This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Displaying
Binary Data in the Data Web Controls

Introduction

In the preceding tutorial we explored the two techniques for associating binary data with an application’s
underlying data model and used the FileUpload control to upload files from a browser to the web server’s file
system. We’ve yet to see how to associate the uploaded binary data with the data model. That is, after a file has
been uploaded and saved to the file system, a path to the file must be stored in the appropriate database record. If
the data is being stored directly in the database, then the uploaded binary data need not be saved to the file system,
but must be injected into the database.

Before we look at associating the data with the data model, though, let’s first look at how to provide the binary data
to the end user. Presenting text data is simple enough, but how should binary data be presented? It depends, of
course, on the type of binary data. For images, we likely want to display the image; for PDFs, Microsoft Word
documents, ZIP files, and other types of binary data, providing a “Download” link is probably more appropriate.

In this tutorial we will look at how to present the binary data alongside its associated text data using data Web
controls like the GridView and DetailsView. In the next tutorial we’ll turn our attention to associating an uploaded
file with the database.

Step 1: Providing BrochurerPath Values

The Picture column in the Categories table already contains binary data for the various category images.
Specifically, the Picture column for each record holds the binary contents of a grainy, low-quality, 16-color
bitmap image. Each category image is 172 pixels wide and 120 pixels tall and consumes roughly 11 KB. What’s
more, the binary content in the Picture column includes a 78-byte OLE header that must be stripped before
displaying the image. This header information is present because the Northwind database has its roots in Microsoft
Access. In Access, binary data is stored using the OLE Object data type, which tacks on this header. For now, we’ll
see how to strip the headers from these low-quality images in order to display the picture. In a future tutorial we’ll
build an interface for updating a category’s Picture column and replace these bitmap images that use OLE
headers with equivalent JPG images without the unnecessary OLE headers.

In the preceding tutorial we saw how to use the FileUpload control. Therefore, you can go ahead and add brochure
files to the web server’s file system. Doing so, however, does not update the BrochurePath column in the
Categories table. In the next tutorial we’ll see how to accomplish this, but for now we need to manually provide
values for this column.

In this tutorial’s download you’ll find seven PDF brochure files in the ~/Brochures folder, one for each of the
categories except Seafood. I purposefully omitted adding a Seafood brochure to illustrate how to handle scenarios
where not all records have associated binary data. To update the categories table with these values, right-click on
the Categories node from Server Explorer and choose Show Table Data. Then, enter the virtual paths to the
brochure files for each category that has a brochure, as Figure 1 shows. Since there is no brochure for the Seafood
category, leave its BrochurePath column’s value as NULL.

1of 17

®% ASPHIT Data Tutorial 55 C5 - Microsefl Viseal Studio

& - i el Fe

S Categoeses: (MR THWNDHDF) |
! CategoryID Categorshiame
| Btsitd s
Corpdimerds

ks born

i Dy Procucts
EransCarss
st ity
Procduce

k Seafnoed

Ele: Et Yew Project Puid Debug Dpgta

Al s> oemtee LN E Dy

SN x;-,
Soft deinds, coff..

Seant 80 SHYT,

Dsissarbn, carade,,

Chaoeses

Dresds, crackers
Prampusrey] mwaty
Cwied frift aned ..
Semead and fich
LA oY

Quefy Desgresr Tooks Window Commundy Hep Gddines

3 (% iocehost 2

F

w W
e BrocrrsRsn
<Einary data refBrochne s B e i pot
<Binary data > safBrnchurasiCondments gof
wRinary data> rafBenchres i orlachons. pdf
Binary Gk a rafBropcrines Tk y . pf
<Py deta> rochuresiGrans, pdf
By daan ciffench e e gt ool
<Einary datax = fBrocriresProduce. pdf

=Py detas
e

ALLL
e———————
ALK

Sy Explorsr = L
FINCER T,
41 Data Cornections A~

_'-:I &

= [MOETHWMD MOF
| Casbaboacs Diagrans

= [Lakkes
(@ cotngomr]
segorydD

1] Categorytisne

7] Dascrighion

Tl e

1 Brodumsiath
0 CushoavesnCostonis Dems
1 CustomerDemographics
] Cusbomens
dl__iT] Fronkrenes
Frn, [Baserr... By

Figure 1: Manually Enter the Values for the categories Table’s BrochurePath Column

Step 2: Providing a Download Link for the Brochures in a GridView

With the BrochurePath values provided for the Categories table, we’re ready to create a GridView that lists each
category along with a link to download the category’s brochure. In Step 4 we’ll extend this GridView to also

display the category’s image.

Start by dragging a GridView from the Toolbox onto the Designer of the DisplayOrDownloadData.aspx page in
the BinaryData folder. Set the GridView’s ID to Categories and through the GridView’s smart tag, choose to
bind it to a new data source. Specifically, bind it to an ObjectDataSource named CategoriesDataSource that

retrieves data using the CategoriesBLL object’s GetCategories () method.

20f 17

Data Source Configuration Wizard @| EEI

‘j Choose a Data Source Type
‘Where will the application get data from?

= U % & &

Arcess Database Sike Map ¥ML File
Database

| Cornect to a middie-tier business nbau:t or DataSet in the Bin or App_Code directory For the application,

Specify an [0 for the data source:
iC.a.tegnriesDetaSmru:&

| ok || cancel |

Figure 2: Create a New ObjectDataSource Named CategoriesDataSource

3of17

Configure Data Source - CategoriesDataSource

L Choose a Business Object

Select a business object that can be used ko retrieve of update data (for example, an object defined in the Bin

or App_Code directary for this application).

Choose your business objact:

| CategoriesBLL

EmployeesBLL

MorthwindT ableAdapters. CategoresTableAdapter
Morthwind T ablefdaphers. EmpoyessTableddapter
MorthwindT able Adapter s ProductsT ableAdapter
Morthawind T ableadapters. SuppliersTableAdapter
ProducksBLL

Mor thaindOptimisticConcurrency Tableddapters, ProducksOptimisticCancurrency Table Adapter

w Show only data components

&ER)X

Cancel

Figure 3: Configure the ObjectDataSource to Use the categoriesBLL Class

4 of 17

Configure Data Source - CategoriesDataSource

gi Define Data Methods
="

| SELECT | UpDATE | INSERT | DELETE |
i
| Chaoss s methad of the business objeck that rekurms daks bo associate with the SELECT aperation, The
method can return a DatasSet, DataReader, or strongly-typed collection,

Exarnpbe! GatProducts(Int32 categoryld), returns a DataSet, |

é Chanse 5 method:
| | EetCategories!), retums CategariesDataTable W |

[GetCategoryEyCategoryID(INt32 categoryID), returns CategoriesDataT able

o> | (o) (o]

Figure 4: Retrieve the List of Categories Using the GetCategories () Method

After completing the Configure Data Source wizard, Visual Studio will automatically add a BoundField to the
Categories(}ﬁd\ﬁewlﬁﬂtheCategoryID,CategoryName,Description,NumberOfProducts,and
BrochurePath DataColumns. Go ahead and remove the NumberofProducts BoundField since the GetCategories
() method’s query does not retrieve this information. Also remove the CategoryID BoundField and rename the
CategoryName and Brochurepath BoundFields’ HeaderText properties to “Category” and “Brochure”,
respectively. After making these changes, your GridView and ObjectDataSource’s declarative markup should look
like the following:

<asp:GridView ID="Categories" runat="server"
AutoGenerateColumns="False" DataKeyNames="CategoryID"
DataSourcelID="CategoriesDataSource" EnableViewState="False">
<Columns>
<asp:BoundField DataField="CategoryName" HeaderText="Category"
SortExpression="CategoryName" />
<asp:BoundField DataField="Description" HeaderText="Description"
SortExpression="Description" />
<asp:BoundField DataField="BrochurePath" HeaderText="Brochure"
SortExpression="BrochurePath" />
</Columns>
</asp:Gridview>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

50f17

View this page through a browser (see Figure 5). Each of the eight categories is listed. The seven categories with
BrochurePath values have the Brochurepath value displayed in the respective BoundField. Seafood, which has a
NULL value for its BrochurePath, displays an empty cell.

B Limitled Page - Microsoft Intermet [eplorer I'" |r1:'1| .-.- 1- &
B Edt Yew Fowores Took Help i
sk = 2 @) S sewd rrevones € Coe B (W] - € I i
Ageess | heipe localorst: Z006(BSPHET _Diata_Tuborial_55_C58inryDvataDinplaryOn Do st s, aspix = .'Gl'

a
Working with Data Tutorials Homs » Werking with Binry Data > Display or Downiosd

e R O A

Display / Download Binary Data

Category Description | Brochire

= ik Plass i .
Baversges ;:2 drinks, coffees, Leas, Deers, 0 oo b ires/Beverages. pdf
Condments —West Al savaty Satices, T8 L as, refBrochures/Condiments, pdf

Spresds, and $eascnings
Confections Desserts, candies, and sweet breads ~/Brochures/Confectaons pdf

T T Dy Froducts Cheeses refBrochure s Dairy. pdf
FHEESTET Ry Grains/Careals Breads, crackers, pasta, and cereal ~/Brochures/Grains. pdf
Filter by Drop-Down Meat/Pouttry Prepared meats rofBrochuresMeat.pdf
st Froduce Dried fruit and bean curd refBrochuresProduce. pdf
Master-Dietails- Seafood Seaweed and fish
Cletals
—— -
Ii] Dares % L ocal ingrane:

Figure 5: Each Category’s Name, Description, and BrochurePath Value is Listed

Rather than displaying the text of the BrochurePath column, we want to create a link to the brochure. To
accomplish this, remove the BrochurepPath BoundField and replace it with a HyperLinkField. Set the new
HyperLinkField’s HeaderText property to “Brochure”, its Text property to “View Brochure”, and its
DataNavigateUrlFields property to BrochurePath.

60f17

[Fields 3

Available Fields: HyperLinkField properties:
[£] BrochurePath ~ acia]
(3] CheckBoxField — -
,- HyperLinkField fHeaderText Bruchure] |
] Imageriend Text View Brochure |
& ButtonField B Behavior
-] CommandField InsertYisible True
Bt L E R | Lt]
ShowHeader True
SortExpression
Selected fields; Target

Wisible True
El Data

REEERREEEE R BrochurePath

¥
DataMavigateUrlFields

The fields bound to the MavigateUr| property of
the hypetlink.

[] Auto-generate fields Convert this field into a TemplateField

Refresh Schi
efresh Scherna fa)'d] [Cancel

Figure 6: Add a HyperLinkField for BrochurePath

This will add a column of links to the GridView, as Figure 7 shows. Clicking a “View Brochure” link will either
display the PDF directly in the browser or prompt the user to download the file, depending on whether a PDF
reader is installed and the browser’s settings.

7o0f 17

W Untitled Page - Microzoft Internel Explorer

He E@ yew Favorbes Took Hep
O - [&E G Dsah Arwoies £ (305 W] - & ™ 5 3o
Adress | hitp: (iocabost: Z20G(ASPHET_Tista_Tutoral_55_C5/BinaryDataDisplayOr DavrloadDats asps Sl > =]
L]
Wgrkmg W]th Data Tutg|'|a|5 Home > Working with Binary Data > Display or
annt—nad Emirgr Dnt:
Display / Download Binary Data
Category | Description Brochure
. Wisw
Beverages Soft dnnks, coffees, teas, beers, and ales Bractiuie
Sweet and savory sauces, relishes, spreads, \fiaw
Condl L and seasonings Brodhurs
Confections Desserts, candes, and sweet breads ?LQQII
Dairy e
e s Chesses Broc
Grains/Cereals Breads, aackers, pasta, and cereal mﬂl :
- : Meat/Poultry. Prapared meats ME I
ﬁjﬁﬁ.@sﬁ"ﬁﬂ"ﬁi Froduce Dried fruit and bean curd %_LL"E_I |
Dekalls of Seladted Seafood Seaweed and fish i
R Brochurs
N b
&] Loal inir anel

Figure 7: A Category’s Brochure Can Be Viewed by Clicking the “View Brochure” Link

8of17

3 http:Mlocalhost: 2296/ASPNET_Data_Tutorial_55_CS/Brochures/Beverages.pdf {0) [1][5][X]
© Ele Edt Vew Favorkes Tools Help

P Qb - (W @B Poeach Hrwrte @ - L B0 EGnEBD
- hddress | @) hitp:[flocalhost: 2296/ ASPNET_Data_TutorialS5_CSfBrochures/Beverages. pdf v B e
B @ N O &[]0 -0
P B0

Beverages

Sl ke e

i, ey, i gl

P Pl ey P P P

e 1 ¥ oo w0 g F1LL)

Ol I R Ninim

AT = " T g bl Rt

A il L FEERLE BT T o

Ayt ‘aflan " PRE T wm

[ES TRl b k] Biaim

iamghuing | sndnnjas i Lamir a 31D s im

A i | g w 418 gy il Bl

Faebale b el e B iy EEREEIE T foR]

Armp— I-ll 34 - i e i

ety sl it B - ET bt I)

4] 85x1lin
| 14. 4 10f1 PRl OO =

L&) oore % Local intrane:

Figure 8: The Category’s Brochure PDF is Displayed

Hiding the “View Brochure” Text for Categories Without a Brochure

As Figure 7 shows, the Brochurerath HyperLinkField displays its Text property value (“View Brochure”) for all
records, regardless of whether there’s a non-NULL value for Brochureprath. Of course, if BrochurePath is NULL,
then the link is displayed as text only, as is the case with the Seafood category (refer back to Figure 7). Rather than
displaying the text “View Brochure”, it might be nice to have those categories without a BrochurePath value
display some alternate text, like “No Brochure Available.”

In order to provide this behavior, we need to use a TemplateField whose content is generated via a call to a page
method that emits the appropriate output based on the Brochurepath value. We first explored this formatting
technique back in the Using TemplateFields in the GridView Control tutorial.

90of 17

Turn the HyperLinkField into a TemplateField by selecting the Brochurepath HyperLinkField and then clicking
on the “Convert this field into a TemplateField” link in the Edit Columns dialog box.

Fields

Available fields: HyperLinkField properties:

_'5 (Al Fields) e
=-{&] BoundField]

[£] CategorvID .

! [Z] CategoryMame —|

B Accessibility ~
AccessibleHeaderTe
El Appearance
FookerText
HeadetImagellr
Header Text Brochure
Texk Yiew Brochure
E Behavior
Insertyisible True
Mavigakelll
ShowHeader True |

HeaderText
The text within the header aof this Figld,

[] Auto-generate fields

(f:::unvert this field into a TemnlateFieId]

Refresh Schema [O][Cancel]

Figure 9: Convert the HyperLinkField into a TemplateField

This will create a TemplateField with an ItemTemplate that contains a HyperLink Web control whose
NavigateUrl property is bound to the BrochurePath value. Replace this markup with a call to the method
GenerateBrochureLink,pasﬁnginthe\&ﬂueofBrochurePathi

<asp:TemplateField HeaderText="Brochure">

<ItemTemplate>
<%# GenerateBrochurelLink (Eval ("BrochurePath")) %>
</ItemTemplate>

</asp:TemplateField>

Next, create a protected method in the ASP.NET page’s code-behind class named GenerateBrochureLink that
returns a string and accepts an object as an input parameter.

protected string GenerateBrochurelink (object BrochurePath)
{
if (Convert.IsDBNull (BrochurePath))
return "No Brochure Available";
else
return string.Format (@"View Brochure",
ResolveUrl (BrochurePath.ToString()));

10 of 17

This method determines if the passed-in object value is a database NULL and, if so, returns a message indicating
that the category lacks a brochure. Otherwise, if there is a Brochurepath value, it’s displayed in a hyperlink. Note
that if the BrochurePath value is present it’s passed into the ResolveUrl (ur1) method. This method resolves the
passed-in url, replacing the ~ character with the appropriate virtual path. For example, if the application is rooted
at /Tutorial55, ResolveUrl ("~/Brochures/Meats.pdf") will return /Tutorial55/Brochures/Meat .pdf,

Figure 10 shows the page after these changes have been applied. Note that the Seafood category’s BrochurePath
field now displays the text “No Brochure Available”.

& Untitled Page - Microsoff Imternet Explarer El
fe [t Wew Favorbd Took - Help §if

S -HEF 6 Seanch Favorkes & 1 fa (] & » 5 B
El'th:-:.'ﬁu-cxhast:::'!ﬁl'ﬂsr“.l:r Custa_Tutorial 55 _C5iBimeryDeats TusplayCr DowninadCutas, s w -} 50
Wﬂ,rking With Data Tutﬂria!ﬁ Home > Working with Binary Data > Display of

Downlead Binary Data

Display / Download Binary Data

3 Gategor Drescription Brochure
Sirpis Display — = ; s :
Everaies Zoft drinks, coffees, teas, beers, and lew Brochurs
£ - 5 sy DIFUITRITS
Dedlaratiyve = aes
Parameters rel
Condiments Sweel and savory Sauces, relsnes,

spreads, and seasonings
Confectons Desserts, candies, snd sweet bresds
Dairy Products Cheesas

Grains/Ceresls Breads, crackers, pasta, and cereal
Filker by Crop-Down Meat/Poulbry Prepared meats

LIt Froduce DCwied fruit and bean curd

Mazter-Detailz- Seafaad Seaweed and fish
Details

Satling Pararmsler
Vahies

Fll"_-:l'u'n___| Ranarts

o Brochure
Ay adabde

| %d Local infranes

Figure 10: The Text “No Brochure Available” is Displayed for Those Categories Without a Brochure

Step 3: Adding a Web Page to Display a Category’s Picture

When a user visits an ASP.NET page, they receive the ASP.NET page’s HTML. The received HTML is just text
and does not contain any binary data. Any additional binary data, such as images, sound files, Macromedia Flash
applications, embedded Windows Media Player videos, and so forth, exist as separate resources on the web server.
The HTML contains references to these files, but does not include the actual contents of the files.

For example, in HTML the element is used to reference a picture, with the src attribute pointing to the
image file like so:

When a browser receives this HTML, it makes another request to the web server to retrieve the binary contents of
the image file, which it then displays in the browser. The same concept applies to any binary data. In Step 2, the
brochure was not sent down to the browser as part of the page’s HTML markup. Rather, the rendered HTML
provided hyperlinks that, when clicked, caused the browser to request the PDF document directly.

To display or allow users to download binary data that resides within the database, we need to create a separate
web page that returns the data. For our application, there’s only one binary data field stored directly in the database

11o0f 17

— the category’s picture. Therefore, we need a page that, when called, returns the image data for a particular
category.

Add a new ASP.NET page to the BinaryData folder named DisplayCategoryPicture.aspx. When doing so,
leave the “Select master page” checkbox unchecked. This page expects a CategoryID value in the querystring and
returns the binary data of that category’s Picture column. Since this page returns binary data and nothing else, it
does not need any markup in the HTML section. Therefore, click on the Source tab in the lower left corner and
remove all of the page’s markup except for the <%@ Page %> directive. Thatis, DisplayCategoryPicture.aspx’s
declarative markup should consist of a single line:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="DisplayCategoryPicture.aspx.cs"
Inherits="BinaryData DisplayCategoryPicture" %>

If you see the MasterPageFile attribute in the <@ Page %> directive, remove it.

In the page’s code-behind class, add the following code to the page Load event handler:

protected void Page Load(object sender, EventArgs e)

{
int categoryID = Convert.ToInt32 (Request.QueryString["CategoryID"]);

// Get information about the specified category

CategoriesBLL categoryAPI = new CategoriesBLL();

Northwind.CategoriesDataTable categories =
categoryAPI.GetCategoryWithBinaryDataByCategoryID (categoryID) ;

Northwind.CategoriesRow category = categories[0];

// Output HTTP headers providing information about the binary data
Response.ContentType = "image/bmp";

// Output the binary data
// But first we need to strip out the OLE header
const int OleHeaderLength = 78;
int strippedImagelength = category.Picture.Length - OleHeaderLength;
byte[] strippedImageData = new byte[strippedImagelength];
Array.Copy (category.Picture, OleHeaderLength,
strippedImageData, 0, strippedImagelength);

Response.BinaryWrite (strippedImageData) ;

This code starts by reading in the CategoryID querystring value into a variable named categoryID. Next, the
picture data is retrieved via a call to the CategoriesBLL class’s GetCategoryWithBinaryDataByCategoryID
(category1D) method. This data is returned to the client by using the Response.BinaryWrite (data) method,
but before this is called, the Picture column value’s OLE header must be removed. This is accomplished by
creating a byte array named strippedImageData that will hold precisely 78 characters less than what is in the
Picture column. The Array.Copy method is used to copy the data from category.Picture starting at position
78 over to strippedImageData

The Response.ContentType property specifies the MIME type of the content being returned so that the browser
knows how to render it. Since the Categories table’s Picture column is a bitmap image, the bitmap MIME type
is used here (image/bmp). If you omit the MIME type, most browsers will still display the image correctly because
they can infer the type based on the contents of the image file’s binary data. However, it’s prudent to include the

12 of 17

MIME type when possible. See the Internet Assigned Numbers Authority’s website for a complete listing of MIME
media types.

With this page created, a particular category’s picture can be viewed by visiting DisplayCategoryPicture.aspx?
CategoryID=categoryID. Figure 11 shows the Beverages category’s picture, which can be viewed from
DisplayCategoryPicture.aspx?CategoryID=1,

A hitp:Hlocalhost: 2296/ASPNET Data_Tutorial_55_CSMinaryData/MisplayCategoryPicture f*__"hﬁ f.__|r_ﬁ|g|

Fle Edk Wiew Favorites Toak Help -

) Back = & [# & | Seadh Favorkes 42 e & ™ § Ep

Address 8] h-:tp-.I,I]:v:alh:us-t:Zz'élbfﬂ.EPrE1_Data_rumrld_s&._ﬁ.l'ﬂlna'_.-|:.|at.{l:l|5day{atagszme.aspx?catagm';.-1D=i] b ﬂ Go

% Local Intraret

Figure 11: The Beverages Category’s Picture is Displayed

If, when visiting DisplayCategoryPicture.aspx?CategoryID=categoryID, you get an exception that reads
“Unable to cast object of type 'System.DBNull' to type 'System.Byte[]"”’, there are two things that may be causing
this. First, the Categories table’s Picture column does allow NULL values. The DisplayCategoryPicture.aspx
page, however, assumes there is a non-NULL value present. The Picture property of the CategoriesDataTable
cannot be directly accessed if it has a NULL value. If you do want to allow NULL values for the Picture column,
you’d want to include the following condition:

if (category.IsPictureNull ())
{
// Display some "No Image Available" picture
Response.Redirect ("~/Images/NoPictureAvailable.gif");
}

else

{
// Send back the binary contents of the Picture column
// ... Set ContentType property and write out
// ... data via Response.BinaryWrite

The above code assumes that there’s some image file named NoPictureAvailable.gif in the Images folder that
you want to display for those categories without a picture.

This exception could also be caused if the CategoriesTableAdapter’s
GetCategoryWithBinaryDataByCategoryID method’s SELECT statement has reverted back to the main query’s
column list, which can happen if you are using ad-hoc SQL statements and you’ve re-run the wizard for the
TableAdapter’s main query. Check to ensure that GetCategoryWithBinaryDataByCategoryID method’s SELECT
statement still includes the Picture column.

13 0f 17

Note: Every time the DisplayCategoryPicture.aspx is visited, the database is accessed and the specified
category’s picture data is returned. If the category’s picture hasn’t changed since the user has last viewed it,
though, this is wasted effort. Fortunately, HTTP allows for conditional GETs. With a conditional GET, the
client making the HTTP request sends along an 1f-Modified-Since HTTP header that provides the date
and time the client last retrieved this resource from the web server. If the content has not changed since this
specified date, the web server may respond with a Not Modified status code (304) and forgo sending back
the requested resource’s content. In short, this technique relieves the web server from having to send back
content for a resource if it has not been modified since the client last accessed it.

To implement this behavior, however, requires that you add a PictureLastModified column to the
Categories table to capture when the Picture column was last updated as well as code to check for the 1£-
Modified-Since header. For more information on the 1f-Modified-Since header and the conditional GET
workflow, see HTTP Conditional GET for RSS Hackers and A Deeper Look at Performing HTTP Requests
in an ASP.NET Page.

Step 4: Displaying the Category Pictures in a GridView

Now that we have a web page to display a particular category’s picture, we can display it using the Image Web
control or an HTML element pointing to DisplayCategoryPicture.aspx?CategoryID=categoryID.
Images whose URL is determined by database data can be displayed in the GridView or DetailsView using the
ImageField. The ImageField contains DataImageUrlField and DataImageUrlFormatString properties that work
like the HyperLinkField’s DataNavigateUrlFields and DataNavigateUrlFormatString properties.

Let’s augment the categories GridView in DisplayOrDownloadData.aspx by adding an ImageField to show
each category’s picture. Simply add the ImageField and set its DataImageUrlField and
DataImageUrlFormatString properties to CategoryID and DisplayCategoryPicture.aspx?CategoryID={0} R
respectively. This will create a GridView column that renders an element whose src attribute references
DisplayCategoryPicture.aspx?CategoryID={0}, where {0} is replaced with the GridView row’s CategoryID
value.

14 of 17

Available Fields: ImageField properties:
| [Z] BrochurePath - .
i3 CheckBoxField —
| HyperLinkField Readonly False |
| ShowHeader True
|

SortExpression

Wisible True
B Data

DatadlternateTextF
m DatadlternateTextE
DatalmagelrlField CategoryID
(=1 = = 0 el t=| X #CategoryID={0}

B E,_:j CommandField
=] TemplateField

Selected fields:

The formatting applied ko the value bound to the
Imagelrl property of the image.

[1
| El categary [
[= R yles
[=] Description " Cantralstyl
~=|Brochure Sebibs i M
i ImageField I DatalmageUrlFormatString

[] Auto-generate fields Convert this field into a TemplateField

Refresh Schema [O l [Cancel

Figure 12: Add an ImageField to the GridView

After adding the ImageField, your GridView’s declarative syntax should look like soothe following:

<asp:GridView ID="Categories" runat="server" AutoGenerateColumns="False"
DataKeyNames="CategoryID" DataSourceID="CategoriesDataSource"
EnableViewState="False">
<Columns>
<asp:BoundField DataField="CategoryName" HeaderText="Category"
SortExpression="CategoryName" />
<asp:BoundField DataField="Description" HeaderText="Description"
SortExpression="Description" />
<asp:TemplateField HeaderText="Brochure">

<ItemTemplate>
<%# GenerateBrochurelLink (Eval ("BrochurePath")) %>
</ItemTemplate>

</asp:TemplateField>
<asp:ImageField DatalmageUrlField="CategoryID"
DataImageUrlFormatString="DisplayCategoryPicture.aspx?CategoryID={0}">
</asp:ImageField>
</Columns>
</asp:Gridview>

Take a moment to view this page through a browser. Note how each record now includes a picture for the category.

150f 17

3 Untitled Page - Microsofi fniermet Explaner

Bl ER Wew Favorbis Tovk . Help
o) @ L sewdh Favokes &5 T & % =

Lot h_‘h‘:l;\.l'.ltl:m::mﬂ?fﬂ:'-M_TIUM_EE_CSM;‘D!JMF‘#}EQN’M‘{Maq:n - m

Working with Data Tutorials Home > Werking with Bibary 0ata > Display er Dawnload

mnary Data

Display / Download Binary Data
Caledgory [rescription

Simple Display

Ciedlarative
FParametars

Soft donks, coffees, teas; Wiew

Setting Parastieter | Beverages bears, and ales Brochirs
walues
Fitering Peports

Fileer by DropsBiown '

List ! Sweet and Ssvory Sauces,

et ac-Cutails- | Condiments relishes, spreads, and :

Datats | LEALAMIRE

Mastes/Detml Aeross |

Twn Fages |

Dietads of Sefacted

Row | il Dresserts, candies, and Wiew
Confections Eina st Brssds g -

Cuskom Cartent n a 1

il | Dairy Chessas e s

Figure 13: The Category’s Picture is Displayed for Each Row

Summary

In this tutorial we examined how to present binary data. How the data is presented depends on the type of data. For
the PDF brochure files, we offered the user a “View Brochure” link that, when clicked, took the user directly to the
PDF file. For the category’s picture, we first created a page to retrieve and return the binary data from the database
and then used that page to display each category’s picture in a GridView.

Now that we’ve looked at how to display binary data, we’re ready to examine how to perform insert, updates, and
deletes against the database with the binary data. In the next tutorial we’ll look at how to associate an uploaded file
with its corresponding database record. In the tutorial after that, we’ll see how to update existing binary data as
well as how to delete the binary data when its associated record is removed.

Happy Programming!

About the Author

Scott Mitchell, author of seven ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer. His latest
book is Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at mitchell@4GuysFromRolla.com. or
via his blog, which can be found at http://ScottOnWriting. NET.

16 of 17

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Teresa Murphy
and Dave Gardner. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

17 of 17

