This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at
http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: An
Overview of Editing and Deleting Data in the
DatalList

Introduction

In the An Overview of Inserting, Updating, and Deleting Data tutorial we looked at how to insert, update,
and delete data using the application architecture, an ObjectDataSource, and the GridView, DetailsView,
and FormView controls. With the ObjectDataSource and these three data Web controls, implementing
simple data modification interfaces was a snap and involved merely ticking a checkbox from a smart tag. No
code needed to be written.

Unfortunately, the DataList lacks the built-in editing and deleting capabilities inherent in the GridView
control. This missing functionality is due in part to the fact that the DataList is a relic from the previous
version of ASP.NET, when declarative data source controls and code-free data modification pages were
unavailable. While the DataList in ASP.NET 2.0 does not offer the same out of the box data modification
capabilities as the GridView, we can use ASP.NET 1.x techniques to include such functionality. This
approach requires a bit of code but, as we’ll see in this tutorial, the DataList has some events and properties
in place to aid in this process.

In this tutorial we’ll see how to create a Datal ist that supports editing and deleting of its underlying data.
Future tutorials will examine more advanced editing and deleting scenarios, including input field validation,
gracefully handling exceptions raised from the Data Access or Business Logic Layers, and so on.

Note: Like the DataList, the Repeater control lacks the out of the box functionality for inserting, updating,
or deleting. While such functionality can be added, the DataList includes properties and events not found in
the Repeater that simplify adding such capabilities. Therefore, this tutorial and future ones that look at
editing and deleting will focus strictly on the DataList.

Step 1: Creating the Editing and Deleting
Tutorials Web Pages

Before we start exploring how to update and delete data from a DataList, let’s first take a moment to create
the ASP.NET pages in our website project that we’ll need for this tutorial and the next several ones. Start by
adding a new folder named EditDeleteDataList. Next, add the following ASP.NET pages to that folder,
making sure to associate each page with the site.master master page:

Default.aspx

Basics.aspx
BatchUpdate.aspx
ErrorHandling.aspx
UIValidation.aspx
CustomizedUI.aspx
OptimisticConcurrency.aspx
ConfirmationOnDelete.aspx

UserLevelAccess.aspx

1 of 20

Solution Explorer - Ci. 0 Code), -« 0 X

28] & G @
& Jc:...\Code’,]

L) App_Code

|3 App_Data

= App_Themes

[BasicReparting

[CustomButtons

[CustomFormatking

[DatalistRepeaterBasics
[DratalistRepeaterFikering
[EditDeletelatalist

53 |j Basics, aspx

= |j BatchUpdate, aspx

= aCDnFirmatiDnOnDelete.aspx
= |j CuskarnizedUI, aspx
= |j Default, aspx

= |j ErrorHandling. asp:x
53 aOptimisticCancurrency.aspx
= |j IV alidation, aspex

[+ aUserLevel.ﬁ.ccess.aspx
[EditInsertDelete

[Filtering

[PagingandSorting

[UserContrals

.j Default, asp

7] sSite.master

Aj styles.css

5 Web.Corfig

|| web.sitemnap

- [

R

.|B

:L?ESDM... P, :;?‘-55&'... .E%CIas...

Figure 1: Add the ASP.NET Pages for the Tutorials

Like in the other folders, befault.aspx in the EditDeleteDataList folder lists the tutorials in its section.
Recall that the sectionLevelTutorialLlisting.ascx User Control provides this functionality. Therefore,
add this User Control to befault.aspx by dragging it from the Solution Explorer onto the page’s Design
view.

20f20

T2 Code - Mbcrozolt Visual Studie
Be G Yew Webgle fuld Debug Fomet Lwymkt Jook Wedow Communty belp pddns
B EA R N SE SEE TR a WT - K :

P T O NN) —
Working with Data Tutorials =~ Reettiose o code | :
rrent i Bt
2 B L% Aep_Dats
® Gl App_Themes
r{:untmt - Contentl. (Custom) o '_j KHT ,,T
&
Editing and Deleting . OB Dilhapesatnd
with the DatalList B e
Tutorials A s
e matiordrieket e, s
o wm-mmuuﬂ_ﬁ : jxﬁﬂfiﬁm;m-
5 Ditibaund - Databsund B L Delakangn
* Dataksund - Databsund i Hﬁrwm.m:
: Eatabaund -zn-:au:: & '_iwml:“mrm.wr
Catabsund - Gatabou B LY edation. sapo
B] Userleveliconss, aspx
#- [Edtincertiwisbe
® [Pikering
+

¥ Ll Pagngiredoming
v Lbsectooh

W TR
T — W T o martas]
1| chuody <aspooonkertRontent] > | < |=|.l:l:nd:mh\'ﬂm:d 3| L .'.Egsi.\.___ 0 il ﬂ:a_n B sz

Figure 2: Add the sectionLevelTutorialListing.ascx User Control to Default.aspx

Lastly, add the pages as entries to the web. sitemap file. Specifically, add the following markup after the
Master/Detail Reports with the DataList and Repeater <siteMapNode>:

<siteMapNode
title="Editing and Deleting with the DatalList"
description="Samples of Reports that Provide Editing and Deleting Capabilities"
url="~/EditDeleteDatalist/Default.aspx" >

<siteMapNode
title="Basics"
description="Examines the basics of editing and deleting with the
DatalList control."
url="~/EditDeleteDatalist/Basics.aspx" />

<siteMapNode
title="Batch Update"
description="Examines how to update multiple records at once in a
fully-editable DataList."
url="~/EditDeleteDatalist/BatchUpdate.aspx" />

<siteMapNode
title="Error Handling"
description="Learn how to gracefully handle exceptions raised during the
data modification workflow."
url="~/EditDeleteDatalist/ErrorHandling.aspx" />

<siteMapNode
title="Adding Data Entry Validation"
description="Help prevent data entry errors by providing validation."
url="~/EditDeleteDatalist/UIValidation.aspx" />

<siteMapNode
title="Customize the User Interface"
description="Customize the editing user interfaces."
url="~/EditDeleteDatalist/CustomizedUI.aspx" />

<siteMapNode

3 0f 20

title="Optimistic Concurrency"

description="Learn how to help prevent simultaneous users from
overwritting one another's changes."

url="~/EditDeleteDatalist/OptimisticConcurrency.aspx" />

<siteMapNode
title="Confirm On Delete"
description="Prompt a user for confirmation when deleting a record."
url="~/EditDeleteDatalist/ConfirmationOnDelete.aspx" />

<siteMapNode
title="Limit Capabilities Based on User"
description="Learn how to limit the data modification functionality
based on the useré's role or permissions.”
url="~/EditDeleteDatalist/UserLevelAccess.aspx" />

</siteMapNode>

After updating web . sitemap, take a moment to view the tutorials website through a browser. The menu on
the left now includes items for the DataList editing and deleting tutorials.

File Edit Miew Favaorites

deack - @ - H A &

: Address I@ httpfflocalhost: 2 V! el

o

[*

Editing and Celeting

with the Datalist

Basics

Batch Update

Error Handling

Adding Data Entry
Walidation

Customize the User
Interface

Optimistic
Concurrency

Confirm On Delete

Limit Capabilities
Baszed on User

< i b
‘-J Local inkranet

||

Figure 3: The Site Map Now Includes Entries for the DataList Editing and Deleting Tutorials

Step 2: Examining Techniques for Updating and
Deleting Data

Editing and deleting data with the GridView is so easy because, underneath the covers, the GridView and
ObjectDataSource work in concert. As discussed in the Examining the Events Associated with Inserting,

4 of 20

Updating, and Deleting tutorial, when a row’s Update button is clicked, the GridView automatically assigns

its fields that used two-way databinding to the UpdatepParameters collection of its ObjectDataSource and
then invokes that ObjectDataSource’s Update () method.

Sadly, the DataList does not provide any of this built-in functionality. It is our responsibility to ensure that
the user’s values are assigned to the ObjectDataSource’s parameters and that its Update () method is called.
To aid us in this endeavor, the DataList provides the following properties and events:

The DatakeyField property — when updating or deleting, we need to be able to uniquely identify
each item in the DataList. Set this property to the primary key field of the displayed data. Doing so
will populate the DataList’s batakeys collection with the specified patakeyField value for each
DataList item.

The EditCommand event — fires when a Button, LinkButton, or ImageButton whose CommandName
property is set to “Edit” is clicked.

The cancelcommand event — fires when a Button, LinkButton, or ImageButton whose commandName
property is set to “Cancel” is clicked.

The updateCommand event — fires when a Button, LinkButton, or ImageButton whose CommandName
property is set to “Update” is clicked.

The DeleteCommand event — fires when a Button, LinkButton, or ImageButton whose CommandName
property is set to “Delete” is clicked.

Using these properties and events, there are four approaches we can use to update and delete data from the
DatalList:

1.

Using ASP.NET 1.x Techniques — the DataList existed prior to ASP.NET 2.0 and
ObjectDataSources and was able to update and delete data entirely through programmatic means. This
technique ditches the ObjectDataSource altogether and requires that we bind the data to the DataList
directly from the Business Logic Layer, both in retrieving the data to display and when updating or
deleting a record.

Using a Single ObjectDataSource Control on the Page for Selecting, Updating, and Deleting —
while the DataList lacks the GridView’s inherent editing and deleting capabilities, there’s no reason
we can’t add them in ourselves. With this approach, we use an ObjectDataSource just like in the
GridView examples, but must create an event handler for the DataList’s UpdateCommand event where
we set the ObjectDataSource’s parameters and call its Update () method.

Using an ObjectDataSource Control for Selecting, but Updating and Deleting Directly Against
the BLL — when using option 2, we need to write a bit of code in the UpdateCommand event,
assigning parameter values and so on. Instead, we can stick with using the ObjectDataSource for
selecting, but make the updating and deleting calls directly against the BLL (like with option 1). In
my opinion, updating data by interfacing directly with the BLL leads to more readable code than
assigning the ObjectDataSource’s UpdateParameters and calling its Update () method.

Using Declarative Means through Multiple ObjectDataSources — the previous three approaches
all require a bit of code. If you’d rather keep using as much declarative syntax as possible, a final
option is to include multiple ObjectDataSources on the page. The first ObjectDataSource retrieves the
data from the BLL and binds it to the DataList. For updating, another ObjectDataSource is added, but
added directly within the DataList’s EditItemTemplate. To include deleting support, yet another
ObjectDataSource would be needed in the TtemTemplate. With this approach, these embedded
ObjectDataSource’s use ControlParameters to declaratively bind the ObjectDataSource’s
parameters to the user input controls (rather than having to specify them programmatically in the
DataList’s updateCommand event handler). This approach still requires a bit of code — we need to
call the embedded ObjectDataSource’s Update () or Delete () command — but requires far less than
with the other three approaches. The downside here is that the multiple ObjectDataSources do clutter
up the page, detracting from the overall readability.

If forced to only ever use one of these approaches, I’d choose option 1 because it provides the most
flexibility and because the DataList was originally designed to accommodate this pattern. While the
Datal ist was extended to work with the ASP.NET 2.0 data source controls, it does not have all of the

50f20

extensibility points or features of the “official” ASP.NET 2.0 data Web controls (the GridView,
DetailsView, and FormView). Options 2 through 4 are not without merit, though.

This and the future editing and deleting tutorials will use an ObjectDataSource for retrieving the data to
display and direct calls to the BLL to update and delete data (option 3).

Step 3: Adding the DataList and Configuring its
ObjectDataSource

In this tutorial we will create a DataL ist that lists product information and, for each product, provides the
user the ability to edit the name and price and to delete the product altogether. In particular, we will retrieve
the records to display using an ObjectDataSource, but perform the update and delete actions by interfacing
directly with the BLL. Before we worry about implementing the editing and deleting capabilities to the
DatalList, let’s first get the page to display the products in a read-only interface. Since we’ve examined these
steps in previous tutorials, I’ll proceed through them quickly.

Start by opening the Basics.aspx page in the EditDeleteDatalist folder and, from the Design view, add
a DataList to the page. Next, from the DataList’s smart tag, create a new ObjectDataSource. Since we are
working with product data, configure it to use the ProductsBLL class. To retrieve all products, choose the
GetProducts () method in the SELECT tab.

Configure Data Source - ObjectDataSource] @@ @FE

Choose a Business Object
= L_'j;_,.-'

Select a business object that can be used ko retriewe or update data (for example, an object defined in the Bin
or App_ Code directory For this application].

Choosa vour business object:
| ProductsBLL v Show only data components

MorthawvindOptimisticConcurrency Tablefdapters, ProductsOptimisticConcurrency Tablsadapter A
MorthwindT able Adapters. Categories Tabledidapter B
Morthaind T ableAdapters EmployvessTablesdapker

Morthavind T ableAdapters ProductsTablaAdapter
Morthawind T ablefdaphers, SuppliersT ableAdapter
ProdiscksRLL

ProductsOptimisticConcurmencyBLL
SuppliersBLL b

Figure 4: Configure the ObjectDataSource to Use the ProductsBLL Class

6 of 20

Configure Data Source - ObjectDataSource1

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Chaose a method:

GetProducks(), returns ProductsDataTable W

GetProduckByProduckID{Int32 productiD, returns ProductsDataT sble

GetProducks)), reburns ProductsDakaTable

GetProductsByCategoryID{Int32 categoryiD), returns ProductsDataTable
GetProducksBySupplierID{Int 32 suppliesrIDd, returns ProducksDataTable
GetProductsPaged(Int32 startRowindesx, Ink32 maximumRows), returns ProducksDataTable
GetProductsPagedandSorbed(String sostExpression, Int32 startRowlnde:x, INt32 maximumPows), rebuns Produc

Blext = [Finish j[Cancel _l

Figure 5: Return the Product Information Using the GetProducts () Method

The DataList, like the GridView, is not designed for inserting new data; therefore, select the (None) option
from the drop-down list in the INSERT tab. Also choose (None) for the UPDATE and DELETE tabs since
the updates and deletes will be performed programmatically through the BLL.

Configure Data Source - ObjectDataSource? E|@ E}E|

Define Data Methods

| SELECT | UPDATE | INSERT | DELETE |

Chaose & methad of the business objeck to associate wikh the DELETE operation, The methad should

accept a parameter for each primary key fior the data object or a sngle parameter which is the data
ohject ko delete,

Examplas: DeleteProduct(Product p), or DeleteProduct{Int32 produckID)

Chanse a method:

(Mane) v
DeleteProduck{Ink32 productID), returns Boolean :

wi> | o] [con

7 of 20

Figure 6: Confirm that the Drop-Down Lists in the ObjectDataSource’s INSERT, UPDATE, and
DELETE Tabs are Set to (None)

After configuring the ObjectDataSource, click Finish, returning to the Designer. As we’ve seen in past
examples, when completing the ObjectDataSource configuration, Visual Studio automatically creates an
ItemTemplate for the DropDownList, displaying each of the data fields. Replace this TtemTemplate with
one that displays only the product’s name and price. Also, set the RepeatColumns property to 2.

Note: As discussed in the Overview of Inserting, Updating, and Deleting Data tutorial, when modifying
data using the ObjectDataSource our architecture requires that we remove the
OldvaluesParameterFormatString property from the ObjectDataSource’s declarative markup (or reset it
to its default value, {0}). In this tutorial, however, we are using the ObjectDataSource only for retrieving
data. Therefore, we do not need to modify the ObjectDataSource’s 01dvaluesParameterFormatString
property value (although it doesn’t hurt to do so).

After replacing the default Datalist ItemTemplate with a customized one, the declarative markup on your
page should look similar to the following:

<asp:Datalist ID="DataListl" runat="server" DataKeyField="ProductID"
DataSourceID="ObjectDataSourcel" RepeatColumns="2">
<ItemTemplate>
<h5>
<asp:Label runat="server" ID="ProductNamelLabel"
Text='<%# Eval ("ProductName") %>'></asp:Label>

</h5>
Price: <asp:Label runat="server" ID="Labell"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

</ItemTemplate>

</asp:DatalList>

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
SelectMethod="GetProducts" TypeName="ProductsBLL"
OldvaluesParameterFormatString="original {0}">
</asp:0bjectDataSource>

Take a moment to view our progress through a browser. As Figure 7 shows, the DataList displays the
product name and unit price for each product in two columns.

8 0f 20

Fie E@ Wew Faodites Tosks Help 5

3 Untitled Pape - Microsofl Inlernel Explorer h—q

.) - B @ | Pseach rraomes @ (3- B b] - €
dckiess |8 hitpsfflocahast: 2480 ode Edk DeleteDatiaList Basics spx hatl > 2]
ngking with Data Tutcrials Home » Editing and Deleting with the Datalist >

Basics

The Basics of Editing and Deleting with
sic Reporting the DatalList

Sirnple Display
Dedarative chal Singaporean Hokklen Fried Mee
Farameters
Price: $19.36 Price: $14.00
Setting Parameter
Walues
Ghang Ipoh Coffes
Filtering Reports
Filter by Drop-Down Price: £1%.00 Price: $46.00
List
Master-Dataile- Aniseed Syrup Gula Malacca
Datails
Price: 10,00 Price; $19.45
Master/Detal Across
RAEEEE - chef Anton's Cajun Seasoning Rogede sild
Detalls of Selected
Prica: $26.62 Prce: $0.50
Chaef Anton's Gumbo Mix Spegesild
Prica: £21,35 Brira: £12.00 i
] Dore el Local intranet

Figure 7: The Products’ Names and Prices are Displayed in a Two-Column DataList

Note: The DataList has a number of properties that are required for the updating and deleting process, and
these values are stored in view state. Therefore, when building a DataList that supports editing or deleting
data, it is essential that the DataList’s view state be enabled.

The astute reader may recall that we were able to disable view state when creating editable GridViews,
DetailsViews, and FormViews. This is because ASP.NET 2.0 Web controls can include control state, which
is state persisted across postbacks like view state, but deemed essential.

Disabling view state in the GridView merely omits trivial state information, but maintains the control state
(which includes the state necessary for editing and deleting). The DataList, having been created in the
ASP.NET 1.x timeframe, does not utilize control state and therefore must have view state enabled. See
Control State vs. View State for more information on the purpose of control state and how it differs from
view state.

Step 4: Adding an Editing User Interface

The GridView control is composed of a collection of fields (BoundFields, CheckBoxFields, TemplateFields,
and so on). These fields can adjust their rendered markup depending on their mode. For example, when in
read-only mode, a BoundField displays its data field value as text; when in edit mode, it renders a TextBox
Web control whose Text property is assigned the data field value.

The DataList, on the other hand, renders its items using templates. Read-only items are rendered using the
ITtemTemplate Whereas items in edit mode are rendered via the EditItemTemplate. At this point, our
DataList has only an TtemTemplate. To support item-level editing functionality we need to add an
EditItemTemplate that contains the markup to be displayed for the editable item. For this tutorial, we’ll
use TextBox Web controls for editing the product’s name and unit price.

The EditItemTemplate can be created either declaratively or through the Designer (by selecting the Edit

9 of 20

Templates option from the DataList’s smart tag). To use the Edit Templates option, first click the Edit
Templates link in the smart tag and then select the EditItemTemplate item from the drop-down list.

% Code - Microsoft Yisual Studio ‘:”lEl |.i[E|F)_C|
Bl Edt Yiew Wibgte Buld Debug Fprmab Layout Jodks Window Commundy Help Addns
KRR NN R IECE - WS R N 0 8
B L 1L LA o LI -l = o
b Rpp=fod:|.|'ﬁl.LiPrndlnsE.L EditDelebeDatalist /Basics.aspu - X
;hl AT - - 1 T L rd - ‘:i
g | Working with Data Tutorials o 2
- UET &1t ‘2"
Content - Cortentl (Custom) le
-] - I-_|.
The Basics of Editing and :
Deleting with the DatalList
— N
& patalist Tasks]
Dskalisk] - Thern Templabes Tmmm
1
EckltemTemrpiste _ | Display: iR h
| i _ Item Templates]
TeemTemplate
AkerratrfenTomplate 8
SelectadltemTemplate El-'
u o EdtltenTamplatn
ObjectDataSource - ObjectDataSounce] Header and Foober Templates
Header Template
Focter Template
Separator Termplabe
b
>
[Design | B Source 1| | by | | caspicontent #oanbent] > || <p> || caspodakalistddatalst] >
-.-:'.'i Error List _:I‘ ':n_-tr.l.é _i-rr.uﬂ Rsidts 1
Faady

Figure 8: Opt to Work with the DataList’s EditItemTemplate

Next, type in “Product name:” and “Price:” and then drag two TextBox controls from the Toolbox into the
EditItemTemplate interface on the Designer. Set the TextBoxes’ 1D properties to ProductName and
UnitPrice.

10 of 20

#2 Code - Micresofl Visual Studio =110

Pz Edt Wiew Oebgte fBuld Debog Formst Lowowt Took Window Community Help Addes
L IRt e I [N N e . g @ refresh zi
Bood T LA B =_j= [&
e X L EditDeleteataL ist/ Basics.aspu® | i - % | Propertes * 4 X
i || atalist1.ItemTemplates Edit IbemTemp =
Content - Contentl (Custom) s -;_?_TI:—{I*’
The Basics of przn: e
Editing and =
= = BRI Ty Moz
Deleting with the Aoty
H EBackCokr Fi]
DatalList e
- Borderstyke MetSat
Datalist] - (e Templsbes Eordertiidth
Causesialdation Fake
EdtIhemTempiate ok P
®
product name: ¥ E:ctdeh?: e
. E " (1]
EoE EnsblsThesing True
5 Ersshle¥ieswctate Trus
Dbjectivat aSource - Objechistaiourcs] B Fonl
Foorelokor]
Height
el mrth i o
B sl ()
= . o | | Programinstic name of the control.
| ackinkator : L
) Fielpload e B b e e | Bt e i P | Skl (erop... (T tere. (Bl
| _',::!,E_n.u _-,.:.J Dutpeck 5 Fied Risules 1f
Ready

Figure 9: Add a TextBox for the Product’s Name and Price

We need to bind the corresponding product data field values to the Text properties of the two TextBoxes.
From the TextBoxes’ smart tags, click on the Edit DataBindings link and then associate the appropriate data
field with the Text property, as shown in Figure 10.

Note: When binding the unitprice data field to the price TextBox’s Text field, you may format it as a
currency value ({0:C}), a general number ({0:N}), or leave it unformatted.

ProductName DataBindings El E|

Select the property to bind ko, ¥ou can then bind it by selecting a Field. Alternatively, wou can bind it
using a cuskom code expression,

Eindable properties: Binding for Texk
Enabled {*) Eield bindina:
fa Bound ko: Producthame
Farmak:
Sample: | |

[15haow all properties
) Custom binding:
Code expression:

Refresh Schema [(8] 4 H Cancel]

Figure 10: Bind the ProductName and UnitPrice Data Fields to the Text Properties of the TextBoxes

Notice how the Edit DataBindings dialog box in Figure 10 does not include the “Two-way databinding”

11 0f 20

checkbox that is present when editing a TemplateField in the GridView or DetailsView, or a template in the
FormView. The two-way databinding feature allowed the value entered into the input Web control to be
automatically assigned to the corresponding ObjectDataSource’s InsertParameters Or UpdateParameters
when inserting or updating data. The DataList does not support two-way databinding — as we’ll see later on
in this tutorial, after the user makes her changes and is ready to update the data, we will need to
programmatically access these TextBoxes’ Text properties and pass in their values to the appropriate
UpdateProduct method in the ProductsBLL class.

Finally, we need to add Update and Cancel buttons to the EditItemTemplate. As we saw in the
Master/Detail Using a Bulleted List of Master Records with a Details Datal ist tutorial, when a Button,
LinkButton, or ImageButton whose commandName property is set is clicked from within a Repeater or
DatalList, the Repeater or DataList’s ItemCommand event is raised. For the DataList, if the CommandName
property is set to a certain value, an additional event may be raised as well. The special CommandName
property values include, among others:

e “Cancel” — raises the cancelCommand event
o “Edit” — raises the EditCommand event
e “Update” — raises the UpdateCommand event

Keep in mind that these events are raised in addition to the ItemCommand event.

Add to the EditItemTemplate two Button Web controls, one whose CommandName is set to “Update” and

the other’s set to “Cancel”. After adding these two Button Web controls the Designer should look similar to
the following:

¥ Code - Microsofl Visisal Stedio

Fia Bl View OWebgte Buld Debog Fpmet Lapost Jook Window Community . Help gddies
'ﬁ'_:l',_fid# & a0 4 L @Y | refresh 7
R oy | o = == L
. : . 5
EditDeletelsatal ist/Bosiceaspu® - % |Properbes - X
g || [eabalist 1. ItemTemplates Edit bemTenmp =
Content - Contantl (Custo ~F —
& A EIES
TIIE Basics n'l Cousesiabdstion Trus -~
=g & Comimandir
Editing and [)
= = [xrai
- Deleting with the e -
Data L'st Enasbil Thesmineg Trus
“Hirie Enabletiewstate True
I; J B Font
Datatistl - [heoy Templabes ForeCokr |
, Heght
EdtThem Tempeats ovehert ok
Product name: ® PushBackLil
Brice: [ShinlD
' Tablrdex 0
3 lfe:ﬂ: Uipdate l
s fmageian TedlTes
_:i Tishla b UseSubmitBehanior Trus
1= Duletediist ObjectDataSounce - ClistDatadorca] ¥albdationGnoup
HidderiField trohle Fra= o]
H Lwral CommandNanms
f= | | Tha command associsted with the button.
5 Adactator - :
t) Fletpload w0 [[0> || caspidstaienadataien > |[<aspibutton fupdateproduct > Ecke.. | Wfec... [Basers.. [Bfcles
;,:-}F.l'-i .'.-"___'i A _i-‘:'-!"-'.".:.d.:- 1|
Raady

Figure 11: Add Update and Cancel Buttons to the EditItemTemplate

With the EditItemTemplate complete your Datalist’s declarative markup should look similar to the
following:

<asp:Datalist ID="DataListl" runat="server" DataKeyField="ProductID"
DataSourceID="ObjectDataSourcel" RepeatColumns="2">

12 of 20

<ItemTemplate>
<h5>
<asp:Label runat="server" ID="ProductNamelLabel"
Text='<%# Eval ("ProductName") %>' />
</h5>
Price: <asp:Label runat="server" ID="Labell"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

</ItemTemplate>
<EditItemTemplate>
Product name:
<asp:TextBox ID="ProductName" runat="server"
Text='<%# Eval ("ProductName") %>' />

Price:
<asp:TextBox ID="UnitPrice" runat="server"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

<asp:Button ID="UpdateProduct" runat="server"
CommandName="Update" Text="Update" />
<asp:Button ID="CancelUpdate" runat="server"
CommandName="Cancel" Text="Cancel" />
</EditItemTemplate>
</asp:DatalList>

Step 5: Adding the Plumbing to Enter Edit Mode

At this point our DataList has an editing interface defined via its EditItemTemplate; however, there’s
currently no way for a user visiting our page to indicate that he wants to edit a product’s information. We
need to add an Edit button to each product that, when clicked, renders that DataList item in edit mode. Start
by adding an Edit button to the TtemTemplate, either through the Designer or declaratively. Be certain to
set the Edit button’s commandName property to “Edit”.

After you have added this Edit button, take a moment to view the page through a browser. With this
addition, each product listing should include an Edit button.

13 of 20

3 Untitled Page - Microsafl Inlernet Explorer E"?l

Bl Edt Mew Faenibes Toskk Hel

o 3 [F B] L st Frrmones & - B] - B 6L
Agaress |8 hitpifflocaihast 24801 ode E dkDelet mOat sl ist Basics. aspo i
Working with Data Tutorials Home > Editing and Dslsting with the DataList>

Basics

Home

The Basics of Editing and Deleting with
the Datalist

Basic Reporting

Simple Display
Dadarative chal Singaporean Hokklen Fried Mee
Paramsters
ST o Price: $19.36 Price: $14.00
ng-Farameter Edit Edit
s (28 (e
Filtering Feports Chang Ipoh Coffes
Filter by Drop-Down :
Ligt : Price: $19.00 Price: $46.00
(Edit] (2]
Master-Datails= (ea2] et
Details
Anlseed Syrup Gula Malacca
Master/Detad Across
Two Pages Price: §10.00 Brice: $19.45
Detalls of Selected [zdn]
RowW.

chef Anton's Cajun Seasoning Rogede sild

Custamized
Farmatting

Price: $26.62 Price: $9.50
Edit w
] Dore Red Local inranst

Figure 12: Add Update and Cancel Buttons to the EditItemTemplate

Clicking the button causes a postback, but does not bring the product listing into edit mode. To make the
product editable, we need to:

1. Set the Datalist’s EditItemIndex property to the index of the bataListItem whose Edit button was
just clicked.

2. Rebind the data to the DataList. When the DataList is re-rendered, the DataListItem whose
ItemIndex corresponds with the DataList’s EditItemIndex will render using its EditItemTemplate.

Since the Datalist’s EditCommand event is fired when the Edit button is clicked, create an EditCommand
event handler with the following code:

Protected Sub DatalListl EditCommand (source As Object, e As DatalListCommandEventArgs)
Handles Datalistl.EditCommand
' Set the Datalist's EditItemIndex property to the
' index of the DatalistItem that was clicked
Datalistl.EditItemIndex = e.Item.ItemIndex

' Rebind the data to the Datalist
DatalListl.DataBind ()
End Sub

The Editcommand event handler is passed in an object of type DatalistCommandEventArgs as its second
input parameter, which includes a reference to the pataListItem whose Edit button was clicked (e. Item).
The event handler first sets the DataList’s EditItemIndex to the ItemIndex of the editable DataListItem
and then rebinds the data to the DataList by calling the DataList’s bataBind () method.

After adding this event handler, revisit the page in a browser. Clicking the Edit button now makes the
clicked product editable (see Figure 13).

14 of 20

X Untitled Page - Microsoft Internet Explorer EI?_EI E"ﬁEl
Bl Edk View Favoritss Took Help ;

ﬂﬂ-&d&. = &) = ;_:_'i -:" A Saarch Favorkes £ i Aa _::1:; - @.- | " (Y gj

sighdrmss | o) hntps st albost: 2496 Coda EdiDeltaDustalistBasics. aspr il = 2

-

Working with Data Tutorials Heme>gaiing and peteting with the patatist>

The Basics of Editing and Deleting
with the Datalist

Home

Basic Reporting

Simpde Display

Dedarative Chai Singaporean Hokkien Fried Mee
Farameters)
Price! $19.26 Price: £14.00
Setting Parameter Ed]
Walues
Filtering Reports Chang

Produdt name; |Ipoh Coffes

Fitter by Drop-Down e,
List 2 : Price: $15.00 FioeE | FA400
Edit
Master-Detals- (=) (opdaa)
Cretails
Aniseed Syrup Gula Malacca
Master/Detail Bcross
Twa Fages Frice: $10.00 Price: §19.45
Metails of Salected Edit] fdn FPTH w
] bere S Local intranet

Figure 13: Clicking the Edit Button Makes the Product Editable

Step 6: Saving the User’s Changes

Clicking the edited product’s Update or Cancel buttons does nothing at this point; to add this functionality
we need to create event handlers for the DataList’s UpdateCommand and CancelCommand events. Start by
creating the cancelcommand event handler, which will execute when the edited product’s Cancel button is
clicked and it tasked with returning the DataList to its pre-editing state.

To have the DataList render all of its items in the read-only mode, we need to:

1. Setthe Datalist’s EditItemIndex property to the index of a non-existent DataListItem index. -1 1S
a safe choice, since the pataListItem indexes start at 0.

2. Rebind the data to the DataList. Since no DataListItem ItemIndexes correspond to the Datalist’s
EditItemIndex, the entire DataList will be rendered in a read-only mode.

These steps can be accomplished with the following event handler code:

Protected Sub DatalListl CancelCommand (source As Object, e As DatalListCommandEventArgs)
Handles DatalListl.CancelCommand
' Set the Datalist's EditItemIndex property to -1
DataListl.EditItemIndex = -1

' Rebind the data to the Datalist
DatalListl.DataBind ()
End Sub

With this addition, clicking the Cancel button returns the DataList to its pre-editing state.

The last event handler we need to complete is the UpdateCommand event handler. This event handler needs
to:

1. Programmatically access the user-entered product name and price as well as the edited product’s
ProductID.

15 of 20

2. Initiate the update process by calling the appropriate UpdateProduct overload in the ProductsBLL
class.

3. Set the Datal.ist’s EditItemIndex property to the index of a non-existent bataListItem index. -1 is
a safe choice, since the pataListItem indexes start at 0.

4. Rebind the data to the DataList. Since no pataListItem ItemIndexes correspond to the Datalist’s
EditItemIndex, the entire DataList will be rendered in a read-only mode.

Steps 1 and 2 are responsible for saving the user’s changes; steps 3 and 4 return the DataList to its pre-
editing state after the changes have been saved and are identical to the steps performed in the
CancelCommand event handler.

To get the updated product name and price, we need to use the FindControl method to programmatically
reference the TextBox Web controls within the EditItemTemplate. We also need to get the edited
product’s Product 1D value. When we initially bound the ObjectDataSource to the DataList, Visual Studio
assigned the Datalist’s DataKeyField property to the primary key value from the data source (Product1D).
This value can then be retrieved from the Datalist’s DataKeys collection. Take a moment to ensure that the
DataKeyField property is indeed set to ProductID.

The following code implements the four steps:

Protected Sub Datalistl UpdateCommand (source As Object, e As DatalListCommandEventArgs)
Handles Datalistl.UpdateCommand
' Read in the ProductID from the DataKeys collection
Dim productID As Integer = Convert.ToInt32 (Datalistl.DataKeys(e.Item.ItemIndex))

' Read in the product name and price values
Dim productName As TextBox = CType(e.Item.FindControl ("ProductName"), TextBox)
Dim unitPrice As TextBox = CType(e.Item.FindControl ("UnitPrice"), TextBox)

Dim productNameValue As String = Nothing

If productName.Text.Trim() .Length > 0 Then
productNameValue = productName.Text.Trim()

End If

Dim unitPriceValue As Nullable (Of Decimal) = Nothing
If unitPrice.Text.Trim() .Length > 0 Then

unitPriceValue = Decimal.Parse(unitPrice.Text.Trim(), NumberStyles.Currency)
End If

' Call the ProductsBLL's UpdateProduct method...
Dim productsAPI As New ProductsBLL ()
productsAPI.UpdateProduct (productNameValue, unitPriceValue, productID)

' Revert the Datalist back to its pre-editing state
Datalistl.EditItemIndex = -1
Datalistl.DataBind ()

End Sub

The event handler starts by reading in the edited product’s product1D from the patakeys collection. Next,
the two TextBoxes in the EditTtemTemplate are referenced and their Text properties stored in local
variables, productNamevalue and unitPricevalue. We use the Decimal.Parse () method to read the
value from the unitprice TextBox so that if the value entered has a currency symbol, it can still be
correctly converted into a becimal value.

Note: The values from the ProductName and UnitPrice TextBoxes are only assigned to the
productNameValue and unitPriceValue variables if the TextBoxes’ Text properties have a value specified.
Otherwise, a value of Nothing is used for the variables, which has the effect of updating the data with a
database NULL value. That is, our code treats converts empty strings to database NULL values, which is the
default behavior of the editing interface in the GridView, DetailsView, and FormView controls.

16 of 20

After reading the values, the ProductsBLL class’s UpdateProduct method is called, passing in the
product’s name, price, and product1D. The event handler completes by returning the DataList to its pre-
editing state using the exact same logic as in the cancelCommand event handler.

With the EditCommand, CancelCommand, and UpdateCommand event handlers complete, a visitor can edit the
name and price of a product. Figures 14-16 show this editing workflow in action.

F Untitled Page - Micrasofl Inlernet Explorer
i Fle Edt Wew Fgvorfes Tooks Help

P e v (D - [[@) 3] 7 Seach drFavones @ (3R W] - [& g

agkdness | @] hitpsflocaost: 2438/ Code/EdtDelsteDatalist Fiaskcs, aspix il = [.
] eleting w &
Worklng Wlth Data Tutnrlals yﬁ&:}mﬂu—ﬂ—u—ﬂh—m, ining s -f___.' _'

The Basics of Editing and Deleting
with the Datalist

Ehai ::::upumun Hokkian Fried
Frice; $19.36 e
(Ean) . $14.00
Fllter by Drop-Down Chang Ipoh Coffes
List '
Prica: £19.00 Price: £45.00
Master-Detalls- Eai] E
Details-
Master/Detall Across Aniseed Syrup Gula Malacca
Two Pages
£ Metails af Selecracd Pnce: $10.00 Price: $£19.45 ot
&] Dene [T e pr—

Figure 14: When First Visiting the Page, All Products are in Read-Only Mode

Th Untilled Page - Microsoft Internel Explorer

| e Edt Vew Fgvorbes Jooks e
C Qeeck v @ - W@] Poeech deraveies @ B35 Wl 6@ W BB
Address _@ hitpejfiecabiast 2408} Code/EdtDulstaliat alist Basics. asz v . o
-~
‘Working with Data Tutorials ~ eme- fatng snd peleting it the
Eae The Basics of Editing and Deleting
R Beporting with the DatalList
Simple Display
D%d;mf&ﬂv& Chai Singaporean Hokkien Fried
Parameters e
s.etung Pararmeter Price; $19.36 Price: $14.00
Values '* !
Filterireg Reports
Fliter by Drop-Gown Product name: |chang Ted Ipoh Coffee
U{St ik t“!- 3 3 Price: $45.00
Master-Details- ' :
Detals
Master/Detal Across Aniseed Syrup Gula Malacca
Two Pages
Netails of Salactecd Price: £10000 Price: £10.45 e
2] Done [= Tep—

17 of 20

Figure 15: To Update a Product’s Name or Price, Click the Edit Button

3 Untitled Page - Micrasoft Internet Explorer B CIEx
- Fie Edt View Fgvortes Tools Help Rt

Qoode 3 - [[@ & P Seach Fefavokes @ (- 5 W - [0 €& e I HE
©dddress | 8] hitpej flocabost: 2408 Code EdtDeleteDat st Easies, aspot bt Gu
i i i ame ing an ing wi 3 5
Viorkingwith Lizia Tutonals =~ "SSEpumesmesime

Haorme

The Basics of Editing and Deleting
with the DatalList

Basic Re |_'":I."!:II'|-:;_J

ﬁmphﬂhmﬁ?
Daclarative chai Singaporean Hokkien Fried
Parameters Moa
-ﬁﬁeﬂf Parameter F‘E'_L_‘i‘ff: $19.36 Price: $14.00
Filtering Reports
Filter by Drop-Down Chang Tea Ipoh Coffes
List
Price; $25.25 Price: $45.00
Master-Details- &0 : ()
Detalls i
Master/Detall Across Anlseed Syrup Gula Malacca
Two Pages
B Derails of Setectad Frice: $10.00 Price: £19.45 i
&) Done %) Lol intranet

Figure 16: After Changing the Value, Click Update to Return to the Read-Only Mode

Step 7: Adding Delete Capabilities

The steps for adding delete capabilities to a DataList are similar to those for adding editing capabilities. In
short, we need to add a Delete button to the ItemTemplate that, when clicked:

1. Reads in the corresponding product’s ProductID via the DataKeys collection.
2. Performs the delete by calling the ProductsBLL class’s DeleteProduct method.
3. Rebinds the data to the DataList.

Let’s start by adding a Delete button to the TtemTemplate.

When clicked, a Button whose commandname is “Edit”, “Update”, or “Cancel” raises the DataList’s
ItemCommand event along with an additional event (for example, when using “Edit” the EditCommand event
is raised as well). Similarly, any Button, LinkButton, or ImageButton in the Datal.ist whose CommandName
property is set to “Delete” causes the DeleteCommand event to fire (along with TtemCommand).

Add a Delete button next to the Edit button in the TtemTemplate, setting its CommandName property to
“Delete”. After adding this Button control your DataList’s ITtemTemplate declarative syntax should look
like:

<ItemTemplate>
<h5>
<asp:Label runat="server" ID="ProductNamelLabel"

Text='<%# Eval ("ProductName") %>' />

</h5>

Price: <asp:Label runat="server" ID="Labell"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

<asp:Button runat="server" id="EditProduct" CommandName="Edit"

18 of 20

Text="Edit" />

<asp:Button runat="server" id="DeleteProduct" CommandName="Delete"
Text="Delete" />

</ItemTemplate>

Next, create an event handler for the Datalist’s DeleteCommand event, using the following code:

Protected Sub Datalistl DeleteCommand (source As Object, e As DatalListCommandEventArgs)
Handles Datalistl.DeleteCommand
' Read in the ProductID from the DataKeys collection
Dim productID As Integer = Convert.ToInt32 (Datalistl.DataKeys(e.Item.ItemIndex))

' Delete the data
Dim productsAPI As New ProductsBLL ()
productsAPI.DeleteProduct (productID)

' Rebind the data to the Datalist
DatalListl.DataBind ()
End Sub

Clicking the Delete button causes a postback and fires the DataList’s DeleteCommand event. In the event
handler, the clicked product’s product 1D value is accessed from the patakeys collection. Next, the product
is deleted by calling the ProductsBLL class’s DeleteProduct method.

After deleting the product, it’s important that we rebind the data to the DataList (DataListl.DataBind()),
otherwise the DataList will continue to show the product that was just deleted.

Summary

While the DataList lacks the point and click editing and deleting support enjoyed by the GridView, with a
short bit of code it can be enhanced to include these features. In this tutorial we saw how to create a two-
column listing of products that could be deleted and whose name and price could be edited. Adding editing
and deleting support is a matter of including the appropriate Web controls in the TtemTemplate and
EditItemTemplate, creating the corresponding event handlers, reading the user-entered and primary key
values, and interfacing with the Business Logic Layer.

While we have added basic editing and deleting capabilities to the DataList, it lacks more advanced features.
For example, there is no input field validation - if a user enters a price of “Too expensive,” an exception will
be thrown by Decimal.Parse when attempting to convert “Too expensive” into a becimal. Similarly, if
there is a problem in updating the data at the Business Logic or Data Access Layers the user will be
presented with the standard error screen. Without any sort of confirmation on the Delete button, accidentally
deleting a product is all too likely.

In future tutorials we’ll see how to improve the editing user experience.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

19 of 20

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial included Zack
Jones, Ken Pespisa, and Randy Schmidt. Interested in reviewing my upcoming articles? If so, drop me a line

at mitchell@4guysfromrolla.com.

20 of 20

