and all the NIC switches
have been deleted, the driver must disable virtualization on the adapter by calling

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt

NdisMEnableVirtualization. To disable virtualization, the network adapter must set
the EnableVirtualization parameter to FALSE and the NumVFs parameter to zero.

NdisMEnableVirtualization clears the NumVFs member and the VF Enable bit in
the SR-IOV Extended Capability structure in the PCI configuration space of the
network adapter's PF.

Note If the PF miniport driver supports static creation and configuration of NIC
switches, it must only call NdisMEnableVirtualization when MiniportHaltEx is
called.

For more information, see Deleting a NIC Switch.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

NDIS returns one of the following status codes for this request:

Term Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support the
SR-IOV interface or is not enabled to use the
interface.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismenablevirtualization
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

Term Description

NDIS_STATUS_FILE_NOT_FOUND One or more of the members of the
NDIS_NIC_SWITCH_DELETE_SWITCH_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer is too small. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in
the NDIS_OID_REQUEST structure to the minimum
buffer size that is required.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportHaltEx

NDIS_OID_REQUEST

NDIS_NIC_SWITCH_DELETE_SWITCH_PARAMETERS

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_DELETE_VPORT

OID_NIC_SWITCH_FREE_VF

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_switch_parameters

OID_NIC_SWITCH_DELETE_VPORT
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_NIC_SWITCH_DELETE_VPORT to delete a nondefault virtual port (VPort) that was
previously created on a network adapter's NIC switch. The overlying driver can delete a
VPort that it has previously created only by issuing an OID method request of
OID_NIC_SWITCH_CREATE_VPORT.

Overlying drivers issue this OID set request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID set request is required for PF miniport
drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS structure.

An overlying driver, such as a protocol or filter driver, can only delete a nondefault VPort
that it has previously created. The overlying driver creates a VPort by issuing an OID
method request of OID_NIC_SWITCH_CREATE_VPORT.

When the PF miniport driver receives the OID request of
OID_NIC_SWITCH_DELETE_VPORT, the driver must free the hardware and software
resources that were allocated for the specified VPort.

For more information, see Deleting a Virtual Port.

Note Only nondefault VPorts can be explicitly deleted through OID requests of
OID_NIC_SWITCH_DELETE_VPORT. The default VPort is implicitly deleted when the PF
miniport driver deletes the default NIC switch. For more information, see Deleting a NIC
Switch.

The PF miniport driver returns one of the following status codes for the OID set request
of OID_NIC_SWITCH_DELETE_VPORT.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters

Status Code Description

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support the single
root I/O virtualization (SR-IOV) interface or is not enabled
to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS).
The PF miniport driver must set the
DATA.SET_INFORMATION.BytesNeeded member in the
NDIS_OID_REQUEST structure to the minimum buffer size
that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NIC_SWITCH_DELETE_VPORT_PARAMETERS

NDIS_OID_REQUEST

NdisCloseAdapterEx

OID_NIC_SWITCH_CREATE_VPORT

OID_NIC_SWITCH_DELETE_SWITCH

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex

OID_NIC_SWITCH_ENUM_SWITCHES
Article • 02/18/2023

An overlying driver or user-mode application issues an object identifier (OID) query
request of OID_NIC_SWITCH_ENUM_SWITCHES to obtain an array. Each element in the
array specifies the attributes of a NIC switch that has been created on a network
adapter.

After a successful return from this OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the
following:

An NDIS_NIC_SWITCH_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_INFO structures. Each of these structures contains
the information about a single NIC switch created on the network adapter.

Note If the network adapter has no NIC switches, the driver sets the
NumElements member of the NDIS_NIC_SWITCH_INFO_ARRAY structure to zero
and no NDIS_NIC_SWITCH_INFO structures are returned.

Overlying drivers and user-mode applications issue OID query requests of
OID_NIC_SWITCH_ENUM_SWITCHES to enumerate the NIC switches created on a
network adapter.

Note Starting with Windows Server 2012, the single root I/O virtualization (SR-IOV)
interface only supports the default NIC switch on the network adapter. Therefore, the
returned NDIS_NIC_SWITCH_INFO_ARRAY structure must specify a single
NDIS_NIC_SWITCH_INFO element for the default NIC switch, which is referenced by the
identifier of NDIS_DEFAULT_SWITCH_ID.

NDIS handles the OID query request of the OID_NIC_SWITCH_ENUM_SWITCHES request
for miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_NIC_SWITCH_ENUM_SWITCHES request, it returns one of
the following status codes.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info

Status Code DescriptionStatus Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
SR-IOV interface or is not enabled to use the
interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_INFO_ARRAY structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NIC_SWITCH_INFO

NDIS_NIC_SWITCH_INFO_ARRAY

NDIS_OID_REQUEST

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_delete_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_ENUM_VFS
Article • 02/18/2023

An overlying driver or user-mode application issues an object identifier (OID) method
request of OID_NIC_SWITCH_ENUM_VFS to obtain an array. Each element in the array
specifies the attributes of a PCI Express (PCIe) Virtual Function (VF) that are attached to a
NIC switch on a network adapter's NIC switch.

After a successful return from this OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the
following:

An NDIS_NIC_SWITCH_VF_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_VF_INFO structures. Each of these structures
contains information about a single VF on a NIC switch of the network adapter. A
VF is attached to a NIC switch through OID method requests of
OID_NIC_SWITCH_ALLOCATE_VF.

Note If no VFs are attached to a NIC switch on the network adapter, the
NumElements member of the NDIS_NIC_SWITCH_VF_INFO_ARRAY structure is set
to zero and no NDIS_NIC_SWITCH_VF_INFO structures are returned.

Overlying drivers and user-mode applications issue OID method requests of
OID_NIC_SWITCH_ENUM_VFS to enumerate the VFs attached to a network adapter's NIC
switch.

Before the driver or application issues the OID request, it must initialize an
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure that is passed along with the request.
The driver or application must follow these guidelines when initializing the
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure:

If the NDIS_NIC_SWITCH_VF_INFO_ARRAY_ENUM_ON_SPECIFIC_SWITCH flag is set
in the Flags member, the driver or application must set the SwitchId member to
the NIC switch identifier on the SR-IOV network adapter. By setting these members
in this way, VF information is returned only for the specified NIC switch on the SR-
IOV network adapter.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array

Note The overlying driver and user-mode application can obtain the NIC switch
identifiers by issuing an OID query request of OID_NIC_SWITCH_ENUM_SWITCHES.

If the Flags member is set to zero, the driver or application must set the SwitchId
member to zero. By setting these members in this way, VF information is returned
for all NIC switch on the SR-IOV network adapter.

Note Starting with Windows Server 2012, Windows supports only the default NIC
switch on the network adapter. Regardless of the flags set in the Flags member, the
SwitchId member must be set to NDIS_DEFAULT_SWITCH_ID.

For more information about NIC switches, see NIC Switches.

NDIS handles the OID method request of the OID_NIC_SWITCH_ENUM_VFS request for
miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_NIC_SWITCH_ENUM_VFS request, it returns one of the
following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NDIS_NIC_SWITCH_VF_INFO

NDIS_NIC_SWITCH_VF_INFO_ARRAY

NDIS_OID_REQUEST

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_VF_PARAMETERS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_ENUM_VPORTS
Article • 02/18/2023

An overlying driver or user-mode application issues an object identifier (OID) method
request of OID_NIC_SWITCH_ENUM_VPORTS to obtain an array. Each element in the
array specifies the attributes of a virtual port (VPort) that has been created on a network
adapter's NIC switch.

After a successful return from this OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer that contains the
following:

An NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure that defines the number of
elements within the array.

An array of NDIS_NIC_SWITCH_VPORT_INFO structures. Each of these structures
contains information about a VPort on the network adapter's NIC switch.

Note If no VPorts have been created on the network adapter, the driver sets the
NumElements member of the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure
to zero and no NDIS_NIC_SWITCH_VPORT_INFO structures are returned.

Overlying drivers and user-mode applications issue OID query requests of
OID_NIC_SWITCH_ENUM_VPORTS to enumerate the VPorts that are allocated on a
network adapter's NIC switch.

Before the driver or application issues the OID request, it must initialize an
NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure that is passed along with the
request. The driver or application must follow these guidelines when initializing the
NDIS_NIC_SWITCH_VPORT_INFO_ARRAY structure:

If the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY_ENUM_ON_SPECIFIC_SWITCH flag is
set in the Flags member, information is returned for all VPorts created on a
specified NIC switch. The NIC switch is specified by the SwitchId member of that
structure.

Note Starting with Windows Server 2012, the SR-IOV interface supports only the
default NIC switch on the network adapter. Regardless of the flags that are set in
the Flags member, the SwitchId member must be set to
NDIS_DEFAULT_SWITCH_ID.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array

If the NDIS_NIC_SWITCH_VPORT_INFO_ARRAY_ENUM_ON_SPECIFIC_FUNCTION
flag is set in the Flags member, information is returned for all VPorts attached to a
specified PCI Express (PCIe) Physical Function (PF) or Virtual Function (VF) on the
network adapter. The PF or VF is specified by the AttachedFunctionId member of
that structure.

If the AttachedFunctionId member is set to NDIS_PF_FUNCTION_ID, information is
returned for all VPorts, including the default VPort, that are attached to the
network adapter's PF. If the AttachedFunctionId member is set to a valid VF
identifier, information is returned for all VPorts to the specified VF.

Note Starting with Windows Server 2012, only one nondefault VPort can be
attached to a VF. However, multiple VPorts (including the default VPort) can be
attached to the PF.

If the Flags member is set to zero, information is returned for all VPorts attached to
the PF or VF on the network adapter. In this case, the values of the SwitchId and
AttachedFunctionId are ignored.

For more information, see Enumerating Virtual Ports on a Network Adapter.

NDIS handles the OID method request of the OID_NIC_SWITCH_ENUM_VPORTS request
for miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_NIC_SWITCH_ENUM_VPORTS request, it returns one of the
following status codes:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VF_INFO_ARRAY structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Status Code Description

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NIC_SWITCH_VPORT_INFO

NDIS_NIC_SWITCH_VPORT_INFO_ARRAY

NDIS_OID_REQUEST

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_FREE_VF
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_NIC_SWITCH_FREE_VF to free the resources for a network adapter's PCI Express
(PCIe) Virtual Function (VF).

Overlying drivers issue this OID set request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID set request is required for PF miniport
drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_FREE_VF_PARAMETERS structure.

The overlying driver specifies the identifier of the VF to be freed through the VFId
member of this structure. The driver obtained this identifier from an earlier OID method
request of OID_NIC_SWITCH_ALLOCATE_VF.

An overlying driver issues an OID set request of OID_NIC_SWITCH_FREE_VF to free the
resources for a VF. These resources were previously allocated through an OID method
request of OID_NIC_SWITCH_ALLOCATE_VF.

For more information about how to free VF resources, see Freeing Resources for a
Virtual Function.

Note Once an overlying driver requests resource allocation for a VF, that driver is the
only component that can request the freeing of the resources for the same VF. The
overlying driver must issue an OID set request of OID_NIC_SWITCH_FREE_VF to free the
VF resources. Before the overlying driver can be halted, it must free the resources for
each VF that was allocated by the driver's OID_NIC_SWITCH_ALLOCATE_VF request.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

Remarks

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Term Description

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

NDIS returns one of the following status codes for this request:

Term Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the SR-IOV interface or is not enabled to use
the interface.

NDIS_STATUS_FILE_NOT_FOUND One or more of the members of the
NDIS_NIC_SWITCH_FREE_VF_PARAMETERS
structure have invalid values. For example, the
VFId member might specify a VF that either has
not been allocated or that has VPorts that have
not been deleted.

NDIS_STATUS_INVALID_LENGTH The information buffer is too small. NDIS sets
the DATA.SET_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NDIS_NIC_SWITCH_FREE_VF_PARAMETERS

NDIS_OID_REQUEST

NdisCloseAdapterEx

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_CREATE_VPORT

OID_NIC_SWITCH_DELETE_VPORT

OID_NIC_SWITCH_DELETE_SWITCH

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_free_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex

OID_NIC_SWITCH_HARDWARE_CAPABIL
ITIES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_NIC_SWITCH_HARDWARE_CAPABILITIES to obtain the hardware capabilities of the
NIC switch in the network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

The NDIS_NIC_SWITCH_CAPABILITIES structure contains information about the
hardware capabilities of a NIC switch on the network adapter. These capabilities can
include the hardware capabilities that are currently disabled by the INF file settings or
through the Advanced properties page.

Note All the capabilities of the specified NIC switch are returned through an OID query
request of OID_NIC_SWITCH_HARDWARE_CAPABILITIES, regardless of whether a
capability is enabled or disabled.

Starting with NDIS 6.20, miniport drivers supply the NIC switch hardware capabilities
when its MiniportInitializeEx function is called. The driver initializes an
NDIS_NIC_SWITCH_CAPABILITIES structure with the NIC switch hardware capabilities
and sets the HardwareNicSwitchCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a pointer to
the NDIS_NIC_SWITCH_CAPABILITIES structure. The miniport driver then calls the
NdisMSetMiniportAttributes function and sets the MiniportAttributes parameter to a
pointer to an NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Note Starting with NDIS 6.30, miniport drivers that support the single root I/O
virtualization (SR-IOV) interface must register the hardware capabilities of the NIC
switch. Drivers register these capabilities by calling NdisMSetMiniportAttributes.

NDIS handles the OID query request of OID_NIC_SWITCH_HARDWARE_CAPABILITIES
request for miniport drivers, and returns one of the following status codes:

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Status Code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer points to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_CAPABILITIES). NDIS
sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_NIC_SWITCH_CAPABILITIES

NDIS_OID_REQUEST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_NIC_SWITCH_PARAMETERS
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_NIC_SWITCH_PARAMETERS to obtain the current configuration parameters of a
specified NIC switch on a network adapter. NDIS handles these OID method requests for
the miniport driver.

Overlying drivers issue an OID set request of OID_NIC_SWITCH_PARAMETERS to set the
configuration parameters of a specified NIC switch on a network adapter. These OID set
requests are issued to the miniport driver of the network adapter's PCI Express (PCIe)
Physical Function (PF). These OID set requests are required for PF miniport drivers that
support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_PARAMETERS structure.

The overlying driver specifies the NIC switch for the OID method or set request by
setting the SwitchId member of the NDIS_NIC_SWITCH_PARAMETERS structure to the
switch identifier. The overlying driver obtains the switch identifier through one of the
following ways:

From a previous OID method request of OID_NIC_SWITCH_ENUM_SWITCHES.

From the NicSwitchArray member of the NDIS_BIND_PARAMETERS structure.
NDIS passes a pointer to this structure in the BindParameters parameter of the
ProtocolBindAdapterEx function.

From the NicSwitchArray member of the NDIS_FILTER_ATTACH_PARAMETERS
structure. NDIS passes a pointer to this structure in the AttachParameters
parameter of the FilterAttach function.

Note Starting with Windows Server 2012, Windows supports only the default NIC
switch on the network adapter. The SwitchId member of the
NDIS_NIC_SWITCH_PARAMETERS structure must be set to NDIS_DEFAULT_SWITCH_ID.

The overlying driver issues OID_NIC_SWITCH_PARAMETERS requests in the following
way:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters

The overlying driver issues an OID method request of
OID_NIC_SWITCH_PARAMETERS to obtain the current parameters of a specified
NIC switch. For more information, see Querying the Parameters of a NIC Switch.

Note NDIS handles OID method requests of OID_NIC_SWITCH_PARAMETERS for
the PF miniport driver.

The overlying driver issues an OID set request of OID_NIC_SWITCH_PARAMETERS
to change the current parameters of a specified NIC switch. For more information,
see Setting the Parameters of a NIC Switch.

Note The PF miniport driver handles OID set requests of
OID_NIC_SWITCH_PARAMETERS.

NDIS or the PF miniport driver returns the following status codes for set or method OID
requests of OID_NIC_SWITCH_PARAMETERS.

Status Code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer points to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_PARAMETERS structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS or
the PF miniport driver sets the
DATA.METHOD_INFORMATION.BytesNeeded
member (for OID method requests) or
DATA.SET_INFORMATION.BytesNeeded
member (for OID set requests) in the
NDIS_OID_REQUEST structure to the minimum
buffer size that is required.

NDIS_STATUS_REINIT_REQUIRED The PF miniport driver requires a reinitialization
of the network adapter to apply the changes to
the NIC switch.

NDIS_STATUS_FAILURE The request failed for other reasons.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

FilterAttach

NDIS_BIND_PARAMETERS

NDIS_FILTER_ATTACH_PARAMETERS

NDIS_NIC_SWITCH_PARAMETERS

NDIS_OID_REQUEST

OID_NIC_SWITCH_CREATE_SWITCH

OID_NIC_SWITCH_ENUM_SWITCHES

ProtocolBindAdapterEx

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-protocol_bind_adapter_ex

OID_NIC_SWITCH_VF_PARAMETERS
Article • 02/18/2023

An overlying driver or user-mode application issues an object identifier (OID) method
request of OID_NIC_SWITCH_VF_PARAMETERS to obtain the current configuration
parameters of a PCI Express (PCIe) Virtual Function (VF) on a network adapter. Only VFs
that have resources allocated through an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF can be queried through an OID method request of
OID_NIC_SWITCH_VF_PARAMETERS.

NDIS handles the OID method request of OID_NIC_SWITCH_VF_PARAMETERS for
miniport drivers.

When the OID method request is made, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_VF_PARAMETERS structure.

The overlying driver or user-mode application specifies the VF to query by setting the
VFId member of the NDIS_NIC_SWITCH_VF_PARAMETERS structure to the identifier of
the VF. The overlying driver or application obtains the VF identifier through one of the
following ways:

By issuing an OID method request of OID_NIC_SWITCH_ENUM_VFS.

If this OID request is completed successfully, the overlying driver or user-mode
application receives a list of all VFs allocated on the network adapter. Each element
within the list is an NDIS_NIC_SWITCH_VF_INFO structure, with the VF identifier
specified by the VFId member.

By issuing an OID method request of OID_NIC_SWITCH_ALLOCATE_VF.

If this OID request is completed successfully, the overlying driver receives the
identifier of the newly created VF in the VFId member of the returned
NDIS_NIC_SWITCH_VF_PARAMETERS structure.

Note Only overlying drivers can obtain the VF identifier in this manner.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

NDIS_NIC_SWITCH_VF_PARAMETERS structure. This structure contains the
configuration parameters for the specified VF.

NDIS handles the OID method request of OID_NIC_SWITCH_VF_PARAMETERS for
miniport drivers, and returns the following status code for OID method requests of
OID_NIC_SWITCH_VF_PARAMETERS.

Status Code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer member points to an
NDIS_NIC_SWITCH_VF_PARAMETERS structure.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VF_PARAMETERS structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_NIC_SWITCH_VF_PARAMETERS).
NDIS sets the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NDIS_NIC_SWITCH_VF_PARAMETERS

NDIS_OID_REQUEST

OID_NIC_SWITCH_ALLOCATE_VF

OID_NIC_SWITCH_ENUM_VFS

NDIS_NIC_SWITCH_VF_INFO

OID_NIC_SWITCH_VF_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vf_info

OID_NIC_SWITCH_VPORT_PARAMETERS
Article • 02/18/2023

An overlying driver can obtain the parameters for a virtual port (VPort) on a NIC switch
that has been created on a network adapter that supports single root I/O virtualization
(SR-IOV). The driver issues an object identifier (OID) method request of
OID_NIC_SWITCH_VPORT_PARAMETERS to obtain these parameters.

Overlying drivers issue an OID set request of OID_NIC_SWITCH_VPORT_PARAMETERS to
set the configuration parameters of a specified VPort that is attached to the network
adapter's NIC switch. These OID set requests are issued to the miniport driver of the
network adapter's PCI Express (PCIe) Physical Function (PF). These OID set requests are
required for PF miniport drivers that support the single root I/O virtualization (SR-IOV)
interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_NIC_SWITCH_VPORT_PARAMETERS structure.

The overlying driver specifies the VPort for the OID method or set request by setting the
VPortId member of the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure to the
identifier associated with the VPort. The overlying driver obtains the VPort identifier
through one of the following ways:

From a previous OID method request of OID_NIC_SWITCH_CREATE_VPORT.

From a previous OID method request of OID_NIC_SWITCH_ENUM_VPORTS.

OID_NIC_SWITCH_VPORT_PARAMETERS can be used in either OID method requests or
OID set requests.

Overlying drivers issue an OID method request of
OID_NIC_SWITCH_VPORT_PARAMETERS to query the current configuration parameters
of a VPort that is attached to the network adapter's NIC switch. Overlying drivers specify
the VPort to query by setting the VPortId member of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure to the VPort identifier.

Remarks

Handling OID Method Requests of
OID_NIC_SWITCH_VPORT_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

NDIS handles the OID method request of OID_NIC_SWITCH_VPORT_PARAMETERS for
miniport drivers. NDIS returns information that it obtained from previous OID requests
of OID_NIC_SWITCH_CREATE_VPORT and OID_NIC_SWITCH_ENUM_VPORTS.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure. This structure contains the
configuration parameters for the specified switch.

For more information, see Querying the Parameters of a Virtual Port.

Overlying drivers issue an OID set request of OID_NIC_SWITCH_VPORT_PARAMETERS to
change the current configuration parameters of a VPort that is attached to a network
adapter's NIC switch. This OID request can be used to update the parameters for default
as well as nondefault VPorts.

Only a limited subset of configuration parameters for a VPort can be changed. The
overlying driver specifies the parameter to change by setting the following members of
the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure:

1. The VPortId member is set to the identifier of the VPort whose parameters will be
changed.

2. The appropriate NDIS_NIC_SWITCH_VPORT_PARAMETERS_Xxx_CHANGED flags are
set in the Flags member. Members of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS structure can only be changed if a
corresponding NDIS_NIC_SWITCH_PARAMETERS_Xxx_CHANGED flag is defined in
Ntddndis.h.

3. The corresponding members of the NDIS_NIC_SWITCH_VPORT_PARAMETERS
structure are set with the VPort configuration parameters that are to be changed.

After the PF miniport driver receives the OID set request of
OID_NIC_SWITCH_VPORT_PARAMETERS, the driver configures the hardware with the
configuration parameters. The driver can only change those configuration parameters
identified by NDIS_NIC_SWITCH_VPORT_PARAMETERS_Xxx_CHANGED flags in the Flags
member of the NDIS_NIC_SWITCH_VPORT_PARAMETERS structure.

For more information, see Setting the Parameters of a Virtual Port.

Handling OID Set Requests of
OID_NIC_SWITCH_VPORT_PARAMETERS

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters

NDIS or the PF miniport driver returns the following status code for set or method OID
requests of OID_NIC_SWITCH_VPORT_PARAMETERS.

Status Code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer points to an
NDIS_NIC_SWITCH_CAPABILITIES structure.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_NIC_SWITCH_VPORT_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS or
the PF miniport driver sets the
DATA.METHOD_INFORMATION.BytesNeeded
member (for OID method requests) or
DATA.SET_INFORMATION.BytesNeeded
member (for OID set requests) in the
NDIS_OID_REQUEST structure to the minimum
buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_NIC_SWITCH_VPORT_PARAMETERS

NDIS_OID_REQUEST

OID_NIC_SWITCH_CREATE_VPORT

OID_NIC_SWITCH_ENUM_VPORTS

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_nic_switch_vport_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_OFFLOAD_ENCAPSULATION
Article • 02/18/2023

As a query request, overlying drivers use the OID_OFFLOAD_ENCAPSULATION OID to
obtain the current task offload encapsulation settings of an underlying miniport adapter.
NDIS handles this OID query for miniport drivers.

As a set request, overlying drivers use the OID_OFFLOAD_ENCAPSULATION OID to set
the task offload encapsulation settings of an underlying miniport adapter. Miniport
drivers that support task offload must handle this OID set request.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_OFFLOAD_ENCAPSULATION structure.

If a miniport driver does not support offload and this OID, the driver should return
NDIS_STATUS_NOT_SUPPORTED.

Miniport drivers must use the contents of the NDIS_OFFLOAD_ENCAPSULATION
structure to update the currently reported TCP offload capabilities. After the update, the
miniport driver must report the current task offload capabilities with the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication. This status
indication ensures that all of the overlying protocol drivers are updated with the new
capabilities information.

This OID is used to activate all configured or enabled offloads, or deactivate all offloads
(in other words, the hardware starts to perform the offloads). It does not provide fine
control over individual offloads. Instead, OID_TCP_OFFLOAD_PARAMETERS is used to
configure individual offloads and can also activate them. Generally, most TCP/IP task
offloads can be configured and activated with OID_TCP_OFFLOAD_PARAMETERS.

However, this OID's NDIS_OFFLOAD_ENCAPSULATION structure also covers two other
encapsulation types that are not covered by OID_TCP_OFFLOAD_PARAMETERS's
NDIS_OFFLOAD_PARAMETERS structure: NDIS_ENCAPSULATION_IEEE_802_3 and
NDIS_ENCAPSULATION_IEEE_LLC_SNAP_ROUTED. Miniport drivers need to handle this
difference in encapsulation types that are covered by the different OIDs.

Remarks

Miniport drivers

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

If this OID is issued by the protocol driver to deactivate all offloads, the Enabled
member of the NDIS_OFFLOAD_ENCAPSULATION member will be set to
NDIS_OFFLOAD_SET_OFF.

Protocol drivers set OID_OFFLOAD_ENCAPSULATION after determining the system
encapsulation requirements. A protocol driver can determine the capabilities of the
underlying miniport adapter from the NDIS_BIND_PARAMETERS structure or by
querying OID_TCP_OFFLOAD_CURRENT_CONFIG. The protocol driver must set an
encapsulation type that the miniport adapter supports on at least one offload service.

If a miniport driver supports any offload type that supports the requested encapsulation
type, the driver must return NDIS_STATUS_SUCCESS in response to a set of
OID_OFFLOAD_ENCAPSULATION. Otherwise, the miniport driver should return
NDIS_STATUS_INVALID_PARAMETER.

For send operations, a protocol driver can issue send requests by using only those
offload types that the miniport adapter supports with the required encapsulation type.
Therefore, if an OID set request of OID_OFFLOAD_ENCAPSULATION fails, the protocol
driver must not use any offload settings in send requests that are directed to that
miniport adapter.

For receive operations, the miniport driver must not start checksum or Internet protocol
security (IPsec) offload services until after it receives an OID set request of
OID_OFFLOAD_ENCAPSULATION.

A protocol driver can issue an OID_OFFLOAD_ENCAPSULATION query only after setting
the OID_OFFLOAD_ENCAPSULATION OID.

NDIS responds with an NDIS_OFFLOAD_ENCAPSULATION structure that contains the
current encapsulation settings.

Protocol drivers must be prepared to handle any NDIS_STATUS_Xxx failure code. If a
failure occurs, the protocol driver must not attempt to perform any offload operations
that are directed to the affected miniport adapter.

Setting encapsulation (protocol drivers)

Obtaining current encapsulation settings (protocol
drivers)

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation

NDIS_BIND_PARAMETERS
NDIS_OFFLOAD_ENCAPSULATION
NDIS_OID_REQUEST
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG
OID_TCP_OFFLOAD_CURRENT_CONFIG

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/encapsulationconfig/ns-encapsulationconfig-ndis_offload_encapsulation
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_PACKET_COALESCING_FILTER_MAT
CH_COUNT
Article • 02/18/2023

NDIS issues an OID query request of OID_PACKET_COALESCING_FILTER_MATCH_COUNT
to obtain the number of packets that were cached, or coalesced, on the network adapter.
The network adapter coalesces received packets if the adapter is enabled for NDIS
packet coalescing and the packet matches a receive filter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a caller-allocated ULONG64 variable. Before a successful return from the query
request, the driver updates the ULONG64 variable with the number of packets that have
matched receive filters on the network adapter.

Starting with NDIS 6.30, drivers that support NDIS packet coalescing must support OID
query requests of OID_PACKET_COALESCING_FILTER_MATCH_COUNT.

Note Drivers that support the single root I/O virtualization (SR-IOV) or virtual machine
queue (VMQ) interfaces are not required to support OID query requests of this OID.

A miniport driver that supports packet coalescing must increment a ULONG64 counter
for each received packet that was coalesced on the network adapter. Packets are
coalesced if they match a receive filter, which overlying drivers download to the miniport
driver through OID method requests of OID_RECEIVE_FILTER_SET_FILTER.

The driver returns the value of this counter when it handles an OID query request of
OID_PACKET_COALESCING_FILTER_MATCH_COUNT.

The miniport driver must not clear the counter after it handles the OID query request of
OID_PACKET_COALESCING_FILTER_MATCH_COUNT. The miniport driver must only clear
the counter if the following conditions are true:

The miniport driver handles an OID set request of OID_PNP_SET_POWER to resume
to a full-power state of NdisDeviceStateD0.

NDIS calls the miniport driver's MiniportResetEx function to reset the underlying
network adapter.

For more information about packet coalescing, see NDIS Packet Coalescing.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

The miniport driver returns one of the following status codes for the OID method
request of OID_PACKET_COALESCING_FILTER_MATCH_COUNT:

NDIS_STATUS_SUCCESS
The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. The driver sets the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportResetEx

NDIS_OID_REQUEST

OID_PNP_SET_POWER

OID_RECEIVE_FILTER_SET_FILTER

Return status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_PD_CLOSE_PROVIDER
Article • 02/18/2023

An NDIS protocol or filter driver sends an object identifier (OID) method request of
OID_PD_CLOSE_PROVIDER to the PDPI provider to give up access to the PD capability in
a PDPI provider object.

An NDIS protocol or filter driver must call this OID when it receives an unbind
notification, a pause indication, a low-power event, or a PD configuration change event
that indicates the PD is disabled on the binding.

Before calling this OID, the NDIS protocol or filter driver must ensure that it has closed
and freed all PD objects such as queues, counters, and filters that it created over the PD
provider instance. The NDIS protocol or filter driver must guarantee that there are no in-
progress calls to any of the PD provider dispatch table functions before issuing this OID.

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Ntddndis.h (include Ndis.h)

MiniportOidRequest

NDIS_PD_CLOSE_PROVIDER_PARAMETERS

NDIS_STATUS_PD_CURRENT_CONFIG

OID_PD_OPEN_PROVIDER

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_close_provider_parameters

OID_PD_OPEN_PROVIDER
Article • 02/18/2023

An NDIS protocol or filter driver sends an object identifier (OID) method request of
OID_PD_OPEN_PROVIDER to a PD-capable miniport driver to gain access to the PD
capability in the miniport driver's PDPI provider object. All PD-capable miniport drivers
must handle this OID request.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_PD_OPEN_PROVIDER_PARAMETERS structure

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Ntddndis.h (include Ndis.h)

MiniportOidRequest

NDIS_PD_OPEN_PROVIDER_PARAMETERS

NDIS_STATUS_PD_CURRENT_CONFIG

OID_PD_CLOSE_PROVIDER

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_open_provider_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_pd_open_provider_parameters

OID_PD_QUERY_CURRENT_CONFIG
Article • 02/18/2023

An NDIS protocol or filter driver sends an object identifier (OID) method request of
OID_PD_QUERY_CURRENT_CONFIG to a PD-capable miniport driver to retrieve the PD
status and capabilities. All PD-capable miniport drivers must handle this OID request.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_PD_CONFIG structure

Minimum supported client Windows 10

Minimum supported server Windows Server 2016

Header Ntddndis.h (include Ndis.h)

MiniportOidRequest

NDIS_PD_CONFIG

NDIS_OID_REQUEST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pd_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pd_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_PM_ADD_PROTOCOL_OFFLOAD
Article • 02/18/2023

As a set, NDIS protocol drivers use the OID_PM_ADD_PROTOCOL_OFFLOAD OID to add
a protocol offload for power management to a network adapter. The InformationBuffer
member of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_PM_PROTOCOL_OFFLOAD structure.

NDIS 6.20 and later protocol drivers use OID_PM_ADD_PROTOCOL_OFFLOAD OID to
add a protocol offload for power management to a network adapter. If the request is
successful, the network adapter must generate and transmit the necessary response
packets for the offloaded protocol when the network adapter is in a low power state.

A protocol driver can offload a protocol after it successfully binds to an underlying
network adapter and as soon as it has the necessary data (such as the IP address of the
interface) to offload the protocol. The protocol driver can also offload a protocol in
response to some other power management event notifications, such as the rejection of
a previously added WOL pattern or an offloaded protocol.

To avoid race conditions in NDIS and other protocol drivers that are bound to the same
miniport adapter, after NDIS starts to set a network adapter to a low power state, it will
fail any attempt to offload another protocol to that network adapter. For example, if an
NDIS protocol driver tries to offload a protocol in the context of processing a
NetEventSetPower event notification for that network adapter, NDIS will fail the request.

Before NDIS sends this OID request down to the underlying NDIS drivers or completes
the request to the overlying driver, it sets the ULONG ProtocolOffloadId member of the
NDIS_PM_PROTOCOL_OFFLOAD structure to a unique value. Protocol drivers and NDIS
use this protocol offload identifier with the OID_PM_REMOVE_PROTOCOL_OFFLOAD OID
request to remove the protocol offload from the underlying network adapter.

Note The protocol offload identifier is a unique value for each of the protocol offloads
that are set on a network adapter. However, the protocol offload identifier is not
globally unique across all network adapters.

If NDIS or an underlying network adapter rejects an offload, it generates an
NDIS_STATUS_PM_OFFLOAD_REJECTED status indication. This can occur after returning
NDIS_STATUS_SUCCESS for the OID. The StatusBuffer member of the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

NDIS_STATUS_INDICATION structure contains the ULONG protocol offload identifier of
the rejected protocol offload.

For information on how a Native 802.11 Wireless LAN miniport driver uses this OID, see
Adding and Deleting Low Power Protocol Offloads.

The miniport driver returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The requested protocol offload was added successfully. The ProtocolOffloadId member
of the NDIS_PM_PROTOCOL_OFFLOAD structure contains a protocol offload identifier.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

NDIS_STATUS_PM_PROTOCOL_OFFLOAD_LIST_FULL
The request failed because the protocol offload list is full and the network adapter
cannot add another protocol offload.

NDIS_STATUS_RESOURCES
NDIS or an underlying network adapter could not add the new protocol offload due to
lack of resources.

NDIS_STATUS_INVALID_PARAMETER
One or more parameters in the NDIS_PM_PROTOCOL_OFFLOAD structure were invalid.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED
The network adapter does not support the requested protocol offload.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Mandatory
for miniport drivers.

Header Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

NDIS_OID_REQUEST

NDIS_PM_PROTOCOL_OFFLOAD

NDIS_STATUS_INDICATION

NDIS_STATUS_PM_OFFLOAD_REJECTED

OID_PM_REMOVE_PROTOCOL_OFFLOAD

Adding and Deleting Low Power Protocol Offloads

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

OID_PM_ADD_WOL_PATTERN
Article • 02/18/2023

As a set, NDIS protocol drivers use the OID_PM_ADD_WOL_PATTERN OID to add a
power management wake-on-LAN pattern to a network adapter. The InformationBuffer
member of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_PM_WOL_PATTERN structure.

NDIS 6.20 and later protocol drivers use OID_PM_ADD_WOL_PATTERN to add a Wake on
LAN (WOL) pattern to a network adapter. The OID request contains criterion that the
network adapter must compare to incoming packets when it is in a low power state. The
network adapter must generate a wake up event when it receives a packet that matches
the pattern criteria.

A protocol driver can add WOL patterns after it successfully binds to an underlying
network adapter and as soon as it has the necessary data (such as the IP address of the
interface) to set up the WOL pattern. The protocol driver can also add a WOL pattern in
response to some other power management event notifications such as the rejection of
a previously added WOL pattern or an offloaded protocol.

To avoid race conditions in NDIS and other protocol drivers that are bound to the same
miniport adapter, after NDIS starts to set a network adapter to a low power state, it will
fail any attempt to add a new wake up pattern to that network adapter. For example, if
an NDIS protocol driver tries to add a new WOL pattern in the context of processing a
NetEventSetPower event notification for that network adapter, NDIS will fail the request.

Before NDIS sends this OID request down to the underlying NDIS drivers or completes
the request to the overlying driver, it sets the ULONG PatternId member of the
NDIS_PM_WOL_PATTERN structure to a unique value. Protocol drivers and NDIS use
this pattern identifier with the OID_PM_REMOVE_WOL_PATTERN OID request to remove
the WOL pattern from the underlying network adapter.

Note The pattern identifier is a unique value for each of the patterns that are set on a
network adapter. However, the pattern identifier is not globally unique across all
miniport adapters.

If NDIS or an underlying network adapter removes a WOL pattern, it generates an
NDIS_STATUS_PM_WOL_PATTERN_REJECTED status indication. The StatusBuffer

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

member of the NDIS_STATUS_INDICATION structure contains the ULONG WOL pattern
identifier of the rejected WOL pattern.

The miniport driver returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The requested pattern was added successfully. The PatternId member of the
NDIS_PM_WOL_PATTERN structure contains a pattern identifier.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

NDIS_STATUS_PM_WOL_PATTERN_LIST_FULL
The request failed because the pattern list is full and the network adapter cannot add
another pattern.

NDIS_STATUS_RESOURCES
NDIS or underlying network adapter could not add the new pattern due to lack of
resources.

NDIS_STATUS_INVALID_PARAMETER
One or more parameters in the NDIS_PM_WOL_PATTERN structure were invalid.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED
The network adapter does not support the requested WOL pattern.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Mandatory
for miniport drivers.

Header Ntddndis.h (include Ndis.h)

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

NDIS_OID_REQUEST

NDIS_PM_WOL_PATTERN

NDIS_STATUS_INDICATION

NDIS_STATUS_PM_WOL_PATTERN_REJECTED

OID_PM_REMOVE_WOL_PATTERN

OID_PNP_ADD_WAKE_UP_PATTERN

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication

OID_PM_CURRENT_CAPABILITIES
Article • 02/18/2023

As a query, overlying drivers can use the OID_PM_CURRENT_CAPABILITIES OID to query
the currently available power management capabilities of a network adapter. After a
successful return from the OID query request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an NDIS_PM_CAPABILITIES
structure.

NDIS handles the query for miniport drivers. Starting with NDIS 6.20, miniport drivers
supply the power management hardware capabilities during initialization. However,
NDIS can hide some capabilities from the protocol driver. For example, NDIS might
report different capabilities when a user disables some or all of the power management
capabilities.

Note that the current power management capabilities that NDIS reports to a protocol
driver are not necessarily the same as the hardware capabilities that the miniport driver
reported to NDIS.

NDIS reports the power management capabilities of an underlying network adapter to
overlying protocol drivers in the PowerManagementCapabilitiesEx member of the
NDIS_BIND_PARAMETERS structure during the bind operation. Therefore, protocol
drivers do not have to query the OID.

NDIS issues an NDIS_STATUS_PM_CAPABILITIES_CHANGE status indication to report
changes in the power management capabilities that are available to overlying drivers.

If the underlying network adapter has an NDIS 6.1 or older miniport driver, NDIS
translates the power management capabilities of the underlying network adapter to an
NDIS_PM_CAPABILITIES structure.

NDIS returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_PM_CAPABILITIES structure.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Not
requested for miniport drivers. (See Remarks
section.)

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_OID_REQUEST

NDIS_PM_CAPABILITIES

NDIS_STATUS_PM_CAPABILITIES_CHANGE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

OID_PM_GET_PROTOCOL_OFFLOAD
Article • 02/18/2023

An overlying driver issues an OID method request of
OID_PM_GET_PROTOCOL_OFFLOAD to obtain parameter settings for a low power
protocol offload from a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure initially contains a
pointer to a ULONG protocol offload identifier. After a successful return from the OID
method request, the InformationBuffer member of the NDIS_OID_REQUEST structure
contains a pointer to an NDIS_PM_PROTOCOL_OFFLOAD structure.

NDIS 6.20 and later protocol drivers use OID_PM_GET_PROTOCOL_OFFLOAD method
OID to retrieve parameter settings for a low power protocol offload from a network
adapter.

The information buffer must point to a ULONG-type protocol offload identifier. NDIS set
this protocol offload identifier in the ProtocolOffloadId member of the
NDIS_PM_PROTOCOL_OFFLOAD structure when NDIS sent the prior
OID_PM_ADD_PROTOCOL_OFFLOAD OID request to the underlying network adapter.

The miniport driver returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The requested data was retrieved successfully. The information buffer contains the
corresponding NDIS_PM_PROTOCOL_OFFLOAD structure.

NDIS_STATUS_PENDING
The request is pending completion. The final status code and results will be passed to
the OID request completion handler of the caller.

NDIS_STATUS_INVALID_PARAMETER
The specified protocol offload identifier was not valid.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

NDIS_STATUS_NOT_SUPPORTED
The NDIS version of the miniport driver is below 6.20.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Mandatory
for miniport drivers. (See Remarks section.)

Header Ntddndis.h (include Ndis.h)

NDIS_PM_PROTOCOL_OFFLOAD

OID_PM_ADD_PROTOCOL_OFFLOAD

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

OID_PM_HARDWARE_CAPABILITIES
Article • 02/18/2023

As a query, overlying drivers can use the OID_PM_HARDWARE_CAPABILITIES OID to
query the power management hardware capabilities of a network adapter. After a
successful return from the OID query request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an NDIS_PM_CAPABILITIES
structure.

NDIS handles the query for miniport drivers. Starting with NDIS 6.20, miniport drivers
supply the power management hardware capabilities during initialization in the
PowerManagementCapabilitiesEx member of the
NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES structure.

The miniport driver must issue an NDIS_STATUS_PM_CAPABILITIES_CHANGE status
indication to report changes in the power management hardware capabilities of a
network adapter to NDIS and overlying drivers.

NDIS returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_PM_CAPABILITIES structure.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Not

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

requested for miniport drivers. (See Remarks
section.)

Header Ntddndis.h (include Ndis.h)

NDIS_MINIPORT_ADAPTER_GENERAL_ATTRIBUTES

NDIS_OID_REQUEST

NDIS_PM_CAPABILITIES

NDIS_STATUS_PM_CAPABILITIES_CHANGE

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_general_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_capabilities

OID_PM_PARAMETERS
Article • 02/18/2023

As a query, protocol drivers can use the OID_PM_PARAMETERS OID to query the power
management hardware capabilities of a network adapter that are currently enabled.
After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_PM_PARAMETERS
structure.

As a set, protocol drivers can use the OID_PM_PARAMETERS OID to enable or disable
the current hardware capabilities of a network adapter. The protocol driver provides a
pointer to an NDIS_PM_PARAMETERS structure in the InformationBuffer member of
the NDIS_OID_REQUEST structure.

Starting with NDIS 6.20, overlying protocol and filter drivers use OID_PM_PARAMETERS
to query and set the power management hardware capabilities of a network adapter
that are currently enabled.

When an overlying driver queries the OID_PM_PARAMETERS OID, NDIS completes the
request without forwarding it to the miniport driver. NDIS stores the requested settings
and combines them with the settings from other such requests. Before NDIS transitions
the network adapter to the low power state, NDIS sends a set request to the miniport
driver that contains the combined settings from all of the requests that NDIS stored.

The capabilities that are currently enabled can be a subset of the capabilities that the
hardware supports. For more information about the capabilities that the hardware
supports, see OID_PM_HARDWARE_CAPABILITIES.

Note If NDIS sets the NDIS_PM_SELECTIVE_SUSPEND_ENABLED flag in the
WakeUpFlags member of NDIS_PM_PARAMETERS structure, it issues the OID set
request of OID_PM_PARAMETERS directly to the miniport driver. This allows NDIS to
bypass the processing by filter drivers in the networking driver stack.

NDIS or the miniport driver returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The request completed successfully.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

the OID request completion handler of the caller after the request is complete.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_INVALID_PARAMETER
The request failed because it tried to enable a capability that the underlying network
adapter does not support.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PM_PARAMETERS

OID_PM_HARDWARE_CAPABILITIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_parameters

OID_PM_PROTOCOL_OFFLOAD_LIST
Article • 02/18/2023

As a query, overlying drivers can use the OID_PM_PROTOCOL_OFFLOAD_LIST OID to
enumerate the protocol offloads that are set on an underlying network adapter. After a
successful return from the OID query request, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a list of
NDIS_PM_PROTOCOL_OFFLOAD structures that describe the currently active protocol
offloads.

NDIS handles the query for miniport drivers. NDIS drivers can use the
OID_PM_PROTOCOL_OFFLOAD_LIST OID to get a list of protocol offloads that are set on
an underlying network adapter.

For each NDIS_PM_PROTOCOL_OFFLOAD structure in the list, NDIS sets the
NextProtocolOffloadOffset member to the offset from the beginning of the OID
information buffer (that is, the beginning of the buffer that the InformationBuffer
member of the NDIS_OID_REQUEST structure points to) to the beginning of the next
NDIS_PM_PROTOCOL_OFFLOAD structure in the list. The offset in the
NextProtocolOffloadOffset member of the last structure in the list is zero.

If there are no protocol offloads that are set on the network adapter, NDIS sets the
DATA.QUERY_INFORMATION.BytesWritten member of the NDIS_OID_REQUEST
structure to zero and returns NDIS_STATUS_SUCCESS. The data within the
DATA.QUERY_INFORMATION.InformationBuffer member is not modified by NDIS.

NDIS returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer contains a pointer to a list
of protocol offloads, if any.

NDIS_STATUS_PENDING
The request is pending completion. The final status code and results will be passed to
the OID request completion handler of the caller.

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Not
requested for miniport drivers. (See Remarks
section.)

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PM_PROTOCOL_OFFLOAD

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

OID_PM_REMOVE_PROTOCOL_OFFLOAD
Article • 02/18/2023

As a set request, NDIS and protocol drivers use the
OID_PM_REMOVE_PROTOCOL_OFFLOAD OID to remove a power management protocol
offload from a network adapter. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a ULONG protocol offload
identifier.

NDIS and protocol drivers use the OID_PM_REMOVE_PROTOCOL_OFFLOAD OID to
remove a protocol offload from the underlying network adapter.

The DATA.SET_INFORMATION.InformationBuffer member of the NDIS_OID_REQUEST
structure must point to a ULONG value for a previously added protocol offload
identifier. NDIS sets this protocol offload identifier in the ProtocolOffloadId member of
the NDIS_PM_PROTOCOL_OFFLOAD structure when NDIS sent the prior
OID_PM_ADD_PROTOCOL_OFFLOAD OID request to the underlying network adapter.

NDIS ensures that the buffer size is at least sizeof(ULONG) and contains a valid protocol
offload ID. Therefore, a miniport driver's MiniportOidRequest function should return
NDIS_STATUS_SUCCESS for this request.

Note If the miniport driver is resetting, its MiniportOidRequest function should return
NDIS_STATUS_NOT_ACCEPTED.

NDIS returns one of the following status codes for this request:

NDIS_STATUS_SUCCESS
The protocol offload was removed successfully.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

Remarks

Remarks for miniport driver writers

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

NDIS_STATUS_INVALID_LENGTH
The information buffer is too small. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required, in bytes.

NDIS_STATUS_FILE_NOT_FOUND
The protocol offload identifier in the OID request is not valid.

Version Supported in NDIS 6.20 and later. Mandatory
for miniport drivers.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PM_PROTOCOL_OFFLOAD

OID_PM_ADD_PROTOCOL_OFFLOAD

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_protocol_offload

OID_PM_REMOVE_WOL_PATTERN
Article • 02/18/2023

As a set, NDIS and protocol drivers use the OID_PM_REMOVE_WOL_PATTERN OID to
remove a power management wake on LAN (WOL) pattern from a network adapter. The
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to a
ULONG pattern identifier.

NDIS and protocol drivers use OID_PM_REMOVE_WOL_PATTERN to remove a wake on
LAN (WOL) pattern from the underlying network adapter.

The DATA.SET_INFORMATION.InformationBuffer member of the NDIS_OID_REQUEST
structure must point to a ULONG value for a previously added WOL pattern identifier.
NDIS set this pattern identifier in the PatternId member of the
NDIS_PM_WOL_PATTERN structure when NDIS sent the prior
OID_PM_ADD_WOL_PATTERN OID request to the underlying network adapter.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

NDIS returns one of the following status codes for this request:

Term Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The NDIS version of the miniport driver is less
than NDIS 6.20.

NDIS_STATUS_FILE_NOT_FOUND The pattern identifier in the OID request is
invalid.

NDIS_STATUS_INVALID_LENGTH The information buffer is too small. NDIS sets
the DATA.SET_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

Version Supported in NDIS 6.20 and later. Mandatory
for miniport drivers.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PM_WOL_PATTERN

OID_PM_ADD_WOL_PATTERN

NDIS_STATUS_PM_WOL_PATTERN_REJECTED

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

OID_PM_WOL_PATTERN_LIST
Article • 02/18/2023

As a query, overlying drivers can use the OID_PM_WOL_PATTERN_LIST OID to enumerate
the wake on LAN patterns that are set on an underlying network adapter. After a
successful return from the query, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a list of NDIS_PM_WOL_PATTERN
structures that describe the currently added WOL patterns.

NDIS handles the query for miniport drivers. NDIS drivers can use the
OID_PM_WOL_PATTERN_LIST OID to get a list of wake on LAN patterns that are set on
an underlying network adapter.

For each NDIS_PM_WOL_PATTERN structure in the list, NDIS sets the
NextWoLPatternOffset member to the offset from the beginning of the OID
information buffer (that is, the beginning of the buffer that the InformationBuffer
member of the NDIS_OID_REQUEST structure points to) to the beginning of the next
NDIS_PM_WOL_PATTERN structure in the list. The offset in the NextWoLPatternOffset
member of the last structure in the list is zero.

For offsets in an NDIS_PM_WOL_PATTERN structure other than NextWoLPatternOffset
(for example, NameBufferOffset), NDIS provides offsets that are relative to the
beginning of each NDIS_PM_WOL_PATTERN structure.

If there are no WOL patterns that are set on the network adapter, NDIS sets the
DATA.QUERY_INFORMATION.BytesWritten member of the NDIS_OID_REQUEST
structure to zero and returns NDIS_STATUS_SUCCESS for the request. The data within
the DATA.QUERY_INFORMATION.InformationBuffer member is not modified by NDIS.

NDIS returns one of the following status codes for the request:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer contains a pointer to a list
of WOL patterns, if any.

NDIS_STATUS_PENDING
The request is pending completion. The final status code and results will be passed to
the OID request completion handler of the caller.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

NDIS_STATUS_BUFFER_TOO_SHORT
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for reasons other than the preceding reasons.

Version Supported in NDIS 6.20 and later. Not
requested for miniport drivers. (See Remarks
section.)

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_PM_WOL_PATTERN

OID_PM_ADD_WOL_PATTERN

OID_PM_REMOVE_WOL_PATTERN

OID_PNP_WAKE_UP_PATTERN_LIST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_wol_pattern

OID_PNP_ADD_WAKE_UP_PATTERN
Article • 02/18/2023

The OID_PNP_ADD_WAKE_UP_PATTERN OID is sent by a protocol driver to a miniport
driver to specify a wake-up pattern. The wake-up pattern, along with its mask, is
described by an NDIS_PM_PACKET_PATTERN structure.

A protocol that enables pattern-match wake-up for a miniport driver (see
OID_PNP_ENABLE_WAKE_UP) uses OID_PNP_ADD_WAKE_UP_PATTERN to specify a
wake-up pattern. The wake-up pattern can be stored in host memory or on the network
adapter, depending on the capabilities of the network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains the
following:

An NDIS_PM_PACKET_PATTERN structure that provides information about the
pattern and its mask.

A mask that indicates which bytes of an incoming packet should be compared with
corresponding bytes in the pattern. The mask starts with the first byte of the
packet. The mask immediately follows the NDIS_PM_PACKET_PATTERN structure in
the InformationBuffer. For more information about how this mask works, see the
Network Device Class Power Management Reference specification .

A wake-up pattern, which begins PatternOffset bytes from the beginning of the
InformationBuffer. For more information about wake-up patterns, see the Network
Device Class Power Management Reference specification .

The number of wake-up patterns that the miniport driver can accept from a protocol
might depend on the availability of resources, such as the host memory that the
miniport driver has allocated for such patterns, or the available storage in the network
adapter. If a miniport driver cannot add a wake-up pattern due to insufficient resources,
the miniport driver returns NDIS_STATUS_RESOURCES in response to
OID_PNP_ADD_WAKE_UP_PATTERN.

If a protocol driver tries to add a duplicate pattern, the miniport driver should return
NDIS_STATUS_INVALID_DATA in response to OID_PNP_ADD_WAKE_UP_PATTERN.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling NdisRequest or
NdisCoRequest.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/netpmspc.rtf
https://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/netpmspc.rtf
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisrequest
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff551877(v=vs.85)

Version Supported in NDIS 6.0 and NDIS 6.1. For NDIS
6.20 and later, use
OID_PM_ADD_WOL_PATTERN instead.

Header Ntddndis.h (include Ndis.h)

NDIS_PM_PACKET_PATTERN

OID_PM_ADD_WOL_PATTERN

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern

OID_PNP_CAPABILITIES
Article • 02/18/2023

The OID_PNP_CAPABILITIES OID requests a miniport driver to return the wake-up
capabilities of its network adapter or requests an intermediate driver to return the
intermediate driver's wake-up capabilities. The wake-up capabilities are formatted as an
NDIS_PNP_CAPABILITIES structure, which is defined as follows:

C++

The members of this structure contain the following information:

Flags
NDIS_DEVICE_WAKE_UP_ENABLE

NDIS sets this flag if the underlying miniport driver supports one or more wake-up
capabilities. Protocol drivers can test this flag to determine whether an underlying
miniport driver has wake-up capabilities. Miniport drivers should not access this flag.

WakeUpCapabilities
An NDIS_PM_WAKE_UP_CAPABILITIES structure that specifies the wake-up capabilities
of the miniport driver's network adapter. The NDIS_PM_WAKE_UP_CAPABILITIES
structure is defined as follows:

C++

The members of this structure contain the following information:

MinMagicPacketWakeUp
Specifies the lowest device power state from which the miniport driver's network
adapter can signal a wake-up on receipt of a magic packet. (A magic packet is a packet
that contains 16 contiguous copies of the receiving network adapter's Ethernet address.)

 typedef struct _NDIS_PNP_CAPABILITIES {
 ULONG Flags;
 NDIS_PM_WAKE_UP_CAPABILITIES WakeUpCapabilities;
 } NDIS_PNP_CAPABILITIES, *PNDIS_PNP_CAPABILITIES;

typedef struct _NDIS_PM_WAKE_UP_CAPABILITIES {
 NDIS_DEVICE_POWER_STATE MinMagicPacketWakeUp;
 NDIS_DEVICE_POWER_STATE MinPatternWakeUp;
 NDIS_DEVICE_POWER_STATE MinLinkChangeWakeUp;
 } NDIS_PM_WAKE_UP_CAPABILITIES, *PNDIS_PM_WAKE_UP_CAPABILITIES;

The device power state is specified as one of the following NDIS_DEVICE_POWER_STATE
values:

NdisDeviceStateUnspecified
The network adapter does not support magic-packet wake-ups.

NdisDeviceStateD0
The network adapter can signal a magic-packet wake-up from device power state D0.
Because D0 is the fully powered state, this does not cause a wake-up but can be used as
a run-time event.

NdisDeviceStateD1
The network adapter can signal a magic-packet wake-up from device power states D1
and D0.

NdisDeviceStateD2
The network adapter can signal a magic-packet wake-up from device states D2, D1, and
D0.

NdisDeviceStateD3
The network adapter can signal a magic-packet wake-up from device power states D3,
D2, D1, and D0.

MinPatternWakeUp
Specifies the lowest device power state from which the miniport driver's network
adapter can signal a wake-up event on receipt of a network frame that contains a
pattern specified by the protocol driver. The power state is specified as one of the
following NDIS_DEVICE_POWER_STATE values:

NdisDeviceStateUnspecified
The network adapter does not support pattern-match wake-ups.

NdisDeviceStateD0
The network adapter can signal a pattern-match wake-up from device power state D0.
Because D0 is the fully powered state, this does not cause a wake-up but can be used as
a run-time event.

NdisDeviceStateD1
The network adapter can signal a pattern-match wake-up from device power states D1
and D0.

NdisDeviceStateD2
The network adapter can signal a pattern-match wake-up from device power states D2,
D1, and D0.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state

NdisDeviceStateD3
The network adapter can signal a pattern-match wake-up from device power states D3,
D2, D1, and D0.

MinLinkChangeWakeUp
Reserved. NDIS ignores this member.

For Miniport Drivers

After the miniport driver completes initialization, both the protocol driver and NDIS can
query the miniport driver with this OID to determine the following:

Whether the miniport driver is PM-aware.

The network adapter's capabilities of indicating network wake-up events.

If the miniport driver returns NDIS_STATUS_SUCCESS to a query of
OID_PNP_CAPABILITIES, NDIS considers the miniport driver to be PM-aware. If the
miniport driver returns NDIS_STATUS_NOT_SUPPORTED, NDIS considers the miniport
driver to be a legacy miniport driver that is not PM-aware.

When calling NdisMSetAttributesEx, a miniport driver that does not support wake-up
capabilities but that can save and restore its network adapter state across a power-state
transition can set the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag. Setting this flag
prevents NDIS from calling the driver's MiniportHalt function before the system
transitions to a low-power (sleeping) state. However, if the miniport driver returns
NDIS_STATUS_NOT_SUPPORTED in response to a query OID_PNP_CAPABILITIES, NDIS
ignores the NDIS_ATTRIBUTE_NO_HALT_ON_SUSPEND flag and halts the network
adapter if the system goes into a low-power state.

A miniport driver's network adapter can support any combination of wake-up events,
including no wake-up events. A miniport driver can still support power management
even if its network adapter cannot not signal wake-up events. In this case, the only
power management OIDs that the miniport driver supports in addition to
OID_PNP_CAPABILITIES are OID_PNP_QUERY_POWER and OID_PNP_SET_POWER.

If a miniport driver's network adapter does not support a particular wake-up event, the
miniport driver should indicate an NDIS_DEVICE_POWER_STATE value of
NdisDeviceStateUnspecified for the wake-up event in the
NDIS_PM_WAKE_UP_CAPABILITIES structure.

OID_PNP_CAPABILITIES only indicates the wake-up capabilities of a miniport driver' s
network adapter; it does not enable such capabilities. OID_PNP_ENABLE_WAKE_UP is
used to enable a network adapter's wake-up capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetattributesex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state

For Intermediate Drivers

If the underlying network adapter is PM-aware, the intermediate driver should return
NDIS_STATUS_SUCCESS to a query of OID_PNP_CAPABILITIES. In the
NDIS_PM_WAKE_UP_CAPABILITIES structure returned by this OID, the intermediate
driver should specify a device power state of NdisDeviceStateUnspecified for each
wake-up capability (MinMagicPacketWakeUp or MinPatternWakeUp). Such a response
indicates that the intermediate driver is PM-aware but does not manage a physical
device.

If the underlying network adapter is not PM-aware, the intermediate driver should
return NDIS_STATUS_NOT_SUPPORTED to a query of OID_PNP_CAPABILITIES.

Note For information about how NDIS 6.20 and later miniport drivers report power
management capabilities, see Reporting Power Management Capabilities.

Version Supported in NDIS 6.0 and NDIS 6.1. For NDIS
6.20 and later, use
OID_PM_CURRENT_CAPABILITIES instead.

Header Ntddndis.h (include Ndis.h)

NDIS_DEVICE_POWER_STATE

NdisMSetAttributesEx

OID_PM_CURRENT_CAPABILITIES

OID_PNP_ENABLE_WAKE_UP

OID_PNP_QUERY_POWER

OID_PNP_SET_POWER

Reporting Power Management Capabilities

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetattributesex

OID_PNP_ENABLE_WAKE_UP
Article • 02/18/2023

As a set, the OID_PNP_ENABLE_WAKE_UP OID specifies the wake-up capabilities that a
miniport driver should enable in a network adapter.

As a query, OID_PNP_ENABLE_WAKE_UP obtains the current wake-up capabilities that
are enabled for a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure is a bitmask of
flags that can be used to enable a combination of wake-up events:

NDIS_PNP_WAKE_UP_MAGIC_PACKET
When set, specifies that the miniport driver should enable a network adapter to signal a
wake-up event on receipt of a magic packet. (A magic packet is a packet that contains
16 contiguous copies of the receiving network adapter's Ethernet address.) When
cleared, specifies that the miniport driver should disable the network adapter from
signaling such a wake-up event.

NDIS_PNP_WAKE_UP_PATTERN_MATCH
When set, specifies that the miniport driver should enable a network adapter to signal a
wake-up event on receipt of a packet that contains a pattern specified by the protocol
with OID_PNP_ADD_WAKE_UP_PATTERN. When cleared, specifies that the miniport
driver should disable the network adapter from signaling such a wake-up event.

NDIS_PNP_WAKE_UP_LINK_CHANGE
Reserved. NDIS ignores this flag.

A protocol driver uses the network adapter's wake-up capabilities in
NDIS_BIND_PARAMETERS to enable the associated network adapter's wake-up
capabilities. A protocol driver can also query this OID to determine which wake-up
capabilities are enabled for a network adapter.

NDIS does not immediately enable the wake-up capabilities that a protocol driver
specifies. Instead, NDIS keeps tracks of the wake-up capabilities that the protocol driver
enabled and, just before the network adapter transitions to a low-power state, NDIS
sends an OID_PNP_ENABLE_WAKE_UP set request to the miniport driver to enable the
appropriate wake-up events.

Before the network adapter transitions to a low-power state (that is, before NDIS sends
the miniport driver an OID_PNP_SET_POWER request), NDIS sends the miniport driver an
OID_PNP_ENABLE_WAKE_UP request to enable the appropriate wake-up capabilities.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

The miniport driver must take the appropriate device-dependent steps to enable or
disable wake-up events on the network adapter.

The miniport driver should clear the wake-up capabilities that NDIS set with
OID_PNP_ENABLE_WAKE_UP when the system is resumed. The wake-up capabilities
should not be persisted across resumes. If wake-up capabilities are enabled, NDIS
explicitly sets OID_PNP_ENABLE_WAKE_UP before the miniport transitions to the low-
power state.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling the NdisOidRequest
or NdisCoOidRequest function.

Version Supported in NDIS 6.0 and 6.1. For NDIS 6.20
and later, use OID_PM_PARAMETERS instead).

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_OID_REQUEST

NdisCoOidRequest

NdisOidRequest

OID_PM_PARAMETERS

OID_PNP_ADD_WAKE_UP_PATTERN

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscooidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisoidrequest

OID_PNP_QUERY_POWER
Article • 02/18/2023

The OID_PNP_QUERY_POWER OID requests the miniport driver to indicate whether it
can transition its network adapter to the low-power state specified in the
InformationBuffer. The low-power state is specified as one of the following
NDIS_DEVICE_POWER_STATE values:

NdisDeviceStateD1
This specifies a device state of D1.

NdisDeviceStateD2
This specifies a device state of D2.

NdisDeviceStateD3
This specifies a device state of D3.

An OID_PNP_QUERY_POWER request is not used to request a transition to a device state
of D0. NDIS simply sends an OID_PNP_SET_POWER request that specifies a device state
of D0.

By returning NDIS_STATUS_SUCCESS to this OID request, the miniport driver guarantees
that it will transition the network adapter to the specified device power state on receipt
of a subsequent OID_PNP_SET_POWER request. The miniport driver, in this case, must
do nothing to jeopardize the transition.

Miniport drivers must always return NDIS_STATUS_SUCCESS to this OID request. Any
other return code is an error.

An OID_PNP_QUERY_POWER request is always followed by an OID_PNP_SET_POWER
request. The OID_PNP_SET_POWER request may immediately follow the
OID_PNP_QUERY_POWER request or may arrive at an unspecified interval after the
OID_PNP_QUERY_POWER request. A device state of D0 specified in the
OID_PNP_SET_POWER request effectively cancels the OID_PNP_QUERY_POWER request.

An intermediate driver must always return NDIS_STATUS_SUCCESS to a query of
OID_PNP_QUERY_POWER. An intermediate driver should never propagate an
OID_PNP_QUERY_POWER request to an underlying miniport driver.

Version Supported for NDIS 5.1, and NDIS 6.0 and later.

Requirements

Header Ntddndis.h (include Ndis.h)

OID_PNP_REMOVE_WAKE_UP_PATTERN
Article • 02/18/2023

The OID_PNP_REMOVE_WAKE_UP_PATTERN OID requests the miniport driver to delete a
wake-up pattern that it previously received in an OID_PNP_ADD_WAKE_UP_PATTERN
request. The wake-up pattern, along with its mask, is described by an
NDIS_PM_PACKET_PATTERN structure.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains the
following:

An NDIS_PM_PACKET_PATTERN structure that provides information about the
pattern and its mask.

A mask that indicates which bytes of an incoming packet should be compared with
corresponding bytes in the pattern. The mask starts with the first byte of the
packet. The mask immediately follows the NDIS_PM_PACKET_PATTERN structure in
the InformationBuffer.

A wake-up pattern, which begins PatternOffset bytes from the beginning of the
InformationBuffer.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling Ndis(Co)Request.

Version Supported in NDIS 6.0 and 6.1. For NDIS 6.20
and later, use OID_PM_REMOVE_WOL_PATTERN
instead.

Header Ntddndis.h (include Ndis.h)

NDIS_PM_PACKET_PATTERN

OID_PNP_ADD_WAKE_UP_PATTERN

OID_PM_REMOVE_WOL_PATTERN

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern

OID_PNP_SET_POWER
Article • 02/18/2023

The OID_PNP_SET_POWER OID notifies a miniport driver that its underlying network
adapter will be transitioning to the device power state specified in the InformationBuffer.
The device power state is specified as one of the following NDIS_DEVICE_POWER_STATE
values:

NdisDeviceStateD0
NdisDeviceStateD1
NdisDeviceStateD2
NdisDeviceStateD3

An OID_PNP_SET_POWER request may be preceded by an OID_PNP_QUERY_POWER
request.

Starting with NDIS 6.30, NDIS will not pause and restart the NDIS drivers in the driver
stack during power-state transitions if the following conditions are true:

The underlying miniport driver sets the
NDIS_MINIPORT_ATTRIBUTES_NO_PAUSE_ON_SUSPEND flag in the
NDIS_MINIPORT_ADAPTER_REGISTRATION_ATTRIBUTES structure. The driver
passes a pointer to this structure in its call to the NdisMSetMiniportAttributes
function.

All overlying filter drivers that are attached to the miniport driver support NDIS
6.30 or later versions of NDIS.

All overlying protocol drivers that are bound to the miniport driver support NDIS
6.30 or later versions of NDIS.

When the miniport driver handles a set request of OID_PNP_SET_POWER to transition to
a low-power state, it must do the following:

Fully prepare the network adapter for the indicated network device power state.
The task that is performed by the miniport driver to accomplish this is device-
dependent.

Wait for calls to the NdisMIndicateReceiveNetBufferLists function to return.

Transitioning to a Low-Power State (D1-D3)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_registration_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

Wait for send requests processed by the network adapter to complete. Once
completed, the miniport driver must call the NdisMSendNetBufferListsComplete
function. The driver should set the Status member in each NET_BUFFER_LIST
structure to the appropriate NDIS_STATUS_Xxx value.

Complete all pending send requests by calling the
NdisMSendNetBufferListsComplete function. The driver must set the Status
member in each NET_BUFFER_LIST structure to
NDIS_STATUS_LOW_POWER_STATE.

Reject all new send requests made to its MiniportSendNetBufferLists function
immediately by calling the NdisMSendNetBufferListsComplete function. The
driver must set the Status member in each NET_BUFFER_LIST structure to
NDIS_STATUS_LOW_POWER_STATE.

The miniport driver that supports NDIS 6.30 and later versions of NDIS must also do the
following:

Not wait for the completion of pending receive indications through calls to its
MiniportReturnNetBufferLists function. Also, the miniport driver must not alter the
NET_BUFFER_LIST structure or data for any packets that are waiting to be
completed.

Handle the OID_PNP_SET_POWER request to a low-power state from either the
Paused or Running adapter states. For more information about these states, see
Miniport Adapter States and Operations.

Before the network adapter transitions to the D3 state, the miniport driver must turn off
everything under the miniport driver's control by performing the following tasks:

Disable interrupts and the DMA engine on the network adapter.

Stop the receive engine on the network adapter.

Do not deallocate or modify receive descriptors and packet buffers that are
associated with pending receive indications.

Cancel all NDIS timers.

Note A miniport driver cannot access the network adapter after the bus driver has
transitioned the network adapter to the D3 state.

Transitioning to the Full-Power State (D0)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

When the miniport driver handles a set request of OID_PNP_SET_POWER to transition to
a full-power state, it must restore the receive engine of the network adapter to the same
state that the receive engine was in before the adapter was transitioned to the low-
power state.

Note The miniport driver must not access or change any receive buffers that are
associated with pending receive indications.

NDIS calls the miniport driver's MiniportRestart function after the transition to a full-
power state only if NDIS called the driver's MiniportPause function before the transition
to a low-power state.

Note An intermediate driver must always return NDIS_STATUS_SUCCESS to a query of
OID_PNP_SET_POWER. An intermediate driver should never propagate an
OID_PNP_SET_POWER request to an underlying miniport driver.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

Version Supported for NDIS 5.1, and NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

Return status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete

MiniportInitializeEx

MiniportPause

MiniportRestart

MiniportReturnNetBufferLists

MiniportSendNetBufferLists

NDIS_DEVICE_POWER_STATE

NdisMIndicateReceiveNetBufferLists

NdisMSendNetBufferListsComplete

NET_BUFFER_LIST

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_pause
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_restart
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_return_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_send_net_buffer_lists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_device_power_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsendnetbufferlistscomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

OID_PNP_WAKE_UP_ERROR
Article • 02/18/2023

The optional OID_PNP_WAKE_UP_ERROR OID indicates the number of false wake-ups
that are signaled by the miniport driver's network adapter. A false wake-up occurs when
the network adapter wakes up the system when it shouldn't have. For example, the
network adapter could erroneously wake up the system due to an inexact pattern
match.

The data type for this OID is a ULONG value.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling Ndis(Co)Request.

Version Supported for NDIS 5.1, and NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_PNP_WAKE_UP_OK
Article • 02/18/2023

The optional OID_PNP_WAKE_UP_OK OID indicates the number of valid wake-ups that
are signaled by the miniport driver's NIC. A valid wake-up occurs when the NIC wakes
up the system in response to a valid pattern match or magic packet.

The data type for this OID is a ULONG value.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling Ndis(Co)Request.

Version Supported for NDIS 5.1, and NDIS 6.0 and later.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_PNP_WAKE_UP_PATTERN_LIST
Article • 02/18/2023

The OID_PNP_WAKE_UP_PATTERN_LIST OID is used by a protocol to query a list of the
wake-up patterns currently set for the miniport driver's network adapter. A protocol
specifies a wake-up pattern with OID_PNP_ADD_WAKE_UP_PATTERN.

OID_PNP_WAKE_UP_PATTERN_LIST is handled by NDIS rather than the miniport driver.

NDIS returns to the protocol a description of each wake-up pattern set in the miniport
driver. Each wake-up pattern, along with its mask, is described by an
NDIS_PM_PACKET_PATTERN structure.

For each wake-up pattern, the InformationBuffer member of the NDIS_OID_REQUEST
structure contains the following:

An NDIS_PM_PACKET_PATTERN structure that provides information about the
pattern and its mask.

A mask that indicates which bytes of an incoming packet should be compared with
corresponding bytes in the pattern. The mask starts with the first byte of the
packet. The mask immediately follows the NDIS_PM_PACKET_PATTERN structure in
the InformationBuffer.

A wake-up pattern, which begins PatternOffset bytes from the beginning of the
InformationBuffer.

An intermediate driver in which the upper edge receives this OID request must always
propagate the request to the underlying miniport driver by calling Ndis(Co)Request.

Version Supported in NDIS 6.0 and 6.1. For NDIS 6.20
and later, use OID_PM_WOL_PATTERN_LIST
instead.

Header Ntddndis.h (include Ndis.h)

NDIS_PM_PACKET_PATTERN

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_pm_packet_pattern

NDIS_OID_REQUEST

OID_PM_WOL_PATTERN_LIST

OID_PNP_ADD_WAKE_UP_PATTERN

OID_PNP_REMOVE_WAKE_UP_PATTERN

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_QOS_CURRENT_CAPABILITIES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_QOS_CURRENT_CAPABILITIES to obtain the currently enabled NDIS Quality of
Service (QoS) hardware capabilities of a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_CAPABILITIES
structure.

Note This OID query request is handled by NDIS for miniport drivers that support the
IEEE 802.1 Data Center Bridging (DCB) interface.

Miniport drivers register the currently-enabled NDIS QoS hardware capabilities of a
network adapter when its MiniportInitializeEx function is called. The driver registers
these capabilities by following these steps:

1. The driver initializes an NDIS_QOS_CAPABILITIES structure with the enabled QoS
hardware capabilities.

2. The driver sets the CurrentQosCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a
pointer to the NDIS_QOS_CAPABILITIES structure.

3. The miniport driver then calls the NdisMSetMiniportAttributes function and sets
the MiniportAttributes parameter to a pointer to an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Note NDIS does not report the currently-enabled NDIS QoS hardware capabilities of a
network adapter to overlying protocol and filter drivers during the bind or attach
operations.

For more information on how to register NDIS QoS capabilities, see Registering NDIS
QoS Capabilities.

NDIS handles the OID query request of OID_QOS_CURRENT_CAPABILITIES request for
miniport drivers, and returns one of the following status codes.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS
QoS interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_QOS_CAPABILITIES). NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NdisMSetMiniportAttributes

NDIS_OID_REQUEST

NDIS_QOS_CAPABILITIES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

OID_QOS_HARDWARE_CAPABILITIES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_QOS_HARDWARE_CAPABILITIES to obtain the NDIS Quality of Service (QoS)
hardware capabilities of a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_CAPABILITIES
structure.

Note This OID query request is handled by NDIS for miniport drivers that support the
IEEE 802.1 Data Center Bridging (DCB) interface.

The NDIS_QOS_CAPABILITIES structure contains information about the NDIS QoS
hardware capabilities of a network adapter. These capabilities can include hardware
capabilities that are currently disabled by INF file settings or through the Advanced
properties page.

Note All the NDIS QoS hardware capabilities of a network adapter are returned through
an OID query request of OID_QOS_HARDWARE_CAPABILITIES, regardless of whether a
capability is enabled or disabled.

Miniport drivers registers the NDIS QoS hardware capabilities of a network adapter
when its MiniportInitializeEx function is called. The driver registers these capabilities by
following these steps:

1. The driver initializes an NDIS_QOS_CAPABILITIES structure with the NDIS QoS
hardware capabilities.

2. The driver sets the HardwareQosCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a
pointer to the NDIS_QOS_CAPABILITIES structure.

3. The miniport driver then calls the NdisMSetMiniportAttributes function and sets
the MiniportAttributes parameter to a pointer to an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Note NDIS does not report the NDIS QoS hardware capabilities of a network adapter to
overlying protocol and filter drivers during the bind or attach operations.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

For more information on how to register NDIS QoS capabilities, see Registering NDIS
QoS Capabilities.

NDIS handles the OID query request of OID_QOS_HARDWARE_CAPABILITIES request for
miniport drivers, and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS
QoS interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_QOS_CAPABILITIES). NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NdisMSetMiniportAttributes

NDIS_OID_REQUEST

NDIS_QOS_CAPABILITIES

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

OID_QOS_OFFLOAD_CREATE_SQ
Article • 02/18/2023

Overlying drivers issue OID set requests of OID_QOS_OFFLOAD_CREATE_SQ to create a
new Scheduler Queue (SQ) on the miniport adapter. The caller sets the
InformationBuffer member of the NDIS_OID_REQUEST structure to contain a pointer to
an NDIS_QOS_SQ_PARAMETERS structure. NDIS_QOS_SQ_PARAMETERS contains the
parameters of the new SQ.

NDIS_QOS_SQ_ID is a ULONG value that NDIS allocates and assigns for an SQ. This
identifier is unique per miniport adapter. The value NDIS_QOS_DEFAULT_SQ_ID is not a
valid SQ ID and means that no SQ is to be used.

NDIS handles the OID set request of OID_QOS_OFFLOAD_CREATE_SQ for miniport
drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_PARAMETER The length of the InformationBuffer is less than
NDIS_SIZEOF_QOS_SQ_PARAMETERS_REVISION_1 or the
SqId field of NDIS_QOS_SQ_PARAMETERS in the
InformationBuffer is NDIS_QOS_DEFAULT_SQ_ID.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters

NDIS_OID_REQUEST

NDIS_QOS_SQ_PARAMETERS

NDIS_QOS_OFFLOAD_CAPABILITIES

OID_QOS_HARDWARE_CAPABILITIES

OID_QOS_OFFLOAD_UPDATE_SQ

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities

OID_QOS_OFFLOAD_CURRENT_CAPABIL
ITIES
Article • 02/18/2023

An overlying driver issues an OID query request of
OID_QOS_OFFLOAD_CURRENT_CAPABILITIES to obtain the currently enabled Quality of
Service (QoS) offload hardware capabilities of a miniport adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_QOS_OFFLOAD_CAPABILITIES structure.

The NDIS_QOS_OFFLOAD_CAPABILITIES structure specifies the hardware and current
Hardware Quality of Service (QoS) offload capabilities of a miniport adapter.

NDIS handles the OID query request of OID_QOS_OFFLOAD_CURRENT_CAPABILITIES for
miniport drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS
interface.

NDIS_STATUS_BUFFER_TOO_SHORT The length of the information buffer is not sufficient for the
returned data.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities

NDIS_OID_REQUEST

NDIS_QOS_OFFLOAD_CAPABILITIES

OID_QOS_HARDWARE_CAPABILITIES

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities

OID_QOS_OFFLOAD_DELETE_SQ
Article • 02/18/2023

Overlying drivers issue OID set requests of OID_QOS_OFFLOAD_DELETE_SQ to delete a
Scheduler Queue (SQ) on the miniport adapter. The caller should set the
InformationBuffer member of the NDIS_OID_REQUEST structure to contain a pointer to
an NDIS_QOS_SQ_ID.

The caller must ensure there are no resources actively referencing this SQ before
deleting it.

NDIS handles the OID set request of OID_QOS_OFFLOAD_DELETE_SQ for miniport
drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS interface.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

OID_QOS_OFFLOAD_CREATE_SQ

OID_QOS_OFFLOAD_UPDATE_SQ

Remarks

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_QOS_OFFLOAD_ENUM_SQS
Article • 02/18/2023

Overlying drivers issue OID method requests of OID_QOS_OFFLOAD_ENUM_SQS to
obtain a list of all Scheduler Queues (SQs), with their parameters, that are currently
present on a miniport adapter.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_SQ_ARRAY
structure. Each element of the array is an NDIS_QOS_SQ_PARAMETERS structure.

NDIS handles the OID method request of OID_QOS_OFFLOAD_ENUM_SQS for miniport
drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS
interface.

NDIS_STATUS_INVALID_PARAMETER The length of the InformationBuffer is less than
NDIS_SIZEOF_QOS_SQ_ARRAY_REVISION_1.

NDIS_STATUS_BUFFER_TOO_SHORT The length of the information buffer is not sufficient for the
returned data.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters_enum_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters

NDIS_OID_REQUEST

NDIS_QOS_SQ_PARAMETERS

NDIS_QOS_SQ_ARRAY

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters_enum_array

OID_QOS_OFFLOAD_HARDWARE_CAPA
BILITIES
Article • 02/18/2023

An overlying driver issues an OID query request of
OID_QOS_OFFLOAD_HARDWARE_CAPABILITIES to obtain the Quality of Service (QoS)
offload hardware capabilities of a miniport adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_QOS_OFFLOAD_CAPABILITIES structure.

The NDIS_QOS_OFFLOAD_CAPABILITIES structure specifies the hardware and current
Hardware Quality of Service (QoS) offload capabilities of a miniport adapter.

NDIS handles the OID query request of OID_QOS_OFFLOAD_HARDWARE_CAPABILITIES
for miniport drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS
interface.

NDIS_STATUS_BUFFER_TOO_SHORT The length of the information buffer is not sufficient for the
returned data.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities

NDIS_OID_REQUEST

NDIS_QOS_OFFLOAD_CAPABILITIES

OID_QOS_OFFLOAD_CURRENT_CAPABILITIES

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_offload_capabilities

OID_QOS_OFFLOAD_SQ_STATS
Article • 02/18/2023

Overlying drivers issue OID method requests of OID_QOS_OFFLOAD_SQ_STATS to obtain
a list of all Scheduler Queues (SQs), with their stat counters, that are currently present on
a miniport adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_SQ_ARRAY
structure. Each element of the array is an NDIS_QOS_SQ_STATS structure.

If the NDIS_OID_REQUEST buffer of the OID query contains a valid VPortId, then the
returned stats are specific to the specified vPort. Otherwise, the stats specify the total
stats across all vPorts associated with each SQ.

NDIS handles the OID method request of OID_QOS_OFFLOAD_SQ_STATS for miniport
drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS
interface.

NDIS_STATUS_INVALID_PARAMETER The length of the InformationBuffer is less than
NDIS_SIZEOF_QOS_SQ_ARRAY_REVISION_1.

NDIS_STATUS_BUFFER_TOO_SHORT The length of the information buffer is not sufficient for the
returned data.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Remarks

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters_enum_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_stats

Requirement Value

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_QOS_SQ_PARAMETERS

NDIS_QOS_SQ_ARRAY

NDIS_QOS_SQ_STATS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters_enum_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_stats

OID_QOS_OFFLOAD_UPDATE_SQ
Article • 02/18/2023

Overlying drivers issue OID set requests of OID_QOS_OFFLOAD_UPDATE_SQ to update a
Scheduler Queue (SQ) on the miniport adapter. The caller should set the
InformationBuffer member of the NDIS_OID_REQUEST structure to contain a pointer to
an NDIS_QOS_SQ_PARAMETERS structure.

The caller should set the SqId field of NDIS_QOS_SQ_PARAMETERS to the current SQ ID
of the SQ it wants to update. The caller should set the rest of the fields to the full set of
parameters it desires on this SQ, except the SqType field which cannot be updated.

NDIS handles the OID set request of OID_QOS_OFFLOAD_UPDATE_SQ for miniport
drivers and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS QoS
interface.

NDIS_STATUS_INVALID_PARAMETER The length of the InformationBuffer is less than
NDIS_SIZEOF_QOS_SQ_PARAMETERS_REVISION_1.

NDIS_STATUS_Xxx The request failed for other reasons.

Requirement Value

Version Supported in NDIS 6.85 and later.

Header Ntddndis.h (include Ndis.h)

Remarks

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters

NDIS_OID_REQUEST

NDIS_QOS_SQ_PARAMETERS

OID_QOS_OFFLOAD_CREATE_SQ

OID_QOS_OFFLOAD_DELETE_SQ

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-ndis_qos_sq_parameters

OID_QOS_OPERATIONAL_PARAMETERS
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_QOS_OPERATIONAL_PARAMETERS to obtain the current NDIS Quality of Service
(QoS) operational parameters for a network adapter. The miniport driver configures the
network adapter with the operational NDIS QoS parameters in order to perform QoS
packet transmission.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_PARAMETERS
structure.

Note This OID query request is handled by NDIS for miniport drivers that support the
IEEE 802.1 Data Center Bridging (DCB) interface.

When NDIS handles the OID query request of OID_QOS_OPERATIONAL_PARAMETERS
successfully, it returns the operational NDIS QoS parameters that it had cached from the
previous NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication
that was issued by the miniport driver. The driver issues this status indication to report
on the initial set of operational NDIS QoS parameters. The driver also issues this status
indication whenever the operational NDIS QoS parameters change.

NDIS returns an NDIS_QOS_PARAMETERS structure that is initialized in the following
way:

If the miniport driver previously issued an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication,
NDIS caches the NDIS_QOS_PARAMETERS data and returns this data for the OID
query request of OID_QOS_OPERATIONAL_PARAMETERS.

If the miniport driver did not issue an
NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE status indication,
NDIS returns an NDIS_QOS_PARAMETERS structure with all the members (with the
exception of the Header member) set to zero.

For more information on operational NDIS QoS parameters, see Overview of NDIS QoS
Parameters.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS
QoS interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_QOS_PARAMETERS). NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NdisMOidRequestComplete

NDIS_OID_REQUEST

NDIS_QOS_CAPABILITIES

NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE

NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE

OID_QOS_PARAMETERS

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

OID_QOS_PARAMETERS
Article • 02/18/2023

The Data Center Bridging (DCB) component (Msdcb.sys) issues an object identifier (OID)
method request of OID_QOS_PARAMETERS to configure the local NDIS Quality of
Service (QoS) parameters on a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_QOS_PARAMETERS structure.

Note This OID method request is mandatory for miniport drivers that support NDIS QoS
for the IEEE 802.1 Data Center Bridging (DCB) interface.

Miniport drivers obtain the local NDIS QoS parameters through an OID method request
of OID_QOS_PARAMETERS. These parameters define how the network adapter
prioritizes transmit, or egress, packets. For more information about these parameters,
see Overview of NDIS QoS Parameters.

Note Only the DCB component can issue an OID method request of
OID_QOS_PARAMETERS. An overlying protocol or filter driver must not issue this OID.
For more information on the DCB component, see NDIS QoS Architecture for Data
Center Bridging.

The DCB component issues an OID_QOS_PARAMETERS request under the following
conditions:

The system administrator installs or uninstalls the Microsoft DCB server feature.

For more information about the DCB server feature, see System-Provided DCB
Components.

The system administrator enables or disables the DCB server feature while the
feature is still installed.

The system administrator changes any of the DCB server feature parameters.

The operating system starts or restarts while the DCB server feature is installed.

When the miniport driver handles the OID method request of OID_QOS_PARAMETERS, it
must follow these guidelines:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

The miniport driver copies the data within the NDIS_QOS_PARAMETERS structure
to its cache of local NDIS QoS parameters. The driver then resolves its operational
NDIS QoS parameters based on its cache of local NDIS QoS parameters and its
cache of NDIS QoS parameters that it received from a remote peer.

For more information about how the miniport driver resolves its operational
parameters, see Resolving Operational NDIS QoS Parameters.

The miniport driver must not modify any data that is contained within the
NDIS_QOS_PARAMETERS structure. The driver must complete the OID method
request and return the original data within the NDIS_QOS_PARAMETERS structure.

The NDIS_QOS_PARAMETERS_WILLING flag specifies whether the miniport driver
enables or disables the local Data Center Bridging Exchange (DCBX) Willing state.
The driver handles this flag in the following way:

If this flag is set, the miniport driver must enable the local DCBX Willing state.
This allows the driver to be remotely configured with QoS settings. In this case,
the driver resolves its operational QoS parameters based on the remote QoS
parameters. The miniport driver can also resolve its operational QoS parameters
based on any proprietary QoS settings that are defined by the independent
hardware vendor (IHV).

If this flag is not set, the miniport driver must disable the local DCBX Willing
state. This allows the driver to resolve its operational QoS parameters from its
local QoS parameters instead of remote QoS parameters. The miniport driver
must also disable or override any local QoS parameter for which the related
NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flag is not set.

For example, the miniport driver can override an unconfigured local QoS
parameter with its proprietary settings for the QoS parameter that is defined by
the IHV. If there are no proprietary settings for local QoS parameters that are
not specified with an NDIS_QOS_PARAMETERS_Xxx_CONFIGURED flag, the
driver must disable the use of these QoS parameters on the network adapter.

Note The driver can also override configured local QoS parameters if they
compromise the QoS parameters used by protocols or technologies that are
enabled on the network adapter. For example, the driver can override the local
QoS parameters if the network adapter is enabled for remote boot through the
Fibre Channel over Ethernet (FCoE) protocol.

For more information about the local DCBX Willing state, see Managing the Local
DCBX Willing State.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

For more information on how the miniport driver overrides local QoS parameters, see
Managing NDIS QoS Parameters.

Note Overriding the local QoS parameters should not cause the miniport driver to fail
the OID method request of OID_QOS_PARAMETERS.

For more information on how the miniport driver manages the local QoS parameters,
see Setting Local NDIS QoS Parameters.

The miniport driver returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_PENDING The OID request is pending completion. When
the miniport driver calls
NdisMOidRequestComplete, NDIS will pass the
final status code and results to the OID request
completion handler of the caller after the
request is completed.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS
QoS interface.

NDIS_STATUS_INVALID_PARAMETER One or more members of the
NDIS_QOS_PARAMETERS structure contain
incorrect values.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_QOS_PARAMETERS). NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NdisMOidRequestComplete

NDIS_OID_REQUEST

NDIS_QOS_CAPABILITIES

NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE

NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

OID_QOS_REMOTE_PARAMETERS
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_QOS_REMOTE_PARAMETERS to obtain the NDIS Quality of Service (QoS)
parameters for a remote peer. The miniport driver uses these remote QoS parameters to
resolve its operational NDIS QoS parameters. The driver configures the network adapter
with the operational parameters in order to perform QoS packet transmission.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an NDIS_QOS_PARAMETERS
structure.

Note This OID query request is valid only for miniport drivers that support the IEEE
802.1 Data Center Bridging (DCB) interface.

When NDIS handles the OID request of OID_QOS_REMOTE_PARAMETERS successfully, it
returns the remote NDIS QoS parameters that it had cached from the previous
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication that was issued
by the miniport driver. The driver issues this status indication to report on the initial set
of remote NDIS QoS parameters. The driver also issues this status indication whenever
the remote NDIS QoS parameters change.

NDIS returns an NDIS_QOS_PARAMETERS structure that is initialized in the following
way:

If the miniport driver previously issued an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication, NDIS
caches the NDIS_QOS_PARAMETERS data and returns this data for the OID query
request of OID_QOS_REMOTE_PARAMETERS.

If the miniport driver did not issue an
NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE status indication, NDIS
returns an NDIS_QOS_PARAMETERS structure with all the members (with the
exception of the Header member) set to zero.

For more information on remote NDIS QoS parameters, see Overview of NDIS QoS
Parameters.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters

NDIS returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver does not support the NDIS
QoS interface.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_QOS_PARAMETERS). NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NdisMOidRequestComplete

NDIS_OID_REQUEST

NDIS_QOS_CAPABILITIES

NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE

NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE

OID_QOS_PARAMETERS

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_qos_capabilities

OID_RECEIVE_FILTER_ALLOCATE_QUEUE
Article • 02/18/2023

Overlying drivers issue object identifier (OID) method requests of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE to allocate a queue that has an initial set of
configuration parameters.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_QUEUE_PARAMETERS structure. After a successful return from the
OID method request, the InformationBuffer member of the NDIS_OID_REQUEST
structure contains a pointer to an NDIS_RECEIVE_QUEUE_PARAMETERS structure that
has a new queue identifier.

The OID method request of OID_RECEIVE_FILTER_ALLOCATE_QUEUE is optional for NDIS
6.20 and later miniport drivers. It is mandatory for miniport drivers that support the
virtual machine queue (VMQ) interface.

The overlying driver initializes the NDIS_RECEIVE_QUEUE_PARAMETERS structure with
its requested queue configuration. NDIS assigns a queue identifier in the QueueId
member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure and passes the method
request to the miniport driver.

Note The overlying driver can set the
NDIS_RECEIVE_QUEUE_PARAMETERS_PER_QUEUE_RECEIVE_INDICATION and
NDIS_RECEIVE_QUEUE_PARAMETERS_LOOKAHEAD_SPLIT_REQUIRED flags in the Flags
member of the NDIS_RECEIVE_QUEUE_PARAMETERS structure. The other flags are not
used for queue allocation.

After a miniport driver is issued an OID request of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE and handles it successfully, the queue is in the
Paused state.

The overlying driver must use the queue identifier that NDIS provides in subsequent OID
requests, for example, to modify the queue parameters or free the queue. The queue
identifier is also included in the out-of-band (OOB) data on all NET_BUFFER_LIST
structures that are associated with the queue. Drivers use the
NET_BUFFER_LIST_RECEIVE_QUEUE_ID macro to retrieve the queue identifier in a
NET_BUFFER_LIST structure.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id

When NDIS receives an OID request to allocate a receive queue, it verifies the queue
parameters. After NDIS allocates the necessary resources and the queue identifier, it
submits the OID request to the underlying miniport driver. The queue identifier is
unique to the associated network adapter.

If the miniport driver can successfully allocate the necessary software and hardware
resources for the receive queue, it completes the OID request by returning
NDIS_STATUS_SUCCESS.

The miniport driver must retain the queue identifiers for the allocated receive queues.
NDIS uses the queue identifier of a receive queue for subsequent calls to the miniport
driver in order to set a receive filter on the receive queue, change the receive queue
parameters, or free the receive queue.

After an overlying driver allocates one or more receive queues and optionally sets the
initial filters, it must issue OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE set OID
requests to notify the miniport driver that the allocation is complete for the current
batch of receive queues.

The miniport driver must not retain any packets in a receive queue if there are no filters
set on that queue. If either a queue never had any filters set or all the filters were
cleared, the queue should be empty and any packets should be discarded. That is, the
packets are not indicated up the driver stack or retained in the queue.

Overlying drivers use OID requests of OID_RECEIVE_FILTER_FREE_QUEUE to free queues
that they allocate.

Either NDIS or the miniport driver returns one of the following status codes for the OID
method request of OID_RECEIVE_FILTER_ALLOCATE_QUEUE.

Status code Description

NDIS_STATUS_SUCCESS The queue was allocated successfully. The
information buffer contains the updated
NDIS_RECEIVE_QUEUE_PARAMETERS structure.

NDIS_STATUS_PENDING The request is pending completion. The final
status code and results will be passed to an
OID request completion handler of the caller.

NDIS_STATUS_INVALID_PARAMETER One or more of the parameters that the
overlying driver provided were not valid.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

Status code Description

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS set
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED The NDIS version of the miniport driver is
earlier than version 6.20.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NET_BUFFER_LIST

NET_BUFFER_LIST_RECEIVE_QUEUE_ID

OID_RECEIVE_FILTER_FREE_QUEUE

OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE

NDIS_RECEIVE_QUEUE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_queue_id
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

OID_RECEIVE_FILTER_CLEAR_FILTER
Article • 02/18/2023

Overlying drivers issue OID set requests of OID_RECEIVE_FILTER_CLEAR_FILTER to clear a
receive filter on a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

The OID set request of OID_RECEIVE_FILTER_CLEAR_FILTER is mandatory for miniport
drivers that support the NDIS packet coalescing, SR-IOV, or VMQ interface.

An overlying driver, such as an NDIS protocol or filter driver, uses the
OID_RECEIVE_FILTER_CLEAR_FILTER set request to clear a previously set filter. Only the
driver that set the receive filter can clear it.

The overlying driver clears a receive filter by setting the FilterId member of the
NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS structure to the identifier for the filter. The
driver obtained the filter identifier from an earlier OID method request of
OID_RECEIVE_FILTER_SET_FILTER.

The following point applies to miniport and overlying drivers that support NDIS packet
coalescing:

An overlying driver must clear all the receive filters that it set on the miniport
driver before it unbinds or detaches from the driver.

Remarks

Additional Instructions for NDIS Packet Coalescing

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters

The following points apply to miniport and overlying drivers that support the SR-IOV
interface:

An overlying driver must clear all the filters that it set on a SR-IOV VPort before it
frees the VPort. The overlying driver must also clear all the filters that it set on the
default VPort before it closes its binding to the network adapter.

A miniport driver must not indicate packets on a nondefault VPort if it has
completed the OID request of OID_RECEIVE_FILTER_CLEAR_FILTER to clear the last
filter on the VPort.

Note A miniport driver also must not indicate packets on a nondefault VPort if it
has completed an OID request of OID_NIC_SWITCH_DELETE_VPORT to free the
VPort.

The following points apply to miniport and overlying drivers that support the VMQ
interface:

An overlying driver must clear all the filters that it set on a VMQ receive queue
before it frees the queue. The overlying driver must also clear all the filters that it
set on the default or drop queues before it closes its binding to the network
adapter.

A miniport driver must not indicate packets on a receive queue if it has completed
the OID request of OID_RECEIVE_FILTER_CLEAR_FILTER to clear the last filter on the
receive queue.

Note A miniport driver also must not indicate packets on a receive queue if it has
completed an OID request of OID_RECEIVE_FILTER_FREE_QUEUE to free the receive
queue.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

Additional Guidelines for the SR-IOV Interface

Additional Guidelines for the VMQ Interface

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport adapter has been surprise
removed.

NDIS returns one of the following status codes for this request:

NDIS_STATUS_SUCCESS
The specified filter was cleared successfully.

NDIS_STATUS_PENDING
The request is pending completion. NDIS will pass the final status code and results to
the OID request completion handler of the caller after the request is complete.

NDIS_STATUS_FILE_NOT_FOUND
The filter identifier is not valid.

NDIS_STATUS_INVALID_LENGTH
The information buffer is too small. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_CLEAR_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_clear_parameters

OID_NIC_SWITCH_DELETE_VPORT

OID_RECEIVE_FILTER_FREE_QUEUE

OID_RECEIVE_FILTER_SET_FILTER

OID_RECEIVE_FILTER_CURRENT_CAPABIL
ITIES
Article • 02/18/2023

Overlying drivers issue OID query requests of
OID_RECEIVE_FILTER_CURRENT_CAPABILITIES to obtain the currently enabled receive
filtering capabilities of a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

Starting with NDIS 6.20, miniport drivers register the currently enabled receive filtering
hardware capabilities of the network adapter when its MiniportInitializeEx function is
called. Miniport drivers register these capabilities by following these steps:

1. The driver initializes an NDIS_RECEIVE_FILTER_CAPABILITIES structure with the
currently enabled receive filtering hardware capabilities.

2. The driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure and sets
the CurrentReceiveFilterCapabilities member to a pointer to the
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

3. The miniport driver calls the NdisMSetMiniportAttributes function and sets the
MiniportAttributes parameter to a pointer to an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes

Overlying protocol and filter drivers do not have to issue OID query requests of
OID_RECEIVE_FILTER_CURRENT_CAPABILITIES. NDIS provides the currently enabled
receive filtering capabilities to these drivers in the following way:

NDIS provides the currently enabled receive filtering capabilities of an underlying
network adapter to overlying protocol drivers in the ReceiveFilterCapabilities
member of the NDIS_BIND_PARAMETERS structure during the bind operation.

NDIS provides the currently enabled receive filtering capabilities of an underlying
network adapter to overlying filter drivers in the ReceiveFilterCapabilities member
of the NDIS_FILTER_ATTACH_PARAMETERS structure during the attach operation.

NDIS handles the OID query request of OID_RECEIVE_FILTER_CURRENT_CAPABILITIES for
miniport drivers, and returns one of the following status codes:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

NDIS_STATUS_PENDING
The request is pending completion. NDIS passes the final status code and results to the
OID request completion handler of the caller after the request has completed.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED
The network adapter does not support receive filtering.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

Return status codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

NDIS_BIND_PARAMETERS

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_CAPABILITIES

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

OID_RECEIVE_FILTER_ENUM_FILTERS
Article • 02/18/2023

An overlying driver issues an OID method request of
OID_RECEIVE_FILTER_ENUM_FILTERS to obtain a list of all the filters that are configured
on a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_FILTER_INFO_ARRAY structure.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer is
formatted to contain the following:

An NDIS_RECEIVE_FILTER_INFO_ARRAY structure that specifies a list of receive
filters that are currently configured on a miniport driver.

An array of NDIS_RECEIVE_FILTER_INFO structures. Each structure specifies the
parameters of a receive filter that is currently configured on a miniport driver.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

Overlying drivers or applications issue OID method requests of
OID_RECEIVE_FILTER_ENUM_FILTERS to enumerate the receive filters that were set on a
network adapter. This includes receive filters that were set on an SR-IOV virtual port
(VPort) or a VMQ receive queue.

Remarks

Additional Guidelines for the NDIS Packet Coalescing
Interface

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info

Starting with Windows Server 2012, NDIS packet coalescing only supports the default
receive queue of a network adapter.

To enumerate the packet coalescing receive filters, the overlying driver must set the
QueueId member of the NDIS_RECEIVE_FILTER_INFO_ARRAY structure to
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

Starting with Windows Server 2012, the SR-IOV interface only supports the default
receive queue of a virtual port (VPort).

To enumerate the VPort receive filters, the overlying driver must set the QueueId
member of the NDIS_RECEIVE_FILTER_INFO_ARRAY structure to
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

An overlying driver can issue OID method requests of
OID_RECEIVE_FILTER_ENUM_FILTERS to enumerate the receive filters that were set on a
VMQ receive queue. When the overlying driver initializes the
NDIS_RECEIVE_FILTER_INFO_ARRAY structure, it sets the QueueId member to one of
the following values:

The queue identifier value for a nondefault receive queue. The overlying driver
obtained the queue identifier input value from an earlier OID method request of
OID_RECEIVE_FILTER_ALLOCATE_QUEUE or an OID query request of
OID_RECEIVE_FILTER_ENUM_QUEUES.

The queue identifier value of NDIS_DEFAULT_RECEIVE_QUEUE_ID, which specifies
the default receive queue.

NDIS handles the OID method request of OID_RECEIVE_FILTER_ENUM_FILTERS for
miniport drivers, and returns one of the following status codes:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_RECEIVE_FILTER_INFO_ARRAY structure.

Additional Guidelines for the SR-IOV Interface

Additional Guidelines for the VMQ Interface

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array

NDIS_STATUS_PENDING
The request is pending completion. NDIS passes the final status code and results to the
OID request completion handler of the caller after the request has completed.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_INFO

NDIS_RECEIVE_FILTER_INFO_ARRAY

OID_RECEIVE_FILTER_ALLOCATE_QUEUE

OID_RECEIVE_FILTER_ENUM_QUEUES

OID_RECEIVE_FILTER_SET_FILTER

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_info_array

OID_RECEIVE_FILTER_ENUM_QUEUES
Article • 02/18/2023

Overlying drivers and user-mode applications issue object identifier (OID) query
requests of OID_RECEIVE_FILTER_ENUM_QUEUES to obtain a list of all the receive
queues that are allocated on a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_QUEUE_INFO_ARRAY structure that is followed by an
NDIS_RECEIVE_QUEUE_INFO structure for each filter.

NDIS obtained the information from an internal cache of the data that it received from
the OID_RECEIVE_FILTER_ALLOCATE_QUEUE and
OID_RECEIVE_FILTER_QUEUE_PARAMETERS OID requests.

Overlying drivers and user-mode applications issue OID query requests of
OID_RECEIVE_FILTER_ENUM_QUEUES to enumerate the receive queues on a network
adapter.

If a protocol driver issues the request, the request type inside the NDIS_OID_REQUEST
structure is set to NdisRequestQueryInformation and this OID returns an array of all the
receive queues that the protocol driver allocated on the network adapter. If a user-mode
application issued the request, the request type inside the NDIS_OID_REQUEST
structure is set to NdisRequestQueryStatistics, and this OID returns an array of
information for all the receive queues on the network adapter.

NDIS handles the OID query request of OID_RECEIVE_FILTER_ENUM_QUEUES for
miniport drivers, and returns one of the following status codes.

Status code Description

NDIS_STATUS_SUCCESS The request completed successfully. The
InformationBuffer points to an
NDIS_RECEIVE_QUEUE_INFO_ARRAY structure.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info_array

Status code Description

NDIS_STATUS_PENDING The request is pending completion. NDIS will
pass the final status code and results to the
OID request completion handler of the caller
after the request has completed.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS set
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_QUEUE_INFO

NDIS_RECEIVE_QUEUE_INFO_ARRAY

OID_RECEIVE_FILTER_ALLOCATE_QUEUE

OID_RECEIVE_FILTER_QUEUE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_info_array

OID_RECEIVE_FILTER_FREE_QUEUE
Article • 02/18/2023

NDIS protocol drivers issue object identifier (OID) set requests of
OID_RECEIVE_FILTER_FREE_QUEUE to free a receive queue.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_QUEUE_FREE_PARAMETERS structure with a queue identifier of
type NDIS_RECEIVE_QUEUE_ID.

The OID set request of OID_RECEIVE_FILTER_FREE_QUEUE is optional for NDIS 6.20 and
later miniport drivers. It is mandatory for miniport drivers that support the virtual
machine queue interface.

After an overlying driver issues the OID_RECEIVE_FILTER_ALLOCATE_QUEUE OID to
allocate a receive queue, it issues the OID_RECEIVE_FILTER_FREE_QUEUE OID to free the
receive queue.

When NDIS requests a miniport driver to free a VMQ receive queue, it follows these
steps:

1. The network adapter stops the DMA transfer of data to receive buffers that are
associated with the receive queue, after which the queue must enter the DMA
Stopped state. The network adapter probably stopped the DMA activity when it
received the OID_RECEIVE_FILTER_CLEAR_FILTER OID request to clear the last set
filter on the receive queue.

2. The miniport driver generates an NDIS_STATUS_RECEIVE_QUEUE_STATE status
indication with the QueueState member of the NDIS_RECEIVE_QUEUE_STATE
structure set to NdisReceiveQueueOperationalStateDmaStopped to notify NDIS
that the DMA transfer has been stopped.

3. The miniport driver waits for all the indicated receive packets for that queue to be
returned to the miniport driver.

4. The miniport driver frees all the shared memory that it allocated for the network
adapter's receive buffers that are associated with the queue by calling
NdisFreeSharedMemory.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_free_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_receive_queue_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory

5. The miniport driver completes the OID_RECEIVE_FILTER_FREE_QUEUE OID request
to free the receive queue.

Miniport drivers call the NdisFreeSharedMemory function to free shared memory for a
queue. If the miniport driver allocated the shared memory for a nondefault queue, the
driver frees the shared memory in the context of the OID_RECEIVE_FILTER_FREE_QUEUE
OID while it is freeing the queue. Miniport drivers free shared memory that they
allocated for the default queue in the context of the MiniportHaltEx function.

An overlying driver must free all the filters that it set on a queue before it frees the
queue. Also, an overlying driver must free all the receive queues that it allocated on a
network adapter before it calls the NdisCloseAdapterEx function to close a binding to
the network adapter. NDIS frees all the queues that are allocated on a network adapter
before it calls the miniport driver's MiniportHaltEx function.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

NDIS returns one of the following status codes for this request:

Status code Description

NDIS_STATUS_SUCCESS The requested queue was freed successfully.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset

Status code Description

NDIS_STATUS_PENDING The request is pending completion. NDIS will
pass the final status code and results to the
OID request completion handler for the caller
after the request has completed.

NDIS_STATUS_INVALID_PARAMETER The queue identifier is invalid.

NDIS_STATUS_INVALID_LENGTH The information buffer is too short. NDIS sets
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

MiniportHaltEx

NDIS_OID_REQUEST

NDIS_RECEIVE_QUEUE_FREE_PARAMETERS

NDIS_STATUS_RECEIVE_QUEUE_STATE

NdisCloseAdapterEx

NdisFreeSharedMemory

OID_RECEIVE_FILTER_ALLOCATE_QUEUE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_free_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndiscloseadapterex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreesharedmemory

OID_RECEIVE_FILTER_GLOBAL_PARAMET
ERS
Article • 02/18/2023

Overlying drivers issue OID query requests of
OID_RECEIVE_FILTER_GLOBAL_PARAMETERS to obtain the global receive filtering
parameters of a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS structure.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

Starting with NDIS 6.20, protocol drivers use
OID_RECEIVE_FILTER_GLOBAL_PARAMETERS to query the current global configuration
parameters for receive filtering on a network adapter. For example, protocol drivers can
use this OID to determine whether types of receive filters or receive queues are enabled
or disabled.

NDIS handles the OID query request of OID_RECEIVE_FILTER_GLOBAL_PARAMETERS for
miniport drivers, and returns one of the following status codes:

NDIS_STATUS_SUCCESS
The request completed successfully.

NDIS_STATUS_PENDING
The request is pending completion. NDIS passes the final status code and results to the

Remarks

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_global_parameters

OID request completion handler of the caller after the request is complete.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_INVALID_PARAMETER
The request failed because it tried to enable a capability that the underlying network
adapter does not support.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_GLOBAL_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_global_parameters

OID_RECEIVE_FILTER_HARDWARE_CAPA
BILITIES
Article • 02/18/2023

Overlying drivers issue OID query requests of
OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES to obtain the receive filtering hardware
capabilities of a network adapter.

After a successful return from the OID query request, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to
anNDIS_RECEIVE_FILTER_CAPABILITIES structure.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

The NDIS_RECEIVE_FILTER_CAPABILITIES structure contains information about the
receive filtering hardware capabilities of a network adapter. These capabilities can
include hardware capabilities that are currently disabled by INF file settings or through
the Advanced properties page.

Note All the receive filtering hardware capabilities of a network adapter are returned
through an OID query request of OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES,
regardless of whether a capability is enabled or disabled.

Starting with NDIS 6.20, miniport drivers register the currently enabled receive filtering
hardware capabilities of the network adapter when its MiniportInitializeEx function is
called. Miniport drivers register these capabilities by following these steps:

1. The driver initializes an NDIS_RECEIVE_FILTER_CAPABILITIES structure with the
receive filtering hardware capabilities.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

2. The driver initializes an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure and sets
the CurrentReceiveFilterCapabilities member to a pointer to the
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

3. The miniport driver calls the NdisMSetMiniportAttributes function and sets the
MiniportAttributes parameter to a pointer to an
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

NDIS handles the OID query request of OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES
for miniport drivers, and returns one of the following status codes:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_RECEIVE_FILTER_CAPABILITIES structure.

NDIS_STATUS_PENDING
The request is pending completion. NDIS passes the final status code and results to the
OID request completion handler of the caller after the request is complete.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS set the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED
The network adapter does not support receive filtering.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

Return status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_CAPABILITIES

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_capabilities

OID_RECEIVE_FILTER_MOVE_FILTER
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_RECEIVE_FILTER_MOVE_FILTER to move a previously configured receive filter.
Receive filters are moved from one virtual port (VPort) to a different VPort.

Overlying drivers issue this OID set request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID set request is required for PF miniport
drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS structure.

NDIS validates the members of the NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS
structure before it forwards the OID set request to the PF miniport driver.

The PF miniport driver must handle this OID set request atomically. The driver must be
able to configure the network adapter to simultaneously remove the filter from a receive
queue and VPort and set it on a different receive queue and VPort.

For more information, see Moving a Receive Filter to a Virtual Port.

The PF miniport driver returns one of the following status codes for the OID set request
of OID_RECEIVE_FILTER_MOVE_FILTER.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support the single
root I/O virtualization (SR-IOV) interface or is not enabled
to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS
structure have invalid values.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters

Status Code Description

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is less than
sizeof(NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS).
The PF miniport driver must set the
DATA.SET_INFORMATION.BytesNeeded member in the
NDIS_OID_REQUEST structure to the minimum buffer size
that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_MOVE_FILTER_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_move_filter_parameters

OID_RECEIVE_FILTER_PARAMETERS
Article • 02/18/2023

An overlying driver issues an OID method request of OID_RECEIVE_FILTER_PARAMETERS
to obtain the current configuration parameters of a filter on a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_FILTER_PARAMETERS structure. NDIS uses the FilterId member in
the input structure to identify the filter.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer is
formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the parameters for
an NDIS receive filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that specifies
the filter test criterion for a field in a network packet header.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

Overlying drivers issue OID method requests of OID_RECEIVE_FILTER_PARAMETERS to
obtain the configuration parameters for a receive filter that was set on a network
adapter. This includes a receive filter that was set on a VMQ receive queue or SR-IOV
virtual port (VPort), as well as a packet coalescing filter that was downloaded to the
miniport driver.

The overlying driver obtained the filter identifier from an earlier OID method request of
OID_RECEIVE_FILTER_SET_FILTER or from OID requests of
OID_RECEIVE_FILTER_ENUM_FILTERS.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters

NDIS handles the OID request of OID_RECEIVE_FILTER_PARAMETERS for miniport drivers,
and returns one of the following status codes:

NDIS_STATUS_SUCCESS
The request completed successfully. The InformationBuffer points to an
NDIS_RECEIVE_FILTER_PARAMETERS structure.

NDIS_STATUS_PENDING
The request is pending completion. NDIS passes the final status code and results to the
OID request completion handler of the caller after the request is complete.

NDIS_STATUS_INVALID_PARAMETER
The overlying driver or application provided an invalid filter identifier. A filter identifier is
not valid if it is zero or if it specifies an undefined filter.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS sets the
DATA.QUERY_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

OID_RECEIVE_FILTER_ENUM_FILTERS

NDIS_RECEIVE_FILTER_PARAMETERS

OID_RECEIVE_FILTER_SET_FILTER

Return status codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

OID_RECEIVE_FILTER_QUEUE_ALLOCATI
ON_COMPLETE
Article • 02/18/2023

NDIS protocol drivers issue object identifier (OID) method requests of
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE to notify the miniport driver that
an allocation has completed for the current batch of receive queues.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_ARRAY structure that is
followed by an NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_PARAMETERS
structure for each queue. After a successful return from the OID method request, the
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to
the same array of structures, and the CompletionStatus member of each
NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_PARAMETERS structure contains the
completion status for each queue.

The OID method request of OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE is
optional for NDIS 6.20 and later miniport drivers. It is mandatory for miniport drivers
that support the virtual machine queue (VMQ) interface.

After allocating one or more receive queues and optionally setting the initial filters, the
protocol driver must issue the OID method request of
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE in order to notify the miniport
driver that the allocation has completed for the current batch of receive queues. This
allows the miniport driver to balance the hardware resources among multiple receive
queues; if necessary, it can allocate resources such as shared memory for the receive
queues.

After a miniport driver receives an
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE request and it has filters that are
set on the queue, the queue is in the Running state. In this state, the miniport driver can
start indications of packets in the queue by calling
NdisMIndicateReceiveNetBufferLists.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_allocation_complete_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_allocation_complete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

The miniport driver returns one of the following status codes for the OID method
request of OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE.

Status code Description

NDIS_STATUS_SUCCESS The queue allocation has completed. The information
buffer contains the updated
NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_ARRAY
structure and parameter structures with the completion
status for the queue allocation.

NDIS_STATUS_PENDING The request is pending completion. The final status code
and results will be passed to the OID request completion
handler of the caller.

NDIS_STATUS_INVALID_PARAMETER One or more of the parameters that the overlying driver
provided were not valid.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS set the
DATA.METHOD_INFORMATION.BytesNeeded member
in the NDIS_OID_REQUEST structure to the minimum
buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED The NDIS version of the miniport driver is earlier than
version 6.20.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NdisMIndicateReceiveNetBufferLists

NDIS_OID_REQUEST

NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_ARRAY

NDIS_RECEIVE_QUEUE_ALLOCATION_COMPLETE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_allocation_complete_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_allocation_complete_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_allocation_complete_parameters

OID_RECEIVE_FILTER_QUEUE_PARAMETE
RS
Article • 02/18/2023

Overlying drivers issue object identifier (OID) method requests of
OID_RECEIVE_FILTER_QUEUE_PARAMETERS to obtain the current configuration
parameters of a receive queue. The InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_QUEUE_PARAMETERS structure with a queue identifier of type
NDIS_RECEIVE_QUEUE_ID. After a successful return from the OID method request, the
InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer to
an NDIS_RECEIVE_QUEUE_PARAMETERS structure.

Overlying drivers issue OID set requests of OID_RECEIVE_FILTER_QUEUE_PARAMETERS to
change the current configuration parameters of a queue. The overlying driver provides a
pointer to an NDIS_RECEIVE_QUEUE_PARAMETERS structure in the InformationBuffer
member of the NDIS_OID_REQUEST structure.

Overlying drivers issue OID set requests of OID_RECEIVE_FILTER_QUEUE_PARAMETERS to
change the parameters of one or more receive queues. The OID set request is optional
for NDIS 6.20 and later miniport drivers. However, the OID request is mandatory for
miniport drivers that support the virtual machine queue (VMQ) interface.

Note Only the overlying driver that allocated the queue can change the configuration
parameters by issuing OID set requests of OID_RECEIVE_FILTER_QUEUE_PARAMETERS.

The overlying driver obtained the queue identifier input value from an earlier
OID_RECEIVE_FILTER_ALLOCATE_QUEUE method OID request.

After the overlying driver allocates a queue, it can change the configuration parameters
that have a corresponding change flag
(NDIS_RECEIVE_QUEUE_PARAMETER_Xxx_CHANGED) in the Flags member of the
NDIS_RECEIVE_QUEUE_PARAMETERS structure. However, after the queue has been
allocated, the overlying driver cannot change the configuration parameters that do not
have a corresponding change flag.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

NDIS handles the OID method request of OID_RECEIVE_FILTER_QUEUE_PARAMETERS for
miniport drivers, and returns one of the following status codes.

Status code Description

NDIS_STATUS_SUCCESS The request completed successfully.

NDIS_STATUS_PENDING The request is pending completion. NDIS will
pass the final status code and results to the
OID request completion handler of the caller
after the request has completed.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS set
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to
the minimum buffer size that is required.

NDIS_STATUS_INVALID_PARAMETER The request failed because it tried to enable a
capability that the underlying network adapter
does not support.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_RECEIVE_QUEUE_PARAMETERS

OID_RECEIVE_FILTER_ALLOCATE_QUEUE

OID_RECEIVE_FILTER_QUEUE_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_queue_parameters

OID_RECEIVE_FILTER_SET_FILTER
Article • 02/18/2023

An overlying driver issues an OID method request of OID_RECEIVE_FILTER_SET_FILTER to
set a filter on a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a caller-allocated buffer. This buffer is formatted to contain the following:

An NDIS_RECEIVE_FILTER_PARAMETERS structure that specifies the parameters for
an NDIS receive filter.

An array of NDIS_RECEIVE_FILTER_FIELD_PARAMETERS structures that specifies
the filter test criterion for a field in a network packet header.

After a successful return from the OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to an
NDIS_RECEIVE_FILTER_PARAMETERS structure. If the overlying driver is creating a new
receive filter, NDIS updates this structure with a new filter identifier.

NDIS receive filters are used in the following NDIS interfaces:

NDIS Packet Coalescing. For more information about how to use receive filters in
this interface, see Managing Packet Coalescing Receive Filters.

Single Root I/O Virtualization (SR-IOV). For more information about how to use
receive filters in this interface, see Setting a Receive Filter on a Virtual Port.

Virtual Machine Queue (VMQ). For more information about how to use receive
filters in this interface, see Setting and Clearing VMQ Filters.

The OID method request of OID_RECEIVE_FILTER_SET_FILTER is mandatory for miniport
drivers that support the NDIS packet coalescing, SR-IOV, or VMQ interface.

The overlying driver initializes the NDIS_RECEIVE_FILTER_PARAMETERS structure with
its requested filter configuration. NDIS assigns a filter identifier in the FilterId member
of the NDIS_RECEIVE_FILTER_PARAMETERS structure and passes the method request to
the underlying miniport driver.

Each filter that is set on a receive queue has a unique filter identifier for a network
adapter. That is, the filter identifiers are not duplicated on different queues that the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_field_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

network adapter manages. When NDIS receives an OID request to set a filter on a
receive queue, it verifies the filter parameters. After NDIS allocates the necessary
resources and the filter identifier, it submits the OID request to the underlying network
adapter. If the network adapter can successfully allocate the necessary software and
hardware resources for the filter, it completes the OID request with a return status of
NDIS_STATUS_SUCCESS.

Note Starting with NDIS 6.30, packet coalescing receive filter are only supported on the
default receive queue of the network adapter. This receive queue has an identifier of
NDIS_DEFAULT_RECEIVE_QUEUE_ID.

The miniport driver must retain the filter identifiers for the allocated receive filters. NDIS
uses the identifier of a filter in later OID requests to change the receive filter parameters
or clear the receive filter.

After a miniport driver receives an
OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE request and it has filters that are
set on the queue, the queue is in the Running state. In this state, the miniport driver can
start indications of packets in the queue by calling
NdisMIndicateReceiveNetBufferLists.

The following points apply to miniport drivers that support the SR-IOV interface:

For the SR-IOV interface, a receive queue is created on a default or nondefault
virtual port (VPort).

Note Starting with Windows Server 2012, the SR-IOV interface only supports the
default receive queue of a VPort.

After an SR-IOV VPort is allocated through an OID set request of
OID_NIC_SWITCH_CREATE_VPORT, overlying drivers can set filters on the VPort
with OID requests of OID_RECEIVE_FILTER_SET_FILTER.

Note Only the overlying driver that allocated the VPort can set a filter on that
VPort.

Because the default VPort always exists, overlying drivers can always set a filter on
the default VPort.

When the VPort is created, no receive filters are set on it. In this case, the miniport
driver must not indicate any receive packets on that VPort before the miniport
driver receives an OID request of OID_RECEIVE_FILTER_SET_FILTER for the VPort.

Additional Guidelines for the SR-IOV Interface

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists

After this OID request is issued, the miniport driver can indicate packets on that
VPort.

Note If the miniport driver indicates packets on a VPort while it is processing an
OID request of OID_RECEIVE_FILTER_SET_FILTER, it must complete the OID request
and return an NDIS_STATUS_SUCCESS status code.

The following points apply to miniport drivers that support the VMQ interface:

After a VMQ receive queue is allocated, overlying drivers can set filters on the
receive queue with OID requests of OID_RECEIVE_FILTER_SET_FILTER.

Note Only the protocol driver that allocated a receive queue can set a filter on that
queue.

Because the default queue always exists, overlying drivers can always set a filter on
the default queue. If the network adapter supports a drop queue, overlying drivers
can set a filter on the drop queue.

Overlying drivers do not own the default or drop queues. Therefore, all protocol
drivers that are bound to a network adapter use the default or drop queue.

When the receive queue is created, no receive filters are set on it. In this case, the
miniport driver must not indicate any receive packets on that receive queue before
the miniport driver receives an OID request of OID_RECEIVE_FILTER_SET_FILTER for
the receive queue. After this OID request is issued, the miniport driver can indicate
packets on that receive queue.

Note If the miniport driver indicates packets on a queue while it is processing an
OID request of OID_RECEIVE_FILTER_SET_FILTER, it must complete the OID request
and return an NDIS_STATUS_SUCCESS status code.

The miniport driver returns one of the following status codes for the OID method
request of OID_RECEIVE_FILTER_SET_FILTER:

NDIS_STATUS_SUCCESS
The filter was set on the queue successfully. The information buffer contains the
updated NDIS_RECEIVE_FILTER_PARAMETERS structure.

Additional Guidelines for the VMQ Interface

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters

NDIS_STATUS_PENDING
The request is pending completion. The final status code and results will be passed to
the OID request completion handler of the caller.

NDIS_STATUS_INVALID_PARAMETER
One or more of the parameters that the overlying driver provided was not valid.

NDIS_STATUS_INVALID_LENGTH
The information buffer was too short. NDIS sets the
DATA.METHOD_INFORMATION.BytesNeeded member in the NDIS_OID_REQUEST
structure to the minimum buffer size that is required.

NDIS_STATUS_NOT_SUPPORTED
The NDIS version of the miniport driver is an earlier version than 6.20.

NDIS_STATUS_FAILURE
The request failed for other reasons.

Version Supported in NDIS 6.20 and later.

Header Ntddndis.h (include Ndis.h)

NdisMIndicateReceiveNetBufferLists

NDIS_OID_REQUEST

NDIS_RECEIVE_FILTER_PARAMETERS

NET_BUFFER_LIST

NET_BUFFER_LIST_RECEIVE_FILTER_ID

OID_NIC_SWITCH_CREATE_VPORT

OID_RECEIVE_FILTER_CLEAR_FILTER

OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatereceivenetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_receive_filter_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-net_buffer_list_receive_filter_id

OID_SRIOV_BAR_RESOURCES
Article • 02/18/2023

NDIS issues an object identifier (OID) method request of OID_SRIOV_BAR_RESOURCES
to determine the memory resources that were allocated to a PCI Express (PCIe) Base
Address Register (BAR) of a PCIe Virtual Function (VF).

NDIS issues this OID method request to the miniport driver for the network adapter's
PCIe Physical Function (PF). This OID method request is required for PF miniport drivers
that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following structures:

An NDIS_SRIOV_BAR_RESOURCES_INFO structure that specifies the VF and BAR
for which the PF miniport driver returns resource information.

A CM_PARTIAL_RESOURCE_DESCRIPTOR structure which follows the
NDIS_SRIOV_BAR_RESOURCES_INFO structure. The
CM_PARTIAL_RESOURCE_DESCRIPTOR structure contains information about the
memory resources that were allocated to the specified BAR.

NDIS issues an OID method request of OID_SRIOV_BAR_RESOURCES to obtain the
system physical address and length of the memory resources that were allocated to a VF
BAR. Before it issues the OID method request, NDIS formats the
NDIS_SRIOV_BAR_RESOURCES_INFO structure in the following way:

NDIS sets the VFId member of the NDIS_SRIOV_BAR_RESOURCES_INFO structure
to the identifier associated with the VF.

NDIS sets the BarIndex member of the NDIS_SRIOV_BAR_RESOURCES_INFO
structure to the BAR index for the specified VF. The BAR index is the offset of the
register within the table of BARs in the PCI configuration space.

NDIS sets the BarResourcesOffset member of the
NDIS_SRIOV_BAR_RESOURCES_INFO structure to the offset, in units of bytes, from
the beginning of the NDIS_SRIOV_BAR_RESOURCES_INFO structure to a
CM_PARTIAL_RESOURCE_DESCRIPTOR structure.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_cm_partial_resource_descriptor
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_cm_partial_resource_descriptor

Note Overlying drivers, such as protocol or filter drivers, cannot issue OID method
requests of OID_SRIOV_BAR_RESOURCES to the PF miniport driver.

When the PF miniport driver receives the OID method request, the driver returns the
resources for the specified BAR by formatting the
CM_PARTIAL_RESOURCE_DESCRIPTOR structure within the InformationBuffer member
of the NDIS_OID_REQUEST structure. The driver formats the
CM_PARTIAL_RESOURCE_DESCRIPTOR structure with the system hardware resources
associated with the BAR for the specified VF.

Note The driver must format the structure for a resource type of
CmResourceTypeMemory.

The PF miniport driver returns one of the following status codes for the method request
of OID_SRIOV_BAR_RESOURCES.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_BAR_RESOURCES_INFO structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer is less than
(sizeof(NDIS_SRIOV_BAR_RESOURCES_INFO) +
sizeof(CM_PARTIAL_RESOURCE_DESCRIPTOR).
The PF miniport driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_cm_partial_resource_descriptor
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_cm_partial_resource_descriptor
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

CM_PARTIAL_RESOURCE_DESCRIPTOR

NDIS_OID_REQUEST

NDIS_SRIOV_BAR_RESOURCES_INFO

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_cm_partial_resource_descriptor
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_bar_resources_info

OID_SRIOV_CURRENT_CAPABILITIES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_SRIOV_CURRENT_CAPABILITIES to obtain the current single root I/O virtualization
(SR-IOV) capabilities of a network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_SRIOV_CAPABILITIES structure.

Starting with NDIS 6.30, miniport drivers supply the enabled SR-IOV hardware
capabilities on the network adapter when its MiniportInitializeEx function is called. The
driver initializes an NDIS_SRIOV_CAPABILITIES structure with the currently enabled SR-
IOV hardware capabilities and sets the CurrentSriovCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a pointer to
the NDIS_SRIOV_CAPABILITIES structure. The miniport driver then calls the
NdisMSetMiniportAttributes function and sets the MiniportAttributes parameter to a
pointer to an NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

Overlying protocol and filter drivers do not have to issue OID query requests of
OID_SRIOV_CURRENT_CAPABILITIES. NDIS provides the currently enabled SR-IOV
capabilities of a network adapter to these drivers in the following way:

NDIS reports the currently enabled SR-IOV capabilities of an underlying network
adapter to overlying protocol drivers in the SriovCapabilities member of the
NDIS_BIND_PARAMETERS structure during the bind operation.

NDIS reports the currently enabled SR-IOV capabilities of an underlying network
adapter to overlying filter drivers in the SriovCapabilities member of the
NDIS_FILTER_ATTACH_PARAMETERS structure during the attach operation.

NDIS handles the OID query request of the OID_SRIOV_CURRENT_CAPABILITIES request
for miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_SRIOV_CURRENT_CAPABILITIES request, it returns one of
the following status codes:

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters

Status Code DescriptionStatus Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The
miniport driver must set the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_FILTER_ATTACH_PARAMETERS

NDIS_OID_REQUEST

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_SRIOV_CAPABILITIES

NdisMSetMiniportAttributes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_SRIOV_HARDWARE_CAPABILITIES
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_SRIOV_HARDWARE_CAPABILITIES to obtain the single root I/O virtualization (SR-
IOV) hardware capabilities of the network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_SRIOV_CAPABILITIES structure.

The NDIS_SRIOV_CAPABILITIES structure contains information about the hardware
capabilities of the network adapter, such as whether the adapter supports SR-IOV and
whether the miniport driver is managing the adapter's PCI Express (PCIe) Physical
Function (PF) or Virtual Function (VF). These capabilities can include the hardware
capabilities that are currently disabled by the INF file settings or through the Advanced
properties page.

Note All the SR-IOV capabilities of the network adapter are returned through an OID
query request of OID_SRIOV_HARDWARE_CAPABILITIES, regardless of whether a
capability is enabled or disabled.

Starting with NDIS 6.30, miniport drivers supply the SR-IOV hardware capabilities when
its MiniportInitializeEx function is called. The driver initializes an
NDIS_SRIOV_CAPABILITIES structure with the SR-IOV hardware capabilities and sets the
HardwareSriovCapabilities member of the
NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure to a pointer to
the NDIS_SRIOV_CAPABILITIES structure. The miniport driver then calls the
NdisMSetMiniportAttributes function and sets the MiniportAttributes parameter to a
pointer to an NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES structure.

NDIS handles the OID query request of the OID_SRIOV_HARDWARE_CAPABILITIES
request for miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_SRIOV_HARDWARE_CAPABILITIES request, it returns one of
the following status codes.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

Status Code DescriptionStatus Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The
miniport driver must set the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_BIND_PARAMETERS

NDIS_FILTER_ATTACH_PARAMETERS

NDIS_OID_REQUEST

NDIS_MINIPORT_ADAPTER_HARDWARE_ASSIST_ATTRIBUTES

NDIS_SRIOV_CAPABILITIES

NdisMSetMiniportAttributes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_bind_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_filter_attach_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_adapter_hardware_assist_attributes
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetminiportattributes

OID_SRIOV_PF_LUID
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_SRIOV_PF_LUID to receive the locally unique identifier (LUID) associated with the
PCI Express (PCIe) Physical Function (PF) of the network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to the NDIS_SRIOV_PF_LUID_INFO structure.

NDIS generates a LUID for the PF before NDIS calls the MiniportInitializeEx function of
the miniport driver for the PF. This LUID is valid until NDIS calls the MiniportHaltEx
function of the driver.

Note The value of the Luid member differs from the NetLuid member of the
NDIS_MINIPORT_INIT_PARAMETERS structure. This structure is passed to the miniport
driver through the MiniportInitParameters parameter of MiniportInitializeEx.

NDIS handles the OID query request of OID_SRIOV_PF_LUID request for miniport drivers.
The drivers will not be issued this OID request.

When NDIS handles the OID_SRIOV_PF_LUID request, it returns one of the following
status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The
miniport driver must set the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_pf_luid_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_halt
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_miniport_init_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

MiniportInitializeEx

NDIS_OID_REQUEST

NDIS_SRIOV_PF_LUID_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_initialize
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_pf_luid_info

OID_SRIOV_PROBED_BARS
Article • 02/18/2023

NDIS issues an object identifier (OID) query request of OID_SRIOV_PROBED_BARS to
obtain the values of a network adapter's PCI Express (PCIe) Base Address Registers
(BARs). This function returns the BAR values that were reported by the network adapter
following a query performed by the PCI bus driver. This query determines the memory
or I/O address space that is required by the network adapter.

NDIS issues OID query requests of OID_SRIOV_PROBED_BARS to the miniport driver for
the network adapter's PCIe Physical Function (PF). This OID query request is required for
PF miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer is formatted to contain the following:

An NDIS_SRIOV_PROBED_BARS_INFO structure that contains the parameters for a
read operation on the PCI BARs of a network adapter.

An array of ULONG values for each BAR of the PCIe network adapter. The
maximum number of elements within this array is PCI_TYPE0_ADDRESSES.

The PCI bus driver, which runs in the management operating system of the Hyper-V
parent partition, queries the memory or I/O address space requirements of each PCI
Base Address Register (BAR) of the network adapter. The PCI bus driver performs this
query when it first detects the adapter on the bus.

Through this PCI BAR query, the PCI bus driver determines the following:

Whether a PCI BAR is supported by the network adapter.

If a BAR is supported, how much memory or I/O address space is required for the
BAR.

The virtual PCI (VPCI) bus driver runs in the guest operating system of a Hyper-V child
partition. When a PCI Express (PCIe) Virtual Function (VF) is attached to the child
partition, the VPCI bus driver will expose a virtual network adapter for the VF (VF
network adapter). Before it does this, the VPCI bus driver must perform a PCI BAR query
to determine the required memory or address space that is required by the VF network
adapter.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info

Because access to the PCI configuration space is a privileged operation, it can only be
performed by components that run in the management operating system of a Hyper-V
parent partition. When the VPCI bus driver queries the PCI BARs, NDIS issues an OID
query request of OID_SRIOV_PROBED_BARS to the PF miniport driver. The results
returned by this OID query request are forwarded to the VPCI bus driver so that it can
determine how much memory address space would be needed by the VF network
adapter.

Note OID requests of OID_SRIOV_PROBED_BARS can only be issued by NDIS. The OID
request must not be issued by overlying drivers, such as protocol of filter drivers.

The OID_SRIOV_PROBED_BARS query request contains an
NDIS_SRIOV_PROBED_BARS_INFO structure. When the PF miniport driver handles this
OID, the driver must return the PCI BAR values within the array referenced by the
BaseRegisterValuesOffset member of the NDIS_SRIOV_PROBED_BARS_INFO structure.
For each offset within the array, the PF miniport driver must set the array element to the
ULONG value of the BAR at the same offset within the physical adapter's PCI
configuration space.

Each BAR value returned by the driver must be the same value that would follow a PCI
BAR query as performed by the PCI driver that runs in the management operating
system. The PF miniport driver can call NdisMQueryProbedBars to determine this
information.

For more information about the BARs of a PCI device, see the PCI Local Bus Specification.

For more information on how to query PCI BAR registers for a VF, see the Querying the
PCI Base Address Registers of a Virtual Function.

The PF miniport driver returns one of the following status codes for the query request of
OID_SRIOV_PROBED_BARS:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueryprobedbars

Status Code Description

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_PROBED_BARS_INFO structure
have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer is less than
(sizeof(NDIS_SRIOV_PROBED_BARS_INFO) +
PCI_TYPE0_ADDRESSES). The PF miniport driver
must set the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_PROBED_BARS_INFO

NdisMQueryProbedBars

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_probed_bars_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismqueryprobedbars

OID_SRIOV_READ_VF_CONFIG_BLOCK
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_SRIOV_READ_VF_CONFIG_BLOCK to read data from a specified PCI Express (PCIe)
Virtual Function (VF) configuration block.

Overlying drivers issue this OID method request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID method request is required for PF
miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a caller-allocated buffer. This buffer is formatted to contain the following:

An NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS structure that contains
the offset, in units of bytes, from the beginning of this structure to a location
within the buffer that contains the data that is read from the VF configuration
block.

Additional buffer space for the data to be read from the specified VF configuration
block.

A VF configuration block is used for backchannel communication between the PF and VF
miniport drivers. The IHV can define one or more VF configuration blocks for the
miniport drivers. Each VF configuration block has an IHV-defined format, length, and
block ID.

Note Data from each VF configuration block is used only by the PF and VF miniport
drivers.

Before it issues the OID method request of OID_SRIOV_READ_VF_CONFIG_BLOCK, the
overlying driver must set the members of
NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS structure in the following way:

Set the VFId member to the identifier of the VF from which the information is to be
read.

Set the BlockId member to the identifier of the VF configuration block from which
the information is to be read.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters

Set the Length member to the number of bytes to read from the configuration
block.

Set the BufferOffset member to the offset within the buffer (referenced by
InformationBuffer member) that will contain the data that is read from the
specified VF configuration block. This offset is specified in units of bytes from the
beginning of the NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS structure.

When it handles the OID method request of OID_SRIOV_READ_VF_CONFIG_BLOCK, the
PF miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS structure, has resources
that have been previously allocated. The PF miniport driver allocates resources for
a VF during an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If
resources for the specified VF have not been allocated, the driver must fail the OID
request.

The PF miniport driver must verify that the BlockId member of the
NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS structure specifies a valid
VF configuration block. If not, the driver must fail the OID request.

For more information about backchannel communication within the single root I/O
virtualization (SR-IOV) interface, see SR-IOV PF/VF Backchannel Communication.

The PF miniport driver returns one of the following status codes for the method request
of OID_SRIOV_READ_VF_CONFIG_BLOCK.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the single
root I/O virtualization (SR-IOV) interface or is not
enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS
structure have invalid values.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters

Status Code Description

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The miniport
driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to the
minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_READ_VF_CONFIG_BLOCK_PARAMETERS

OID_NIC_SWITCH_ALLOCATE_VF

OID_SRIOV_READ_VF_CONFIG_SPACE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_block_parameters

OID_SRIOV_READ_VF_CONFIG_SPACE
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_SRIOV_READ_VF_CONFIG_SPACE to read data from the PCI Express (PCIe)
configuration space for a specified PCIe Virtual Function (VF) on the network adapter.

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a caller-allocated buffer. This
buffer is formatted to contain the following:

An NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure that contains
the parameters for a read operation of the PCI configuration space of a VF.

Additional buffer space for the data to be read from the PCI configuration space.

The VF miniport driver runs in the guest operating system of a Hyper-V child partition.
Because of this, the VF miniport driver cannot directly access hardware resources, such
as the VF's PCI configuration space. Only the miniport driver for the PCIe Physical
Function (PF) can access the PCI configuration space for a VF. The PF miniport driver
runs in the management operating system of a Hyper-V parent partition and has
privileged access to the VF resources.

In order to read the VF PCI configuration space, overlying drivers that run in the
management operating system issue the OID method request of
OID_SRIOV_READ_VF_CONFIG_SPACE to the PF miniport driver. This OID method
request is required for PF miniport drivers that support the single root I/O virtualization
(SR-IOV) interface.

For example, the virtualization stack that runs in the management operating system
issues the OID method request of OID_SRIOV_READ_VF_CONFIG_SPACE when the VF
miniport driver calls NdisMGetBusData to read from its VF PCI configuration space.

When it handles the OID method request of OID_SRIOV_READ_VF_CONFIG_SPACE, the
PF miniport driver must follow these guidelines:

The miniport driver must verify that the VF, specified by the VFId member of the
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure, has resources
that have been previously allocated. The miniport driver allocates resources for a
VF through an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters

resources for the specified VF have not been allocated, the driver must fail the OID
request.

The miniport driver must verify that the buffer (referenced by the
InformationBuffer member of the NDIS_OID_REQUEST structure) is large enough
to return the requested PCIe configuration space data. If this is not true, the driver
must fail the OID request.

The miniport driver typically calls NdisMGetVirtualFunctionBusData to query the
requested PCIe configuration space. However, the miniport driver can also return
PCIe configuration space data for the VF that the driver has cached from previous
read or write operations of the PCIe configuration space.

Note If an independent hardware vendor (IHV) provides a virtual bus driver (VBD)
as part of its SR-IOV driver package, its miniport driver must not call
NdisMGetVirtualFunctionBusData. Instead, the driver must interface with the VBD
through a private communication channel, and request that the VBD call
ReadVfConfigBlock. This function is exposed from the
GUID_VPCI_INTERFACE_STANDARD interface that is supported by the underlying
virtual PCI (VPCI) bus driver.

If the PF miniport driver can successfully complete the OID request, the driver must copy
the requested PCI configuration space data to the buffer referenced by the
InformationBuffer member of the NDIS_OID_REQUEST structure. The driver copies the
data to the buffer at the offset specified by BufferOffset member of
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure.

For more information, see Querying the PCI Configuration Data of a Virtual Function.

The PF miniport driver returns one of the following status codes for the OID method
request of OID_SRIOV_READ_VF_CONFIG_SPACE.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the single
root I/O virtualization (SR-IOV) interface or is not
enabled to use the interface.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh439637(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters

Status Code Description

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The miniport
driver must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to the
minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

GUID_VPCI_INTERFACE_STANDARD

NDIS_OID_REQUEST

NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS

NdisMGetBusData

NdisMGetVirtualFunctionBusData

OID_NIC_SWITCH_ALLOCATE_VF

ReadVfConfigBlock

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismgetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh439637(v=vs.85)

OID_SRIOV_RESET_VF
Article • 02/18/2023

Overlying drivers issue an object identifier (OID) set request of OID_SRIOV_RESET_VF to
reset a specified PCI Express (PCIe) Virtual Function (VF) on a network adapter that
supports single root I/O virtualization. Overlying drivers issue this OID set request to the
miniport driver of the PCI Express (PCIe) Physical Function (PF) of the network adapter.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SRIOV_RESET_VF_PARAMETERS structure. The overlying driver specifies the
identifier of the VF to be reset through the VFId member of this structure.

A VF can be reset through a PCI Express (PCIe) Function Level Reset (FLR). Because the
FLR request is a privileged operation, it can only be performed by the PF miniport driver
that runs in the management operating system of a Hyper-V parent partition. Overlying
drivers that run in the management operating system are notified of the FLR request
and issue the OID set request of OID_SRIOV_RESET_VF to the PF miniport driver.

When it handles this OID request, the PF miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_RESET_VF_PARAMETERS structure, has resources that have been
previously allocated. The PF miniport driver allocates resources for a VF during an
OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If resources for the
specified VF have not been allocated, the driver must fail the OID request.

The reset operation must only affect the specified VF. The operation must not
affect other VFs or the PF on the same network adapter.

For more information, see Resetting a Virtual Function.

The PF miniport driver returns one of the following status codes for the set request of
OID_SRIOV_RESET_VF.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters

Status Code Description

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_RESET_VF_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The PF
miniport driver must set the
DATA.SET_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_RESET_VF_PARAMETERS

OID_NIC_SWITCH_ALLOCATE_VF

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_reset_vf_parameters

OID_SRIOV_SET_VF_POWER_STATE
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_SRIOV_SET_VF_POWER_STATE to change the power state of a specified PCI Express
(PCIe) Virtual Function (VF) on the network adapter. Since changing the power state is a
privileged operation, overlying drivers issue this OID set request to the miniport driver
of the PCIe Physical Function (PF) on the network adapter. The PF miniport driver then
sets the specified power state on the VF.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS structure.

When the PF miniport driver is issued this OID set request, it must follow these
guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS structure, has resources
that have been previously allocated. The PF miniport driver allocates resources for
a VF during an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If the
specified VF is not in an allocated state, the driver must fail the OID request.

The power state operation must only affect the specified VF. The operation must
not affect other VFs or the PF on the same network adapter.

For more information, see Setting the Power State of a Virtual Function.

The PF miniport driver returns one of the following status codes for the OID set request
of OID_SRIOV_SET_VF_POWER_STATE.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface or is
not enabled to use the interface.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters

Status Code Description

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. The PF
miniport driver must set the
DATA.SET_INFORMATION.BytesNeeded member
in the NDIS_OID_REQUEST structure to the
minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_SET_VF_POWER_STATE_PARAMETERS

OID_NIC_SWITCH_ALLOCATE_VF

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_set_vf_power_state_parameters

OID_SRIOV_VF_INVALIDATE_CONFIG_BL
OCK
Article • 02/18/2023

NDIS issues an object identifier (OID) method request of
OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK to notify the miniport driver of a PCI
Express (PCIe) Virtual Function (VF) that data within one or more configuration blocks
has changed. NDIS issues this OID when the miniport driver for a PCIe Physical Function
(PF) calls NdisMInvalidateConfigBlock.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO structure. This structure
specifies one or more Virtual Function (VF) configuration blocks whose data has been
changed (invalidated) by the PF miniport driver.

A VF configuration block is used for backchannel communication between the PF and VF
miniport drivers. The IHV can define one or more VF configuration blocks for the device.
Each VF configuration block has an IHV-defined format, length, and block ID.

Note Data from each VF configuration block is used only by the PF and VF miniport
drivers.

VF configuration data is exchanged between the following drivers:

The VF driver, which runs in the guest operating system. This operating system
runs within a Hyper-V child partition.

The PF driver, which runs in the management operating system. This operating
system runs within the Hyper-V parent partition.

In order to handle notifications of invalid VF configuration data, NDIS and the miniport
drivers perform the following steps:

1. In the guest operating system, NDIS issues an I/O control request of
IOCTL_VPCI_INVALIDATE_BLOCK request. When this IOCTL is completed, NDIS is
notified that VF configuration data has changed.

2. In the management operating system, the following steps occur:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block

a. The PF miniport driver calls the NdisMInvalidateConfigBlock function to notify
NDIS that VF configuration data has changed and is no longer valid. The driver
sets the BlockMask parameter to a ULONGLONG bitmask that specifies which VF
configuration blocks have changed. Each bit in the bitmask corresponds to a VF
configuration block. If the bit is set to one, the data in the corresponding VF
configuration block has changed.

b. NDIS signals the virtualization stack, which runs in the management operating
system, about the change to VF configuration block data. The virtualization
stack caches the BlockMask parameter data.

Note Each time that the PF miniport driver calls NdisMInvalidateConfigBlock,
the virtualization stack ORs the BlockMask parameter data with the current value
in its cache.

c. The virtualization stack notifies the virtual PCI (VPCI) driver, which runs in the
guest operating system, about the invalidation of VF configuration data. The
virtualization stack sends the cached BlockMask parameter data to the VPCI
driver.

3. In the Guest operating system, the following steps occur:

a. The VPCI driver saves the cached BlockMask parameter data in the BlockMask
member of the VPCI_INVALIDATE_BLOCK_OUTPUT structure that is associated
with the IOCTL_VPCI_INVALIDATE_BLOCK request.

b. The VPCI driver successfully completes the IOCTL_VPCI_INVALIDATE_BLOCK
request. When this happens, NDIS issues an OID method request of
OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK to the VF miniport driver. An
NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO is passed along in the OID
request. This structure contains the cached BlockMask parameter data.

NDIS also issues another IOCTL_VPCI_INVALIDATE_BLOCK request to handle
successive notifications of changes to VF configuration data.

c. When the VF driver handles the OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK
request, it reads data from the specified VF configuration blocks.

For more information about backchannel communication within the single root I/O
virtualization (SR-IOV) interface, see SR-IOV PF/VF Backchannel Communication.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ns-vpci-_vpci_invalidate_block_output
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block

The miniport driver returns one of the following status codes for the OID method
request of OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface or is
not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in
the NDIS_OID_REQUEST structure to the size of the
NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO
structure.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

IOCTL_VPCI_INVALIDATE_BLOCK

NDIS_OID_REQUEST

NDIS_SRIOV_VF_INVALIDATE_CONFIG_BLOCK_INFO

NdisMInvalidateConfigBlock

OID_SRIOV_READ_VF_CONFIG_SPACE

VPCI_INVALIDATE_BLOCK_OUTPUT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ni-vpci-ioctl_vpci_invalidate_block
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_invalidate_config_block_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisminvalidateconfigblock
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/vpci/ns-vpci-_vpci_invalidate_block_output

OID_SRIOV_VF_SERIAL_NUMBER
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_SRIOV_VF_SERIAL_NUMBER to determine the serial number of the PCI Express
(PCIe) Virtual Function (VF) network adapter. This virtual network adapter is exposed in
the guest operating system of a Hyper-V child partition to which the VF is attached.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SRIOV_VF_SERIAL_NUMBER_INFO structure.

The overlying driver uses the serial number to map the VF network adapter to an
instance of a VF on the physical network adapter. The serial number is generated by the
virtualization stack before resources for the VF are allocated through an OID set request
of OID_NIC_SWITCH_ALLOCATE_VF.

NDIS handles the OID query request of the OID_SRIOV_VF_SERIAL_NUMBER request for
miniport drivers. The drivers will not be issued this OID request.

When NDIS handles the OID_SRIOV_VF_SERIAL_NUMBER request, it returns one of the
following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface
or is not enabled to use the interface.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Remarks

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_serial_number_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_VF_SERIAL_NUMBER_INFO

OID_NIC_SWITCH_ALLOCATE_VF

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_serial_number_info

OID_SRIOV_VF_VENDOR_DEVICE_ID
Article • 02/18/2023

An overlying driver issues an object identifier (OID) method request of
OID_SRIOV_VF_VENDOR_DEVICE_ID to query the PCI Express (PCIe) device identifier
(DeviceID) and vendor identifier (VendorID) for a PCI Express (PCIe) Virtual Function (VF)
network adapter. This virtual network adapter is exposed in the Hyper-V child partition
that is attached to the VF.

Overlying drivers issue this OID method request to the miniport driver of the PCI Express
(PCIe) Physical Function (PF) of the network adapter. This OID method request is
required for PF miniport drivers that support the single root I/O virtualization (SR-IOV)
interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SRIOV_VF_VENDOR_DEVICE_ID_INFO structure.

Before it issues this OID method request, the overlying driver must initialize an
NDIS_SRIOV_VF_VENDOR_DEVICE_ID_INFO structure and must set the VFId member to
the identifier of the VF from which the information is to be read.

When it handles this OID request, the PF miniport driver must verify that the specified
VF has resources that have been previously allocated. The PF miniport driver allocates
resources for a VF during an OID method request of OID_NIC_SWITCH_ALLOCATE_VF. If
resources for the specified VF have not been allocated, the driver must fail the OID
request.

For more information, see Querying the PCI Vendor and Device Identifiers for a Virtual
Function.

The PF miniport driver returns one of the following status codes for the OID method
request of OID_SRIOV_VF_VENDOR_DEVICE_ID.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_vendor_device_id_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_vendor_device_id_info

Status Code Description

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support
the single root I/O virtualization (SR-IOV)
interface or is not enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_VF_VENDOR_DEVICE_ID_INFO
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets
the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_VF_VENDOR_DEVICE_ID_INFO

OID_NIC_SWITCH_ALLOCATE_VF

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_vendor_device_id_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_vf_vendor_device_id_info

OID_SRIOV_WRITE_VF_CONFIG_BLOCK
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_SRIOV_WRITE_VF_CONFIG_BLOCK to write data to a PCI Express (PCIe) Virtual
Function (VF) configuration block.

Overlying drivers issue this OID set request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID method request is required for PF
miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a caller-allocated buffer. This buffer is formatted to contain the following:

An NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS structure that contains
the offset, in units of bytes, from the beginning of this structure to a location
within the buffer that contains the data that is written to the VF configuration
block.

Additional buffer space for the data to be written to the specified VF configuration
block.

A VF configuration block is used for backchannel communication between the PF and VF
miniport drivers. The IHV can define one or more VF configuration blocks for the
miniport drivers. Each VF configuration block has an IHV-defined format, length, and
block ID.

Note Data from each VF configuration block is used only by the PF and VF miniport
drivers.

Before it issues the OID set request of OID_SRIOV_WRITE_VF_CONFIG_BLOCK, the
overlying driver must set the members of
NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS structure in the following way:

Set the VFId member to the identifier of the VF for which the information is to be
written.

Set the BlockId member to the identifier of the configuration block from which the
information is to be written.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters

Set the Length member to the number of bytes to write to the VF configuration
block.

Set the BufferOffset member to the offset within the buffer (referenced by
InformationBuffer member) that contains the data that is to be written from the
specified VF configuration block. This offset is specified in units of bytes from the
beginning of the NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS structure.

When it handles the OID set request of OID_SRIOV_WRITE_VF_CONFIG_BLOCK, the PF
miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS structure, has
resources that have been previously allocated. The PF miniport driver allocates
resources for a VF during an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF. If resources for the specified VF have not been
allocated, the driver must fail the OID request.

The PF miniport driver must verify that the BlockId member of the
NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS structure specifies a valid
VF configuration block. If not, the driver must fail the OID request.

For more information about backchannel communication within the single root I/O
virtualization (SR-IOV) interface, see SR-IOV PF/VF Backchannel Communication.

The miniport driver returns one of the following status codes for the OID set request of
OID_SRIOV_WRITE_VF_CONFIG_BLOCK:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support the single
root I/O virtualization (SR-IOV) interface or is not
enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS
structure have invalid values.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters

Status Code Description

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in the
NDIS_OID_REQUEST structure to the minimum buffer
size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SRIOV_WRITE_VF_CONFIG_BLOCK_PARAMETERS

OID_NIC_SWITCH_ALLOCATE_VF

OID_SRIOV_READ_VF_CONFIG_SPACE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_block_parameters

OID_SRIOV_WRITE_VF_CONFIG_SPACE
Article • 02/18/2023

An overlying driver issues an object identifier (OID) set request of
OID_SRIOV_WRITE_VF_CONFIG_SPACE to write data to the PCI Express (PCIe)
configuration space for a specified PCIe Virtual Function (VF) on the network adapter.

Overlying drivers issue this OID set request to the miniport driver for the network
adapter's PCIe Physical Function (PF). This OID method request is required for PF
miniport drivers that support the single root I/O virtualization (SR-IOV) interface.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a caller-allocated buffer. This buffer is formatted to contain the following:

An NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS structure that contains
the parameters for a write operation of the PCI configuration space of a VF.

Additional buffer space that contains the data to be written to the PCI
configuration space.

The VF miniport driver runs in the guest operating system of a Hyper-V child partition.
Because of this, the VF miniport driver cannot directly access hardware resources, such
as the VF's PCI configuration space. Only the PF miniport driver, which runs in the
management operating system of a Hyper-V parent partition, can access the PCI
configuration space for a VF.

The overlying driver, such as the virtualization stack, issues the OID set request of
OID_SRIOV_WRITE_VF_CONFIG_SPACE when the VF miniport driver calls
NdisMSetBusData to write to its PCI configuration space.

When it handles the OID method request of OID_SRIOV_WRITE_VF_CONFIG_SPACE, the
PF miniport driver must follow these guidelines:

The PF miniport driver must verify that the VF, specified by the VFId member of
the NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS structure, has
resources that have been previously allocated. The PF miniport driver allocates
resources for a VF through an OID method request of
OID_NIC_SWITCH_ALLOCATE_VF.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters

If resources for the specified VF have not been allocated, the driver must fail the
OID request.

The PF miniport driver calls NdisMSetVirtualFunctionBusData to write to the
requested PCI configuration space. However, the PF miniport driver can also return
PCI configuration space data for the VF that the driver has cached from previous
read or write operations of the PCI configuration space.

Note If an independent hardware vendor (IHV) provides a virtual bus driver (VBD)
as part of its SR-IOV driver package, its PF miniport driver must not call
NdisMSetVirtualFunctionBusData. Instead, the driver must interface with the VBD
through a private communication channel, and request that the VBD call
SetVirtualFunctionData. This function is exposed from the
GUID_VPCI_INTERFACE_STANDARD interface that is supported by the underlying
virtual PCI (VPCI) bus driver.

If the PF miniport driver can successfully complete the OID request, the driver must copy
the requested PCI configuration space data to the buffer referenced by the
InformationBuffer member of the NDIS_OID_REQUEST structure. The driver copies the
data to the buffer at the offset specified by BufferOffset member of the
NDIS_SRIOV_READ_VF_CONFIG_SPACE_PARAMETERS structure.

For more information, see Setting the PCI Configuration Data of a Virtual Function.

The PF miniport driver returns one of the following status codes for the OID set request
of OID_SRIOV_WRITE_VF_CONFIG_SPACE.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The PF miniport driver either does not support the
single root I/O virtualization (SR-IOV) interface or is not
enabled to use the interface.

NDIS_STATUS_INVALID_PARAMETER One or more of the members of the
NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS
structure have invalid values.

NDIS_STATUS_INVALID_LENGTH The information buffer was too short. NDIS sets the
DATA.SET_INFORMATION.BytesNeeded member in
the NDIS_OID_REQUEST structure to the minimum
buffer size that is required.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-packages
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-set_virtual_device_data
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_read_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Status Code Description

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

GUID_VPCI_INTERFACE_STANDARD

NDIS_OID_REQUEST

NDIS_SRIOV_WRITE_VF_CONFIG_SPACE_PARAMETERS

NdisMSetBusData

NdisMSetVirtualFunctionBusData

OID_NIC_SWITCH_ALLOCATE_VF

OID_SRIOV_READ_VF_CONFIG_SPACE

SetVirtualFunctionData

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/hh451580(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_sriov_write_vf_config_space_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismsetvirtualfunctionbusdata
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-set_virtual_device_data

OID_SWITCH_FEATURE_STATUS_QUERY
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID)
method request of OID_SWITCH_FEATURE_STATUS_QUERY to obtain custom status
information from an extension about the extensible switch. This information is known as
feature status information. The format of this information is defined by the independent
software vendor (ISV).

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains
the following data:

An NDIS_SWITCH_FEATURE_STATUS_PARAMETERS structure that specifies the
parameters for the type of feature status information to be returned.

An NDIS_SWITCH_FEATURE_STATUS_CUSTOM structure that contains the feature
status information for the extensible switch.

For guidelines on how to handle an OID set request of
OID_SWITCH_FEATURE_STATUS_QUERY, see Managing Custom Switch Feature Status
Information.

The extension returns one of the following status codes for the OID method request of
OID_SWITCH_FEATURE_STATUS_QUERY.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_custom

Status Code Description

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too small
to return the feature status information as well
as the
NDIS_SWITCH_FEATURE_STATUS_CUSTOM and
NDIS_SWITCH_FEATURE_STATUS_PARAMETERS
structures. The underlying miniport edge of the
extensible switch sets the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to
the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PROPERTY_TYPE

NDIS_SWITCH_FEATURE_STATUS_CUSTOM

NDIS_SWITCH_FEATURE_STATUS_PARAMETERS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_property_type
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_feature_status_parameters

OID_SWITCH_NIC_ARRAY
Article • 02/18/2023

A Hyper-V extensible switch extension issues an object identifier (OID) query request of
OID_SWITCH_NIC_ARRAY to obtain an array. Each element in the array specifies the
configuration parameters of a virtual network adapter that is associated with an
extensible switch port.

If the OID query request is completed successfully, the InformationBuffer member of
the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains the
following data:

An NDIS_SWITCH_NIC_ARRAY structure that defines the number of elements in
the array. This structure also specifies the offset to the first element in the array.

An array of NDIS_SWITCH_NIC_PARAMETERS structures. Each of these structures
contains information about a network adapter that is connected to an extensible
switch port.

Note If no network adapters are connected to extensible switch ports, the
underlying miniport edge of the extensible switch sets the NumElements member
of the NDIS_SWITCH_NIC_ARRAY structure to zero. In this case, no
NDIS_SWITCH_NIC_PARAMETERS structures are returned.

The OID_SWITCH_NIC_ARRAY OID must only be issued when the Hyper-V extensible
switch has completed activation. Please see Querying the Hyper-V Extensible Switch
Configuration for more details.

When the extension processes the returned NDIS_SWITCH_NIC_PARAMETERS structure,
it must not assume that the various string members of the
NDIS_SWITCH_PORT_PARAMETERS structure, such as NicFriendlyName, are NULL-
terminated. The data types for these string members are type-defined by the
IF_COUNTED_STRING structure. The driver must determine the string length from the
value of the Length member of this structure.

Note If the string is null-terminated, the Length member must not include the
terminating null character.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-if_counted_string_lh

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_ARRAY and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to return the NDIS_SWITCH_NIC_ARRAY
and its array of
NDIS_SWITCH_NIC_PARAMETERS elements.
The underlying miniport edge of the extensible
switch sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_ARRAY

NDIS_SWITCH_NIC_PARAMETERS

Querying the Hyper-V Extensible Switch Configuration

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

OID_SWITCH_NIC_CONNECT
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_CONNECT to notify underlying extensible switch
extensions that a network connection between an extensible switch port and a network
adapter is completely established. The protocol edge previously notified extensions that
this connection is being established when it issued an OID set request of
OID_SWITCH_NIC_CREATE.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
extensible switch port for which the connect notification is being made. The extensible
switch extension can obtain the parameter information for this port and other extensible
switch ports in the following ways:

By issuing OID query requests of OID_SWITCH_PORT_ARRAY. The extension issues
this OID on FilterAttach only when OID_SWITCH_PARAMETERS returns an
NDIS_SWITCH_PARAMETERS structure with IsActive set to TRUE. If IsActive is
FALSE, the extension issues the OID when the NetEventSwitchActivate
NET_PNP_EVENT is issued by the extension miniport adapter.

By inspecting the various OID sets requests of OID_SWITCH_PORT_CREATE and
OID_SWITCH_PORT_DELETE.

The Index member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
index of a network adapter for which the connection notification is being made. The
network adapter with the specified Index value is connected to the extensible switch
port specified by the PortId member. For more information on these index values, see
Network Adapter Index Values.

When it receives the OID set request of OID_SWITCH_NIC_CONNECT, the extension
must follow these guidelines:

When the OID_SWITCH_NIC_CONNECT request completes with
NDIS_STATUS_SUCCESS, the network connection and extensible switch port are
fully operational. The extension can generate or forward packet traffic to the port's

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

network connection. The extension can also issue extensible switch OIDs or status
indications that use the port as the source port. The extension can also call
ReferenceSwitchPort to increment the extensible switch reference counter for the
port.

The extension must not modify the NDIS_SWITCH_NIC_PARAMETERS structure
that is associated with the OID request.

The extension must always call NdisFOidRequest to forward this OID request to
underlying extensions. The extension must not complete the OID request itself.

The extensible switch external network adapter can bind to one or more
underlying physical adapters. For every physical network adapter that is bound to
the external network adapter, the protocol edge of the extensible switch issues a
separate OID set request of OID_SWITCH_NIC_CONNECT. Each OID set request
specifies a different network adapter connection index value. For more information
on these values, see Network Adapter Index Values.

The extension must maintain the connection state for each underlying physical
adapter that is bound to the external network adapter. For more information about
the different configurations in which physical network adapters can be bound to
the external network adapter, see Types of Physical Network Adapter
Configurations.

Note The extension must not issue its own OID set requests of
OID_SWITCH_NIC_CONNECT.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

The underlying miniport edge of the extensible switch completes the OID set request of
OID_SWITCH_NIC_CONNECT and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Header Ntddndis.h (include Ndis.h)

NdisFReturnNetBufferLists

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_PARAMETERS

NdisFOidRequest

OID_SWITCH_NIC_CREATE

OID_SWITCH_PORT_ARRAY

ReferenceSwitchPort

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfreturnnetbufferlists
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_NIC_CREATE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_CREATE to notify underlying extensible switch extensions
that a new connection is being established between an extensible switch port and an
external or virtual network adapter. After the connection is fully established, the
protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
extensible switch port for which the creation notification is being made. The extensible
switch extension can obtain the parameter information for this and other ports on the
extensible switch by issuing OID query requests of OID_SWITCH_PORT_ARRAY.

The Index member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
index of a network adapter for which the creation notification is being made. The
network adapter with the specified Index value is connected to the extensible switch
port specified by the PortId member. For more information on these index values, see
Network Adapter Index Values.

When it receives the OID set request of OID_SWITCH_NIC_CREATE, the extension must
follow these guidelines:

The extension must not modify the NDIS_SWITCH_NIC_PARAMETERS structure
that is associated with the OID request.

The OID_SWITCH_NIC_CREATE request only notifies the extension that a new
extensible switch connection is being brought up and that packet traffic may soon
begin to occur over the specified port. However, the extension cannot use the port
until the protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT. Until that OID is issued, the extension must not do
the following:

Generate any packet traffic to the network adapter connection on the extensible
switch port for which the OID_SWITCH_NIC_CREATE OID request was issued.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

Forward or originate OID requests of OID_SWITCH_NIC_REQUEST to an
underlying network adapter for which the OID_SWITCH_NIC_CREATE OID
request was issued.

Forward or originate NDIS status indications of
NDIS_STATUS_SWITCH_NIC_STATUS from an underlying network adapter for
which the OID_SWITCH_NIC_CREATE OID request was issued.

Call ReferenceSwitchNic to increment the extensible switch reference counter for
the specified network adapter connection on the extensible switch port.

Note The extension may intercept send or receive packets for the specified port
between the OID requests of OID_SWITCH_NIC_CREATE and
OID_SWITCH_NIC_CONNECT. In this case, the extension should forward the send
or receive packet requests instead of canceling them.

The extension can veto the creation notification by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an
extension cannot satisfy its configured policies on the specified port, the extension
should veto the creation notification.

If the extension returns other NDIS_STATUS_Xxx status codes, the creation
notification is also vetoed. However, returning status codes for transitory scenarios,
such as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when
the request is completed. The extension should do this to determine whether the
OID request was vetoed by underlying extensions in the extensible switch control
path or by the extensible switch interface.

Note The extension can only veto the OID request if the Index member of the
NDIS_SWITCH_NIC_PARAMETERS structure specifies a network adapter index
value of zero.

If the extension does not veto the creation notification, it must call
NdisFOidRequest to forward this OID request to underlying extensions in the
extensible switch driver stack.

Note The extension should monitor the completion status of this OID request. The
extension does this to detect whether underlying extensions in the extensible
switch driver stack have vetoed the creation notification.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

If the extension calls NdisFOidRequest to forward this OID request, the extension
will not immediately receive any packet traffic to or from the extensible switch
port. In addition, the extension cannot immediately inject send or receive traffic for
the extensible switch port.

The extension can only forward packet traffic to the extensible switch port after the
protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_NIC_CONNECT.

Note In some situations, packet traffic may be forwarded by the extensible switch
to the port before an OID set request of OID_SWITCH_NIC_CONNECT is issued.

The extensible switch external network adapter can bind to one or more
underlying physical adapters. For every physical network adapter that is bound to
the external network adapter, the protocol edge of the extensible switch issues a
separate OID set request of OID_SWITCH_NIC_CREATE. Each OID set request
specifies a different network adapter connection index value. For more information
on these index values, see Network Adapter Index Values.

The extension must maintain the connection state for each underlying physical
adapter. For more information about the different configurations in which physical
network adapters can be bound to the external network adapter, see Types of
Physical Network Adapter Configurations.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

Note The extension must not issue its own OID set requests of
OID_SWITCH_NIC_CREATE.

If the extension completes the OID set request of OID_SWITCH_NIC_CREATE, it returns
one of the following status codes.

Status Code Description

NDIS_STATUS_DATA_NOT_ACCEPTED The extension vetoed the creation notification.

NDIS_STATUS_RESOURCES The extension vetoed the creation notification
due to a low resource condition.

NDIS_STATUS_Xxx The extension vetoed the creation notification
for other reasons.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Note If the extension completes the OID set request, it must not return
NDIS_STATUS_SUCCESS.

If the extension does not complete the OID set request of OID_SWITCH_NIC_CREATE,
the request is completed by the underlying miniport edge of the extensible switch. The
underlying miniport edge returns the following status code for this OID set request:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_PARAMETERS

NdisFOidRequest

OID_SWITCH_NIC_CONNECT

OID_SWITCH_PORT_ARRAY

ReferenceSwitchPort

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_NIC_DELETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_DELETE to the extensible switch driver stack. This OID
request notifies underlying extensible switch extensions about the deletion of a
connection between an extensible switch port and a network adapter. The protocol
edge of the extensible switch previously notified extensions that this connection is being
deleted when it issued an OID set request of OID_SWITCH_NIC_DISCONNECT.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the port
for which the deletion notification is being made. The extensible switch extension can
obtain the parameter information for this and other ports on the extensible switch by
issuing OID query requests of OID_SWITCH_PORT_ARRAY.

The Index member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
index of a network adapter for which the deletion notification is being made. The
network adapter with the specified Index value is connected to the extensible switch
port specified by the PortId member. For more information on these index values, see
Network Adapter Index Values.

Before the protocol edge of the extensible switch issues the OID_SWITCH_NIC_DELETE
request, it guarantees that all pending send or receive packet requests for the specified
network adapter connection have been completed. The protocol edge also guarantees
that all pending OID requests for the adapter connection have been completed, and the
extensible switch reference counters for the adapter connection have a zero value.

Note If the extension had incremented an extensible switch reference counter for the
network adapter by calling ReferenceSwitchNic, the OID_SWITCH_NIC_DELETE request is
not issued while the reference counter is nonzero. The extension decrements the
extensible switch reference counter by calling DereferenceSwitchNic.

The extension must follow these guidelines for handling OID set requests of
OID_SWITCH_NIC_DELETE:

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic

The extension must not modify the NDIS_SWITCH_NIC_PARAMETERS structure
that is associated with the OID request.

The extension must always forward this OID set request to underlying extensions.
The extension must not complete the request.

The extension must not issue its own OID set requests of
OID_SWITCH_NIC_DELETE.

The extensible switch external network adapter can bind to one or more
underlying physical adapters. For every physical network adapter that is bound to
the external network adapter, the protocol edge of the extensible switch issues a
separate OID set request of OID_SWITCH_NIC_DELETE. Each OID set request
specifies a different network adapter connection index value. For more information
on these index values, see Network Adapter Index Values.

The extension must maintain the connection state for each underlying physical
adapter. For more information about the different configurations in which physical
network adapters can be bound to the external network adapter, see Types of
Physical Network Adapter Configurations.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_DELETE and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

DereferenceSwitchNic

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_PARAMETERS

OID_SWITCH_NIC_DISCONNECT

OID_SWITCH_PORT_ARRAY

ReferenceSwitchNic

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

OID_SWITCH_NIC_DISCONNECT
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_DISCONNECT to notify underlying extensible switch
extensions that a connection between an extensible switch port and a network adapter
is being torn down. After the connection is completely torn down, the protocol edge of
the extensible switch will issue an OID set request of OID_SWITCH_NIC_DELETE.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_PARAMETERS structure.

The Index member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
index of a network adapter for which the disconnect notification is being made. The
network adapter with the specified Index value is connected to the extensible switch
port specified by the PortId member. For more information on these index values, see
Network Adapter Index Values.

The extension must follow these guidelines when it handles OID set requests of
OID_SWITCH_NIC_DISCONNECT:

The extension must not modify the NDIS_SWITCH_NIC_PARAMETERS structure
that is associated with the OID request.

The OID_SWITCH_NIC_DISCONNECT request only notifies the extension that the
extensible switch connection is being torn down between the specified network
adapter and extensible switch port. After the extension handles this OID request, it
must not do the following:

Generate any packet traffic to the network adapter connection on the extensible
switch port for which the OID_SWITCH_NIC_DISCONNECT OID request was
issued.

Call ReferenceSwitchNic to increment the extensible switch reference counter for
the specified network adapter connection on the extensible switch port.

Forward or originate OID requests of OID_SWITCH_NIC_REQUEST to an
underlying network adapter for which the OID_SWITCH_NIC_DISCONNECT OID
request was issued.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

Note If the extension called ReferenceSwitchNic to increment the extensible
switch reference counter before the OID_SWITCH_NIC_DISCONNECT is issued,
the extension can still forward or originate OID requests.

Forward or originate NDIS status indications of
NDIS_STATUS_SWITCH_NIC_STATUS from an underlying network adapter for
which the OID_SWITCH_NIC_DISCONNECT OID request was issued.

Note If the extension called ReferenceSwitchNic to increment the extensible
switch reference counter before the OID_SWITCH_NIC_DISCONNECT is issued,
the extension can still forward or originate NDIS status indications.

Note If the extension previously called ReferenceSwitchNic to increment the
extensible switch reference counter, it does not need to synchronize its calls to
originate or forward OID requests or NDIS status indications with its code that
manages Hyper-V extensible switch OID requests. After the extension
increments the reference counter, the extensible switch interface will not issue
an OID set request of OID_SWITCH_NIC_DELETE.

The extension must always forward this OID set request to underlying extensions.
The extension must not complete the request.

The extensible switch external network adapter can bind to one or more
underlying physical adapters. For every physical network adapter that is bound to
the external network adapter, the protocol edge of the extensible switch issues a
separate OID set request of OID_SWITCH_NIC_DISCONNECT. Each OID set request
specifies a different network adapter connection index value. For more information
on these index values, see Network Adapter Index Values.

The extension must maintain the connection state for each underlying physical
adapter. For more information about the different configurations in which physical
network adapters can be bound to the external network adapter, see Types of
Physical Network Adapter Configurations.

Note The extension must not issue its own OID set requests of
OID_SWITCH_NIC_DISCONNECT.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_DISCONNECT and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_PARAMETERS

OID_SWITCH_NIC_DELETE

OID_SWITCH_PORT_ARRAY

ReferenceSwitchPort

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_NIC_REQUEST
Article • 02/18/2023

An object identifier (OID) method request of OID_SWITCH_NIC_REQUEST is used to
encapsulate and forward OID requests to the Hyper-V extensible switch external
network adapter. This allows the encapsulated OID request to be delivered to the driver
for the underlying physical network adapter that is bound to the external network
adapter.

This OID request is also used to encapsulate OID requests that were issued to other
network adapters that are connected to extensible switch ports. In this case, the
encapsulated OID request is forwarded through the extensible switch driver stack for
inspection by extensions.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_OID_REQUEST structure. This structure specifies the
forwarding information for the OID request. This structure also contains a pointer to the
original NDIS_OID_REQUEST structure of the OID request that is being forwarded.

When OID requests arrive at the Hyper-V extensible switch interface, it encapsulates
them in order to forward them down the extensible switch control path. These OID
requests include the following:

Hardware offload OID requests, including requests for Internet Protocol security
(IPsec), virtual machine queue (VMQ), and single root I/O virtualization (SR-IOV).
These OID requests are issued by an overlying protocol or filter driver that runs in
the management operating system of the Hyper-V parent partition.

When these OID requests arrive at the extensible switch interface, the protocol
edge of the extensible switch encapsulates the OID request within an
NDIS_SWITCH_NIC_OID_REQUEST structure. The protocol edge sets the members
of this structure in the following way:

The DestinationPortId and DestinationNicIndex members are set to the
corresponding values for the external network adapter.

If the OID request was originated from a Hyper-V child partition, the
SourcePortId and SourceNicIndex members are set to the corresponding

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

values for the port and network adapter that are used by the partition.
Otherwise, the SourcePortId and SourceNicIndex members are set to zero.

Note The extension must retain the values of these members if it forwards or
redirects the OID request.

The OidRequest member is set to a pointer to the NDIS_OID_REQUEST
structure for the encapsulated OID request.

The protocol edge then issues the OID_SWITCH_NIC_REQUEST request to forward
the encapsulated OID request down the extensible switch control path to the
external network adapter.

An underlying forwarding extension can redirect encapsulated hardware offload
OID requests to a physical network adapter that is bound to the external network
adapter. For example, if the extension supports physical network adapters from an
extensible switch team that are bound to the external network adapter, it can
forward the OID_SWITCH_NIC_REQUEST request to a physical adapter in the load
balancing failover (LBFO) team that supports the hardware offload. For more
information on this procedure, see Managing Hardware Offload OID Requests to
Physical Network Adapters.

For more information about extensible switch teams, see Types of Physical
Network Adapter Configurations.

Multicast OID requests, including OID_802_3_ADD_MULTICAST_ADDRESS and
OID_802_3_DELETE_MULTICAST_ADDRESS. These OID requests are issued by
overlying protocol and filter drivers that run in either the management operating
system or the guest operating system of a Hyper-V child partition.

When these OID requests arrive at the extensible switch interface, the protocol
edge of the extensible switch encapsulates the OID request within an
NDIS_SWITCH_NIC_OID_REQUEST structure. The protocol edge also sets the
SourcePortId and SourceNicIndex members to the corresponding values for the
port and network adapter from which the OID request originated. The protocol
edge then issues the OID_SWITCH_NIC_REQUEST request to forward the
encapsulated OID request down the extensible switch control path for inspection
by underlying extensions.

Note In this case, the protocol edge sets the DestinationPortId and
DestinationNicIndex members to zero. This specifies that the encapsulated OID
request is to be delivered to extensions in the control path.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

Underlying forwarding extensions can inspect these encapsulated OID requests
and retain the multicast address information that they specify. For example, the
extension may need this information if it originates multicast packets that it
forwards to an extensible switch port.

For more information, see Forwarding OID Requests from a Hyper-V Child
Partition.

A forwarding extension can also issue an OID_SWITCH_NIC_REQUEST in order to
forward encapsulated OID requests to a physical network adapter that is bound to the
external network adapter. This allows the extension to originate its own OID request or
redirect an existing OID request to a physical network adapter that is bound to the
external network adapter. In order to do this, the extension must follow these steps:

1. The extension calls ReferenceSwitchNic to increment a reference counter for the
index of the destination physical network adapter. This guarantees that the
extensible switch interface will not delete the physical network adapter connection
while its reference counter is nonzero.

Note The extensible switch interface could disconnect the physical network
adapter connection while its reference counter is nonzero. For more information,
see Hyper-V Extensible Switch Port and Network Adapter States.

2. The extension encapsulates the OID request by initializing an
NDIS_SWITCH_NIC_OID_REQUEST structure in the following way:

The DestinationPortId member must be set to the identifier of the extensible
switch port to which the external network adapter is connected.

The DestinationNicIndex member must be set to the nonzero index value of
the underlying physical network adapter.

If the extension is originating on behalf of a Hyper-V child partition, the
SourcePortId and SourceNicIndex members are set to the corresponding
values for the port and network adapter that are used by the partition.
Otherwise, the SourcePortId and SourceNicIndex members are set to zero.

For example, if the extension is managing hardware offload resources for a
child partition, it must set the SourcePortId and SourceNicIndex members to
specify which partition the encapsulated hardware offload OID request is for.

The OidRequest member must be set to a pointer to an initialized
NDIS_OID_REQUEST structure for the encapsulated OID request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

3. The extension calls NdisFOidRequest to forward the OID request to the specified
destination extensible switch port and network adapter.

4. When NDIS calls the FilterOidRequestComplete function, the extension calls
DereferenceSwitchNic to clear the reference counter for the index of the
destination physical network adapter.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_REQUEST and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_Xxx The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_INDICATION

NDIS_SWITCH_NIC_OID_REQUEST

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_oid_request_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_status_indication
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_oid_request

OID_SWITCH_NIC_RESTORE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_RESTORE to notify the extensible switch extension about
run-time data that can be restored for an extensible switch port and its network adapter
connection.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the
protocol edge of the extensible switch.

When it receives the OID set request of OID_SWITCH_NIC_RESTORE, the extensible
switch extension must first determine whether it owns the run-time data. The extension
does this by comparing the value of the ExtensionId member of the
NDIS_SWITCH_NIC_SAVE_STATE structure to the GUID value that the extension uses to
identify itself.

If the extension owns the run-time data for an extensible switch port, it restores this
data in the following way:

1. The extension copies the run-time data in the SaveData member to extension-
allocated storage.

Note The value of the PortId member of the NDIS_SWITCH_NIC_SAVE_STATE
structure may be different from the PortId value at the time that the run-time data
was saved. This can occur if run-time data was saved during a Live Migration from
one host to another. However, the configuration of the extensible switch port is
retained during the Live Migration. This enables the extension to restore the run-
time data to the extensible switch port by using the new PortId value.

2. The extension completes the OID set request with NDIS_STATUS_SUCCESS.

If the extension does not own the specified run-time data, the extension calls
NdisFOidRequest to forward this OID set request to underlying extensions in the
extensible switch driver stack. In this case, the extension must not modify the
NDIS_SWITCH_NIC_SAVE_STATE structure that is associated with the OID request.

If the OID_SWITCH_NIC_RESTORE set request is received by the miniport edge of the
extensible switch, it completes the OID request with NDIS_STATUS_SUCCESS. This

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

notifies the protocol edge of the extensible switch that no extension owns the run-time
data.

For more information about how to restore run-time data, see Restoring Hyper-V
Extensible Switch Run-Time Data.

Note If the extension fails the OID set request, the extensible switch will fail the entire
restore operation. As a result, the extension should avoid failing the OID request if it is
possible. For example, if the extension cannot allocate the resource necessary to restore
the run-time data, it should fail the OID request if it cannot function properly without
restoring the run-time data. However, if the extension can recover from the failure
condition, it should not fail the OID set request.

If the extension completes the OID set request of OID_SWITCH_NIC_RESTORE, it returns
one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_Xxx The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_SAVE_STATE

NdisFOidRequest

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_NIC_RESTORE_COMPLETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_RESTORE_COMPLETE to notify Hyper-V extensible switch
extensions about the completion of the operation to restore run-time data. Through this
operation, the extension restores its run-time data for a port and its associated network
adapter connection.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the
protocol edge of the extensible switch.

When it receives the OID set request of OID_SWITCH_NIC_RESTORE_COMPLETE, the
extension must follow these guidelines:

The extension must not modify the NDIS_SWITCH_NIC_SAVE_STATE structure that
is associated with the OID request.
The extension must call NdisFOidRequest to forward this OID set request to
underlying extensions in the extensible switch driver stack. The extension must not
fail the OID request.

OID set requests of OID_SWITCH_NIC_RESTORE_COMPLETE are ultimately handled by
the underlying miniport edge of the extensible switch. After this OID method request
has been received by the miniport edge, it completes the OID request with
NDIS_STATUS_SUCCESS. This notifies the protocol edge of the extensible switch that all
extensions in the extensible switch driver stack have completed the save operation.

For more information on how to save run-time data for an extensible switch port, see
Saving Hyper-V Extensible Switch Run-Time Data.

If the extension completes the OID set request of
OID_SWITCH_NIC_RESTORE_COMPLETE, it returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_SAVE_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

OID_SWITCH_NIC_SAVE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID)
method request of OID_SWITCH_NIC_SAVE during an operation to save run-time data
for an extensible switch port and its network adapter connection. The extension returns
this data so that run-time data can be saved and restored at a later time. After the run-
time data is saved, it is restored through OID set requests of
OID_SWITCH_NIC_RESTORE.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_SAVE_STATE structure. This structure is allocated by the
protocol edge of the extensible switch.

When it receives the OID method request of OID_SWITCH_NIC_SAVE, the extensible
switch extension saves run-time data by doing the following:

The extension saves the data within the NDIS_SWITCH_NIC_SAVE_STATE structure
starting from SaveDataOffset bytes from the start of the structure.

If the SaveDataSize provided is not large enough to hold the required save data,
the extension sets the method structure’s BytesNeeded field to
NDIS_SIZEOF_NDIS_SWITCH_NIC_SAVE_STATE_REVISION_1 plus the amount of
buffer necessary to hold the save data, and completes the OID with
NDIS_STATUS_BUFFER_TOO_SHORT. The OID will be reissued with the required
size.

The extension populates the ExtensionId and ExtensionFriendlyName fields with its
own identifier and name, and completes the OID method request with
NDIS_STATUS_SUCCESS. This causes the protocol edge of the extensible switch to
issue another OID method request to allow the extension to either return more
save data, or allow other extensions down the stack to save their own data.

Note If the extension does not have run-time data to save, it must call
NdisFOidRequest to forward this OID method request to underlying extensions in the
extensible switch driver stack. For more information about this procedure, see Filtering
OID Requests in an NDIS Filter Driver.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

The Hyper-V extensible switch populates the Header, PortId, NicIdex, SaveDataSize and
SaveDataOffset fields of the structure before issuing the OID. The extension cannot
modify these fields.

OID method requests of OID_SWITCH_NIC_SAVE are ultimately handled by the
underlying miniport edge of the extensible switch. After this OID method request has
been received by the miniport edge of the extensible switch, it completes the OID
request with NDIS_STATUS_SUCCESS. This notifies the protocol edge of the extensible
switch that all extensions in the extensible switch driver stack have been queried for run-
time data. The protocol edge of the extensible switch then issues an OID set request of
OID_SWITCH_NIC_SAVE_COMPLETE to complete the save operation.

For more information on how to save run-time data for an extensible switch port, see
Saving Hyper-V Extensible Switch Run-Time Data.

The extensible switch extension returns one of the following status codes for the OID
method request of OID_SWITCH_NIC_SAVE.

Status Code Description

NDIS_STATUS_BUFFER_TOO_SHORT The length of the information buffer is too
small for the NDIS_SWITCH_NIC_SAVE_STATE
and its associated run-time data The extensible
switch extension must set the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_SUCCESS The extension returns this status if it is
returning run-time data to save.

NDIS_STATUS_Xxx The request failed for other reasons.

The underlying miniport edge of the extensible switch returns the following status code
for the OID method request of OID_SWITCH_NIC_SAVE.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_SAVE_STATE

NdisFOidRequest

OID_SWITCH_NIC_RESTORE

OID_SWITCH_NIC_SAVE_COMPLETE

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_NIC_SAVE_COMPLETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_SAVE_COMPLETE to notify Hyper-V extensible switch
extensions about the completion of the operation to save run-time data. Through this
operation, the extension saves run-time data for a port and its associated network
adapter connection.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_SAVE_STATE structure.

When it receives the OID set request of OID_SWITCH_NIC_SAVE_COMPLETE, the
extension must follow these guidelines:

The extension must not modify the NDIS_SWITCH_NIC_SAVE_STATE structure that
is associated with the OID request.

The extension must call NdisFOidRequest to forward this OID set request to
underlying extensions in the extensible switch driver stack. The extension must not
fail the OID request.

OID set requests of OID_SWITCH_NIC_SAVE_COMPLETE are ultimately handled by the
underlying miniport edge of the extensible switch. After this OID method request has
been received by the miniport edge, it completes the OID request with
NDIS_STATUS_SUCCESS. This notifies the protocol edge of the extensible switch that all
extensions in the extensible switch driver stack have completed the save operation.

For more information on how to save run-time data for an extensible switch port, see
Saving Hyper-V Extensible Switch Run-Time Data.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_SAVE_COMPLETE and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_SAVE_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state

OID_SWITCH_NIC_UPDATED
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_NIC_UPDATED to the extensible switch driver stack. This OID
request notifies underlying extensible switch extensions about the update of the
parameters of a network adapter. The OID will only be issued for NICs that have already
been connected, and have not yet begun the disconnect process. These run-time
configuration changes can include NicFriendlyName, NetCfgInstanceId, MTU,
NumaNodeId, PermanentMacAddress, VMMacAddress, CurrentMacAddress, and
VFAssigned.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the port
for which the update notification is being made. The extensible switch extension can
obtain the parameter information for this and other ports on the extensible switch by
issuing OID query requests of OID_SWITCH_PORT_ARRAY.

The Index member of the NDIS_SWITCH_NIC_PARAMETERS structure specifies the
index of a network adapter for which the update notification is being made. The
network adapter with the specified Index value is connected to the extensible switch
port specified by the PortId member. For more information on these index values, see
Network Adapter Index Values.

The extension must follow these guidelines for handling OID set requests of
OID_SWITCH_NIC_UPDATED:

The extension must not modify the NDIS_SWITCH_NIC_PARAMETERS structure
that is associated with the OID request.
The extension must always forward this OID set request to underlying extensions.
The extension must not complete the request.
The extension must not issue its own OID set requests of
OID_SWITCH_NIC_UPDATED.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_NIC_UPDATED and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

DereferenceSwitchNic

NDIS_OID_REQUEST

NDIS_SWITCH_NIC_PARAMETERS

OID_SWITCH_NIC_DISCONNECT

OID_SWITCH_PORT_ARRAY

ReferenceSwitchNic

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

OID_SWITCH_PARAMETERS
Article • 02/18/2023

A Hyper-V extensible switch extension issues an object identifier (OID) query request of
OID_SWITCH_PARAMETERS to obtain the configuration data of the extensible switch.

If the OID query request completes successfully, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to an NDIS_SWITCH_PARAMETERS
structure.

When the extension processes the returned NDIS_SWITCH_PARAMETERS structure, it
must not assume that the various string members of the NDIS_SWITCH_PARAMETERS
structure, such as SwitchName, are null-terminated. The data types for these string
members are type-defined by the IF_COUNTED_STRING structure. The extension must
determine the string length from the value of the Length member of this structure.

Note If the string is null-terminated, the Length member must not include the
terminating null character.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_PARAMETERS and returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to return the OID_SWITCH_PARAMETERS
structure for an OID query request. The
underlying miniport edge of the extensible
switch sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Remarks

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-if_counted_string_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PARAMETERS

NdisFOidRequest

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PORT_ARRAY
Article • 02/18/2023

A Hyper-V extensible switch extension issues an object identifier (OID) query request of
OID_SWITCH_PORT_ARRAY to obtain an array. Each element in the array specifies the
configuration parameters for an extensible switch port.

If the OID query request completes successfully, the InformationBuffer member of the
NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains the
following data:

An NDIS_SWITCH_PORT_ARRAY structure that defines the number of elements
within the array.

An array of NDIS_SWITCH_PORT_PARAMETERS structures. Each of these structures
contains information about a port on the extensible switch.

Note If no ports have been created on the extensible switch, the driver sets the
NumElements member of the NDIS_SWITCH_PORT_ARRAY structure to zero and
no NDIS_SWITCH_PORT_PARAMETERS structures are returned.

The OID_SWITCH_PORT_ARRAY OID must only be issued when the Hyper-V extensible
switch has completed activation. Please see Querying the Hyper-V Extensible Switch
Configuration for more details.

When the extension handles the returned NDIS_SWITCH_PORT_PARAMETERS structure,
it must not assume that the various string members of the
NDIS_SWITCH_PORT_PARAMETERS structure, such as PortName, are null-terminated.
The data types for these string members are type-defined by the IF_COUNTED_STRING
structure. The driver must determine the string length from the value of the Length
member of this structure.

Note If the string is null-terminated, the Length member must not include the
terminating null character.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_PORT_ARRAY and returns one of the following status codes.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows/win32/api/ifdef/ns-ifdef-if_counted_string_lh

Status Code DescriptionStatus Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to return the
NDIS_SWITCH_PORT_ARRAY and its array of
NDIS_SWITCH_PORT_PARAMETERS elements.
The underlying miniport edge of the extensible
switch sets the
DATA.QUERY_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_ARRAY

NDIS_SWITCH_PORT_PARAMETERS

Querying the Hyper-V Extensible Switch Configuration

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_array
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters

OID_SWITCH_PORT_CREATE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_CREATE to notify extensible switch extensions about the
creation of an extensible switch port.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_PORT_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_PORT_PARAMETERS structure specifies the
port for which the creation notification is being made.

The extensible switch extension must follow these guidelines for handling OID set
requests of OID_SWITCH_PORT_CREATE:

The extension must not modify the NDIS_SWITCH_PORT_PARAMETERS structure
that is associated with the OID request.

The extension can veto the creation notification by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an
extension cannot allocate resources to enforce its configured policies on the port,
the driver should veto the creation notification.

If the extension returns other NDIS_STATUS_Xxx error status codes, the creation
notification is also vetoed. However, returning status codes for transitory scenarios,
such as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when
the request is completed. The extension should do this to determine whether the
OID request was vetoed by underlying extensions in the extensible switch control
path or by the extensible switch interface.

For more information on port policies, see Managing Hyper-V Extensible Switch
Policies.

If the extension calls NdisFOidRequest to forward this OID set request, the
extension should monitor the completion status of this OID request. The extension

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

does this to detect whether underlying extensions in the extensible switch driver
stack have vetoed the port creation notification.

After the OID request is forwarded and completes successfully, the extension can
issue OIDs requests for the port, such as OID_SWITCH_PORT_PROPERTY_ENUM,
until an OID request of OID_SWITCH_PORT_TEARDOWN is issued. This OID request
notifies the extension that the port will begin the deletion process from the
extensible switch.

Extensions cannot forward packets to the specified port in the
NDIS_SWITCH_PORT_PARAMETERS structure until an OID set request of
OID_SWITCH_NIC_CONNECT is issued and is completed successfully.

Note Extensions must not issue OID set requests of OID_SWITCH_PORT_CREATE.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

If the extension completes the OID set request of OID_SWITCH_PORT_CREATE, it returns
one of the following status codes.

Status Code Description

NDIS_STATUS_DATA_NOT_ACCEPTED The extension vetoed the creation notification.

NDIS_STATUS_RESOURCES The extension vetoed the creation notification
due to a low resource condition.

NDIS_STATUS_Xxx The extension vetoed the creation notification
for other reasons.

Note If the extension completes the OID set request, it must not return
NDIS_STATUS_SUCCESS.

If the extension does not complete the OID set request of OID_SWITCH_PORT_CREATE,
the request is completed by the underlying miniport edge of the extensible switch. The
underlying miniport edge returns the following status code for this OID set request.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PARAMETERS

NdisFOidRequest

OID_SWITCH_NIC_CONNECT

OID_SWITCH_PORT_ARRAY

OID_SWITCH_PORT_PROPERTY_ENUM

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PORT_DELETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_DELETE to notify extensible switch extensions about the
deletion of an extensible switch port.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_PORT_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_PORT_PARAMETERS structure specifies the
extensible switch port for which the delete notification is being made.

If a network adapter is connected to the specified port, the protocol edge of the
extensible switch will delete the connection before it deletes the port. In this case, the
protocol edge will follow these steps before it deletes the port:

The protocol edge issues an OID set request of OID_SWITCH_NIC_DISCONNECT to
notify the extension that the connection between a network adapter and the
extensible switch port is being deleted.

After all pending packets for the specified extensible switch port have been
canceled or completed, the protocol edge issues an OID set request of
OID_SWITCH_NIC_DELETE to notify the extension that the connection between a
network adapter and the extensible switch port has been deleted.

At this point, the protocol edge can start to delete the port.

The protocol edge of the extensible switch follows these steps when it deletes an
extensible switch port:

1. The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN. This OID request notifies underlying extensible
switch extensions about the start of the deletion process for an extensible switch
port.

2. The protocol edge issues an OID set request of OID_SWITCH_PORT_DELETE after all
OID requests to the extensible switch port have completed.

Note If the extension had previously called ReferenceSwitchPort to increment the
port's reference counter, it must call DereferenceSwitchPort before the protocol

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port

edge issues the OID_SWITCH_NIC_DELETE request.

The extension must follow these guidelines for handling OID set requests of
OID_SWITCH_PORT_DELETE:

The extension must not modify the NDIS_SWITCH_PORT_PARAMETERS structure
that is associated with the OID request.

The extension must always forward this OID set request to underlying extensions.
The extension must not fail the request.

After the OID_SWITCH_PORT_DELETE request is completed with
NDIS_STATUS_SUCCESS, the extension will not receive any packets or OID requests
for the deleted port. The extension cannot forward packets to the deleted port.
The extension also cannot issue OID requests nor call the ReferenceSwitchPort
function for the deleted port.

Note Extensible switch extensions must not issue OID set requests of
OID_SWITCH_PORT_DELETE.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

The underlying miniport edge of the extensible switch completes the OID set request of
OID_SWITCH_PORT_DELETE and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

DereferenceSwitchPort

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PARAMETERS

NdisFOidRequest

OID_SWITCH_NIC_DELETE

OID_SWITCH_PORT_ARRAY

ReferenceSwitchPort

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_PORT_FEATURE_STATUS_Q
UERY
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID)
method request of OID_SWITCH_PORT_FEATURE_STATUS_QUERY to obtain custom
status information from an extension about an extensible switch port. This information is
known as feature status information. The format of this information is defined by the
independent software vendor (ISV).

After a successful return from this OID method request, the InformationBuffer member
of the NDIS_OID_REQUEST structure contains a pointer to a buffer. This buffer contains
the following data:

An NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS structure that specifies
the parameters for the type of feature status information to be returned.

An NDIS_SWITCH_PORT_FEATURE_STATUS_CUSTOM structure that contains the
feature status information for the extensible switch port.

For guidelines on how to handle an OID set request of
OID_SWITCH_PORT_FEATURE_STATUS_QUERY, see Managing Custom Port Feature Status
Information.

The extension returns one of the following status codes for the OID method request of
OID_SWITCH_PORT_FEATURE_STATUS_QUERY.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_custom

Status Code Description

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too small to
return the feature status information as well as the
NDIS_SWITCH_PORT_FEATURE_STATUS_CUSTOM and
NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS
structures. The underlying miniport edge of the
extensible switch sets the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to the
minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_FEATURE_STATUS_CUSTOM

NDIS_SWITCH_PORT_FEATURE_STATUS_PARAMETERS

NDIS_SWITCH_PORT_PROPERTY_TYPE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_feature_status_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ne-ntddndis-_ndis_switch_port_property_type

OID_SWITCH_PORT_PROPERTY_ADD
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_PROPERTY_ADD to notify extensible switch extensions
about the addition of a policy property for an extensible switch port.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure that specifies the
identification and type of parameters for a port policy.

A property buffer that contains the parameters for a port policy. The property
buffer contains a structure that is based on the PropertyType member of the
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure. For example, if the
PropertyType member is set to NdisSwitchPortPropertyTypeVlan, the property
buffer contains an NDIS_SWITCH_PORT_PROPERTY_VLAN structure.

A forwarding extension can handle the OID set request of
OID_SWITCH_PORT_PROPERTY_ADD. All other types of extensions must call
NdisFOidRequest to forward the OID request to the next extension in the extensible
switch driver stack.

The extension can veto the addition of the port property by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension
cannot allocate resources to enforce its configured policies on the port, it should veto
the addition request.

Note If the extension returns other NDIS_STATUS_Xxx error status codes, the creation
notification is also vetoed. However, returning status codes for transitory scenarios, such
as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when the
request is completed. The extension should do this to determine whether the OID
request was vetoed by underlying extensions in the extensible switch control path or by
the extensible switch interface.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_vlan
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

For guidelines on how to handle an OID set request of
OID_SWITCH_PORT_PROPERTY_ADD, see Managing Port Policies.

If the forwarding extension completes the OID set request of
OID_SWITCH_PORT_PROPERTY_ADD, it returns one of the following status codes:

Status Code Description

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to process the
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS
structure and the data in the structure's
property buffer. The extension sets the
DATA.SET_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_DATA_NOT_ACCEPTED The forwarding extension has vetoed the port
policy addition notification.

NDIS_STATUS_NOT_SUPPORTED The forwarding extension does not support the
port policy.

NDIS_STATUS_Xxx The OID request failed for other reasons.

If the extension does not complete the OID set request of
OID_SWITCH_PORT_PROPERTY_ADD, the request is completed by the underlying
miniport edge of the extensible switch. The miniport edge returns the following status
code:

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PROPERTY_CUSTOM

NDIS_SWITCH_PORT_PROPERTY_PARAMETERS

NDIS_SWITCH_PORT_PROPERTY_VLAN

NdisFOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_vlan
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PORT_PROPERTY_DELETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_PROPERTY_DELETE to notify extensible switch extensions
about the deletion of a policy property for an extensible switch port.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer that contains an NDIS_SWITCH_PORT_PROPERTY_DELETE_PARAMETERS
structure.

A forwarding extension can handle the OID set request of
OID_SWITCH_PORT_PROPERTY_DELETE. All other types of extensions must call
NdisFOidRequest to forward the OID request to the next extension in the extensible
switch driver stack.

For guidelines on how to handle an OID set request of
OID_SWITCH_PORT_PROPERTY_DELETE, see Managing Port Policies.

If the forwarding extension completes the OID set request of
OID_SWITCH_PORT_PROPERTY_DELETE, it returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The forwarding extension does not support the
port policy.

NDIS_STATUS_Xxx The OID request failed for other reasons.

If the forwarding extension does not complete the OID set request of
OID_SWITCH_PORT_PROPERTY_DELETE, the request is completed by the underlying
miniport edge of the extensible switch. The miniport edge returns the following status
code.

Status Code Description

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PROPERTY_CUSTOM

NDIS_SWITCH_PORT_PROPERTY_PARAMETERS

NDIS_SWITCH_PORT_PROPERTY_VLAN

NdisFOidRequest

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_vlan
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PORT_PROPERTY_ENUM
Article • 02/18/2023

The Hyper-V extensible switch extension issues an object identifier (OID) method
request of OID_SWITCH_PORT_PROPERTY_ENUM to obtain an array. This array contains
the provisioned port policies that match the specified criteria. Each element in the array
specifies the properties of a policy for a specified extensible switch port.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PORT_PROPERTY_ENUM_PARAMETERS structure that specifies
the parameters for the policy enumeration of a specified port.

An array of NDIS_SWITCH_PORT_PROPERTY_ENUM_INFO structures. Each of
these structures contains information about the properties of an extensible switch
port policy.

Note If the NumProperties member of the
NDIS_SWITCH_PORT_PROPERTY_ENUM_PARAMETERS structure is set to zero, no
NDIS_SWITCH_PORT_PROPERTY_ENUM_INFO structures are returned.

Before it issues an OID method request of OID_SWITCH_PORT_PROPERTY_ENUM, the
extensible switch extension must follow these guidelines:

The extension can only issue the OID_SWITCH_PORT_PROPERTY_ENUM request
after the protocol edge of the extensible switch issues an
OID_SWITCH_PORT_CREATE request and before it issues an
OID_SWITCH_PORT_TEARDOWN request.

The extension must call ReferenceSwitchPort before it calls NdisFOidRequest to
issue the OID_SWITCH_PORT_PROPERTY_ENUM request. This ensures that the
specified port will not be deleted until after the OID request is completed.

After the OID request is completed, the extension must call DereferenceSwitchPort.
The extension must call this function regardless of whether the OID request was
completed with NDIS_STATUS_SUCCESS.

The OID_SWITCH_PORT_PROPERTY_ENUM OID must only be issued when the Hyper-V
extensible switch has completed activation. Please see Querying the Hyper-V Extensible

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port

Switch Configuration for more details.

Note If the extension receives the OID method request of
OID_SWITCH_PORT_PROPERTY_ENUM, it must not complete the OID request. Instead, it
must call NdisFOidRequest to forward the OID request down the extensible switch
driver stack.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_PORT_PROPERTY_ENUM and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

DereferenceSwitchPort

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PROPERTY_ENUM_INFO

NDIS_SWITCH_PORT_PROPERTY_ENUM_PARAMETERS

NdisFOidRequest

Querying the Hyper-V Extensible Switch Configuration

ReferenceSwitchPort

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_PORT_PROPERTY_UPDATE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_PROPERTY_UPDATE to notify extensible switch extensions
about the update of a property for an extensible switch port policy.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure that specifies the
identification and type of a port property.

A property buffer that contains the parameters for a port policy. The property
buffer contains a structure that is based on the PropertyType member of the
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS structure. For example, if the
PropertyType member is set to NdisSwitchPortPropertyTypeVlan, the property
buffer contains an NDIS_SWITCH_PORT_PROPERTY_VLAN structure.

A forwarding extension can handle the OID set request of
OID_SWITCH_PORT_PROPERTY_UPDATE. All other types of extensions must call
NdisFOidRequest to forward the OID request to the next extension in the extensible
switch driver stack.

The extension can veto the update of the port property by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension
cannot allocate resources to enforce its updated policies on the port, it should veto the
update request.

Note If the extension returns other NDIS_STATUS_Xxx error status codes, the update
notification is also vetoed. However, returning status codes for transitory scenarios, such
as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when the
request is completed. The extension should do this to determine whether the OID
request was vetoed by underlying extensions in the extensible switch control path or by
the extensible switch interface.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_vlan
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

For guidelines on how to handle an OID set request of
OID_SWITCH_PORT_PROPERTY_UPDATE, see Managing Port Policies.

If the forwarding extension completes the OID set request of
OID_SWITCH_PORT_PROPERTY_UPDATE, it returns one of the following status codes.

Status Code Description

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too
small to process the
NDIS_SWITCH_PORT_PROPERTY_PARAMETERS
structure and the data in the structure's
property buffer. The extension sets the
DATA.SET_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure
to the minimum buffer size that is required.

NDIS_STATUS_DATA_NOT_ACCEPTED The forwarding extension has vetoed the port
policy deletion notification.

NDIS_STATUS_NOT_SUPPORTED The forwarding extension does not support the
port policy.

NDIS_STATUS_Xxx The OID request failed for other reasons.

If the extension does not complete the OID set request of
OID_SWITCH_PORT_PROPERTY_UPDATE, the request is completed by the underlying
miniport edge of the extensible switch. The miniport edge returns the following status
code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PROPERTY_CUSTOM

NDIS_SWITCH_PORT_PROPERTY_PARAMETERS

NDIS_SWITCH_PORT_PROPERTY_VLAN

NdisFOidRequest

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_property_vlan
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PORT_TEARDOWN
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_TEARDOWN to notify underlying extensible switch
extensions that an extensible switch port will begin the deletion process. This process is
started when the protocol driver issues an OID set request of
OID_SWITCH_PORT_DELETE.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_PORT_PARAMETERS structure.

The PortId member of the NDIS_SWITCH_PORT_PARAMETERS structure specifies the
extensible switch port for which the connect notification is being made. The extensible
switch extension must update any cached information about the port that it obtained in
the following ways:

By issuing OID query requests of OID_SWITCH_PORT_ARRAY. The extension issues
this OID on FilterAttach only when OID_SWITCH_PARAMETERS returns an
NDIS_SWITCH_PARAMETERS structure with IsActive set to TRUE. If IsActive is
FALSE, the extension issues the OID when the NetEventSwitchActivate
NET_PNP_EVENT is issued by the extension miniport.

By inspecting the various OID sets requests of OID_SWITCH_PORT_CREATE and
OID_SWITCH_PORT_DELETE.

The protocol edge of the extensible switch issues an OID set request of
OID_SWITCH_PORT_TEARDOWN to notify the extension that a port is in the process of
being deleted from the extensible switch. Before this OID request is issued, the protocol
edge of the extensible switch had previously issued the following OIDs if the port had
an active network adapter connection:

OID_SWITCH_NIC_DISCONNECT, which notified underlying extensions that the
network adapter is no longer connected to the port that is specified in the
NDIS_SWITCH_PORT_PARAMETERS structure.

OID_SWITCH_NIC_DELETE, which notified underlying extensions that the network
connection between the network adapter and extensible switch port has been
deleted.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters

The protocol edge issues this OID set request after all pending packets for the
specified extensible switch port have been canceled or completed.

After the extension completes this OID set request and the reference counter for the
extensible switch port is zero, the protocol edge of the extensible switch issues an OID
set request of OID_SWITCH_PORT_DELETE. This OID request deletes the port from the
extensible switch.

Note An extension increments the reference counter for an extensible switch port by
calling ReferenceSwitchPort. An extension decrements the reference counter by calling
DereferenceSwitchPort.

The extension must follow these guidelines for handling OID set requests of
OID_SWITCH_PORT_TEARDOWN:

The extension must always forward this OID set request to underlying extensions.
The extension must not fail the request.

Note The extension must not modify the NDIS_SWITCH_PORT_PARAMETERS
structure that is associated with the OID request.

After the extension forwards this OID request, it cannot forward packets to the
deleted port. The extension also cannot issue OID requests nor call the
ReferenceSwitchPort function for the deleted port.

Note The extension must not issue OID set requests of
OID_SWITCH_PORT_TEARDOWN.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

The underlying miniport edge of the extensible switch completes the OID set request of
OID_SWITCH_PORT_TEARDOWN and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Return Status Codes

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

Header Ntddndis.h (include Ndis.h)

DereferenceSwitchPort

FilterAttach

NDIS_OID_REQUEST

NDIS_SWITCH_PARAMETERS

NDIS_SWITCH_PORT_PARAMETERS

NdisFOidRequest

NET_PNP_EVENT

OID_SWITCH_NIC_DELETE

OID_SWITCH_PARAMETERS

OID_SWITCH_PORT_ARRAY

ReferenceSwitchPort

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_port
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_attach
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/netpnp/ns-netpnp-_net_pnp_event
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_port

OID_SWITCH_PORT_UPDATED
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PORT_UPDATED to notify extensible switch extensions about
the update of an extensible switch port. The OID will only be issued for ports that have
already been created, and have not yet begun the teardown/delete process. Currently,
only the PortFriendlyName field is subject to update after creation.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to an NDIS_SWITCH_NIC_SAVE_STATE structure.

The PortId member of the NDIS_SWITCH_PORT_PARAMETERS structure specifies the
extensible switch port for which the update notification is being made.

The extension must follow these guidelines for handling OID set requests of
OID_SWITCH_PORT_UPDATED:

The extension must not modify the NDIS_SWITCH_PORT_PARAMETERS structure
that is associated with the OID request.

The extension must always forward this OID set request to underlying extensions.
The extension must not fail the request.

Note Extensible switch extensions must not issue OID set requests of
OID_SWITCH_PORT_UPDATED.

For more information about the states of extensible switch ports and network adapter
connections, see Hyper-V Extensible Switch Port and Network Adapter States.

The underlying miniport edge of the extensible switch completes the OID set request of
OID_SWITCH_PORT_UPDATED and returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_nic_save_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

DereferenceSwitchNic

NDIS_OID_REQUEST

NDIS_SWITCH_PORT_PARAMETERS

NdisFOidRequest

OID_SWITCH_NIC_DELETE

OID_SWITCH_PORT_ARRAY

ReferenceSwitchNic

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_dereference_switch_nic
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_port_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-ndis_switch_reference_switch_nic

OID_SWITCH_PROPERTY_ADD
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PROPERTY_ADD to notify extensible switch extensions about
the addition of a switch policy property

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PROPERTY_PARAMETERS structure that specifies the
identification and type of an extensible switch policy.

A property buffer that contains the parameters for an extensible switch policy. The
property buffer contains a structure that is based on the PropertyType member of
the NDIS_SWITCH_PROPERTY_PARAMETERS structure.

Note Starting with Windows Server 2012, the PropertyType member must be set
to NdisSwitchPropertyTypeCustom and the property buffer must contain an
NDIS_SWITCH_PROPERTY_CUSTOM structure.

A forwarding extension can handle the OID set request of OID_SWITCH_PROPERTY_ADD.
All other types of extensions must call NdisFOidRequest to forward the OID request to
the next extension in the extensible switch driver stack.

The extension can veto the addition of the switch property by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension
cannot allocate resources to enforce its updated policies on the switch, it should veto
the addition request.

Note If the extension returns other NDIS_STATUS_Xxx error status codes, the creation
notification is also vetoed. However, returning status codes for transitory scenarios, such
as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when the
request is completed. The extension should do this to determine whether the OID
request was vetoed by underlying extensions in the extensible switch control path or by
the extensible switch interface.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

For guidelines on how to handle an OID set request of OID_SWITCH_PROPERTY_ADD,
see Managing Switch Policies.

If the forwarding extension completes the OID set request of
OID_SWITCH_PROPERTY_ADD, it returns one of the following status codes.

Status Code Description

NDIS_STATUS_DATA_NOT_ACCEPTED The extension has vetoed the switch policy
addition notification.

NDIS_STATUS_FAILURE The OID request failed for other reasons.

If the extension does not complete the OID set request of
OID_SWITCH_PROPERTY_ADD, the request is completed by the underlying miniport
edge of the extensible switch. The miniport edge returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PROPERTY_CUSTOM

NDIS_SWITCH_PROPERTY_PARAMETERS

NdisFOidRequest

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PROPERTY_DELETE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PROPERTY_DELETE to notify extensible switch extensions about
the deletion of a switch policy property.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer that contains an NDIS_SWITCH_PROPERTY_DELETE_PARAMETERS structure.

A forwarding extension can handle the OID set request of
OID_SWITCH_PROPERTY_DELETE. All other types of extensions must call
NdisFOidRequest to forward the OID request to the next extension in the extensible
switch driver stack.

For guidelines on how to handle an OID set request of OID_SWITCH_PROPERTY_DELETE,
see Managing Switch Policies.

If the forwarding extension completes the OID set request of
OID_SWITCH_PROPERTY_DELETE, it returns one of the following status codes.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The forwarding extension does not support the
switch policy.

NDIS_STATUS_Xxx The OID request failed for other reasons.

If the forwarding extension does not complete the OID set request of
OID_SWITCH_PROPERTY_DELETE, the request is completed by the underlying miniport
edge of the extensible switch. The miniport edge returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_delete_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PROPERTY_CUSTOM

NDIS_SWITCH_PROPERTY_PARAMETERS

NdisFOidRequest

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_SWITCH_PROPERTY_ENUM
Article • 02/18/2023

The Hyper-V extensible switch extension issues an object identifier (OID) method
request of OID_SWITCH_PROPERTY_ENUM to obtain an array. This array contains the
provisioned switch policies that match the specified criteria. Each element in the array
specifies the properties of an extensible switch policy.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS structure that specifies the
parameters for the extensible switch policy enumeration.

An array of NDIS_SWITCH_PROPERTY_ENUM_INFO structures. Each of these
structures contains information about an extensible switch policy.

Note If the extension has not been provisioned with instances of the specified
extensible switch policy, the extension sets the NumProperties member of the
NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS structure to zero and no
NDIS_SWITCH_PROPERTY_ENUM_INFO structures are returned.

The OID_SWITCH_PROPERTY_ENUM OID must only be issued when the Hyper-V
extensible switch has completed activation. Please see Querying the Hyper-V Extensible
Switch Configuration for more details.

Unlike OID query requests of OID_SWITCH_PORT_PROPERTY_ENUM, the extension does
not have to call any ReferenceSwitchXxx or DereferenceSwitchXxx functions when it issues
the OID_SWITCH_PROPERTY_ENUM request down the extensible switch driver stack.

Note If the extension receives the OID method request of
OID_SWITCH_PROPERTY_ENUM, it must not complete the OID request. Instead, it must
call NdisFOidRequest to forward the OID request down the extensible switch driver
stack.

The underlying miniport edge of the extensible switch completes the OID query request
of OID_SWITCH_PROPERTY_ENUM and returns one of the following status codes.

Remarks

Return Status Codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

Status Code DescriptionStatus Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_INVALID_LENGTH The length of the information buffer is too small
to return the
NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS
structure and its array of
NDIS_SWITCH_PROPERTY_ENUM_INFO
elements. The underlying miniport edge of the
extensible switch sets the
DATA.METHOD_INFORMATION.BytesNeeded
member in the NDIS_OID_REQUEST structure to
the minimum buffer size that is required.

NDIS_STATUS_FAILURE The request failed for other reasons.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PROPERTY_ENUM_INFO

NDIS_SWITCH_PROPERTY_ENUM_PARAMETERS

Querying the Hyper-V Extensible Switch Configuration

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_enum_parameters

OID_SWITCH_PROPERTY_UPDATE
Article • 02/18/2023

The protocol edge of the Hyper-V extensible switch issues an object identifier (OID) set
request of OID_SWITCH_PROPERTY_UPDATE to notify extensible switch extensions about
the update to parameters for an extensible switch policy property.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains a pointer
to a buffer. This buffer contains the following data:

An NDIS_SWITCH_PROPERTY_PARAMETERS structure that specifies the
identification and type of an extensible switch policy.

A property buffer that contains the parameters for an extensible switch policy. The
property buffer contains a structure that is based on the PropertyType member of
the NDIS_SWITCH_PROPERTY_PARAMETERS structure.

Note Starting with Windows Server 2012, the PropertyType member must be set
to NdisSwitchPropertyTypeCustom and the property buffer must contain an
NDIS_SWITCH_PROPERTY_CUSTOM structure.

A forwarding extension can handle the OID set request of
OID_SWITCH_PROPERTY_UPDATE. All other types of extensions must call
NdisFOidRequest to forward the OID request to the next extension in the extensible
switch driver stack.

The extension can veto the update of the switch property by returning
NDIS_STATUS_DATA_NOT_ACCEPTED for the OID request. For example, if an extension
cannot allocate resources to enforce its updated policies on the switch, it should veto
the update request.

Note If the extension returns other NDIS_STATUS_Xxx error status codes, the creation
notification is also vetoed. However, returning status codes for transitory scenarios, such
as returning NDIS_STATUS_RESOURCES, could result in a retry of the creation
notification.

If the extension does not veto the OID request, it should monitor the status when the
request is completed. The extension should do this to determine whether the OID
request was vetoed by underlying extensions in the extensible switch control path or by
the extensible switch interface.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

For guidelines on how to handle an OID set request of
OID_SWITCH_PROPERTY_UPDATE, see Managing Switch Policies.

If the extension completes the OID set request of OID_SWITCH_PROPERTY_UPDATE, it
returns one of the following status codes.

Status Code Description

NDIS_STATUS_DATA_NOT_ACCEPTED The extension has vetoed the switch policy
update notification.

NDIS_STATUS_FAILURE The OID request failed for other reasons.

If the extension does not complete the OID set request of
OID_SWITCH_PROPERTY_UPDATE, the request is completed by the underlying miniport
edge of the extensible switch. The miniport edge returns the following status code.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_OID_REQUEST

NDIS_SWITCH_PROPERTY_CUSTOM

NDIS_SWITCH_PROPERTY_PARAMETERS

NdisFOidRequest

Return Status Codes

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_custom
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_switch_property_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisfoidrequest

OID_TCP_CONNECTION_OFFLOAD_CUR
RENT_CONFIG
Article • 02/18/2023

As a query request, administrative applications (or possibly overlying drivers) can use
the OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG OID to determine the
currently-enabled connection offload capabilities of an underlying miniport adapter. A
system administrator can use this OID through the Microsoft Windows Management
Instrumentation (WMI) interface.

Set requests are not supported.

NDIS handles this OID for miniport drivers. Miniport drivers report miniport adapter
connection offload settings to NDIS. For information about passing connection offload
configuration settings to NDIS from a miniport driver and from NDIS to overlying
drivers, see NDIS_TCP_CONNECTION_OFFLOAD.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_TCP_CONNECTION_OFFLOAD structure.

In response to OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG, the Encapsulation
member of NDIS_TCP_CONNECTION_OFFLOAD defines the current packet encapsulation
configuration of the miniport adapter. NDIS provides a bitwise OR of the flags that are
provided in the Encapsulation member. The other members of
NDIS_TCP_CONNECTION_OFFLOAD contain settings for various connection offload
services. For more information about encapsulation and other capabilities, see
NDIS_TCP_CONNECTION_OFFLOAD and NDIS_OFFLOAD_PARAMETERS.

NDIS_OFFLOAD_PARAMETERS
NDIS_OID_REQUEST
NDIS_TCP_CONNECTION_OFFLOAD

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload

OID_TCP_CONNECTION_OFFLOAD_HAR
DWARE_CAPABILITIES
Article • 02/18/2023

As a query request, the OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES
OID reports the current connection offload hardware capabilities of an underlying
miniport adapter. User-mode applications (or possibly overlying drivers) can query this
OID to determine the connection offload hardware capabilities of an underlying
miniport adapter. A system administrator can use this OID through the Microsoft
Windows Management Instrumentation (WMI) interface.

Set requests are not supported.

NDIS handles this OID for miniport drivers. Miniport drivers report miniport adapter
connection offload hardware capabilities to NDIS. For information about passing
connection offload hardware capabilities to NDIS from a miniport driver and from NDIS
to overlying drivers, see NDIS_TCP_CONNECTION_OFFLOAD.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_TCP_CONNECTION_OFFLOAD structure.

In response to OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES, the
Encapsulation member of NDIS_TCP_CONNECTION_OFFLOAD defines the current
packet encapsulation hardware capabilities of the miniport adapter. NDIS provides a
bitwise OR of the flags that are provided in the Encapsulation member. The other
members of NDIS_TCP_CONNECTION_OFFLOAD contain settings for various connection
offload services. For more information about encapsulation and other capabilities, see
NDIS_TCP_CONNECTION_OFFLOAD and NDIS_OFFLOAD_PARAMETERS.

NDIS_OFFLOAD_PARAMETERS
NDIS_OID_REQUEST
NDIS_TCP_CONNECTION_OFFLOAD

Remarks

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_connection_offload

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

OID_TCP_CONNECTION_OFFLOAD_PARA
METERS
Article • 02/18/2023

As a query request, overlying drivers can use the
OID_TCP_CONNECTION_OFFLOAD_PARAMETERS OID to determine the current
connection offload settings of an underlying miniport adapter. NDIS handles this OID
query for miniport drivers.

As a set request, NDIS and overlying drivers use the
OID_TCP_CONNECTION_OFFLOAD_PARAMETERS OID to set the connection offload
configuration parameters of an underlying miniport adapter. Miniport drivers that
support connection offload must handle this OID set request. Otherwise, the
OID_TCP_CONNECTION_OFFLOAD_PARAMETERS OID is optional for miniport drivers.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_TCP_CONNECTION_OFFLOAD_PARAMETERS structure.

NDIS_OID_REQUEST
OID_TCP_OFFLOAD_PARAMETERS

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

７ Note

Do not confuse OID_TCP_CONNECTION_OFFLOAD_PARAMETERS with the
OID_TCP_OFFLOAD_PARAMETERS OID that administrative applications use to
enable or disable TCP offload features.

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_tcp_connection_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_TCP_OFFLOAD_CURRENT_CONFIG
Article • 02/18/2023

As a query request, administrative applications (or possibly overlying drivers) use the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID to determine the current task offload
configuration settings of an underlying miniport adapter. A system administrator can
use this OID through the Microsoft Windows Management Instrumentation (WMI)
interface.

Set requests are not supported.

NDIS handles this OID for miniport drivers. Miniport drivers report miniport adapter
offload capabilities to NDIS. For information about passing task offload configuration
settings to NDIS from a miniport driver and from NDIS to overlying drivers, see
NDIS_OFFLOAD.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_OFFLOAD structure. The NDIS_OFFLOAD structure includes the following miniport
adapter capabilities:

The header information, which includes the task offload version.
The checksum offload information, in an NDIS_TCP_IP_CHECKSUM_OFFLOAD
structure.
The large send offload version 1 (LSOV1) information, in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V1 structure.
The Internet protocol security (IPsec) information, in an NDIS_IPSEC_OFFLOAD_V1
structure.
The large send offload version 2 (LSOV2) information, in an
NDIS_TCP_LARGE_SEND_OFFLOAD_V2 structure.

In response to OID_TCP_OFFLOAD_CURRENT_CONFIG, the Encapsulation members of
the structures in the preceding list define the packet encapsulation capabilities of the
miniport adapter. NDIS provides a bitwise OR of the flags that are provided in the
Encapsulation members of these structures. The other structure members contain
settings for various offload services. For more information about encapsulation and
other capabilities, see NDIS_TCP_IP_CHECKSUM_OFFLOAD,
NDIS_TCP_LARGE_SEND_OFFLOAD_V1, NDIS_IPSEC_OFFLOAD_V1, and
NDIS_TCP_LARGE_SEND_OFFLOAD_V2.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2

Miniport adapters must support Ethernet encapsulation for all of the types of task
offload that they support. The other types of encapsulation are optional.

Miniport drivers should automatically enable all of the task offload capabilities during
initialization.

NDIS_IPSEC_OFFLOAD_V1
NDIS_OFFLOAD
NDIS_OID_REQUEST
NDIS_TCP_IP_CHECKSUM_OFFLOAD
NDIS_TCP_LARGE_SEND_OFFLOAD_V2 NDIS_IPSEC_OFFLOAD_V1

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_ip_checksum_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_tcp_large_send_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v1

OID_TCP_OFFLOAD_HARDWARE_CAPABI
LITIES
Article • 02/18/2023

As a query request, the OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID reports the
task offload hardware capabilities of a miniport adapter's hardware. User-mode
applications (or possibly overlying drivers) can query this OID to determine the task
offload hardware capabilities of an underlying miniport adapter. A system administrator
can use this OID through the Windows Management Instrumentation (WMI) interface.

Set requests are not supported.

NDIS handles this OID for miniport drivers. Miniport drivers report miniport adapter
hardware capabilities to NDIS. For information about reporting task offload hardware
capabilites to NDIS from a miniport driver and from NDIS to overlying drivers, see
NDIS_OFFLOAD.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_OFFLOAD structure. NDIS returns NDIS_STATUS_BUFFER_TOO_SHORT if the buffer
is not big enough.

After determining the miniport adapter's hardware capabilities, the overlying
applications or drivers can use the OID_TCP_OFFLOAD_PARAMETERS OID to enable
capabilities that are currently reported as not enabled by the
OID_TCP_OFFLOAD_CURRENT_CONFIG OID.

NDIS_OFFLOAD
NDIS_OID_REQUEST
OID_TCP_OFFLOAD_CURRENT_CONFIG
OID_TCP_OFFLOAD_PARAMETERS

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Remarks

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_TCP_OFFLOAD_PARAMETERS
Article • 02/18/2023

Query requests are not supported.

As a set request, the OID_TCP_OFFLOAD_PARAMETERS OID sets the current TCP offload
configuration of a miniport adapter. Protocol drivers or user-mode applications can set
this OID to change the current TCP offload configuration. A system administrator can
use this OID through the Microsoft Windows Management Instrumentation (WMI)
interface.

OID_TCP_OFFLOAD_PARAMETERS is required for miniport drivers that support TCP
offloads and optional for other miniport drivers. If a miniport driver does not support
this OID, the driver should return NDIS_STATUS_NOT_SUPPORTED.

The InformationBuffer member of the NDIS_OID_REQUEST structure contains an
NDIS_OFFLOAD_PARAMETERS structure. If the contents of InformationBuffer are invalid,
the miniport driver should return NDIS_STATUS_INVALID_DATA in response to this OID.

While NDIS processes this OID and before it passes the OID to the miniport driver, NDIS
updates the miniport adapter's offload standardized keywords with the new settings.

Miniport drivers must use the contents of the NDIS_OFFLOAD_PARAMETERS structure to
update the currently reported TCP offload capabilities. After the update, the miniport
driver must report the current task offload capabilities with the
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG status indication. This status
indication ensures that all of the overlying protocol drivers are updated with the new
capabilities information.

This OID is a more comprehensive OID that instructs miniport drivers to turn certain
offloads on or off. Most TCP/IP task offloads can be configured and activated with this
OID. For some offloads, such as Rx Checksum or Rx IPSec, this OID serves as a
configuration change and doesn't mean the offload will be operational immediately. To
activate those offloads, the miniport driver must wait until it receives an
OID_OFFLOAD_ENCAPSULATION Set request.

Before setting OID_TCP_OFFLOAD_PARAMETERS, the overlying applications or drivers
can use the OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES OID to determine what
capabilities a miniport adapter's hardware can support. Use

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters

OID_TCP_OFFLOAD_PARAMETERS to enable capabilities that are reported as not enabled
by the OID_TCP_OFFLOAD_CURRENT_CONFIG OID.

NDIS_OFFLOAD_PARAMETERS
NDIS_OID_REQUEST
NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG
OID_TCP_OFFLOAD_CURRENT_CONFIG
OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

See also

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_offload_parameters
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request

OID_TCP_RSC_STATISTICS
Article • 02/18/2023

As a query, NDIS and overlying drivers or user-mode applications use the
OID_TCP_RSC_STATISTICS OID to get the receive-segment coalescing (RSC) statistics of a
miniport adapter.

NDIS 6.30 and later miniport drivers that provide RSC services must support this OID.
Otherwise, this OID is optional.

The InformationBuffer member of NDIS_OID_REQUEST structure contains an
NDIS_RSC_STATISTICS_INFO structure.

The miniport driver must maintain the statistics in the members of the
NDIS_RSC_STATISTICS_INFO structure as follows:

The driver must increment the coalesced packet count in the CoalescedPkts
member by one every time a packet is added to a single coalesced unit (SCU).
The driver must increment the coalesced octet count in the CoalescedOctets
member by the size of the TCP payload of the packet every time a packet is added
to a SCU.
The driver must increment the coalesced events count CoalesceEvents member by
one every time a SCU is finalized. All such SCUs should have a non-zero
CoalescedSegCount value.
The driver must increment the abort count in the Aborts member by one every
time it encounters an exception other than the IP datagram length being
exceeded. This count should include the cases where a packet is not coalesced
because of hardware resources.

Version Supported for NDIS 6.30 and later drivers in
Windows 8.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rsc_statistics_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rsc_statistics_info

NDIS_OID_REQUEST

NDIS_RSC_STATISTICS_INFO

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/oidrequest/ns-oidrequest-ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_rsc_statistics_info

OID_TCP_TASK_IPSEC_ADD_SA
Article • 02/18/2023

The OID_TCP_TASK_IPSEC_ADD_SA OID is set by the transport protocol to request that a
miniport driver add one or more security associations (SAs) to a NIC.

The information for each SA is formatted as an OFFLOAD_IPSEC_ADD_SA structure.

The first seven members of the OFFLOAD_IPSEC_ADD_SA structure (SrcAddr, SrcMask,
DestAddr, DestMask, Protocol, SrcPort, and DestPort) constitute a filter that specifies
the source and destination, as well as the IP protocols, to which the SAs apply. This filter
pertains to a transport-mode connection--that is, an end-to-end connection between
two hosts. If the specified connection is made through a tunnel, the source and
destination addresses of the tunnel are specified by SrcTunnelAddr and
DestTunnelAddr, respectively.

If a filter parameter is set to zero, that parameter is not used to filter packets for the
specified SAs. For example, if SrcAddr is set to zero, the specified SAs can apply to a
packet that contains any source address. To take this to the extreme, if all the filter
parameters are set to zero, the specified SAs apply to any source host sending any type
of packet to any destination host.

The TCP/IP transport can specify an IP protocol in the Protocol member to indicate that
the specified SAs apply only to packets of the specified protocol type. If Protocol is set
to zero, the specified SAs apply to all packets sent from the specified source to the
specified destination.

An OFFLOAD_SECURITY_ASSOCIATION structure specifies a single security association
(SA). The OFFLOAD_SECURITY_ASSOCIATION structure is an element in the SecAssoc
variable-length array. SecAssoc contains one or two OFFLOAD_SECURITY_ASSOCIATION
structures.

An SA specified for use in processing authentication headers (AH) will have an operation
type of AUTHENTICATE and will have an IntegrityAlgo (integrity algorithm). The SA will
not have an a ConfAlgo (confidentiality algorithm). In this case, ConfAlgo will contain
zeros.

An SA specified for use in processing encapsulating security payloads (ESPs) will have an
operation type of ENCRYPT and may have an IntegrityAlgo (integrity algorithm) and/or

OFFLOAD_SECURITY_ASSOCIATION structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_ipsec_add_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_security_association

a ConfAlgo (confidentiality algorithm).

The OFFLOAD_ALGO_INFO structure, which is a member of an
OFFLOAD_SECURITY_ASSOCIATION structure, specifies an algorithm used for a security
association (SA).

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

OFFLOAD_ALGO_INFO structure

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_algo_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_security_association

OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
Article • 02/18/2023

A transport protocol sets OID_TCP_TASK_IPSEC_ADD_UDPESP_SA to request a miniport
driver to add one or more security associations (SAs) for UDP-encapsulated ESP packets
to a NIC.

The information for each SA is formatted as an OFFLOAD_IPSEC_ADD_UDPESP_SA
structure. Note that this structure is almost identical to the OFFLOAD_IPSEC_ADD_SA
structure used in the OID_TCP_TASK_IPSEC_ADD_SA request. The only difference is that
the OFFLOAD_IPSEC_ADD_UDPESP_SA structure contains the EncapTypeEntry and the
EncapTypeEntryOffldHandle members.

The first seven members of the OFFLOAD_IPSEC_ADD_UDPESP_SA structure (SrcAddr,
SrcMask, DestAddr, DestMask, Protocol, SrcPort, and DestPort) constitute a filter that
specifies the source and destination, as well as the IP protocols, to which the SAs apply.
This filter pertains to a transport-mode connection--that is, an end-to-end connection
between two hosts. If the specified connection is made through a tunnel, the source and
destination addresses of the tunnel are specified by SrcTunnelAddr and
DestTunnelAddr, respectively.

If a filter parameter is set to zero, that parameter is not used to filter packets for the
specified SAs. For example, if SrcAddr is set to zero, the specified SAs can apply to a
packet that contains any source address. To take this to the extreme, if all the filter
parameters are set to zero, the specified SAs apply to any source host sending any type
of packet to any destination host.

The TCP/IP transport can specify an IP protocol in the Protocol member to indicate that
the specified SAs apply only to packets of the specified protocol type. If Protocol is set
to zero, the specified SAs apply to all packets sent from the specified source to the
specified destination.

An OFFLOAD_SECURITY_ASSOCIATION structure specifies a single security association
(SA). The OFFLOAD_SECURITY_ASSOCIATION structure is an element in the SecAssoc
variable-length array. SecAssoc contains one or two OFFLOAD_SECURITY_ASSOCIATION
structures.

An SA specified for use in processing authentication headers (AH) will have an operation
type of AUTHENTICATE and will have an IntegrityAlgo (integrity algorithm). The SA will

OFFLOAD_SECURITY_ASSOCIATION structure

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_ipsec_add_udpesp_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_ipsec_add_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_security_association

not have an a ConfAlgo (confidentiality algorithm). In this case, ConfAlgo will contain
zeros.

An SA specified for use in processing encapsulating security payloads (ESPs) will have an
operation type of ENCRYPT and may have an IntegrityAlgo (integrity algorithm) and/or
a ConfAlgo (confidentiality algorithm).

The OFFLOAD_ALGO_INFO structure, which is a member of an
OFFLOAD_SECURITY_ASSOCIATION structure, specifies an algorithm used for a security
association (SA).

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

OFFLOAD_ALGO_INFO structure

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_algo_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_security_association

OID_TCP_TASK_IPSEC_DELETE_SA
Article • 02/18/2023

The OID_TCP_TASK_IPSEC_DELETE_SA OID is set by a transport protocol to request that a
miniport driver delete a security association (SA) from a NIC. The SA information is
formatted as an OFFLOAD_IPSEC_DELETE_SA structure.

On receiving this request, the miniport driver should delete the specified SA from the
NIC and free any system resources allocated for the SA.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_ipsec_delete_sa

OID_TCP_TASK_IPSEC_DELETE_UDPESP_S
A
Article • 02/18/2023

A transport protocol sets OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA to request that a
miniport driver delete a UDP-ESP security association (SA) and, possibly, a parser entry
from a NIC parser entry list. The SA and parser entry information is formatted as an
OFFLOAD_IPSEC_DELETE_UDPESP_SA structure.

If the EncapTypeEntryOffldHandle is NULL, the miniport should delete the specified SA
from the NIC and free any system resources allocated for the SA. If the
EncapTypeEntryOffldHandle is non-NULL, the miniport should also delete the specified
parser entry from the NIC's parser entry list.

Note that a transport protocol could request a miniport to delete an SA and/or parser
entry before the miniport has completed adding that SA and/or parser entry. The
miniport must therefore serialize the deletion operation with the addition operation.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_offload_ipsec_delete_udpesp_sa

OID_TCP_TASK_IPSEC_OFFLOAD_V2_AD
D_SA
Article • 02/18/2023

[The IPsec Task Offload feature is deprecated and should not be used.]

As a set, the TCP/IP transport uses the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA OID
to request that a miniport driver add the specified security associations (SAs) to a NIC.

Note NDIS supports this OID with the direct OID request interface. For more
information about the direct OID request interface, see NDIS 6.1 Direct OID Request
Interface.

Note This OID is supported in NDIS 6.1 and 6.20. For NDIS 6.30 and later drivers see
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX.

All NDIS 6.1 and 6.20 miniport drivers that support IPsec offload version 2 (IPsecOV2)
must support this OID.

After TCP/IP transport determines that a NIC can perform IPsecOV2 operations, the
TCP/IP transport requests the miniport driver to add SAs. The transport cannot offload
IPsecOV2 operations to the NIC before the transport adds an SA.

The miniport driver receives an IPSEC_OFFLOAD_V2_ADD_SA structure that contains a
pointer to the next IPSEC_OFFLOAD_V2_ADD_SA structure in a linked list. The miniport
driver configures the NIC for IPsecOV2 processing on the SAs. With a successful set to
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA, the miniport driver supplies the handles
that identify the offloaded SAs in the OffloadHandle member of
IPSEC_OFFLOAD_V2_ADD_SA. (For example, the transport uses the handle in the send
path to indicate which offloaded SA to use). If any of the SAs in the linked list were
offloaded, the set request is successful.

The miniport driver can return a failure status for the OID request, for example, when the
NIC runs out of capacity to offload more SAs. Also, the miniport driver might return a
failure status because it needs to avoid a race condition. In this case, the NIC
configuration changes and excludes a particular algorithm.

If the request fails, none of the SAs in the linked list were offloaded. If failure occurs for
a particular SA in the linked list, the miniport driver should set the OffloadHandle

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa

member in the corresponding IPSEC_OFFLOAD_V2_ADD_SA structure to NULL.

The miniport driver reports the maximum number of SAs that a NIC can support in the
SaOffloadCapacity member of the NDIS_IPSEC_OFFLOAD_V2 structure during
initialization. If necessary, the TCP/IP transport can set the
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA OID to request that the miniport driver
delete an SA from the NIC.

Version Supported in NDIS 6.1 and 6.20. For NDIS 6.30
and later, use
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX.

Header Ntddndis.h (include Ndis.h)

IPSEC_OFFLOAD_V2_ADD_SA

NDIS_IPSEC_OFFLOAD_V2

OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX

OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2

OID_TCP_TASK_IPSEC_OFFLOAD_V2_AD
D_SA_EX
Article • 02/18/2023

[The IPsec Task Offload feature is deprecated and should not be used.]

As a set, the TCP/IP transport uses the OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX
OID to request that a miniport driver add the specified security associations (SAs) to a
NIC.

Note NDIS supports this OID with the direct OID request interface. For more
information about the direct OID request interface, see NDIS 6.1 Direct OID Request
Interface.

All NDIS 6.30 miniport drivers that support IPsec offload version 2 (IPsecOV2) must
support this OID.

After TCP/IP transport determines that a NIC can perform IPsecOV2 operations, the
TCP/IP transport requests the miniport driver to add SAs. The transport cannot offload
IPsecOV2 operations to the NIC before the transport adds an SA.

The miniport driver configures the NIC for IPsecOV2 processing on the SAs. With a
successful set to OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX, the miniport driver
supplies the handle that identifies the offloaded SA in the OffloadHandle member of
the IPSEC_OFFLOAD_V2_ADD_SA_EX structure. (For example, the transport uses the
handle in the send path to indicate which offloaded SA to use). If an SA was offloaded,
the set request is successful.

The miniport driver can return a failure status for the OID request, for example, when the
NIC runs out of capacity to offload more SAs. Also, the miniport driver might return a
failure status because it needs to avoid a race condition. In this case, the NIC
configuration changes and excludes a particular algorithm.

If the request fails, SAs were not offloaded. If failure occurs for an SA, the miniport driver
should set the OffloadHandle member in the corresponding
IPSEC_OFFLOAD_V2_ADD_SA_EX structure to NULL.

The miniport driver reports the maximum number of SAs that a NIC can support in the
SaOffloadCapacity member of the NDIS_IPSEC_OFFLOAD_V2 structure during

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2

initialization. If necessary, the TCP/IP transport can set the
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA OID to request that the miniport driver
delete an SA from the NIC.

This OID is essentially identical to the previous version,
OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA. The only difference is the updated
IPSEC_OFFLOAD_V2_ADD_SA_EX structure.

Version Supported in NDIS 6.30 and later.

Header Ntddndis.h (include Ndis.h)

IPSEC_OFFLOAD_V2_ADD_SA_EX

NDIS_IPSEC_OFFLOAD_V2

OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA

OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_add_sa_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_ipsec_offload_v2

OID_TCP_TASK_IPSEC_OFFLOAD_V2_DEL
ETE_SA
Article • 02/18/2023

[The IPsec Task Offload feature is deprecated and should not be used.]

As a set, the TCP/IP transport uses the OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA
OID to request that a miniport driver delete the specified security associations (SAs)
from a NIC.

Note NDIS supports this OID with the direct OID request interface. For more
information about the direct OID request interface, see NDIS 6.1 Direct OID Request
Interface.

All NDIS 6.1 miniport drivers that support IPsec offload version 2 (IPsecOV2) must
support this OID.

When a miniport driver receives this request, the driver should delete the specified SAs
from the NIC and free any system resources that were allocated for the SAs.

The miniport driver receives an IPSEC_OFFLOAD_V2_DELETE_SA structure that contains
a handle to an SA bundle and a pointer to the next IPSEC_OFFLOAD_V2_DELETE_SA
structure in a linked list.

The miniport driver can set SaDeleteReq in the
NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO structure for a receive
NET_BUFFER_LIST structure. The TCP/IP transport subsequently issues
OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA once to delete the inbound SA that the
packet was received over and once again to delete the outbound SA that corresponds
to the deleted inbound SA. The NIC must not remove either of these SAs before
receiving the corresponding OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA request.

The miniport driver's MiniportOidRequest function returns one of the following values for
this request:

Term Description

Remarks

Return status codes

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_delete_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_oid_request

Term Description

NDIS_STATUS_SUCCESS The miniport driver completed the request
successfully.

NDIS_STATUS_PENDING The miniport driver will complete the request
asynchronously. After the miniport driver has
completed all processing, it must succeed the
request by calling the
NdisMOidRequestComplete function, passing
NDIS_STATUS_SUCCESS for the Status
parameter.

NDIS_STATUS_NOT_ACCEPTED The miniport driver is resetting.

NDIS_STATUS_REQUEST_ABORTED The miniport driver stopped processing the
request. For example, NDIS called the
MiniportResetEx function.

Version Supported in NDIS 6.1 and later.

Header Ntddndis.h (include Ndis.h)

IPSEC_OFFLOAD_V2_DELETE_SA

NDIS_IPSEC_OFFLOAD_V2_NET_BUFFER_LIST_INFO

NET_BUFFER_LIST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismoidrequestcomplete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-miniport_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_delete_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_ipsec_offload_v2_net_buffer_list_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/nbl/ns-nbl-net_buffer_list

OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPD
ATE_SA
Article • 02/18/2023

[The IPsec Task Offload feature is deprecated and should not be used.]

As a set, the TCP/IP transport uses the OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA
OID to request that a miniport driver update the specified security associations (SAs) on
a NIC.

Note NDIS supports this OID with the direct OID request interface. For more
information about the direct OID request interface, see NDIS 6.1 Direct OID Request
Interface.

All NDIS 6.1 miniport drivers that support IPsec offload version 2 (IPsecOV2) must
support this OID.

When a miniport driver receives this request, the driver should update the specified SAs
on the NIC. The miniport driver can fail this request if the SA is not found or the ESN is
not supported. In this case, the returned status should be
NDIS_STATUS_INVALID_PARAMETER.

The miniport driver receives an IPSEC_OFFLOAD_V2_UPDATE_SA structure that contains
information about the update and a pointer to the next IPSEC_OFFLOAD_V2_UPDATE_SA
structure in a linked list.

Version Supported in NDIS 6.1 and later.

Header Ntddndis.h (include Ndis.h)

IPSEC_OFFLOAD_V2_UPDATE_SA

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_update_sa
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ipsec_offload_v2_update_sa

OID_TCP_TASK_OFFLOAD
Article • 02/18/2023

The host stack queries the OID_TCP_TASK_OFFLOAD OID to obtain the TCP offload
capabilities of a miniport driver's NIC or of an offload target. After determining the
offload capabilities that a NIC or an offload target supports, the host stack sets this OID
to enable one or more of the reported capabilities. The host stack can also disable all of
a NIC's or an offload target's TCP offload capabilities by setting
OID_TCP_TASK_OFFLOAD. Only one protocol at a time can enable the TCP offload
capabilities of a particular NIC.

When the host stack queries OID_TCP_TASK_OFFLOAD, it supplies in the
InformationBuffer an NDIS_TASK_OFFLOAD_HEADER structure. This structure specifies
the following:

The offload version supported by the host stack.
The encapsulation format for send and receive packets processed by the host
stack.
The size of the encapsulation header in such packets.

With this information, a miniport driver or its NIC can locate the beginning of the first IP
header in a transmit packet, which is a prerequisite for performing an offload task. An
offload target needs to know the encapsulation format to process receive packets. In
response to a query of OID_TCP_TASK_OFFLOAD, a miniport driver or offload target
returns, in the InformationBuffer, the NDIS_TASK_OFFLOAD_HEADER structure followed
immediately by one or more NDIS_TASK_OFFLOAD structures. Each
NDIS_TASK_OFFLOAD structure describes an offload capability supported by the
miniport driver's NIC or by the offload target. If the miniport driver's NIC or the offload
target supports multiple versions of a particular offload capability, it should return one
NDIS_TASK_OFFLOAD structure for each version.

Each NDIS_TASK_OFFLOAD structure has a Task member that specifies the particular
offload capability to which the structure applies. Each NDIS_TASK_OFFLOAD structure
also has a TaskBuffer that contains information pertinent to the specified offload
capability. The information in the TaskBuffer is formatted as one of the following
structures:

NDIS_TASK_TCP_IP_CHECKSUM
Specifies checksum offload capabilities.

Querying offload capabilities

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559004(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff558995(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559004(v=vs.85)

NDIS_TASK_IPSEC
Specifies Internet Protocol security (IPsec) offload capabilities.
NDIS_TASK_TCP_LARGE_SEND
Specifies large TCP packet segmentation capabilities.
NDIS_TASK_TCP_CONNECTION_OFFLOAD
Specifies TCP chimney offload capabilities. For more information on
NDIS_TASK_TCP_CONNECTION_OFFLOAD, see TCP Chimney Offload.

After querying a NIC's or an offload target's offload capabilities, the host stack enables
one or more of these capabilities by setting OID_TCP_TASK_OFFLOAD. When setting
OID_TCP_TASK_OFFLOAD, the host stack supplies, in the InformationBuffer, an
NDIS_TASK_OFFLOAD_HEADER structure followed immediately by an
NDIS_TASK_OFFLOAD structure for each offload capability that the host stack is
enabling.

The Task in each NDIS_TASK_OFFLOAD structure indicates the offload capability that the
host stack is enabling. The host stack also enables specific aspects of a particular offload
capability by setting members of the structure in the TaskBuffer of each
NDIS_TASK_OFFLOAD structure.

To change the offload capabilities that are enabled for a NIC or an offload target, the
host stack sets OID_TCP_TASK_OFFLOAD. The miniport driver or offload target must
enable only those offload capabilities specified by the most recent set of
OID_TCP_TASK_OFFLOAD. The miniport driver or offload target must disable all other
offload capabilities. Note that before disabling a specific TCP chimney offload capability,
the host stack terminates the offload of any offloaded TCP connections that use that
capability.

７ Note

If an intermediate driver modifies the contents of packets that it forwards to an
underlying miniport driver such that TCP offload functions cannot be performed on
the packets, the intermediate driver should respond to OID_TCP_TASK_OFFLOAD
queries with a status of NDIS_STATUS_NOT_SUPPORTED instead of passing the OID
request to the underlying miniport driver or offload target.

Enabling offload capabilities

Changing offload capabilities

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff558990(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff559008(v=vs.85)
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_ndis_tcp_connection_offload_parameters
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ndis-tcp-chimney-offload

An offload target can use pause or resume offload indications to change its reported
TCP offload capabilities:

An offload target makes a pause indication by calling the NdisMIndicateStatusEx
function with the NDIS_STATUS_INDICATION->StatusCode member set to
NDIS_STATUS_OFFLOAD_PAUSE.
An offload target makes a resume indication by calling the NdisMIndicateStatusEx
function with the NDIS_STATUS_INDICATION->StatusCode member set to
NDIS_STATUS_OFFLOAD_RESUME.

After an offload target requests the host stack to resume offloading state objects, the
host stack queries OID_TCP_TASK_OFFLOAD again to obtain the offload target's TCP
offload revised capabilities. For more information, see NDIS_STATUS_OFFLOAD_RESUME.

To disable all offload capabilities supported by a NIC or an offload target, the host stack
sets OID_TCP_TASK_OFFLOAD. In the InformationBuffer, the host stack supplies an
NDIS_TASK_OFFLOAD_HEADER structure with the OffsetFirstTask member of this
structure set to zero.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Disabling offload capabilities

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndismindicatestatusex

OID_TCP4_OFFLOAD_STATS
Article • 02/18/2023

The host stack queries the OID_TCP4_OFFLOAD_STATS OID to obtain statistics on TCP
segments that an offload target has processed on offloaded TCP connections that
convey IPv4 datagrams. The host stack sets this OID to cause an offload target to reset
the counters for such statistics to zero.

In response to a query of OID_TCP4_OFFLOAD_STATS, an offload target supplies a filled-
in TCP_OFFLOAD_STATS structure.

In response to a set of OID_TCP4_OFFLOAD_STATS, an offload target should reset to
zero all of its TCP statistics counters for offloaded TCP connections that convey IPv4
datagrams.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_tcp_offload_stats

OID_TCP6_OFFLOAD_STATS
Article • 02/18/2023

The host stack queries the OID_TCP6_OFFLOAD_STATS OID to obtain statistics on TCP
segments that an offload target has processed on offloaded TCP connections that
convey IPv6 datagrams. The host stack sets this OID to cause an offload target to reset
the counters for such statistics to zero.

In response to a query of OID_TCP6_OFFLOAD_STATS, an offload target supplies a filled-
in TCP_OFFLOAD_STATS structure.

In response to a set of OID_TCP6_OFFLOAD_STATS, an offload target should reset to
zero all of its TCP statistics counters for offloaded TCP connections that convey IPv6
datagrams.

Version: Windows Vista and later Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndischimney/ns-ndischimney-_tcp_offload_stats

OID_TIMESTAMP_CAPABILITY
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_TIMESTAMP_CAPABILITY to obtain the hardware timestamping capabilities of the
NIC and software timestamping capabilities of the miniport driver.

The RequestType member of the NDIS_OID_REQUEST structure will be
NdisRequestQueryInformation.

NDIS handles this OID for the miniport driver based on the information the miniport
driver provided in the NDIS_STATUS_TIMESTAMP_CAPABILITY status indication.

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

NDIS Version NDIS 6.82 and later

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_TIMESTAMP_CAPABILITY

OID_TIMESTAMP_CURRENT_CONFIG

OID_TIMESTAMP_GET_CROSSTIMESTAMP

NDIS_OID_REQUEST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

OID_TIMESTAMP_CURRENT_CONFIG
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_TIMESTAMP_CURRENT_CONFIG to obtain the current timestamping configuration
of the NIC.

The RequestType member of the NDIS_OID_REQUEST structure will be
NdisRequestQueryInformation.

NDIS handles this OID for the miniport driver based on the information the miniport
driver provided in the NDIS_STATUS_TIMESTAMP_CAPABILITY status indication.

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

NDIS Version NDIS 6.82 and later

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG

OID_TIMESTAMP_CAPABILITY

OID_TIMESTAMP_GET_CROSSTIMESTAMP

NDIS_OID_REQUEST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

OID_TIMESTAMP_GET_CROSSTIMESTAM
P
Article • 02/18/2023

An overlying driver issues an object identifier (OID) query request of
OID_TIMESTAMP_GET_CROSSTIMESTAMP to obtain a cross timestamp from the NIC
hardware. A cross timestamp is the set of a NIC hardware timestamp and system
timestamp(s) obtained very close to each other. Precision Time Protocol (PTP) version 2
applications use the information provided in this OID to establish a relation between the
NIC’s hardware clock and a system clock.

The miniport driver must support this OID if it sets the CrossTimestamp field to TRUE in
the NDIS_TIMESTAMP_CAPABILITIES structure as part of the current configuration. For
more details on reporting the current configuration, see the
NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG status indication. If the cross
timestamping ability is disabled, then the OID should be completed with an appropriate
error code (for example, NDIS_STATUS_NOT_SUPPORTED).

The RequestType member of the NDIS_OID_REQUEST structure will be
NdisRequestQueryInformation.

When a miniport driver receives the OID request of
OID_TIMESTAMP_GET_CROSSTIMESTAMP, the driver completes the OID by filling the
InformationBuffer in the QUERY_INFORMATION with an
NDIS_HARDWARE_CROSSTIMESTAMP structure. The Type field in the Header field of
the NDIS_HARDWARE_CROSSTIMESTAMP structure should be set to
NDIS_OBJECT_TYPE_DEFAULT and the Revision field to
NDIS_HARDWARE_CROSSTIMESTAMP_REVISION_1. The driver should fill the
SystemTimestamp1, HardwareClockTimestamp and SystemTimestamp2 fields with
following timestamps taken as close to each other as possible and in the following
order:

1. SystemTimestamp1: Performance counter value (QPC) obtained by calling
KeQueryPerformanceCounter.

2. HardwareClockTimestamp: The NIC hardware clock’s current value. This should be
the raw hardware clock value of the NIC.

3. SystemTimestamp2: Another performance counter value (QPC) obtained by calling
KeQueryPerformanceCounter.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_timestamp_capabilities
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddndis/ns-ntddndis-_ndis_hardware_crosstimestamp
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-kequeryperformancecounter

Here's an example of how a miniport driver handles
OID_TIMESTAMP_GET_CROSSTIMESTAMP:

C++

The Flags field in the NDIS_HARDWARE_CROSSTIMESTAMP structure is reserved for
future use. The miniport driver must not change its value.

The miniport driver and hardware are free to optimize the collection of these
timestamps depending on any advanced hardware capabilities. However, the
SystemTimestamp1 and SystemTimestamp2 values returned on OID completion must
accurately correspond to the performance counter (QPC) value at the time of capture.
The HardwareClockTimestamp must correspond to the NIC’s hardware clock value at
the point of capture. If a particular implementation can more accurately determine two
timestamps rather than three (for example, one system timestamp and the
corresponding NIC hardware clock timestamp), then it should set the
SystemTimestamp2 field to the same value as SystemTimestamp1.

The miniport driver should not set the SystemTimestamp1, HardwareClockTimestamp,
or SystemTimestamp2 values to zero.

{
. . .
 NDIS_HARDWARE_CROSSTIMESTAMP crossTimestamp;
 LARGE_INTEGER timeStamp;

 RtlZeroMemory(&crossTimestamp, sizeof(crossTimestamp));

 timeStamp = KeQueryPerformanceCounter(NULL);
 crossTimestamp.SystemTimestamp1 = timeStamp.QuadPart;
 crossTimestamp.HardwareClockTimestamp =
FunctionToRetrieveHardwareTimestampFromNetworkCard();
 timeStamp = KeQueryPerformanceCounter(NULL);
 crossTimestamp.SystemTimestamp2 = timeStamp.QuadPart;
 crossTimestamp.Header.Type = NDIS_OBJECT_TYPE_DEFAULT;
 crossTimestamp.Header.Size =
NDIS_SIZEOF_HARDWARE_CROSSTIMESTAMP_REVISION_1;
 crossTimestamp.Header.Revision =
NDIS_HARDWARE_CROSSTIMESTAMP_REVISION_1;

// Complete the OID by filling the query information buffer with the
crossTimestamp
}

Return Status Codes

The miniport driver returns one of the following status codes for the OID query request
of OID_TIMESTAMP_GET_CROSSTIMESTAMP.

Status Code Description

NDIS_STATUS_SUCCESS The OID request completed successfully.

NDIS_STATUS_NOT_SUPPORTED The miniport driver either does not support cross
timestamping or the cross timestamping ability is disabled.

NDIS_STATUS_FAILURE The request failed for other reasons.

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022

NDIS Version NDIS 6.82 and later

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_TIMESTAMP_CAPABILITY

OID_TIMESTAMP_CURRENT_CONFIG

OID_TIMESTAMP_CAPABILITY

NDIS_OID_REQUEST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/ns-ndis-_ndis_oid_request

OID_TUNNEL_INTERFACE_RELEASE_OID
Article • 02/18/2023

The OID_TUNNEL_INTERFACE_RELEASE_OID object identifier (OID) is reserved for system
use. Do not use it in your driver.

Version: Windows 7 and later

Header: Ntddndis.h (include Ndis.h)

Requirements

OID_TUNNEL_INTERFACE_SET_OID
Article • 02/18/2023

The OID_TUNNEL_INTERFACE_SET_OID object identifier (OID) is reserved for system use.
Do not use it in your driver.

Version: Windows 7 and later

Header: Ntddndis.h (include Ndis.h)

Requirements

OID_WAN_CO_GET_COMP_INFO
Article • 02/18/2023

The OID_WAN_CO_GET_COMP_INFO OID requests the miniport driver to return
information about the capabilities of the NIC or of its driver, in particular whether either
supports compression. If so, the values returned are used to negotiate compression with
the Point-to-Point Protocol (PPP) Compression Control Protocol. The protocol
subsequently negotiates a PPP compression scheme with an
OID_WAN_CO_SET_COMP_INFO request. This compression information is specific to a
virtual connection (VC).

Compression information is returned in an NDIS_WAN_CO_GET_COMP_INFO structure,
defined as follows:

ManagedCPlusPlus

The members of this structure contain the following information:

SendCapabilities
Specifies a structure containing information about compression capabilities for sending
data.

RecvCapabilities
Specifies a structure containing information about compression capabilities for receiving
data.

For specifics of the NDIS_WAN_COMPRESS_INFO structure, see
OID_WAN_GET_COMP_INFO.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

 typedef struct _NDIS_WAN_CO_GET_COMP_INFO {
 OUT NDIS_WAN_COMPRESS_INFO SendCapabilities;
 OUT NDIS_WAN_COMPRESS_INFO RecvCapabilities;
 } NDIS_WAN_CO_GET_COMP_INFO, *PNDIS_WAN_CO_GET_COMP_INFO;

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561202(v=vs.85)

Header Ntddndis.h (include Ndis.h)

OID_WAN_GET_COMP_INFO

OID_WAN_CO_SET_COMP_INFO

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561202(v=vs.85)

OID_WAN_CO_GET_INFO
Article • 02/18/2023

The OID_WAN_CO_GET_INFO OID requests the miniport driver to return information
that applies to all virtual connections (VCs) on its NIC. This information is returned in an
NDIS_WAN_CO_INFO structure, defined as follows.

ManagedCPlusPlus

The members of this structure contain the following information:

MaxFrameSize
Specifies the maximum frame size for any net packet that the miniport driver can send
and receive. This value should exclude the miniport driver's own framing overhead
and/or the PPP HDLC overhead. Typically this value is around 1500.

However, all CoNDIS WAN miniport drivers should use an internal MaxFrameSize that is
32 bytes larger than the value they return for this OID. For example, a CoNDIS WAN
miniport driver that returns 1500 for this OID should internally accept and send up to
1532. Such a miniport driver can readily support future bridging and additional
protocols.

MaxSendWindow
Specifies the maximum number of outstanding packets that the CoNDIS WAN miniport
driver can handle on a VC. This member must be set to at least one.

The NDISWAN driver uses the value of this member as a limit on how many packets it
submits in send requests to the miniport driver's MiniportCoSendPackets function before
NDISWAN holds send packets. These packets are queued until the miniport driver
completes an outstanding send. A miniport driver can adjust this value dynamically and
on a per-VC basis using the SendWindow member in the WAN_CO_LINKPARAMS
structure that the miniport driver passes to NdisMCoIndicateStatus. NDISWAN uses the
current SendWindow value as its limit on outstanding sends. If the miniport driver sets
SendWindow to zero, NDISWAN must stop sending packets for the particular VC. That
is, the miniport driver specifies that the send window is shut down, which, in effect,
specifies that it cannot accept any packets from NDISWAN.

 typedef struct _NDIS_WAN_CO_INFO {
 OUT ULONG MaxFrameSize;
 OUT ULONG MaxSendWindow;
 OUT ULONG FramingBits;
 OUT ULONG DesiredACCM;
 } NDIS_WAN_CO_INFO, *PNDIS_WAN_CO_INFO;

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)
https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553458(v=vs.85)

Because a CoNDIS WAN miniport driver must queue packets internally, the value of
MaxSendWindow is theoretically max(ULONG). However, this driver-determined value
should reflect the link speed or hardware capabilities of the NIC. For example, if a
miniport driver's NIC always has room for at least four packets, the miniport driver sets
MaxSendWindow to four so that any incoming packet to MiniportCoSendPackets can be
placed on the hardware immediately.

FramingBits
A 32-bit value that specifies a bitmask specifying the types of framing the miniport
driver supports. The miniport driver can specify a combination of the following values,
using the binary OR operator:

RAS_FRAMING
Set only if the miniport driver can detect older RAS framing. Only legacy drivers that
supported earlier RAS framing set this flag.

RAS_COMPRESSION
Set only if the miniport driver supports the older RAS compression scheme.

PPP_FRAMING
Should always be set. Indicates the miniport driver can detect and support PPP framing
for its medium type.

PPP_COMPRESS_ADDRESS_CONTROL
Set if the miniport driver supports PPP address and control-field compression.

NDISWAN will remove the address and control field if this LCP option is negotiated.
Some WAN medium types, such as X.25, do not support this option.

PPP_COMPRESS_PROTOCOL_FIELD
Set if the miniport driver supports PPP protocol field compression.

NDISWAN will remove one byte from the protocol field when applicable if this LCP
option is negotiated.

PPP_ACCM_SUPPORTED
Set if the miniport driver supports Asynchronous Control Character Mapping. This bit is
only valid for asynchronous media, such as modems. If this bit is set the DesiredACCM
member should be valid.

PPP_MULTILINK_FRAMING
Set if the miniport driver supports multiple-link framing as specified in IETF RFC 1717.

PPP_SHORT_SEQUENCE_HDR_FORMAT
Set if the miniport driver supports header format for multiple-link framing as specified in

IETF RFC 1717.

SLIP_FRAMING
Set if the miniport driver can detect and support SLIP framing (asynchronous miniport
drivers only).

SLIP_VJ_COMPRESSION
Set if the miniport driver can support Van Jacobsen TCP/IP header compression for SLIP.
NDISWAN supports SLIP_VJ_COMPRESSION (with 16 slots). Asynchronous media (serial
miniport drivers) that support SLIP framing should set this bit.

Asynchronous media need not write any code to support VJ header compression.
NDISWAN will take care of it.

SLIP_VJ_AUTODETECT
Set if the miniport driver can auto-detect Van Jacobsen TCP/IP header compression for
SLIP. NDISWAN will auto-detect VJ header compression. Asynchronous media (serial
miniport drivers) should set this bit if they support SLIP framing.

TAPI_PROVIDER
Set if the miniport driver supports the TAPI Service Provider OIDs. Unless this bit is set,
TAPI OID calls will not be made to the miniport driver.

MEDIA_NRZ_ENCODING
Set if the miniport driver supports NRZ encoding, the PPP default for some media types
such as ISDN. This value is reserved for future use.

MEDIA_NRZI_ENCODING
Set if the miniport driver supports NRZI encoding. This value is reserved for future use.

MEDIA_NLPID
Set if the miniport driver has and can set the NLPID in its frame. This value is reserved
for future use.

RFC_1356_FRAMING
Set if the miniport driver supports IETF RFC 1356 X.25 and ISDN framing. This value is
reserved for future use.

RFC_1483_FRAMING
Set if the miniport driver supports IETF RFC 1483 ATM adaptation layer-5 encapsulation.
This value is reserved for future use.

RFC_1490_FRAMING
Set if the miniport driver supports IETF RFC 1490 Frame Relay framing. This value is
reserved for future use.

NBF_PRESERVE_MAC_ADDRESS
Set if the miniport driver supports IETF framing as specified in the draft "The PPP
NETBIOS Frames Control Protocol (NBFCP)."

SHIVA_FRAMING
Superseded by NBF_PRESERVE_MAC_ADDRESS.

PASS_THROUGH_MODE
Set if the miniport driver does its own framing. If this flag is set, NDISWAN passes
frames, uninterpreted and unmodified.

Miniport drivers must be in the default PPP framing mode until each miniport driver
receives an OID_WAN_CO_SET_LINK_INFO request. The miniport driver must auto-detect
any framing that it claims to support.

For example, miniport drivers that support old RAS framing must auto-detect RAS
framing from PPP framing. If a miniport driver detects a framing scheme other than the
default, that miniport driver should automatically switch its framing into the newly
detected framing.

A subsequent query with OID_WAN_CO_GET_LINK_INFO should indicate the detected
framing. If no framing is yet detected, the FramingBits should be zero in the returned
NDIS_WAN_CO_GET_LINK_INFO information.

If the WAN miniport driver is called subsequently with OID_WAN_CO_SET_LINK_INFO in
which the FramingBits member is zero, the miniport driver should attempt to auto-
detect the framing upon reception of each frame.

DesiredACCM
The Asynchronous Control Character Map is negotiated. This member is relevant only
for asynchronous media types.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ntddndis.h (include Ndis.h)

NdisMCoIndicateStatus

Requirements

See also

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff553458(v=vs.85)

OID_WAN_CO_GET_LINK_INFO

OID_WAN_CO_SET_LINK_INFO

WAN_CO_LINKPARAMS

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565819(v=vs.85)

OID_WAN_CO_GET_LINK_INFO
Article • 02/18/2023

The OID_WAN_CO_GET_LINK_INFO OID requests the miniport driver to return PPP
framing information about the current state of a virtual connection (VC). This
information is returned in an NDIS_WAN_CO_GET_LINK_INFO structure, defined as
follows.

ManagedCPlusPlus

The members of this structure contain the following information:

MaxSendFrameSize
Specifies the maximum buffer size, in bytes, that the miniport driver can accept for
transmission on this VC. The miniport driver's MiniportCoSendPackets function can reject
any incoming send packet that is larger than this size.

MaxRecvFrameSize
Specifies the largest packet that will be received from the network. The miniport driver
can drop any packets that are larger.

SendFramingBits
Specifies send-framing bits indicating the type of framing that should be sent. If the
miniport driver detects incompatibilities between SendFramingBits and
RecvFramingBits, it returns NDIS_STATUS_INVALID_DATA.

The proper NLPID and framing format should be used based on the framing bits
wherever applicable.

RecvFramingBits
Specifies receive-framing bits indicating the type of framing that should be received.

 typedef struct _NDIS_WAN_CO_GET_LINK_INFO {
 OUT ULONG MaxSendFrameSize;
 OUT ULONG MaxRecvFrameSize;
 OUT ULONG SendFramingBits;
 OUT ULONG RecvFramingBits;
 OUT ULONG SendCompressionBits;
 OUT ULONG RecvCompressionBits;
 OUT ULONG SendACCM;
 OUT ULONG RecvACCM;
 } NDIS_WAN_CO_GET_LINK_INFO, *PNDIS_WAN_CO_GET_LINK_INFO;

SendCompressionBits
Reserved.

RecvCompressionBits
Reserved.

SendACCM
For asynchronous media types, logical bits 0-31 indicate the respective byte to be byte
stuffed. That is, if bit 0 is set to 1, then ASCII character 0x00 should be byte stuffed, and
so forth.

RecvACCM
As described for SendACCM.

Possible values for SendFramingBits and RecvFramingBits include any the driver
returned in response to the OID_WAN_CO_GET_LINK_INFO query.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ntddndis.h (include Ndis.h)

OID_WAN_CO_GET_LINK_INFO

Remarks

Requirements

See also

OID_WAN_CO_GET_STATS_INFO
Article • 02/18/2023

The OID_WAN_CO_GET_STATS_INFO OID requests the miniport driver to return statistics
information that is specific to a virtual connection (VC). A WAN miniport driver is
expected to keep statistics and to return these statistics for this OID in an
NDIS_WAN_CO_GET_STATS_INFO structure, defined as follows:

ManagedCPlusPlus

The members of this structure contain the following information:

BytesSent
Specifies the number of bytes transmitted.

BytesRcvd
Specifies the number of bytes received.

FramesSent
Specifies the number of frames (WAN packets) sent.

FramesRcvd
Specifies the number of frames received.

CRCErrors
Specifies the number of CRC errors encountered for this VC. CRC errors are caused by
the failure of a cyclic redundancy check. A CRC error indicates that one or more bytes in
the frame received were found garbled on arrival.

 typedef struct _NDIS_WAN_CO_GET_STATS_INFO {
 OUT ULONG BytesSent;
 OUT ULONG BytesRcvd;
 OUT ULONG FramesSent;
 OUT ULONG FramesRcvd;
 OUT ULONG CRCErrors;
 OUT ULONG TimeoutErrors;
 OUT ULONG AlignmentErrors;
 OUT ULONG SerialOverrunErrors;
 OUT ULONG FramingErrors;
 OUT ULONG BufferOverrunErrors;
 OUT ULONG BytesTransmittedUncompressed;
 OUT ULONG BytesReceivedUncompressed;
 OUT ULONG BytesTransmittedCompressed;
 OUT ULONG BytesReceivedCompressed;
 } NDIS_WAN_CO_GET_STATS_INFO, *PNDIS_WAN_CO_GET_STATS_INFO;

TimeoutErrors
Specifies the number of time-out errors encountered for this VC. Time-out errors occur
when an expected byte is not received in time.

AlignmentErrors
Specifies the number of alignment errors encountered for this VC. Alignment errors
occur when a byte received is different from the byte expected. This typically happens
when a byte is lost or when a time-out error occurs.

SerialOverrunErrors
Specifies the number of serial overruns encountered for this VC. Serial overruns occur
when the WAN NIC cannot handle the rate at which data is received.

FramingErrors
Specifies the number of framing errors encountered for this VC. A framing error occurs
when an asynchronous byte is received with an invalid start or stop bit.

BufferOverrunErrors
Specifies the number of buffer overruns encountered for this VC. Buffer overruns occur
when the WAN miniport driver cannot handle the rate at which data is received.

BytesTransmittedUncompressed
Specifies the number of bytes of uncompressed data transmitted. A miniport driver
returns a nonzero value only if it supports compression.

BytesReceivedUncompressed
Specifies the number of bytes of uncompressed data received. A miniport driver returns
a nonzero value only if it supports compression.

BytesTransmittedCompressed
Specifies the number of bytes of compressed data transmitted. A miniport driver returns
a nonzero value only if it supports compression.

BytesReceivedCompressed
Specifies the number of bytes of compressed data received. A miniport driver returns a
nonzero value only if it supports compression.

If the underlying driver or its NIC does not support compression, the driver returns zero
for the Bytes..Uncompressed/Compressed members.

Remarks

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ntddndis.h (include Ndis.h)

Requirements

OID_WAN_CO_SET_COMP_INFO
Article • 02/18/2023

The OID_WAN_CO_SET_COMP_INFO OID notifies the miniport driver of the PPP
compression scheme selected by a protocol to which the miniport driver already
returned information with a OID_WAN_CO_GET_COMP_INFO query. This PPP
compression scheme is specific to a virtual connection (VC).

The protocol supplies a specification for the PPP compression scheme it selected in an
NDIS_WAN_CO_SET_COMP_INFO structure, defined as follows:

ManagedCPlusPlus

The members of this structure contain the following information:

SendCapabilities
Specifies a structure containing information about compression capabilities for sending
data.

RecvCapabilities
Specifies a structure containing information about compression capabilities for receiving
data.

For specifics of the NDIS_WAN_COMPRESS_INFO structure, see
OID_WAN_GET_COMP_INFO.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ntddndis.h (include Ndis.h)

 typedef struct _NDIS_WAN_CO_SET_COMP_INFO {
 IN NDIS_WAN_COMPRESS_INFO SendCapabilities;
 IN NDIS_WAN_COMPRESS_INFO RecvCapabilities;
 } NDIS_WAN_CO_SET_COMP_INFO, *PNDIS_WAN_CO_SET_COMP_INFO;

Remarks

Requirements

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff561202(v=vs.85)

OID_WAN_CO_GET_COMP_INFO

See also

OID_WAN_CO_SET_LINK_INFO
Article • 02/18/2023

The OID_WAN_CO_SET_LINK_INFO OID requests the miniport driver to set PPP framing
information for a specific virtual connection (VC). A protocol uses an
NDIS_WAN_CO_SET_LINK_INFO structure, defined as follows, to indicate this PPP
framing information.

ManagedCPlusPlus

The members of this structure contain the following information:

MaxSendFrameSize
Specifies the largest buffer, in bytes, the protocol will send for this VC. This value must
be less than or equal to that returned by the miniport driver for the
OID_WAN_CO_GET_LINK_INFO query.

The miniport driver's MiniportCoSendPackets function can reject any send packets
submitted for this link that are larger than this value.

MaxRecvFrameSize
Specifies the largest network packet that the protocol will receive subsequently. This
value must be less than or equal to that returned by the miniport driver for the
OID_WAN_CO_GET_LINK_INFO query. The miniport driver can drop any received packets
for this VC that are larger.

SendFramingBits
Specifies send-framing bits indicating the type of framing that should be sent. If the
miniport driver detects incompatibilities between SendFramingBits and
RecvFramingBits, it returns NDIS_STATUS_INVALID_DATA.

The proper NLPID and framing format should be used based on the framing bits
wherever applicable.

 typedef struct _NDIS_WAN_CO_SET_LINK_INFO {
 IN ULONG MaxSendFrameSize;
 IN ULONG MaxRecvFrameSize;
 IN ULONG SendFramingBits;
 IN ULONG RecvFramingBits;
 IN ULONG SendCompressionBits;
 IN ULONG RecvCompressionBits;
 IN ULONG SendACCM;
 IN ULONG RecvACCM;
 } NDIS_WAN_CO_SET_LINK_INFO, *PNDIS_WAN_CO_SET_LINK_INFO;

RecvFramingBits
Specifies receive-framing bits indicating the type of framing that should be received.

SendCompressionBits
Reserved.

RecvCompressionBits
Reserved.

SendACCM
For asynchronous media types, logical bits 0-31 indicate the respective byte to be byte
stuffed. That is, if bit 0 is set to one then ASCII character 0x00 should be byte stuffed,
and so forth.

RecvACCM
As described for SendACCM.

Possible values for SendFramingBits and RecvFramingBits include any the underlying
driver returned in response to the OID_WAN_CO_GET_INFO query.

Version Supported for NDIS 6.0 and NDIS 5.1 drivers in
Windows Vista. Supported for NDIS 5.1 drivers
in Windows XP.

Header Ntddndis.h (include Ndis.h)

OID_WAN_CO_GET_INFO

OID_WAN_CO_GET_LINK_INFO

Remarks

Requirements

See also

OID_WWAN_AUTH_CHALLENGE
Article • 02/18/2023

OID_WWAN_AUTH_CHALLENGE sends an authentication challenge to the MB device, or
Subscriber Identity Module (SIM) card, to obtain the response from the SIM.

Set requests are not supported.

This is an optional OID. When miniport drivers implement it, they must process query
requests asynchronously, initially returning NDIS_STATUS_INDICATION_REQUIRED to the
original request, and later sending an
NDIS_STATUS_WWAN_AUTHENTICATION_RESPONSE status notification containing an
NDIS_WWAN_AUTHENTICATION_RESPONSE structure to provide the authentication
keys requested based on challenges by the caller when completing query requests.

When processing this OID, miniport drivers can access the SIM card, but should not
access the provider network. This OID must work even in Radio OFF or Airplane Mode.

OID_WWAN_AUTH_CHALLENGE supports both second-generation and third-generation
mobile networks. SIM specifies an authentication mechanism that is based on the GSM
authentication and key agreement primitives, which is a second-generation mobile
network standard. AKA and AKA' uses the third-generation Authentication and Key
Agreement mechanism, specified for Universal Mobile Telecommunications System
(UMTS) in [TS33.102] and for CDMA2000 in [S.S0055-A] depending on the capabilities of
the device.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
returning one or all authentication methods.

Version Supported starting with Windows 8.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

OID_WWAN_BASE_STATIONS_INFO
Article • 02/18/2023

OID_WWAN_BASE_STATIONS_INFO retrieves information about the serving and
neighboring cells known to the modem. For more info about cellular base station
information query, see MB base stations information query support.

For query requests, OID_WWAN_BASE_STATIONS_INFO uses the
NDIS_WWAN_BASE_STATIONS_INFO_REQ structure, which in turn contains a
WWAN_BASE_STATIONS_INFO structure that specifies aspects of the cell information,
such as the maximum number of neighbor cell measurements, to send in response.
Modem miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_BASE_STATIONS_INFO notification containing an
NDIS_WWAN_BASE_STATIONS_INFO structure, which in turn contains a
WWAN_BASE_STATIONS_INFO structure that provides information about both serving
and neighboring base stations.

Set requests are not applicable.

Unsolicited events are not applicable.

Version: Windows 10, version 1709 Header: Ntddndis.h (include Ndis.h)

NDIS_WWAN_BASE_STATIONS_INFO_REQ

NDIS_STATUS_WWAN_BASE_STATIONS_INFO

NDIS_WWAN_BASE_STATIONS_INFO

WWAN_BASE_STATIONS_INFO

MB base stations information query support

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info_req
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_base_stations_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_base_stations_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info_req
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_base_stations_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_base_stations_info

OID_WWAN_CONNECT
Article • 02/18/2023

OID_WWAN_CONNECT activates or deactivates a particular packet context and reads
the activation state of a context.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_CONTEXT_STATE status notification containing an
NDIS_WWAN_CONTEXT_STATE structure that indicates the Packet Data Protocol (PDP)
context state of the MB device regardless of completing set or query requests.

Callers requesting to set the Packet Data Protocol (PDP) context state of the MB device
provide an NDIS_WWAN_SET_CONTEXT_STATE structure to the miniport driver with the
appropriate information.

For more information about using this OID, see WWAN Packet Context Management.

This object activates or deactivates a particular packet context and reads the activation
state of a context. The miniport driver must send appropriate event notifications
whenever the activation state changes.

This object is called only if the miniport driver is in a register state of
WwanRegisterStateHome, WwanRegisterStatePartner, or WwanRegisterStateRoaming.
When packet service is active, the device must also be in an attach state of
WwanPacketServiceStateAttached.

Both set and query operations are supported for this object.

Processing of a set request requires network access but not SIM access.

Processing of a query request does not require access to network or the SIM.

The data structure for this OID is NDIS_WWAN_SET_CONTEXT_STATE. The miniport
driver issues a status indication of NDIS_STATUS_WWAN_CONTEXT_STATE for both set
and query requests.

In this version of the driver model, the miniport driver attempts context activation only
as instructed by the MB Service. (Miniport drivers may activate a context initiated by the
network in later versions.) Miniport drivers must not automatically activate a context
even after losing registration or a signal. If the access string is not provided in the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_context_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_context_state

activation request, a miniport driver should not attempt to provide a default string.
Instead, it must proceed with activating the context with a blank access string.

On the other hand, the miniport driver may deactivate a context as instructed by the MB
service. This may occur when network connectivity has been lost for a period that
exceeds the threshold of temporary loss of signal, or as part of a graceful shutdown or
state cleanup.

Since only one activated context is supported in this version, activating or deactivating a
particular context amounts to setting up or tearing down the layer-2 MB connection.

On set requests, the MB service furnishes both ConnectionId and ActivationCommand
parameters in the WWAN_CONTEXT_STATE data structure. It instructs the miniport driver
to activate or deactivate a packet context identified by ConnectionId, based on the
ActivationCommand parameter value WwanActivationCommandActivate or
WwanActivationCommandDeactivate.

If the service or subscription requires activation, the miniport driver should return
error code WWAN_STATUS_SERVICE_NOT_ACTIVATED. The PDP-activation may not
happen until the service or subscription is activated. All the emergency services
might be available subject to the support from the device and the operator. The
operating system might call the OID_WWAN_SERVICE_ACTIVATION in response to
this error code.

If the miniport driver receives a context activation request while another packet
context is currently activated, it returns error code
WWAN_STATUS_MAX_ACTIVATED_CONTEXTS.

If the miniport driver receives a context deactivation request but the context
identified by ConnectionId is not currently activated, it returns error code
WWAN_STATUS_CONTEXT_NOT_ACTIVATED.

The miniport driver uses the following logic to determine the validity of AccessString,
UserName, and Password settings from a set request:

If ActivationCommand is WwanActivationCommandDeactivate, the miniport driver
should ignore the settings of these three parameters. The rest of the cases only
consider the case when ActivationCommand is WwanActivationCommandActivate.

Context activation persists across user logon and logoff. It is not per logon user.

On query requests, the MB Service uses this object to find out the activation state.

For response to query requests, miniport driver sends the
NDIS_STATUS_WWAN_CONTEXT_STATE notification.

Important Note:

In rare, but specific circumstances, the MB Service on Windows 7 may attempt to auto-
connect before connectivity to the Internet has been determined for pre-existing
connections or during a momentary disruption in Internet connectivity of pre-existing
connections. This could result in simultaneous MB and WLAN/Ethernet connections. For
example, this can occur during system boot when MB and other connections are
attempted simultaneously and the Network List Manager service is still attempting to
determine the Internet connectivity of other connections using active and passive
methods. It could also occur due to temporary outages in network infrastructure like a
corporate proxy server or an ISP network. Thus, the MB Service may attempt to auto-
connect to the internet regardless of whether the "Auto-connect only if no alternate
Internet connection is available" option is selected.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

WWAN Packet Context Management

Requirements

See also

OID_WWAN_CREATE_MAC
Article • 02/18/2023

OID_WWAN_CREATE_MAC requests the miniport driver to create a new NDIS port.
Context activation requests for the additional PDP context will be sent on this new NDIS
port.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later completing the
request with the NDIS_WWAN_MAC_INFO structure that indicates the NDIS port
number and MAC address associated with the port.

Query requests are not supported.

Miniport drivers must process requests to create (activate) new NDIS ports
asynchronously in order to prevent deadlocks.

Version Available in Windows 8.1 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_MAC_INFO

OID_WWAN_DELETE_MAC

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mac_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mac_info

OID_WWAN_DELETE_MAC
Article • 02/18/2023

OID_WWAN_DELETE_MAC requests the miniport driver to delete the NDIS port specified
in the NDIS_WWAN_MAC_INFO parameter. The NDIS port should have been created
earlier using OID_WWAN_CREATE_MAC.

Miniport drivers must process the set request asynchronously, initially returning
NDIS_STATUS_PENDING to the original request, and later completing the request with
NDIS_STATUS_SUCCESS.

Query requests are not supported.

Miniport drivers must process requests to delete (deactivate) NDIS ports asynchronously
in order to prevent deadlocks.

OID_WWAN_DELETE_MAC requests sent to delete the default port will fail with the NDIS
status error code NDIS_STATUS_INVALID_PORT.

Upon receiving an OID_WWAN_DELETE_MAC request, miniport drivers should deactivate
the PDP context associated with the port, if it has not already been deactivated. This is
because a surprise removal event could occur. Deactivating the PDP context at such
time will ensure that the modem and the miniport driver remain in a good state.

When the driver receives a surprise removal, the driver blocks and cancels all further
OIDs. This means that the driver filters out OID_WWAN_DELETE_MAC even though
Windows sends a call with OID_WWAN_DELETE_MAC as part of the FILTER_DETACH call.

Version Available in Windows 8.1 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

OID_WWAN_CREATE_MAC

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nc-ndis-filter_detach

OID_WWAN_DEVICE_CAPS
Article • 02/18/2023

OID_WWAN_DEVICE_CAPS returns the capabilities of the MB device, including the
cellular technology it supports, the classes of packet data it supports, the radio
frequencies it supports, the type of voice service it provides, and whether it uses a
Subscriber Identity Module (SIM card). The supported cellular technology and whether
the device uses a SIM are particularly important because network provider selection and
SIM user interfaces depend on the values of these two capabilities. The manufacturer
and firmware revision are returned as optional fields.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_CAPS status notification containing a
NDIS_WWAN_DEVICE_CAPS structure that indicates the capabilities of the MB device
when completing query requests.

Starting with Windows 8, the MB driver model has been updated to version 2.0.
Windows 8 miniport drivers should set the Header.Revision member of the
NDIS_WWAN_DEVICE_CAPS structure to NDIS_WWAN_DEVICE_CAPS_REVISION_2 for
query requests. Windows 7 miniport drivers should set the Header.Revision member of
the NDIS_WWAN_DEVICE_CAPS structure to NDIS_WWAN_DEVICE_CAPS_REVISION_1
for query requests.

For more information about using this OID, see WWAN Driver Initialization Procedure.

Miniport drivers can access device memory when processing query operations, but
should not access the provider network or the Subscriber Identity Module (SIM card).

Many "world-wide" MB devices today support multiple frequency bands because the
frequency bands for 2.5G/3G vary from country to country. The list of all the radio
frequencies specified in the 3GPP standards (for GSM-based networks) and 3GPP2
standards (for CDMA-based networks) is shown in the following tables. Both standards
adopt a similar band classification scheme.

3GPP (GSM-based) Frequency Band Classes

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps

3GPP band Designated
spectrum

Industry
name

Uplink (MS
to BTS)

Downlink
(BTS to MS)

Regions3GPP band Designated
spectrum

Industry
name

Uplink (MS
to BTS)

Downlink
(BTS to MS)

Regions

Band I UMTS2100 IMT 1920-1980 2110-2170 Europe,
Korea, Japan,
China

Band II UMTS1900 PCS1900 1850-1910 1930-1990 North
America,
LATAM

Band III UMTS1800 DCS1800 1710-1785 1805-1880 Europe, China

Band IV AWS AWS, 1.7/2.1 1710-1755 2110-2155 North
America,
LATAM

Band V UMTS850 GSM850 824-849 869-894 North
America,
LATAM

Band VI UMTS800 UMTS800 830-840 875-885 Japan

Band VII UMTS2600 UMTS2600 2500-2570 2620-2690 Europe

Band VIII UMTS900 EGSM900 880-915 925-960 Europe, China

Band IX UMTS1700 UMTS1700 1750-1785 1845-1880 Japan

Band X 1710-1770 2110-2170

3GPP2 (CDMA-based) Frequency Band Classes

3GPP band Industry name Uplink (MS to BTS) Downlink (BTS to MS) Band 0

800MHz Cellular

824.025-844.995

869.025-889.995

Band I

1900MHz Band

1850-1910

1930-1990

Band II

TACS Band

872.025-914.9875

917.0125-959.9875

Band III

JTACS Band

887.0125-924.9875

832.0125-869.9875

Band IV

Korean PCS Band

1750 - 1780

1840 - 1870

Band V

450 MHz Band

410 - 483.475

420 - 493.475

Band VI

2 GHz Band

1920 - 1979.950

2110 - 2169.950

Band VII

700 MHz Band

776 - 794

746 - 764

Band VIII

1800 MHz Band

1710 - 1784.950

1805 - 1879.95

Band IX

900 MHz Band

880 - 914.950

925 - 959.950

Band X

Secondary 800 MHz Band

806 - 900.975

851 - 939.975

Band XI

400 MHz European PAMR Band

410 - 483.475

420 - 493.475

Band XII

800 MHz PAMR Band

870.125 - 875.9875

915.0125 - 920.9875

Band XIII

2.5GHz IMT2000 Extension Band

2500 - 2570

2620 - 2690

Band XIV

US PCS 1.9GHz Band

1850 - 1915

1930 - 1995

Band XV

AWS Band

1710 - 1755

2110 - 2155

Band XVI

US 2.5GHz Band

2502 - 2568

2624 - 2690

Band XVII

US 2.5 GHz Forward Link Only Band

2624-2690

The unit for radio frequency bands in both tables is megahertz (MHz).

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_DEVICE_CAPS

WWAN Driver Initialization Procedure

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps

OID_WWAN_DEVICE_CAPS_EX
Article • 02/18/2023

OID_WWAN_DEVICE_CAPS_EX is similar to OID_WWAN_DEVICE_CAPS but is a per-
executor OID, unlike OID_WWAN_DEVICE_CAPS which is a per-device OID. This OID
serves to indicate the hardware’s device/executor capability, including the capability on
extended optional features such as LTE attach APN configuration.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_DEVICE_CAPS_EX status notification containing an
NDIS_WWAN_DEVICE_CAPS_EX structure, which in turn contains a
WWAN_DEVICE_CAPS_EX structure, to provide information about the device's
capability.

The following diagram illustrates a query request.

Set requests are not applicable.

It is critical for the driver to report service extension capability as a whole including from
the driver to the actual device. If a driver supports a service but it is not supported by
the underlying hardware, then the service capabilities should be marked as FALSE.

OID_WWAN_DEVICE_CAPS_EX is also used to retrieve each executor’s capability. This
OID is the same in structure as existing OID_WWAN_DEVICE_CAPS but with the addition
of Executor ID. A miniport driver should report the highest OID version it supports.

Just as with OID_WWAN_DEVICE_CAPS, the parameters in this OID are not expected to
change due to SIM cards but rather represent the modem’s RF capability of the selected
executor. A physical hardware modem may have multiple executors and thus may have
multiple interfaces that support OID_WWAN_DEVICE_CAPS_EX.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps_ex

For possible future updates, if the OS’s requested version is newer than the device-
supported version, the device should return the newest version of the OID structure it
supports. If the OS’s requested version is older than the latest one supported by the
device, then the device should return the version matching the OS’s specification. It is a
requirement for IHVs to make sure all revisions of OID_WWAN_DEVICE_CAPS_EX are
supported for backwards compatibility and legacy support.

Unlike other OIDs new to Windows 10 Version 1703 that are only required if the modem
supports multi-SIM/multi-executors, this OID must be implemented for modems that
would like to support any Microsoft-defined service extensions starting in Windows 10
Version 1703.

Versions of Windows prior to Windows 10 Version 1703 may still use the existing
OID_WWAN_DEVICE_CAPS; their behavior with multi-executor capable modems is not a
supported scenario. IHVs must define this behavior.

Starting in Windows 10, version 1903, OID_WWAN_DEVICE_CAPS_EX has been upgraded
to revision 2. A miniport driver must use revision 2 of this OID and the data structures it
contains if the miniport driver supports 5G.

When the host queries capabilities using this OID, the miniport driver must check if the
underlying hardware supports 5G cellular capabilities. If it does, the miniport driver sets
the bitmask in the WwanDataClass field of the WWAN_DEVICE_CAPS_EX structure
according to hardware capabilties.

Additionally, in the WwanOptionalServiceCaps field of the WWAN_DEVICE_CAPS_EX
structure, a new optional service bit is defined that covers support of all new 5G-related
extensions.

For more info about 5G data class support, see MB 5G data class support.

Version Windows 10, version 1703

Header Ntddndis.h (include Ndis.h)

OID_WWAN_DEVICE_CAPS

Windows 10, version 1903

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps_ex

NDIS_STATUS_WWAN_DEVICE_CAPS_EX

NDIS_WWAN_DEVICE_CAPS_EX

WWAN_DEVICE_CAPS_EX

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_caps_ex
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps_ex

OID_WWAN_DEVICE_RESET
Article • 02/18/2023

OID_WWAN_DEVICE_RESET is sent by the mobile broadband host to a modem miniport
adapter to reset the modem device.

Query requests are not applicable.

For Set requests, OID_WWAN_DEVICE_RESET uses the NDIS_WWAN_SET_DEVICE_RESET
structure. Modem miniport drivers must respond to set requests asynchronously, initially
returning NDIS_STATUS_INDICATION_REQUIRED to the original request before later
sending an NDIS_STATUS_WWAN_DEVICE_RESET_STATUS notification containing an
NDIS_WWAN_DEVICE_RESET_STATUS structure that represents the reset status of the
modem device. This response does not contain a payload, but is always a status code
from the modem such as WWAN_STATUS_SUCCESS or WWAN_STATUS_BUSY.

Unsolicited events are not applicable.

Version: Windows 10, version 1709 Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_RESET_STATUS

NDIS_WWAN_DEVICE_RESET_STATUS

NDIS_WWAN_SET_DEVICE_RESET

MB modem reset operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_device_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_reset_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_reset_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_device_reset

OID_WWAN_DEVICE_SERVICE_COMMA
ND
Article • 02/18/2023

OID_WWAN_DEVICE_SERVICE_COMMAND allows miniport drivers to implement vendor
specific commands.

Both query and set requests are supported.

Miniport drivers must process query and set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE status notification containing a
vendor-defined structure (NDIS_WWAN_DEVICE_SERVICE_COMMAND) to provide
responses when they have completed the transaction.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
the specified device service or operation.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE

NDIS_WWAN_DEVICE_SERVICE_COMMAND

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_command
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_command

OID_WWAN_DEVICE_SERVICE_SESSION
Article • 02/18/2023

OID_WWAN_DEVICE_SERVICE_SESSION directs a miniport driver to open or close a
device service session.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION status notification containing a
NDIS_WWAN_SET_DEVICE_SERVICE_SESSION structure that describes the result of the
operation.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
specified device service or operation.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SET_DEVICE_SERVICE_SESSION

NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_set_service_session
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_set_service_session

OID_WWAN_DEVICE_SERVICE_SESSION_
WRITE
Article • 02/18/2023

OID_WWAN_DEVICE_SERVICE_SESSION_WRITE directs the miniport driver to write data
to the MB device for a device service session.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE status
notification containing a NDIS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE
structure that describes the completion status of the operation.

Miniport drivers should return NDIS_STATUS_ADAPTER_NOT_OPEN if the device service
session is not open.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE

NDIS_WWAN_DEVICE_SERVICE_SESSION_WRITE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_write_complete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_service_session_write

OID_WWAN_DEVICE_SERVICES
Article • 02/18/2023

OID_WWAN_DEVICE_SERVICES returns the list of device services supported by the
miniport driver.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICES status notification containing a
NDIS_WWAN_DEVICE_SERVICES structure that indicates the supported device service
GUIDs.

Set requests are not supported.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/_netvista/

OID_WWAN_DEVICE_SLOT_MAPPING_IN
FO
Article • 02/18/2023

OID_WWAN_DEVICE_SLOT_MAPPING_INFO sets or returns the device-slot mappings of
the MB device (i.e. the executor-slot mappings).

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO status notification containing an
NDIS_WWAN_DEVICE_SLOT_MAPPING_INFO structure to provide information on the
executor-to-slot mappings.

The following diagram illustrates a query request.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO status notification containing an
NDIS_WWAN_DEVICE_SLOT_MAPPING_INFO structure, which in turn contains a
WWAN_DEVICE_SLOT_MAPPING_INFO structure to indicate the current mapping status.
This holds true even if the set request failed. The structure for set requests for
OID_WWAN_DEVICE_SLOT_MAPPING_INFO is
NDIS_WWAN_SET_DEVICE_SLOT_MAPPING_INFO.

The following diagram illustrates a set request.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_slot_mapping_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_slot_mapping_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_slot_mapping_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_device_slot_mapping_info

The host expects that on first boot, the modem would have a default mapping between
slots and executors. The host performs a SET operation with
OID_WWAN_DEVICE_SLOT_MAPPING_INFO to define the slot that is bound to each
executor. The host expects the modem to maintain the mapping across reboots and
removals/insertions. This OID is not executor-specific and may be sent to any NDIS
instance on the device. It may also query the current mapping as shown above.

Version Windows 10, version 1703

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPING_INFO

NDIS_WWAN_DEVICE_SLOT_MAPPING_INFO

NDIS_WWAN_SET_DEVICE_SLOT_MAPPING_INFO

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_device_slot_mapping_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_device_slot_mapping_info

OID_WWAN_DRIVER_CAPS
Article • 02/18/2023

OID_WWAN_DRIVER_CAPS returns the version of the MB driver model supported by the
miniport driver.

Set requests are not supported.

Miniport drivers process OID_WWAN_DRIVER_CAPS synchronously and should
immediately return with the response buffer containing an NDIS_WWAN_DRIVER_CAPS
structure that describes the version of the MB driver model implemented by the
miniport driver when completing query requests.

For more information about using this OID, see MB Miniport Driver Initialization.

Miniport drivers should not access the provider network, or the Subscriber Identity
Module (SIM card), when processing query operations.

The current version of the MB driver model version is defined by the
WWAN_MAJOR_VERSION and WWAN_MINOR_VERSION #define tokens. If the miniport
driver returns a version of the MB driver model that the MB Service does not support,
the MB Service will ignore the device.

When the MB Service is initialized or restarted, the miniport driver may already have
been loaded. In this case, the MB Service queries the version of the MB driver model
implement by miniport driver before it proceeds to issue any other OIDs. This occurs at
the beginning of any session.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED in the case of any
initialization error. If a miniport driver returns NDIS_STATUS_NOT_SUPPORTED, the MB
Service will ignore the device and will not proceed with any other OIDs.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_driver_caps

MB Miniport Driver Initialization

NDIS_WWAN_DRIVER_CAPS

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_driver_caps

OID_WWAN_ENUMERATE_DEVICE_SERV
ICE_COMMANDS
Article • 02/18/2023

OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS returns a list of commands
supported for a device service.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS status notification
containing a NDIS_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS structure that
describes the result of the operation.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
specified device service or operation.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS

NDIS_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_enumerate_device_service_commands
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_enumerate_device_service_commands

OID_WWAN_ENUMERATE_DEVICE_SERV
ICES
Article • 02/18/2023

OID_WWAN_ENUMERATE_DEVICE_SERVICES returns the list of device services supported
by the miniport driver.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS status notification
containing a NDIS_WWAN_SUPPORTED_DEVICE_SERVICES structure that provides the
list of supported device service GUIDs.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS

NDIS_WWAN_SUPPORTED_DEVICE_SERVICES

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_supported_device_services
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_supported_device_services

OID_WWAN_HOME_PROVIDER
Article • 02/18/2023

OID_WWAN_HOME_PROVIDER is used to set and retrieve information about the home
provider of the cellular service subscription. For GSM-based devices and CDMA-based
device with U-RIM, this information should be stored on the Subscriber Identity Module
(SIM card). For CDMA-based devices without U-RIM, this information should be stored
in auxiliary device memory.

Windows 8 supports both set and query requests. Windows 7 supports only query
requests.

Miniport drivers must process both set and query requests asynchronously, initially
returning NDIS_STATUS_INDICATION_REQUIRED to the original request and later
sending a NDIS_STATUS_WWAN_HOME_PROVIDER status notification, for a query, or
NDIS_STATUS_WWAN_SET_HOME_PROVIDER_COMPLETE status notification, for set,
containing an NDIS_WWAN_HOME_PROVIDER structure to return information about
the home network provider with the Provider.ProviderState member of the
NDIS_WWAN_HOME_PROVIDER structure set to WWAN_PROVIDER_STATE_HOME.

Set operations are only required to be supported by multi-carrier capable devices. The
MB service will only set the home provider to multi-carrier providers reported by the
miniport via OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS or
OID_WWAN_VISIBLE_PROVIDERS. Set operations have an input buffer of
NDIS_WWAN_SET_HOME_PROVIDER.

A set operation should not require the user to unlock the device regardless if the current
SIM or target SIM is in a locked state.

Current Provider
SIM

Target Provider
SIM

Result of set HOME_PROVIDER

- Locked Target PIN not required for setting home provider

Locked - Source PIN not required for setting home provider

Locked Locked Source and Target PIN not required for setting home
provider

For more information about using this OID, see WWAN Provider Operations.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider

Miniport drivers can access the Subscriber Identity Module (SIM card) when processing
query operations, but should not access the provider network.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_HOME_PROVIDER

NDIS_STATUS_WWAN_HOME_PROVIDER

WWAN Provider Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_home_provider

OID_WWAN_LTE_ATTACH_CONFIG
Article • 02/18/2023

OID_WWAN_LTE_ATTACH_CONFIG enables the operating system to query or set the
default LTE attach context of the inserted SIM's provider (MCC/MNC pair).

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG status notification containing an
NDIS_WWAN_LTE_ATTACH_CONTEXTS structure that describes the LTE attach
configuration.

For Set requests, this OID's payload contains an
NDIS_WWAN_SET_LTE_ATTACH_CONTEXT structure that describes LTE attach context
information for the modem to set.

After each Query or Set request, the miniport driver should return an
NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG notification that describes the LTE attach
configuration.

For more information about using this OID, see MBIM_CID_MS_LTE_ATTACH_CONFIG.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB LTE Attach Operations

NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG

NDIS_WWAN_LTE_ATTACH_CONTEXTS

NDIS_WWAN_SET_LTE_ATTACH_CONTEXT

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_contexts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_lte_attach_context
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_contexts
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_lte_attach_context

OID_WWAN_LTE_ATTACH_STATUS
Article • 02/18/2023

OID_WWAN_LTE_ATTACH_STATUS is used to inform the OS of the last used default LTE
attach context.

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_LTE_ATTACH_STATUS notification containing an
NDIS_WWAN_LTE_ATTACH_STATUS structure that describes the last used default LTE
attach context.

Set requests are not applicable.

For more information about using this OID, see MBIM_CID_MS_LTE_ATTACH_STATUS.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB LTE Attach Operations

NDIS_STATUS_WWAN_LTE_ATTACH_STATUS

NDIS_WWAN_LTE_ATTACH_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_lte_attach_status

OID_WWAN_MODEM_CONFIG_INFO
Article • 02/18/2023

OID_WWAN_MODEM_CONFIG_INFO retrieves information about the modem
configuration information.

MBB drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_MODEM_CONFIG_INFO status notification containing an
NDIS_WWAN_MODEM_CONFIG_INFO structure, which in turn contains a
WWAN_MODEM_CONFIG_INFO structure, to provide information about the modem's
configuration.

Set requests are not applicable.

The MBB driver may not have valid information yet from the modem during early
queries. The non-valid information will be set to zero.

Version the next major update to Windows 10

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_MODEM_CONFIG_INFO

NDIS_WWAN_MODEM_CONFIG_INFO

WWAN_MODEM_CONFIG_INFO

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_modem_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_modem_config_info

OID_WWAN_MODEM_LOGGING_CONFI
G
Article • 02/18/2023

OID_WWAN_MODEM_LOGGING_CONFIG is used to configure logs that are collected by
the modem and how often they will be sent from the modem to the host over Data
Service Stream (DSS).

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_MODEM_LOGGING_CONFIG status notification containing an
NDIS_WWAN_MODEM_LOGGING_CONFIG structure that describes the current modem
logging configuration.

Set payloads contain an NDIS_WWAN_SET_MODEM_LOGGING_CONFIG structure
specifying how to configure modem logging. Miniport drivers must process Set requests
asynchronously, initially returning NDIS_STATUS_INDICATION_REQUIRED to the original
request before later sending an NDIS_STATUS_WWAN_MODEM_LOGGING_CONFIG
status notification containing an NDIS_WWAN_MODEM_LOGGING_CONFIG structure
that describes the modem logging configuration after the Set request.

Logging must be configured before a logging session is started. This is an optional OID
for miniport drivers to support. However, if the miniport driver supports modem logging
via the DSS channel, it must specify that it supports this OID.

For more information about usage of this OID, see MB modem logging with DSS.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB modem logging with DSS

NDIS_STATUS_WWAN_MODEM_LOGGING_CONFIG

NDIS_WWAN_SET_MODEM_LOGGING_CONFIG

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_logging_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_modem_logging_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_logging_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_modem_logging_config

NDIS_WWAN_MODEM_LOGGING_CONFIG

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_modem_logging_config

OID_WWAN_MPDP
Article • 02/18/2023

OID_WWAN_MPDP sets or queries information about Multiple Packet Data Protocol
(MPDP) interfaces for the MB device representing the primary PDP context/EPS bearer.

For query requests, the miniport driver responds to the MB service asynchronously by
initially returning NDIS_STATUS_INDICATION_REQUIRED. After the query request is
complete, the driver sends an NDIS_STATUS_WWAN_MPDP_LIST notification that
contains a list of child interfaces for the primary PDP context, formatted in an
NDIS_WWAN_MPDP_LIST structure.

For set requests, like with query requests the miniport driver responds to the MB service
asynchronously by initially returning NDIS_STATUS_INDICATION_REQUIRED. The set
request contains an NDIS_WWAN_SET_MPDP_STATE structure, which in turn contains
an NDIS_WWAN_MPDP_INFO structure with information for the operation.

If the Operation member of the NDIS_WWAN_MPDP_INFO structure is set to
WwanMPDPOperationCreateChildInterface, the client driver creates a new child
interface for the primary PDP context. The status result of this operation, along with the
GUID of the newly created child interface if the operation was successful, are returned to
the MB service in an NDIS_WWAN_MPDP_STATE structure contained in an
NDIS_STATUS_WWAN_MPDP_STATE notification.

If the Operation member of the NDIS_WWAN_MPDP_INFO structure is set to
WwanMPDPOperationDeleteChildInterface, the miniport driver deletes the
corresponding child interface it previously created and returns information about the
deletion operation to the MB service in an NDIS_WWAN_MPDP_STATE structure
contained in an NDIS_STATUS_WWAN_MPDP_STATE notification.

Version: Windows 10, version 1809

Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_MPDP_LIST

NDIS_WWAN_MPDP_LIST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_mpdp_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_list

NDIS_WWAN_SET_MPDP_STATE

NDIS_WWAN_MPDP_INFO

NDIS_STATUS_WWAN_MPDP_STATE

NDIS_WWAN_MPDP_STATE

EvtMbbDeviceCreateAdapter

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_mpdp_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_mpdp_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/mbbcx/nc-mbbcx-evt_mbb_device_create_adapter

OID_WWAN_NETWORK_BLACKLIST
Article • 02/18/2023

OID_WWAN_NETWORK_BLACKLIST gets or sets information about network blacklists for
a mobile broadband (MBB) device.

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_NETWORK_BLACKLIST status notification containing an
NDIS_WWAN_NETWORK_BLACKLIST structure that describes the current network
blacklists.

For Set requests, this OID's payload contains an
NDIS_WWAN_SET_NETWORK_BLACKLIST structure that specifies a list of MNC/MCC
combinations that should be ignored by the modem.

After each Query or Set request, the miniport driver should return an
NDIS_WWAN_NETWORK_BLACKLIST structure that contains information about the
current network blacklist information.

For more information about usage of this OID, see
MBIM_CID_MS_NETWORK_BLACKLIST.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

） Important

Bias-free communication

Microsoft supports a diverse and inclusive environment. This article contains
references to terminology that the Microsoft style guide for bias-free
communication recognizes as exclusionary. The word or phrase is used in this
article for consistency because it currently appears in the software. When the
software is updated to remove the language, this article will be updated to be in
alignment.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_blacklist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_network_blacklist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_blacklist
https://learn.microsoft.com/en-us/style-guide/bias-free-communication

MB Network Blacklist Operations

NDIS_STATUS_WWAN_NETWORK_BLACKLIST

NDIS_WWAN_NETWORK_BLACKLIST

NDIS_WWAN_SET_NETWORK_BLACKLIST

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_blacklist
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_network_blacklist

OID_WWAN_NETWORK_IDLE_HINT
Article • 02/18/2023

OID_WWAN_NETWORK_IDLE_HINT sends a hint to the network interface regarding
whether data is expected to be active or idle on the interface. The network service uses
heuristics to determine when to send this request to the interface, typically when it
estimates that for a period of time there will be a reduction in network traffic or if the
system is entering an idle state (such as connected standby). The network interface can
use this as an input to its heuristics to implement procedures such as "fast dormancy".

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later completing the
request with the NDIS_WWAN_NETWORK_IDLE_HINT structure that indicates the
network idle hint.

Version Available in Windows 10 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_NETWORK_IDLE_HINT

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_idle_hint
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_network_idle_hint

OID_WWAN_NETWORK_PARAMS
Article • 02/18/2023

The host may send an OID_WWAN_NETWORK_PARAMS query request to retrieve
network configuration data and/or policy information from an MB device.

Set requests are not valid.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_NETWORK_PARAMS_STATE status notification.

For more information about usage of this OID, see MBIM_CID_MS_NETWORK_PARAMS
in the MBIMEx 3.0 specification .

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022. NDIS 6.84 and later.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_NETWORK_PARAMS_STATE

Remarks

Requirements

See also

https://download.microsoft.com/download/8/3/a/83a64106-a1f4-4a03-811f-4dbef2e3bf7a/MBIM%20extensions%20for%205G.docx

OID_WWAN_NITZ
Article • 02/18/2023

OID_WWAN_NITZ is used to query the current network time with Network Identity and
Time Zone (NITZ).

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_NITZ_INFO status notification containing an
NDIS_WWAN_NITZ_INFO structure that describes the current network time and time
zone.

Set requests are not applicable.

For more information about usage of this OID, see MB NITZ support.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB NITZ support

NDIS_STATUS_WWAN_NITZ_INFO

NDIS_WWAN_NITZ_INFO

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_nitz_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_nitz_info

OID_WWAN_PACKET_SERVICE
Article • 02/18/2023

OID_WWAN_PACKET_SERVICE is used to instruct miniport drivers to perform packet
service attach/detach actions on the current registered provider’s network for both
GSM-based and CDMA-based MB devices. In addition to the packet service
attach/detach status, this OID is used to determine data class availability and the
currently used data class information.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PACKET_SERVICE status notification containing an
NDIS_WWAN_PACKET_SERVICE_STATE structure to provide information about the
current packet service state regardless of completing set or query requests.

Callers requesting to set the current packet service state provide an
NDIS_WWAN_SET_PACKET_SERVICE structure to the miniport driver with the
appropriate information.

See WWAN Packet Service Attach Operations for more information about using this OID.

Miniport drivers can access the provider network when processing query or set
operations, but should not access the Subscriber Identity Module (SIM card).

CDMA-based devices should use this as an opportunity to release the network resource
allocation if possible.

Some SIM cards enable the MB device to register only on the packet domain and not
the circuit-switched domain. Once a data call ends, the VAN UI sends an
OID_WWAN_PACKET_SERVICE set request to detach packet service. This causes the MB
device to detach from the packet domain. The MB device unregisters from the network
and goes into a power save mode. Consequently, the device disappears from the VAN
UI as a result of being unregistered, and can only be recovered by rebooting. In this
scenario, miniport drivers should spoof the packet attach/detach operations by
returning positive data without setting the MB device into such a mode.

For technologies that do not support packet-attach, miniport drivers should spoof an
attach state to let the MB Service know that it can proceed with context activation.
Miniport drivers should also spoof the set OID_WWAN_PACKET_SERVICE requests in the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_packet_service_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_packet_service

miniport driver. Miniport drivers should send NDIS_STATUS_WWAN_PACKET_SERVICE
notifications for query operations and for unsolicited events. Miniport drivers should fail
PDP activation if the device packet service state is not set to
WwanPacketServiceStateAttached.

The MB Service shall not proceed with context activation until the packet service state
has reached WwanPacketServiceStateAttached.

A new revision 2 for this OID is supported starting in Windows 10, version 1903. The
extension enables the host to query the frequency range in which the modem is
currently operating in 5G.

The host can query the extended packet service state information at any time. The
response is the same as revision 1, except that revision 2 has two new fields.

If the modem is registered in a 5G domain, it returns the 5G frequency range of the
carrier. If multiple 5G carriers exist, then all valid ranges are returned.

For more info about 5G data class support, see MB 5G data class support.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SET_PACKET_SERVICE

NDIS_STATUS_WWAN_PACKET_SERVICE

WWAN Packet Service Attach Operations

Windows 10, version 1903

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_packet_service

OID_WWAN_PCO
Article • 02/18/2023

OID_WWAN_PCO reports the status and the payload of a Protocol Configuration
Optiont (PCO) value that the modem has received from a mobile operator network. The
PCO value that is returned from the modem corresponds to the PDN that the port
number specifies in the OID request structure.

For query requests, the modem first responds with
NDIS_STATUS_INDICATION_REQUIRED when it receives this OID. An
NDIS_STATUS_WWAN_PCO_STATUS notification will be returned containing an
NDIS_WWAN_PCO_STATUS structure when the query request is completed.
NDIS_WWAN_PCO_STATUS, in turn, contains the PCO status and a WWAN_PCO_VALUE
structure that represents the PCO value.

Set requests are not applicable.

For modems that choose to use the Microsoft inbox miniport class driver, to receive
query requests from the host, the modem must advertise that it supports the new
MBIM_CID_PCO CID (index = 9) in the MBB_UUID_BASIC_CONNECT_EXT_CONSTANT
service when responding to an MBIM_CID_DEVICE_SERVICES query. For more info
about MBIM_CID_PCO, see MB Protocol Configuration Options (PCO) operations.

For modems that choose not use Microsoft inbox miniport class driver, to receive query
requests from WWANSVC, the modem’s miniport driver must advertise that it supports
the WWAN_OPTIONAL_SERVICE_CAPS_PCO option when responding to OID
OID_WWAN_DEVICE_CAPS_EX query requests.

Version: Windows 10, version 1709 Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_PCO_STATUS

NDIS_WWAN_PCO_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pco_status

WWAN_PCO_VALUE

OID OID_WWAN_DEVICE_CAPS_EX

MB Protocol Configuration Options (PCO) operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_pco_value

OID_WWAN_PIN
Article • 02/18/2023

OID_WWAN_PIN sets or returns information related to Personal Identification Numbers
(PINs).

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PIN_INFO status notification when they have completed the set
or query request.

Miniport drivers should send NDIS_STATUS_WWAN_PIN_INFO status notifications
containing an NDIS_WWAN_PIN_INFO structure to return PIN-type and PIN-entry state
information, primarily to indicate whether a PIN is required to unlock the MB device or
Subscriber Identity Module (SIM card) when completing query requests.

Callers requesting to set information related to PINs provide an NDIS_WWAN_SET_PIN
structure to the miniport driver to send a PIN to the MB device, enable or disable PIN
settings, or to change a PIN on the SIM.

See WWAN Pin Operations for more information about using this OID.

Windows 7 miniport drivers should use OID_WWAN_PIN. Windows 8 miniport drivers
should use OID_WWAN_PIN_EX.

Miniport drivers can access the Subscriber Identity Module (SIM card) when processing
query operations, but should not access the provider network.

During the miniport driver initialization process, the MB Service does not proceed to
registration until PIN1 is successfully unlocked, if enabled.

Miniport drivers provide a PIN value, entered by the end user, in the PinAction.Pin
member of the NDIS_WWAN_SET_PIN structure when processing set requests. Only
when the PIN value matches the value stored in the SIM card should the request be
processed by the miniport driver. Otherwise, miniport drivers should fail the set request
with status code WWAN_STATUS_FAILURE.

CDMA-based devices must report the power-on device lock as PIN1.

For all supported PIN types, miniport drivers must support the WwanPinOperationEnter
operation. Additionally, if PIN1 is supported, miniport drivers must support the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin

WwanPinOperationEnable, WwanPinOperationDisable, and WwanPinOperationChange
operations.

If a PIN disable operation for a PIN type is tried when that PIN type is locked, miniport
drivers can either fail the request with WWAN_STATUS_PIN_REQUIRED or they can
successfully complete the request. If the miniport driver completes the request
successfully, the disable operation should also unlock the PIN.

If reporting multiple PINs are enabled, and only one PIN can be reported at a time, then
miniport drivers are expected to report PIN1 first. For example, if reporting of
SubsidyLock and SIM PIN1 are enabled, then the SubsidyLock PIN should be reported
(in a subsequent query request) only after PIN1 has been successfully verified.

The MB API supports other PINs in addition to PIN1. However, a 3rd-party connection
manager/GUI would need to be installed because the Windows Connection
Manager/GUI supports only PIN1.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_PIN_INFO

NDIS_WWAN_SET_PIN

NDIS_STATUS_WWAN_PIN_INFO

WWAN Pin Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin

OID_WWAN_PIN_EX
Article • 02/18/2023

OID_WWAN_PIN_EX sets or returns expanded information related to Personal
Identification Numbers (PINs).

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PIN_INFO status notification when they have completed the set
or query request.

Miniport drivers should send NDIS_STATUS_WWAN_PIN_INFO status notifications
containing an NDIS_WWAN_PIN_INFO structure to return PIN-type and PIN-entry state
information, primarily to indicate whether a PIN is required to unlock the MB device or
Subscriber Identity Module (SIM card) when completing query requests.

Callers requesting to set information related to PINs provide an
NDIS_WWAN_SET_PIN_EX structure to the miniport driver to send a PIN to the MB
device, enable or disable PIN settings, or to change a PIN on the SIM.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin_ex

OID_WWAN_PIN_EX2
Article • 02/18/2023

OID_WWAN_PIN_EX2 sets or returns expanded information related to Personal
Identification Numbers (PINs). OID_WWAN_PIN_EX2 is similar to OID_WWAN_PIN_EX,
but extends it to support multi-app UICC cards.

Query payloads contain an NDIS_WWAN_PIN_APP structure specifying the target
application ID whose PIN is being queried. Miniport drivers must process Query
requests asynchronously, initially returning NDIS_STATUS_INDICATION_REQUIRED to the
original request before later sending an NDIS_STATUS_WWAN_PIN_INFO status
notification containing an NDIS_WWAN_PIN_INFO structure that describes the PIN for
the application.

Set payloads contain an NDIS_WWAN_SET_PIN_EX2 structure specifying the PIN action
to take for the application. Miniport drivers must process Set requests asynchronously,
initially returning NDIS_STATUS_INDICATION_REQUIRED to the original request before
later sending an NDIS_STATUS_WWAN_PIN_INFO status notification containing an
NDIS_WWAN_PIN_INFO structure that describes the PIN state for the application.

Only single verification-capable UICCs are supported. Multi-verification-capable UICCs
that support more than one application PIN are not supported. One application PIN
(PIN1) is assigned to all ADFs/DFs and files on the UICC. However, each application can
specify a local PIN (PIN2) as a level 2 user verification requirement, resulting in the need
for additional validation for every access command. This scenario is what
OID_WWAN_PIN_EX2 supports.

Just like OID_WWAN_PIN_EX, with OID_WWAN_PIN_EX2 the device only reports one PIN
at a time. If multiple PINs are enabled and reporting multiple PINs is enabled, then
miniport drivers must report PIN1 first. For example, if subsidy lock reporting is enabled
and the SIM's PIN1 is enabled, then the subsidy lock PIN should be reported in a
subsequent query request only after PIN1 is specified by setting the PinSize to zero (0).
In this case, a Set request is similar to a Query and returns the state of the PIN
referenced. This is fully aligned to the behavior of the VERIFY command as specified in
Section 11.1.9 of the ETSI TS 102 221 technical specification .

For more information about usage of this OID, see MB UICC application and file system
access.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_app
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin_ex2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info
https://go.microsoft.com/fwlink/p/?linkid=864594

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

NDIS_STATUS_WWAN_PIN_INFO

NDIS_WWAN_PIN_APP

NDIS_WWAN_SET_PIN_EX2

NDIS_WWAN_PIN_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_app
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_pin_ex2
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_info

OID_WWAN_PIN_LIST
Article • 02/18/2023

OID_WWAN_PIN_LIST returns a list of all the different types of Personal Identification
Numbers (PINs) that are supported by the MB device and additional details for each PIN
type, such as the length of the PIN (minimum and maximum lengths), PIN format, PIN-
entry mode (enabled/disabled/not-available). This OID also specifies the current mode
of each PIN supported by the device.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PIN_LIST status notification containing an
NDIS_WWAN_PIN_LIST structure to return a list of PINs with corresponding descriptions
when completing query requests.

For more information about using this OID, see WWAN Pin Operations.

Miniport drivers can access the Subscriber Identity Module (SIM card) when processing
query operations, but should not access the provider network.

Miniport drivers must report all the PINs supported by their device. If the device does
not support listing PINs, the miniport driver must report this list from a static (hard-
coded) list maintained in the miniport driver itself for all the devices it supports.

Any PIN that provides device power-on verification or identification functionality should
be reported as PIN1 and must be compliant to PIN1 guidelines.

Miniport drivers must return this information when the device ready-state changes to
WwanReadyStateInitialized or when the device ready-state is
WwanReadyStateDeviceLocked (PIN locked). Miniport drivers should also return this
information in other device ready-states, wherever possible.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_list

NDIS_WWAN_PIN_LIST

NDIS_STATUS_WWAN_PIN_LIST

WWAN Pin Operations

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_pin_list

OID_WWAN_PREFERRED_MULTICARRIE
R_PROVIDERS
Article • 02/18/2023

OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS is used to set or query the list of
preferred multi-carrier network providers. Multi-carrier providers are ones that can be
set as home providers.

Both set and query requests are supported. Miniport drivers must process set and query
requests asynchronously, initially returning NDIS_STATUS_INDICATION_REQUIRED to the
original request, and later sending a
NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS status notification
containing an NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS structure.

Miniport drivers should set the PreferredListHeader.ElementType member to
WwanStructProvider2 and the PreferredListHeader.ElementCount member to the
number of providers in the list when responding to
OID_WWAN_PREFERRED_PROVIDERS query requests. The multi-carrier providers
returned in a query must be able to be set as the home provider at the time the
preferred multi-carrier list is returned to the service.

Miniport drivers should set the PreferredListHeader.ElementType member to
WwanStructProvider2 and the PreferredListHeader.ElementCount member to 0 when
responding to OID_WWAN_PREFERRED_PROVIDERS set requests.

On error miniports should set the uStatus member of
NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS structure with the failure status
and PreferredListHeader.ElementCount to 0 and PreferredLIstHeader.ElementType to
WwanStructProvider2.

The Rssi and ErrorRate members of WWAN_PROVIDER2 structure should be set if
available.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers

NDIS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS

MB Provider Operations

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_multicarrier_providers

OID_WWAN_PREFERRED_PROVIDERS
Article • 05/20/2024

OID_WWAN_PREFERRED_PROVIDERS returns information about the list of preferred
providers for GSM-based devices. Miniport drivers of CDMA-based devices do not need
to support this OID.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PREFERRED_PROVIDERS status notification containing an
NDIS_WWAN_PREFERRED_PROVIDERS structure to provide information about the
Preferred Provider List (PPL) regardless of completing set or query requests.

For more information about using this OID, see WWAN Provider Operations.

Miniport drivers can access the Subscriber Identity Module (SIM card) when processing
query requests, but should not access the provider network.

Miniport drivers can access the Subscriber Identity Module (SIM card) or the provider
network, when processing set requests.

When processing OID_WWAN_PREFERRED_PROVIDERS, miniport drivers may set only
the WWAN_PROVIDER_STATE_PREFERRED or WWAN_PROVIDER_STATE_FORBIDDEN
flags to tag the list entries. Be aware that forbidden providers might not appear in the
list for GSM-based devices.

Miniport drivers should set the PreferredListHeader.ElementType member to
WwanStructProvider. The miniport driver should set the
PreferredListHeader.ElementCount member to 0 when responding to
OID_WWAN_PREFERRED_PROVIDERS set requests.

Whether the PPL on the device can be overwritten or not when processing set requests
depends on the device capability, the cellular technology, and/or the network provider's
policy.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
returning or setting the PPL.

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_providers

Feedback

Was this page helpful?

Provide product feedback | Get help at Microsoft Q&A

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_PREFERRED_PROVIDERS

NDIS_STATUS_WWAN_PREFERRED_PROVIDERS

WWAN Provider Operations

ﾉ Expand table

See also

 Yes No

https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://support.microsoft.com/help/4021566/windows-10-send-feedback-to-microsoft-with-feedback-hub-app
https://learn.microsoft.com/en-us/answers/tags/384/windows-hardware-performance
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_preferred_providers

OID_WWAN_PRESHUTDOWN
Article • 02/18/2023

OID_WWAN_PRESHUTDOWN is sent to notify the modem that the system is entering
the shutdown phase and the modem should finish its operations so it can be shut down
properly. It is only sent down with the port number corresponding to the physical MBB
adapters. Virtual adapters that support multiple PDP contexts should not receive this
OID.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_PRESHUTDOWN_STATE status notification when the MBB driver
has finished all necessary modem operations prior to shutting down. The set request has
a NDIS_WWAN_SET_PRESHUTDOWN_STATE structure.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
this operation.

Version Available starting with Windows 10, version
1511.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_PRESHUTDOWN_STATE

NDIS_WWAN_SET_PRESHUTDOWN_STATE

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_preshutdown_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_preshutdown_state

OID_WWAN_PROVISIONED_CONTEXTS
Article • 02/18/2023

OID_WWAN_PROVISIONED_CONTEXTS reads or updates the provisioned context entries
stored on the MB device or the Subscriber Identity Module (SIM).

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS status notification containing an
NDIS_WWAN_PROVISIONED_CONTEXTS structure to provide information about
provisioned context entries stored on the MB device or the Subscriber Identity Module
(SIM) regardless of completing set or query requests.

For more information about using this OID, see WWAN Packet Context Management.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if the MB device they
support does not support retrieval of provisioned contexts.

GSM-based devices can optionally support query and set operations. CDMA-based
devices can optionally support query operations reporting Simple IP
(WWAN_CTRL_CAPS_CDMA_SIMPLE_IP).

The provisioned context entries stored on the MB device or the SIM are local to the
device. Miniport drivers should not connect to the network to read in these fields.

The input structure for a set request is NDIS_WWAN_SET_PROVISIONED_CONTEXT and
status indication of this object is NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS.

Provisioned contexts are not same as that of the GPRS context definitions in 3GPP that
caches the list of APNs. Provisioned contexts are the connectivity parameters
(AccessString, UserName, and Password) that are either pre-provisioned by the
Operators or OTA provisioned by the device and can be stored either in the device
memory or SIM. The connectivity parameters returned by the Provisioned contexts will
be used by the MB Service for PDP activation.

Both query and set form of this object is used.

Processing of this request does not require network access, but requires access to the
SIM or auxiliary memory on the MB device.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_provisioned_contexts

The miniport driver sends NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS notification
to the operating system. The ContextListHeader.ElementType member shall be set to
WwanStructContext. Miniport driver should set the ContextListHeader.ElementCount
member to 0 when notification is sent in response to a set request.

The MB Service should retrieve the list of provisioned contexts from the device before
conducting any individual context activation or deactivation. The list of provisioned
contexts must be restricted only to the home provider network even though the device
may have the capability to store multiple network provider contexts. The context list
must always be the home provider network specific even in case of roaming.

SET OID_WWAN_PROVISIONED_CONTEXT operation should associate the context with
the network provider that is specified in the set request in ProviderId member of the
WWAN_SET_CONTEXT structure. Provisioned context stored through set
OID_WWAN_PROVISIONED_CONTEXT requests must persist across system restarts and
device power recycles.

All the empty contexts need to be reported on a query along with the provisioned
contexts applicable to the home provider network.

CDMA devices that are configured for SimpleIP, reporting in
WWAN_CTRL_CAPS_CDMA_SIMPLE_IP in WwanControlCaps can optionally return at
least one provisioned context filled with the correct AccessString, UserName, and
Password members for the query request from MB Service.

Provisioned context list should be pre-provisioned in the device, updated by set
OID_WWAN_PROVISIONED_CONTEXT operations, or updated by device/operator using
SMS or OTA. It must not be updated dynamically based on the context information
provided in the OID_WWAN_CONNECT operation by MB Service.

For more information about how to access AccessString, UserName, and Password from
the MB device for each provisioned context in the list, see WWAN_CONTEXT.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_context

WWAN Packet Context Management

OID_WWAN_RADIO_STATE
Article • 02/18/2023

OID_WWAN_RADIO_STATE sets or returns information about a MB device's radio power
state.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_RADIO_STATE status notification containing an
NDIS_WWAN_RADIO_STATE structure that indicates the MB device's current radio
power state regardless of completing set or query requests.

Callers requesting to set the MB device's radio power state provide an
NDIS_WWAN_SET_RADIO_STATE structure to the miniport driver with the appropriate
information.

For more information about using this OID, see MB Radio State.

Miniport drivers should not access the provider network, or the Subscriber Identity
Module (SIM card), when processing query or set operations.

Miniport drivers must retain software radio power states across system restart or device
removal and reinsertion. Miniport drivers should store the device's software radio
information and use it for setting the device software radio power state immediately on
each restart or reinsertion of device. The effective radio power state of the device is
decided based on combination of software and hardware radio power state as per the
table in WWAN_RADIO_STATE.

If the value is WwanRadioOn, miniport drivers must turn on the radio power and set the
RadioState.SwRadioState member of the WWAN_RADIO_STATE structure to
WwanRadioOn. If the RadioState.HwRadioState member was WwanRadioOff, miniport
drivers should cache this power state information and ensure to physically turn on the
radio power state when RadioState.HwRadioState changes to WwanRadioOn.

If the value is WwanRadioOff, miniport drivers must turn off the radio power state and
set the RadioState.SwRadioState member to WwanRadioOff.

Refer to the following table for the expected radio state programming by miniport
drivers.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_radio_state

Valid Combinations for PIN Mode and PIN State

HwRadioState value SwRadioState value Overall radio power state

WwanRadioOff WwanRadioOff WwanRadioOff

WwanRadioOff WwanRadioOn WwanRadioOff

WwanRadioOn WwanRadioOff WwanRadioOff

WwanRadioOn WwanRadioOn WwanRadioOn

For devices that do not provide a hardware radio power switch, the
RadioState.HwRadioState member of the NDIS_WWAN_RADIO_STATE structure must
always be set to WwanRadioOn.

Starting in Windows 10, version 1703, OID_WWAN_RADIO_STATE has additional
specifications for how a multi-executor supported modem should handle radio state
configuration from the OS.

With a multi-executor supported modem, there are power benefits to configuring radio
power state per executor. When an executor’s radio is turned off, the OS expects the
modem to de-register from the network and does not attempt any scanning or location
updates from it. The modem should support a radio state for each executor that it
advertises to the OS so it can determine the hardware power state in which it should be.

As an example, if the modem has two executors and one of the executors' radio is off
while the other is on, then the modem may keep the RF front end powered on to
maintain registration on the executor whose radio is on but does not need to do
scanning/pinging/location updates or other cellular services for the executor that is
turned off. If both radios are turned off, the modem can turn off its RF front end and
bring the overall hardware to a lower power state. The implementation specifics are left
to each IHV.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Requirements

See also

NDIS_WWAN_RADIO_STATE

NDIS_WWAN_SET_RADIO_STATE

NDIS_STATUS_WWAN_RADIO_STATE

MB Radio State

WWAN_RADIO_STATE

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_radio_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_radio_state

OID_WWAN_READY_INFO
Article • 02/18/2023

OID_WWAN_READY_INFO returns the device ready-state, which includes its Subscriber
Identity Module (SIM card). This typically occurs at the beginning of any session.

Set requests are not supported.

The host can query the ready-state from either the active SIM slot or inactive SIM slot in
the device if the device supports dual SIM slots. This OID's payload contains an
NDIS_WWAN_QUERY_READY_INFO structure, which in turn contains a
WWAN_QUERY_READY_INFO structure that specifies the UICC slot ID.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_READY_INFO status notification containing an
NDIS_WWAN_READY_INFO structure that indicates the MB device's ready-state when
completing query requests.

For more information about using this OID, see MB device Readiness.

Miniport drivers can access device memory or the SIM card when processing query
operations, but should not access the provider network.

Miniport drivers should wait until the PIN is cleared (if required) and then read the
subscriber's identity and telephone number(s) (TNs), and then set the
ReadyInfo.ReadyState member of the NDIS_WWAN_READY_INFO structure to
WwanReadyStateInitialized.

Miniport drivers must never fail OID_WWAN_READY_INFO and must always return the
correct device ready-state.

Miniport drivers must always notify the MB Service whenever the device ready-state
changes.

Miniport drivers should follow these steps to provide a good user experience:

If PIN1 is locked, miniport drivers must first send a ready-state event notification
with ReadyInfo.ReadyState set to WwanReadyStateDeviceLocked. The MB Service
then sends the miniport driver an OID set request of OID_WWAN_PIN. After the
device unlocks then the miniport driver must send another ready-state event

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ready_info

notification with ReadyInfo.ReadyState set to WwanReadyStateInitialized. Until
PIN1 is successfully unlocked, miniport drivers must not change the device ready-
state to WwanReadyStateInitialized.

Miniport drivers must first send an event notification with ReadyInfo.ReadyState
set to WwanReadyStateSimNotInserted when the MB Service loads the miniport
driver if no SIM card is present, as may be the case with devices that allow SIM
cards to be inserted or removed. If the device has the capability to detect a hot
insertion of a SIM card, the miniport driver must send another event notification
with ReadyInfo.ReadyState set to WwanReadyStateInitialized when the user inserts
a SIM.

Devices that have the capability to detect service activation state must set
ReadyInfo.ReadyState to WwanReadyStateNotActivated. Furthermore, if the
miniport driver supports service activation, the miniport driver will receive an OID
set request of OID_WWAN_SERVICE_ACTIVATION. On successful completion of
service activation, miniport drivers must send another event notification with
ReadyInfo.ReadyState set to WwanReadyStateInitialized.

Miniport drivers that require a specific firmware revision must ensure that the
correct firmware revision is available. If the firmware revision is not available, the
miniport driver should complete the event notification transaction by setting
ReadyInfo.ReadyState to WwanReadyStateFailure.

Version: Available in Windows 7 and later versions of Windows.

Header: Ntddndis.h (include Ndis.h)

NDIS_WWAN_READY_INFO

NDIS_STATUS_WWAN_READY_INFO

NDIS_WWAN_QUERY_READY_INFO

WWAN_QUERY_READY_INFO

MB device Readiness

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_ready_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_ready_info

OID_WWAN_REGISTER_PARAMS
Article • 02/18/2023

OID_WWAN_REGISTER_PARAMS sets or returns the parameters that an MB device uses
during 5G registration requests.

Before turning on the device radio, the host typically sends an
OID_WWAN_REGISTER_PARAMS set request to configure the device with the desired
registration parameters. This OID's payload contains an
NDIS_WWAN_SET_REGISTER_PARAMS structure, which in turn contains a
WWAN_REGISTRATION_PARAMS_INFO structure that specifies the registration
parameters such as a default PDU session hint. If the device accepts these parameters, it
will use them during 5G registration requests.

The host may send an OID_WWAN_REGISTER_PARAMS set request at any time. When
the device receives this request, it must compare the new parameters to any parameters
it previously used for 5G registration. If there are differences, the device should use the
newly received parameters for the next 5G registration. The host can also use the
WWAN_REGISTRATION_PARAMS_INFO structure's ReRegisterIfNeeded parameter to
force immediate 5G re-registration.

The host may use this OID to query the registration parameters that an MB device is
currently using for 5G registration.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_REGISTER_PARAMS_STATE status notification containing an
NDIS_WWAN_REGISTER_PARAMS_INFO structure, which contains a
WWAN_REGISTRATION_PARAMS_INFO structure.

For a failured set or query response, the information shall be null and the
InformationBufferLength shall be zero.

In a successful set response, the WWAN_REGISTRATION_PARAMS_INFO structure shall
contain the parameters set by the host and accepted by the device.

In a successful query response:

If the parameters have been set by the host and accepted by the device since the
device was rebooted or a different SIM was inserted, the structure shall contain the

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_set_register_params
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_register_params_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info

parameters set by the host and accepted by the device.

If the parameters have not been set by the host and accepted by the device since
the device was rebooted or a different SIM was inserted, the structure shall contain
the parameters that the device will most likely use for 5G registration.

For more information about usage of this OID, see
MBIM_CID_MS_REGISTRATION_PARAMS in the MBIMEx 3.0 specification .

Requirement Value

Minimum supported client Windows 11

Minimum supported server Windows Server 2022. NDIS 6.84 and later.

Header Ntddndis.h (include Ndis.h)

WWAN_REGISTRATION_PARAMS_INFO

NDIS_STATUS_WWAN_REGISTER_PARAMS_STATE

Requirements

See also

https://download.microsoft.com/download/8/3/a/83a64106-a1f4-4a03-811f-4dbef2e3bf7a/MBIM%20extensions%20for%205G.docx
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_registration_params_info

OID_WWAN_REGISTER_STATE
Article • 02/18/2023

OID_WWAN_REGISTER_STATE selects a network provider to register with.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_REGISTER_STATE status notification containing an
NDIS_WWAN_REGISTRATION_STATE structure to provide information about the
registered network provider regardless of completing set or query requests.

Callers requesting to set the network provider to register with provide an
NDIS_WWAN_SET_REGISTER_STATE structure to the miniport driver with the
appropriate information.

For more information about using this OID, see WWAN Registration Operations.

Miniport drivers can access the provider network when processing query or set
operations, but should not access the Subscriber Identity Module (SIM card).

The MB driver model supports two registration methods--automatic and manual. For
CDMA-based networks, the MB driver model supports only automatic registration.

Devices supporting manual registration must set the WwanControlCaps member in
WWAN_DEVICE_CAPS structure to WWAN_CTRL_CAPS_REG_MANUAL. Be aware that
GSM-based devices must support manual registration.

If the registration state is automatic, miniport drivers must instruct their device to select
a network provider based on the selection algorithm specific to the cellular technology
and proceed with registration.

The semantics of RegisterAction values are defined as follows:

The WwanRegisterActionAutomatic flag is used by the MB Service to instruct the
miniport driver to set the device to automatic register mode and let the device
select the best provider network. The miniport driver must ignore ProviderId
parameter. This setting is persistent across radio states (ON/OFF), and device
power cycles, until it is explicitly change by the MB Service.

The WwanRegisterActionManual flag is used by the MB Service to instruct the
miniport driver to register with the provider network identified by the ProviderId

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_registration_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_register_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_device_caps

parameter. The ProviderId value shall come from the ProviderId member of
WWAN_PROVIDER data structure of one of the visible providers. This setting is
persistent across radio states (ON/OFF), and device power cycles, until it is
explicitly changed by the MB Service.

Changing between the different RegisterAction values are allowed even if the
device is currently registered to a provider. If the device need to deregister before
switching between the Automatic and Manual registration modes, the miniport
driver must ensure that the device is set to deregistration before setting to the new
registration mode.

The Manual and Automatic registration mode only affects the network selection
mode. The MB device should try to register to selected network whenever the
radio is turned on.

A new revision 3 for this OID is supported starting in Windows 10, version 1903. This
extension enables the host to query the preferred radio access technologies (RATs) from
the miniport driver.

To control the preferred RAT, the host sets a bitmask representing WWAN_DATA_CLASS
values in the WwanDataClass member of the WWAN_SET_REGISTER_STATE structure.
This member represents the data access technologies that are preferred for a
connection. If this field is set to WWAN_DATA_CLASS_NONE, then the modem should
take no action for this parameter.

The host can also query the currently preferred data classes from the miniport driver.
The miniport driver uses the PreferredDataClasses field of the
WWAN_REGISTRATION_STATE structure to report the preferred data access
technologies that are currently set in the modem.

For more info about 5G data class support, see MB 5G data class support.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Windows 10, version 1903

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_set_register_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_registration_state

NDIS_WWAN_SET_REGISTER_STATE

NDIS_STATUS_WWAN_REGISTER_STATE

WWAN Registration Operations

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_register_state

OID_WWAN_SAR_CONFIG
Article • 02/18/2023

OID_WWAN_SAR_CONFIG gets or sets information about a mobile broadband (MB)
device's Specific Absorption Rate (SAR) back off mode and level.

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_SAR_CONFIG status notification containing an
NDIS_WWAN_SAR_CONFIG_INFO structure that describes the current SAR
configuration.

For Set requests, this OID's payload contains an NDIS_WWAN_SET_SAR_CONFIG
structure that specifies the new SAR configuration for the modem.

After each Query or Set request, the miniport driver should return an
NDIS_WWAN_SAR_CONFIG_INFO structure that contains information for all antennas
on the device associated with Mobile Broadband.

For more information about usage of this OID, see MBIM_CID_MS_SAR_CONFIG.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB SAR Platform Support

NDIS_STATUS_WWAN_SAR_CONFIG

NDIS_WWAN_SAR_CONFIG_INFO

NDIS_WWAN_SET_SAR_CONFIG

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sar_config
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_config_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sar_config

OID_WWAN_SAR_TRANSMISSION_STAT
US
Article • 02/18/2023

OID_WWAN_SAR_TRANSMISSION_STATUS enables or disables notifications from a
mobile broadband (MB) modem on Specific Absorption Rate (SAR) transmission state.

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_SAR_TRANSMISSION_STATUS status notification containing an
NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO structure that describes whether
notifications on SAR transmit state are enabled in the modem.

For Set requests, this OID's payload contains an
NDIS_WWAN_SET_SAR_TRANSMISSION_STATUS structure that specifies if SAR
transmission status notifications should be enabled or disabled.

After each Query or Set request, the miniport driver should return an
NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO structure that describes whether
SAR notifications on transmit state are enabled in the modem.

For more information about usage of this OID, see
MBIM_CID_MS_TRANSMISSION_STATUS.

Version: Windows 10, version 1703 Header: Ntddndis.h (include Ndis.h)

MB SAR Platform Support

NDIS_STATUS_WWAN_SAR_TRANSMISSION_STATUS

NDIS_WWAN_SAR_TRANSMISSION_STATUS_INFO

NDIS_WWAN_SET_SAR_TRANSMISSION_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_transmission_status_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sar_transmission_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_transmission_status_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sar_transmission_status_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sar_transmission_status

OID_WWAN_SERVICE_ACTIVATION
Article • 02/18/2023

OID_WWAN_SERVICE_ACTIVATION instructs miniport drivers to initiate service activation
in order to gain access to the provider's network.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_SERVICE_ACTIVATION status notification containing an
NDIS_WWAN_SERVICE_ACTIVATION structure to initiate service activation in order to
gain access to the provider's network when they have completed the transaction.

For more information about using this OID, see MB Service Detection and Activation.

Miniport drivers can access the Subscriber Identity Module (SIM card) or the provider
network when processing query or set requests.

The MB Service uses OID_WWAN_SERVICE_ACTIVATION in the case where the service
activation process requires miniport driver and user interactions.

This is not needed for miniport driver initiated or out-of-band manual service activations
such as calling into the service provider's helpdesk. After the device is activated as in the
above scenarios, if the current miniport driver ReadyState is
WwanReadyStateNotActivated, the miniport driver shall proceed with MB initialization
and notify the MB Service of ready-state change using
NDIS_STATUS_WWAN_READY_INFO INDICATION .

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
miniport driver-based service activation.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_service_activation

OID_WWAN_READY_INFO

NDIS_WWAN_SERVICE_ACTIVATION

NDIS_STATUS_WWAN_SERVICE_ACTIVATION

MB Service Detection and Activation

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_service_activation

OID_WWAN_SIGNAL_STATE
Article • 02/18/2023

OID_WWAN_SIGNAL_STATE returns or sets the current signal state.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_SIGNAL_STATE status notification containing an
NDIS_WWAN_SIGNAL_STATE structure to provide information about the current signal
state indication shown to the end-user regardless of completing set or query requests.

Callers requesting to set the current signal state indication to the end user provide an
NDIS_WWAN_SET_SIGNAL_INDICATION structure to the miniport driver with the
appropriate information.

For more information about using this OID, see WWAN Signal Strength Operations.

Miniport drivers should not access the provider network, or the Subscriber Identity
Module (SIM card), when processing query or set operations.

Generally, signal state should be indicated rather than polled. However, this OID is made
available in case the current signal state needs to be determined by the MB Service.

For response to query requests, miniport drivers should send an
NDIS_STATUS_WWAN_SIGNAL_STATE notification.

On a set request from the MB Service, miniport drivers should:

Return the current values for Rssi and ErrorRate in the
NDIS_WWAN_SIGNAL_STATE structure in addition to reporting the absolute values
for RssiInterval and RssiThreshold that has been set in the miniport driver.

Internally cache the RssiInterval and/or RssiThreshold values even if the device is
not currently registered with any operator and that any restriction imposed by
device in setting parameters can only be possible post-registration state. The
miniport driver should try to apply these settings in the next immediate available
situation.

Complete the request successfully, if the hardware and/or software radio switch
state is currently OFF. Miniport driver cache the request data and start reporting
the signal strength after the switch is turned ON.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_signal_state
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_signal_indication

Can fail this request with the appropriate uStatus error code set.

Miniport drivers can do the following when processing query requests from the MB
Service:

Return the current values for Rssi and ErrorRate in the
NDIS_WWAN_SIGNAL_STATE structure in addition to reporting the absolute values
for RssiInterval and RssiThreshold that has been set in the miniport driver.

Fail this request with the appropriate uStatus error code set.

Return Values:

NDIS_STATUS_NOT_SUPPORTED

Miniport drivers can return this for specific devices that are aware of device capabilities
not supporting the signal strength can fail the request with this error code.

Recommended Implementation

1. Devices must support signal strength indications.

2. Drivers must report signal strength indications of at least 50% of the RssiInterval
setting over a time period of five minutes.

3. Devices must avoid reporting the signal strength in the following states:

a. Device not registered or deregistered and is applicable only for GSM devices.

b. Effective state of radio is OFF.

c. In the above states, a query to the signal strength must be returned with the
following data by the miniport driver:

Rssi = WWAN_RSSI_UNKNOWN

ErrorRate = WWAN_ERROR_RATE_UNKNOWN;

RssiInterval = < WWAN_RSSI_DISABLE, WWAN_RSSI_DEFAULT or last set value>

RssiThreshold = < WWAN_RSSI_DISABLE, WWAN_RSSI_DEFAULT or the last set
value>

Starting in Windows 10, version 1903, OID_WWAN_SIGNAL_STATE has been upgraded to
revision 3. This revision enables the host to query new reference signal received power

Windows 10, version 1903

(RSRP) and Signal-to-Noise (SNR) values from the miniport driver. A miniport driver
must use revision 3 of this OID and its data structures if the driver supports 5G.

For more info about 5G data class support, see MB 5G data class support.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SET_SIGNAL_INDICATION

WWAN Signal Strength Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_signal_indication

OID_WWAN_SLOT_INFO
Article • 02/18/2023

OID_WWAN_SLOT_INFO retrieves a high-level aggregated status of a specified UICC slot
and the card within it (if any). It may also be used to deliver an unsolicited notification
when the status of one of the slots changes.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_SLOT_INFO status notification containing an
NDIS_WWAN_SLOT_INFO structure, which in turn contains a WWAN_SLOT_INFO
structure, to provide information about the overall modem system capability.

Query requests specify NDIS_WWAN_GET_SLOT_INFO structure as input. The miniport
driver should return the slot status according to the slot ID specified in the SlotIndex
member of the WWAN_GET_SLOT_INFO structure.

The following diagram illustrates a query request.

Set requests are not applicable.

An NDIS_STATUS_WWAN_SLOT_INFO notification with a NDIS_WWAN_SLOT_INFO
structure is sent to host when the slot/card state changes.

The host uses OID_WWAN_SLOT_INFO to query the status of a specific slot on the
modem. This OID is not executor-specific and may be sent to any NDIS instance
belonging to one modem. The slot state represents a summary of both the slot and card
state.

The set of reported states is constrained by the capability of the slot hardware. In the
most restrictive case, the slot hardware may only be able to determine that a card is

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_get_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_get_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_slot_info

present when it is powered on and active—in such a case the OffEmpty and Off states
will not be reported.

OID_WWAN_READY_INFO and OID_WWAN_SLOT_INFO perform the same core function
of retrieving the device ready-state of a SIM card slot; however,
OID_WWAN_READY_INFO is a per-executor command whereas OID_WWAN_SLOT_INFO
could be used on any physical instance (executor) and is expected to return the
appropriate slot state even if it is not mapped to any executors at the moment.

Version Windows 10, version 1703

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_SLOT_INFO

NDIS_WWAN_SLOT_INFO

WWAN_SLOT_INFO

NDIS_WWAN_GET_SLOT_INFO

WWAN_GET_SLOT_INFO

WWAN_UICCSLOT_STATE

OID_WWAN_READY_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_get_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_get_slot_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ne-wwan-_wwan_uiccslot_state

OID_WWAN_SMS_CONFIGURATION
Article • 02/18/2023

OID_WWAN_SMS_CONFIGURATION sets or returns a MB device's SMS text message
configuration.

Miniport drivers must process set and query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_SMS_CONFIGURATION status notification regardless of
completing set or query requests.

Query requests return the MB device's current SMS text message configuration stored in
the device or Subscriber Identity Module (SIM) card.

Set requests use the NDIS_WWAN_SET_SMS_CONFIGURATION structure to change the
SMS text message configuration of the MB device.

For more information about using this OID, see WWAN SMS Operations.

When processing this OID, miniport drivers can access the SIM card, but should not
access the provider network.

Miniport drivers of GSM-based devices should support both query and set operations.
Miniport drivers of CDMA-based devices should support only query operations.
Miniport drivers of CDMA-based devices should return a valid value in the
ulMaxMessageIndex member of the WWAN_SMS_CONFIGURATION structure for query
requests and can ignore the other members.

Miniport drivers must send an unsolicited NDIS_STATUS_WWAN_SMS_CONFIGURATION
indication when the MB device's SMS subsystem is ready for SMS operation. Thereafter,
when responding to OID_WWAN_SMS_CONFIGURATION query requests, miniport
drivers must return valid values for all members of the WWAN_SMS_CONFIGURATION
structure.

Miniport drivers should return NDIS_STATUS_NOT_INITIALIZED if the device is initialized
but the SMS subsystem is not yet initialized.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
configuring SMS text messages.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sms_configuration

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SET_SMS_CONFIGURATION

NDIS_STATUS_WWAN_SMS_CONFIGURATION

WWAN SMS Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_sms_configuration

OID_WWAN_SMS_DELETE
Article • 02/18/2023

OID_WWAN_SMS_DELETE deletes SMS text messages stored in the MB device, or
Subscriber Identity Module (SIM card), or any other auxiliary non-volatile memory or
memories.

Query requests are not supported.

Set requests use the NDIS_WWAN_SMS_DELETE structure.

Miniport drivers process this OID asynchronously, and should return an
NDIS_STATUS_INDICATION_REQUIRED provisional response to any set requests.
Miniport drivers should send an NDIS_STATUS_WWAN_SMS_DELETE indication when
they have completed the transaction.

For more information about using this OID, see WWAN SMS Operations.

When processing this OID, miniport drivers can access the Subscriber Identity Module
(SIM card), but should not access the provider's network.

Miniport drivers may receive requests to delete SMS text messages based on an index,
or to delete all SMS text messages. Delete requests may consist of any one of the basic
filters such as new (unread) messages, old (read) messages, draft messages, or sent
messages.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
SMS text messages, or the ability to delete SMS text messages.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SMS_DELETE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_delete

WWAN SMS Operations

OID_WWAN_SMS_READ
Article • 02/18/2023

OID_WWAN_SMS_READ reads SMS text messages stored in the MB device, or
Subscriber Identity Module (SIM card), or any other auxiliary non-volatile memory or
memories.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_SMS_RECEIVE status notification containing an
NDIS_WWAN_SMS_READ structure to provide the SMS messages requested that was
initially provided by the caller when completing query requests.

Callers requesting to read SMS text messages provide an NDIS_WWAN_SMS_READ
structure to indicate which SMS messages the caller wants the miniport to return.

For more information about using this OID, see WWAN SMS Operations.

When processing this OID, miniport drivers can access the Subscriber Identity Module
(SIM card), but should not access the provider network.

OID_WWAN_SMS_READ supports reading both PDU-mode and CDMA-mode SMS text
messages, depending on the capabilities of the device.

Miniport drivers may receive requests to read SMS text messages based on an index, or
to read all SMS text messages. Read requests may consist of any one of the basic filters
such as new (unread) messages, old (read) messages, draft messages, or sent messages.

Miniport drivers that implement SMS text message functionality must support the
reading of new messages using the basic filter for WwanSmsFlagNew. All other filter
types are optional to support.

Miniport drivers must logically project a single SMS text message store across all
available physically different SMS text message stores.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
SMS text messages.

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_read

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_SMS_READ

WWAN SMS Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_read

OID_WWAN_SMS_SEND
Article • 02/18/2023

OID_WWAN_SMS_SEND sends SMS text messages to another MB device.

Query requests are not supported.

Set requests use the NDIS_WWAN_SMS_SEND structure.

Miniport drivers process this OID asynchronously, and should return an
NDIS_STATUS_INDICATION_REQUIRED provisional response to any set requests.
Miniport drivers should send an NDIS_STATUS_WWAN_SMS_SEND indication when
they have completed the transaction.

For more information about using this OID, see WWAN SMS Operations.

When processing this OID, miniport drivers can access the provider network, but should
not access the Subscriber Identity Module (SIM card).

OID_WWAN_SMS_SEND supports sending both PDU-mode and CDMA-mode SMS text
messages, depending on the capabilities of the device.

GSM-based devices are expected to support only PDU-mode SMS text messages.
CDMA-based devices are expected to support only CDMA-mode SMS text messages.
Miniport drivers must be able to complete set requests irrespective of SMS text message
mode.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
SMS text messages, or the ability to send SMS text messages.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send

NDIS_WWAN_SMS_SEND

WWAN SMS Operations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sms_send

OID_WWAN_SMS_STATUS
Article • 02/18/2023

OID_WWAN_SMS_STATUS reports the status of the MB device's message store.

Set requests are not supported.

Query requests do not use a structure.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_SMS_STATUS status notification that indicates the status of the
MB device's message store when completing query requests.

For more information about using this OID, see WWAN SMS Operations.

When processing this OID, miniport drivers can access the Subscriber Identity Module
(SIM card), but should not access the provider network.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
SMS text messages.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

WWAN SMS Operations

NDIS_STATUS_WWAN_SMS_STATUS

Remarks

Requirements

See also

OID_WWAN_SUBSCRIBE_DEVICE_SERVIC
E_EVENTS
Article • 02/18/2023

OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS sets information about the list of
device services for which the MB device must send
NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT notifications. The MB device should not
indicate events for any device service which is not in this list.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION status notification that
contains the current list of event subscriptions on the MB device.

Callers requesting to set the MB device service event subscription list provide a
NDIS_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS structure to the miniport driver
with the appropriate information.

Version Versions: Supported in Windows 8 and later
versions of Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT

NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION

NDIS_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_subscribe_device_service_events
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_subscribe_device_service_events

OID_WWAN_SYS_CAPS_INFO
Article • 02/18/2023

OID_WWAN_SYS_CAPS_INFO retrieves information about the modem. It can be sent on
any of the NDIS instances exposed by the modem.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_SYS_CAPS_INFO status notification containing an
NDIS_WWAN_SYS_CAPS_INFO structure, which in turn contains a
WWAN_SYS_CAPS_INFO structure, to provide information about the overall modem
system capability.

The following diagram illustrates a query request.

Set requests are not applicable.

The host uses OID_WWAN_SYS_CAPS_INFO to query the number of devices (executors)
and slots in the modem as well as the number of executors that may be active
concurrently. A dual-standby modem would have a concurrency of 1; a dual-active
modem would have a concurrency of 2. This OID is not executor-specific and may be
sent to any NDIS instance.

The modem may expose multiple configurations with differing numbers of executors
and slots. Regardless of which configuration is selected, this query will return the
maximum number of devices and slots that the modem can support as currently
configured.

A modem supporting OID_WWAN_SYS_CAPS_INFO is expected to also support
OID_WWAN_DEVICE_CAPS_EX. Versions of Windows that support multi-executor
modems will not use the legacy OID_WWAN_DEVICE_CAPS if the underlying modem

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sys_caps_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_sys_caps_info

supports OID_WWAN_SYS_CAPS_INFO. For legacy versions of the OS (any version before
Windows 10 Version 1703 for the purposes of this OID), a multi-executor modem would
be represented as multiple independent modems and the existing
OID_WWAN_DEVICE_CAPS, available starting in Windows 8, will be used.

Version Windows 10, version 1703

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_SYS_CAPS_INFO

NDIS_WWAN_SYS_CAPS_INFO

WWAN_SYS_CAPS_INFO

OID_WWAN_DEVICE_CAPS_EX

OID_WWAN_DEVICE_CAPS

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_sys_caps_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_sys_caps_info

OID_WWAN_UE_POLICY
Article • 02/18/2023

OID_WWAN_UE_POLICY returns the UE policies from an MB device.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_UE_POLICY_STATE status notification containing an
NDIS_WWAN_UE_POLICY_INFO structure that indicates the MB device's UE policies
when completing query requests.

Miniport drivers can also send unsolicited events with this notification.

Version: Windows 11, version 21H2

Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_UE_POLICY_STATE

NDIS_WWAN_UE_POLICY_INFO

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_ue_policy_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_ue_policy_info

OID_WWAN_UICC_ACCESS_BINARY
Article • 02/18/2023

OID_WWAN_UICC_ACCESS_BINARY accesses a UICC binary file, the structure type of
which is WwanUiccFileStructureTransparent or WwanUiccFileStructureBerTLV.

Query requests read a binary file. Query payloads contain an
NDIS_WWAN_UICC_ACCESS_BINARY structure specifying information about the file to
read. Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_UICC_BINARY_RESPONSE status notification containing an
NDIS_WWAN_UICC_RESPONSE structure that describes the UICC's response.

For more information about usage of this OID, see MB UICC application and file system
access.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

NDIS_STATUS_WWAN_UICC_BINARY_RESPONSE

NDIS_WWAN_UICC_ACCESS_BINARY

NDIS_WWAN_UICC_RESPONSE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_access_binary
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_access_binary
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response

OID_WWAN_UICC_ACCESS_RECORD
Article • 02/18/2023

OID_WWAN_UICC_ACCESS_RECORD accesses a UICC linear fixed or cyclic file, the
structure type of which is WwanUiccFileStructureCyclic or
WwanUiccFileStructureLinear.

Query requests read the contents of a record. Query payloads contain an
NDIS_WWAN_UICC_ACCESS_RECORD structure specifying information about the file to
read. Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_UICC_RECORD_RESPONSE status notification containing an
NDIS_WWAN_UICC_RESPONSE structure that describes the UICC's response.

For more information about usage of this OID, see MB UICC application and file system
access.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

NDIS_STATUS_WWAN_UICC_RECORD_RESPONSE

NDIS_WWAN_UICC_ACCESS_RECORD

NDIS_WWAN_UICC_RESPONSE

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_access_record
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_access_record
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_response

OID_WWAN_UICC_APP_LIST
Article • 02/18/2023

OID_WWAN_UICC_APP_LIST retrieves a list of applications in a UICC and information
about them.

Miniport drivers must process Query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_UICC_UICC_APP_LIST status notification containing an
NDIS_WWAN_UICC_APP_LIST structure that describes the app list for the UICC.

Set requests are not applicable.

When the UICC in the modem is fully initialized and ready to register with the mobile
operator, a UICC application must be selected for registration and a Query request with
this OID should return the selected application in the ActiveAppIndex field of the
WWAN_UICC_APP_LIST structure used in response.

For more information about usage of this OID, see MB UICC application and file system
access.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

NDIS_STATUS_WWAN_UICC_UICC_APP_LIST

NDIS_WWAN_UICC_APP_LIST

WWAN_UICC_APP_LIST

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_app_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_uicc_app_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_app_list
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_uicc_app_list

OID_WWAN_UICC_ATR
Article • 02/18/2023

An OID_WWAN_UICC_ATR query request is sent by the mobile broadband host to a
modem miniport adapter to get the UICC smart card's Answer to Reset (ATR)
information. The ATR is the first string of bytes sent by the UICC after a reset has been
performed. It describes the capabilities of the card, such as the number of logical
channels that it supports.

The host can query the ATR information from either the active SIM slot or the inactive
SIM slot in the device if the device supports dual SIM slots. This OID's payload contains
an NDIS_WWAN_QUERY_ATR_INFO structure, which in turn contains a
WWAN_QUERY_ATR_INFO structure that specifies the UICC slot ID.

Modem miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_ATR_INFO notification containing a NDIS_WWAN_ATR_INFO
structure, which in turn contains a WWAN_QUERY_ATR_INFO structure that represents
the passthrough status of the adapter.

Unsolicited events are not applicable.

For more info, see MB low level UICC access.

Version: Windows 10, version 1607

Header: Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_ATR_INFO

NDIS_WWAN_QUERY_ATR_INFO

WWAN_QUERY_ATR_INFO

NDIS_WWAN_ATR_INFO

WWAN_ATR_INFO

MB low level UICC access

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_atr_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_atr_info

OID_WWAN_UICC_FILE_STATUS
Article • 02/18/2023

OID_WWAN_UICC_FILE_STATUS retrieves information about a specified UICC file.

Query payloads contain an NDIS_WWAN_UICC_FILE_PATH structure containing
information about the target file. Miniport drivers must process Query requests
asynchronously, initially returning NDIS_STATUS_INDICATION_REQUIRED to the original
request before later sending an NDIS_STATUS_WWAN_UICC_FILE_STATUS status
notification containing an NDIS_WWAN_UICC_FILE_STATUS structure that describes the
specified file.

Set requests are not applicable.

For more information about usage of this OID, see MB UICC application and file system
access.

Version: Windows 10, version 1903 Header: Ntddndis.h (include Ndis.h)

MB UICC application and file system access

NDIS_STATUS_WWAN_UICC_UICC_FILE_STATUS

NDIS_WWAN_UICC_FILE_PATH

NDIS_WWAN_UICC_FILE_STATUS

Remarks

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_path
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_status
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_path
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_file_status

OID_WWAN_UICC_RESET
Article • 02/18/2023

OID_WWAN_UICC_RESET is sent by the mobile broadband host to a modem miniport
adapter to reset a UICC smart card and specify the UICC's passthrough status after reset,
or query the passthrough state of the adapter.

The host can query the passthrough state from either the active SIM slot or inactive SIM
slot in the device if the device supports dual SIM slots. This OID's payload for query
requests contains an NDIS_WWAN_QUERY_UICC_RESET structure, which in turn
contains a WWAN_QUERY_UICC_RESET structure that specifies the UICC slot ID.

Modem miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_UICC_RESET_INFO notification containing a
NDIS_WWAN_UICC_RESET_INFO structure, which in turn contains a
WWAN_UICC_RESET_INFO structure that represents the passthrough status of the
adapter.

The host can reset either the active SIM slot or inactive SIM slot in the device if the
device supports dual SIM slots. For set requests, OID_WWAN_UICC_RESET uses the
NDIS_WWAN_SET_UICC_RESET structure, which in turn contains a
WWAN_SET_UICC_RESET structure that represents the passthrough action the host
specifies for the miniport adapter after it resets the UICC. After reset is complete, the
miniport adapter responds with the NDIS_STATUS_WWAN_UICC_RESET_INFO
notification, which in turn contains a NDIS_WWAN_UICC_RESET_INFO structure, to
indicate its passthrough status.

Unsolicited events are not applicable.

For more info about passthrough actions and passthrough status, see MB low level UICC
access.

Version: Windows 10, version 1709

Header: Ntddndis.h (include Ndis.h)

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_reset_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_uicc_reset_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_set_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_reset_info

NDIS_WWAN_QUERY_UICC_RESET

WWAN_QUERY_UICC_RESET

NDIS_WWAN_UICC_RESET_INFO

WWAN_UICC_RESET_INFO

NDIS_WWAN_SET_UICC_RESET

WWAN_SET_UICC_RESET

NDIS_STATUS_WWAN_UICC_RESET_INFO

MB low level UICC access

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_uicc_reset_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_uicc_reset_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_set_uicc_reset
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_set_uicc_reset

OID_WWAN_UICC_TERMINAL_CAPABILI
TY
Article • 02/18/2023

The mobile broadband host sends OID_WWAN_UICC_TERMINAL_CAPABILITY to a
modem miniport adapter to inform the modem about the terminal capabilities of the
host.

If the device supports dual SIM slots, the host can set terminal capability on either the
active or inactive SIM slot to inform the modem of the host OS's capabilities. The host
can also query the terminal capability that persisted in the modem from a previous SIM
insertion/reset.

For query requests, this OID's payload contains an
NDIS_WWAN_QUERY_UICC_TERMINAL_CAPABILITY structure, which in turn contains a
WWAN_QUERY_UICC_TERMINAL_CAPABILITY structure that specifies the slot ID.
Modem miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request before later sending an
NDIS_STATUS_WWAN_UICC_TERMINAL_CAPABILITY_INFO notification containing an
NDIS_WWAN_UICC_TERMINAL_CAPABILITY_INFO structure, which in turn contains a
WWAN_UICC_TERMINAL_CAPABILITY_INFO structure that represents the terminal
capabilities.

For set requests, OID_WWAN_UICC_TERMINAL_CAPABILITY uses the
NDIS_WWAN_SET_UICC_TERMINAL_CAPABILITY structure, which in turn contains a
WWAN_SET_UICC_TERMINAL_CAPABILITY structure that represents the terminal
capabilities and specifies the slot ID. The miniport driver responds with the
NDIS_STATUS_WWAN_UICC_TERMINAL_CAPABILITY_INFO notification, which in turn
contains an NDIS_WWAN_UICC_TERMINAL_CAPABILITY_INFO structure.

Unsolicited events are not applicable.

For more information, see MB low level UICC access.

Version: Windows 10, version 1607

Header: Ntddndis.h (include Ndis.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_query_uicc_terminal_capability
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_query_uicc_terminal_capability
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_uicc_terminal_capability_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_uicc_terminal_capability_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_set_uicc_terminal_capability
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_set_uicc_terminal_capability

NDIS_STATUS_WWAN_UICC_TERMINAL_CAPABILITY_INFO

NDIS_WWAN_UICC_TERMINAL_CAPABILITY_INFO

WWAN_UICC_TERMINAL_CAPABILITY_INFO

NDIS_WWAN_SET_UICC_TERMINAL_CAPABILITY

WWAN_SET_UICC_TERMINAL_CAPABILITY

MB low level UICC access

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_uicc_terminal_capability_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_uicc_terminal_capability_info
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-ndis_wwan_set_uicc_terminal_capability
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-wwan_set_uicc_terminal_capability

OID_WWAN_USSD
Article • 02/18/2023

OID_WWAN_USSD sends Unstructured Supplementary Service Data (USSD) requests to
the underlying MB device.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_USSD status notification containing the status of the initial USSD
request when they have completed the transaction.

Windows does not send an OID_WWAN_USSD request to a miniport driver if a previous
request is still in progress, with the exception of a request to cancel a pending operation
by setting the WWAN_USSD_REQUEST RequestType member of the request to
WwanUssdRequestCancel.

When a request is canceled, the miniport driver must respond to both the canceled
request and the cancel request.

Version Supported starting with Windows 8.

Header Ntddndis.h (include Ndis.h)

NDIS_STATUS_WWAN_USSD

WWAN_USSD_REQUEST

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_ussd_request
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wwan/ns-wwan-_wwan_ussd_request

OID_WWAN_VENDOR_SPECIFIC
Article • 02/18/2023

OID_WWAN_VENDOR_SPECIFIC allows miniport drivers to implement vendor specific
objects.

Query requests are not supported.

Miniport drivers must process set requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending a
NDIS_STATUS_WWAN_VENDOR_SPECIFIC status notification containing a vendor-
defined structure to implement private objects when they have completed the
transaction.

For more information about using this OID, see WWAN Vendor Specific Operations.

Miniport drivers should return NDIS_STATUS_NOT_SUPPORTED if they do not support
vendor-specific operations.

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

WWAN Vendor Specific Operations

NDIS_STATUS_WWAN_VENDOR_SPECIFIC

Remarks

Requirements

See also

OID_WWAN_VISIBLE_PROVIDERS
Article • 02/18/2023

OID_WWAN_VISIBLE_PROVIDERS returns a list of network providers currently visible
within the MB device's range.

Set requests are not supported.

Miniport drivers must process query requests asynchronously, initially returning
NDIS_STATUS_INDICATION_REQUIRED to the original request, and later sending an
NDIS_STATUS_WWAN_VISIBLE_PROVIDERS status notification containing an
NDIS_WWAN_VISIBLE_PROVIDERS structure to provide information about visible
network providers when completing query requests.

Query requests specify NDIS_WWAN_GET_VISIBLE_PROVIDERS structure as input. When
the Action member in WWAN_GET_VISIBLE_PROVIDERS is set to
WWAN_GET_VISIBLE_PROVIDERS_ALL the miniport should return all visible providers.
When the Action member in WWAN_GET_VISIBLE_PROVIDERS is set to
WWAN_GET_VISIBLE_PROVIDERS_MULTICARRIER the miniport should only return visible
multi-carrier providers that can be set as the home provider.

The visible provider list returned by the device should have the provider state set
correctly for each of the providers. For example, the multicarrier preferred providers
should be tagged as WWAN_PROVIDER_STATE_PREFERRED_MULTICARRIER, the current
home provider if any should be tagged as WWAN_PROVIDER_STATE_HOME, The current
registered provider if any should be tagged as WWAN_PROVIDER_STATE_REGISTERED.

The Rssi and ErrorRate members of WWAN_PROVIDER2 structure should be set if
available.

For more information about using this OID, see WWAN Provider Operations.

Miniport drivers can access the Subscriber Identity Module (SIM card) when processing
query operations, but should not access the provider network.

Miniport drivers should set the VisibleListHeader.ElementType member to
WwanStructProvider.

For CDMA-based networks, miniport driver should return only the home provider, if any
of the networks in the Preferred Roaming List (PRL) is currently visible. For GSM-based

Remarks

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers

networks, more than one provider may be present in the visible provider list.

Devices that do not support scanning for visible providers while connected should
return the WWAN_STATUS_BUSY error value in the uStatus member of the
NDIS_WWAN_VISIBLE_PROVIDERS structure.

Both GSM-based and CDMA-based devices must support scanning for visible providers
while in registered mode. However, miniport drivers are not required to support
scanning for visible provider while a Packet Data Protocol (PDP) context is active (for
example, the device is connected to the provider's network).

Version Available in Windows 7 and later versions of
Windows.

Header Ntddndis.h (include Ndis.h)

NDIS_WWAN_VISIBLE_PROVIDERS

NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

WWAN Provider Operations

Requirements

See also

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ndiswwan/ns-ndiswwan-_ndis_wwan_visible_providers

Ws2def.h
Article • 12/15/2021

This section contains kernel mode network driver topics for the Ws2def.h header. This
header is included in the Windows SDK as it is also shared with user mode networking
applications.

The Ws2def.h header contains definitions for the Winsock2 specification. It is included in
Winsock2.h. User mode applications should include Winsock2.h rather than including
Ws2def.h directly. Ws2def.h cannot be included by a module that also includes
Winsock.h.

AF_INET
AF_INET6
SIO_ADDRESS_LIST_CHANGE
SIO_ADDRESS_LIST_QUERY
SO_BROADCAST
SO_CONDITIONAL_ACCEPT
SO_EXCLUSIVEADDRUSE
SO_KEEPALIVE
SO_RCVBUF
SO_REUSEADDR

） Important

This section's topics contains pages for definitions, macros, OIDs, status indications,
and other data structures that are not part of network driver reference (structures,
enumerations, functions, and callbacks).

For more information about network driver reference for this header, see Ws2def.h
(reference).

In this section

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/drivers/mt808757(v=vs.85)

AF_INET
Article • 03/03/2023

The AF_INET address family is the address family for IPv4.

An IPv4 transport address is specified with the SOCKADDR_IN structure.

IPv4 supports the following socket types:

SOCK_STREAM
Supports reliable connection-oriented byte stream communication.

SOCK_DGRAM
Supports unreliable connectionless datagram communication.

SOCK_RAW
Supports raw access to the transport protocol.

A WSK application specifies a socket type when it calls the WskSocket function or the
WskSocketConnect function to create a new socket.

The following IPv4 IPPROTO_XXX protocol values of the IPPROTO enumeration are
defined in the WSK header files:

IPPROTO_IP
Internet protocol options

IPPROTO_ICMP
Internet control message protocol

IPPROTO_IGMP
Internet group management protocol

IPPROTO_GGP
Gateway to gateway protocol

Socket Address Structure

Socket Types

Protocols

https://learn.microsoft.com/en-us/windows/win32/api/ws2def/ns-ws2def-sockaddr_in
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

IPPROTO_IPV4
IPv4 encapsulation

IPPROTO_ST
Stream protocol

IPPROTO_TCP
Transmission control protocol

IPPROTO_CBT
Core based trees protocol

IPPROTO_EGP
Exterior gateway protocol

IPPROTO_IGP
Private interior gateway protocol

IPPROTO_PUP
PARC universal packet protocol

IPPROTO_UDP
User datagram protocol

IPPROTO_IDP
Internet datagram protocol

IPPROTO_RDP
Reliable data protocol

IPPROTO_ND
Net disk protocol

IPPROTO_ICLFXBM
Wideband monitoring

IPPROTO_PIM
Protocol independent multicast

IPPROTO_PGM
Pragmatic general multicast

IPPROTO_L2TP
Level 2 tunneling protocol

IPPROTO_SCTP
Stream control transmission protocol

IPPROTO_RAW
Raw IP packets

Additional protocols are supported through the use of raw sockets.

A WSK application specifies a protocol when it calls the WskSocket function or the
WskSocketConnect function to create a new socket.

A WSK application also specifies a protocol (as the Level parameter) when it calls the
WskControlSocket function to set or retrieve transport protocol level or network
protocol level socket options.

IPv4 supports the following combinations of socket types and protocols for each WSK
socket category:

Basic Sockets SOCK_STREAM + IPPROTO_TCP SOCK_DGRAM + IPPROTO_UDP
SOCK_RAW + IPPROTO_Xxx Listening Sockets SOCK_STREAM + IPPROTO_TCP

Datagram Sockets SOCK_DGRAM + IPPROTO_UDP SOCK_RAW + IPPROTO_Xxx
Connection-Oriented Sockets SOCK_STREAM + IPPROTO_TCP

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Combinations

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

AF_INET6
Article • 03/03/2023

The AF_INET6 address family is the address family for IPv6.

An IPv6 transport address is specified with the SOCKADDR_IN6 structure.

IPv6 supports the following socket types:

SOCK_STREAM
Supports reliable connection-oriented byte stream communication.

SOCK_DGRAM
Supports unreliable connectionless datagram communication.

SOCK_RAW
Supports raw access to the transport protocol.

A WSK application specifies a socket type when it calls the WskSocket function or the
WskSocketConnect function to create a new socket.

The following IPv6 IPPROTO_XXX protocol values of the IPPROTO enumeration are
defined in the WSK header files:

IPPROTO_HOPOPTS
IPv6 hop-by-hop options

IPPROTO_ICMP
Internet control message protocol

IPPROTO_IGMP
Internet group management protocol

IPPROTO_GGP
Gateway to gateway protocol

Socket Address Structure

Socket Types

Protocols

https://learn.microsoft.com/en-us/windows/win32/api/ws2ipdef/ns-ws2ipdef-sockaddr_in6_lh
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect

IPPROTO_IPV4
IPv4 encapsulation

IPPROTO_ST
Stream protocol

IPPROTO_TCP
Transmission control protocol

IPPROTO_CBT
Core based trees protocol

IPPROTO_EGP
Exterior gateway protocol

IPPROTO_IGP
Private interior gateway protocol

IPPROTO_PUP
PARC universal packet protocol

IPPROTO_UDP
User datagram protocol

IPPROTO_IDP
Internet datagram protocol

IPPROTO_RDP
Reliable data protocol

IPPROTO_IPV6
IPv6 header

IPPROTO_ROUTING
IPv6 routing header

IPPROTO_FRAGMENT
IPv6 fragmentation header

IPPROTO_ESP
Encapsulating security payload

IPPROTO_AH
Authentication header

IPPROTO_ICMPV6
IPv6 Internet control message protocol

IPPROTO_NONE
IPv6 no next header

IPPROTO_DSTOPTS
IPv6 destination options

IPPROTO_ND
Net disk protocol

IPPROTO_ICLFXBM
Wideband monitoring

IPPROTO_PIM
Protocol independent multicast

IPPROTO_PGM
Pragmatic general multicast

IPPROTO_L2TP
Level 2 tunneling protocol

IPPROTO_SCTP
Stream control transmission protocol

IPPROTO_RAW
Raw IP packets

Additional protocols are supported through the use of raw sockets.

A WSK application specifies a protocol when it calls the WskSocket function or the
WskSocketConnect function to create a new socket.

A WSK application also specifies a protocol (as the Level parameter) when it calls the
WskControlSocket function to set or retrieve transport protocol level or network
protocol level socket options.

IPv6 supports the following combinations of socket types and protocols for each WSK
socket category:

Combinations

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_socket_connect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Basic Sockets SOCK_STREAM + IPPROTO_TCP SOCK_DGRAM + IPPROTO_UDP
SOCK_RAW + IPPROTO_Xxx Listening Sockets SOCK_STREAM + IPPROTO_TCP

Datagram Sockets SOCK_DGRAM + IPPROTO_UDP SOCK_RAW + IPPROTO_Xxx
Connection-Oriented Sockets SOCK_STREAM + IPPROTO_TCP

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SIO_ADDRESS_LIST_CHANGE
Article • 03/03/2023

The SIO_ADDRESS_LIST_CHANGE socket I/O control operation notifies a WSK
application when there has been a change to the list of local transport addresses for a
socket's address family. This socket I/O control operation applies to all socket types.

To be notified when there has been a change to the list of local transport addresses for a
socket's address family, a WSK application calls the WskControlSocket function with the
following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_ADDRESS_LIST_CHANGE

Level 0

InputSize 0

InputBuffer NULL

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to be notified of a change to the list of local transport addresses for a socket's
address family. The WSK subsystem queues the IRP and returns STATUS_PENDING. If a
change is made to the list of local transport addresses for the socket's address family,
the WSK subsystem completes the IRP. When the IRP's completion routine is called, the
WSK application can use the SIO_ADDRESS_LIST_QUERY socket I/O control operation to
query the new list of local transport addresses for the socket's address family.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

SIO_ADDRESS_LIST_QUERY
Article • 03/03/2023

The SIO_ADDRESS_LIST_QUERY socket I/O control operation allows a WSK application to
query the current list of local transport addresses for a socket's address family. This
socket I/O control operation applies to all socket types.

To query the current list of local transport addresses for a socket's address family, a WSK
application calls the WskControlSocket function with the following parameters.

Parameter Value

RequestType WskIoctl

ControlCode SIO_ADDRESS_LIST_QUERY

Level 0

InputSize 0

InputBuffer NULL

OutputSize The size, in bytes, of the buffer that is pointed
to by the OutputBuffer parameter.

OutputBuffer A pointer to the buffer that receives the current
list of local transport addresses. The size of the
buffer is specified in the OutputSize parameter.

OutputSizeReturned A pointer to a ULONG-typed variable that
receives the number of bytes of data that is
copied into the buffer that is pointed to by the
OutputBuffer parameter.

A WSK application does not specify a pointer to an IRP when calling the
WskControlSocket function to query the current list of local transport addresses for a
socket's address family.

If the call to the WskControlSocket function succeeds, the output buffer contains a
SOCKET_ADDRESS_LIST structure followed by the SOCKADDR structures for each of the
local transport addresses for the socket's address family.

If the WskControlSocket function returns STATUS_BUFFER_OVERFLOW, the variable that
is pointed to by the OutputSizeReturned parameter contains the output buffer size, in
bytes, that is required to contain the complete list of local transport addresses for the
socket's address family.

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket
https://learn.microsoft.com/en-us/windows/win32/api/ws2def/ns-ws2def-socket_address_list

The SIO_ADDRESS_LIST_CHANGE socket I/O control operation allows a WSK application
to be notified when there has been a change to the list of local transport addresses for a
socket's address family.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_BROADCAST
Article • 12/15/2021

The state of the SO_BROADCAST socket option determines whether broadcast messages
can be transmitted over a datagram socket. This socket option applies only to datagram
sockets.

To set the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_BROADCAST

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the value for the new state of the
socket option:

0: Do not allow broadcast messages

1: Allow broadcast messages

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskGetOption

ControlCode SO_BROADCAST

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

OutputSize sizeof(ULONG)

OutputBuffer A pointer to a ULONG-typed variable that
receives the value of the state of the socket
option:

0: Broadcast messages are not allowed

1: Broadcast messages are allowed

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the state of the SO_BROADCAST socket option.

The default state of this socket option is that broadcast messages are not allowed.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_CONDITIONAL_ACCEPT
Article • 12/15/2021

The state of the SO_CONDITIONAL_ACCEPT socket option determines whether
conditional acceptance mode is enabled on a listening socket. This socket option applies
only to listening sockets.

If a WSK application sets this socket option, it must do so before the listening socket is
bound to a local transport address.

To set the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_CONDITIONAL_ACCEPT

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the value for the new state of the
socket option:

0: Disable conditional accept mode

1: Enable conditional accept mode

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskGetOption

ControlCode SO_CONDITIONAL_ACCEPT

Level SOL_SOCKET

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

InputSize 0

InputBuffer NULL

OutputSize sizeof(ULONG)

OutputBuffer A pointer to a ULONG-typed variable that
receives the value of the state of the socket
option:

0: Conditional accept mode is disabled

1: Conditional accept mode is enabled

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the state of the SO_CONDITIONAL_ACCEPT socket option.

The default state of this socket option is that conditional accept mode is disabled.

Some transport protocols might not support conditional accept mode on listening
sockets.

For more information about conditionally accepting incoming connections, see Listening
for and Accepting Incoming Connections.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_EXCLUSIVEADDRUSE
Article • 12/15/2021

The state of the SO_EXCLUSIVEADDRUSE socket option determines whether the local
transport address to which a socket will be bound is exclusively reserved for use by that
socket. This socket option applies only to listening sockets, datagram sockets, and
connection-oriented sockets.

If a WSK application sets this socket option, it must do so before the socket is bound to
a local transport address.

To set the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_EXCLUSIVEADDRUSE

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the value for the new state of the
socket option:

0: Disable exclusive use of the local transport
address

1: Enable exclusive use of the local transport
address

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskGetOption

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

ControlCode SO_EXCLUSIVEADDRUSE

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

OutputSize sizeof(ULONG)

OutputBuffer A pointer to a ULONG-typed variable that
receives the value of the state of the socket
option:

0: Exclusive use of the local transport address is
disabled

1: Exclusive use of the local transport address is
enabled

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the state of the SO_EXCLUSIVEADDRUSE socket option.

The default state of this socket option is that exclusive use of the local transport address
is disabled.

For more information about using the SO_EXCLUSIVEADDRUSE socket option and its
impact on the sharing of local transport addresses between sockets, see Sharing
Transport Addresses.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_KEEPALIVE
Article • 12/15/2021

The state of the SO_KEEPALIVE socket option determines whether keep-alive packets are
sent on a connection-oriented socket. This socket option applies only to listening
sockets and connection-oriented sockets.

To set the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_KEEPALIVE

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the value for the new state of the
socket option:

0: Disable sending keep-alive packets
1: Enable sending keep-alive packets

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskGetOption

ControlCode SO_KEEPALIVE

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

OutputSize sizeof(ULONG)

OutputBuffer A pointer to a ULONG-typed variable that
receives the value of the state of the socket
option:

0: Sending keep-alive packets is disabled
1: Sending keep-alive packets is enabled

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the state of the SO_KEEPALIVE socket option.

The default state of this socket option is that sending keep-alive packets is disabled.

If this socket option is enabled on a listening socket, all incoming connections that are
accepted on that listening socket have this socket option enabled by default. A WSK
application can call the WskControlSocket function on an accepted socket to override
the state of this socket option that was inherited from the listening socket.

Keep-alive packets are sent by the underlying network transport. Not all network
transports support sending keep-alive packets.

For more information about using keep-alive packets, see RFC 1122, section 4.2.3.6,
"TCP Keep-Alives".

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_RCVBUF
Article • 12/15/2021

The SO_RCVBUF socket option determines the size of a socket's receive buffer that is
used by the underlying transport. This socket option applies only to listening sockets,
datagram sockets, and connection-oriented sockets.

To set the value of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_RCVBUF

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the new size of the socket's receive
buffer

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the value of the SO_RCVBUF socket option, a WSK application calls the
WskControlSocket function with the following parameters.

Parameter Value

RequestType WskGetOption

ControlCode SO_RCVBUF

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

OutputSize sizeof(ULONG)

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

OutputBuffer A pointer to a ULONG-typed variable that
receives the current size of the socket's receive
buffer

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the value of the SO_RCVBUF socket option.

The default size of a socket's receive buffer is transport-specific. Some transports might
not support this socket option.

If this socket option is set on a listening socket, all incoming connections that are
accepted on that listening socket have their receive buffer set to the same size that is
specified for the listening socket. A WSK application can call the WskControlSocket
function on an accepted socket to override the size of the receive buffer that was
inherited from the listening socket.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

SO_REUSEADDR
Article • 12/15/2021

The state of the SO_REUSEADDR socket option determines whether the local transport
address to which a socket will be bound is always shared with other sockets. This socket
option applies only to listening sockets, datagram sockets, and connection-oriented
sockets.

If a WSK application sets this socket option, it must do so before the socket is bound to
a local transport address.

To set the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskSetOption

ControlCode SO_REUSEADDR

Level SOL_SOCKET

InputSize sizeof(ULONG)

InputBuffer A pointer to a ULONG-typed variable that
contains the value for the new state of the
socket option:

0: Disable always sharing the local
transport address
1: Enable always sharing the local
transport address

OutputSize 0

OutputBuffer NULL

OutputSizeReturned NULL

To retrieve the state of this socket option, a WSK application calls the WskControlSocket
function with the following parameters.

Parameter Value

RequestType WskGetOption

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wsk/nc-wsk-pfn_wsk_control_socket

Parameter Value

ControlCode SO_REUSEADDR

Level SOL_SOCKET

InputSize 0

InputBuffer NULL

OutputSize sizeof(ULONG)

OutputBuffer A pointer to a ULONG-typed variable that
receives the value of the state of the socket
option:

0: Always sharing the local transport
address is disabled
1: Always sharing the local transport
address is enabled

OutputSizeReturned NULL

A WSK application must specify a pointer to an IRP when calling the WskControlSocket
function to set or retrieve the state of the SO_REUSEADDR socket option.

The default state of this socket option is that always sharing the local transport address
is disabled.

For more information about using the SO_REUSEADDR socket option and its impact on
the sharing of local transport addresses between sockets, see Sharing Transport
Addresses.

Version Available in Windows Vista and later versions of
the Windows operating systems.

Header Ws2def.h (include Wsk.h)

Requirements

Network Drivers Prior to Windows Vista
Article • 12/15/2021

To access the design guide and reference topics for Windows 2000 and Windows XP
network drivers, see Network Drivers Prior to Windows Vista.

Network drivers prior to Windows Vista used NDIS 5.1, which was superceded in
Windows Vista and later by NDIS 6.X.

Previous Versions of Network Drivers

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff562407(v=vs.85)

Native 802.11 Wireless LAN Drivers
Article • 02/17/2023

To access the design guide and reference topics for Native 802.11 Wireless LAN drivers,
see Native 802.11 Wireless LAN.

The Native 802.11 Wireless LAN interface was superseded in Windows 10 and later by
the WLAN Universal Driver Model (WDI).

WLAN Universal Driver Model

Previous Versions of Network Drivers

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/wireless/native-802-11-wireless-lan

Cellular COM API Reference
Article • 12/15/2021

To access reference topics related to the Cellular COM API, see Cellular COM API
reference.

The Cellular COM API was used in Windows Phone 8.1 and is deprecated in Windows 10
and later.

Previous Versions of Network Drivers

Related topics

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/cellular/dn946508(v=vs.85)

	Network Driver Design Guide
	Introduction to Network Drivers
	Introduction to Network Drivers Topics
	Roadmap for Developing NDIS Drivers
	Using the Network Driver Design Guide
	Navigating the Network Driver Design Guide
	Learning About Miniport Drivers
	Learning About Protocol Drivers
	Learning About Filter Drivers
	Learning About Intermediate Drivers

	Network Architecture for Kernel-Mode Drivers
	Windows Network Architecture and the OSI Model
	NDIS drivers
	Overview of NDIS driver types
	Miniport drivers
	Protocol drivers
	Filter drivers
	Intermediate drivers

	Network Driver Environments
	Connectionless Environment for Network Drivers
	Connection-Oriented Environment for Network Drivers

	Network Driver Programming Guidelines
	Network Driver Programming Considerations
	Performance in Network Drivers
	Performance in Network Adapters
	Portability in Network Drivers
	Multiprocessor Support in Network Drivers
	IRQLs in Network Drivers
	Synchronization and Notification in Network Drivers
	Packet Structures in Network Drivers
	Using Shared Memory in Network Drivers
	Asynchronous I/O and Completion Functions in Network Drivers
	Security Issues for Network Drivers

	NDIS Driver Stack Overview
	Driver Stack Management
	NDIS Driver Stack
	Adapter States of a Miniport Driver
	Binding States of a Protocol Driver
	Module States of a Filter Driver
	NDIS Stack Operations
	Starting a Driver Stack
	Stopping a Driver Stack
	Pausing a Driver Stack
	Restarting a Driver Stack
	Modifying a Running Driver Stack

	NET_BUFFER Design Concepts
	NET_BUFFER Architecture
	Network Data Structures in NDIS
	Network Data Structures
	NET_BUFFER Structure
	NET_BUFFER_LIST Structure
	NET_BUFFER_LIST_CONTEXT Structure

	NET_BUFFER Retreat and Advance Operations
	Retreat and Advance Operations
	Retreat Operations
	Advance Operations

	Obtaining Pool Handles
	Dispatch IRQL Tracking
	Transferring Network Data
	Send and Receive Operations
	Sending Network Data
	Canceling a Send Operation
	Receiving Network Data
	Looping Back NDIS Packets

	Transferring Network Data with Ethernet
	Ethernet Send and Receive Operations
	Sending Ethernet Frames
	Indicating Received Ethernet Frames

	Overview of Derived NET_BUFFER_LIST Structures
	Derived NET_BUFFER_LIST Structures
	Relationships Between NET_BUFFER_LIST Generations
	Cloned NET_BUFFER_LIST Structures
	Fragmented NET_BUFFER_LIST Structures
	Reassembled NET_BUFFER_LIST Structures

	Introduction to NDIS PDPI

	NDIS versions
	Overview of NDIS versions
	Introductions to NDIS 6.0 and later
	Introduction to NDIS 6.89
	Introduction to NDIS 6.88
	Introduction to NDIS 6.87
	Introduction to NDIS 6.86
	Introduction to NDIS 6.85
	Introduction to NDIS 6.84
	Introduction to NDIS 6.83
	Introduction to NDIS 6.82
	Introduction to NDIS 6.81
	Changes in NDIS 6.80
	Introduction to NDIS 6.80
	Synchronous OID Request Interface
	Synchronous OID Request Interface in NDIS 6.80
	Example boilerplate for handling Regular or Direct OID requests
	Example boilerplate for issuing a Regular OID request

	Receive Side Scaling Version 2 (RSSv2) in NDIS 6.80

	Introduction to NDIS 6.70
	Introduction to NDIS 6.60
	Introduction to NDIS 6.50
	Changes in NDIS 6.40
	Introduction to NDIS 6.40
	Implementing an NDIS 6.40 Driver
	Using NDIS 6.40 Data Structures
	Compiling an NDIS 6.40 Driver

	Changes in NDIS 6.30
	Introduction to NDIS 6.30
	Virtualized Networking Enhancements in NDIS 6.30
	Power Management Enhancements in NDIS 6.30
	Quality of Service (QoS) Support in NDIS 6.30
	Windows Filtering Platform Enhancements in NDIS 6.30
	Scalable Networking Enhancements in NDIS 6.30
	Implementing an NDIS 6.30 Driver
	Using NDIS 6.30 Data Structures
	Compiling an NDIS 6.30 Driver

	Changes in NDIS 6.20
	Introduction to NDIS 6.20
	Power Management Enhancements in NDIS 6.20
	Virtual Machine Queue (VMQ) in NDIS 6.20
	Support for More than 64 Processors in NDIS 6.20
	Receive Side Throttle in NDIS 6.20
	Media Extensibility in NDIS 6.20
	Implementing an NDIS 6.20 Driver
	Using NDIS 6.20 Data Structures
	Compiling an NDIS 6.20 Driver

	Changes in NDIS 6.1
	Introduction to NDIS 6.1
	Header-Data Split in NDIS 6.1
	Direct OID Request Interface in NDIS 6.1
	IPsec Task Offload Version 2 in NDIS 6.1
	NETDMA Updates in NDIS 6.1
	Implementing an NDIS 6.1 Driver
	Using NDIS 6.1 Data Structures
	Compiling an NDIS 6.1 Driver

	Changes in NDIS 6.0
	Introduction to NDIS 6.0
	NDIS 6.0 Design Objectives
	Enhanced Performance and Scalability in NDIS 6.0
	Enhanced Performance and Scalability
	NET_BUFFER Data Packaging
	Improved Send and Receive Paths
	Enhanced Run-time Reconfiguration Abilities
	Receive Side Scaling Support
	New Scatter/Gather DMA Support
	Faster filter drivers
	Full TCP Offload

	Simplified Driver Model in NDIS 6.0
	Simplified Driver Model
	Easier Initialization
	Versioned Interfaces
	Simplified Reset Handling
	NDIS Interface Information
	Easier-to-Write Filter Drivers

	Specifying and Obtaining NDIS Version Information
	Specifying NDIS Version Information
	Overview of NDIS Support for Header Versions
	Version Information Requirements for NDIS Drivers
	Version Information Requirements for NDIS
	Obtaining the NDIS Version
	NDIS Object Version Issues for WMI

	Porting NDIS Drivers to Newer NDIS Versions
	Porting NDIS 6.x drivers to NDIS 6.89
	Porting NDIS 6.x drivers to NDIS 6.88
	Porting NDIS 6.x drivers to NDIS 6.87
	Porting NDIS 6.x drivers to NDIS 6.86
	Porting NDIS 6.x drivers to NDIS 6.85
	Porting NDIS 6.x drivers to NDIS 6.84
	Porting NDIS 6.x drivers to NDIS 6.83
	Porting NDIS 6.x drivers to NDIS 6.82
	Porting NDIS 6.x drivers to NDIS 6.81
	Porting NDIS 6.x drivers to NDIS 6.80
	Porting NDIS 6.x drivers to NDIS 6.70
	Porting NDIS 6.x drivers to NDIS 6.60
	Porting NDIS 6.x drivers to NDIS 6.50
	Porting NDIS 6.x Drivers to NDIS 6.40
	Porting to NDIS 6.30
	Porting NDIS 6.x Drivers to NDIS 6.30
	NDIS 6.30 Backward Compatibility
	Summary of Changes Required to Port a Miniport Driver to NDIS 6.30
	Summary of Changes Required to Port a Protocol or Filter Driver to NDIS 6.30
	Summary of Changes Required to Port an Intermediate Driver to NDIS 6.30

	Porting to NDIS 6.20
	Porting NDIS 6.x Drivers to NDIS 6.20
	NDIS 6.20 Backward Compatibility
	NDIS 6.20 Updates to NDIS 6.1 Features
	Obsolete Interfaces in NDIS 6.20
	Summary of Changes Required to Port a Miniport Driver to NDIS 6.20
	Summary of Changes Required to Port a Protocol Driver to NDIS 6.20
	Summary of Changes Required to Port a Filter Driver to NDIS 6.20
	Summary of Changes Required to Port an Intermediate Driver to NDIS 6.20

	NDIS Core Functionality
	NDIS Miniport Drivers
	Roadmap for Developing NDIS Miniport Drivers
	Introduction to NDIS Miniport Drivers
	Types of NDIS Miniport Drivers
	Deserialized NDIS Miniport Drivers
	Serialized NDIS Miniport Drivers
	Connection-Oriented NDIS Miniport Drivers
	NDIS Miniport Drivers with a WDM Lower Edge

	Network Interface Card Support
	Important Features of Miniport Driver Code
	MiniportXxx Functions
	Linking to the NDIS Library
	Miniport Adapter Context
	Virtual Connection Context
	Debugger 2PF KDNET Support
	Network OIDs

	Sample NDIS Miniport Drivers

	Writing NDIS Miniport Drivers
	Initializing a Miniport Driver
	Unloading a Miniport Driver
	Miniport Adapter States and Operations
	Initializing a Miniport Adapter
	Halting a Miniport Adapter
	Starting and Pausing a Miniport Adapter
	Starting and Pausing a Miniport Adapter Overview
	Starting an Adapter
	Pausing an Adapter

	Configuring Optional Miniport Driver Services
	Transferring network data in a miniport driver
	Miniport Driver Send and Receive Operations
	Miniport Driver Buffer Management
	Sending Data from a Miniport Driver
	Canceling a Send Request in a Miniport Driver
	NDIS Poll Mode
	Indicating Received Data from a Miniport Driver

	Managing Interrupts
	Registering and Deregistering Interrupts
	Handling Interrupts
	Synchronizing with Interrupts
	Interrupt Moderation

	Miniport Adapter OIDs
	Miniport Adapter OID Requests
	Miniport Adapter OID Request Serialization
	Handling OID Requests In a Miniport Adapter
	Miniport Adapter Direct OID Requests
	Miniport Adapter Synchronous OID Requests

	Miniport Adapter Status Indications
	Miniport Adapter Device PnP Event Notifications
	Miniport Adapter Check-for-Hang and Reset Operations
	Miniport Adapter Shutdown

	Obtaining and Setting Miniport Driver Information and NDIS Support for WMI
	NDIS Management Information and OIDs
	Querying Miniport Driver Information
	Querying a Connectionless Miniport Driver
	Querying a Connection-Oriented Miniport Driver
	Querying a Miniport Driver Directly From User Mode
	Querying 64-Bit Statistics OIDs

	Setting Miniport Driver Information
	Setting Information for a Connectionless Miniport Driver
	Setting Information for a Connection-Oriented Miniport Driver
	Occasions for Setting Miniport Driver Information

	Reporting Hardware Status
	Indicating Connection Status
	Working with WMI in NDIS Drivers
	NDIS Support for WMI
	Registration and Deregistration of NDIS Miniport Drivers with WMI
	Mapping of GUIDs to OIDs and Miniport Driver Status
	Support for Named VCs
	NDIS-Supported WMI Operations
	Standard WMI OIDs and Status Indications
	Standard Miniport Driver OIDs Registered with WMI
	Standard Miniport Driver Status Indications Registered with WMI

	Creating Custom OIDs and Status Indications
	Customized OIDs and Status Indications
	Filling in an NDIS_GUID Structure
	Including a MOF File

	NDIS WMI GUIDs
	GUID_NDIS_STATUS_LINK_STATE
	GUID_NDIS_STATUS_OPER_STATUS
	GUID_NDIS_STATUS_NETWORK_CHANGE
	GUID_NDIS_STATUS_PACKET_FILTER
	GUID_NDIS_STATUS_MEDIA_SPECIFIC_INDICATION_EX
	GUID_NDIS_GEN_LINK_STATE
	GUID_NDIS_GEN_STATISTICS
	GUID_NDIS_STATUS_PORT_STATE
	GUID_NDIS_GEN_PORT_STATE
	GUID_NDIS_GEN_ENUMERATE_PORTS
	GUID_NDIS_GEN_PORT_AUTHENTICATION_PARAMETERS
	GUID_NDIS_GEN_LINK_PARAMETERS
	GUID_NDIS_ENUMERATE_ADAPTERS_EX
	GUID_NDIS_GEN_INTERRUPT_MODERATION
	GUID_NDIS_GEN_INTERRUPT_MODERATION_PARAMETERS
	GUID_NDIS_TCP_OFFLOAD_CAPABILITIES
	GUID_NDIS_TCP_OFFLOAD_HW_CAPABILITIES
	GUID_NDIS_TCP_OFFLOAD_ADMIN_SETTINGS
	GUID_NDIS_STATUS_OFFLOAD_CAPABILITIES_CHANGE
	GUID_NDIS_STATUS_OFFLOAD_HW_CAPABILITIES

	NDIS MSI-X
	Overview of NDIS MSI-X
	Preparing for MSI-X
	MSI-X Initialization
	MSI-X Pre-Registration
	MSI-X Resource Filtering
	Registering and Deregistering an MSI Interrupt

	Handling an MSI Interrupt
	Synchronizing with an MSI Interrupt
	Changing the CPU Affinity of MSI-X Table Entries

	NDIS Scatter/Gather DMA
	Plug and Play for NDIS Miniport Drivers
	Exporting a MiniportDevicePnPEventNotify Function
	Handling the Surprise Removal of a NIC
	Handling a Change in the System's Power Source
	NDIS Processing of Plug and Play Events
	Overview of NDIS Processing of Plug and Play Events
	Adding a NIC
	Starting a NIC
	Stopping a NIC
	Removing a NIC
	Processing the Surprise Removal of a NIC
	Processing the Surprise Removal of a NIC (Windows Vista)
	Processing the Surprise Removal of a NIC (Windows 7 and Later Versions)

	Miniport Driver Reset and Halt Functions
	Miniport Driver Hardware Reset
	Miniport Driver Halt Handler

	Miniport Drivers with a WDM Lower Interface
	Overview of Miniport Drivers with a WDM Lower Interface
	Miniport Driver with a WDM Lower Edge
	Registering Miniport Driver Functions for WDM Lower Edge
	Initializing a Miniport Driver with a WDM Lower Edge
	Issuing Commands to Communicate with Devices
	Implementation Tips and Requirements for WDM Lower Edge
	Compile Flags for WDM Lower Edge
	Power Management for WDM Lower Edge
	Installing NDIS-WDM Miniport Drivers

	WAN Miniport Drivers
	Overview of WAN Miniport Drivers
	Choosing a WAN Driver Model
	WAN Driver Models
	CoNDIS WAN Is More Flexible
	CoNDIS WAN Is Less Complex
	Other Benefits of CoNDIS WAN
	Other NDIS Features Available to CoNDIS WAN Drivers

	WAN Architecture
	Overview of the WAN Architecture
	RAS Architecture Overview
	NDISWAN Overview
	WAN Driver Bindings and Connections
	NDISTAPI Overview
	NDPROXY Overview

	Writing CoNDIS WAN Miniport Drivers
	Implementing CoNDIS WAN Miniport Drivers
	WAN-Specific Capabilities of CoNDIS WAN Drivers
	Registering CoNDIS WAN Drivers
	Registering the WAN Address Family
	Handling Queries in a CoNDIS WAN Miniport Driver
	Setting CoNDIS WAN Miniport Driver Information
	Sending Packets from a CoNDIS WAN Miniport Driver
	Indicating Received Data from a CoNDIS WAN Miniport Driver
	Indicating CoNDIS WAN Miniport Driver Status

	Telephonic Services in CoNDIS WAN Miniport Drivers
	CoNDIS WAN Operations that Support Telephonic Services
	CoNDIS TAPI Registration
	CoNDIS TAPI Initialization
	Making Outgoing Calls
	Accepting Incoming Calls
	CoNDIS TAPI Shutdown
	Call Manager Requirements for Voice Streaming
	Responding to an OID_CO_TAPI_LINE_CAPS Query
	Specifying Parameters for an Outgoing Call
	Specifying Parameters for an Incoming Call

	Non-WAN-Specific Extensions to Support Telephonic Services Over Connection-Oriented NDIS

	WAN Packet Framing
	WAN Packet Framing Overview
	Asynchronous Framing
	ISDN and Switched 56K Framing

	WAN Miniport Driver Build Parameters

	INF Keywords for Network Devices
	Standardized INF Keywords for Network Devices
	Enumeration Keywords
	Keywords That Can Be Edited
	Keywords Not Displayed in the User Interface

	NDIS Protocol Drivers
	Roadmap for Developing NDIS Protocol Drivers
	Introduction to NDIS Protocol Drivers
	Writing NDIS Protocol Drivers
	Initializing a Protocol Driver
	Protocol Binding States and Operations
	Binding to an Adapter
	Unbinding from an Adapter
	Starting and Pausing a Protocol Binding
	Starting and Pausing a Binding
	Restarting a Binding
	Pausing a Binding

	Configuring Optional Protocol Driver Services
	Transferring network data in a protocol driver
	Protocol Driver Send and Receive Operations
	Protocol Driver Buffer Management
	Sending Data from a Protocol Driver
	Receiving Data in Protocol Drivers

	Protocol Driver OIDs
	Protocol Driver OID Requests
	Generating OID Requests from an NDIS Protocol Driver
	Protocol Driver Direct OID Requests
	Protocol Driver Synchronous OID Requests

	Handling Status Indications in a Protocol Driver
	Handling PnP Event Notifications in a Protocol Driver

	NDIS protocol driver installation
	Protocol Driver Design Concepts
	Pageable and Discardable Code in a Protocol Driver
	Protocol Driver Reset Operations
	Handling PnP Events and Power Management Events in a Protocol Driver
	Send and Receive Operations in Protocol Drivers
	OID Request Operations in a Protocol Driver
	Status Indications in a Protocol Driver

	NDIS Filter Drivers
	Roadmap for Developing NDIS Filter Drivers
	Introduction to NDIS Filter Drivers
	Getting started with NDIS Filter Drivers
	Filter Driver Characteristics
	Filter Driver Services
	Types of Filter Drivers
	Mandatory Filter Drivers

	Writing NDIS Filter Drivers
	Initializing a Filter Driver
	Unloading a Filter Driver
	Filter Module States and Operations
	Attaching a Filter Module
	Detaching a Filter Module
	Starting and Pausing Filter Modules
	Starting and Pausing a Filter Module
	Starting a Filter Module
	Pausing a Filter Module

	Data Bypass Mode
	Configuring Optional Filter Driver Services
	Transferring network data in a filter module
	Filter Module Send and Receive Operations
	Filter Driver Buffer Management
	Sending Data from a Filter Driver
	Canceling a Send Request in a Filter Driver
	Receiving Data in a Filter Driver

	Filter Module OIDs
	Filter Module OID Requests
	Filtering OID Requests in an NDIS Filter Driver
	Generating OID Requests from an NDIS Filter Driver
	Filter Module Direct OID Requests
	Filter Module Synchronous OID Requests

	Filter Module PnP Event Notifications
	Filter Module Status Indications

	Installing NDIS filter drivers
	NDIS Filter Driver Installation
	Specifying Filter Driver Binding Relationships
	Filter Drivers INF file settings
	INF File Settings for Filter Drivers
	Configuring an INF File for a Monitoring Filter Driver
	Configuring an INF File for a Modifying Filter Driver

	Accessing Configuration Information for a Filter Driver

	NDIS Intermediate Drivers
	NDIS Intermediate Drivers Guide
	Roadmap for Developing NDIS Intermediate Drivers
	Introduction to NDIS Intermediate Drivers
	NDIS Intermediate Drivers Overview
	NDIS Filter Intermediate Drivers
	NDIS MUX Intermediate Drivers

	Writing NDIS Intermediate Drivers
	Getting started writing NDIS Intermediate Drivers
	Initializing an Intermediate Driver
	Initializing a Miniport-Intermediate Driver
	Unloading an Intermediate Driver
	Initializing a Virtual Miniport
	Halting a Virtual Miniport

	Designing an NDIS Intermediate Driver
	Intermediate Driver Design Concepts
	Intermediate Driver Entry and Registration
	Intermediate Driver DriverEntry Function
	Registering as an NDIS Intermediate Driver
	Registering an Intermediate Driver as a Miniport Driver
	Registering an Intermediate Driver as a Protocol

	Intermediate Driver Dynamic Bindings
	Dynamic Binding in an Intermediate Driver
	Intermediate Driver Binding Operations
	Opening an Adapter Underlying an Intermediate Driver
	Initializing Virtual Miniports
	Intermediate Driver Unbinding Operations

	Query and Set Operations in an Intermediate Driver
	Intermediate Driver Query and Set Operations
	Issuing Set and Query Requests from an Intermediate Driver
	Responding to Sets and Queries in an Intermediate Driver

	Intermediate Driver Network Data Management
	Receiving Data in an Intermediate Driver
	Receiving Data in an Intermediate Driver with a Connectionless Lower Edge
	Receiving Data in an Intermediate Driver with a Connection-Oriented Lower Edge
	Indicating Receive Network Data to Higher Level Drivers

	Transmitting Network Data Through an Intermediate Driver
	Intermediate Driver PnP Events and Power Management Events
	Handling PnP Events and Power Management Events in an Intermediate Driver
	Initializing Intermediate Drivers to Handle PnP and Power Management Events
	Handling OID_PNP_Xxx Queries and Sets
	Implementing a ProtocolNetPnPEvent Handler in an Intermediate Driver
	Handling a Set Power Request

	Intermediate Driver Reset Operations
	Status Indications in an Intermediate Driver

	Intermediate Driver Installation
	Installing an Intermediate Driver
	Intermediate Driver UpperRange And LowerRange INF File Entries
	MUX Intermediate Driver Installation
	Intermediate Driver Notify Object

	Connection-Oriented NDIS
	Introduction to Connection-Oriented NDIS
	Connection-Oriented Environment
	AFs, VCs, SAPs, and Parties in CoNDIS
	Using AFs, VCs, SAPs, and Parties
	Address Families
	Virtual Connections
	Service Access Points
	Parties

	Quality of Service
	Differences between MCM Drivers and Call Managers
	MCM Drivers vs. Call Managers
	Differences in Initialization
	Differences in Calls to NdisXxx Functions
	Differences in Virtual Connections

	Connection-Oriented Timing Features
	CoNDIS Registration
	CoNDIS Miniport Driver Registration
	CoNDIS Client Registration
	CoNDIS Call Manager Registration
	CoNDIS MCM Registration

	Connection-Oriented Operations
	Summary of Connection-Oriented Operations
	Connection-Oriented Operations Performed by Clients
	Connection-Oriented Operations Performed by Call Managers
	Connection-Oriented Operations Performed by Miniport Drivers

	Address Families and SAP operations
	Operations on Address Families and SAPs
	Registering and Opening an Address Family
	Registering a SAP
	Deregistering a SAP
	Closing an Address Family
	Closing an Address Family Overview
	Closing a CoNDIS Call Manager or MCM
	Closing an Address Family in a CoNDIS Client

	Operations on VCs
	Creating a VC
	Activating a VC
	Deactivating a VC
	Deleting a VC

	Setting Up a Call
	Making a Call
	Indicating an Incoming Call

	Changing the QoS of an Active VC
	Client-Initiated Request to Change Call Parameters
	Incoming Request to Change Call Parameters

	Adding and Dropping Parties
	Adding a Party to a Multipoint Call
	Dropping a Party from a Multipoint Call
	Incoming Request to Drop a Party from a Multipoint Call

	Transferring network data in CoNDIS
	Sending and receiving data in CoNDIS
	Sending NET_BUFFER Structures from CoNDIS Drivers
	Receiving NET_BUFFER Structures in CoNDIS Drivers

	Tearing Down a Call
	Client-Initiated Request to Close a Call
	Incoming Request to Close a Call

	Obtaining and Setting Information
	Query and Set OID requests
	Querying or Setting Information
	CoNDIS Miniport Driver OID Requests
	CoNDIS Protocol Driver OID Requests
	CoNDIS MCM OID Requests

	Indicating Status in CoNDIS
	Indicating Miniport Driver Status
	CoNDIS Miniport Driver Status Indications
	Handling Status Indications in a CoNDIS Protocol Driver

	Reset

	NDIS Network Interfaces
	Introduction to NDIS Network Interfaces
	About NDIS Network Interfaces
	Overview of NDIS Network Interfaces
	NDIS Network Interface Services
	NDIS Network Interface Architecture
	NDIS Interface Provider Operations
	NDIS Interface Types

	Registering as an Interface Provider
	NDIS Network Interface management
	Managing NDIS Network Interfaces
	NET_LUID Value
	Using a NET_LUID Index
	Network Interface Registration
	Registering a Network Interface
	Allocating an Interface Index
	Network Interface Information

	Deregistering a Network Interface
	Mapping a NET_LUID Value to an Interface Index
	NET_LUID Values for Miniport Adapters and Filter Modules
	Maintaining a Network Interface Stack

	NDIS Interface Provider OID Query and Set Requests
	Handling OID Query and Set Requests in an NDIS Interface Provider
	Handling an Interface Object Query Request
	Handling an Interface Object Set Request

	Mapping of NDIS Network Interfaces to NDIS OIDs
	NDIS MDL Interface
	NDIS_MDL_LINKAGE
	NDIS_MDL_TO_SPAN_PAGES
	NdisGetMdlPhysicalArraySize
	NdisGetNextMdl
	NdisQueryMdl
	NdisQueryMdlOffset

	NDIS packet timestamping
	Overview of NDIS packet timestamping
	Reporting timestamping capabilities
	Attaching timestamps to packets
	NDIS packet timestamping status indications
	NDIS_STATUS_TIMESTAMP_CAPABILITY
	NDIS_STATUS_TIMESTAMP_CURRENT_CONFIG

	Standardized INF keywords for NDIS packet timestamping
	Querying timestamping capabilities and configuration

	NDIS Ports
	Introduction to NDIS Ports
	Overview of NDIS Ports
	Identifying an NDIS Port
	Default NDIS Port
	Types of NDIS Ports
	NDIS Port States

	Allocating an NDIS Port
	Freeing an NDIS Port
	Activating an NDIS Port
	NDIS Port management
	Managing an NDIS Port
	NDIS Port Send and Receive Operations
	Handling NDIS Ports OID Requests
	NDIS Port OID Requests
	Enumerating Ports
	Querying the Port State
	Setting Port Authentication Parameters

	Handling NDIS Ports Status Indications
	Handling NDIS Ports PnP Event Notifications
	NDIS Ports PnP Event Notifications
	Handling the Port Activation PnP Event
	Handling the Port Deactivation PnP Event

	Deactivating an NDIS Port
	Creating NDIS Interfaces for NDIS Ports

	NDIS Power Management
	Power Management for NDIS 6.30
	Power Management (NDIS 6.30)
	NDIS Packet Coalescing
	Introduction to NDIS Packet Coalescing
	Overview of Packet Coalescing
	Packet Coalescing Receive Filters
	Reporting Packet Coalescing Capabilities
	Querying Packet Coalescing Capabilities
	Managing Packet Coalescing Receive Filters
	Guidelines for Managing Packet Coalescing Receive Filters
	Specifying a Packet Coalescing Receive Filter
	Setting a Packet Coalescing Receive Filter
	Using the Filter ID
	Querying Packet Coalescing Receive Filters
	Modifying Packet Coalescing Receive Filters
	Clearing Packet Coalescing Receive Filters
	Handling Packet Coalescing Receive Filters

	Standardized INF Keywords for Packet Coalescing

	NDIS Selective Suspend
	Introduction to NDIS Selective Suspend
	Overview of NDIS Selective Suspend
	Reporting NDIS Selective Suspend Capabilities
	Registering NDIS Selective Suspend Handler Functions
	NDIS Selective Suspend Idle Notifications
	Overview of NDIS Selective Suspend Idle Notifications
	How NDIS Detects Idle Network Adapters
	Handling the NDIS Selective Suspend Idle Notification
	Canceling the NDIS Selective Suspend Idle Notification
	Completing the NDIS Selective Suspend Idle Notification

	Standardized INF Keywords for NDIS Selective Suspend
	NDIS Selective Suspend Implementation Guidelines
	Managing IRP Resources for NDIS Selective Suspend
	Implementing a MiniportIdleNotification Handler Function
	Implementing a USB Idle Request IRP Callback Routine
	Implementing a MiniportCancelIdleNotification Handler Function
	Implementing a USB Idle Request IRP Completion Routine

	NDIS Wake Reason Status Indications
	Overview of NDIS Wake Reason Status Indications
	Reporting Wake Reason Status Indication Capabilities
	Issuing NDIS Wake Reason Status Indications

	Power Management for NDIS 6.20
	NDIS Power Management Overview for NDIS 6.20 and later
	NDIS Power Management Overview
	WOL Methods in NDIS 6.20
	WOL Patterns for NDIS Power Management
	Protocol Offloads for NDIS Power Management

	Standardized INF Keywords for Power Management
	Reporting Power Management Capabilities
	Obtaining and Updating Power Management Parameters
	Adding and Deleting Wake on LAN Patterns
	Obtaining the Current Settings of WOL Patterns
	Adding and Deleting Low Power Protocol Offloads
	Implementing IPv6 NS Offload
	Obtaining the Current Parameter Settings of Low Power Protocol Offloads
	Low Power for Wake on LAN
	Low Power on Media Disconnect
	Power Management Status Indications
	NDIS_STATUS_PM_CAPABILITIES_CHANGE
	NDIS_STATUS_PM_HARDWARE_CAPABILITIES
	NDIS_STATUS_PM_OFFLOAD_REJECTED
	NDIS_STATUS_PM_WOL_PATTERN_REJECTED

	Power Management for NDIS 6.0 and NDIS 6.1
	Required and Optional OIDs for Power Management
	Device Power States for Network Adapters
	Network Wake-Up Events
	About Network Wake-Up Events
	Enabling Wake-Up Events
	Handling Wake-Up Events

	Handling an OID_PNP_QUERY_POWER OID
	Handling an OID_PNP_SET_POWER OID
	Transitioning to a Sleeping State
	Transitioning to the Working State

	Power Management Considerations for Gigabit Ethernet Network Adapters
	Power Management for Old Miniport Drivers
	How NDIS Sets the Power Policy for a Network Adapter
	Avoiding NDIS Power Management Problems

	NDIS QoS for Data Center Bridging
	Introduction to NDIS QoS for Data Center Bridging
	Overview of Data Center Bridging
	Overview of NDIS QoS for Data Center Bridging
	Architecture of NDIS QoS for Data Center Bridging
	NDIS QoS Architecture for Data Center Bridging
	System-Provided DCB Components
	Vendor-Provided DCB Components

	NDIS QoS Requirements for Data Center Bridging
	Traffic Classes
	NDIS QoS Traffic Classes
	Priority Levels and Flow Control
	IEEE 802.1p Priority Levels
	Priority-based Flow Control (PFC)

	Transmission Selection Algorithms (TSAs)
	Strict Priority Algorithm
	Enhanced Transmission Selection (ETS)
	Enhanced Transmission Selection (ETS) Algorithm
	Traffic Class Priority Assignment
	Bandwidth Allocation

	NDIS QoS Traffic Classifications

	Managing NDIS QoS Capabilities
	Registering NDIS QoS Capabilities
	Querying NDIS QoS Capabilities

	Managing NDIS QoS Parameters
	Overview of NDIS QoS Parameters
	Managing the Local DCBX Willing State
	Setting Local NDIS QoS Parameters
	Receiving Remote NDIS QoS Parameters
	Resolving Operational NDIS QoS Parameters
	Querying NDIS QoS Parameters
	NDIS QoS Parameter Status Indication
	Indicating NDIS QoS Parameter Status
	Indicating Changes to the Operational NDIS QoS Parameters
	Indicating Changes to the Remote NDIS QoS Parameters

	Standardized INF Keywords for NDIS QoS

	NDIS Timer Services
	Initializing NDIS Timers
	Setting and Clearing Timers
	Servicing Timers

	Miscellaneous NDIS Functions
	NDIS Configuration Functions
	NDIS Objects
	NDIS I/O Work Items

	Installing and Upgrading Network Components
	Process for installing network components
	Components and Files Used for Network Component Installation
	Creating Network INF Files
	Sections in a Network INF File
	Version Section in a Network INF File
	Manufacturer Section in a Network INF File
	Models Section in a Network INF File
	DDInstall Section in a Network INF File
	Remove Section in a Network INF File
	ControlFlags Section in a Network INF File
	Network INF File Add-registry-sections
	Add-registry-sections in a Network INF File
	Setting Static Parameters
	Specifying WAN Endpoints for a WAN Adapter
	Specifying ISDN Keys and Values for an ISDN Adapter
	Installing a Multiprotocol WAN NIC
	Requiring the Installation of Another Network Component
	Specifying the Name and Provider Path for a NetClient Component
	Adding a HelpText Value
	Adding Registry Values for a Notify Object
	Adding Service-Related Values to the Ndi Key
	Specifying Binding Interfaces
	Specifying Configuration Parameters for the Advanced Properties Page
	Specifying Custom Property Pages for Network Adapters
	Specifying Bundle Membership
	Ndi Values and Keys Not Used in Windows 2000 and Later Versions

	DDInstall.Services Section in a Network INF File
	Network INF File NetworkProvider and PrintProvider Sections
	NetworkProvider and PrintProvider Sections in a Network INF File
	Including a NetworkProvider Section
	Including a PrintProvider Section

	Winsock Sections in a Network INF File

	Installation Requirements for Network Components
	Installation Requirements for Network Adapters
	Installation Requirements for Network Protocols
	Installation Requirements for Network Filter Drivers
	Installation Requirements for Network MUX Intermediate Drivers
	Installation Requirements for Network Filter Intermediate Drivers
	Installation Requirements for Network Clients
	Installation Requirements for Network Services

	Network Component Notify Objects
	Notify Objects for Network Components
	Notify Objects Overview
	About Notify Objects
	Notify Object Diagram
	Processing Notifications
	Installing Network Components
	Removing Network Components
	Upgrading Network Components
	Displaying and Changing Properties
	Configuring the Network

	Notify Object Creation
	Creating a Notify Object
	Loading the Notify Object DLL and Class Object
	Defining a Notify Class
	Creating and Initializing an Instance of a Notify Object
	Installing, Upgrading, and Removing the Component
	Creating Property Pages for the Component
	Setting Context to Display Properties
	Network Configuration Changes
	Evaluating Changes to Network Configuration
	Adding a Component
	Changing Bindings for a Component

	Applying Component Changes to the Registry
	Configuring the Component's Driver
	Retrieving Network Configuration Interface Pointers

	Upgrading network components
	Process for upgrading network components
	Network Upgrade Process Customization
	Customizing the Network Upgrade Process
	Creating a Netupg.inf File

	Network Upgrade Process Overview
	The Network Upgrade Process
	Winnt32 Phase of the Network Upgrade Process
	Text Mode Phase of the Network Upgrade Process
	GUI Mode Phase of the Network Upgrade Process

	Writing a Network Migration DLL
	Netmap.inf File Creation
	Creating a Netmap.inf File
	Netmap.inf File ID Mapping
	Mapping IDs in a Netmap.inf File
	One-to-One ID Mapping
	One-to-Many ID Mapping

	Specifying the Upgrade DLL in a Netmap.inf File
	Specifying Alternative Help Message Files in a Netmap.inf File

	Testing the Upgrade of Network Components
	Setting Up the Test System
	Running the Upgrade Test and Examining the Results
	Examining the AnswerFile

	NDIS core functionality OIDs
	NDIS general statistics OIDs
	NDIS network interface OIDs
	Mandatory OIDs for miniport drivers
	Ethernet statistics OIDs
	Connection-oriented OIDs
	General operational OIDs for connection-oriented miniport drivers
	General statistics OIDs for connection-oriented miniport drivers
	OIDs for connection-oriented call managers and clients
	TAPI extension OIDs for connection-oriented NDIS

	NDIS core functionality status indications
	NDIS General Status Indications
	NDIS_STATUS_MEDIA_CONNECT
	NDIS_STATUS_MEDIA_DISCONNECT
	NDIS_STATUS_RESET_START
	NDIS_STATUS_RESET_END
	NDIS_STATUS_MEDIA_BUSY
	NDIS_STATUS_MEDIA_SPECIFIC_INDICATION
	NDIS_STATUS_LINK_SPEED_CHANGE
	NDIS_STATUS_LINK_STATE
	NDIS_STATUS_PORT_STATE
	NDIS_STATUS_OPER_STATUS
	NDIS_STATUS_NETWORK_CHANGE
	NDIS_STATUS_PACKET_FILTER

	Receive Filter Status Indications
	NDIS_STATUS_RECEIVE_FILTER_CURRENT_CAPABILITIES
	NDIS_STATUS_RECEIVE_FILTER_HARDWARE_CAPABILITIES

	NDIS QoS Status Indications
	NDIS_STATUS_QOS_OPERATIONAL_PARAMETERS_CHANGE
	NDIS_STATUS_QOS_REMOTE_PARAMETERS_CHANGE

	NDIS Wake Reason Status Indications
	NDIS_STATUS_PM_WAKE_REASON

	NDIS WAN Status Indications
	NDIS_STATUS_WAN_LINE_UP
	NDIS_STATUS_WAN_LINE_DOWN
	NDIS_STATUS_WAN_FRAGMENT
	NDIS_STATUS_TAPI_INDICATION
	NDIS_STATUS_RING_STATUS
	NDIS_STATUS_WW_INDICATION
	NDIS_STATUS_WAN_CO_FRAGMENT
	NDIS_STATUS_WAN_CO_LINKPARAMS
	NDIS_STATUS_WAN_CO_MTULINKPARAMS

	Scalable Networking
	Header-Data Split
	Introduction to Header-Data Split
	Header-Data Split Overview
	Header-Data Split Architecture
	Where to Split Header and Data
	Cases Where Header-Data Split Is Not Used
	Minimum Requirements for Supporting Header-Data Split
	Header-Data Split Status Indications
	NDIS_STATUS_HD_SPLIT_CURRENT_CONFIG

	Initializing a Header-Data Split Provider
	Splitting Ethernet Frames
	Splitting Ethernet Frames Overview
	Splitting IPv4 Frames
	Splitting IPv6 Frames
	Splitting Fragmented IP Frames
	Splitting Frames at the Beginning of the Upper-Layer-Protocol Headers
	Splitting Frames at the TCP Payload
	Splitting Frames at the UDP Payload
	Splitting Frames Other Than TCP and UDP
	Splitting ICMP Frames and Other Upper-Layer-Protocol Frames
	Splitting IPsec Frames

	Header-Data Split Receive Indication
	Receive Indications with Header-Data Split
	Allocating the Header Buffer
	Allocating Backfill for the Data Buffer
	Setting NET_BUFFER_LIST Information

	Header-Data Split Administration and Configuration
	Setting the Current Header-Data Split Configuration
	Getting the Current Header-Data Split Configuration
	Standardized INF Keywords for Header-Data Split
	WMI Support for Header-Data Split

	Supporting Header-Data Split in Protocol Driver and Filter Drivers

	Network Direct Kernel Provider Interface (NDKPI)
	Overview of Network Direct Kernel Provider Interface (NDKPI)
	NDKPI Terminology
	Background Reading on RDMA
	Initializing an NDK-Capable Miniport Driver
	Initializing an NDK Miniport Adapter
	Implementing NDKPI Functions
	INF Requirements for NDKPI
	Enabling and Disabling NDK Functionality
	NDKPI Object Lifetime Requirements
	NDKPI Listeners, Connectors, and Endpoints
	NDKPI Completion Handling Requirements
	NDKPI Work Request Posting Requirements
	NetworkDirect Disconnect Scheme
	NDKPI Deferred Processing Scheme

	Network Virtualization using Generic Routing Encapsulation (NVGRE) Task Offload
	About Network Virtualization using Generic Routing Encapsulation (NVGRE)
	Overview of Network Virtualization using Generic Routing Encapsulation (NVGRE) Task Offload
	Supporting NVGRE in Large Send Offload (LSO)
	Supporting NVGRE in UDP Segmentation Offload (USO)
	Supporting NVGRE in Checksum Offload
	Supporting NVGRE in RSS and VMQ Receive Task Offloads
	Locating the Transport Header for Encapsulated Packets in the Receive Path
	Determining the NVGRE Task Offload Capabilities of a Network Adapter
	Querying and Changing NVGRE Task Offload State
	Standardized INF Keywords for NVGRE Task Offload

	Receive Segment Coalescing (RSC)
	About Receive Segment Coalescing (RSC)
	Overview of Receive Segment Coalescing
	Rules for Coalescing TCP/IP Segments
	Updating the IP Headers for Coalesced Segments
	Examples of Receive Segment Coalescing
	Indicating Coalesced Segments
	Exception Conditions that Terminate Coalescing

	Writing RSC Drivers
	Determining the RSC Capabilities of a Network Adapter
	Querying and Changing RSC State
	Standardized INF Keywords for RSC
	Programming Considerations for RSC Drivers

	UDP Receive Segment Coalescing Offload (URO)

	Receive Side Scaling
	Introduction to Receive Side Scaling
	Receive Side Scaling Version 2 (RSSv2)
	Non-RSS Receive Processing
	RSS with a Single Hardware Receive Queue
	RSS with Hardware Queuing
	RSS with Message Signaled Interrupts
	RSS Hashing Types
	RSS Hashing Functions
	Verifying the RSS Hash Calculation
	RSS Configuration
	Setting the RSS CPU Configuration
	Reserving Processors for Applications
	Setting the Number of RSS Processors

	Standardized INF Keywords for RSS
	Indicating RSS Receive Data
	Supporting RSS in Intermediate Drivers or Filter Drivers
	Virtual Machine Multiple Queues (VMMQ)
	Overview of Virtual Machine Multiple Queues (VMMQ)
	VMMQ send and receive processing
	Advertising VMMQ capabilities
	Standardized INF keywords for VMMQ
	Allocating VPorts for VMMQ
	Enabling, disabling, and updating VMMQ on a VPort

	TCP/IP Offload
	TCP/IP Offload Overview
	Accessing TCP/IP Offload NET_BUFFER_LIST Information
	Using the TCP/IP Offload Administrator Interface
	Security Guidelines for Offload-Capable Miniport Drivers
	Security Guidelines for Offload-Capable Miniport Drivers Overview
	Vulnerability to Security Attacks in NDIS Drivers
	Performance Degradation and Denial of Service Attacks in NDIS Drivers
	Added Costs for Testing Vulnerable NDIS Drivers
	Security Checklist for NDIS Drivers

	TCP/IP Task Offload
	TCP/IP Task Offload Overview
	Reporting Task Offload Capabilities
	Determining Task Offload Capabilities
	Reporting a NIC's Checksum Capabilities
	Reporting a NIC's LSOV1 TCP-Packet-Segmentation Capabilities
	Reporting a NIC's LSOV2 TCP-Packet-Segmentation Capabilities
	Reporting a NIC's IPsec Capabilities

	Enabling and Disabling Task Offload Services
	Determining the Current Task Offload Settings
	Combining Types of Task Offloads
	Using Registry Values to Enable and Disable Task Offloading
	Offloading Checksum Tasks
	IPsec Offload Version 1
	Offloading the Processing of ESP-Protected and AH-Protected Packets
	Background Reading on IPsec
	Requirements and Restrictions That Apply to IPsec Offloads
	Adding a Security Association to a NIC
	Deleting a Security Association from a NIC
	Offloading IPsec Tasks in the Send Path
	Offloading IPsec Tasks in the Receive Path
	Impact of Network Interface Changes on IPsec Offloads

	Offloading the Processing of UDP-Encapsulated ESP Packets
	Traversing NATs and NAPTs with UDP-Encapsulated ESP Packets
	UDP-ESP Encapsulation Types
	Reporting, Enabling, and Disabling a NIC’s Ability to Parse UDP-ESP Packets
	UDP-ESP SAs and Parser Entries
	Processing UDP-Encapsulated ESP Packets

	IPsec Offload Version 2
	Introduction to IPsec Offload Version 2
	Reporting a NIC's IPsec Offload Version 2 Capabilities
	Accessing NET_BUFFER_LIST Information in IPsec Offload Version 2
	Managing Security Associations in IPsec Offload Version 2
	Sending Network Data with IPsec Offload Version 2
	Receiving Network Data with IPsec Offload Version 2

	Offloading the Segmentation of Large TCP Packets
	UDP Segmentation Offload (USO)

	Connection Offload
	Connection Offload Overview
	Determining Connection Offload Capabilities
	Reporting a NIC's Connection Offload Capabilities
	Enabling and Disabling Connection Offload Services
	Determining the Current Connection Offload Settings
	Using Registry Values to Enable and Disable Connection Offloading
	Offloading TCP/IP Connections

	Task offload OIDs
	NDIS TCP/IP Offload Status Indications
	NDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG
	NDIS_STATUS_TASK_OFFLOAD_HARDWARE_CAPABILITIES
	NDIS_STATUS_OFFLOAD_ENCASPULATION_CHANGE
	NDIS_STATUS_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES

	PacketDirect Provider Interface (PDPI) Status Indications
	NDIS_STATUS_PD_CURRENT_CONFIG

	Virtualized Networking
	Virtualized Networking Topics
	Virtualized Networking Concepts and Terms
	Overview of Virtualized Networking
	Overview of Hyper-V
	Virtualized Networking Interfaces in Hyper-V
	Single Root I/O Virtualization (SR-IOV) Interface
	Virtual Machine Queue (VMQ) Interface
	Hyper-V Extensible Switch Interface

	Potential Performance Bottlenecks in an NDIS Virtualized Networking Environment

	Single Root I/O Virtualization (SR-IOV)
	Introduction to Single Root I/O Virtualization (SR-IOV)
	SR-IOV Overview
	Overview of Single Root I/O Virtualization (SR-IOV)
	SR-IOV Architecture and Components
	SR-IOV Architecture
	SR-IOV Physical Function (PF)
	SR-IOV Virtual Functions (VFs)
	NIC Switches
	Virtual Ports (VPorts)

	SR-IOV Data Paths and Failover
	SR-IOV Data Paths
	Overview of SR-IOV Data Paths
	SR-IOV VF Data Path
	SR-IOV Synthetic Data Path
	SR-IOV VF Failover and Live Migration Support

	Writing SR-IOV PF Miniport Drivers
	Writing SR-IOV PF Miniport Drivers Overview
	PF Miniport Driver Initialization
	Initializing a PF Miniport Driver Topics
	Determining SR-IOV Capabilities
	Determining NIC Switch Capabilities
	Determining Receive Filtering Capabilities
	PF Miniport Drivers Initialization Sequence
	Initialization Sequence for PF Miniport Drivers
	DriverEntry Guidelines for PF Miniport Drivers
	MiniportAddDevice Guidelines for PF Miniport Drivers
	MiniportInitializeEx Guidelines for PF Miniport Drivers

	NIC Switch Management
	Managing NIC Switches
	NIC Switch Creation
	Creating a NIC Switch
	Static Creation of a NIC Switch
	Dynamic Creation of a NIC Switch
	Handling the OID_NIC_SWITCH_CREATE_SWITCH Request

	Deleting a NIC Switch
	Enumerating NIC Switches on a Network Adapter
	Querying the Parameters of a NIC Switch
	Setting the Parameters of a NIC Switch

	Virtual Port Management
	Managing Virtual Ports
	Creating a Virtual Port
	Deleting a Virtual Port
	Enumerating Virtual Ports on a Network Adapter
	Querying the Parameters of a Virtual Port
	Setting the Parameters of a Virtual Port
	Virtual Port Receive Filter Management
	Managing the Receive Filters for a Virtual Port
	Setting a Receive Filter on a Virtual Port
	Clearing a Receive Filter on a Virtual Port
	Moving a Receive Filter to a Virtual Port
	Enumerating Receive Filters on a Virtual Port

	Symmetric and Asymmetric Assignment of Queue Pairs
	Packet Flow over a Virtual Port
	Nondefault Virtual Ports and VMQ

	Virtual Function Management
	Managing Virtual Functions
	Virtual Function Initialization and Teardown
	Overview of Virtual Function Initialization and Teardown
	Virtual Function Initialization Sequence
	Virtual Function Teardown Sequence

	Virtual Function Resource Allocation
	Allocating Resources for a Virtual Function
	Issuing OID_NIC_SWITCH_ALLOCATE_VF Requests
	Handling OID_NIC_SWITCH_ALLOCATE_VF Requests

	Virtual Function Resource Freeing
	Freeing Resources for a Virtual Function
	Issuing OID_NIC_SWITCH_FREE_VF Requests
	Handling OID_NIC_SWITCH_FREE_VF Requests

	Enumerating Virtual Functions on a Network Adapter
	Querying the Parameters of a Virtual Function
	Querying and Setting the PCI Configuration Space of a Virtual Function
	Accessing the PCI Configuration Space of a Virtual Function
	Querying the PCI Configuration Space for a Virtual Function
	Querying the PCI Vendor and Device Identifiers for a Virtual Function
	Querying the PCI Base Address Registers of a Virtual Function
	Setting the PCI Configuration Data of a Virtual Function

	Setting the Power State of a Virtual Function
	Resetting a Virtual Function

	Halting a PF Miniport Driver
	PF Miniport Drivers INF Files
	INF Requirements for PF Miniport Drivers
	Standardized INF Keywords for SR-IOV
	INF DDInstall.HW Section for PF Miniport Drivers
	Handling SR-IOV, VMQ, and RSS Standardized INF Keywords

	Writing SR-IOV VF Miniport Drivers
	Writing SR-IOV VF Miniport Drivers Overview
	Initializing a VF Miniport Driver
	Halting a VF Miniport Driver
	INF Requirements for VF Miniport Drivers

	SR-IOV PF/VF Backchannel Communication
	SR-IOV PF/VF Backchannel Communication Overview
	Backchannel Communication from a VF Miniport Driver
	Backchannel Communication from the PF Miniport Driver

	SR-IOV OIDs
	SR-IOV Status Indications
	NDIS_STATUS_NIC_SWITCH_CURRENT_CAPABILITIES
	NDIS_STATUS_NIC_SWITCH_HARDWARE_CAPABILITIES

	Virtual Machine Queue (VMQ)
	VMQ Architecture
	Virtual Machine Queue (VMQ) Overview
	Introduction to NDIS Virtual Machine Queue (VMQ)
	VMQ Components
	VMQ Receive Queues
	VMQ Receive Filters
	Security Issues with NDIS Virtual Machine (VM) Shared Memory
	NDIS VMQ Live Migration Support
	NDIS Virtual Machine Queue States

	Writing VMQ Drivers
	Getting Started Writing VMQ Drivers
	Configuring VMQ Drivers
	VMQ Driver Configuration
	Determining the VMQ Capabilities of a Miniport Adapter
	Standardized INF Keywords for VMQ

	Queue States and Operations
	VMQ Interrupt Requirements
	VM Queue Allocation and Freeing
	Allocating and Freeing VM Queues
	Allocating a VM Queue
	Freeing a VM Queue
	Shared Memory Resource Allocation
	Enumerating the Allocated Queues

	VMQ Filters
	Setting and Clearing VMQ Filters
	Setting a VMQ Filter
	Clearing a VMQ Filter
	Enumerating Filters on a VMQ

	Obtaining and Updating VM Queue Parameters
	Transferring network data with VMQ
	VMQ Send and Receive Operations
	VMQ Filter Operations
	Shared Memory in Receive Buffers
	VMQ Receive Path
	VMQ Transmit Path

	Obtaining VMQ Information

	Hyper-V Extensible Switch
	Introduction to Hyper-V Extensible Switch
	Getting Started Writing a Hyper-V Extensible Switch Extension
	Overview of the Hyper-V Extensible Switch
	Hyper-V Extensible Switch Architecture
	Hyper-V Extensible Switch Architecture Topics
	Hyper-V Extensible Switch Components
	Hyper-V Extensible Switch Components Overview
	Hyper-V Extensible Switch Extensions
	Hyper-V Extensible Switch Extensions Overview
	Capturing Extensions
	Filtering Extensions
	Forwarding Extensions
	Teaming Provider Extensions
	Hybrid Forwarding

	Hyper-V Extensible Switch Ports
	Hyper-V Extensible Switch Ports Topics
	Overview of Hyper-V Extensible Switch Ports
	Validation Ports
	Operational Ports

	Hyper-V Extensible Switch Network Adapters Topics
	Hyper-V Extensible Switch Network Adapters
	Overview of Hyper-V Extensible Switch Network Adapters
	External Network Adapters
	Types of Physical Network Adapter Configurations
	Internal Network Adapters
	Virtual Machine Network Adapters
	Network Adapter Index Values

	Hyper-V Extensible Switch Port and Network Adapter States

	Hyper-V Extensible Switch Data Path
	Hyper-V Extensible Switch Data Path Topics
	Overview of the Hyper-V Extensible Switch Data Path
	Overview of the Hyper-V Extensible Switch Data Path
	Packet Flow through the Extensible Switch Data Path
	Packet Management Guidelines for the Extensible Switch Data Path

	Hyper-V Extensible Switch Forwarding Context
	Hyper-V Extensible Switch Forwarding Context Overview
	Hyper-V Extensible Switch Forwarding Context Data Types
	Managing the Hyper-V Extensible Switch Forwarding Context

	Hyper-V Extensible Switch Send and Receive Flags

	Hyper-V Extensible Switch Control Path
	Hyper-V Extensible Switch Control Path Topics
	Hyper-V Extensible Switch Control Path for OID Requests
	Hyper-V Extensible Switch Control Path for NDIS Status Indications

	Hyper-V Extensible Switch Policies
	Hyper-V Extensible Switch Policies Topics
	Overview of Hyper-V Extensible Switch Policies
	Hyper-V Extensible Switch Policies for Ports
	Port Policies
	Overview of Port Policies
	Custom Port Property Definition and Registration

	Hyper-V Extensible Switch Policies for Switches
	Switch Policies
	Overview of Switch Policies
	Custom Switch Property Definition and Registration

	Hyper-V Extensible Switch Feature Status Information
	Hyper-V Extensible Switch Feature Status Information Overview
	Custom Port Feature Status
	Custom Switch Feature Status

	Hyper-V Extensible Switch Save and Restore Operations
	Hyper-V Extensible Switch Save and Restore Operations Overview
	Hyper-V Extensible Switch Save Operations
	Hyper-V Extensible Switch Restore Operations
	Hyper-V Extensible Switch Live Migration Support

	Writing Hyper-V Extensible Switch Extensions
	Writing Hyper-V Extensible Switch Extensions Topics
	Transferring Network Data with Hyper-V Extensible Switch
	Hyper-V Extensible Switch Send and Receive Operations
	Originating Packet Traffic
	Cloning Packet Traffic
	Forwarding Packets to Hyper-V Extensible Switch Ports

	Handling Hyper-V Extensible Switch OIDs
	Hyper-V Extensible Switch OID Requests
	Querying the Hyper-V Extensible Switch Configuration
	Receiving OID Requests about Hyper-V Extensible Switch Configuration Changes
	Forwarding OID Requests from a Hyper-V Child Partition

	Hyper-V Extensible Switch Source and Destination Port Data Management
	Managing Hyper-V Extensible Switch Source and Destination Port Data
	Hyper-V Extensible Switch Source Port Data Management
	Managing Hyper-V Extensible Switch Source Port Data
	Querying a Packet's Extensible Switch Source Port Data
	Modifying a Packet's Extensible Switch Source Port Data

	Hyper-V Extensible Switch Destination Port Data Management
	Managing Hyper-V Extensible Switch Destination Port Data
	Querying a Packet's Extensible Switch Destination Port Data
	Adding Extensible Switch Destination Port Data to a Packet
	Excluding Packet Delivery to Extensible Switch Destination Ports

	Hyper-V Extensible Switch Policy Management
	Managing Hyper-V Extensible Switch Policies
	Managing Port Policies
	Managing Switch Policies

	Hyper-V Extensible Switch Feature Status Information Management
	Managing Hyper-V Extensible Switch Feature Status Information
	Managing Custom Port Feature Status Information
	Managing Custom Switch Feature Status Information

	Managing Hyper-V Extensible Switch Run-Time Data
	Physical Network Adapter Management
	Managing Physical Network Adapters
	Managing Physical Network Adapter Connection Status
	Forwarding Packets to Physical Network Adapters
	OID Requests to Physical Network Adapters
	Managing OID Requests to Physical Network Adapters
	Forwarding OID Requests to Physical Network Adapters
	Managing Hardware Offload OID Requests to Physical Network Adapters

	NDIS Status Indications from Physical Network Adapters
	Managing NDIS Status Indications from Physical Network Adapters
	Forwarding NDIS Status Indications from Physical Network Adapters
	Originating NDIS Status Indications from Physical Network Adapters

	Hyper-V Extensible Switch Extensions Installation
	Installing Hyper-V Extensible Switch Extensions
	INF Requirements for Hyper-V Extensible Switch Extensions
	Extension Driver MSI Packaging Requirements
	Management of Installed Hyper-V Extensible Switch Extensions
	Managing Installed Hyper-V Extensible Switch Extensions
	Enumerating Hyper-V Extensible Switch Instances
	Enumerating Hyper-V Extensible Switch Extensions
	Enabling Hyper-V Extensible Switch Extensions
	Disabling Hyper-V Extensible Switch Extensions
	Reordering Hyper-V Extensible Switch Extensions

	Hyper-V Extensible Switch OIDs
	Hyper-V Extensible Switch Status Indications
	Overview
	NDIS_STATUS_SWITCH_NIC_STATUS
	NDIS_STATUS_SWITCH_PORT_REMOVE_VF

	VMQ Status Indications
	NDIS_STATUS_ISOLATION_PARAMETERS_CHANGE
	NDIS_STATUS_RECEIVE_FILTER_QUEUE_PARAMETERS
	NDIS_STATUS_RECEIVE_QUEUE_STATE

	Wireless Networking
	Mobile Broadband (MB) Design Guide
	Cellular Architecture
	Roadmap to Develop MB Miniport Drivers
	MB Interface Model
	MB Interface Model Overview
	MB Interface Terms
	MB Union Function Descriptors
	MB Identity Morphing
	Introduction to MB Identity Morphing
	MB Identity Morphing Solution Overview
	MB Identity Morphing Solution Details

	MB Interface Model Supplement

	MB Driver Model
	MB Interface Overview
	MB / NDIS 6.20 Interfacing Overview
	MB Data Model
	MB Operational Semantics
	MB Driver Model Versioning
	Introduction to the Mobile Broadband (MBB) WDF class extension (MBBCx)
	MB Driver Stack, Suspend, and Resume
	MB Miniport driver INF Requirements
	MB Miniport Driver Types
	MB Adapter General Attribute Requirements
	MB Raw IP Packet Processing Support
	Guidelines for MB Miniport Driver IP Address Notifications
	MB Miniport driver Error Logging
	MB Miniport Driver Performance Requirements

	MB Device Readiness
	MB Data Connectivity
	Basic Connectivity Log Filter
	MB Service Detection and Activation
	MB Radio State
	MB PIN Operations
	MB PIN Log Filter
	MB Provider Operations
	MB Registration Operations
	MB Packet Service Operations
	MB Signal Strength Operations
	MB Packet Context Management
	MB Multiple PDP Contexts
	MB DNS Updates
	MB SMS Operations
	MB Vendor Specific Operations
	MB USSD Overview
	MB USSD Operations
	MB Device Services
	MB Multimode Multicarrier
	MB Multi-SIM Operations
	MB DSSA Filter
	MB Provisioned Context Operations
	MB Network Blacklist Operations
	MB LTE Attach Operations
	LTE Attach Operation Log Filter
	MB Protocol Configuration Options (PCO) Operations
	MB UICC operations
	MB low level UICC access
	MB UICC application and file system access

	MB eSIM Operations
	MB Firmware Upgrade for eSIM
	Firmware Upgrade for eSIM
	MB modem reset operations

	eSIM Download and Install Log Filter
	eSIM Profile Operations Log Filter
	MB eSIM MBIM ready state guidance
	Access an eSIM in the inactive SIM slot
	MB reset and recovery
	MB Device-based Reset and Recovery
	MB hang detection
	MB Device Reset and Recovery (RnR) trace

	MB SAR Platform Support
	MB base stations information query support
	MB NITZ support
	MB modem logging with DSS
	MB 5G Operations
	MB 5G Operations Overview
	MB 5G Operations Terminology
	Windows 5G MBIM Interface
	NDIS Interface for 5G Data Class Support
	MBIMEx 2.0 – 5G NSA support
	MBIMEx 3.0 – 5G SA Phase 1 support
	MBIMEx 4.0 – 5G SA Phase 2 support

	MB NDIS Status Notifications
	NDIS_STATUS_WWAN_ATR_INFO
	NDIS_STATUS_WWAN_AUTH_RESPONSE
	NDIS_STATUS_WWAN_BASE_STATIONS_INFO
	NDIS_STATUS_WWAN_CONTEXT_STATE
	NDIS_STATUS_WWAN_DEVICE_CAPS
	NDIS_STATUS_WWAN_DEVICE_CAPS_EX
	NDIS_STATUS_WWAN_DEVICE_RESET_STATUS
	NDIS_STATUS_WWAN_DEVICE_SERVICE_EVENT
	NDIS_STATUS_WWAN_DEVICE_SERVICE_RESPONSE
	NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION
	NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_READ
	NDIS_STATUS_WWAN_DEVICE_SERVICE_SESSION_WRITE_COMPLETE
	NDIS_STATUS_WWAN_DEVICE_SERVICE_SUBSCRIPTION
	NDIS_STATUS_WWAN_DEVICE_SERVICE_SUPPORTED_COMMANDS
	NDIS_STATUS_WWAN_DEVICE_SLOT_MAPPINGS
	NDIS_STATUS_WWAN_HOME_PROVIDER
	NDIS_STATUS_WWAN_IP_ADDRESS_STATE
	NDIS_STATUS_WWAN_LTE_ATTACH_CONFIG
	NDIS_STATUS_WWAN_LTE_ATTACH_STATUS
	NDIS_STATUS_WWAN_MODEM_CONFIG_INFO
	NDIS_STATUS_WWAN_MODEM_LOGGING_CONFIG
	NDIS_STATUS_WWAN_MPDP_LIST
	NDIS_STATUS_WWAN_MPDP_STATE
	NDIS_STATUS_WWAN_NETWORK_BLACKLIST
	NDIS_STATUS_WWAN_NETWORK_PARAMS-STATE
	NDIS_STATUS_WWAN_NITZ_INFO
	NDIS_STATUS_WWAN_PACKET_SERVICE
	NDIS_STATUS_WWAN_PCO_STATUS
	NDIS_STATUS_WWAN_PIN_INFO
	NDIS_STATUS_WWAN_PIN_LIST
	NDIS_STATUS_WWAN_PREFERRED_MULTICARRIER_PROVIDERS
	NDIS_STATUS_WWAN_PREFERRED_PROVIDERS
	NDIS_STATUS_WWAN_PRESHUTDOWN_STATE
	NDIS_STATUS_WWAN_PROVISIONED_CONTEXTS
	NDIS_STATUS_WWAN_RADIO_STATE
	NDIS_STATUS_WWAN_READY_INFO
	NDIS_STATUS_WWAN_REGISTER_PARAMS_STATE
	NDIS_STATUS_WWAN_REGISTER_STATE
	NDIS_STATUS_WWAN_SAR_CONFIG
	NDIS_STATUS_WWAN_SAR_TRANSMISSION_STATUS
	NDIS_STATUS_WWAN_SET_HOME_PROVIDER_COMPLETE
	NDIS_STATUS_WWAN_SERVICE_ACTIVATION
	NDIS_STATUS_WWAN_SIGNAL_STATE
	NDIS_STATUS_WWAN_SLOT_INFO_STATUS
	NDIS_STATUS_WWAN_SMS_CONFIGURATION
	NDIS_STATUS_WWAN_SMS_DELETE
	NDIS_STATUS_WWAN_SMS_RECEIVE
	NDIS_STATUS_WWAN_SMS_SEND
	NDIS_STATUS_WWAN_SMS_STATUS
	NDIS_STATUS_WWAN_SUPPORTED_DEVICE_SERVICES
	NDIS_STATUS_WWAN_SYS_CAPS
	NDIS_STATUS_WWAN_UE_POLICY_STATE
	NDIS_STATUS_WWAN_UICC_APP_LIST
	NDIS_STATUS_WWAN_UICC_BINARY_RESPONSE
	NDIS_STATUS_WWAN_UICC_FILE_STATUS
	NDIS_STATUS_WWAN_UICC_RECORD_RESPONSE
	NDIS_STATUS_WWAN_UICC_RESET_INFO
	NDIS_STATUS_WWAN_UICC_TERMINAL_CAPABILITY_INFO
	NDIS_STATUS_WWAN_USSD
	NDIS_STATUS_WWAN_VENDOR_SPECIFIC
	NDIS_STATUS_WWAN_VISIBLE_PROVIDERS

	Supplemental MB Documentation
	Supplemental MB Documentation Topics
	HOST Shutdown Device Service
	IHV Guidance for Implementing Multimode and Multicarrier Capable MB Devices
	Mobile Broadband Device Firmware Update
	Mobile Broadband Implementation Guidelines for USB Devices
	Collecting Mobile Broadband Logs
	Analyzing Mobile Broadband Logs
	Analyzing Mobile Broadband Logs in Wireshark
	TextAnalysisTool Filter Files
	netsh mbn test installation

	WLAN network preference and roaming
	WLAN feature information
	Fast Roaming with 802.11k, 802.11v, and 802.11r

	WLAN Device Driver Interface (WDI) Miniport Driver Design Guide
	WDI Miniport Driver Design Guide
	WDI communication model, synchronization, and abort
	WDI hang detection and recovery
	Hang detection and recovery
	WDI UE hang detection and recovery flow
	WDI UE hang detection: steps 1-14
	WDI reset (surprise remove): steps 15-20
	WDI timings for diagnose call
	WDI LE hang detection
	WDI PLDR

	WDI message structure
	WDI device model and objects
	WDI device initialization
	WDI task command priority and existing state
	Transferring network data with WDI
	WDI data transfer
	WDI receive operations and offloads
	WDI transmit operations and offloads
	WDI datapath architecture
	WDI general datapath interfaces
	WDI RX path
	WDI TX path
	WDI datapath operation sequence diagrams

	IHV component in the WDI model
	IHV component for WDI model
	WDI IHV driver interfaces
	WDI NDIS interface restrictions
	Native WLAN OID to WDI message mapping
	WDI tracing with WDILib
	WDI and collecting information for bugs
	WDI non-TLV versioning
	User-initiated feedback with IHV trace logging
	User-initiated feedback with IHV trace logging overview
	Logging scenarios
	User-initiated feedback - normal mode
	User-initiated feedback - repro mode

	WDI TLV generator/parser
	WDI TLV generator/parser topics
	WDI TLV parser interface overview
	WDI TLV generator interface overview
	WDI TLV generator/parser memory interface
	WDI TLV generator/parser special members
	Adding the WDI TLV generator/parser to your driver
	WDI TLV generator/parser XML semantics and syntax
	WDI TLV versioning
	WDI TLV dumpers

	WDI TLVs
	WDI_TLV_ACCESS_NETWORK_TYPE
	WDI_TLV_ACTION_FRAME_BODY
	WDI_TLV_ACTION_FRAME_DEVICE_CONTEXT
	WDI_TLV_ADAPTER_NLO_SCAN_MODE
	WDI_TLV_ADAPTER_RESUME_REQUIRED
	WDI_TLV_ADDITIONAL_BEACON_IES
	WDI_TLV_ADDITIONAL_IES
	WDI_TLV_ADDITIONAL_PROBE_REQUEST_DEFAULT_IES
	WDI_TLV_ADDITIONAL_PROBE_RESPONSE_IES
	WDI_TLV_ALLOWED_BSSIDS_LIST
	WDI_TLV_ANQP_ELEMENTS
	WDI_TLV_ANQP_QUERY_PARAMETERS
	WDI_TLV_ANQP_QUERY_STATUS
	WDI_TLV_AP_ATTRIBUTES
	WDI_TLV_AP_BAND_CHANNEL
	WDI_TLV_AP_CAPABILITIES
	WDI_TLV_ASSOCIATION_PARAMETERS_REQUESTED_TYPE
	WDI_TLV_ASSOCIATION_REQUEST_DEVICE_CONTEXT
	WDI_TLV_ASSOCIATION_REQUEST_FRAME
	WDI_TLV_ASSOCIATION_REQUEST_IES
	WDI_TLV_ASSOCIATION_RESPONSE_FRAME
	WDI_TLV_ASSOCIATION_RESPONSE_IES
	WDI_TLV_ASSOCIATION_RESPONSE_PARAMETERS
	WDI_TLV_ASSOCIATION_RESPONSE_RESULT_PARAMETERS
	WDI_TLV_ASSOCIATION_RESULT
	WDI_TLV_ASSOCIATION_RESULT_PARAMETERS
	WDI_TLV_AUTH_ALGO_LIST
	WDI_TLV_AUTHENTICATION_RESPONSE_FRAME
	WDI_TLV_BAND_CAPABILITIES
	WDI_TLV_BAND_CHANNEL
	WDI_TLV_BAND_ID_LIST
	WDI_TLV_BAND_INFO
	WDI_TLV_BANDID
	WDI_TLV_BEACON_FRAME
	WDI_TLV_BEACON_IES
	WDI_TLV_BEACON_PROBE_RESPONSE
	WDI_TLV_BITMAP_PATTERN
	WDI_TLV_BITMAP_PATTERN_AND_MASK
	WDI_TLV_BITMAP_PATTERN_MASK
	WDI_TLV_BSS_ENTRY
	WDI_TLV_BSS_ENTRY_AGE_INFO
	WDI_TLV_BSS_ENTRY_CHANNEL_INFO
	WDI_TLV_BSS_ENTRY_DEVICE_CONTEXT
	WDI_TLV_BSS_ENTRY_PHY_INFO
	WDI_TLV_BSS_ENTRY_SIGNAL_INFO
	WDI_TLV_BSS_SELECTION_PARAMETERS
	WDI_TLV_BSSID
	WDI_TLV_BSSID_INFO
	WDI_TLV_CANCEL_PARAMETERS
	WDI_TLV_CHANNEL_INFO_LIST
	WDI_TLV_CHANNEL_LIST
	WDI_TLV_CHANNEL_NUMBER
	WDI_TLV_CHANNEL_WIDTH_LIST
	WDI_TLV_CHECKSUM_OFFLOAD_CAPABILITIES
	WDI_TLV_CHECKSUM_OFFLOAD_V4_RX_PARAMETERS
	WDI_TLV_CHECKSUM_OFFLOAD_V4_TX_PARAMETERS
	WDI_TLV_CHECKSUM_OFFLOAD_V6_RX_PARAMETERS
	WDI_TLV_CHECKSUM_OFFLOAD_V6_TX_PARAMETERS
	WDI_TLV_CIPHER_KEY_BIP_KEY
	WDI_TLV_CIPHER_KEY_BIP_GMAC_256_KEY
	WDI_TLV_CIPHER_KEY_CCMP_KEY
	WDI_TLV_CIPHER_KEY_GCMP_KEY
	WDI_TLV_CIPHER_KEY_GCMP_256_KEY
	WDI_TLV_CIPHER_KEY_ID
	WDI_TLV_CIPHER_KEY_IHV_KEY
	WDI_TLV_CIPHER_KEY_RECEIVE_SEQUENCE_COUNT
	WDI_TLV_CIPHER_KEY_TKIP_INFO
	WDI_TLV_CIPHER_KEY_TKIP_KEY
	WDI_TLV_CIPHER_KEY_TKIP_MIC
	WDI_TLV_CIPHER_KEY_TYPE_INFO
	WDI_TLV_CIPHER_KEY_WEP_KEY
	WDI_TLV_COALESCING_FILTER_MATCH_COUNT
	WDI_TLV_COMMUNICATION_CAPABILITIES
	WDI_TLV_COMMUNICATION_CONFIGURATION_ATTRIBUTES
	WDI_TLV_CONFIGURED_CIPHER_KEY
	WDI_TLV_CONFIGURED_MAC_ADDRESS
	WDI_TLV_CONNECT_BSS_ENTRY
	WDI_TLV_CONNECT_PARAMETERS
	WDI_TLV_CONNECTION_QUALITY_PARAMETERS
	WDI_TLV_CONNECTION_SETTINGS
	WDI_TLV_COUNTRY_REGION_LIST
	WDI_TLV_CREATE_PORT_MAC_ADDRESS
	WDI_TLV_CREATE_PORT_PARAMETERS
	WDI_TLV_CURRENT_CHANNEL_PARAMETERS
	WDI_TLV_DATAPATH_ATTRIBUTES
	WDI_TLV_DATAPATH_CAPABILITIES
	WDI_TLV_DEFAULT_TX_KEY_ID_PARAMETERS
	WDI_TLV_DELETE_CIPHER_KEY_INFO
	WDI_TLV_DELETE_PEER_STATE_PARAMETERS
	WDI_TLV_DELETE_PORT_PARAMETERS
	WDI_TLV_DEVICE_SERVICE_PARAMS_DATA_BLOB
	WDI_TLV_DEVICE_SERVICE_PARAMS_GUID
	WDI_TLV_DEVICE_SERVICE_PARAMS_OPCODE
	WDI_TLV_DISALLOWED_BSSIDS_LIST
	WDI_TLV_DISASSOCIATION_INDICATION_PARAMETERS
	WDI_TLV_DISASSOCIATION_PARAMETERS
	WDI_TLV_DISCONNECT_DEAUTH_FRAME
	WDI_TLV_DISCONNECT_DISASSOCIATION_FRAME
	WDI_TLV_DISCONNECT_PARAMETERS
	WDI_TLV_DOT11_RESET_PARAMETERS
	WDI_TLV_ENABLE_WAKE_EVENTS
	WDI_TLV_ETHERTYPE_ENCAP_TABLE
	WDI_TLV_EXTRA_ASSOCIATION_REQUEST_IES
	WDI_TLV_FIRMWARE_VERSION
	WDI_TLV_FT_AUTH_REQUEST
	WDI_TLV_FT_AUTH_RESPONSE
	WDI_TLV_FT_FTE
	WDI_TLV_FT_INITIAL_ASSOC_PARAMETERS
	WDI_TLV_FT_MDE
	WDI_TLV_FT_PMKR0NAME
	WDI_TLV_FT_R0KHID
	WDI_TLV_FT_R1KHID
	WDI_TLV_FT_REASSOC_PARAMETERS
	WDI_TLV_FT_RSNIE
	WDI_TLV_FT_SNONCE
	WDI_TLV_FTM_NUMBER_OF_MEASUREMENTS
	WDI_TLV_FTM_REQUEST_TIMEOUT
	WDI_TLV_FTM_RESPONSE
	WDI_TLV_FTM_RESPONSE_STATUS
	WDI_TLV_FTM_TARGET_BSS_ENTRY
	WDI_TLV_GET_AUTO_POWER_SAVE
	WDI_TLV_HESSID
	WDI_TLV_HESSID_INFO
	WDI_TLV_HOTSPOT_DOMAIN_PARTNER
	WDI_TLV_HOTSPOT_INDICATION_ELEMENT
	WDI_TLV_IHV_DATA
	WDI_TLV_IHV_NON_WDI_OIDS_LIST
	WDI_TLV_IHV_TASK_DEVICE_CONTEXT
	WDI_TLV_IHV_TASK_REQUEST_PARAMETERS
	WDI_TLV_INCOMING_ASSOCIATION_REQUEST_INFO
	WDI_TLV_INCOMING_ASSOCIATION_REQUEST_PARAMETERS
	WDI_TLV_INDICATION_CAN_SUSTAIN_AP
	WDI_TLV_INDICATION_STOP_AP
	WDI_TLV_INDICATION_WAKE_PACKET
	WDI_TLV_INDICATION_WAKE_PACKET_PATTERN_ID
	WDI_TLV_INDICATION_WAKE_REASON
	WDI_TLV_INTERFACE_ATTRIBUTES
	WDI_TLV_INTERFACE_CAPABILITIES
	WDI_TLV_IPV4_CHECKSUM_OFFLOAD
	WDI_TLV_IPV4_LSO_V2
	WDI_TLV_IPV6_CHECKSUM_OFFLOAD
	WDI_TLV_IPV6_LSO_V2
	WDI_TLV_KCK_CONTENT
	WDI_TLV_KEK_CONTENT
	WDI_TLV_LCI_REPORT_BODY
	WDI_TLV_LCI_REPORT_STATUS
	WDI_TLV_LINK_QUALITY_BAR_MAP
	WDI_TLV_LINK_STATE_CHANGE_PARAMETERS
	WDI_TLV_LOW_LATENCY_CONNECTION_QUALITY_PARAMETERS
	WDI_TLV_LSO_V1_CAPABILITIES
	WDI_TLV_LSO_V2_CAPABILITIES
	WDI_TLV_MAC_STATISTICS
	WDI_TLV_MULTICAST_CIPHER_ALGO_LIST
	WDI_TLV_MULTICAST_DATA_ALGORITHM_LIST
	WDI_TLV_MULTICAST_LIST
	WDI_TLV_MULTICAST_MGMT_ALGORITHM_LIST
	WDI_TLV_NEIGHBOR_REPORT_ENTRY
	WDI_TLV_NETWORK_LIST_OFFLOAD_CONFIG
	WDI_TLV_NETWORK_LIST_OFFLOAD_PARAMETERS
	WDI_TLV_NETWORK_OFFLOAD_CHANNELS
	WDI_TLV_NEXT_DIALOG_TOKEN
	WDI_TLV_OFFLOAD_SCOPE
	WDI_TLV_OPERATING_CLASS
	WDI_TLV_OPERATION_MODE
	WDI_TLV_OS_POWER_MANAGEMENT_FEATURES
	WDI_TLV_OWE_DH_IE
	WDI_TLV_P2P_ACTION_FRAME_DEVICE_CONTEXT
	WDI_TLV_P2P_ACTION_FRAME_IES
	WDI_TLV_P2P_ACTION_FRAME_RESPONSE_PARAMETERS
	WDI_TLV_P2P_ADVERTISED_PREFIX_ENTRY
	WDI_TLV_P2P_ADVERTISED_SERVICE_ENTRY
	WDI_TLV_P2P_ADVERTISED_SERVICES
	WDI_TLV_P2P_ADVERTISEMENT_ID
	WDI_TLV_P2P_ASP2_ADVERTISED_SERVICE_ENTRY
	WDI_TLV_P2P_ASP2_SERVICE_INFORMATION_DISCOVERY_ENTRY
	WDI_TLV_P2P_ATTRIBUTES
	WDI_TLV_P2P_BACKGROUND_DISCOVER_MODE
	WDI_TLV_P2P_CAPABILITIES
	WDI_TLV_P2P_CHANNEL_ENTRY_LIST
	WDI_TLV_P2P_CHANNEL_INDICATE_REASON
	WDI_TLV_P2P_CHANNEL_LIST_ATTRIBUTE
	WDI_TLV_P2P_CHANNEL_NUMBER
	WDI_TLV_P2P_CONFIG_METHODS
	WDI_TLV_P2P_DEVICE_ADDRESS
	WDI_TLV_P2P_DEVICE_CAPABILITY
	WDI_TLV_P2P_DEVICE_FILTER_LIST
	WDI_TLV_P2P_DEVICE_INFO
	WDI_TLV_P2P_DEVICE_INFO_PARAMETERS
	WDI_TLV_P2P_DEVICE_NAME
	WDI_TLV_P2P_DISCOVER_MODE
	WDI_TLV_P2P_DISCOVERED_SERVICE_ENTRY
	WDI_TLV_P2P_DISCOVERY_CHANNEL_SETTINGS
	WDI_TLV_P2P_GO_INTERNAL_RESET_POLICY
	WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_INFO
	WDI_TLV_P2P_GO_NEGOTIATION_CONFIRMATION_PARAMETERS
	WDI_TLV_P2P_GO_NEGOTIATION_REQUEST_INFO
	WDI_TLV_P2P_GO_NEGOTIATION_REQUEST_PARAMETERS
	WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_INFO
	WDI_TLV_P2P_GO_NEGOTIATION_RESPONSE_PARAMETERS
	WDI_TLV_P2P_GROUP_BSSID
	WDI_TLV_P2P_GROUP_ID
	WDI_TLV_P2P_GROUP_OWNER_CAPABILITY
	WDI_TLV_P2P_INCLUDE_LISTEN_CHANNEL
	WDI_TLV_P2P_INCOMING_FRAME_INFORMATION
	WDI_TLV_P2P_INCOMING_FRAME_PARAMETERS
	WDI_TLV_P2P_INSTANCE_NAME
	WDI_TLV_P2P_INSTANCE_NAME_HASH
	WDI_TLV_P2P_INTERFACE_ADDRESS_LIST
	WDI_TLV_P2P_INVITATION_REQUEST_INFO
	WDI_TLV_P2P_INVITATION_REQUEST_PARAMETERS
	WDI_TLV_P2P_INVITATION_RESPONSE_INFO
	WDI_TLV_P2P_INVITATION_RESPONSE_PARAMETERS
	WDI_TLV_P2P_LISTEN_CHANNEL
	WDI_TLV_P2P_LISTEN_DURATION
	WDI_TLV_P2P_LISTEN_STATE
	WDI_TLV_P2P_PERSISTENT_GROUP_ID
	WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_INFO
	WDI_TLV_P2P_PROVISION_DISCOVERY_REQUEST_PARAMETERS
	WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_INFO
	WDI_TLV_P2P_PROVISION_DISCOVERY_RESPONSE_PARAMETERS
	WDI_TLV_P2P_PROVISION_SERVICE_ATTRIBUTES
	WDI_TLV_P2P_RESPONSE_FRAME_PARAMETERS
	WDI_TLV_P2P_SECONDARY_DEVICE_TYPE_LIST
	WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT
	WDI_TLV_P2P_SEND_ACTION_FRAME_RESULT_PARAMETERS
	WDI_TLV_P2P_SEND_ACTION_REQUEST_FRAME_PARAMETERS
	WDI_TLV_P2P_SEND_REQUEST_ACTION_FRAME_RESULT
	WDI_TLV_P2P_SEND_RESPONSE_ACTION_FRAME_RESULT
	WDI_TLV_P2P_SERVICE_INFORMATION
	WDI_TLV_P2P_SERVICE_INFORMATION_DISCOVERY_ENTRY
	WDI_TLV_P2P_SERVICE_INFORMATION_ENTRY
	WDI_TLV_P2P_SERVICE_NAME
	WDI_TLV_P2P_SERVICE_NAME_HASH
	WDI_TLV_P2P_SERVICE_SESSION_INFO
	WDI_TLV_P2P_SERVICE_STATUS
	WDI_TLV_P2P_SERVICE_TRANSACTION_ID
	WDI_TLV_P2P_SERVICE_TYPE
	WDI_TLV_P2P_SERVICE_TYPE_HASH
	WDI_TLV_P2P_SERVICE_UPDATE_INDICATOR
	WDI_TLV_P2P_WPS_ENABLED
	WDI_TLV_PACKET_FILTER_PARAMETERS
	WDI_TLV_PEER_MAC_ADDRESS
	WDI_TLV_PHY_CAPABILITIES
	WDI_TLV_PHY_DATA_RATE_LIST
	WDI_TLV_PHY_INFO
	WDI_TLV_PHY_LIST
	WDI_TLV_PHY_STATISTICS
	WDI_TLV_PHY_SUPPORTED_RX_DATA_RATES_LIST
	WDI_TLV_PHY_SUPPORTED_TX_DATA_RATES_LIST
	WDI_TLV_PHY_TX_POWER_LEVEL_LIST
	WDI_TLV_PHY_TYPE
	WDI_TLV_PHY_TYPE_LIST
	WDI_TLV_PHY_TYPE_LIST (unused)
	WDI_TLV_PLDR_SUPPORT
	WDI_TLV_PM_CAPABILITIES
	WDI_TLV_PM_PROTOCOL_OFFLOAD_80211RSN_REKEY
	WDI_TLV_PM_PROTOCOL_OFFLOAD_GET
	WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv4ARP
	WDI_TLV_PM_PROTOCOL_OFFLOAD_IPv6NS
	WDI_TLV_PM_PROTOCOL_RSN_OFFLOAD_KEYS
	WDI_TLV_PM_PROTOCOL_OFFLOAD_REMOVE
	WDI_TLV_PMKID
	WDI_TLV_PORT_ATTRIBUTES
	WDI_TLV_POWER_MANAGMENT_CAPABILITIES
	WDI_TLV_POWER_STATE
	WDI_TLV_PRIVACY_EXEMPTION_ENTRY
	WDI_TLV_PROBE_RESPONSE_FRAME
	WDI_TLV_PROTOCOL_OFFLOAD_ID
	WDI_TLV_RADIO_STATE
	WDI_TLV_RADIO_STATE_PARAMETERS
	WDI_TLV_RECEIVE_COALESCE_OFFLOAD_CAPABILITIES
	WDI_TLV_RECEIVE_COALESCING_CAPABILITIES
	WDI_TLV_RECEIVE_COALESCING_CONFIG
	WDI_TLV_RECEIVE_FILTER_FIELD
	WDI_TLV_REPLAY_COUNTER
	WDI_TLV_REQUEST_LCI_REPORT
	WDI_TLV_RETRY_AFTER
	WDI_TLV_ROAMING_NEEDED_PARAMETERS
	WDI_TLV_RSN_KEY_INFO
	WDI_TLV_RTT
	WDI_TLV_RTT_ACCURACY
	WDI_TLV_RTT_VARIANCE
	WDI_TLV_SAE_ANTI_CLOGGING_TOKEN
	WDI_TLV_SAE_COMMIT_REQUEST
	WDI_TLV_SAE_COMMIT_RESPONSE
	WDI_TLV_SAE_CONFIRM
	WDI_TLV_SAE_CONFIRM_REQUEST
	WDI_TLV_SAE_CONFIRM_RESPONSE
	WDI_TLV_SAE_ELEMENT
	WDI_TLV_SAE_FINITE_CYCLIC_GROUP
	WDI_TLV_SAE_INDICATION_TYPE
	WDI_TLV_SAE_REQUEST_TYPE
	WDI_TLV_SAE_SCALAR
	WDI_TLV_SAE_SEND_CONFIRM
	WDI_TLV_SAE_STATUS
	WDI_TLV_SAFE_MODE_PARAMETERS
	WDI_TLV_SCAN_DWELL_TIME
	WDI_TLV_SCAN_MODE
	WDI_TLV_SEND_ACTION_FRAME_REQUEST_PARAMETERS
	WDI_TLV_SEND_ACTION_FRAME_RESPONSE_PARAMETERS
	WDI_TLV_SET_AUTO_POWER_SAVE
	WDI_TLV_SET_CIPHER_KEY_INFO
	WDI_TLV_SET_CLEAR_RECEIVE_COALESCING
	WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V4_PARAMETERS
	WDI_TLV_SET_ENCAPSULATION_OFFLOAD_V6_PARAMETERS
	WDI_TLV_SET_POWER_DX_REASON
	WDI_TLV_SET_RECEIVE_COALESCING
	WDI_TLV_SSID
	WDI_TLV_SSID_LIST
	WDI_TLV_SSID_OFFLOAD
	WDI_TLV_START_AP_PARAMETERS
	WDI_TLV_STATION_ATTRIBUTES
	WDI_TLV_STATION_CAPABILITIES
	WDI_TLV_STATUS
	WDI_TLV_SUPPORTED_GUIDS
	WDI_TLV_TCP_OFFLOAD_CAPABILITIES
	WDI_TLV_TCP_RSC_STATISTICS_PARAMETERS
	WDI_TLV_TCP_SET_OFFLOAD_PARAMETERS
	WDI_TLV_TKIP_MIC_FAILURE_INFO
	WDI_TLV_UNICAST_ALGORITHM_LIST
	WDI_TLV_UNICAST_CIPHER_ALGO_LIST
	WDI_TLV_UNREACHABLE_DETECTION_THRESHOLD
	WDI_TLV_VENDOR_SPECIFIC_IE
	WDI_TLV_VIRTUALIZATION_ATTRIBUTES
	WDI_TLV_VIRTUALIZATION_CAPABILITIES
	WDI_TLV_WAKE_PACKET_BITMAP_PATTERN
	WDI_TLV_WAKE_PACKET_BITMAP_PATTERN_ID
	WDI_TLV_WAKE_PACKET_EAPOL_REQUEST_ID_MESSAGE
	WDI_TLV_WAKE_PACKET_IPv4_TCP_SYNC
	WDI_TLV_WAKE_PACKET_IPv6_TCP_SYNC
	WDI_TLV_WAKE_PACKET_MAGIC_PACKET
	WDI_TLV_WAKE_PACKET_PATTERN_REMOVE
	WDI_TLV_WFD_ASSOCIATION_STATUS

	WDI USB Selective Suspend
	WDI USB Selective Suspend Topics
	WDI NDIS idle detection
	WDI and WLAN Selective Suspend capability
	WDI Selective Suspend capability registration
	WDI USB suspend sequence
	WDI USB resume sequence
	WDI USB remote wake sequence

	WDI design guide
	WDI design guide topics
	WDI low latency connection quality
	WDI Extended channel switch announcement (ECSA)
	WDI IHV extensible types
	Develop and validate WDI drivers for Reset Recovery

	WDI Task OIDs
	OID_WDI_TASK_CHANGE_OPERATION_MODE
	OID_WDI_TASK_CLOSE
	OID_WDI_TASK_CONNECT
	OID_WDI_TASK_CREATE_PORT
	OID_WDI_TASK_DELETE_PORT
	OID_WDI_TASK_DISCONNECT
	OID_WDI_TASK_DOT11_RESET
	OID_WDI_TASK_IHV
	OID_WDI_TASK_OPEN
	OID_WDI_TASK_P2P_DISCOVER
	OID_WDI_TASK_P2P_SEND_REQUEST_ACTION_FRAME
	OID_WDI_TASK_P2P_SEND_RESPONSE_ACTION_FRAME
	OID_WDI_TASK_REQUEST_FTM
	OID_WDI_TASK_ROAM
	OID_WDI_TASK_SCAN
	OID_WDI_TASK_SEND_AP_ASSOCIATION_RESPONSE
	OID_WDI_TASK_SEND_REQUEST_ACTION_FRAME
	OID_WDI_TASK_SEND_RESPONSE_ACTION_FRAME
	OID_WDI_TASK_SET_RADIO_STATE
	OID_WDI_TASK_START_AP
	OID_WDI_TASK_STOP_AP

	WDI Property OIDs
	OID_WDI_ABORT_TASK
	OID_WDI_GET_ADAPTER_CAPABILITIES
	OID_WDI_GET_AUTO_POWER_SAVE
	OID_WDI_GET_BSS_ENTRY_LIST
	OID_WDI_GET_NEXT_ACTION_FRAME_DIALOG_TOKEN
	OID_WDI_GET_PM_PROTOCOL_OFFLOAD
	OID_WDI_GET_RECEIVE_COALESCING_MATCH_COUNT
	OID_WDI_GET_STATISTICS
	OID_WDI_GET_SUPPORTED_DEVICE_SERVICES
	OID_WDI_IHV_REQUEST
	OID_WDI_SET_ADAPTER_CONFIGURATION
	OID_WDI_SET_ADD_CIPHER_KEYS
	OID_WDI_SET_ADD_PM_PROTOCOL_OFFLOAD
	OID_WDI_SET_ADD_WOL_PATTERN
	OID_WDI_SET_ADVERTISEMENT_INFORMATION
	OID_WDI_SET_ASSOCIATION_PARAMETERS
	OID_WDI_SET_CLEAR_RECEIVE_COALESCING
	OID_WDI_SET_CONNECTION_QUALITY
	OID_WDI_SET_DEFAULT_KEY_ID
	OID_WDI_SET_DELETE_CIPHER_KEYS
	OID_WDI_SET_ENCAPSULATION_OFFLOAD
	OID_WDI_SET_END_DWELL_TIME
	OID_WDI_SET_FAST_BSS_TRANSITION_PARAMETERS
	OID_WDI_SET_FLUSH_BSS_ENTRY
	OID_WDI_SET_MULTICAST_LIST
	OID_WDI_SET_NEIGHBOR_REPORT_ENTRIES
	OID_WDI_SET_NETWORK_LIST_OFFLOAD
	OID_WDI_SET_P2P_LISTEN_STATE
	OID_WDI_SET_P2P_START_BACKGROUND_DISCOVERY
	OID_WDI_SET_P2P_STOP_BACKGROUND_DISCOVERY
	OID_WDI_SET_P2P_WPS_ENABLED
	OID_WDI_SET_POWER_STATE
	OID_WDI_SET_PRIVACY_EXEMPTION_LIST
	OID_WDI_SET_RECEIVE_COALESCING
	OID_WDI_SET_RECEIVE_PACKET_FILTER
	OID_WDI_SET_REMOVE_PM_PROTOCOL_OFFLOAD
	OID_WDI_SET_REMOVE_WOL_PATTERN
	OID_WDI_SET_SAE_AUTH_PARAMS
	OID_WDI_SET_TCP_OFFLOAD_PARAMETERS
	OID_WDI_TCP_RSC_STATISTICS

	WDI Status Indications
	NDIS_STATUS_WDI_INDICATION_ACTION_FRAME_RECEIVED
	NDIS_STATUS_WDI_INDICATION_AP_ASSOCIATION_REQUEST_RECEIVED
	NDIS_STATUS_WDI_INDICATION_ASSOCIATION_PARAMETERS_REQUEST
	NDIS_STATUS_WDI_INDICATION_ASSOCIATION_RESULT
	NDIS_STATUS_WDI_INDICATION_BSS_ENTRY_LIST
	NDIS_STATUS_WDI_INDICATION_CAN_SUSTAIN_AP
	NDIS_STATUS_WDI_INDICATION_CHANGE_OPERATION_MODE_COMPLETE
	NDIS_STATUS_WDI_INDICATION_CIPHER_KEY_UPDATED
	NDIS_STATUS_WDI_INDICATION_CLOSE_COMPLETE
	NDIS_STATUS_WDI_INDICATION_CONNECT_COMPLETE
	NDIS_STATUS_WDI_INDICATION_CREATE_PORT_COMPLETE
	NDIS_STATUS_WDI_INDICATION_DELETE_PORT_COMPLETE
	NDIS_STATUS_WDI_INDICATION_DEVICE_SERVICE_EVENT
	NDIS_STATUS_WDI_INDICATION_DISASSOCIATION
	NDIS_STATUS_WDI_INDICATION_DISCONNECT_COMPLETE
	NDIS_STATUS_WDI_INDICATION_DOT11_RESET_COMPLETE
	NDIS_STATUS_WDI_INDICATION_FIRMWARE_STALLED
	NDIS_STATUS_WDI_INDICATION_FT_ASSOC_PARAMS_NEEDED
	NDIS_STATUS_WDI_INDICATION_IHV_EVENT
	NDIS_STATUS_WDI_INDICATION_IHV_TASK_COMPLETE
	NDIS_STATUS_WDI_INDICATION_IHV_TASK_REQUEST
	NDIS_STATUS_WDI_INDICATION_LINK_STATE_CHANGE
	NDIS_STATUS_WDI_INDICATION_NLO_DISCOVERY
	NDIS_STATUS_WDI_INDICATION_OPEN_COMPLETE
	NDIS_STATUS_WDI_INDICATION_P2P_ACTION_FRAME_RECEIVED
	NDIS_STATUS_WDI_INDICATION_P2P_DISCOVERY_COMPLETE
	NDIS_STATUS_WDI_INDICATION_P2P_GROUP_OPERATING_CHANNEL
	NDIS_STATUS_WDI_INDICATION_P2P_OPERATING_CHANNEL_ATTRIBUTES
	NDIS_STATUS_WDI_INDICATION_P2P_SEND_REQUEST_ACTION_FRAME_COMPLETE
	NDIS_STATUS_WDI_INDICATION_P2P_SEND_RESPONSE_ACTION_FRAME_COMPLETE
	NDIS_STATUS_WDI_INDICATION_RADIO_STATUS
	NDIS_STATUS_WDI_INDICATION_REQUEST_FTM_COMPLETE
	NDIS_STATUS_WDI_INDICATION_ROAM_COMPLETE
	NDIS_STATUS_WDI_INDICATION_ROAMING_NEEDED
	NDIS_STATUS_WDI_INDICATION_SAE_AUTH_PARAMS_NEEDED
	NDIS_STATUS_WDI_INDICATION_SCAN_COMPLETE
	NDIS_STATUS_WDI_INDICATION_SEND_AP_ASSOCIATION_RESPONSE_COMPLETE
	NDIS_STATUS_WDI_INDICATION_SEND_REQUEST_ACTION_FRAME_COMPLETE
	NDIS_STATUS_WDI_INDICATION_SEND_RESPONSE_ACTION_FRAME_COMPLETE
	NDIS_STATUS_WDI_INDICATION_SET_RADIO_STATE_COMPLETE
	NDIS_STATUS_WDI_INDICATION_START_AP_COMPLETE
	NDIS_STATUS_WDI_INDICATION_STOP_AP
	NDIS_STATUS_WDI_INDICATION_STOP_AP_COMPLETE
	NDIS_STATUS_WDI_INDICATION_TASK_OFFLOAD_CURRENT_CONFIG
	NDIS_STATUS_WDI_INDICATION_TKIP_MIC_FAILURE
	NDIS_STATUS_WDI_INDICATION_WAKE_REASON

	Other WDI Data Types
	WDI_BAND_ID
	WDI_CHANNEL_NUMBER
	WDI_EXTENDED_TID
	WDI_FRAME_ID
	WDI_PEER_ID
	WDI_PORT_ID
	TAL_TXRX_HANDLE

	Features not carried over in WDI
	WPA3-SAE authentication
	WDI doc change history

	Native 802.11 IHV Extensions
	Native 802.11 IHV Extensions Topics
	Overview of IHV Extensibility
	Installing Native 802.11 IHV Extensions
	Native 802.11 IHV Extensions DLL
	Native 802.11 IHV Extensions DLL Topics
	Native 802.11 IHV Extensions DLL Overview
	Native 802.11 IHV Extensibility Functions
	Native 802.11 IHV Handler Functions
	Native 802.11 IHV Extensions DLL Implementation Guidelines
	DLL Start/Stop Operations
	DLL Start/Stop Operations Topics
	DLL Start Operations
	DLL Stop Operations

	802.11 WLAN Adapter Management
	802.11 WLAN Adapter Management Topics
	802.11 WLAN Adapter Arrival
	802.11 WLAN Adapter Removal
	802.11 WLAN Adapter Reset
	802.11 WLAN Adapter Communication Channel

	Managing Network Profiles
	Network Profile Management
	Network Profile Overview
	Creating Network Profile Extensions
	Validating Network Profile Extensions

	User Interaction
	Interaction with the User
	Requesting User Interaction
	Processing Session Changes

	Pre-Association Operations
	Pre-Association Operations Topics
	Pre-Association Operation Overview
	Pre-Association Operation Guidelines

	Post-Association Operations
	Post-Association Operations Overview
	Performing a Post-Association Operation
	Stopping a Post-Association Operation
	Interface to the Native 802.11 802.1X Module

	Transferring Network Data in Native 802.11 IHV extensions
	Native 802.11 IHV extension send and receive operations
	IEEE EtherType Handling
	Send Operations
	Receive Operations

	Sending and Receiving Notifications
	Notification Operations
	Sending Notifications
	Receiving Notifications

	Virtual Station

	Native 802.11 IHV UI Extensions DLL
	Native 802.11 IHV UI Extensions DLL Topics
	Windows SDK References
	Native 802.11 IHV UI Extensions DLL Overview
	Native 802.11 IHV UI Extensions COM Interfaces
	Wireless Network Profile Property Extension
	Extending the Properties for Wireless Network Profiles
	Extending Wireless Connection Properties
	Extending Wireless Security Properties
	Extending Microsoft 802.1X Security Settings
	Extending the UI for Proprietary 802.1X Security Methods
	Extending the UI for Standard 802.1X Security Methods

	Extending the Advanced Properties for Wireless Network Adapters
	Custom UI Display Requests
	Handling Requests for the Display of a Custom UI
	Requesting the Display of a Custom UI
	Querying for the Display of a Custom UI
	Displaying Custom UI Pages within a Balloon Notification
	Displaying Custom UI Pages within the Network Connection Wizard
	Accessing Profile and Context Data

	Wi-Fi Hotspot Offloading Guide
	Wi-Fi Hotspot Offloading Overview
	Wi-Fi Hotspot Offloading Architecture
	Wi-Fi Hotspot Offloading Plugin
	Wi-Fi Discovery Service
	Wi-Fi Discovery Service Overview
	Wi-Fi Hotspot Data Submission Format

	Wi-Fi Hotspot Offloading API Reference
	Wi-Fi Hotspot Offloading Reference
	Wi-Fi Hotspot Offloading Constants
	Wi-Fi Hotspot Offloading Structures
	HOTSPOT_HOST_HANDLERS
	HOTSPOT_PLUGIN_APIS
	HS_CONNECTION_CONTEXT
	HS_DEVICE_IDENTITY
	HS_MAC_ADDRESS
	HS_NETWORK_IDENTITY
	HS_NETWORK_PROFILE
	HS_PLUGIN_CELLULAR_EXCEPTION_HOSTS
	HS_PLUGIN_HOST_NAME
	HS_PLUGIN_PROFILE
	HS_PLUGIN_SUPPORTED_SIMS
	HS_PLUGIN_VERSION
	HS_SIM_DATA
	HS_SIM_IDENTITY

	Wi-Fi Hotspot Offloading Functions
	HSPluginGetVersion
	HSPluginInitPlugin
	HS_PLUGIN_CHECK_FOR_UPDATES
	HS_PLUGIN_DEINIT
	HS_PLUGIN_DISCONNECT_FROM_NETWORK
	HS_PLUGIN_IS_HOTSPOT_NETWORK
	HS_PLUGIN_PRE_CONNECT_INIT
	HS_PLUGIN_QUERY_CELLULAR_EXCEPTION_HOSTS
	HS_PLUGIN_QUERY_HIDDEN_NETWORK
	HS_PLUGIN_QUERY_SUPPORTED_SIMS
	HS_PLUGIN_RESET
	HS_PLUGIN_SEND_KEEP_ALIVE
	HS_PLUGIN_START_POST_CONNECT_AUTH
	HS_PLUGIN_STOP_POST_CONNECT_AUTH
	HS_HOST_ALLOCATE_MEMORY
	HS_HOST_FREE_MEMORY
	HS_HOST_POST_CONNECT_AUTH_COMPLETION
	HS_HOST_SEND_KEEP_ALIVE_COMPLETION
	HS_HOST_SEND_USER_MESSAGE
	HS_HOST_UPDATE_CONFIGURATION_COMPLETION

	Wi-Fi Hotspot Offloading Enumerations
	eHS_AUTHENTICATION_RESULT
	eHS_NETWORK_STATE
	eHS_UNLOAD_REASON
	eHS_UPDATE_RESULT

	Network Module Registrar
	Network Module Registrar Topics
	Introduction to the Network Module Registrar
	Network Module Registrar Definitions
	Network Module
	Provider Module
	Client Module
	Network Programming Interface

	Architecture Overview
	Architecture overview for the Network Module Registrar
	Network Module Attachment
	Network Module Detachment

	Client Module Operations
	Initializing and Registering a Client Module
	Attaching a Client Module to a Provider Module
	Managing Multiple Attached Provider Modules
	Detaching a Client Module from a Provider Module
	Unloading a Client Module

	Provider Module Operations
	Initializing and Registering a Provider Module
	Attaching a Provider Module to a Client Module
	Managing Multiple Attached Client Modules
	Detaching a Provider Module from a Client Module
	Unloading a Provider Module

	Programming Considerations

	Winsock Kernel
	Roadmap for Developing Network Drivers with Winsock Kernel
	Introduction to Winsock Kernel
	Winsock Kernel Overview
	Winsock Kernel Overview Topics
	Winsock Kernel Architecture
	Winsock Kernel Objects
	Winsock Kernel Socket Categories
	Winsock Kernel Events
	Using Winsock Kernel Functions vs. Event Callback Functions
	Winsock Kernel Dispatch Tables
	Winsock Kernel Extension Interfaces
	Using IRPs with Winsock Kernel Functions

	Winsock Kernel Operations
	Winsock Kernel Operations Topics
	Registering a Winsock Kernel Application
	Performing Control Operations on a Client Object
	Creating Sockets
	Performing Control Operations on a Socket
	Enabling and Disabling Event Callback Functions
	Binding a Socket to a Transport Address
	Listening for and Accepting Incoming Connections
	Establishing a Connection with a Destination
	Transferring network data over WSK sockets
	Sending and receiving data over WSK sockets
	Sending Data over a Datagram Socket
	Receiving Data over a Datagram Socket
	Sending Data over a Connection-Oriented Socket
	Receiving Data over a Connection-Oriented Socket

	Disconnecting a Socket from a Destination
	Closing a Socket
	Registering an Extension Interface
	Unregistering a Winsock Kernel Application
	Resolving Host Names and IP Addresses
	WSK Client Control Operations
	WSK_CACHE_SD
	WSK_RELEASE_SD
	WSK_SET_STATIC_EVENT_CALLBACKS
	WSK_TDI_BEHAVIOR
	WSK_TDI_DEVICENAME_MAPPING
	WSK_TRANSPORT_LIST_CHANGE
	WSK_TRANSPORT_LIST_QUERY

	WSK Socket IOCTL Operations
	SIO_WSK_QUERY_IDEAL_SEND_BACKLOG
	SIO_WSK_QUERY_INSPECT_ID
	SIO_WSK_QUERY_RECEIVE_BACKLOG
	SIO_WSK_REGISTER_EXTENSION
	SIO_WSK_SET_REMOTE_ADDRESS
	SIO_WSK_SET_SENDTO_ADDRESS
	SIO_WSK_SET_TCP_SILENT_MODE

	WSK Socket Options
	SO_WSK_EVENT_CALLBACK
	SO_WSK_SECURITY

	WSK data types
	WSK_CLIENT

	Winsock Kernel Programming Considerations
	Porting TDI Drivers to Winsock Kernel
	Sharing Transport Addresses
	Using TDI Transports
	Using Network Module Registrar (NMR) for WSK Registration and Unregistration
	Using NMR for WSK Registration and Unregistration
	Initializing NMR Data Structures
	Attaching the WSK Client to the WSK Subsystem
	Unregistering and Unloading the WSK Client

	IP Helper
	IP Helper Overview
	Including Header Files for IP Helper
	Interface Conversion Functions
	ConvertInterfaceAliasToLuid function
	ConvertInterfaceGuidToLuid function
	ConvertInterfaceIndexToLuid function
	ConvertInterfaceLuidToAlias function
	ConvertInterfaceLuidToGuid function
	ConvertInterfaceLuidToIndex function
	ConvertInterfaceLuidToNameA function
	ConvertInterfaceLuidToNameW function
	ConvertInterfaceNameToLuidA function
	ConvertInterfaceNameToLuidW function
	ConvertIpv4MaskToLength function
	ConvertLengthtoIpv4Mask function
	if_indextoname function
	if_nametoindex function

	Interface Management Functions
	GetIfEntry2 function
	GetIfStackTable function
	GetIfTable2 function
	GetIfTable2Ex function
	GetInvertedIfStackTable function
	GetIpInterfaceTable function
	InitializeIpInterfaceEntry function
	SetIpInterfaceEntry function

	IP Address Management Functions
	CreateAnycastIpAddressEntry function
	CreateSortedAddressPairs function
	CreateUnicastIpAddressEntry function
	DeleteAnycastIpAddressEntry function
	DeleteUnicastIpAddressEntry function
	GetAnycastIpAddressEntry function
	GetAnycastIpAddressTable function
	GetMulticastIpAddressEntry function
	GetMulticastIpAddressTable function
	GetUnicastIpAddressEntry function
	GetUnicastIpAddressTable function
	InitializeUnicastIpAddressEntry function
	SetUnicastIpAddressEntry function

	IP Neighbor Address Management Functions
	CreateIpNetEntry2 function
	DeleteIpNetEntry2 function
	FlushIpNetTable2 function
	GetIpNetEntry2 function
	GetIpNetTable2 function
	ResolveIpNetEntry2 function
	SetIpNetEntry2 function

	IP Path Management Functions
	FlushIpPathTable function
	GetIpPathEntry function
	GetIpPathTable function

	IP Route Management Functions
	CreateIpForwardEntry2 function
	DeleteIpForwardEntry2 function
	GetBestRoute2 function
	GetIpForwardEntry2 function
	GetIpForwardTable2 function
	GetIpInterfaceEntry function
	InitializeIpForwardEntry function
	SetIpForwardEntry2 function

	IP Table Memory Management Functions
	FreeMibTable function

	MIB Enumerations
	MIB_NOTIFICATION_TYPE enumeration

	MIB Structures
	IP_ADDRESS_PREFIX structure
	MIB_ANYCASTIPADDRESS_ROW structure
	MIB_ANYCASTIPADDRESS_TABLE structure
	MIB_IF_ROW2 structure
	MIB_IF_TABLE2 structure
	MIB_IFSTACK_ROW structure
	MIB_IFSTACK_TABLE structure
	MIB_INVERTEDIFSTACK_ROW structure
	MIB_INVERTEDIFSTACK_TABLE structure
	MIB_IPFORWARD_ROW2 structure
	MIB_IPFORWARD_TABLE2 structure
	MIB_IPINTERFACE_ROW structure
	MIB_IPINTERFACE_TABLE structure
	MIB_IPNET_ROW2 structure
	MIB_IPNET_TABLE2 structure
	MIB_IPPATH_ROW structure
	MIB_IPPATH_TABLE structure
	MIB_MULTICASTIPADDRESS_ROW structure
	MIB_MULTICASTIPADDRESS_TABLE structure
	MIB_UNICASTIPADDRESS_ROW structure
	MIB_UNICASTIPADDRESS_TABLE structure

	NL Enumerations
	NL_DAD_STATE enumeration
	NL_PREFIX_ORIGIN enumeration
	NL_SUFFIX_ORIGIN enumeration

	Notification Functions
	CancelMibChangeNotify2 function
	NotifyIpInterfaceChange function
	NotifyRouteChange2 function
	NotifyUnicastIpAddressChange function

	Teredo IPv6 Client Management Functions
	GetTeredoPort function
	NotifyStableUnicastIpAddressTable function
	NotifyTeredoPortChange function

	Windows Filtering Platform Callout Drivers
	Roadmap for Developing WFP Callout Drivers
	Introduction to Windows Filtering Platform Callout Drivers
	New Information for WFP
	WFP Changes for Windows 8
	WFP Changes for Windows 7
	WFP Changes for Windows Vista SP1 and Windows Server 2008

	Windows Filtering Platform Callout Drivers Definitions
	Callout
	Callout Driver
	Callout Function
	Filter
	Filter Engine
	Filtering Layer

	Windows Filtering Platform Architecture Overview
	Callout Driver Operations
	Callout Driver Operation Topics
	Callout Driver Initialization
	Initializing a Callout Driver
	Specifying an Unload Function
	Creating a Device Object
	Registering Callouts with the Filter Engine

	Processing Notify Callouts
	Classify Callout Processing
	Processing Classify Callouts
	Using a Callout for Deep Inspection
	Using a Callout for Deep Inspection of Stream Data
	Inspecting Packet and Stream Data
	Packet Inspection Points
	WFP Layer Requirements and Restrictions
	Packet Indication Format
	Types of Callouts
	Packet Injection Functions
	Packet Modification Examples
	Stream Inspection

	Modifying Stream Data
	Data Logging
	Associating Context with a Data Flow
	Processing Classify Callouts Asynchronously
	Using Bind or Connect Redirection
	ALE Endpoint Lifetime Management

	Processing Flow Delete Callouts
	Using Packet Tagging
	Using Layer 2 Filtering
	Using Proxied Connections Tracking
	Using Virtual Switch Filtering
	Unloading a Callout Driver

	Installing Callout Drivers
	Callout Driver Installation
	INF Files for Callout Drivers
	Installation of Callout Drivers
	Digital Signatures for Callout Drivers

	Callout Driver Programming Considerations
	Porting Packet-Processing Drivers and Apps to WFP
	Developing IPsec-Compatible Callout Drivers
	Windows Filtering Platform Management Functions
	Calling Other Windows Filtering Platform Functions
	Opening a Session to the Filter Engine
	Closing a Session to the Filter Engine

	Windows Filtering Platform identifiers
	Windows Filtering Platform constants
	Built-in callout identifiers
	Filtering layer identifiers
	Management filtering layer identifiers
	Run-time filtering layer identifiers

	Filtering conditions
	Filtering condition identifiers
	Filtering condition flags
	Filtering condition L2 flags
	Filtering condition data types
	Filtering conditions available at each filtering layer

	Metadata fields
	Metadata field identifiers
	Metadata field L2 identifiers
	Metadata fields at each filtering layer

	Data field identifiers
	Data offset positions
	Discard reason identifiers
	General discard reasons
	Network layer discard reasons
	Transport layer discard reasons

	Other Windows Filtering Platform functions
	WFP user mode management functions
	Internet Key Exchange functions
	IPsec functions

	System Area Networks
	System Area Networks Overview
	Supporting System Area Networks
	Supporting System Area Networks Topics
	Introduction to System Area Networks
	Using a SAN with Windows Sockets Applications
	Creating Components for Using a SAN
	Virtual Interface Architecture and Support for SAN

	Windows Sockets Direct
	Windows Sockets Direct Overview
	Windows Sockets Direct Architecture
	Windows Sockets Direct Component Operation
	Windows Sockets Direct Component Operation Topics
	Windows Sockets Direct Component Installation
	Installing Windows Sockets Direct Components
	Installing the Windows Sockets Switch
	Installing a SAN Service Provider

	Preparing a SAN for use
	Initializing the Use of a SAN
	Initializing a SAN Service Provider
	Receiving and Translating NIC Addresses

	SAN Connection Setup
	Setting Up a SAN Connection
	Creating and Binding SAN Sockets
	Initiating a Connection
	Listening for Connections on a SAN
	Accepting Connection Requests
	Registering Memory for Operations on a SAN
	Caching Registered Memory

	Transferring Network Data on a SAN
	Transferring Data on a SAN
	Using Session Protocol
	Sending Urgent Data on a SAN
	Completing Data Transfer Requests

	Synchronizing Operations on a SAN
	Shutting Down SAN use
	Shutting Down the Use of a SAN
	Shutting Down a SAN Connection
	Closing a SAN Socket
	Cleaning up a Process for a SAN

	Blocking Calls for a SAN
	Duplicating Socket Handles for a SAN
	Handling Socket Options and Control Codes for a SAN
	Handling Microsoft Extensions to Windows Sockets

	SAN Service Provider Creation
	Creating a Service Provider for a SAN
	Windows Sockets SPI Functions Required for SANs
	Windows Sockets SPI Functions not Required for SANs
	Windows Sockets SPI Extensions for SANs

	SAN Service Provider Proxy Driver Creation
	Creating a Proxy Driver for a SAN Service Provider
	Initializing and Unloading a SAN Proxy Driver
	Allocating and Releasing Memory for a SAN Proxy Driver
	Securing and Releasing Ownership of Virtual Addresses
	Registering for SAN NIC Notifications
	Translating to a SAN Native Address
	Implementing IOCTLs for a SAN Service Provider

	Remote NDIS (RNDIS)
	Introduction to Remote NDIS (RNDIS)
	RNDIS Overview
	Overview of Remote NDIS (RNDIS)
	Benefits of Remote NDIS
	Remote NDIS Concepts and Definitions
	Remote NDIS File Naming Conventions
	Remote NDIS Messaging
	Remote NDIS Device Control
	Remote NDIS INF Template
	Types of Remote NDIS Devices

	RNDIS Communication
	Remote NDIS Communication
	RNDIS Control Messages
	REMOTE_NDIS_INITIALIZE_MSG
	REMOTE_NDIS_INITIALIZE_CMPLT
	REMOTE_NDIS_HALT_MSG
	REMOTE_NDIS_QUERY_MSG
	REMOTE_NDIS_QUERY_CMPLT
	REMOTE_NDIS_SET_MSG
	REMOTE_NDIS_SET_CMPLT
	REMOTE_NDIS_RESET_MSG
	REMOTE_NDIS_RESET_CMPLT
	REMOTE_NDIS_INDICATE_STATUS_MSG
	REMOTE_NDIS_KEEPALIVE_MSG
	REMOTE_NDIS_KEEPALIVE_CMPLT

	RNDIS Data Messages
	Remote NDIS Data Message
	REMOTE_NDIS_PACKET_MSG
	Multipacket Messages

	Setting Device-Specific Parameters
	Example Connectionless (802.3) Initialization Sequence
	RNDIS OIDs
	Remote NDIS OIDs
	General OIDs
	General Statistic OIDs
	802.3 OIDs
	802.3 Statistic OIDs
	Optional Power Management OIDs
	Optional Network Wake Up OIDs

	Remote NDIS Version
	Status Values

	RNDIS To USB Mapping
	Remote NDIS To USB Mapping Overview
	RNDIS USB-Level Initialization
	USB-Level Initialization
	USB Device Descriptor
	USB Configuration Descriptor
	Communication Class Interface
	Data Class Interface

	USB-Level Termination
	Control Channel Characteristics
	RNDIS Data Channel Characteristics
	Data Channel Characteristics
	USB Short Packets
	Flow Control

	Power Management
	Timer Constants
	USB 802.3 Device Sample for RNDIS
	USB 802.3 Device Sample
	Device Descriptor
	Configuration Descriptor
	Interface Descriptor for Communication Class Interface
	Notification Endpoint Descriptor
	Interface Descriptor for Data Class Interface
	Data In Endpoint Descriptor
	Data Out Endpoint Descriptor

	Kernel Mode SDK Topics for Network Drivers
	Overview of Kernel Mode SDK Topics for Network Drivers
	Mstcpip.h
	Overview
	SIO_LOOPBACK_FAST_PATH control code
	SIO_QUERY_WFP_CONNECTION_REDIRECT_CONTEXT control code
	SIO_QUERY_WFP_CONNECTION_REDIRECT_RECORDS control code
	SIO_SET_WFP_CONNECTION_REDIRECT_RECORDS control code

	Ntddndis.h
	Overview
	GUID_NDIS_GEN_PCI_DEVICE_CUSTOM_PROPERTIES
	OID_802_3_ADD_MULTICAST_ADDRESS
	OID_802_3_CURRENT_ADDRESS
	OID_802_3_DELETE_MULTICAST_ADDRESS
	OID_802_3_MAC_OPTIONS
	OID_802_3_MAXIMUM_LIST_SIZE
	OID_802_3_MULTICAST_LIST
	OID_802_3_PERMANENT_ADDRESS
	OID_802_3_RCV_OVERRUN
	OID_802_3_XMIT_DEFERRED
	OID_802_3_XMIT_HEARTBEAT_FAILURE
	OID_802_3_XMIT_LATE_COLLISIONS
	OID_802_3_XMIT_MAX_COLLISIONS
	OID_802_3_XMIT_TIMES_CRS_LOST
	OID_802_3_XMIT_UNDERRUN
	OID_CO_ADD_ADDRESS
	OID_CO_ADD_PVC
	OID_CO_ADDRESS_CHANGE
	OID_CO_AF_CLOSE
	OID_CO_DELETE_ADDRESS
	OID_CO_DELETE_PVC
	OID_CO_GET_ADDRESSES
	OID_CO_GET_CALL_INFORMATION
	OID_CO_SIGNALING_DISABLED
	OID_CO_SIGNALING_ENABLED
	OID_CO_TAPI_ADDRESS_CAPS
	OID_CO_TAPI_CM_CAPS
	OID_CO_TAPI_GET_CALL_DIAGNOSTICS
	OID_CO_TAPI_LINE_CAPS
	OID_CO_TAPI_TRANSLATE_NDIS_CALLPARAMS
	OID_CO_TAPI_TRANSLATE_TAPI_CALLPARAMS
	OID_CO_TAPI_TRANSLATE_TAPI_SAP
	OID_GEN_ADMIN_STATUS
	OID_GEN_ALIAS
	OID_GEN_BROADCAST_BYTES_RCV
	OID_GEN_BROADCAST_BYTES_XMIT
	OID_GEN_BROADCAST_FRAMES_RCV
	OID_GEN_BROADCAST_FRAMES_XMIT
	OID_GEN_BYTES_RCV
	OID_GEN_BYTES_XMIT
	OID_GEN_CO_BYTES_RCV
	OID_GEN_CO_BYTES_XMIT
	OID_GEN_CO_BYTES_XMIT_OUTSTANDING
	OID_GEN_CO_DRIVER_VERSION
	OID_GEN_CO_GET_NETCARD_TIME
	OID_GEN_CO_GET_TIME_CAPS
	OID_GEN_CO_HARDWARE_STATUS
	OID_GEN_CO_LINK_SPEED
	OID_GEN_CO_MAC_OPTIONS
	OID_GEN_CO_MEDIA_CONNECT_STATUS
	OID_GEN_CO_MEDIA_IN_USE
	OID_GEN_CO_MEDIA_SUPPORTED
	OID_GEN_CO_MINIMUM_LINK_SPEED
	OID_GEN_CO_NETCARD_LOAD
	OID_GEN_CO_PROTOCOL_OPTIONS
	OID_GEN_CO_RCV_CRC_ERROR
	OID_GEN_CO_RCV_PDUS_ERROR
	OID_GEN_CO_RCV_PDUS_NO_BUFFER
	OID_GEN_CO_RCV_PDUS_OK
	OID_GEN_CO_SUPPORTED_GUIDS
	OID_GEN_CO_SUPPORTED_LIST
	OID_GEN_CO_TRANSMIT_QUEUE_LENGTH
	OID_GEN_CO_VENDOR_DESCRIPTION
	OID_GEN_CO_VENDOR_DRIVER_VERSION
	OID_GEN_CO_VENDOR_ID
	OID_GEN_CO_XMIT_PDUS_ERROR
	OID_GEN_CO_XMIT_PDUS_OK
	OID_GEN_CURRENT_LOOKAHEAD
	OID_GEN_CURRENT_PACKET_FILTER
	OID_GEN_DEVICE_PROFILE
	OID_GEN_DIRECTED_BYTES_RCV
	OID_GEN_DIRECTED_BYTES_XMIT
	OID_GEN_DIRECTED_FRAMES_RCV
	OID_GEN_DIRECTED_FRAMES_XMIT
	OID_GEN_DISCONTINUITY_TIME
	OID_GEN_DRIVER_VERSION
	OID_GEN_ENUMERATE_PORTS
	OID_GEN_FRIENDLY_NAME
	OID_GEN_HARDWARE_STATUS
	OID_GEN_HD_SPLIT_CURRENT_CONFIG
	OID_GEN_HD_SPLIT_PARAMETERS
	OID_GEN_INIT_TIME_MS
	OID_GEN_INTERFACE_INFO
	OID_GEN_INTERRUPT_MODERATION
	OID_GEN_ISOLATION_PARAMETERS
	OID_GEN_LAST_CHANGE
	OID_GEN_LINK_PARAMETERS
	OID_GEN_LINK_SPEED
	OID_GEN_LINK_SPEED_EX
	OID_GEN_LINK_STATE
	OID_GEN_MAC_OPTIONS
	OID_GEN_MACHINE_NAME
	OID_GEN_MAX_LINK_SPEED
	OID_GEN_MAXIMUM_FRAME_SIZE
	OID_GEN_MAXIMUM_LOOKAHEAD
	OID_GEN_MAXIMUM_SEND_PACKETS
	OID_GEN_MAXIMUM_TOTAL_SIZE
	OID_GEN_MEDIA_CAPABILITIES
	OID_GEN_MEDIA_CONNECT_STATUS
	OID_GEN_MEDIA_CONNECT_STATUS_EX
	OID_GEN_MEDIA_DUPLEX_STATE
	OID_GEN_MEDIA_IN_USE
	OID_GEN_MEDIA_SENSE_COUNTS
	OID_GEN_MEDIA_SUPPORTED
	OID_GEN_MINIPORT_RESTART_ATTRIBUTES
	OID_GEN_MULTICAST_BYTES_RCV
	OID_GEN_MULTICAST_BYTES_XMIT
	OID_GEN_MULTICAST_FRAMES_RCV
	OID_GEN_MULTICAST_FRAMES_XMIT
	OID_GEN_NDIS_RESERVED_1
	OID_GEN_NDIS_RESERVED_2
	OID_GEN_NDIS_RESERVED_5
	OID_GEN_NETWORK_LAYER_ADDRESSES
	OID_GEN_OPERATIONAL_STATUS
	OID_GEN_PCI_DEVICE_CUSTOM_PROPERTIES
	OID_GEN_PHYSICAL_MEDIUM
	OID_GEN_PHYSICAL_MEDIUM_EX
	OID_GEN_PORT_AUTHENTICATION_PARAMETERS
	OID_GEN_PORT_STATE
	OID_GEN_PROMISCUOUS_MODE
	OID_GEN_PROTOCOL_OPTIONS
	OID_GEN_RCV_CRC_ERROR
	OID_GEN_RCV_DISCARDS
	OID_GEN_RCV_ERROR
	OID_GEN_RCV_LINK_SPEED
	OID_GEN_RCV_NO_BUFFER
	OID_GEN_RCV_OK
	OID_GEN_RECEIVE_BLOCK_SIZE
	OID_GEN_RECEIVE_BUFFER_SPACE
	OID_GEN_RECEIVE_HASH
	OID_GEN_RECEIVE_SCALE_CAPABILITIES
	OID_GEN_RECEIVE_SCALE_PARAMETERS
	OID_GEN_RECEIVE_SCALE_PARAMETERS_V2
	OID_GEN_RESET_COUNTS
	OID_GEN_RNDIS_CONFIG_PARAMETER
	OID_GEN_RSS_SET_INDIRECTION_TABLE_ENTRIES
	OID_GEN_STATISTICS
	OID_GEN_SUPPORTED_GUIDS
	OID_GEN_SUPPORTED_LIST
	OID_GEN_TRANSMIT_BLOCK_SIZE
	OID_GEN_TRANSMIT_BUFFER_SPACE
	OID_GEN_TRANSMIT_QUEUE_LENGTH
	OID_GEN_TRANSPORT_HEADER_OFFSET
	OID_GEN_UNKNOWN_PROTOS
	OID_GEN_VENDOR_DESCRIPTION
	OID_GEN_VENDOR_DRIVER_VERSION
	OID_GEN_VENDOR_ID
	OID_GEN_VLAN_ID
	OID_GEN_XMIT_DISCARDS
	OID_GEN_XMIT_ERROR
	OID_GEN_XMIT_LINK_SPEED
	OID_GEN_XMIT_OK
	OID_IP4_OFFLOAD_STATS
	OID_IP6_OFFLOAD_STATS
	OID_NDK_CONNECTIONS
	OID_NDK_LOCAL_ENDPOINTS
	OID_NDK_SET_STATE
	OID_NDK_STATISTICS
	OID_NIC_SWITCH_ALLOCATE_VF
	OID_NIC_SWITCH_CREATE_SWITCH
	OID_NIC_SWITCH_CREATE_VPORT
	OID_NIC_SWITCH_CURRENT_CAPABILITIES
	OID_NIC_SWITCH_DELETE_SWITCH
	OID_NIC_SWITCH_DELETE_VPORT
	OID_NIC_SWITCH_ENUM_SWITCHES
	OID_NIC_SWITCH_ENUM_VFS
	OID_NIC_SWITCH_ENUM_VPORTS
	OID_NIC_SWITCH_FREE_VF
	OID_NIC_SWITCH_HARDWARE_CAPABILITIES
	OID_NIC_SWITCH_PARAMETERS
	OID_NIC_SWITCH_VF_PARAMETERS
	OID_NIC_SWITCH_VPORT_PARAMETERS
	OID_OFFLOAD_ENCAPSULATION
	OID_PACKET_COALESCING_FILTER_MATCH_COUNT
	OID_PD_CLOSE_PROVIDER
	OID_PD_OPEN_PROVIDER
	OID_PD_QUERY_CURRENT_CONFIG
	OID_PM_ADD_PROTOCOL_OFFLOAD
	OID_PM_ADD_WOL_PATTERN
	OID_PM_CURRENT_CAPABILITIES
	OID_PM_GET_PROTOCOL_OFFLOAD
	OID_PM_HARDWARE_CAPABILITIES
	OID_PM_PARAMETERS
	OID_PM_PROTOCOL_OFFLOAD_LIST
	OID_PM_REMOVE_PROTOCOL_OFFLOAD
	OID_PM_REMOVE_WOL_PATTERN
	OID_PM_WOL_PATTERN_LIST
	OID_PNP_ADD_WAKE_UP_PATTERN
	OID_PNP_CAPABILITIES
	OID_PNP_ENABLE_WAKE_UP
	OID_PNP_QUERY_POWER
	OID_PNP_REMOVE_WAKE_UP_PATTERN
	OID_PNP_SET_POWER
	OID_PNP_WAKE_UP_ERROR
	OID_PNP_WAKE_UP_OK
	OID_PNP_WAKE_UP_PATTERN_LIST
	OID_QOS_CURRENT_CAPABILITIES
	OID_QOS_HARDWARE_CAPABILITIES
	OID_QOS_OFFLOAD_CREATE_SQ
	OID_QOS_OFFLOAD_CURRENT_CAPABILITIES
	OID_QOS_OFFLOAD_DELETE_SQ
	OID_QOS_OFFLOAD_ENUM_SQS
	OID_QOS_OFFLOAD_HARDWARE_CAPABILITIES
	OID_QOS_OFFLOAD_SQ_STATS
	OID_QOS_OFFLOAD_UPDATE_SQ
	OID_QOS_OPERATIONAL_PARAMETERS
	OID_QOS_PARAMETERS
	OID_QOS_REMOTE_PARAMETERS
	OID_RECEIVE_FILTER_ALLOCATE_QUEUE
	OID_RECEIVE_FILTER_CLEAR_FILTER
	OID_RECEIVE_FILTER_CURRENT_CAPABILITIES
	OID_RECEIVE_FILTER_ENUM_FILTERS
	OID_RECEIVE_FILTER_ENUM_QUEUES
	OID_RECEIVE_FILTER_FREE_QUEUE
	OID_RECEIVE_FILTER_GLOBAL_PARAMETERS
	OID_RECEIVE_FILTER_HARDWARE_CAPABILITIES
	OID_RECEIVE_FILTER_MOVE_FILTER
	OID_RECEIVE_FILTER_PARAMETERS
	OID_RECEIVE_FILTER_QUEUE_ALLOCATION_COMPLETE
	OID_RECEIVE_FILTER_QUEUE_PARAMETERS
	OID_RECEIVE_FILTER_SET_FILTER
	OID_SRIOV_BAR_RESOURCES
	OID_SRIOV_CURRENT_CAPABILITIES
	OID_SRIOV_HARDWARE_CAPABILITIES
	OID_SRIOV_PF_LUID
	OID_SRIOV_PROBED_BARS
	OID_SRIOV_READ_VF_CONFIG_BLOCK
	OID_SRIOV_READ_VF_CONFIG_SPACE
	OID_SRIOV_RESET_VF
	OID_SRIOV_SET_VF_POWER_STATE
	OID_SRIOV_VF_INVALIDATE_CONFIG_BLOCK
	OID_SRIOV_VF_SERIAL_NUMBER
	OID_SRIOV_VF_VENDOR_DEVICE_ID
	OID_SRIOV_WRITE_VF_CONFIG_BLOCK
	OID_SRIOV_WRITE_VF_CONFIG_SPACE
	OID_SWITCH_FEATURE_STATUS_QUERY
	OID_SWITCH_NIC_ARRAY
	OID_SWITCH_NIC_CONNECT
	OID_SWITCH_NIC_CREATE
	OID_SWITCH_NIC_DELETE
	OID_SWITCH_NIC_DISCONNECT
	OID_SWITCH_NIC_REQUEST
	OID_SWITCH_NIC_RESTORE
	OID_SWITCH_NIC_RESTORE_COMPLETE
	OID_SWITCH_NIC_SAVE
	OID_SWITCH_NIC_SAVE_COMPLETE
	OID_SWITCH_NIC_UPDATED
	OID_SWITCH_PARAMETERS
	OID_SWITCH_PORT_ARRAY
	OID_SWITCH_PORT_CREATE
	OID_SWITCH_PORT_DELETE
	OID_SWITCH_PORT_FEATURE_STATUS_QUERY
	OID_SWITCH_PORT_PROPERTY_ADD
	OID_SWITCH_PORT_PROPERTY_DELETE
	OID_SWITCH_PORT_PROPERTY_ENUM
	OID_SWITCH_PORT_PROPERTY_UPDATE
	OID_SWITCH_PORT_TEARDOWN
	OID_SWITCH_PORT_UPDATED
	OID_SWITCH_PROPERTY_ADD
	OID_SWITCH_PROPERTY_DELETE
	OID_SWITCH_PROPERTY_ENUM
	OID_SWITCH_PROPERTY_UPDATE
	OID_TCP_CONNECTION_OFFLOAD_CURRENT_CONFIG
	OID_TCP_CONNECTION_OFFLOAD_HARDWARE_CAPABILITIES
	OID_TCP_CONNECTION_OFFLOAD_PARAMETERS
	OID_TCP_OFFLOAD_CURRENT_CONFIG
	OID_TCP_OFFLOAD_HARDWARE_CAPABILITIES
	OID_TCP_OFFLOAD_PARAMETERS
	OID_TCP_RSC_STATISTICS
	OID_TCP_TASK_IPSEC_ADD_SA
	OID_TCP_TASK_IPSEC_ADD_UDPESP_SA
	OID_TCP_TASK_IPSEC_DELETE_SA
	OID_TCP_TASK_IPSEC_DELETE_UDPESP_SA
	OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA
	OID_TCP_TASK_IPSEC_OFFLOAD_V2_ADD_SA_EX
	OID_TCP_TASK_IPSEC_OFFLOAD_V2_DELETE_SA
	OID_TCP_TASK_IPSEC_OFFLOAD_V2_UPDATE_SA
	OID_TCP_TASK_OFFLOAD
	OID_TCP4_OFFLOAD_STATS
	OID_TCP6_OFFLOAD_STATS
	OID_TIMESTAMP_CAPABILITY
	OID_TIMESTAMP_CURRENT_CONFIG
	OID_TIMESTAMP_GET_CROSSTIMESTAMP
	OID_TUNNEL_INTERFACE_RELEASE_OID
	OID_TUNNEL_INTERFACE_SET_OID
	OID_WAN_CO_GET_COMP_INFO
	OID_WAN_CO_GET_INFO
	OID_WAN_CO_GET_LINK_INFO
	OID_WAN_CO_GET_STATS_INFO
	OID_WAN_CO_SET_COMP_INFO
	OID_WAN_CO_SET_LINK_INFO
	OID_WWAN_AUTH_CHALLENGE
	OID_WWAN_BASE_STATIONS_INFO
	OID_WWAN_CONNECT
	OID_WWAN_CREATE_MAC
	OID_WWAN_DELETE_MAC
	OID_WWAN_DEVICE_CAPS
	OID_WWAN_DEVICE_CAPS_EX
	OID_WWAN_DEVICE_RESET
	OID_WWAN_DEVICE_SERVICE_COMMAND
	OID_WWAN_DEVICE_SERVICE_SESSION
	OID_WWAN_DEVICE_SERVICE_SESSION_WRITE
	OID_WWAN_DEVICE_SERVICES
	OID_WWAN_DEVICE_SLOT_MAPPING_INFO
	OID_WWAN_DRIVER_CAPS
	OID_WWAN_ENUMERATE_DEVICE_SERVICE_COMMANDS
	OID_WWAN_ENUMERATE_DEVICE_SERVICES
	OID_WWAN_HOME_PROVIDER
	OID_WWAN_LTE_ATTACH_CONFIG
	OID_WWAN_LTE_ATTACH_STATUS
	OID_WWAN_MODEM_CONFIG_INFO
	OID_WWAN_MODEM_LOGGING_CONFIG
	OID_WWAN_MPDP
	OID_WWAN_NETWORK_BLACKLIST
	OID_WWAN_NETWORK_IDLE_HINT
	OID_WWAN_NETWORK_PARAMS
	OID_WWAN_NITZ
	OID_WWAN_PACKET_SERVICE
	OID_WWAN_PCO
	OID_WWAN_PIN
	OID_WWAN_PIN_EX
	OID_WWAN_PIN_EX2
	OID_WWAN_PIN_LIST
	OID_WWAN_PREFERRED_MULTICARRIER_PROVIDERS
	OID_WWAN_PREFERRED_PROVIDERS
	OID_WWAN_PRESHUTDOWN
	OID_WWAN_PROVISIONED_CONTEXTS
	OID_WWAN_RADIO_STATE
	OID_WWAN_READY_INFO
	OID_WWAN_REGISTER_PARAMS
	OID_WWAN_REGISTER_STATE
	OID_WWAN_SAR_CONFIG
	OID_WWAN_SAR_TRANSMISSION_STATUS
	OID_WWAN_SERVICE_ACTIVATION
	OID_WWAN_SIGNAL_STATE
	OID_WWAN_SLOT_INFO
	OID_WWAN_SMS_CONFIGURATION
	OID_WWAN_SMS_DELETE
	OID_WWAN_SMS_READ
	OID_WWAN_SMS_SEND
	OID_WWAN_SMS_STATUS
	OID_WWAN_SUBSCRIBE_DEVICE_SERVICE_EVENTS
	OID_WWAN_SYS_CAPS_INFO
	OID_WWAN_UE_POLICY
	OID_WWAN_UICC_ACCESS_BINARY
	OID_WWAN_UICC_ACCESS_RECORD
	OID_WWAN_UICC_APP_LIST
	OID_WWAN_UICC_ATR
	OID_WWAN_UICC_FILE_STATUS
	OID_WWAN_UICC_RESET
	OID_WWAN_UICC_TERMINAL_CAPABILITY
	OID_WWAN_USSD
	OID_WWAN_VENDOR_SPECIFIC
	OID_WWAN_VISIBLE_PROVIDERS

	Ws2def.h
	Overview
	AF_INET
	AF_INET6
	SIO_ADDRESS_LIST_CHANGE
	SIO_ADDRESS_LIST_QUERY
	SO_BROADCAST
	SO_CONDITIONAL_ACCEPT
	SO_EXCLUSIVEADDRUSE
	SO_KEEPALIVE
	SO_RCVBUF
	SO_REUSEADDR

	Previous Versions of Network Drivers
	Network Drivers Prior to Windows Vista
	Native 802.11 Wireless LAN Drivers
	Cellular COM API Reference

