Guia de início rápido: Análise de Imagem

Comece a usar a API REST Análise de Imagem ou bibliotecas de cliente para configurar um script de marcação de imagens básico. O serviço de Análise de Imagem fornece algoritmos de IA para processar imagens e retornar informações sobre os recursos visuais delas. Siga essas etapas para instalar um pacote no seu aplicativo e experimentar o código de exemplo.

Use a biblioteca de clientes da Análise de Imagem para C# para analisar as marcas de conteúdo de uma imagem. Este início rápido define um método, AnalyzeImageUrl, que usa o objeto de cliente para analisar uma imagem remota e imprimir os resultados.

Documentação de referência | Código-fonte da biblioteca | Pacote (NuGet) | Exemplos

Dica

Você também pode analisar uma imagem local. Confira os métodos de ComputerVisionClient, como AnalyzeImageInStreamAsync. Ou veja o código de exemplo no GitHub para obter cenários que envolvam imagens locais.

Dica

A API de Análise pode realizar muitas operações além de gerar marcas de imagem. Consulte o guia de instruções da Análise de Imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • Uma assinatura do Azure – crie uma gratuitamente
  • O IDE do Visual Studio ou a versão atual do .NET Core.
  • Depois de obter sua assinatura do Azure, crie um recurso da Pesquisa Visual Computacional no portal do Azure para obter a chave e o ponto de extremidade. Após a implantação, clique em Ir para o recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço de Pesquisa Visual Computacional.
    • Use o tipo de preço gratuito (F0) para experimentar o serviço e atualizar mais tarde para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, você gravará as credenciais em variáveis de ambiente no computador local que está executando o aplicativo.

Acesse o portal do Azure. Se o recurso da Detecção Facial que você criou na seção Pré-requisitos tiver sido implantado com êxito, clique no botão Ir para o Recurso em Próximas Etapas. Encontre a chave e o ponto de extremidade na página da chave e do ponto de extremidade do recurso, em gerenciamento de recursos. Sua chave de recurso não é igual à sua ID de assinatura do Azure.

Dica

Não inclua a chave diretamente no código e nunca a divulgue publicamente. Consulte o artigo de segurança dos Serviços Cognitivos para obter mais opções de autenticação como o Azure Key Vault.

Para definir a variável de ambiente da chave e do ponto de extremidade, abra uma janela do console e siga as instruções para o sistema operacional e o ambiente de desenvolvimento.

  1. Para definir a variável de ambiente VISION_KEY, substitua your-key por uma das chaves do recurso.
  2. Para definir a variável de ambiente VISION_ENDPOINT, substitua your-endpoint pelo ponto de extremidade do recurso.
setx VISION_KEY your-key
setx VISION_ENDPOINT your-endpoint

Depois de adicionar as variáveis de ambiente, é aconselhável reiniciar todos os programas em execução que precisarem lê-las, incluindo a janela do console.

Analisar a imagem

  1. Criar um aplicativo em C#.

    Usando o Visual Studio, crie um aplicativo .NET Core.

    Instalar a biblioteca de clientes

    Depois de criar um projeto, instale a biblioteca de clientes clicando com o botão direito do mouse na solução do projeto no Gerenciador de Soluções e selecionando Gerenciar Pacotes NuGet. No gerenciador de pacotes aberto, selecione Procurar, marque Incluir pré-lançamento e pesquise Microsoft.Azure.CognitiveServices.Vision.ComputerVision. Selecione a versão 7.0.0 e, em seguida, Instalar.

  2. No diretório do projeto, abra o arquivo Program.cs no IDE ou no editor de sua preferência. Cole o código a seguir:

    using System;
    using System.Collections.Generic;
    using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
    using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;
    using System.Threading.Tasks;
    using System.IO;
    using Newtonsoft.Json;
    using Newtonsoft.Json.Linq;
    using System.Threading;
    using System.Linq;
    
    namespace ComputerVisionQuickstart
    {
        class Program
        {
            // Add your Computer Vision key and endpoint
            static string key = Environment.GetEnvironmentVariable("VISION_KEY");
            static string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
    
            // URL image used for analyzing an image (image of puppy)
            private const string ANALYZE_URL_IMAGE = "https://moderatorsampleimages.blob.core.windows.net/samples/sample16.png";
    
            static void Main(string[] args)
            {
                Console.WriteLine("Azure Cognitive Services Computer Vision - .NET quickstart example");
                Console.WriteLine();
    
                // Create a client
                ComputerVisionClient client = Authenticate(endpoint, key);
    
                // Analyze an image to get features and other properties.
                AnalyzeImageUrl(client, ANALYZE_URL_IMAGE).Wait();
            }
    
            /*
             * AUTHENTICATE
             * Creates a Computer Vision client used by each example.
             */
            public static ComputerVisionClient Authenticate(string endpoint, string key)
            {
                ComputerVisionClient client =
                  new ComputerVisionClient(new ApiKeyServiceClientCredentials(key))
                  { Endpoint = endpoint };
                return client;
            }
           
            public static async Task AnalyzeImageUrl(ComputerVisionClient client, string imageUrl)
            {
                Console.WriteLine("----------------------------------------------------------");
                Console.WriteLine("ANALYZE IMAGE - URL");
                Console.WriteLine();
    
                // Creating a list that defines the features to be extracted from the image. 
    
                List<VisualFeatureTypes?> features = new List<VisualFeatureTypes?>()
                {
                    VisualFeatureTypes.Tags
                };
    
                Console.WriteLine($"Analyzing the image {Path.GetFileName(imageUrl)}...");
                Console.WriteLine();
                // Analyze the URL image 
                ImageAnalysis results = await client.AnalyzeImageAsync(imageUrl, visualFeatures: features);
    
                // Image tags and their confidence score
                Console.WriteLine("Tags:");
                foreach (var tag in results.Tags)
                {
                    Console.WriteLine($"{tag.Name} {tag.Confidence}");
                }
                Console.WriteLine();
            }
        }
    }
    

    Importante

    Lembre-se de remover a chave do seu código quando terminar e nunca poste-a publicamente. Para produção, use uma maneira segura de armazenar e acessar suas credenciais, como o Azure Key Vault. Confira o artigo segurança de Serviços Cognitivos para obter mais informações.

  3. Executar o aplicativo

    Execute o aplicativo clicando no botão Depurar na parte superior da janela do IDE.


Saída

----------------------------------------------------------
ANALYZE IMAGE - URL

Analyzing the image sample16.png...

Tags:
grass 0.9957543611526489
dog 0.9939157962799072
mammal 0.9928356409072876
animal 0.9918001890182495
dog breed 0.9890419244766235
pet 0.974603533744812
outdoor 0.969241738319397
companion dog 0.906731367111206
small greek domestic dog 0.8965123891830444
golden retriever 0.8877675533294678
labrador retriever 0.8746421337127686
puppy 0.872604250907898
ancient dog breeds 0.8508287668228149
field 0.8017748594284058
retriever 0.6837497353553772
brown 0.6581960916519165

Limpar os recursos

Se quiser limpar e remover uma assinatura dos Serviços Cognitivos, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.

Próximas etapas

Neste guia de início rápido, você aprendeu a instalar a biblioteca de clientes da Análise de Imagem e a fazer chamadas básicas de análise de imagem. A seguir, saiba mais sobre os recursos da API de Análise.

Use a biblioteca de clientes da Análise de Imagem para Python para analisar as marcas de conteúdo de uma imagem remota.

Dica

Você também pode analisar uma imagem local. Confira os métodos de ComputerVisionClientOperationsMixin, como analyze_image_in_stream. Ou veja o código de exemplo no GitHub para obter cenários que envolvam imagens locais.

Dica

A API de Análise pode realizar muitas operações além de gerar marcas de imagem. Consulte o guia de instruções da Análise de Imagem para obter exemplos que mostram todos os recursos disponíveis.

Documentação de referência | Código-fonte da biblioteca | Pacote (PiPy) | Exemplos

Pré-requisitos

  • Uma assinatura do Azure – crie uma gratuitamente

  • Python 3.x

    • A instalação do Python deve incluir o pip. Você pode executar pip --version na linha de comando para verificar se o pip está instalado. Instale a versão mais recente do Python para obter o pip.
  • Depois de obter sua assinatura do Azure, crie um recurso da Pesquisa Visual Computacional no portal do Azure para obter a chave e o ponto de extremidade. Após a implantação, clique em Ir para o recurso.

    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço de Pesquisa Visual Computacional.
    • Use o tipo de preço gratuito (F0) para experimentar o serviço e atualizar mais tarde para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, você gravará as credenciais em variáveis de ambiente no computador local que está executando o aplicativo.

Acesse o portal do Azure. Se o recurso da Detecção Facial que você criou na seção Pré-requisitos tiver sido implantado com êxito, clique no botão Ir para o Recurso em Próximas Etapas. Encontre a chave e o ponto de extremidade na página da chave e do ponto de extremidade do recurso, em gerenciamento de recursos. Sua chave de recurso não é igual à sua ID de assinatura do Azure.

Dica

Não inclua a chave diretamente no código e nunca a divulgue publicamente. Consulte o artigo de segurança dos Serviços Cognitivos para obter mais opções de autenticação como o Azure Key Vault.

Para definir a variável de ambiente da chave e do ponto de extremidade, abra uma janela do console e siga as instruções para o sistema operacional e o ambiente de desenvolvimento.

  1. Para definir a variável de ambiente VISION_KEY, substitua your-key por uma das chaves do recurso.
  2. Para definir a variável de ambiente VISION_ENDPOINT, substitua your-endpoint pelo ponto de extremidade do recurso.
setx VISION_KEY your-key
setx VISION_ENDPOINT your-endpoint

Depois de adicionar as variáveis de ambiente, é aconselhável reiniciar todos os programas em execução que precisarem lê-las, incluindo a janela do console.

Analisar a imagem

  1. Instalar a biblioteca de clientes.

    É possível instalar a biblioteca de clientes com:

    pip install --upgrade azure-cognitiveservices-vision-computervision
    

    Instale também a biblioteca Pillow.

    pip install pillow
    
  2. Criar um novo aplicativo Python.

    Crie um arquivo do Python –quickstart-file.py, por exemplo.

  3. Abra quickstart-file.py em um editor de texto ou IDE e cole o código a seguir.

    from azure.cognitiveservices.vision.computervision import ComputerVisionClient
    from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes
    from azure.cognitiveservices.vision.computervision.models import VisualFeatureTypes
    from msrest.authentication import CognitiveServicesCredentials
    
    from array import array
    import os
    from PIL import Image
    import sys
    import time
    
    '''
    Authenticate
    Authenticates your credentials and creates a client.
    '''
    subscription_key = os.environ["VISION_KEY"]
    endpoint = os.environ["VISION_ENDPOINT"]
    
    computervision_client = ComputerVisionClient(endpoint, CognitiveServicesCredentials(subscription_key))
    '''
    END - Authenticate
    '''
    
    '''
    Quickstart variables
    These variables are shared by several examples
    '''
    # Images used for the examples: Describe an image, Categorize an image, Tag an image, 
    # Detect faces, Detect adult or racy content, Detect the color scheme, 
    # Detect domain-specific content, Detect image types, Detect objects
    images_folder = os.path.join (os.path.dirname(os.path.abspath(__file__)), "images")
    remote_image_url = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/ComputerVision/Images/landmark.jpg"
    '''
    END - Quickstart variables
    '''
    
    
    '''
    Tag an Image - remote
    This example returns a tag (key word) for each thing in the image.
    '''
    print("===== Tag an image - remote =====")
    # Call API with remote image
    tags_result_remote = computervision_client.tag_image(remote_image_url )
    
    # Print results with confidence score
    print("Tags in the remote image: ")
    if (len(tags_result_remote.tags) == 0):
        print("No tags detected.")
    else:
        for tag in tags_result_remote.tags:
            print("'{}' with confidence {:.2f}%".format(tag.name, tag.confidence * 100))
    print()
    '''
    END - Tag an Image - remote
    '''
    print("End of Computer Vision quickstart.")
    
  4. Execute o aplicativo com o comando python no seu arquivo de início rápido.

    python quickstart-file.py
    

Saída

===== Tag an image - remote =====
Tags in the remote image:
'outdoor' with confidence 99.00%
'building' with confidence 98.81%
'sky' with confidence 98.21%
'stadium' with confidence 98.17%
'ancient rome' with confidence 96.16%
'ruins' with confidence 95.04%
'amphitheatre' with confidence 93.99%
'ancient roman architecture' with confidence 92.65%
'historic site' with confidence 89.55%
'ancient history' with confidence 89.54%
'history' with confidence 86.72%
'archaeological site' with confidence 84.41%
'travel' with confidence 65.85%
'large' with confidence 61.02%
'city' with confidence 56.57%

End of Computer Vision quickstart.

Limpar os recursos

Se quiser limpar e remover uma assinatura dos Serviços Cognitivos, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.

Próximas etapas

Neste guia de início rápido, você aprendeu a instalar a biblioteca de clientes da Análise de Imagem e a fazer chamadas básicas de análise de imagem. A seguir, saiba mais sobre os recursos da API de Análise.

Use a biblioteca de clientes da Análise de Imagem para analisar uma imagem remota em busca de marcas, descrição de texto, rostos, conteúdo para adulto, entre outros.

Dica

Você também pode analisar uma imagem local. Confira os métodos de ComputerVision, como AnalyzeImage. Ou veja o código de exemplo no GitHub para obter cenários que envolvam imagens locais.

Dica

A API de Análise pode realizar muitas operações além de gerar marcas de imagem. Consulte o guia de instruções da Análise de Imagem para obter exemplos que mostram todos os recursos disponíveis.

Documentação de referência | Código-fonte da biblioteca |Artefato (Maven) | Exemplos

Pré-requisitos

  • Uma assinatura do Azure – crie uma gratuitamente
  • A versão atual do JDK (Java Development Kit)
  • A ferramenta de build Gradle ou outro gerenciador de dependência.
  • Depois de obter sua assinatura do Azure, crie um recurso da Pesquisa Visual Computacional no portal do Azure para obter a chave e o ponto de extremidade. Após a implantação, clique em Ir para o recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço de Pesquisa Visual Computacional.
    • Use o tipo de preço gratuito (F0) para experimentar o serviço e atualizar mais tarde para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, você gravará as credenciais em variáveis de ambiente no computador local que está executando o aplicativo.

Acesse o portal do Azure. Se o recurso da Detecção Facial que você criou na seção Pré-requisitos tiver sido implantado com êxito, clique no botão Ir para o Recurso em Próximas Etapas. Encontre a chave e o ponto de extremidade na página da chave e do ponto de extremidade do recurso, em gerenciamento de recursos. Sua chave de recurso não é igual à sua ID de assinatura do Azure.

Dica

Não inclua a chave diretamente no código e nunca a divulgue publicamente. Consulte o artigo de segurança dos Serviços Cognitivos para obter mais opções de autenticação como o Azure Key Vault.

Para definir a variável de ambiente da chave e do ponto de extremidade, abra uma janela do console e siga as instruções para o sistema operacional e o ambiente de desenvolvimento.

  1. Para definir a variável de ambiente VISION_KEY, substitua your-key por uma das chaves do recurso.
  2. Para definir a variável de ambiente VISION_ENDPOINT, substitua your-endpoint pelo ponto de extremidade do recurso.
setx VISION_KEY your-key
setx VISION_ENDPOINT your-endpoint

Depois de adicionar as variáveis de ambiente, é aconselhável reiniciar todos os programas em execução que precisarem lê-las, incluindo a janela do console.

Analisar a imagem

  1. Criar um novo projeto Gradle.

    Em uma janela de console (como cmd, PowerShell ou Bash), crie um novo diretório para seu aplicativo e navegue até ele.

    mkdir myapp && cd myapp
    

    Execute o comando gradle init em seu diretório de trabalho. Esse comando criará arquivos de build essenciais para o Gradle, incluindo o build.gradle.kts, que é usado no runtime para criar e configurar seu aplicativo.

    gradle init --type basic
    

    Quando solicitado a escolher uma DSL, escolha Kotlin.

  2. Instalar a biblioteca de clientes.

    Este início rápido usa o gerenciador de dependência do Gradle. Você pode encontrar a biblioteca de clientes e informações para outros gerenciadores de dependência no Repositório Central do Maven.

    Localize o build.gradle.kts e abra-o com seu IDE ou editor de texto preferencial. Depois copie nessa configuração de build a seguir. Esta configuração define o projeto como um aplicativo Java cujo ponto de entrada é a classe ImageAnalysisQuickstart. Ela importa a biblioteca da Pesquisa Visual Computacional.

    plugins {
        java
        application
    }
    application { 
        mainClass.set("ImageAnalysisQuickstart")
    }
    repositories {
        mavenCentral()
    }
    dependencies {
        implementation(group = "com.microsoft.azure.cognitiveservices", name = "azure-cognitiveservices-computervision", version = "1.0.9-beta")
    }
    
  3. Criar um arquivo Java.

    Em seu diretório de trabalho, execute o comando a seguir para criar uma pasta de origem do projeto:

    mkdir -p src/main/java
    

    Navegue até a nova pasta e crie um arquivo chamado ImageAnalysisQuickstart.java.

  4. Abra ImageAnalysisQuickstart.java em seu editor ou IDE de preferência e cole o código a seguir.

    import com.microsoft.azure.cognitiveservices.vision.computervision.*;
    import com.microsoft.azure.cognitiveservices.vision.computervision.implementation.ComputerVisionImpl;
    import com.microsoft.azure.cognitiveservices.vision.computervision.models.*;
    
    import java.io.*;
    import java.nio.file.Files;
    
    import java.util.ArrayList;
    import java.util.List;
    import java.util.UUID;
    
    public class ImageAnalysisQuickstart {
    
        // Use environment variables
        static String key = System.getenv("VISION_KEY");
        static String endpoint = System.getenv("VISION_ENDPOINT");
    
        public static void main(String[] args) {
            
            System.out.println("\nAzure Cognitive Services Computer Vision - Java Quickstart Sample");
    
            // Create an authenticated Computer Vision client.
            ComputerVisionClient compVisClient = Authenticate(key, endpoint); 
    
            // Analyze local and remote images
            AnalyzeRemoteImage(compVisClient);
    
        }
    
        public static ComputerVisionClient Authenticate(String key, String endpoint){
            return ComputerVisionManager.authenticate(key).withEndpoint(endpoint);
        }
    
    
        public static void AnalyzeRemoteImage(ComputerVisionClient compVisClient) {
            /*
             * Analyze an image from a URL:
             *
             * Set a string variable equal to the path of a remote image.
             */
            String pathToRemoteImage = "https://github.com/Azure-Samples/cognitive-services-sample-data-files/raw/master/ComputerVision/Images/faces.jpg";
    
            // This list defines the features to be extracted from the image.
            List<VisualFeatureTypes> featuresToExtractFromRemoteImage = new ArrayList<>();
            featuresToExtractFromRemoteImage.add(VisualFeatureTypes.TAGS);
    
            System.out.println("\n\nAnalyzing an image from a URL ...");
    
            try {
                // Call the Computer Vision service and tell it to analyze the loaded image.
                ImageAnalysis analysis = compVisClient.computerVision().analyzeImage().withUrl(pathToRemoteImage)
                        .withVisualFeatures(featuresToExtractFromRemoteImage).execute();
    
    
                // Display image tags and confidence values.
                System.out.println("\nTags: ");
                for (ImageTag tag : analysis.tags()) {
                    System.out.printf("\'%s\' with confidence %f\n", tag.name(), tag.confidence());
                }
            }
    
            catch (Exception e) {
                System.out.println(e.getMessage());
                e.printStackTrace();
            }
        }
        // END - Analyze an image from a URL.
    
    }
    
  5. Navegue de volta para a pasta raiz do projeto e compile o aplicativo com:

    gradle build
    

    Em seguida, execute-o com o comando gradle run:

    gradle run
    

Saída

Azure Cognitive Services Computer Vision - Java Quickstart Sample

Analyzing an image from a URL ...

Tags:
'person' with confidence 0.998895
'human face' with confidence 0.997437
'smile' with confidence 0.991973
'outdoor' with confidence 0.985962
'happy' with confidence 0.969785
'clothing' with confidence 0.961570
'friendship' with confidence 0.946441
'tree' with confidence 0.917331
'female person' with confidence 0.890976
'girl' with confidence 0.888741
'social group' with confidence 0.872044
'posing' with confidence 0.865493
'adolescent' with confidence 0.857371
'love' with confidence 0.852553
'laugh' with confidence 0.850097
'people' with confidence 0.849922
'lady' with confidence 0.844540
'woman' with confidence 0.818172
'group' with confidence 0.792975
'wedding' with confidence 0.615252
'dress' with confidence 0.517169

Limpar os recursos

Se quiser limpar e remover uma assinatura dos Serviços Cognitivos, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.

Próximas etapas

Neste guia de início rápido, você aprendeu a instalar a biblioteca de clientes da Análise de Imagem e a fazer chamadas básicas de análise de imagem. A seguir, saiba mais sobre os recursos da API de Análise.

Use a biblioteca de clientes da Análise de Imagem para JavaScript para analisar as marcas de conteúdo de uma imagem remota.

Dica

Você também pode analisar uma imagem local. Confira os métodos de ComputerVisionClient, como describeImageInStream. Ou veja o código de exemplo no GitHub para obter cenários que envolvam imagens locais.

Dica

A API de Análise pode realizar muitas operações além de gerar marcas de imagem. Consulte o guia de instruções da Análise de Imagem para obter exemplos que mostram todos os recursos disponíveis.

Documentação de referência | Código-fonte da biblioteca | Pacote (npm) | Exemplos

Pré-requisitos

  • Uma assinatura do Azure – crie uma gratuitamente
  • A versão atual do Node.js
  • Depois de obter sua assinatura do Azure, crie um recurso da Pesquisa Visual Computacional no portal do Azure para obter a chave e o ponto de extremidade. Após a implantação, clique em Ir para o recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço de Pesquisa Visual Computacional.
    • Use o tipo de preço gratuito (F0) para experimentar o serviço e atualizar mais tarde para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, você gravará as credenciais em variáveis de ambiente no computador local que está executando o aplicativo.

Acesse o portal do Azure. Se o recurso da Detecção Facial que você criou na seção Pré-requisitos tiver sido implantado com êxito, clique no botão Ir para o Recurso em Próximas Etapas. Encontre a chave e o ponto de extremidade na página da chave e do ponto de extremidade do recurso, em gerenciamento de recursos. Sua chave de recurso não é igual à sua ID de assinatura do Azure.

Dica

Não inclua a chave diretamente no código e nunca a divulgue publicamente. Consulte o artigo de segurança dos Serviços Cognitivos para obter mais opções de autenticação como o Azure Key Vault.

Para definir a variável de ambiente da chave e do ponto de extremidade, abra uma janela do console e siga as instruções para o sistema operacional e o ambiente de desenvolvimento.

  1. Para definir a variável de ambiente VISION_KEY, substitua your-key por uma das chaves do recurso.
  2. Para definir a variável de ambiente VISION_ENDPOINT, substitua your-endpoint pelo ponto de extremidade do recurso.
setx VISION_KEY your-key
setx VISION_ENDPOINT your-endpoint

Depois de adicionar as variáveis de ambiente, é aconselhável reiniciar todos os programas em execução que precisarem lê-las, incluindo a janela do console.

Analisar a imagem

  1. Criar um novo aplicativo do Node.js

    Em uma janela de console (como cmd, PowerShell ou Bash), crie um novo diretório para seu aplicativo e navegue até ele.

    mkdir myapp && cd myapp
    

    Execute o comando npm init para criar um aplicativo do Node com um arquivo package.json.

    npm init
    

    Instalar a biblioteca de clientes

    Instale os pacotes npm ms-rest-azure e @azure/cognitiveservices-computervision:

    npm install @azure/cognitiveservices-computervision
    

    Instale também o módulo assíncrono:

    npm install async
    

    O arquivo package.json do seu aplicativo será atualizado com as dependências.

    Crie um novo arquivo, index.js.

  2. Abra index.js em um editor de texto e cole o seguinte código.

    'use strict';
    
    const async = require('async');
    const fs = require('fs');
    const https = require('https');
    const path = require("path");
    const createReadStream = require('fs').createReadStream
    const sleep = require('util').promisify(setTimeout);
    const ComputerVisionClient = require('@azure/cognitiveservices-computervision').ComputerVisionClient;
    const ApiKeyCredentials = require('@azure/ms-rest-js').ApiKeyCredentials;
    
    /**
     * AUTHENTICATE
     * This single client is used for all examples.
     */
    const key = process.env.VISION_KEY;
    const endpoint = process.env.VISION_ENDPOINT;
    
    
    const computerVisionClient = new ComputerVisionClient(
      new ApiKeyCredentials({ inHeader: { 'Ocp-Apim-Subscription-Key': key } }), endpoint);
    /**
     * END - Authenticate
     */
    
    
    function computerVision() {
      async.series([
        async function () {
    
          /**
           * DETECT TAGS  
           * Detects tags for an image, which returns:
           *     all objects in image and confidence score.
           */
          console.log('-------------------------------------------------');
          console.log('DETECT TAGS');
          console.log();
    
          // Image of different kind of dog.
          const tagsURL = 'https://moderatorsampleimages.blob.core.windows.net/samples/sample16.png';
    
          // Analyze URL image
          console.log('Analyzing tags in image...', tagsURL.split('/').pop());
          const tags = (await computerVisionClient.analyzeImage(tagsURL, { visualFeatures: ['Tags'] })).tags;
          console.log(`Tags: ${formatTags(tags)}`);
    
          // Format tags for display
          function formatTags(tags) {
            return tags.map(tag => (`${tag.name} (${tag.confidence.toFixed(2)})`)).join(', ');
          }
          /**
           * END - Detect Tags
           */
          console.log();
          console.log('-------------------------------------------------');
          console.log('End of quickstart.');
    
        },
        function () {
          return new Promise((resolve) => {
            resolve();
          })
        }
      ], (err) => {
        throw (err);
      });
    }
    
    computerVision();
    
  3. Execute o aplicativo com o comando node no seu arquivo de início rápido.

    node index.js
    

Saída

-------------------------------------------------
DETECT TAGS

Analyzing tags in image... sample16.png
Tags: grass (1.00), dog (0.99), mammal (0.99), animal (0.99), dog breed (0.99), pet (0.97), outdoor (0.97), companion dog (0.91), small greek domestic dog (0.90), golden retriever (0.89), labrador retriever (0.87), puppy (0.87), ancient dog breeds (0.85), field (0.80), retriever (0.68), brown (0.66)

-------------------------------------------------
End of quickstart.

Limpar os recursos

Se quiser limpar e remover uma assinatura dos Serviços Cognitivos, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.

Próximas etapas

Neste guia de início rápido, você aprendeu a instalar a biblioteca de clientes da Análise de Imagem e a fazer chamadas básicas de análise de imagem. A seguir, saiba mais sobre os recursos da API de Análise.

Use a API REST da Análise de Imagem para analisar as marcações em uma imagem.

Dica

A API de Análise pode realizar muitas operações além de gerar marcas de imagem. Consulte o guia de instruções da Análise de Imagem para obter exemplos que mostram todos os recursos disponíveis.

Observação

Este guia de início rápido usa comandos cURL para chamar a API REST. Você também pode chamar a API REST usando uma linguagem de programação. Confira as amostras do GitHub para obter exemplos em C#, Python, Java e JavaScript.

Pré-requisitos

  • Uma assinatura do Azure – crie uma gratuitamente
  • Depois de obter sua assinatura do Azure, crie um recurso da Pesquisa Visual Computacional no portal do Azure para obter a chave e o ponto de extremidade. Após a implantação, selecione Ir para recurso.
    • Você precisará da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço de Pesquisa Visual Computacional. Cole a chave e o ponto de extremidade no código abaixo mais adiante no guia de início rápido.
    • Use o tipo de preço gratuito (F0) para experimentar o serviço e atualizar mais tarde para um nível pago para produção.
  • cURL instalado

Analisar uma imagem

Para analisar uma imagem a fim de obter diversos recursos visuais, execute as seguintes etapas:

  1. Copie o seguinte comando em um editor de texto.

    curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "https://westcentralus.api.cognitive.microsoft.com/vision/v3.2/analyze?visualFeatures=Tags" -d "{'url':'https://upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Salto_del_Angel-Canaima-Venezuela08.JPG/800px-Salto_del_Angel-Canaima-Venezuela08.JPG'}"
    
  2. Faça as alterações a seguir no comando quando necessário:

    1. Substitua o valor de <subscriptionKey> pela chave.
    2. Substitua a primeira parte da URL de solicitação (westcentralus) pelo texto em sua URL de ponto de extremidade.

      Observação

      Os novos recursos criados após 1º de julho de 2019 usarão nomes de subdomínio personalizados. Para saber mais e para obter uma lista completa de pontos de extremidade regionais, confira Nomes de subdomínio personalizados para Serviços Cognitivos.

    3. Outra opção é alterar a URL da imagem no corpo da solicitação (https://upload.wikimedia.org/wikipedia/commons/thumb/3/3c/Salto_del_Angel-Canaima-Venezuela08.JPG/800px-Salto_del_Angel-Canaima-Venezuela08.JPG) para uma URL de uma imagem diferente a ser analisada.
  3. Abra una janela de prompt de comando.

  4. Cole o comando curl modificado do editor de texto na janela do prompt de comando e, em seguida, execute-o.

Examinar a resposta

Uma resposta com êxito é retornada em JSON. O aplicativo de exemplo analisa e exibe uma resposta bem-sucedida na janela do prompt de comando, semelhante ao exemplo a seguir:

{{
   "tags":[
      {
         "name":"text",
         "confidence":0.9992657899856567
      },
      {
         "name":"post-it note",
         "confidence":0.9879657626152039
      },
      {
         "name":"handwriting",
         "confidence":0.9730165004730225
      },
      {
         "name":"rectangle",
         "confidence":0.8658561706542969
      },
      {
         "name":"paper product",
         "confidence":0.8561884760856628
      },
      {
         "name":"purple",
         "confidence":0.5961999297142029
      }
   ],
   "requestId":"2788adfc-8cfb-43a5-8fd6-b3a9ced35db2",
   "metadata":{
      "height":945,
      "width":1000,
      "format":"Jpeg"
   },
   "modelVersion":"2021-05-01"
}

Próximas etapas

Neste guia de início rápido, você aprendeu a fazer chamadas de análise de imagem básicas usando a API REST. A seguir, saiba mais sobre os recursos da API de Análise.

Pré-requisitos

  • Entre no Vision Studio com sua assinatura do Azure e o recurso dos Serviços Cognitivos. Consulte a seção de Introdução da visão geral se você precisar de ajuda com esta etapa.

Analisar uma imagem

  1. Selecione a guia Analisar imagens e selecione o painel intitulado Extrair marcas comuns de imagens.
  2. Para usar a experiência de teste, escolha um recurso e compreenda que ele incorrerá em uso de acordo com o seu tipo de preço.
  3. Selecione uma imagem no conjunto disponível ou carregue uma imagem própria.
  4. Depois de selecionar sua imagem, você verá as marcas detectadas aparecerem na janela de saída junto com suas pontuações de confiança. Você também pode selecionar a guia JSON para ver a saída JSON retornada pela chamada à API.
  5. Abaixo da experiência de teste, estão as próximas etapas para começar a usar essa funcionalidade em seu aplicativo.

Próximas etapas

Neste início rápido, você usou o Vision Studio para realizar uma tarefa básica de análise de imagem. A seguir, saiba mais sobre os recursos da API de Análise.