This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Handling
BLL- and DAL-Level Exceptions

Introduction

In the Overview of Editing and Deleting Data in the DataL ist tutorial, we created a DataList that offered simple
editing and deleting capabilities. While fully functional, it was hardly user-friendly, as any error that occurred
during the editing or deleting process resulted in an unhandled exception. For example, omitting the product’s
name or, when editing a product, entering a price value of “Very affordable!”, throws an exception. Since this
exception is not caught in code, it bubbles up to the ASP.NET runtime, which then displays the exception’s
details in the web page.

As we saw in the Handling BLL- and DAL-Level Exceptions in an ASP.NET Page tutorial, if an exception is
raised from the depths of the Business Logic or Data Access Layers, the exception details are returned to the
ObjectDataSource and then to the GridView. We saw how to gracefully handle these exceptions by creating
Updated or RowUpdated event handlers for the ObjectDataSource or GridView, checking for an exception, and
then indicating that the exception was handled.

Our DataList tutorials, however, aren’t using the ObjectDataSource for updating and deleting data. Instead, we
are working directly against the BLL. In order to detect exceptions originating from the BLL or DAL, we need
to implement exception handling code within the code-behind of our ASP.NET page. In this tutorial, we’ll see
how to more tactfully handle exceptions raised during an editable DataList’s updating workflow.

Note: In the An Overview of Editing and Deleting Data in the DataList tutorial we discussed different
techniques for editing and deleting data from the DataList, Some techniques involved using an
ObjectDataSource for updating and deleting. If you employ these techniques, you can handle exceptions from
the BLL or DAL through the ObjectDataSource’s Updated or Deleted event handlers.

Step 1: Creating an Editable DataList

Before we worry about handling exceptions that occur during the updating workflow, let’s first create an
editable Datalist. Open the ErrorHandling.aspx page in the EditDeleteDataList folder, add a DataList to
the Designer, set its ID property to Products, and add a new ObjectDataSource named ProductsDataSource.
Configure the ObjectDataSource to use the ProductsBLL class’s GetProducts () method for selecting records;
set the drop-down lists in the INSERT, UPDATE, and DELETE tabs to (None).

1 0of9

Configure Data Source - ObjectDataSource1 E”E| Ei@

j Define Data Methods
3 :. 11.-:.;‘:’_..'

Chaose & methad of the business objeck that rekurns daka bo associate with the SELECT aperation. The
method can return a DataSet, DataReader, or strongly-typed collection,

Exarnple; GetProducts(Int32 categoryld), returns a DataSet,

Chaose a method:
GetProducks(), returns ProductsDataTable W |

GetProduckEyProduckID{Ing32 productID’, returns ProducksDataTahle

GetProducks)), reburns ProductsDakaTable

GetProductsByCategoryID{Int32 categoryiD), returns ProductsDataTable
GetProducksBySupplierID{Int 32 suppliesrIDd, returns ProducksDataTable
GetProductsPaged(Int32 startRowindesx, Ink32 maximumRows), returns ProducksDataTable
GetProductsPagedandSorbed(String sostExpression, Int32 startRowlnde:x, INt32 maximumPows), rebuns Produc

IEEEHHHI Pl [Finish j[Cancel J

Figure 1: Return the Product Information Using the GetProducts () Method

After completing the ObjectDataSource wizard, Visual Studio will automatically create an ItemTemplate for
the DataList. Replace this with an ItemTemplate that displays each product’s name and price and includes an
Edit button. Next, create an EditItemTemplate with a TextBox Web control for name and price and Update
and Cancel buttons. Finally, set the DataList’s RepeatColumns property to 2.

After these changes, your page’s declarative markup should look similar to the following. Double-check to
make certain that the Edit, Cancel, and Update buttons have their CommandName properties set to “Edit”,
“Cancel”, and “Update”, respectively.

<asp:Datalist ID="Products" runat="server" DataKeyField="ProductID"
DataSourceID="ProductsDataSource" RepeatColumns="2">
<ItemTemplate>
<h5>
<asp:Label runat="server" ID="ProductNamelLabel"
Text='<%# Eval ("ProductName") %>' />
</h5>
Price:
<asp:Label runat="server" ID="Labell"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

<asp:Button runat="server" id="EditProduct" CommandName="Edit"
Text="Edit" />

</ItemTemplate>
<EditItemTemplate>
Product name:
<asp:TextBox ID="ProductName" runat="server"
Text='<%# Eval ("ProductName") %>' />

20f9

Price:
<asp:TextBox ID="UnitPrice" runat="server"
Text='<%# Eval ("UnitPrice", "{0:C}") %>' />

<asp:Button ID="UpdateProduct" runat="server" CommandName="Update"
Text="Update" />
<asp:Button ID="CancelUpdate" runat="server" CommandName="Cancel"
Text="Cancel" />
</EditItemTemplate>
</asp:DatalList>

<asp:0bjectDataSource ID="ProductsDataSource" runat="server"
SelectMethod="GetProducts" TypeName="ProductsBLL"
OldvaluesParameterFormatString="original {0}">
</asp:0bjectDataSource>

Note: For this tutorial the Datalist’s view state must be enabled.

Take a moment to view our progress through a browser (see Figure 2).

A Untitted Page - Microsaft Internet Explorer Ei_ __rz'
| Bl [t Yew Faoles Tk Hep k!
Qe - O W @ | Poewch Fwoes @ -5 W 6 B

| Acress 8] bt focalhost 5521 Code ERDeleteDatalist fEncxtianding.asp ¥ d &

-

Working with Data Tutorials Heme> fdting and peisting wim e patass
Home Gracefully Handling DAL- and BLL-
Basic Reporting Level Exceptions
‘Simple Display

Daclarate Chai Singaporean Hokkien Fried Mee
Farameters

y : o Price: £19.95 Price: £14.00
il g (Esivm)
Filtering Pey] Chang Ipoh Coffee
Filter by Drop-Down
List BEEteet Price: $19.00 Price: $45.00
Master-Details- = e
Details : .
e - Aniseed Syrup Gula Malacca
Master/Detall Across
Two Pages Price: $10.00 Price: $19.45
Dietalls of Selected (Ede]

Row
Chef Anton's Cajun Seasoning Rogede sild

- - Price: £26 62 Price: $9.50
Formet eowrs
‘Custom Contentin &
GridView Chef Anton's Gumba Mix speqgesiid
Custom Content in a -
P katlat S 2 Mriee: 08 28 N #4500 4
&) Doee - g Lol inkranst

Figure 2: Each Product Includes an Edit Button

Currently, the Edit button only causes a postback — it doesn’t yet make the product editable. To enable editing,
we need to create event handlers for the Datalist’s EditCommand, CancelCommand, and UpdateCommand events.

30f9

The EditCommand and CancelCommand events simply update the DataList’s EditItemIndex property and
rebind the data to the DataList:

protected void Products EditCommand (object source, DataListCommandEventArgs e)

{
// Set the Datalist's EditItemIndex property to the
// index of the DatalListItem that was clicked
Products.EditItemIndex = e.Item.ItemIndex;

// Rebind the data to the Datalist
Products.DataBind () ;
}

protected void Products CancelCommand (object source, DatalListCommandEventArgs e)

{
// Set the Datalist's EditItemIndex property to -1
Products.EditItemIndex = -1;

// Rebind the data to the Datalist
Products.DataBind () ;

The UpdateCommand event handler is a bit more involved. It needs to read in the edited product’s ProductID
from the DataKeys collection along with the product’s name and price from the TextBoxes in the
EditItemTemplate, and then call the ProductsBLL class’s UpdateProduct method before returning the
DatalL ist to its pre-editing state.

For now, let’s just use the exact same code from the UpdateCommand event handler in the Overview of Editing
and Deleting Data in the DataList tutorial. We’ll add the code to gracefully handle exceptions in step 2.

protected void Products UpdateCommand (object source, DatalListCommandEventArgs e)

{
// Read in the ProductID from the DataKeys collection

int productID = Convert.ToInt32 (Products.DataKeys[e.Item.ItemIndex]);

// Read in the product name and price values
TextBox productName = (TextBox)e.Item.FindControl ("ProductName") :;
TextBox unitPrice = (TextBox)e.Item.FindControl ("UnitPrice");

string productNameValue = null;
if (productName.Text.Trim() .Length > 0)
productNameValue = productName.Text.Trim() ;

decimal? unitPriceValue = null;
if (unitPrice.Text.Trim().Length > 0)
unitPriceValue = Decimal.Parse(unitPrice.Text.Trim(),
System.Globalization.NumberStyles.Currency);

// Call the ProductsBLL's UpdateProduct method...
ProductsBLL productsAPI = new ProductsBLL();
productsAPI.UpdateProduct (productNameValue, unitPriceValue, productlID);

// Revert the Datalist back to its pre-editing state
Products.EditItemIndex = -1;
Products.DataBind() ;

In the face of invalid input — which can be in the form of an improperly formatted unit price, an illegal unit
price value like “-$5.00”, or the omission of the product’s name — an exception will be raised. Since the
UpdateCommand event handler does not include any exception handling code at this point, the exception will

4 0f 9

bubble up to the ASP.NET runtime, where it will be displayed to the end user (see Figure 3).

2 UnitPrice cannot be less than zero
Parameter name: UnitﬁEHE] |-ZHE|E|

_ File Edit Miew Fawvaorites Tools Help {1
3 = - - a . - o
: @Back bl - | |ﬂ @ gl | #~ Search T Favorites 8 | (- i ﬁ &

. 1 |

: Address !@ htkp: fflocalhost: 352 1 /Code/EditDeleteDatalistBasics . aspx | 50

Server Error in '/Code' Application.

UnitPrice cannot be less than zero
Parameter name: UnitPrice

Description: An unhandled exception occurred during the execution of the current web request.
Please revievy the stack trace for more information about the error and where i originated in the
code.

Exception Details: System ArgumentException: UnitPrice cannat be less than zero
Parameter name: UnitPrice

Source Error:
s ! >
I@ Cone i—j Local inkramet

Figure 3: When an Unhandled Exception Occurs, the End User Sees an Error Page

Step 2: Gracefully Handling Exceptions in the
UpdateCommand Event Handler

During the updating workflow, exceptions can occur in the UpdateCommand event handler, the BLL, or the
DAL. For example, if a user enters a price of “Too expensive”, the Decimal.Parse statement in the
UpdateCommand event handler will throw a FormatException exception. If the user omits the product’s name
or if the price has a negative value, the DAL will raise an exception.

When an exception occurs, we want to display an informative message within the page itself. Add a Label Web
control to the page whose 1D is set to ExceptionDetails. Configure the Label’s text to display in a red, extra-
large, bold and italic font by assigning its CssClass property to the warning CSS class, which is defined in the
Styles.css file.

When an error occurs, we only want the Label to be displayed once. That is, on subsequent postbacks, the
Label’s warning message should disappear. This can be accomplished by either clearing out the Label’s Text
property or settings its Visible property to False in the Page Load event handler (as we did back in the
Handling BLL- and DAL-Level Exceptions in an ASP.NET Page tutorial) or by disabling the Label’s view state
support. Let’s use the latter option.

<asp:Label ID="ExceptionDetails" EnableViewState="False" CssClass="Warning"
runat="server" />

50f9

When an exception is raised, we’ll assign the details of the exception to the ExceptionDetails Label control’s
Text property. Since its view state is disabled, on subsequent postbacks the Text property’s programmatic
changes will be lost, reverting back to the default text (an empty string), thereby hiding the warning message.

To determine when an error has been raised in order to display a helpful message on the page, we need to add a
Try ... Catch block to the UpdateCommand event handler. The Try portion contains code that may lead to an
exception, while the catch block contains code that is executed in the face of an exception. Check out the
Exception Handling Fundamentals section in the NET Framework documentation for more information on the
Try ... Catch block.

protected void Products UpdateCommand (object source, DatalListCommandEventArgs e)

{
// Handle any exceptions raised during the editing process
try
{
// Read in the ProductID from the DataKeys collection
int productID = Convert.ToInt32 (Products.DataKeys[e.Item.ItemIndex]);

Some code omitted for brevity

}

catch (Exception ex)

{

// TODO: Display information about the exception in ExceptionDetails

}

When an exception of any type is thrown by code within the Try block, the catch block’s code will begin
executing. The type of exception that is thrown — DbException, NoNullAllowedException,
ArgumentException, and so on — depends on what, exactly, precipitated the error in the first place. If there’s a
problem at the database level, a DbException will be thrown. If an illegal value is entered for the UnitPrice,
UnitsInStock, UnitsOnOrder, Or ReorderLevel fields, an ArgumentException will be thrown, as we added
code to validate these field values in the ProductsbataTable class (see the Creating a Business Logic Layer
tutorial).

We can provide a more helpful explanation to the end user by basing the message text on the type of exception
caught. The following code — which was used in a nearly identical form back in the Handling BLL- and DAL-
Level Exceptions in an ASP.NET Page tutorial — provides this level of detail:

private void DisplayExceptionDetails (Exception ex)
{
// Display a user-friendly message
ExceptionDetails.Text = "There was a problem updating the product. ";

if (ex is System.Data.Common.DbException)
ExceptionDetails.Text += "Our database is currently experiencing problems.
Please try again later.";
else if (ex is NoNullAllowedException)
ExceptionDetails.Text += "There are one or more required fields that are
missing.";
else if (ex is ArgumentException)

{

string paramName = ((ArgumentException)ex) .ParamName;
ExceptionDetails.Text +=
string.Concat ("The ", paramName, " wvalue is illegal.");

}
else if (ex is ApplicationException)
ExceptionDetails.Text += ex.Message;

6 of 9

To complete this tutorial, simply call the DisplayExceptionDetails method from the catch block passing in
the caught Exception instance (ex).

With the Try ... catch block in place, users are presented with a more informative error message, as Figures
4 and 5 show. Note that in the face of an exception the DataList remains in edit mode. This is because once the
exception occurs, the control flow is immediately redirected to the catch block, bypassing the code that returns
the DataList to its pre-editing state.

3 Untitled Page - Microsoft Internet Explorer
| Be ERt Yew Favortes Jook el

i ek = &) - W @ | S seach Favorkes &0 (= B] - G L Bl

Agiceess | @7 bitp: fflocahost: 3521 [Code/Ed DeleteDatalist Errosanding aspix

vﬂﬁl}

oy

Home > Editing and Deleting with the
Cratalist > Errer Handling

Working with Data Tutorials

Horme

Gracefully Handling DAL- and
BLL-Level Exceptions

Basic Reporting
Simple Display
Declarative
Parameters.

There was a q_rub!em updating
the product. There are one or

‘Setting Parameter
Values:

Filtering Reports

nmre required fields that are
mrssmg.

Singaporean Hokkien Fried

Eit:r by Drop-Down (::-‘-*;vti :f::a: _ Mee

E:Eﬂtg_mm* Update | m pi:ii_:-‘ sren

mﬁ?ﬁmm‘:‘w Glearig ipoh Goffee

nﬁf;t‘ahnfse!émd ?‘gg: $15.00 ?—;"33, : $45.00 !

& Local intranst

&] Don

Figure 4: An Error Message is Displayed if a User Omits a Required Field

7 of 9

5 Untitled Page - Microsolt Internet Explorer 1":_l‘|[_E| F:_"_E||?|
| B Bk ew Favortes ook pep i

P Qtuck - QW @ G| Poewch Frfovokes @ (30 N W - € ™ i ED

Agiress | @] bhtp: Mlocahast: 3521 Code/Edt Deleteuatalist fErrorHanding. s ~ By
i i i Home > Editing and Deleting with the

Working with Data Tutorials 5 S arerimnaing "

Horme

Gracefully Handling DAL- and
BLL-Level Exceptions

Basic Reportng

Simphe Display N

Pitaratiie There was a q_rnb!em undatm?

Parameters thf_} rm}luct. he UnitPrice value
Setting Parameter Is lilegal.

Vhites Singaporean Hokkien Fried
Filtering Reports Privduct name: | Chai wea

Filter by Drop-Down Frice: 19,98 J

List Price: £14.00

= Uhped st Elﬁ . Edit

Master-Details- (caneet) (e

BRGNS . Chang Ipoh Coffee

Master/Detail Across

Two Pages Prica; £19.00 Price: £45.00

Details of Selected E

ST ! T

Figure 5: An Error Message is Displayed When Entering a Negative Price

Summary

The GridView and ObjectDataSource provide post-level event handlers that include information about any
exceptions that were raised during the updating and deleting workflow, as well as properties that can be set to
indicate whether or not the exception has been handled. These features, however, are unavailable when working
with the DataList and using the BLL directly. Instead, we are responsible for implementing exception handling.

In this tutorial we saw how to add exception handling to an editable DataList’s updating workflow by adding a
Try ... Catch block to the UpdateCommand event handler. If an exception is raised during the updating
workflow, the catch block’s code executes, displaying helpful information in the ExceptionDetails Label.
At this point, the Datalist makes no effort to prevent exceptions from happening in the first place. Even though
we know that a negative price will result in an exception, we haven’t yet added any functionality to proactively
prevent a user from entering such invalid input. In our next tutorial we’ll see how to help reduce the exceptions
caused by invalid user input by adding validation controls in the EditItemTemplate.

Happy Programming!

Further Reading

For more information on the topics discussed in this tutorial, refer to the following resources:

e Design Guidelines for Exceptions

e Error Logging Modules and Handlers (ELMAH) (an open-source library for logging errors)

8 of 9

e Enterprise Library for NET Framework 2.0 (includes the Exception Management Application Block)

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this tutorial was Ken Pespisa.
Interested in reviewing my upcoming articles? If so, drop me a line at mitchell@4guysfromrolla.com.

9 0of 9

