Evenimente
Construiți aplicații și agenți AI
17 mar., 21 - 21 mar., 10
Alăturați-vă seriei de întâlniri pentru a construi soluții AI scalabile bazate pe cazuri de utilizare din lumea reală cu colegi dezvoltatori și experți.
Înregistrați-vă acumAcest browser nu mai este acceptat.
Faceți upgrade la Microsoft Edge pentru a profita de cele mai noi funcții, actualizări de securitate și asistență tehnică.
Notă
Document ingestion for Azure Cosmos DB is in private preview. If you're interested to join the preview, we encourage you to join the wait list by signing this form: https://aka.ms/Doc2CDBSignup
We introduce Doc2CDB for Azure Cosmos DB, a powerful accelerator designed to streamline the extraction, preprocessing, and management of large volumes of text data for vector similarity search. This solution uses the advanced vector indexing capabilities of Azure Cosmos DB and is powered by Azure AI Services to provide a robust and efficient pipeline that’s easily to set up and perfect for many use cases including:
Vector Similarity Search over Text Data. Extract and vectorize text from document data to store in Azure Cosmos DB, makes it easy for you to perform semantic search to find documents that are contextually related to your queries. This allows them to discover relevant information that might not be found through traditional keyword searches, facilitating more comprehensive data retrieval.
Retrieval-Augmented Generation (RAG) over Documents. Personalize your Small and Large Language Models to your data with RAG. By extracting text from document files, chunking and vectorizing the data, then storing it in Azure Cosmos DB, you’re then set up to empower the chatbot to generate more accurate and contextually relevant responses to your scenarios. When you ask a question, the chatbot retrieves the most relevant text chunks through vector search and uses them to generate an answer, grounded in your document data.
Doc2CDB includes several key stages in its pipeline:
The Doc2CDB accelerator designed to help you parse, process, and store your document data more easily to take advantage of Azure Cosmos DB’s rich query language and powerful Vector Similarity Search. Visit https://aka.ms/Doc2CDB and give it a try today!
Evenimente
Construiți aplicații și agenți AI
17 mar., 21 - 21 mar., 10
Alăturați-vă seriei de întâlniri pentru a construi soluții AI scalabile bazate pe cazuri de utilizare din lumea reală cu colegi dezvoltatori și experți.
Înregistrați-vă acumInstruire
Modul
Search Azure Cosmos DB for NoSQL data with Azure Cognitive Search - Training
Index Azure Cosmos DB for NoSQL data with Azure Cognitive Search.
Certificare
Microsoft Certified: Azure Cosmos DB Developer Specialty - Certifications
Scrieți interogări eficiente, creați politici de indexare, gestionați și furnizați resurse în API-ul SQL și SDK cu Microsoft Azure Cosmos DB.
Documentație
Build a RAG Chatbot - Azure Cosmos DB for NoSQL
Build a retrieval augmented generation (RAG) chatbot in Python using Azure Cosmos DB for NoSQL's vector search capabilities.
Integrations for AI apps - Azure Cosmos DB
Integrate Azure Cosmos DB with AI and large language model (LLM) orchestration packages like Semantic Kernel and LangChain.
Retrieval augmented generation - Azure Cosmos DB
Learn about retrieval augmented generation (RAG) in the context of Azure Cosmos DB for NoSQL's vector search capabilities.