This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Creating
Stored Procedures and User-Defined Functions with
Managed Code

Introduction

Databases like Microsoft’s SQL Server 2005 use the Transact-Structured Query Language (T-SQL) for inserting,
modifying, and retrieving data. Most database systems include constructs for grouping a series of SQL statements
that can then be executed as a single, reusable unit. Stored procedures are one example. Another is User-Defined

Functions (UDFs), a construct that we will examine in greater detail in Step 9.

At its core, SQL is designed for working with sets of data. The SELECT, UPDATE, and DELETE statements inherently
apply to all records in the corresponding table and are only limited by their WHERE clauses. Yet there are many
language features designed for working with one record at a time and for manipulating scalar data. CURSORs allow
for a set of records to be looped through one at a time. String manipulation functions like LEFT, CHARINDEX, and
PATINDEX work with scalar data. SQL also includes control flow statements like IF and WHILE.

Prior to Microsoft SQL Server 2005, stored procedures and UDFs could only be defined as a collection of T-SQL
statements. SQL Server 2005, however, was designed to provide integration with the Common Language Runtime
(CLR), which is the runtime used by all .NET assemblies. Consequently, the stored procedures and UDFs in a SQL
Server 2005 database can be created using managed code. That is, you can create a stored procedure or UDF as a
method in a C# class. This enables these stored procedures and UDFs to utilize functionality in the NET
Framework and from your own custom classes.

In this tutorial we will examine how to create managed stored procedures and User-Defined Functions and how to
integrate them into our Northwind database. Let’s get started!

Note: Managed database objects offer some advantages over their SQL counterparts. Language richness and
familiarity and the ability to reuse existing code and logic are the main advantages. But managed database
objects are likely to be less efficient when working with sets of data that do not involve much procedural
logic. For a more thorough discussion on the advantages of using managed code versus T-SQL, check out the
Advantages of Using Managed Code to Create Database Objects.

Step 1: Moving the Northwind Database Out of 2pp_bData

All of our tutorials thus far have used a Microsoft SQL Server 2005 Express Edition database file in the web
application’s App_Data folder. Placing the database in App Data simplified distributing and running these tutorials
as all of the files were located within one directory and required no additional configuration steps to test the
tutorial.

For this tutorial, however, let’s move the Northwind database out of 2pp_Data and explicitly register it with the
SQL Server 2005 Express Edition database instance. While we can perform the steps for this tutorial with the
database in the App_Data folder, a number of the steps are made much simpler by explicitly registering the
database with the SQL Server 2005 Express Edition database instance.

The download for this tutorial has the two database files - NORTHWND . MDF and NORTHWND log.LDF - placed in a

1 of 38

folder named Datariles. If you are following along with your own implementation of the tutorials, close Visual
Studio and move the NORTHWND . MDF and NORTHWND log.LDF files from the website’s app Data folder to a folder
outside of the website. Once the database files have been moved to another folder we need to register the
Northwind database with the SQL Server 2005 Express Edition database instance. This can be done from SQL
Server Management Studio. If you have a non-Express Edition of SQL Server 2005 installed on your computer
then you likely already have Management Studio installed. If you only have SQL Server 2005 Express Edition on
your computer then take a moment to download and install Microsoft SQL Server Management Studio Express.

Launch SQL Server Management Studio. As Figure 1 shows, Management Studio starts by asking what server to
connect to. Enter “localhost\SQLExpress” for the server name, choose “Windows Authentication” in the
Authentication drop-down list, and click Connect.

&¥ Connect to Server

Microsoft s Wli?:lilm Server System
SQL Server 2005
SEWERTDE Hat-base Engne v
Semrver name: {iﬂcalhnst'&SDLE :-:press]. "
Authentication: :-";k-"inu:lu:uws .ﬁ.uthenticati-:u-n] W |
uunnect | [Cancel] [Help] [Optiong » >

Figure 1: Connect to the Appropriate Database Instance

Once you’ve connected, the Object Explorer window will list information about the SQL Server 2005 Express
Edition database instance, including its databases, security information, management options, and so forth.

We need to attach the Northwind database in the DataFiles folder (or wherever you may have moved it) to the
SQL Server 2005 Express Edition database instance. Right-click on the Databases folder and choose the Attach
option from the context menu. This will bring up the Attach Databases dialog box. Click the Add button, drill
down to the appropriate NORTHWND . MDF file, and click OK. At this point your screen should look similar to

Figure 2.

2 of 38

P ruach Databases

md JECIFF‘ UHBFP
Dalabsses to shlach:
_____ MDF File Location Database ... | Altachhs Clwirser Status Meszage

E ...] [Hemove |
"7DES0B4CI00772FDSCTOBCIEEIBEDTF., " dababare detais:
Driginel Fie Nama File Type Cusrart File Path Mezzage
| NORTHWND.MDF | Data C:AMy Projectswikngs. [
3 NORTHWND_loghdl Log My ProjectsSwibngs'. [
SR
locathoetVSOLE xprass
Connaclion:
MOMS TERMITCHELL Administra

Y View conhection piopartias

Figure 2: Connect to the Appropriate Database Instance

Note: When connecting to the SQL Server 2005 Express Edition instance through Management Studio the
Attach Databases dialog box does not allow you to drill down into user profile directories, such as My
Documents. Therefore, make sure to place the NORTHWND . MDF and NORTHWND log.LDF files in a non-user
profile directory.

Click the OK button to attach the database. The Attach Databases dialog box will close and the Object Explorer

should now list the just-attached database. Chances are the Northwind database has a name like
9FE54661B32FDD967F51D71D0D5145CC_LINE ARTICLES\DATATUTORIALS\VOLUME 3\CSHARP\73

\ASPNET DATA TUTORIAL 75 CS\APP DATA\NORTHWND.MDF. Rename the database to “Northwind” by right-
clicking on the database and choosing Rename.

3 of 38

E.. Microsoft SQL Server ManagﬂEHE] |Z| |E| [g|

File Edit Mew Tools Window — Commonity Help

A tewQuery [Ty 1 05 (5

IZIZIEjEI:t Explorer
Connect = | @Y m |4

= Lh localhosthSOLExpress (SOL Server a.0.|

= 3 Databases
& [Svstem Databases
[+ .‘JJ Parthwind

[# [_J Security

& [Server Objects

& [Replication

& 3 Managernent

£ |

Ready

Figure 3: Rename the Database to “Northwind”

Step 2: Creating a New Solution and SQL Server Project in Visual
Studio

To create managed stored procedures or UDFs in SQL Server 2005 we will write the stored procedure and UDF
logic as C# code in a class. Once the code has been written, we will need to compile this class into an assembly

(a .d11 file), register the assembly with the SQL Server database, and then create a stored procedure or UDF object
in the database that points to the corresponding method in the assembly. These steps can all be performed
manually. We can create the code in any text editor, compile it from the command line using the C# compiler
(csc.exe), register it with the database using the CREATE ASSEMBLY command or from Management Studio, and
add the stored procedure or UDF object through similar means. Fortunately, the Professional and Team Systems
versions of Visual Studio include a SQL Server Project type that automates these tasks. In this tutorial we will walk
through using the SQL Server Project type to create a managed stored procedure and UDF.

Note: If you are using Visual Web Developer or the Standard edition of Visual Studio, then you will have to
use the manual approach instead. Step 13 provides detailed instructions for performing these steps manually.
I encourage you to read Steps 2 through 12 before reading Step 13 since these steps include important SQL
Server configuration instructions that must be applied regardless of what version of Visual Studio you are
using.

Start by opening Visual Studio. From the File menu, choose New Project to display the New Project dialog box
(see Figure 4). Drill down to the Database project type and then, from the Templates listed on the right, choose to
create a new SQL Server Project. I have chosen to name this project ManagedDatabaseConstructs and placed it
within a Solution named Tutorial7s.

4 of 38

Project types: Templates: EiE
= Wisual Basic ¥isual studio installed templates
iiRdess ;
® - Smart Device [—
il
Databage il
Starber Kits S0L Server
‘Web Project
= Visual C#
My Templates
! ’ Search Online
B Other Praject Types Templates...
[& ;n-upe}:i For creating classes to use in S'QL arver
Mame: fManal;a:ﬂatabaseﬂnnstrucl‘s]
Location: . Ci\My Projects ~
Solution MName: Tukorial | [#] Create diractory For solution
] Add bo Souyree Control
[or || conea

Figure 4: Create a New SQL Server Project

Click the OK button in the New Project dialog box to create the Solution and SQL Server Project.

A SQL Server Project is tied to a particular database. Consequently, after creating the new SQL Server Project we
are immediately asked to specify this information. Figure 5 shows the New Database Reference dialog box that has
been filled out to point to the Northwind database we registered in the SQL Server 2005 Express Edition database

instance back in Step 1.

5 of 38

New Database Reference |E E| |E| |E|

Enter information to connect to the Microsoft SOL Server that vou wish
ko deploy wour SOL Server project ko, The server version must be 2005
or later.

Data source:
!Mil:rl:uscnft 0L Server £3glClient) |

Server name:
' i_lpn:alhn:nst'l,SQLExpress_] ' | [Refresh

Log on to the server

{*) Use Windows Authentication
O Ise 501 Server Authentication

Connect ko a database

(%) Select or enter a database name:

|

[Test Conneckion] [Ok,] [Cancel]

Figure 5: Associate the SQL Server Project with the Northwind Database

In order to debug the managed stored procedures and UDFs we will create within this project, we need to enable
SQL/CLR debugging support for the connection. Whenever associating a SQL Server Project with a new database
(as we did in Figure 5), Visual Studio asks us if we want to enable SQL/CLR debugging on the connection (see
Figure 6). Click Yes.

Microsoft Visual Studio

To debug this project, you must enable SOLICLR debugging For the connection.
x‘i"‘j Maote that during debugging all managed threads on the server will stop,

Do o wish b enable SOLICLR debugging on this connection?

[

| o

Fl=
[a1]
L

6 of 38

Figure 6: Enable SQL/CLR Debugging

At this point the new SQL Server Project has been added to the Solution. It contains a folder named Test Scripts
with a file named Test.sql, which is used for debugging the managed database objects created in the project. We
will look at debugging in Step 12.

We can now add new managed stored procedures and UDFs to this project, but before we do let’s first include our
existing web application in the Solution. From the File menu select the Add option and choose Existing Web Site.
Browse to the appropriate website folder and click OK. As Figure 7 shows, this will update the Solution to include
two projects: the website and the ManagedDatabaseConstructs SQL Server Project.

3 Solution 'Tutorial74' (2 oraiecks)
! _'P C: LW ASPNET _Data_Tutorial_74_CSY,
[+ | AdvancedDal

F- L) App_Code
s | App_Data
+- & App_Themes

[+

| BasicReparting

|1 BatchData

| BinaryDaka

|1 Brochures

3 Caching

| CustomButtons

| CustomButtonsDatalistRepeater
| CustomFormatting

| DatalistRepeaterBasics
|1 DatalistRepeaterFiltering
|1 EditDeleteDatalist

| EditInsertDelete

| EnhancedGridiiew

|4 Filkering

|4 PagingAndSorking

| PagingSortingDatalistRepeaker
|4 SiteMapProvider

|4 SglDataSource

|4 UserControls

j Default, aspx

4‘] Global. asax

] _=| Site.master

A] sStyles.css

i web.config

sl Wieb. sitemap
= ManagEdDatabaseCDnstructs]

=d| Properties
«J] References
| Test Scripks

e e R R R e B o R R Bl R

x|

|

El-E

|'._|.'_|

-':j’_?Su:ulutiu:u... wiProper... |28 Server.., B Class ...

Figure 7: The Solution Explorer Now Includes Two Projects

7 of 38

The NORTHWNDConnectionString value in Web. config currently references the NORTHWND . MDF file in the

App Data folder. Since we removed this database from 2pp Data and explicitly registered it in the SQL Server
2005 Express Edition database instance, we need to correspondingly update the NORTHWNDConnectionString
value. Open the Web. config file in the website and change the NORTHWNDConnectionString value so that the
connecﬁonshﬁngreads:“Data Source=localhost\SQLExpress;Initial Catalog=Northwind; Integrated
Security=True”. After this change, your <connectionStrings> section in Web.config should look similar to the
following:

<connectionStrings>
<add name="NORTHWNDConnectionString" connectionString=
"Data Source=localhost\SQLExpress;Initial Catalog=Northwind;
Integrated Security=True;Pooling=false"
providerName="System.Data.SglClient" />
</connectionStrings>

Note: As discussed in the preceding tutorial, when debugging a SQL Server object from a client application,
such as an ASP.NET website, we need to disable connection pooling. The connection string shown above
disables connection pooling (“Pooling=false”). If you do not plan on debugging the managed stored
procedures and UDFs from the ASP.NET website, enable connection pooling.

Step 3: Creating a Managed Stored Procedure

To add a managed stored procedure to the Northwind database we first need to create the stored procedure as a
method in the SQL Server Project. From the Solution Explorer, right-click on the ManagedbatabaseConstructs
project name and choose to add a new item. This will display the Add New Item dialog box, which lists the types
of managed database objects that can be added to the project. As Figure 8 shows, this includes stored procedures
and User-Defined Functions, among others.

Let’s start by adding a stored procedure that simply returns all of the products that have been discontinued. Name
the new stored procedure file GetDiscontinuedProducts.cs.

Add New Item - ManagedDatabaseConstructs EIE]

Templates: E&E
__¥isual Studio installed templates

% @ @ & &

User-Defined User-Defined Trigger fggregate Class
Function Type

My Templates

Search Online
Templates. .,

| Amempty sbored procedure:

harne: [Eetl:lis:mmedpradxts.:sﬂ

Add]| Cancel

8 of 38

Figure 8: Add a New Stored Procedure Named GetDiscontinuedProducts.cs

This will create a new C# class file with the following content:

using System;

using System.Data;

using System.Data.SglClient;
using System.Data.SglTypes;

using Microsoft.SglServer.Server;

public partial class StoredProcedures

{
[Microsoft.SglServer.Server.SglProcedure]
public static void GetDiscontinuedProducts ()

{

// Put your code here
}i

Note that the stored procedure is implemented as a static method within a partial class file named
StoredProcedures. Moreover, the GetDiscontinuedProducts method is decorated with the SqlProcedure

attribute, which marks the method as a stored procedure.

The following code creates a sqicommand Object and sets its commandText tO @ seLECT query
that returns all of the columns from the products table for products whose piscontinued field
equals 1. It then executes the command and sends the results back to the client
application. Add this code to the cetpiscontinuedProducts method.

// Create the command
SglCommand myCommand = new SglCommand () ;
myCommand.CommandText =
@"SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued
FROM Products
WHERE Discontinued = 1";

// Execute the command and send back the results
SglContext.Pipe.ExecuteAndSend (myCommand) ;

All managed database objects have access to a sqicontext object that represents the
context of the caller. The sqicontext provides access to a sqiripe object via its ripe
property. This sqiripe object is used to ferry information between the SQL Server database
and the calling application. As its nhame implies, the Executeandsend method executes a
passed-in sqlcommand Object and sends the results back to the client application.

Note: Managed database objects are best suited for stored procedures and UDFs that
use procedural logic rather than set-based logic. Procedural logic involves working
with sets of data on a row-by-row basis or working with scalar data. The
GetDiscontinuedProducts Method we just created, however, involves no procedural
logic. Therefore, it would ideally be implemented as a T-SQL stored procedure. It is

9 of 38

implemented as a managed stored procedure to demonstrate the steps necessary for
creating and deploying managed stored procedures.

Step 4: Deploying the Managed Stored Procedure

With this code complete, we are ready to deploy it to the Northwind database. Deploying a
SQL Server Project compiles the code into an assembly, registers the assembly with the
database, and creates the corresponding objects in the database, linking them to the
appropriate methods in the assembly. The exact set of tasks performed by the Deploy
option is more precisely spelled out in Step 13. Right-click on the ManagedpatabaseConstructs
project name in the Solution Explorer and choose the Deploy option. However, deployment
fails with the following error: “Incorrect syntax near 'EXTERNAL'. You may need to set the
compatibility level of the current database to a higher value to enable this feature. See
help for the stored procedure sp dbcmptievel.”

This error message occurs when attempting to register the assembly with the Northwind
database. In order to register an assembly with a SQL Server 2005 database, the
database’s compatibility level must be set to 90. By default, new SQL Server 2005
databases have a compatibility level of 90. However, databases created using Microsoft
SQL Server 2000 have a default compatibility level of 80. Since the Northwind database
was initially a Microsoft SQL Server 2000 database, its compatibility level is currently set to
80 and therefore needs to be increased to 90 in order to register managed database
objects.

To update the database’s compatibility level, open a New Query window in Management
Studio and enter:

exec sp_dbcmptlevel 'Northwind', 90

Click the Execute icon in the Toolbar to run the above query.

B Microsoft SOL Server Management Studio E] E]@[E

Filz Edit ‘iew Query FProject Tools Window Community Help

2] New Query | [3y | foRy OR PR [Y EF b G B () BB PR

2 147 worthwind o Execte v B IS 2 AL ITTEYD
Obiject Explorar = B X localhost\SOL..SQLQuery3.sql* | - ¥
Corneck = 2 ﬂ exec sp_dbcmptlevel 'Northwind', 90 Tl
= | locahost\SQLExpress (SQL Serv
= 5 Databases =
[# 3 System Databases ¢ >
& [] Maorthand
[Security L1 Messages
® [Server Objects | DBCC execution campieteti. If DECC ptiﬁte;i EEL
[# |4 Replication
[Management | 5
¢ 3 (@@ locahost\SOLExpress (SORTM) | MONSTERMITCHELL\Adrmini
Ready Ln 1 Col 36 Ch 36 INS

10 of 38

Figure 9: Update the Northwind Database’s Compatibility Level

After updating the compatibility level, redeploy the SQL Server Project. This time the
deployment should complete without error.

Return to SQL Server Management Studio, right-click on the Northwind database in the
Object Explorer, and choose Refresh. Next, drill down into the Programmability folder and
then expand the Assemblies folder. As Figure 10 shows, the Northwind database now
includes the assembly generated by the Managedpatabaseconstructs project.

File Edit Miew Project Tools Yndow Community Help

Atewauey [BB 5 B Cd @ DR

Iifil.l.:n:i.E-u:t. Explorer

Connect~ | @d =[] T l

= LB localhost SOLExpress (SOL Server 9.0,1399 - MONSTI
= [Databases
[+ [Svstem Databases
= |j Marthind
* [Database Diagrams
* 3 Tahbles
& [Views
® 3 Synonyms
= Prograrnmability
"W} o-ored Procedures
1 [Funckions
1 [Database Triggers
= 3 Assemblies
E_J ManagedDatabaseCDnstruu:ts]
[d Types
[Pules
3 Defaults
® [Service Broker
* [Security
[Security
[server Objects
[Replication
[Managernent

Figure 10: The Managedpatabaseconstructs Assembly is Now Registered with the
Northwind Database

Also expand the Stored Procedures folder. There you will see a stored procedure named
GetDiscontinuedProducts. This stored procedure was created by the deployment process and
points to the GetbiscontinuedProducts method in the ManagedbatabasecConstructs assembly.

11 of 38

When the cetpiscontinuedpProducts stored procedure is executed, it, in turn, executes the
GetDiscontinuedProducts Method. Since this is a managed stored procedure it cannot be
edited through Management Studio (hence the lock icon next to the stored procedure
name).

File Edit Miew Project Tools Window Community

S Neequery [y 1 6 5 L

"|:|] ct Explarer
Connect~ | @1 m |8}

= LB localhost S0LE press (SOL Server 9.0,1399 - MOMSTE # |
= [Databases i
[Syskem Databases
= L:I MorERind
[+ [Database Diagrams
[+ [Tables
* [Wiews
* [Synonyms
= [Programmability
[= |3 Stored Procedures
* [Syskem Stored Procedures
[+ dbio, Asphlet_SqlCachePollingStore:
+ dbo.AspMet_SqlCacheCueryRegist
[E] dbo,Asphet_SqlCacheRegiskerTabl
. dbio, Asphlet_SqlCachelnReqgister T
=] dbo,Asphet_SglCachelpdateChan
=] dbo.Categories_Delete
=] dbo.CustOrderHist
=] dbo.CustOrdersDetail
=] dbo.CustOrdersCrders
=] dbo.Emploves Sales by Counkry
=] dbo.Emplovess_Delete
=] dbo.Emplovees_Insert
=] dbo.Emplovess_Select
dbo, Emplovess Update
2 dbo, GetDlschtlnuedPdeucts]
u:II:u:u GetF‘rnductsByCateng

< --] 5|

I e e e R e e A e e S

lﬂWIIIIIIIII

Figure 11: The cetdiscontinuedProducts Stored Procedure is Listed in the Stored
Procedures Folder

There is still one more hurdle we have to overcome before we can call the managed stored
procedure: the database is configured to prevent execution of managed code. Verify this
by opening a new query window and executing the cetpiscontinuedproducts stored
procedure. You will receive the following error message: “Execution of user code in

the .NET Framework is disabled. Enable ‘clr enabled’ configuration option.”

To examine the Northwind database’s configuration information, enter and execute the

12 of 38

command “exec sp configure” in the query window. This shows that the “clr enabled”
setting is currently set to O.

E. Microsoft SOL Server Management Studio

Fle Edt ¥eew Query Project Tool: Window Communty Help

Dtewouery [y BRI B S Hd O RBS
LMD Moted - Pewate v DM 2 A 0 QRO S22
Object Explarer =3 X leec alhost) SOL..SOLQuery4.sql™ v X
Connect~ 4. 7 EXEC np_x:nnfa.gure =

= |y bocalhost|\SOLExpress (SOL Serve A

#

= [Databases - :
Flasi
4 Syshem Databages] Reauts L Mesiagts
= | 8 Narthwind [PRI | EEKILEN corfag_value un_valus A
+ 4 Database Disgrams 1 i 0 1 i 1]
(3 Tables 2 | | o 1] 0]
#1d :'EW" 3 CICEE O (AW cTep Chisarn] T L] L)
[Synonyms
5 (3 Programmabiity 4 ded sl language] 995 0 0
4 [Service Broker 5 mna b vespl zize (8] 0 47433647 B5536 [22%.5
¥ 4 Security [sk briggers i 1 1 1
& [Seourity 7 [eobe SOCEEE 0 1 1 1
& 3 Server Objacts o R P e Lo ol 1 i n vl
* i Banks s . .
< » & locahost\SOLEspeess (RORATH) MONSTERMITCHELL\Admirestrabor (53] Mortheand
Ry LA L Col 18 Ch 18 INS

Figure 12: The “cilr enabled” Setting is Currently Set to 0

Note that each configuration setting in Figure 12 has four values listed with it: the
minimum and maximum values and the config and run values. To update the config value
for the “clr enabled” setting, execute the following command:

exec sp_configure 'clr enabled', 1

If you re-run the “exec sp configure” you will see that the above statement updated the “clr
enabled” setting’s config value to 1, but that the run value is still set to 0. For this
configuration change to take affect we need to execute the reconricure command, which
will set the run value to the current config value. Simply enter “reconrIicure” in the query
window and click the Execute icon in the Toolbar. If you run “exec sp configure” NOw you
should see a value of 1 for the “clr enabled” setting’s config and run values.

With the “cIr enabled” configuration complete, we are ready to run the managed
GetDiscontinuedProducts Stored procedure. In the query window enter and execute the
command “exec GetDiscontinuedProducts”. Invoking the stored procedure causes the
corresponding managed code in the cetbiscontinuedProducts method to execute. This code
issues a seLecT query to return all products that are discontinued and returns this data to
the calling application, which is SQL Server Management Studio in this instance.
Management Studio receives these results and displays them in the Results window.

13 of 38

B microsalt SOL Serses Masagemesl Shodie

Fie Bl Y Duey B [wE Wiedes Coweendy D
dlbmooee [o o B Lk LT el OB D B BR
Bf 15 Horthend o Egete o Tt A D BN 2 =
byt Erphoee - @ X L - %
Cgwen s 83 t. ruedProducta =
3 | hecshoa R es (501 Servw
[T ¥
& LI Syter Dolabacm L *
| Pictierand 3 Figmdh F——
A | Gt b Ciagey - o) Mretoge - — -
® ol Tabder PrpchatiD Foshucillyes Gapplsdl Comgonill QuswiFedlnd UrPrce Untdniioce - Ueiilndede Paodedevel [Deconirmasd
- 1 fa (P s Dyt M] z . it n@\ 0 e i
W 20 Syrorea 3] Bt F the s '] J Frad =3 o & 1
i ..Tu..;-:-\.sa 5 oy Mo 3 8 o u o "
. ':_": -] (st F ket] 1] 0 D ; 1
o Sty] Fiate fnashini] 7 5B b T I n [1
5 Server Objec E M Thunrg Fioske swart it A Sibag:e Momnge 12274 0] i
) Tl T &y ingapsan Hakbion fred ke 30 L1 ¥ ikgpg i X] i
o S B 5 Fwiy Paaies 2 - AE: I q 1] ['
5 Loy Mbai] T 3 HIHL 195 0 BULL 1
[1] £ crmm Tosicd . 5 Vvt ko' oo ey 295 18 i s |
m um crea L L] [HUIL 395 1a] £ 1
S
i 5 | Dusy petuted miccaailie et SOLEspwees OATMI MORSTERMTOHE LL Aawrstiao 113 Kotasrd MOO0OD 11 Hess
Realy Ll o s L]

Figure 13: The cetbpiscontinuedProducts Stored Procedure Returns All Discontinued
Products

Step 5: Creating Managed Stored Procedures that
Accept Input Parameters

Many of the queries and stored procedures we have created throughout these tutorials
have used parameters. For example, in the Creating New Stored Procedures for the Typed
DataSet’s TableAdapters tutorial we created a stored procedure named
GetProductsByCategoryID that accepted an input parameter named ecategoryin. The stored
procedure then returned all products whose category1p field matched the value of the
supplied ecategoryID parameter.

To create a managed stored procedure that accepts input parameters, simply specify those
parameters in the method’s definition. To illustrate this, let’s add another managed stored

procedure to the Managedpatabaseconstructs project named GetpProductsWithPriceLessThan. This
managed stored procedure will accept an input parameter specifying a price and will return
all products whose unitrrice field is less than the parameter’s value.

To add a new stored procedure to the project, right-click on the ManagedpatabaseConstructs
project name and choose to add a new stored procedure. Name the file
GetProductsWithPriceLessThan.cs. AS we saw in Step 3, this will create a new C# class file
with a method named cetprroductswithPriceLessThan placed within the partial class

StoredProcedures.

Update the cetproductswithPriceLessThan Mmethod’s definition so that it accepts a sqivoney
input parameter named price and write the code to execute and return the query results:

[Microsoft.SglServer.Server.SglProcedure]
public static void GetProductsWithPricelessThan (SglMoney price)
{

// Create the command

14 of 38

The GetproductswithPriceLessThan Method’s definition and code closely resembles the
definition and code of the GetbiscontinuedProducts method created in Step 3. The only
differences are that the GetproductswithPriceLessThan method accepts as input parameter
(price), the sqicommand’s query includes a parameter (evaxprice), and a parameter is added
to the SqlCommand'S parameters collection is and assigned the value of the price variable.

After adding this code, redeploy the SQL Server Project. Next, return to SQL Server
Management Studio and Refresh the Stored Procedures folder. You should see a new entry,
GetProductsWithPriceLessThan. From a query window, enter and execute the command “exec
GetProductsWithPriceLessThan 25", Which will list all products less than $25, as Figure 14

shows.

SglCommand myCommand = new SglCommand () ;
myCommand.CommandText =
@"SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued
FROM Products
WHERE UnitPrice < @MaxPrice";

myCommand.Parameters.AddWithValue ("@MaxPrice", price);

// Execute the command and send back the results
SglContext.Pipe.ExecuteAndSend (myCommand) ;

W Wicrosalt SOL Serses Managemest Siudie

) O bt Caapamd - o
% i Tablss L 2z
A T 21 Rewits | 'y Mesingen
&) Trenews = 4 i
5 22 Pror bty Prochuctil - Froducidsrs Suppheil ot DusriiyPerink UrfFoce |UniznSios. Unidnlnde Fioedsle &
- EFCrrT 1 1 [ha Tea 1 1 1) bt w 0 T | THE = Q i
[‘Sysbam Sored Procedines R hag 1 1 20120 boiies wa A A
O dbeoaphie S0 achaiolrgSora i] 3 Arwwmad oy i » 12 - 0 il bl L1 k] m -
i chobeptine Sopcucracameriagemricif [y g Chal et mbo bl 7 bt nE o o b
i (o] o Aspiet_SobCachinngrine Tabie ST - gl P Rl TR T i Vharka 00 3 F
§ [ho faphict G acelinfl gt Table . 3 @ +
O] e et Sk sl lpdat e hangeic E_ 1 oty E B 2 hphes B0 i [} -3
B [e Caliontes Dot T Taty] : 8 ¢ 100 pgs no fu [o
il S o CushOrdertin B 1S Goren Shoup] H 24 - 350 mi bokien 1550 -] 1] 5
o :;“’;“"‘“" 8 1€ [— b 3 S} st s = g A
& b rdererden
A R — non Togwns [hocolsis ool B 2 Wbt s e | 80 [0 5
i [o Bpkyees Delts n Sar Rty s B]] M pige. s dpacen | 1000 & .
el T iy — (THE- Gt Frachebod] 5 24 . 50 ppege A [a =
[dio Preplyesa_Salact 13 A" Turmbeosd g 5 12 Slppgm EL] £ [i] -]
B2 x;ﬁ::;‘i—;‘ & LTIE | Gty Faribeton % 1 12+ Tl e T El [:} 0
- nt.n:-wlm;-:w.l.-:w-w:- Ak & b LaNatagutr. 11 ¥ N Fpgeses | W0 | TE [/ |
L T —— M n Gmprrasls T ol i i 12 100 p g hFL]] m i
5 [ghor ot e LI Bkt 5 i g o 1 x &
s(E an commmnommenrna] g Fue B .
B fm Oim HemRaly [t s ~
) e] it bt oepbuar SOLE weis FLOATM] WORSTERSTOHE LL Wi 73 Kotwwrd RO Bl uea

Figure 14: Products Under $25 are Displayed

Step 6: Calling the Managed Stored Procedure from

the Data Access Layer

15 of 38

At this point we have added the cetpiscontinuedProducts and GetProductsWithPriceLessThan
managed stored procedures to the Managedpatabaseconstructs project and have registered
them with the Northwind SQL Server database. We also invoked these managed stored
procedures from SQL Server Management Studio (see Figure s 13 and 14). In order for our
ASP.NET application to use these managed stored procedures, however, we need to add
them to the Data Access and Business Logic Layers in the architecture. In this step we will
add two new methods to the productsTableadapter in the Northwindwithsprocs Typed DataSet,
which was initially created in the Creating New Stored Procedures for the Typed DataSet’s
TableAdapters tutorial. In Step 7 we will add corresponding methods to the BLL.

Open the Northwindwithsprocs Typed DataSet in Visual Studio and start by adding a new
method to the productsTableadapter N@amed GetDiscontinuedProducts. TO add a new method to
a TableAdapter, right-click on the TableAdapter’s name in the Designer and choose the Add
Query option from the context menu.

Note: Since we moved the Northwind database from the 2pp pata folder to the SQL
Server 2005 Express Edition database instance, it is imperative that the corresponding
connection string in Web.config be updated to reflect this change. In Step 2 we
discussed updating the NorTHWNDConnectionstring value in web.config. If you forgot to
make this update, then you will see the error message “Failed to add query. Unable to
find connection ‘NorTHWNDConnectionstring’ for object ‘web.config’ in a dialog box when
attempting to add a new method to the TableAdapter. To resolve this error, click OK
and then go to web.config and update the NorTHWNDConnectionstring value as discussed
in Step 2. Then try re-adding the method to the TableAdapter. This time it should
work without error.

Adding a new method launches the TableAdapter Query Configuration wizard, which we
have used many times in past tutorials. The first step asks us to specify how the
TableAdapter should access the database: through an ad-hoc SQL statement or via a new
or existing stored procedure. Since we have already created and registered the
GetDiscontinuedProducts managed stored procedure with the database, choose the “Use
existing stored procedure” option and hit Next.

16 of 38

Choose a Command Type =

TableAdapter Query Configuration Wizard | : @ X
e

TableAdapter query uses SOL statements or a stored procedure, | i
-

How should the Tablefdapter query access the database?
{} Use S0L statements
Speciy a SELECT statement to load data.
(") Create new stored procedure
Specify a SELECT statement, and the wizard will generate a new stored procedure bo select records.

Choose an existing stored procedure,

oz][o | o

Figure 15: Choose the "Use existing stored procedure” Option

The next screen prompts us for the stored procedure the method will invoke. Choose the
GetDiscontinuedProducts Managed stored procedure from the drop-down list and hit Next.

17 of 38

TableAdapter Query Configuration Wizard [E”E| |E| [E|

Choose an existing stored procedure A |
Choose which stored procedure the DakaSource Function is supposad to call. | i

Select the stored procedure ko call, Parameters and results for the selected stored procedure are shown below,

[Getl]isu:mtirrmdeducts] V_J
Parameters: Results:
Parameter Mames Fesult Calumns

| <previous || mext> | [Emish | [Cancel |

Figure 16: Select the cetpiscontinuedrProducts Managed Stored Procedure

We are then asked to specify whether the stored procedure returns rows, a single value, or
nothing. Since GetbdiscontinuedProducts returns the set of discontinued product rows, choose
the first option ("Tabular data”) and click Next.

18 of 38

TableAdapter Query Configuration Wizard

Choose the shape of data returned by the stored procedure A o i
T)

Choose if the stored procedure returns rows, a single value, or nothing. | IE |

withat should the typed method For this stored procedure return?

(" A single value - & typed Function will be generated which retums a single valus from the stored procedure.,

(7 Mo value - & typed method will be generated to execute a stored procedure which doesn't return data,

[{Er&viws _“ Bext = H_ Finish I[Cancel J

Figure 17: Select the “"Tabular Data” Option

The final wizard screen allows us to specify the data access patterns used and the names
of the resulting methods. Leave both checkboxes checked and name the methods
FillByDiscontinued @anNd GetDiscontinuedProducts. Click Finish to complete the wizard.

19 of 38

TableAdapter Query Configuration Wizard

Choose Methods to Generate A |

The TableAdapter methods bad and save data between your application and the (=S
database. r

¥hich methods do you want to add to the TableAdapter?
Fill a DataTable

Creakes a method that takes a DataTable or DataSet as a parameker and execustes the SOL stakement or
SELECT stored procedure enterad an the previous page.

Method narme: FiIIB-;.rB.IjscnﬁtInued

Return a DataTable

Creates a method that returns a new DataTable Filled wikh the results of the SOL statement or SELECT stored
procedure entered on the previous page.

Method name: GetDiscontinuedProducts

[<= Previous]uext:b H Finish ” Cance

Figure 18: Name the Methods riliByDiscontinued @and GetDiscontinuedProducts

Repeat these steps to create methods named ri11ByPriceLessThan and
GetProductsWithPriceLessThan in the ProductsTableAdapter for the GetProductsWithPriceLessThan
managed stored procedure.

Figure 19 shows a screenshot of the DataSet Designer after adding the methods to the

ProductsTableAdapter for the GetbiscontinuedProducts @and GetProductsWithPriceLessThan
managed stored procedures.

20 of 38

% Tutorial74 - Microsoft Visual Studio Ei=1NE=E

File Edit VYiew ‘Webste PBuild [Debusg Data TJook ‘Window Community Helbb Sddins
LA 2 WA T R S5 NS U Kol A >
o web.config - App_Code DAL/ .ithSprocs.ssd | T x| Soltion Explorer - ManagedDatabaseCo... » 0 X

2 Ed 2 e
g B Products EY Lal Sohukion 'Tutorial?4' (2 projects) A
- p—— = [C\.0\ASPNET_Data_Tutorial_74_C*
ProductName ® [Advancedhal
SupplierID T "—" ﬁ_pfaL
CabegorylD s aa
CuantityPerLing i:. :_kl:uﬁnmpmmder's
UnitPrice = Eoa
UnitsInStack - [ConnectionAndCommandSett
UnitsOndrder #® [TransactionSuppork
Rearderlevel # A Morthwind.soed
Discontinwed = i imisth rred
PriceQuartils # 2] MorthwindwithSprocs, xsd
‘8 ProductsTableAdapter 53 Apo Taks
. - ’ # |4 App_Themes
2] Fil,GetProducts () & [BasicReporting
] FilByCategoryID, GetProduct ateqoryID (@Ca 0] % [BatchData
|l FillByDiscontinwed, GetDiscontinuwedProducks () & [BnaryDats
2 FilByPricelessThan, GetProductsiithPriceless Than (@price) @ [Brochures
i:l FilByProductID, GetProductEyPraductID {@FraductID) #- [J Caching
il FilwithPriceQuartile, GetProductsWithPrice Quartile () # [CustomButtons]
& *
& ¥ | Fscliti... [SfPrope.., | M8 Serve., | Class
_,’j Error List | (5] Output ‘i Find Resuks 1 | 3] Commarsd Wirndow
Tee{s) Saved

Figure 19: The productsTableadapter INcludes the New Methods Added in this Step

Step 7: Adding Corresponding Methods to the
Business Logic Layer

Now that we have updated the Data Access Layer to include methods for calling the
managed stored procedures added in Steps 4 and 5, we need to add corresponding
methods to the Business Logic Layer. Add the following two methods to the
ProductsBLLWithSprocs Class:

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, false)]

public NorthwindWithSprocs.ProductsDataTable GetDiscontinuedProducts ()

{

return Adapter.GetDiscontinuedProducts();

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Select, false)]

public NorthwindWithSprocs.ProductsDataTable
GetProductsWithPricelessThan (decimal priceLessThan)

return Adapter.GetProductsWithPricelLessThan (priceLessThan) ;

21 of 38

Both methods simply call the corresponding DAL method and return the productspatarabile
instance. The pataobjectMethodattribute Markup above each method causes these methods
to be included in the drop-down list in the SELECT tab of the ObjectDataSource’s Configure
Data Source wizard.

Step 8: Invoking the Managed Stored Procedures from
the Presentation Layer

With the Business Logic and Data Access Layers augmented to include support for calling
the GetpiscontinuedProducts and GetProductsWithPriceLessThan Managed stored procedures,
we can now display these stored procedures’ results through an ASP.NET page.

Open the ManagedFunctionsAndSprocs.aspx page in the advancedpal folder and, from the
Toolbox, drag a GridView onto the Designer. Set the GridView’s 1o property to
DiscontinuedProducts and, from its smart tag, bind it to a new ObjectDataSource named
DiscontinuedProductsbatasource. Configure the ObjectDataSource to pull its data from the
ProductsBLLWithSprocs class’s GetbiscontinuedProducts method.

Configure Data Source - DiscontinuedProductsDataSource

Choose a Business Object

Select a business object that can be used ko retrieve or update data (For example, an object defined in the Bin
ar App_Code directary For Ehis application).

Choose your business object:
ProducksBLLWithSprocs v Show only data components

MorthawindWithSpracsTableAdapters, SuppiersTableadapter ~
ProducksBLL 3
ProducksBLLWiERSprocs

ProducksCL

ProducksOptimisticConcurrencyBLL

StaticCache

SuppliersBLL

Supplizr sBLLWiERSorocs b

Figure 20: Configure the ObjectDataSource to Use the productsBLiwithsprocs Class

22 of 38

Configure Data Source - DiscontinuedProductsDataSource @@ E]@

j Define Data Methods
==

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daka bo associate with the SELECT aperation, The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a Dataset,

Choose & method:
| GetDiscortinuedProducts(), returns ProductsDataTable v |

GetDiscontinuedProductsTy, returns ProducksDakaTable

GetProductByProductID{Int 32 praductiD), reburns ProductsDataTable

GetProducts(), returns ProductsDataTable

GetProducksByC ategoryID{INt32 categoryID), returns ProducksDataTable
GetProductsiwithPricelessThan(Decimal priceLessThan), returns ProducksDataTable |
GetProducts'WithPriceQuartile(), returns ProducksDataTable

o> |) (et]

Figure 21: Choose the cetpiscontinuedprroducts Method from the Drop-Down List in
the SELECT Tab

Since this grid will be used to just display product information, set the drop-down lists in
the UPDATE, INSERT, and DELETE tabs to “(None)” and then click Finish.

Upon completing the wizard, Visual Studio will automatically add a BoundField or
CheckBoxField for each data field in the productspataTable. Take @ moment to remove all of
these fields except for productName and piscontinued, at which point your GridView and
ObjectDataSource’s declarative markup should look similar to the following:

<asp:GridView ID="DiscontinuedProducts" runat="server"
AutoGenerateColumns="False" DataKeyNames="ProductID"
DataSourceID="DiscontinuedProductsDataSource">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="ProductName"
SortExpression="ProductName" />
<asp:CheckBoxField DataField="Discontinued"
HeaderText="Discontinued"
SortExpression="Discontinued" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="DiscontinuedProductsDataSource" runat="server"

OldValuesParameterFormatString="original {O0}"
SelectMethod="GetDiscontinuedProducts" TypeName="ProductsBLLWithSprocs">

23 of 38

</asp:0bjectDataSource>

Take a moment to view this page through a browser. When the page is visited, the
ObjectDataSource calls the productsBLLWithSprocs Class’s GetDiscontinuedProducts method. As
we saw in Step 7, this method calls down to the DAL'S productsbataTable class’s
GetDiscontinuedProducts Mmethod, which invokes the cetpiscontinuedproducts stored
procedure. This stored procedure is a managed stored procedure and executes the code we
created in Step 3, returning the discontinued products.

The results returned by the managed stored procedure are packaged up into a
ProductsDataTable by the DAL and then returned to the BLL, which then returns them to the
Presentation Layer where they are bound to the GridView and displayed. As expected, the
grid lists those products that have been discontinued.

2} Untitled Page - Microsoft Internet Explorer

BEEEX
Fie Edit Ajew Favortes Tools Help i

[®] 2 #n S sesch <z Favorites &8 (O« ia W - [€ ™ I ik

=g

Address |4 hittp: flacalhost: 4176/ASPNET_Data_Tutarial_74_CS/advancedDaLiManagedFunctionsindSprocs. aspx ™ Gn

Working with Data Tutorials Home > Advanced DAL

Scenarios > Creating
Managed SOL Functions
and Stored Procedures

Managed Stored

Sheis Beploy Procedures and UDFs

Declarative

ERESITSLES Discontinued
Setting Parameter Chef anton's Gumbo Mix
Values Mishi Kobe Niku

_Fllt&.r'irn;; Re 3 Alice MUELan

Filter by Drop-Down Guarand Fantastica

List Riéssle Sauerkraut

Master-Details- Thuringer Rostbratwurst

Details Singaporean Hokkien Fried Mee

Master/Detall Across Perth Pasties

Two Pages Leme Mustard

Details of Selected Atme Toast

Row Acme Lamb

Customized =

] Done & Local intranet

Figure 22: The Discontinued Products are Listed

For further practice, add a TextBox and another GridView to the page. Have this GridView
display the products less than the amount entered into the TextBox by calling the
ProductsBLLWithSprocs ClassS’s GetProductsWithPriceLessThan method.

24 of 38

Step 9: Creating and Calling T-SQL UDFs

User-Defined Functions, or UDFs, are database objects the closely mimic the semantics of
functions in programming languages. Like a function in C#, UDFs can include a variable
number of input parameters and return a value of a particular type. A UDF can return
either scalar data - a string, an integer, and so forth - or tabular data. Let’s take a quick
look at both types of UDFs, starting with a UDF that returns a scalar data type.

The following UDF calculates the estimated value of the inventory for a particular product.
It does so by taking in three input parameters - the unitpPrice, UnitsInstock, and
Discontinued values for a particular product - and returns a value of type money. It computes
the estimated value of the inventory by multiplying the unitprice by the unitsinstock. For
discontinued items, this value is halved.

CREATE FUNCTION udf ComputelInventoryValue
(

@UnitPrice money,
@UnitsInStock smallint,
@Discontinued bit

)

RETURNS money

AS

BEGIN
DECLARE (@Value decimal

SET @Value = ISNULL (QUnitPrice, 0) * ISNULL(QUnitsInStock, 0)

IF @Discontinued = 1
SET @Value = @Value * 0.5

RETURN @Value
END

Once this UDF has been added to the database, it can be found through Management
Studio by expanding the Programmability folder, then Functions, and then Scalar-value
Functions. It can be used in a seLecT query like so:

SELECT ProductID, ProductName, dbo.udf ComputelnventoryValue
(UnitPrice, UnitsInStock, Discontinued) as InventoryValue

FROM Products

ORDER BY InventoryValue DESC

I have added the udf computeInventoryvalue UDF to the Northwind database; Figure 23
shows the output of the above serecT query when viewed through Management Studio.
Also note that the UDF is listed under the Scalar-value Functions folder in the Object
Explorer.

25 of 38

.. Microsoft S0OL Server Management Studio
File Edk Miew PBroject Tools ‘ndow Community Help

Atenoey Ly D5 R Jdd DARFT,

) Bl

| Cbject Explarer

localhost\SQL.SQLQueryd.sal* L

Conect+ &) m [T SELECT =
= o e — dbo . udf CompuceInventoryvValue |
oealhost| SOLEXpress (SOL Server 9.0,1399 - MONSTERM. A - :
) Data UnicPFrice,
+ [Eﬁ,-gl;embmsgs Unicslndcock,
.__ 1 _J Disconcinusd
@ [Database Disgrams | ms InventoryValue
H 3 Tables FROH P
H [views ORDER BY InventoryValue DESC =
& [Synaryms £ >
= [Programmabiity = =
® [Stored Procedures 3 Results | [y Messages
— - 3 - ——— =t _ﬁ 1
R T | ProdutlD | ProduciName Invertonae | |
=Pl 1 [8577] Reciete Courdavaui 245 |
- _JI{SMMH s c.;.rrputﬁin'-'ﬂ"-m":-"""ﬂm] i i Grandma's Boysenbeny Spread | 3600
* | Aggregate Functions 3 &l Siop dérable 3277
& [System Functions 4 12 Duezn Manchego La Paztora 3264
[Detzbase Triggers 5 20 Sit Rodney's Mamalade 3240
@ j fﬁi’“bﬁ“ 5% Pl chinois 2760
x :_j Pudes 7 14 Camarvon Tigers 2646
® 3 Defaults g 40 Boston Crab Meat 2214
B [Service Broker g 22 Gustals Knagckebend 2184
[Security ET Sehenni Gebokolads z88 =
L Pl === =
{' ¥ ﬂ. lecalhost\SOLExpress [(A0RTH]) MOMSTERMITCHELL Admirestial:
Raady

Figure 23: Each Product’s Inventory Values is Listed

UDFs can also return tabular data. For example, we can create a UDF that returns products
that belong to a particular category:

CREATE FUNCTION dbo.udf GetProductsByCategoryID
(
@CategoryID int
)
RETURNS TABLE
AS
RETURN
(

SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued

FROM Products

WHERE CategoryID = @CategoryID

The udf GetProductsByCategoryID UDF accepts d @CategoryID input parameter and returns the
results of the specified serect query. Once created, this UDF can be referenced in the rrom
(or Join) clause of a serect query. The following example would return the productip,
ProductName, and categoryID values for each of the beverages.

26 of 38

SELECT ProductID, ProductName, CategoryID
FROM dbo.udf GetProductsByCategoryID(1)

I have added the udf GetProductsBycategoryidD UDF to the Northwind database; Figure 24
shows the output of the above serect query when viewed through Management Studio.
UDFs that return tabular data can be found in the Object Explorer’s Table-value Functions
folder.

R.: Microsoft SQL Server Management Studio ==
Ele Edt 'Yew Project Jook Window Commondy Help
tewouery [PR E D S d B OBES,
¥ d | j
Cibject: Excplorer p ol localbost SOL. SQLQueryd. sql* - ¥
= =l
Cornect - | & E] 32LE??_2.nﬂn:;1n__E:nﬂusxﬂanﬂ__sn;:yn:%fD =
T — " S S FROH|dbo . udf GecProduccsByCategoryIDil
wst|SGLExprass (S0L Server 9,0.1399 - MONSTERMITCE & =
kb ~
O System Databases < »
Y oxthvmicd | el :
enuls | T8 Messape:
[Cotabase Diagrams r—,
£ (35 Tabdas ProductiDl Productl sme CatagardD
£ [Views 1 |3 | Chai Tea 1
F [0 Synoryns 2] Chang 1
= [Programensbity 3 Guarans Fantéstica 1
+ [0 Stored Procedures A 5 Al 1
= [Functions el
=503 = Eunctions 5 .1 Sheadepe Slout 1
B d:o.l.uf,ﬁetﬁudxtsﬂ‘,‘tﬂm][ﬂ E ™ Chartieuzs veite 1
g >Calar-valosd Functions 7 43 Ipnh Coltes 1
® 3 "W"“‘:" w 8 & Laughing Lumberjack Lager 1
I eitem Punctons 8 7 Dutbiack Lagas 1
+ 3 Database Triggers
3 [Assembles 0 7 Riharibrau Kosterbier 1
@ 0 Types 1 76 (] 1
¥ 3 Rues 12 & Acme Tea 1
£ 5-:' D“;—::H 13 Acine Colfes 1
P | i
1 Bome T 1
[Security 4 % i]
ey | b= = :
[i 5 & boahost\SOLEspress (A0ATM] MONSTERMITCHELL \Adminestrator [53)
Resdy

Figure 24: The productip, ProductName, @and categoryip are Listed for Each Beverage

Note: For more information on creating and using UDFs, check out Intro to User-
Defined Functions. Also check out Advantages and Drawbacks of User-Defined
Functions.

Step 10: Creating a Managed UDF

The udf ComputeInventoryValue and udf GetProductsByCategoryID UDFs created in the above
examples are T-SQL database objects. SQL Server 2005 also supports managed UDFs,
which can be added to the Managedpatabaseconstructs project just like the managed stored
procedures from Steps 3 and 5. For this step, let’s implement the udf computeInventoryvalue
UDF in managed code.

To add a managed UDF to the ManagedpatabaseConstructs project, right-click on the project

27 of 38

name in Solution Explorer and choose to Add a New Item. Select the User-Defined
Template from the Add New Item dialog box and name the new UDF file
udf ComputelnventoryValue Managed.cs.

Add New ltem - ManapedDatabaseConstructs @@

Templates: EHE
__¥isual Studio installed templates

—=
z- [! | £ :.‘J}E ch
Stored Usar-Defined § (=R Trigger Agoregate Clams
Procedure Funckian Type

My Templates

Fearch Onlng
Templates...

An emply Function

Naene: { uF _Computelnventoryvahe_Managed.cs |

[Add] [Cancel

Figure 25: Add a New Managed UDF to the mManagedpatabaseconstructs Project

The User-Defined Function template creates a partial class hamed userbefinedFunctions
with a method whose name is the same as the class file’s name

(udf computelInventoryvalue Managed, in this instance). This method is decorated using the
sqglrunction attribute, which flags the method as a managed UDF.

using System;

using System.Data;

using System.Data.SglClient;
using System.Data.SglTypes;

using Microsoft.SglServer.Server;

public partial class UserDefinedFunctions
{
[Microsoft.SglServer.Server.SglFunction]
public static SglString udf ComputelInventoryValue Managed ()
{
// Put your code here
return new SglString("Hello");

}s

The udf ComputelInventoryvalue method currently returns a sqistring object and does not
accept any input parameters. We need to update the method definition so that it accepts
three input parameters - unitprice, UnitsInStock, @and piscontinued - and returns a sqglMoney

28 of 38

object. The logic for calculating the inventory value is identical to that in the T-SQL
udf_ComputeInventoryvalue UDF.

[Microsoft.SglServer.Server.SglFunction]
public static SglMoney udf ComputelnventoryValue Managed
(SglMoney UnitPrice, SqglIntl6 UnitsInStock, SglBoolean Discontinued)

{
SglMoney inventoryValue = 0;

if (!UnitPrice.IsNull && !UnitsInStock.IsNull)
{

inventoryValue = UnitPrice * UnitsInStock;

if (Discontinued == true)
inventoryValue = inventoryValue * new SglMoney (0.5);

}

return inventoryValue;

Note that the UDF method’s input parameters are of their corresponding SQL types:
sqlMoney for the unitprice field, sqiinti6 fOr unitsInstock, and sglBoolean fOr Discontinued.
These data types reflect the types defined in the products table: the vnitprice column is of
type money, the unitsinstock column of type smail1lint, and the piscontinued column of type
bit.

The code starts by creating a sqivoney instance named inventoryvalue that is assigned a
value of 0. The products table allows for database ~urt values in the unitsinprice and
UnitsInstock columns. Therefore, we need to first check to see if these values contain ~uLLs,
which we do through the sqimMoney object’s 1snuil property. If both unitprice and
UnitsInStock contain non-nurL values, then we compute the inventoryvalue to be the product
of the two. Then, if piscontinued is true, then we halve the value.

Note: The sqimoney Object only allows two sqiMoney instances to be multiplied together.
It does not allow a sqimMoney instance to be multiplied by a literal floating-point
number. Therefore, to halve inventoryvalue we multiply it by a new sqgiMoney instance
that has the value 0.5.

Step 11: Deploying the Managed UDF

Now that that the managed UDF has been created, we are ready to deploy it to the
Northwind database. As we saw in Step 4, the managed objects in a SQL Server Project
are deployed by right-clicking on the project name in the Solution Explorer and choosing
the Deploy option from the context menu.

Once you have deployed the project, return to SQL Server Management Studio and refresh
the Scalar-valued Functions folder. You should now see two entries:

e dbo.udf ComputeInventoryvalue - the T-SQL UDF created in Step 9, and
e dbo.udf ComputelnventoryValue Managed = the managed UDF created in Step 10 that was
just deployed.

29 of 38

To test this managed UDF, execute the following query from within Management Studio:

SELECT ProductID, ProductName,
dbo.udf ComputelInventoryValue Managed (
UnitPrice,
UnitsInStock,
Discontinued
) as InventoryValue
FROM Products
ORDER BY InventoryValue DESC

This command uses the managed udf Computelnventoryvalue Managed UDF instead of the T-
SQL udf computeInventoryvalue UDF, but the output is the same. Refer back to Figure 23 to
see a screenshot of the UDF’s output.

Step 12: Debugging the Managed Database Objects

In the Debugging Stored Procedures tutorial we discussed the three options for debugging
SQL Server through Visual Studio: Direct Database Debugging, Application Debugging, and
Debugging from a SQL Server Project. Managed database objects cannot be debugged via
Direct Database Debugging, but can be debugged from a client application and directly
from the SQL Server Project. In order for debugging to work, however, the SQL Server
2005 database must allow SQL/CLR debugging. Recall that when we first created the
ManagedDatabaseConstructs project Visual Studio asked us whether we wanted to enable
SQL/CLR debugging (see Figure 6 in Step 2). This setting can be modified by right-clicking
on the database from the Server Explorer window.

Server Explorer

] < % =

>< Delzte
Modify Connection, ..
Clase Connection

Change Yiew 3

wEE R

&
L3
L3
L3
L3
L3
L3
L3

Mew Query
F:T Application Debugging

Allow SOLICLR Debugging]

Rename

1
B
Lo
|
o
=
=
o
=

+

1=
=
(ml

__=] Properties

Elsolution Exp... |84 Properties | S Server Expl... B3 Class Yiew
2 4

30 of 38

Figure 26: Ensure that the Database Allows SQL/CLR Debugging

Imagine that we wanted to debug the cetpProductswithpriceLessThan managed stored
procedure. We would start by setting a breakpoint within the code of the
GetProductsWithPriceLessThan method.

¥ Tutersal 4 - Micresoli Vivesl Studio

e fde Yeew Belacter Project Duld [ebog Took Windos (omrandy Help Added
Wi 0 b A A B el = i B buiter X
B, ae RS S ¥y

F GetProduct Wi icel ess Thands - ¥ Solubon Explone - Soluthon Tukois™ ., - 3
{ Shwedrocedures L et Product shichPricel ess Thand decmnal prios) o2 o ﬂ (-

i # [EnhancedGndiies -
5 Fterng
& L3 PapngdndSoting
& [PagrgSortingDotal B apeslor

pubilis pacrtiml claza tored - re =

[Ricromoft .8qlBerver ., Ferver . Tq LT mdure]
public static veid GePraducesifichPricelessThandecimal price)

B f SheHapPsivae

& [SqlaebySoans

B UsenComingk
ST B

] Gebalasxe
] el
QuantityPerUnit, OnicPrice, Unitslsdrock, Unicaom A} Steci
Feorderlevel, Piscontinwaed e vt el
FROE Producta i Wb iberan
WHERE UmitPrice < EMaxPricens - A Managedat shaseConstructs
d Froperties
myCommand . Parameters. MaWichValue (*§MaxPrice”, price): & Paferences
B [Test Soplks

T Productid, Produceimne, SupplieciD, Categozyifs,

Exscuts Ehe command snd asnd Back e ceaull £ GetbepcontinuedProdudts.os
CFips . Execute ApdSend (el osssand| | “h] GetProductiithEriosess Than.cs
4] wff _Computelrvenhony¥ales_Msnag

Foacdy w14 cdg cha e

Figure 27: Set a Breakpoint in the cetrroductswithpPriceLessThan Method

Let’s first look at debugging the managed database objects from the SQL Server Project.
Since our Solution includes two projects - the Managedpatabaseconstructs SQL Server Project
along with our website - in order to debug from the SQL Server Project we need to instruct
Visual Studio to launch the Managedpatabaseconstructs SQL Server Project when we start
debugging. Right-click the Managedpatabaseconstructs project in Solution Explorer and choose
the “Set as StartUp Project” option from the context menu.

When the Managedpatabaseconstructs project is launched from the debugger it executes the
SQL statements in the Ttest.sq1 file, which is located in the rest scripts folder. For example,
to test the cetproductswithpPriceLessThan Managed stored procedure, replace the existing
Test.sql file content with the following statement, which invokes the
GetProductsWithPriceLessThan managed stored procedure passing in the ecategoryIp value

of 14.95:

exec GetProductsWithPriceLessThan 14.95

Once you've entered the above script into Test.sq1, start debugging by going to the Debug
menu and choosing Start Debugging or by hitting F5 or the green play icon in the Toolbar.
This will build the projects within the Solution, deploy the managed database objects to the
Northwind database, and then execute the rest.sq1 script. At this point, the breakpoint will

31 0f 38

be hit and we can step through the cetproductswithpriceLessThan method, examine the
values of the input parameters, and so on.

i * s e
®2 Tutorial 74 [Debugging) - Microsolt Yiswal $1udic .:”E| EE'E:
Bl ES Yew Project Buld [ebog Jook Wiedow Commundy Help Addes
SHd A PO b S
= 3 R TR TR NS T N T
Test.sq GetProduct sWiicelessThan.cs L R obton Explone - Sobgtion "Tubonal?e (e, » @ X
A% Heredrocader s | geGenPradiatvei i el s Thand decrsal el b o | ‘-:';
puslie partial class - 1 Edii = 8 [Fiterry -
[& [PagnotedSoting
[Miceosofr, Sglf@erver . Sacver.SqlFe 1 ¥ [PagrgiortingDalal hifepeater
publle sracie vwold GerProducralichPe icelessThan (deeinal price] E [SteMepProvde
’ W [SoDstasoace
/ Create che comsand = UsirControt
S lammand myCobreand = new SglCowmand |1 § [Defauk s
‘) ; 'q_ . e - = % 2o] okl i
:l.'l.l’.‘amir.d...fa-rln?r?.udl.l‘.n. - . . y f . : -]5‘:5 st
i"AFELECT FEGOC u=eMame, SupplieeId, AEEGOE A Sovies.cis
ARt Frice, UnicalnScock, Uni 13 wash condig
Reprderlevel, Discomcimnssd 1] web.stemap
FRON Frodupts _?_' ManagedBal abaseCombructs
WHERE DPnicPrice « FBaxFelce™: &l Fropeies
A Bl
myCcamand. Pacasstecs . LddWitEVales [*3HasPrice™, peice): = [y Test Sorpks
& Testsgl
ff Exesucte che command and send back Tha ceoaulta] GetimcontingsdProducty o
Pipe . Evecurs AedSend =iy ommand| g GetFToducts Wt Friosl s Than cs
j ﬂ wl_CompuialivantonryVale _Hanaged o w
L ¥
[¥ SPceen.., [Ty =)
‘Wastch L = B3 Dupt w3 X
Hiarres Wikt Type Shiow oukpit frome Debisg . R
TpgiEsrur, sxe’ (Mamaged]: Losdsd 'o:iProgras FilseiMicrorcfc SOb Jervara
"aglzerve. e’ (Mamaged] : Losdsd O YMINDOWE) srxamb iy’ GAC 324 Sywtem, Dal
"aqlaervr.ace’ (Mamsged]: Llosded O YWINDONSYmrzanbly’GAC MEILA Syatem':
‘agliarve.are’ (Mamaged): Lesded O yWINDOREVasdanbly i CAC ¥IvEyiram. T
‘aglEeEve. ane’ (Hamaged]l T Loadad *C: WWINDOWE assenbiyi0AC BIIL:Syscas. |
feglearvr are’ (Hameged] : loaded "CoA\WINDORE, aewanb Ry i GAC_ETTLL Byecam.]
rpglearve. srs' (Mamsged]; losdsd 'EansgediacsbaraComstrucce®, Symbole |
. >
o |] Aukos | S waich 1 3 2 3 . . ") ¢ (- el 3 Errot Lt
| = gl Wl F |] [= T et |34 i
Ry

Figure 28: The Breakpoint in the cetpProductswithPriceLessThan Method Was Hit

In order for a SQL database object to be debugged through a client application, it is
imperative that the database be configured to support application debugging. Right-click on
the database in Server Explorer and ensure that the “Application Debugging” option is
checked. Furthermore, we need to configure the ASP.NET application to integrate with the
SQL Debugger and to disable connection pooling. These steps were discussed in detail in
Step 2 of the Debugging Stored Procedures tutorial.

Once you have configured the ASP.NET application and database, set the ASP.NET website
as the startup project and start debugging. If you visit a page that calls one of the
managed objects that has a breakpoint, the application will halt and control will be turned
over to the debugger, where you can step through the code as shown in Figure 28.

Step 13: Manually Compiling and Deploying Managed
Database Objects

SQL Server Projects make it easy to create, compile, and deploy managed database
objects. Unfortunately, SQL Server Projects are only available in the Professional and Team

32 of 38

Systems editions of Visual Studio. If you are using Visual Web Developer or the Standard
Edition of Visual Studio and want to use managed database objects, you will need to
manually create and deploy them. This involves four steps:

Create a file that contains the source code for the managed database object,
Compile the object into an assembly,

Register the assembly with the SQL Server 2005 database, and

Create a database object in SQL Server that points to the appropriate method in the
assembly.

HPWNE

To illustrate these tasks, let’s create a new managed stored procedure that returns those
products whose unitprrice is greater than a specified value. Create a new file on your
computer named GetpProductsWithPriceGreaterThan.cs and enter the following code into the
file (you can use Visual Studio, Notepad, or any text editor to accomplish this):

using System;

using System.Data;

using System.Data.SglClient;
using System.Data.SglTypes;

using Microsoft.SglServer.Server;

public partial class StoredProcedures

{
[Microsoft.SglServer.Server.SglProcedure]
public static void GetProductsWithPriceGreaterThan (SgqlMoney price)

{
// Create the command
SglCommand myCommand = new SglCommand () ;
myCommand.CommandText =
@"SELECT ProductID, ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock, UnitsOnOrder,
ReorderLevel, Discontinued
FROM Products
WHERE UnitPrice > @MinPrice";

myCommand.Parameters.AddWithValue ("@MinPrice", price);

// Execute the command and send back the results
SglContext.Pipe.ExecuteAndSend (myCommand) ;

}s

This code is nearly identical to that of the cetproductswithpricerLessThan method created in
Step 5. The only differences are the method names, the wuere clause, and the parameter
name used in the query. Back in the cetproductswithpriceLessThan method, the wiere clause
read: “WHERE UnitPrice < @MaxPrice”. Here, in GetProductsWithPriceGreaterThan, We US€: “WHERE

UnitPrice > @MinPrice”.

We now need to compile this class into an assembly. From the command line, navigate to
the directory where you saved the cetProductswithPriceGreaterThan.cs file and use the C#
compiler (csc.exe) to compile the class file into an assembly:

csc.exe /t:library /out:ManuallyCreatedDBObjects.dll GetProductsWithPriceGreaterThan.cs

33 0f 38

If the folder containing csc.exe in not in the system’s paTh, you will have to fully reference
its path, swiNDOWS%\Microsoft.NET\Framework\version\, like SO:

C:\WINDOWS\Microsoft .NET\Framework\v2.0.50727\csc.exe /t:library /out:ManuallyCreatedDBOb

s CAWINDOWS\system32emd. exe

nf - MEDH DH Online A
W1 MNDOL T“Framework
ith

atedDBﬁth tz.dll GetProdd

Figure 29: Compile GetProductsWithPriceGreaterThan.cs INtO an Assembly

The /t flag specifies that the C# class file should be compiled into a DLL (rather than an
executable). The /out flag specifies the name of the resulting assembly.

Note: Rather than compiling the cetproductswithPriceGreaterThan.cs class file from the
command line you could alternatively use Visual C# Express Edition or create a
separate Class Library project in Visual Studio Standard Edition. Sgren Jacob Lauritsen
has kindly provided such a Visual C# Express Edition project with code for the
GetProductsWithPriceGreaterThan Stored procedure and the two managed stored
procedures and UDF created in Steps 3, 5, and 10. Sgren’s project also includes the T-
SQL commands needed to add the corresponding database objects.

With the code compiled into an assembly, we are ready to register the assembly within the
SQL Server 2005 database. This can be performed through T-SQL, using the command
CREATE ASSEMBLY, Or through SQL Server Management Studio. Let’s focus on using
Management Studio.

From Management Studio, expand the Programmability folder in the Northwind database.
One of its subfolder is Assemblies. To manually add a new Assembly to the database, right-
click on the Assemblies folder and choose New Assembly from the context menu. This
displays the New Assembly dialog box (see Figure 30). Click on the Browse button, select
the ManuallycreatedDBObjects.d1l assembly we just compiled, and then click OK to add the
Assembly to the database. You should not see the ManuallycreatedbpBobjects.d11 assembly in
the Object Explorer.

34 of 38

= New Assembly

A Genesal
7 Pemigmong
4 Eglended Propeitios

Connection

Server
locahost VS ULE vprass

Canneclion:
MOMSTERMIT CHELL \&dministra

&Y Wiew connection propertias

| Peogress L

FReady

| L5 Seiip [Help
Aasembly name: ManualbCreatedDEObjects
Agzambly cwrer |
Permizzicen gt Safe

Sdditional propeslies:
7 el
e

B Mize

Creation Date
“When the assemble vaas created.

J [cancet |

Figure 30: Add the ManuallycreateddBobjects.d11 Assembly to the Database

350f 38

ﬁﬁe&éxﬂmﬁr
Connect + 4 Ei

= 3 Databases
[[Swstem Databases
= |} Morthwind
[# [Database Diagrams
| [Tables
| [Views
| | Synonyms
| [_d Programmability
[4 Stored Procedures
[Functions
F [Database Triggers
=R Ascemblies
7 ManagedDatabaseConstructs

BHEH

[Tvpes
4 Rules
4 Defaulks
[# [Service Broker
[# [Securiby
| Securiby
[Server Objects
[Replication
| Management

HEER

= [} localhast|SQLExpress (SQL Server 9.0,1399 - MONE

+ 2 ManuallyZreatedDBEObjects]

Figure 31: The ManuallycreatedDBobjects.dll is Listed in the Object Explorer

While we have added the assembly to the Northwind database, we have yet to associate a
stored procedure with the cetProductswithPriceGreaterthan method in the assembly. To

accomplish this, open a new query window and execute the following script:

CREATE PROCEDURE [dbo].[GetProductsWithPriceGreaterThan]

(
@price [numeric] (18, 0)
)
WITH EXECUTE AS CALLER
AS

EXTERNAL NAME [ManuallyCreatedDBObjects].

GO

[StoredProcedures] . [GetProductsWithPriceGreaterT

This creates a new stored procedure in the Northwind database named
GetProductsWithPriceGreaterThan @and associates it with the managed method
GetProductsWithPriceGreaterThan (Which is in the class storedprocedures, which is in the

assembly ManuallyCreatedDBObjects).

After executing the above script, refresh the Stored Procedures folder in the Object
Explorer. You should see a new stored procedure entry - GetProductsWithPriceGreaterThan -
which has a lock icon next to it. To test this stored procedure, enter and execute the

following script in the query window:

36 of 38

exec GetProductsWithPriceGreaterThan 24.95

As Figure 32 shows, the above command displays information for those products with a
UnitPrice greater than $24.95.

.- Microsoft 0L Server Management $tudia |'-|_||[E| r.: "E!B]
Fis [Vew Query Projct Took Wiodow Commanty Help
Qucmy 0B BGH LGS BABBS,

% 13 etod - ttmue s Da 28 Dan OFO S EE,
hject Explorer = @ X localhost) SO0 sqi* | locahostS00... A, - ¥
Connect = | & AT exes OJecFroductaWithPeicedeeareeThan 24.5 =l
&) Yews o AE I ¥ :
CE - .
=i [Programashity O Rewdts 'y Metsage:
= L Stored Procedred Froduedl) Frodustbams Supedertd CalegoedD QuanitgPalind [[UintPrics | Unistn &

B [Sysbem Stored Procedures

— 1 1 4 Ol Ao’z Cagen S egmonng g 2 dF - Booz ZhE2 53
- Jrap s o maeies |L " Brarcinas Beyaerbeny Spascd 3 2 2amae Mm% |12
§ (2] cho.Aspier_Sohcschwiagister TableStons: S5 7 Undls Bob's Qigarss Dred Paars 3 7 121 bgkgt o0 1%
B (S oo Adphat_SoiC adhelinDiagrbar TablaSe d] Miwthaspds Crankery 5 suce] 2 12 - 12 oz s B00 B
¥ (& dbo.Aspbiet_SofCachelUpdsteChangelast - Mk Kok Miw 4 & 18 500 gk | SO0]
£ Gl dbo.Catngories_Delete W lhars 4 B 1z- Mo |F00 | M
: S xigzﬁ:‘;u T 12 Qs Manchego La Pasions 5 [10 500 g phge. | 300 BE
B[] dhoo. Cud Drder e ders g 7 Alcn Miudisn T B 200 g A0 L]
¥ (51 dbo.Employes Sales by Country 8 & Camarvon Tagen 7] & kg pkg E250 42
& [oo Erplnyees_Cwlbste m X S Flodrey's Manmalads] 3 30 pit bossa g 20
¥ (& cho Emplayoes_jrert n = Gl Guarwrbiochen n 3 00-290gba. |23 |15
£ ﬁ:’“‘""*‘*-’m"‘:ﬂ" 2 m Schogg Sichok plade 1 3 M- 1wgp [43%0 | &
& 5 :IJQ-.G&EWH;’WTMS 13 &= FAoesls 5wtk sl LF3 . S gean |45ED %
B [dho.GetProductiByCabegery H = Thimmges Floict bt 12 i 50 baga « 3] 22 |0
" 5 3 Hiosc0 ot Mahssherng 12 B 10 - 30 g gla 255 10
2 L Mt arporn Fiaick 1 " 2om0gekg: 20 |3

17 Grawad las 7 B 12 -500 gpkge. | 2600 1"

: e 4 Ipoks Coffee il | & 500 g b FEY:] 1
¥ [dbo Products_Incert 13 5 Margrrag D Appled | 7 o0 -0 gpkae. | 5200 F. 1 "
£ [cho Prokucts_ebect ¢ —
B

o oo Prosducts_SelsrtByCategoryiD L
¢ 3 & focahor\SO0LEwgeess (MORTH] MONSTERMHITCHELLAdmiriibstor (551 Noshesnd 000000 28 100

Pty Lml Col 43 h43 NS

Figure 32: The ManuallycreatedbpBobjects.dll iS Listed in the Object Explorer

Summary

Microsoft SQL Server 2005 provides integration with the Common Language Runtime
(CLR), which allows database objects to be created using managed code. Previously, these
database objects could only be created using T-SQL, but now we can create these objects
using .NET programming languages like C#. In this tutorial we created two managed
stored procedures and a managed User-Defined Function.

Visual Studio’s SQL Server Project type facilitates creating, compiling, and deploying
managed database objects. Moreover, it offers rich debugging support. However, SQL
Server Project types are only available in the Professional and Team Systems editions of
Visual Studio. For those using Visual Web Developer or the Standard Edition of Visual
Studio, the creation, compilation, and deployment steps must be performed manually, as
we saw in Step 13.

Happy Programming!

Further Reading

37 of 38

For more information on the topics discussed in this tutorial, refer to the following
resources:

Advantages and Drawbacks of User-Defined Functions

Creating SQL Server 2005 Objects in Managed Code

Creating Triggers Using Managed Code in SQL Server 2005

How To: Create and Run a CLR SQL Server Stored Procedure
How To: Create and Run a CLR SQL Server User-Defined Function
How To: Edit the Test.sq1 Script to Run SQL Objects

Intro to User Defined Functions

Managed Code and SQL Server 2005 (Video)

Transact-SQL Reference

Walkthrough: Creating a Stored Procedure in Managed Code

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com,
has been working with Microsoft Web technologies since 1998. Scott works as an
independent consultant, trainer, and writer. His latest book is Sams Teach Yourself
ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or via his
blog, which can be found at http://ScottOnWriting.NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial
was Sgren Jacob Lauritsen. In addition to reviewing this article, Sgren also created the
Visual C# Express Edition project included in this article’s download for manually compiling
the managed database objects. Interested in reviewing my upcoming MSDN articles? If so,
drop me a line at mitchell@4GuysFromRolla.com.

38 of 38

