This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Custom
Buttons in the DataList and Repeater

Introduction

Throughout the past seventeen DataList and Repeater tutorials, we’ve created both read-only examples and
editing and deleting examples. To facilitate editing and deleting capabilities within a DataList, we added
buttons to the Datalist’s ItemTemplate that, when clicked, caused a postback and raised a DataList event
corresponding to the button’s CommandName property. For example, adding a button to the ItemTemplate with a
CommandName property value of “Edit” causes the DataList’s EditCommand to fire on postback; one with the
CommandName “Delete” raises the DeleteCommand.

In addition to Edit and Delete buttons, the DataList and Repeater controls can also include Buttons,
LinkButtons, or ImageButtons that, when clicked, perform some custom server-side logic. In this tutorial we’ll
build an interface that uses a Repeater to list the categories in the system. For each category, the Repeater will
include a button to show the category’s associated products using a BulletedList control (see Figure 1).

lof 11

'-1 Lnditled Page - Microsoft Inlernet fxplorer El

Fis Edt Wew Favorke: Took el
Dk = O - [F@ G| e foFaeres @3- S] - [TR -
Agdress | @] hetp: [ocalost 3699 Code DustomButonsDat alistR epaater (CustomButions. asp v e
Cad
Working with Data Tutorials
Adding Custom Buttons to the Datalist
and Repeater
Simple Display
Ceclarative Beverages
Parameters
: Soft drinks, coffees, beas, beers, and ales [Show Broducts]
Settng Parametar
Ve » Chai Tea
Filterirg Beports » Chang
Filter by ﬁm]ﬁ-[}u‘wn » Guarand Fantdstica
List : + Sasquatch Ale
— = : » Staeieye Stout
g:st&l ~Detdlls + Chartrause verte
= Ipoh Coffes
Master/Detall Amoss » Laughing Lurberjack Lager
Two Pages s Outhack Lager
Detals afﬁemd = Rhinbrau Klosterbier
Pow : o Lakkalibesei
A s Acme Tea
T e o Ao Coffes
& Ao Water
* Acme Soda
Custom Contentin 8
iy whain'
Custam Conbentin a 3
Detatsyiew Condiments
Custom Content in a Swaet and savory ssuces, relishes, spreads, and seazonings [Show Broducts]
Farmiiew
= i z W
] Dorm Sl Local inkranet

Figure 1: Clicking the “Show Products” Link Displays the Category’s Products in a Bulleted List

Step 1: Adding the Custom Button Tutorial Web
Pages

Before we look at how to add a custom button, let’s first take a moment to create the ASP.NET pages in our
website project that we’ll need for this tutorial. Start by adding a new folder named
CustomButtonsDataListRepeater. Next, add the following two ASP.NET pages to that folder, making sure to
associate each page with the site.master master page:

e Default.aspx
e CustomButtons.aspx

20f11

Solukion Explorer - Ci. L\ Code),

= EE & B

LiZ] App_Code

% App_Datka

= app_Theres

[BasicReparting

[CustormButtons

[£ZF CustommButtonsDatalistRepeater
[+ E CuskomButkons, aspx
23] E Default, aspox

[CustommFormatting

[DatalistRepeaterBasics
[DatalistRepeaterFikering
[EditDeleteDatalist

[EditInsertDelete

[Filkering

[Paging&ndSarting

[PagingSortingDatalistRepeater
[UserCortrals

|E] Default, asp:x

j Sike.master

A styles.css

= Web.Corfig

2] weh,sitemap

- E-E-E-8-E-E-E-E-E

;éfgSulu..._f;ﬁprD... | o e :%CIas...”

Figure 2: Add the ASP.NET Pages for the Custom Buttons-Related Tutorials
Like in the other folders, Default.aspx in the CustomButtonsDatalListRepeater folder will list the tutorials

in its section. Recall that the sectionLevelTutorialListing.ascx User Control provides this functionality.
Add this User Control to Default.aspx by dragging it from the Solution Explorer onto the page’s Design view.

3of11

T= Cade - Microsofl Visual Studie

Fle Edt Yew ‘Webste Buld [ebug Format Layout Tools ‘Window Commundy Help Addins
: 1 I W Lish{CF Sur %
! Rk, 10F Surver) b
B LU LAZ BE (= &
e anz CustoimButhons. . Buttons aspx ¥ X | Sohin Explorer - X
g | rfﬂ Y EARlpm e
g £ P £ Codet,
1 e 5 Content - Contentl (Custom) R
latl] Textfox = - 2% App_Delbs
@) baton | dding Custom G gl
(&) Lirkbutten Buttons to the g —
B DataList and = L CustombuttorsDataLitiepeater
¥ BropOowndis Repeater .-,_t_J
e - K S e
= LIAEoy Tutorials & [DatalistRepssterbasics
& ¥ [0 DetslistRaepesberFitering
[CheckBostist ® Dgtabeund - Databound & 3 EdiDeleteDatalist
© RadcButton » Datsbaynd - Databound # (d ERinsertDelete
25 RadicButtonlist * Databoynd - Databound & [Fikering
- ® Datsbaund - Databaund *®
il Image * Dakpboynd - Databound il
il Imagetia ki
7} Tabls =
T Bulstedit :
. HidderFishd
&) Ltera 5 3
5 Calendar ¥ ;
4 Adfokator w | <hody> | <aspoconbentfoontentl> || chis :”QS\:U.I 3y
g Ervor List | 5 Outpat [Fird Riesiibs 1 (5 Perding Chacking
Raady

Figure 3: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add the pages as entries to the web. sitemap file. Specifically, add the following markup after the
Paging and Sorting with the DataList and Repeater <siteMapNode>:

<siteMapNode
url="~/CustomButtonsDatalListRepeater/Default.aspx"
title="Adding Custom Buttons to the Datalist and Repeater"
description="Samples of Datalist and Repeater Reports that Include
Buttons for Performing Server-Side Actions">

<siteMapNode
url="~/CustomButtonsDatalListRepeater/CustomButtons.aspx"
title="Using Custom Buttons in the Datalist and Repeater's Templates"
description="Examines how to add custom Buttons, LinkButtons,
or ImageButtons within templates." />
</siteMapNode>

After updating Web . sitemap, take a moment to view the tutorials website through a browser. The menu on the
left now includes items for the editing, inserting, and deleting tutorials.

4of 11

File Edit Miew Favaorites Toc »

Qoack - © - ¥ @ &

- address | €] http:flocahost:36057c v | 5] Go

o

M
Using Custom
Buttons in the
Catalist and
Repeater's
Templates P

! ¥
\'.j Local inkranet

Figure 4: The Site Map Now Includes the Entry for the Custom Buttons Tutorial

Step 2: Adding the List of Categories

For this tutorial we need to create a Repeater that lists all categories along with a “Show Products” LinkButton
that, when clicked, displays the associated category’s products in a bulleted list. Let’s first create a simple
Repeater that lists the categories in the system. Start by opening the CustomButtons.aspx page in the
CustomButtonsDataListRepeater folder. Drag a Repeater from the Toolbox onto the Designer and set its ID
property to Categories. Next, create a new data source control from the Repeater’s smart tag. Specifically,
create a new ObjectDataSource control named CategoriesDataSource that selects its data from the
CategoriesBLL class’s GetCategories () method.

S5of11

Configure Data Source - CategoriesDataSource

Define Data Methods

"-"‘-I;:-i-;}#;

SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck that returns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or stronghy-typead collection,

Exarple; GatProducts(Int32 cakegoryld), returns a DataSet,

Chonse a method:

[GetCategoryByCategory ID(INt32 categoryID), returns CategoriesDataTable

wi> | (o] o

Figure 5: Configure the ObjectDataSource to Use the categoriesBLL Class’s GetCategories () Method

Unlike the DataList control, for which Visual Studio creates a default TtemTemplate based on the data source,
the Repeater’s templates must be manually defined. Furthermore, the Repeater’s templates must be created and
edited declaratively (that is, there’s no “Edit Templates” option in the Repeater’s smart tag).

Click on the Source tab in the bottom left corner and add an ItemTemplate that displays the category’s name in
an <h3> element and its description in a paragraph tag; include a SeparatorTemplate that displays a horizontal
rule (<hr />) between each category. Also add a LinkButton with its Text property set to “Show Products”.
After completing these steps, your page’s declarative markup should look like the following:

<asp:Repeater ID="Categories" DataSourcelID="CategoriesDataSource"
runat="server">
<ItemTemplate>
<h3><%# Eval ("CategoryName") $%$></h3>
<p>
<%# Eval ("Description") %>
[<asp:LinkButton runat="server" ID="ShowProducts">
Show Products</asp:LinkButton>]
</p>
</ItemTemplate>
<SeparatorTemplate><hr /></SeparatorTemplate>
</asp:Repeater>

<asp:0bjectDataSource ID="CategoriesDataSource" runat="server"
OldvaluesParameterFormatString="original {0}"
SelectMethod="GetCategories" TypeName="CategoriesBLL">
</asp:0bjectDataSource>

Figure 6 shows the page when viewed through a browser. Each category name and description is listed. The
“Show Products” button, when clicked, causes a postback but does not yet perform any action.

60f11

A Untitled Page - Microseft Internet Explorer
Fd= Edt 'ew Fgvorkes Tooks Help

P Qesk v O W@ 6B Pseach dervtes @ -k W@ G E B

Address |8] hittp:focaihost- 3599 CodeCustomButtonsDatal istRepeat e (CustamButbons. sspo b .GD

I i i Heme > Adding Custom Buttons to the

Working with Data Tutorials > Addlng Sustom Butens to the

Buttons in the DataList and Repeater’s
___Templates

Adding Custom Buttons to the
DatalList and Repeater

“Simple Display
Declarative.
Parameters Beverages

Setting Parameter
Values

Soft dnnks, coffees, teas, beers, and ales [Show Products]

Filter by Drop-Down
List

Condiments

Master-Detals-

D&tﬂ'ﬂE Sweet and savory sauces, relishes, spreads, and seasonings
: [Show Products]

Master/Detal Across

Twao Pages

Details of Selectad

Row Confections

Customized

Formatting
Format Colors

Desserts, candies, and sweet breads [Show Products]

Custom Content in a)

Gridiiew Dairy Products
. __Cl.ls_tﬂm_f_.‘?lttit _I!'I & | ________haaears IShaw Oradiekel o
£] Dane % Loscald intranet

Figure 6: Each Category’s Name and Description is Displayed, Along with a “Show Products”
LinkButton

Step 3: Executing Server-Side Logic When the
“Show Products” LinkButton is Clicked

Anytime a Button, LinkButton, or ImageButton within a template in a DataList or Repeater is clicked, a
postback occurs and the DataList or Repeater’s ItemCommand event fires. In addition to the ItemCommand event,
the DataList control may also raise another, more specific event if the button’s CommandName property is set to
one of the reserved strings (“Delete”, “Edit”, “Cancel”, “Update”, or “Select”), but the ItemCommand event is
always fired.

When a button is clicked within a DataList or Repeater, oftentimes we need to pass along which button was
clicked (in the case that there may be multiple buttons within the control, such as both an Edit and Delete
button) and perhaps some additional information (such as the primary key value of the item whose button was
clicked). The Button, LinkButton, and ImageButton provide two properties whose values are passed to the
ItemCommand event handler:

e CommandName — a string typically used to identify each button in the template

7of 11

e CommandArgument — commonly used to hold the value of some data field, such as the primary key value

For this example, set the LinkButton’s CommandName property to “ShowProducts” and bind the current record’s
primary key value — CategoryID — to the CommandArgument property using the databinding syntax
CategoryArgument='<%# Eval ("CategoryID") %>'. After specifying these two properties, the LinkButton’s
declarative syntax should look like the following:

<asp:LinkButton runat="server" CommandName="ShowProducts"
CommandArgument="'<%$# Eval ("CategoryID") %>' ID="ShowProducts">
Show Products</asp:LinkButton>

When the button is clicked, a postback occurs and the DataList or Repeater’s ItemCommand event fires. The
event handler is passed the button’s CommandName and CommandArgument values.

Create an event handler for the Repeater’s ItemCommand event and note the second parameter passed into the
event handler (named e). This second parameter is of type RepeaterCommandEventArgs and has the following
four properties:

CommandArgument — the value of the clicked button’s CommandArgument property

CommandName — the value of the button’s CommandName property

CommandSource — a reference to the button control that was clicked

Ttem — a reference to the RepeaterItem that contains the button that was clicked; each record bound to
the Repeater is manifested as a RepeaterItem

Since the selected category’s CategoryID is passed in via the CommandArgument property, we can get the set of
products associated with the selected category in the ItemCommand event handler. These products can then be
bound to a BulletedList control in the ItemTemplate (which we’ve yet to add). All that remains, then, is to add
the BulletedList, reference it in the ItemCommand event handler, and bind to it the set of products for the
selected category, which we’ll tackle in Step 4.

Note: The DataList’s ItemCommand event handler is passed an object of type DataListCommandEventArgs,
which offers the same four properties as the RepeaterCommandEventArgs class.

Step 4: Displaying the Selected Category’s Products
in a Bulleted List

The selected category’s products can be displayed within the Repeater’s ItemTemplate using any number of
controls. We could add another nested Repeater, a Datalist, a DropDownList, a GridView, and so on. Since we
want to display the products as a bulleted list, though, we’ll use the BulletedList control. Returning to the
CustomButtons.aspx page’s declarative markup, add a BulletedList control to the ItemTemplate after the
“Show Products” LinkButton. Set the BulletedLists’s ID to ProductsInCategory. The BulletedList displays
the value of the data field specified via the DataTextField property; since this control will have product
information bound to it, set the DataTextField property to ProductName.

<asp:BulletedList ID="ProductsInCategory" DataTextField="ProductName"
runat="server"></asp:BulletedList>

In the TtemCommand event handler, reference this control using e. Item.FindControl
("ProductsInCategory") and bind it to the set of products associated with the selected category.

protected void Categories ItemCommand (object source, RepeaterCommandEventArgs e)

8of 11

if (e.CommandName == "ShowProducts")

{
// Determine the CategoryID
int categoryID = Convert.ToInt32 (e.CommandArgument) ;

// Get the associated products from the ProudctsBLL and bind
// them to the BulletedList
BulletedList products =
(BulletedList)e.Item.FindControl ("ProductsInCategory") ;
ProductsBLL productsAPI = new ProductsBLL();
products.DataSource =
productsAPI.GetProductsByCategoryID (categoryID) ;
products.DataBind()) ;

Before performing any action in the ItemCommand event handler, it’s prudent to first check the value of the
incoming CommandName. Since the ItemCommand event handler fires when any button is clicked, if there are
multiple buttons in the template use the CommandName value to discern what action to take. Checking the
CommandName here is moot, since we only have a single button, but it is a good habit to form. Next, the
categoryID of the selected category is retrieved from the CommandArgument property. The BulletedList control
in the template is then referenced and bound to the results of the ProductsBLL class’s
GetProductsByCategoryID (categoryID) method.

In previous tutorials that used the buttons within a DataList, such as An Overview of Editing and Deleting Data
in the DatalList, we determined the primary key value of a given item via the DataKeys collection. While this
approach works well with the DataList, the Repeater does not have a Datakeys property. Instead, we must use
an alternative approach for supplying the primary key value, such as through the button’s CommandArgument
property or by assigning the primary key value to a hidden Label Web control within the template and reading
its value back in the ITtemCommand event handler using e.Item.FindControl ("LabelID").

After completing the ITtemCommand event handler, take a moment to test out this page in a browser. As Figure 7
shows, clicking the “Show Products” link causes a postback and displays the products for the selected category
in a BulletedList. Furthermore, note that this product information remains, even if other categories’ “Show
Products” links are clicked.

Note: If you want to modify the behavior of this report, such that the only one category’s products are listed at a
time, simply set the BulletedList control’s EnableViewState property to False.

9o0f11

3 Lnditled Page - Microsoft Inlernet fxplorer

Fis Edt Wew Favorke: Took el

Dok - O - @ @ 6| Hoseh Frrmoks & (- a0 @] 7 & i i
Agdress | @] hetp: [ocalost 3699 Code DustomButonsDat alistR epaater (CustomButions. asp v e
Cad
Working with Data Tutorials
Adding Custom Buttons to the Datalist
and Repeater
Simple Display
Ceclarative Beverages
Parameters
SetmglPiramqrer Soft drinks, coffees, teas, beers, and ales [Show Brodycis]
Vs » Chai Tea
Filterirg Beports » Chang
Filter b}" ﬁmp-[}wn & Guarand Fant&stics
List * Sasquatch sle
3 - 3 = Stasleye Stout
g:ﬂﬁl ~Detdlls + Chartrause verte
= Ipoh Coffes
Master/Detall Arass » Laughing Lurberjack Lager
Two Pages s Outhack Lager
Detals ,:.rg_elgmd = Rhinbrau Klosterbier
Pow : o Lakkalibesei
TR v Acrme Tea
F-:'|.|'|'r'|.=.|'_='_|.:".:'. » Acrme Coffes
- & Ao Water
Format Coiors: * Acme Soda
Custom Contentin 8
Grichisw
Custam Conbentin a 3
Detaleiddw Condiments
.wwmt i & Swaet and savory ssuces, relishes, spreads, and seazonings [Show Products]
= i z W
2] Dorm %ed Local intraret

Figure 7: A BulletedList is used to Display the Products of the Selected Category.

Summary

The DataList and Repeater controls can include any number of Buttons, LinkButtons, or ImageButtons within
their templates. Such buttons, when clicked, cause a postback and raise the ItemCommand event. To associate
custom server-side action with a button being clicked, create an event handler for the ItemCommand event. In
this event handler first check the incoming CommandName value to determine which button was clicked.
Additional information can optionally be supplied through the button’s CommandArgument property.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

10of 11

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Dennis
Patterson. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at

mitchell@4guysfromrolla.com.

11of 11

