This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Custom
Formatting Based Upon Data

Introduction

The appearance of the GridView, DetailsView, and FormView controls can be customized through a myriad of
style-related properties. Properties like cssClass, Font, BorderWidth, BorderStyle, BorderColor, Width,
and Height, among others, dictate the general appearance of the rendered control. Properties including
HeaderStyle, RowStyle, AlternatingRowStyle, and others allow these same style settings to be applied to
particular sections. Likewise, these style settings can be applied at the field level.

In many scenarios though, the formatting requirements depend upon the value of the displayed data. For
example, to draw attention to out of stock products, a report listing product information might set the
background color to yellow for those products whose UnitsInstock and Unitsonorder fields are both equal to

0. To highlight the more expensive products, we may want to display the prices of those products costing more
than $75.00 in a bold font.

Adjusting the format of the GridView, DetailsView, or FormView based upon the data bound to it can be
accomplished in multiple ways. In this tutorial we'll look at how to accomplish data bound formatting through
the use of the pataBound and RowDataBound event handlers. In the next tutorial we'll explore an alternative
approach.

Using the DetailsView Control's bataBound Event Handler

When data is bound to a DetailsView, either from a data source control or through programmatically assigning
data to the control's patasource property and calling its DataBind () method, the following sequence of steps
occur:

1. The data Web control's DataBinding event fires.
2. The data is bound to the data Web control.
3. The data Web control's bataBound event fires.

Custom logic can be injected immediately after steps 1 and 3 through an event handler. By creating an event
handler for the pataBound event we can programmatically determine the data that has been bound to the data
Web control and adjust the formatting as needed. To illustrate this let's create a DetailsView that will list
general information about a product, but will display the unitprice value in a bold, italic font if it exceeds
$75.00.

Step 1: Displaying the Product Information in a
DetailsView

Open the customColors.aspx page in the customFormatting folder, drag a DetailsView control from the
Toolbox onto the Designer, set its 1D property value to ExpensiveProductsPriceInBoldItalic, and bind it to
a new ObjectDataSource control that invokes the ProductsBLL class's GetProducts () method. The detailed

1 of 16

steps for accomplishing this are omitted here for brevity since we examined them in detail in previous tutorials.

Once you've bound the ObjectDataSource to the DetailsView, take a moment to modify the field list. I've opted
tormﬂOVetheProductID,SupplierID,CategoryID,UnitsInStock,UnitsOnOrder,ReorderLevel,and
Discontinued BoundFields and renamed and reformatted the remaining BoundFields. I also cleared out the
width and Height settings. Since the DetailsView displays only a single record, we need to enable paging in
order to allow the end user to view all of the products. Do so by checking the Enable Paging checkbox in the
DetailsView's smart tag.

" Code Microselt ¥iswal $udio f-. IEFH
B @& ew Webgty [Qold Debug Fpmat lagost Jook Wndow Qommunky (el Addee
e & n. - " B [ek "
HRBIG Y L = VardEnd s 13550 - .l__.r il _\.{ E- s = &

s CustonFormatt Cobwe sspi wb CaboamFormest. ami sbors. arpe - M 5

Products More Than $75.00 are
Displayed in a Bold, Italic Font

Product aky DetalsVeew Tacks

hmmnr- SEetugiliat afomerie]

af Chessam Duila Sounte [R] -

|| Erusble iremrtreg

4 - ¥
[] Erebis Eclking

& Dmogn | 4 fSodrce chiddy | capocamenldconbent| = '_' ¥

e - [Enabis Deieting

3B 113 Coput | T Fored Pl
Fail Tegilaie

Rty

Figure 1: Check the Enable Paging Checkbox in the DetailsView's Smart Tag

After these changes, the DetailsView markup will be:

<asp:DetailsView ID="DetailsViewl" runat="server" AllowPaging="True"
AutoGenerateRows="False" DataKeyNames="ProductID"
DataSourceID="ObjectDataSourcel" EnableViewState="False">
<Fields>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="SupplierName" HeaderText="Supplier"
ReadOnly="True" SortExpression="SupplierName" />
<asp:BoundField DataField="QuantityPerUnit"
HeaderText="Qty/Unit" SortExpression="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price"
HtmlEncode="False" SortExpression="UnitPrice" />
</Fields>

</asp:DetailsView>

Take a moment to test out this page in your browser.

20f16

W Untitled Page - Micrasell Internel Fxplares

Fle Edt Yew Fgerkss Jools Heb

O -1 &) F e Favortes &9 ..‘__-,_'- g ll:lﬁ

ik e *‘_1*”[-:_1)‘-_‘4’_-*-:.-_@.ﬁl_ii:(:urll'-.'_.:slmFrtn.‘lmu;,l-T shomCokes, mipe w Go

-,

Working with Data Tutorials Home > Customized

Formatting > Format
Colors

Products More Than $75.00 are
Displayed in a Bold, Italic Font

Product el

810 boxes x 20 bags
£18.00

g ZB8310 ..

Figure 2: The DetailsView Control Displays One Product at a Time

Step 2: Programmatically Determining the Value of
the Data in the DataBound Event Handler

In order to display the price in a bold, italic font for those products whose unitprice value exceeds $75.00, we
need to first be able to programmatically determine the unitPrice value. For the DetailsView, this can be
accomplished in the pataBound event handler. To create the event handler click on the DetailsView in the
Designer then navigate to the Properties window. Press F4 to bring it up, if it's not visible, or go to the View
menu and select the Properties Window menu option. From the Properties window, click on the lightning bolt
icon to list the DetailsView's events. Next, either double-click the pataBound event or type in the name of the
event handler you want to create.

3of16

== E £ |
i ln]
ExpensiveProductsPriceInBoldItalic_DataBound %
Dispose

Imik

IternZommand
ItemZreated
ItemDeleted
ItemDeleting
ItemInserked
ItemInserting
ItemUpdated
Itermldpdating

Load
Mode”hanged
ModeChanging
PageIndexChanged
PageIndexChanging
PreRender

Unload

. DataBound
Fires after the control has been databound.,

L‘?jSu:qutiDn Explorer | P4 Properties -_fgServer Explarer @.Class Yigw

Figure 3: Create an Event Handler for the pataBound Event

Note: You can also create an event handler from the ASP.NET page's code portion. There you'll find two drop-
down lists at the top of the page. Select the object from the left drop-down list and the event you want to create

a handler for from the right drop-down list and Visual Studio will automatically create the appropriate event
handler.

Doing so will automatically create the event handler and take you to the code portion where it has been added.
At this point you will see:

Protected Sub ExpensiveProductsPriceInBoldItalic DataBound _
(sender As Object, e As System.EventArgs)
Handles ExpensiveProductsPriceInBoldItalic.DataBound

End Sub

The data bound to the DetailsView can be accessed via the DataItem property. Recall that we are binding our
controls to a strongly-typed DataTable, which is composed of a collection of strongly-typed DataRow instances.
When the DataTable is bound to the DetailsView, the first DataRow in the DataTable is assigned to the
DetailsView's DataItem property. Specifically, the DataItem property is assigned a DataRowview object. We
can use the DataRowView's Row property to get access to the underlying DataRow object, which is actually a
ProductsRow instance. Once we have this ProductsRow instance we can make our decision by simply
inspecting the object's property values.

4 0f 16

The following code illustrates how to determine whether the unitprice value bound to the DetailsView control
is greater than $75.00:

Protected Sub ExpensiveProductsPriceInBoldItalic DataBound _
(sender As Object, e As System.EventArgs)
Handles ExpensiveProductsPriceInBoldItalic.DataBound

Dim product As Northwind.ProductsRow =
CType (CType (ExpensiveProductsPriceInBoldItalic.Dataltem,
System.Data.DataRowView) .Row, Northwind.ProductsRow)
If Not product.IsUnitPriceNull () AndAlso product.UnitPrice > 75 Then
End If
End Sub

Note: Since UnitPrice can have a NULL value in the database, we first check to make sure that we're not
dealing with a nuLL value before accessing the ProductsRow's UnitPrice property. This check is important
because if we attempt to access the unitprice property when it has a NULL value the ProductsRow object will
throw a StrongTypingException exception.

Step 3: Formatting the UnitPrice Value in the
DetailsView

At this point we can determine whether the unitprice value bound to the DetailsView has a value that exceeds
$75.00, but we've yet to see how to programmatically adjust the DetailsView's formatting accordingly. To
modify the formatting of an entire row in the DetailsView, programmatically access the row using
DetailsViewID.Rows (index);to modify a particular cell, access use DetailsviewID.Rows (index) .Cells
(index). Once we have a reference to the row or cell we can then adjust its appearance by setting its style-
related properties.

Accessing a row programmatically requires that you know the row's index, which starts at 0. The unitpPrice
row is the fifth row in the DetailsView, giving it an index of 4 and making it programmatically accessible using
ExpensiveProductsPriceInBoldItalic.Rows (4). At this point we could have the entire row's content
displayed in a bold, italic font by using the following code:

ExpensiveProductsPriceInBoldItalic.Rows (4) .Font.Bold = True
ExpensiveProductsPriceInBoldItalic.Rows (4) .Font.Italic = True

However, this will make both the label (Price) and the value bold and italic. If we want to make just the value
bold and italic we need to apply this formatting to the second cell in the row, which can be accomplished using
the following:

ExpensiveProductsPriceInBoldItalic.Rows (4) .Cells(1l) .Font.Bold = True
ExpensiveProductsPriceInBoldItalic.Rows (4) .Cells (1) .Font.Italic = True

Since our tutorials thus far have used stylesheets to maintain a clean separation between the rendered markup
and style-related information, rather than setting the specific style properties as shown above let's instead use a
CSS class. Open the styles.css stylesheet and add a new CSS class named ExpensivePriceEmphasis with
the following definition:

.ExpensivePriceEmphasis

{
font-weight: bold;
font-style: italic;

50f 16

Then, in the DataBound event handler, set the cell's cssClass property to ExpensivePriceEmphasis. The
following code shows the pataBound event handler in its entirety:

Protected Sub ExpensiveProductsPriceInBoldItalic DataBound
(sender As Object, e As System.EventArgs)
Handles ExpensiveProductsPriceInBoldItalic.DataBound

Dim product As Northwind.ProductsRow = _
CType (CType (ExpensiveProductsPriceInBoldItalic.DataItem,
System.Data.DataRowView) .Row, Northwind.ProductsRow)
If Not product.IsUnitPriceNull () AndAlso product.UnitPrice > 75 Then
ExpensiveProductsPriceInBoldItalic.Rows (4) .Cells (1) .CssClass = _
"ExpensivePriceEmphasis"
End If

End Sub

When viewing Chai, which costs less than $75.00, the price is displayed in a normal font (see Figure 4).
However, when viewing Mishi Kobe Niku, which has a price of $97.00, the price is displayed in a bold, italic
font (see Figure 5).

N Untitled Pape - Microsoft Internel Explarer

B Edt Yew Fpoites Toos Helb
Goack = & - W F & Search Favortes 9 - iy

-

BAddrmss E} http:fflocalhoet 4061 | Code/CistomPormatting! CustomColors aspo

Working with Data Tutorials T ciiore

Products More Than $75.00 are
Displayed in a Bold, Italic Font

Figure 4: Prices Less than $75.00 are Displayed in a Normal Font

60f 16

B Untitled Pagn - Microsof| Internel Explarer

Ble Edt Yew Fgwrltes Toos Help
{3 Back - o J | - Seach Favortes - i
fglchmss | @] hitpfflocalhost 4061 | Codef/CustomPormattrgCustonCokors aspy

Working with Data Tutorials teme> custemizes

Formatting > Format Colors

Products More Than $75.00 are
Displayed in a Bold, Italic Font

Simple Display Product [gESIREs g T

Dedarative rateqgory EEERIZT T
Parameters ; 0 Tokyo Traders

Setting Parameter
Walues

‘.:|'L~:-:d intranet

Figure 5: Expensive Products' Prices are Displayed in a Bold, Italic Font
Using the FormView Control's bataBound Event Handler

The steps for determining the underlying data bound to a FormView are identical to those for a DetailsView —
create a DataBound event handler, cast the bataItem property to the appropriate object type bound to the
control, and determine how to proceed. The FormView and DetailsView differ, however, in how their user
interface's appearance is updated.

The FormView does not contain any BoundFields and therefore lacks the rRows collection. Instead, a FormView
is composed of templates, which can contain a mix of static HTML, Web controls, and databinding syntax.
Adjusting the style of a FormView typically involves adjusting the style of one or more of the Web controls
within the FormView's templates.

To illustrate this, let's use a FormView to list products like in the previous example, but this time let's display
just the product name and units in stock with the units in stock displayed in a red font if it is less than or equal
to 10.

Step 4: Displaying the Product Information in a
FormView

Add a FormView to the customColors.aspx page beneath the DetailsView and set its 1D property to
LowStockedProductsInRed. Bind the FormView to the ObjectDataSource control created from the previous
step. This will create an TtemTemplate, EditItemTemplate, and InsertItemTemplate for the FormView.
Remove the EditItemTemplate and InsertItemTemplate and simplify the TtemTemplate to include just the
ProductName and UnitsInStock values, each in their own appropriately-named Label controls. As with the
DetailsView from the earlier example, also check the Enable Paging checkbox in the FormView's smart tag.

After these edits your FormView's markup should look similar to the following:

<asp:FormView ID="LowStockedProductsInRed" runat="server"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel"

7 of 16

AllowPaging="True" EnableViewState="False">

<ItemTemplate>
Product:
<asp:Label ID="ProductNameLabel" runat="server"

Text='<%# Bind("ProductName") %>'>
</asp:Label>

Units In Stock:
<asp:Label ID="UnitsInStockLabel" runat="server"
Text='<%# Bind ("UnitsInStock") %>'>

</asp:Label>

</ItemTemplate>

</asp:FormView>

Note that the TtemTemplate contains:
o Static HTML — the text "Product:" and "Units In Stock:" along with the
 and elements.
o Web controls — the two Label controls, ProductNameLabel and UnitsInStockLabel.

o Databinding syntax — the <¢# Bind("ProductName") $>and <%# Bind("UnitsInStock") %> syntax,
which assigns the values from these fields to the Label controls' Text properties.

Step 5: Programmatically Determining the Value of
the Data in the DataBound Event Handler

With the FormView's markup complete, the next step is to programmatically determine if the unitsInstock
value is less than or equal to 10. This is accomplished in the exact same manner with the FormView as it was
with the DetailsView. Start by creating an event handler for the FormView's DataBound event.

8o0f 16

Prope

LowstockedProductsInRed Svystem,'web,ULWebControls Formiier

LowStockedProductsInRed_DataBound +

ItermCornmand
ItemCreated
ItemDeleted
ItemDeleting
ItemInserted
IkemInserting
ItemUpdated
ItemUpdating
Load
MadeChanged
ModeZhanging
Pagelndex_hanged
Pagelndex_hanging
PreRender

nload

DataBound
Fires after the cantrol has been dakabound.

L:iJSDIuI:iDn Explorer |2 Properties |8 Server Explorer | Class View

Figure 6: Create the DataBound Event Handler

In the event handler cast the FormView's pataItem property to a ProductsRow instance and determine whether
the unitsInPrice value is such that we need to display it in a red font.

Protected Sub LowStockedProductsInRed DataBound _
(sender As Object, e As System.EventArgs)
Handles LowStockedProductsInRed.DataBound

Dim product As Northwind.ProductsRow =

CType(CType(LowStockedProductsInRedTDataItem, System.Data.DataRowView) .Row,
Northwind.ProductsRow)

If Not product.IsUnitsInStockNull () AndAlso product.UnitsInStock <= 10 Then
Dim unitsInStock As Label =

CType(LowStockedProductsfnRed.FindControl("UnitsInStockLabel"), Label)
If unitsInStock IsNot Nothing Then
End If

End If
End Sub

Step 6: Formatting the UnitsInStockLabel Label
Control in the FormView's ItemTemplate

90f 16

The final step is to format the displayed unitsInstock value in a red font if the value is 10 or less. To
accomplish this we need to programmatically access the UnitsInStockLabel control in the TtemTemplate and
set its style properties so that its text is displayed in red. To access a Web control in a template, use the
FindControl ("controlID") method like this:

Dim someName As WebControlType =
CType (FormViewID.FindControl ("controlID"), WebControlType)

For our example we want to access a Label control whose 1D value is UnitsInStockLabel, so we'd use:

Dim unitsInStock As Label = _
CType (LowStockedProductsInRed.FindControl ("UnitsInStockLabel"), Label)

Once we have a programmatic reference to the Web control, we can modify its style-related properties as
needed. As with the earlier example, I've created a CSS class in styles.css named
LowUnitsInStockEmphasis. To apply this style to the Label Web control, set its cssClass property
accordingly.

Protected Sub LowStockedProductsInRed DataBound _
(sender As Object, e As System.EventArgs)
Handles LowStockedProductsInRed.DataBound

Dim product As Northwind.ProductsRow =
CType (CType (LowStockedProductsInRed.Dataltem, System.Data.DataRowView) .Row,
Northwind.ProductsRow)
If Not product.IsUnitsInStockNull () AndAlso product.UnitsInStock <= 10 Then
Dim unitsInStock As Label = _
CType (LowStockedProductsInRed.FindControl ("UnitsInStockLabel"), Label)

If unitsInStock IsNot Nothing Then
unitsInStock.CssClass = "LowUnitsInStockEmphasis"
End If
End If

End Sub

Note: The syntax for formatting a template — programmatically accessing the Web control using FindControl
("control1D") and then setting its style-related properties — can also be used when using TemplateFields in
the DetailsView or GridView controls. We'll examine TemplateFields in our next tutorial.

Figures 7 shows the FormView when viewing a product whose UnitsInstock value is greater than 10, while
the product in Figure 8 has its value less than 10.

[

3 Uintitled Pape - Microsofl Internel Explorer
File Edt Pew Favoiiles Jook Help

(3 Back * (]) (A & |} search Favorbes & “ hy o -]

-ﬂ;":I'ttp:,l.lhl:alusr:iDb!r‘Cnne_lLusrcnlmrr-g_lL'ustm;:da's.m- L -} (=]

Products With 10 or Less Units I
In Stock Displayed in Red

Product: Chal
Units In Stock: 39

123450678910,

& Lol intranet

10 of 16

Figure 7: For Products With a Sufficiently Large Units In Stock, No Custom Formatting is Applied

3 Uintitled Page - Microsoft internel Explorer

Eile Edt Yiew Pawoiites JTook Help
Q) Back = T o (2 #h S Search <7 Favories @ .
o i) it fflocalhost: 406 § AC o CusbomiP ormatting ' et omiColors. sspic

Master-Derads- . .
Details Products With 10 or Less Units
Master/Detall Across In Stock Displayed in Red

Two Pages

etails of Selected
Row

Product: Northwoods Cranberry Sauce
Units In Stock: &

ad32078310..

& Lol intranet

Figure 8: The Units in Stock Number is Shown in Red for Those Products With Values of 10 or Less
Formatting with the GridView's RowDataBound Event

Earlier we examined the sequence of steps the DetailsView and FormView controls progress through during
databinding. Let's look over these steps once again as a refresher.

1. The data Web control's DataBinding event fires.
2. The data is bound to the data Web control.
3. The data Web control's bataBound event fires.

These three simple steps are sufficient for the DetailsView and FormView because they display only a single
record. For the GridView, which displays a/l records bound to it (not just the first), step 2 is a bit more
involved.

In step 2 the GridView enumerates the data source and, for each record, creates a GridviewRow instance and
binds the current record to it. For each cridviewRow added to the GridView, two events are raised:

e RowCreated — fires after the GridviewRow has been created
e RowDataBound — fires after the current record has been bound to the GridviewRow.

For the GridView, then, data binding is more accurately described by the following sequence of steps:

1. The GridView's DataBinding event fires.
2. The data is bound to the GridView.

For each record in the data source...
a. Create a GridviewRow object
b. Fire the RowCreated event
c. Bind the record to the GridviewRow
d. Fire the RowDataBound event
e. Add the GridviewRow to the Rows collection
3. The GridView's DataBound event fires.

To customize the format of the GridView's individual records, then, we need to create an event handler for the
RowDataBound event. To illustrate this, let's add a GridView to the customColors.aspx page that lists the

11 of 16

name, category, and price for each product, highlighting those products whose price is less than $10.00 with a
yellow background color.

Step 7: Displaying Product Information in a
GridView

Add a GridView beneath the FormView from the previous example and set its 1D property to
HighlightCheapProducts. Since we already have an ObjectDataSource that returns all products on the page,
bind the GridView to that. Finally, edit the GridView's BoundFields to include just the products' names,
categories, and prices. After these edits the GridView's markup should look like:

<asp:GridView ID="HighlightCheapProducts" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel"
EnableViewState="False" runat="server">
<Columns>
<asp:BoundField DataField="ProductName" HeaderText="Product"
SortExpression="ProductName" />
<asp:BoundField DataField="CategoryName" HeaderText="Category"
ReadOnly="True" SortExpression="CategoryName" />
<asp:BoundField DataField="UnitPrice" DataFormatString="{0:c}"
HeaderText="Price"
HtmlEncode="False" SortExpression="UnitPrice" />
</Columns>
</asp:GridvView>

Figure 9 shows our progress to this point when viewed through a browser.

A Untitied Page - Microseft internet Cxplorer

Ele Edr few Fpoes ook ep
\j!‘-t:l = } s [Ldg % Fyaniles £ = v -

< |] hitte [aitwcest 6001 C i CustoniP aratting Custom clors_safi

Highlight Products With Prices Less than

Format Colars $10.00

Custom Contentina
Gl e

Custom Content in a
Drebatziigw

CUBIOm Content in a
For e

Summary Data in
Feéritimr

Category Price
Chal Baverage $18.00
chang Beverages $19.00
Anisesd Syrup Condiments $10.00
chef Anton's Cajun Seasoning Condiments $22.00
Chef Anbon's Gurnbo Min Condiments £21.35
Grandma's Boysenberry Spread Condiments $25.00
Uincle Bob's Organic Dried Pears Produce $30.00
Worthwoods Cranberry Sauce Condiments $40.00
Mishi Kobe hNiku Meal/Foultry $97.00
Theuira Seafiood $31,00

Queso Cabrabes
Queso Mandhego La Fastors
Kanbu

Drairy Products $21.00
Duairy Products $38.00

Seafood $6.00

$23.25
$15.50
$17.45
$35.00
#6250

g Localinranet

Tofu Produce
Ganen Showyu
Paviova

Adice Mutton
Camaryon Tigers

Condiments
Confections
Meat/Foultry
Seafood

Figure 9: The GridView Lists the Name, Category, and Price For Each Product

Step 8: Programmatically Determining the Value of

12 0f 16

the Data in the RowDataBound Event Handler

When the ProductsbataTable is bound to the GridView its ProductsRow instances are enumerated and for
each ProductsRow a GridviewRow is created. The GridviewRow's DataItem property is assigned to the
particular productRow, after which the GridView's RowDataBound event handler is raised. To determine the
UnitPrice value for each product bound to the GridView, then, we need to create an event handler for the
GridView's RowDataBound event. In this event handler we can inspect the unitprice value for the current
GridviewRow and make a formatting decision for that row.

This event handler can be created using the same series of steps as with the FormView and DetailsView.

Properties

HighlightCheapProducts Swskem.Web UL WebZontrols, Gridview -

DakaBinding
DataBound
Disposed

Imik

Load
PageIndexChanged
PageIndexChanding
PreRender

RowancelingEdit

RowZommand

reated

RowDataBound HighlightCheapProducts_RowDataBound q
Rowbeleted

RowDeleting

FowEditing

Rowlpdated

Rowlpdating

SelectedIndexChanger
SelectedIndexChangin
Sorted
Sarking
Unload

.RuwDataBuund
Fires after a row has been databound,

D?_;S:::Iutiun Explorer |2 Properties |8 Server Explorer |Eig Class View

Figure 10: Create an Event Handler for the GridView's RowDataBound Event

Creating the event hander in this manner will cause the following code to be automatically added to the
ASP.NET page's code portion:

Protected Sub HighlightCheapProducts RowDataBound
(sender As Object, e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles HighlightCheapProducts.RowDataBound

End Sub

13 0f 16

When the rRowbDataBound event fires, the event handler is passed as its second parameter an object of type
GridviewRowEventArgs, Which has a property named row. This property returns a reference to the
GridviewRow that was just data bound. To access the productsRow instance bound to the GridviewRow we use
the pataTtem property like so:

Protected Sub HighlightCheapProducts RowDataBound
(sender As Object, e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles HighlightCheapProducts.RowDataBound

Dim product As Northwind.ProductsRow =
CType (CType (e.Row.Dataltem, System.Data.DataRowView) .Row, Northwind.ProductsRow)
If Not product.IsUnitPriceNull () AndAlso product.UnitPrice < 10 Then
End If
End Sub

When working with the RowbataBound event handler it is important to keep in mind that the GridView is
composed of different types of rows and that this event is fired for a/l row types. A GridviewRow's type can be
determined by its RowType property, and can have one of the possible values:

DataRow —a row that is bound to a record from the GridView's batasource

EmptyDataRow — the row displayed if the GridView's Datasource is empty

Footer — the footer row; shown if the GridView's showFooter property is set to True

Header — the header row; shown if the GridView's ShowHeader property is set to True (the default)
pager — for GridView's that implement paging, the row that displays the paging interface
separator — not used for the GridView, but used by the rRowType properties for the DataList and
Repeater controls, two data Web controls we'll discuss in future tutorials

Since the EmptyDataRow, Header, Footer, and Pager rows aren't associated with a batasource record, they
will always have a value of Nothing for their DataItem property. For this reason, before attempting to work
with the current GridviewRow's DataItem property, we first must make sure that we're dealing with a bataRow.
This can be accomplished by checking the GridviewRow's RowType property like so:

Protected Sub HighlightCheapProducts RowDataBound
(sender As Object, e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles HighlightCheapProducts.RowDataBound

If e.Row.RowType = DataControlRowType.DataRow Then
Dim product As Northwind.ProductsRow =
CType (CType (e.Row.Dataltem, DataRowView) .Row, Northwind.ProductsRow)
If Not product.IsUnitPriceNull () AndAlso product.UnitPrice < 10 Then
End If
End If

End Sub

Step 9: Highlighting the Row Yellow When the
UnitPrice Value is Less than $10.00

The last step is to programmatically highlight the entire GridviewRow if the UnitPrice value for that row is
less than $10.00. The syntax for accessing a GridView's rows or cells is the same as with the DetailsView —
GridViewID.Rows (index) to access the entire row, GridviewID.Rows (index) .Cells (index) tO access a
particular cell. However, when the RowbDataBound event handler fires the data bound GridviewRow has yet to be
added to the GridView's rRows collection. Therefore you cannot access the current GridviewRow instance from

14 of 16

the RowDataBound event handler using the Rows collection.

Instead of GridviewID.Rows (index), we can reference the current GridviewRow instance in the
RowDataBound event handler using e . Row. That is, in order to highlight the current GridviewRow instance from
the RowDataBound event handler we would use:

e.Row.BackColor = System.Drawing.Color.Yellow

Rather than set the GridviewRow's BackColor property directly, let's stick with using CSS classes. I've created a
CSS class named AffordablePriceEmphasis that sets the background color to yellow. The completed
RowDataBound event handler follows:

Protected Sub HighlightCheapProducts RowDataBound
(sender As Object, e As System.Web.UI.WebControls.GridViewRowEventArgs)
Handles HighlightCheapProducts.RowDataBound

If e.Row.RowType = DataControlRowType.DataRow Then
Dim product As Northwind.ProductsRow = _
CType (CType (e.Row.Dataltem, DataRowView) .Row, Northwind.ProductsRow)
If Not product.IsUnitPriceNull () AndAlso product.UnitPrice < 10 Then
e.Row.CssClass = "AffordablePriceEmphasis"
End If
End If
End Sub

D Untithed Page - Microsoll Intermel Laplofed

Ee Edt Wew Fgeorkes Tosh Heb
Qo » O - (& @ G Foewch fFonin 8 [3- 5 4 a0
] Mt o calhost 4061 CodefCustomPFormating CustomColors, aspx

Highlight Products With Prices Less
than $10.00

Chai Beverages $18.00
Chang Beverages $159.00
Aregeed Synup Condiments $10.00
Chef Anbor's Cajun Seasoning Condiments $22.00
Chef anton's Gumba Mix Condiments $21.35
Grandma's Boysenberry Spread Condiments $25.00
Uncle Bab's Organsc Dried Pears Produce $320,00
Northwoods Cranbermy Sauce Condiments $40.00
Mishi Eabe Niku MeatPoultry $57.00
lkura: Seafood $31.00
Queso Cabrales Dasry Froducts $21,00
Queso Manchego La Pastora Dary Products §38.00
Konbu Seafood §6.00
Tafu Produce $23.25
Genen Shouyu Condiments $15.50
Pavlova Confechons. $17.45
Adice Muthon Meat/Foulbry $33.00
Camarvon Tigers Seafood ®62.50
Teatime Chocolate Bisouits Confecions $9.20
Sir Rodney's Marmalade Confections $81.00
i Rodney's Soomes Confecons $£10.00
Gustafs Knacksbrod Grains/Cereals $21.00
Turnbréd Grains/Cereals $5.00
Guarana Fantastica Beverages 5450
MNuNUCa MUB-Mougat-Crame Confectons $14,00
ok e 24 el Sechan Confarinne &31 23
S ool mtraret

Figure 11: The Most Affordable Products are Highlighted Yellow

150f 16

Summary

In this tutorial we saw how to format the GridView, DetailsView, and FormView based on the data bound to the
control. To accomplish this we created an event handler for the DataBound or RowbataBound events, where the
underlying data was examined along with a formatting change, if needed. To access the data bound to a
DetailsView or FormView, we use the DataItem property in the bataBound event handler; for a GridView,
each GridviewRow instance's DataItem property contains the data bound to that row, which is available in the
RowDataBound event handler.

The syntax for programmatically adjusting the data Web control's formatting depends upon the Web control and
how the data to be formatted is displayed. For DetailsView and GridView controls, the rows and cells can be
accessed by an ordinal index. For the FormView, which uses templates, the FindControl ("controlID")
method is commonly used to locate a Web control from within the template.

In the next tutorial we'll look at how to use templates with the GridView and DetailsView. Additionally, we'll
see another technique for customizing the formatting based on the underlying data.

Happy Programming!

Click here for the next tutorial.

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting.NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were ER Gilmore,
Dennis Patterson, and Dan Jagers. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

16 of 16

