This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with Data
in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Adding
Validation Controls to the Editing and Inserting
Interfaces

Introduction

The GridView and DetailsView controls in the examples we've explored over the past three tutorials have all
been composed of BoundFields and CheckBoxFields (the field types automatically added by Visual Studio when
binding a GridView or DetailsView to a data source control through the smart tag). When editing a row in a
GridView or DetailsView, those BoundFields that are not read-only are converted into textboxes, from which the
end user can modify the existing data. Similarly, when inserting a new record into a DetailsView control, those
BoundFields whose Insertvisible property is set to true (the default) are rendered as empty textboxes, into
which the user can provide the new record's field values. Likewise, CheckBoxFields, which are disabled in the
standard, read-only interface, are converted into enabled checkboxes in the editing and inserting interfaces.

While the default editing and inserting interfaces for the BoundField and CheckBoxField can be helpful, the
interface lacks any sort of validation. If a user makes a data entry mistake - such as omitting the productName
field or entering an invalid value for unitsInstock (such as -50) — an exception will be raised from within the
depths of the application architecture. While this exception can be gracefully handled as demonstrated in the
previous tutorial, ideally the editing or inserting user interface would include validation controls to prevent a user
from entering such invalid data in the first place.

In order to provide a customized editing or inserting interface, we need to replace the BoundField or
CheckBoxField with a TemplateField. TemplateFields, which were the topic of discussion in the Using
TemplateFields in the GridView Control and Using TemplateFields in the DetailsView Control tutorials, can
consist of multiple templates defining separate interfaces for different row states. The TemplateField's
ItemTemplate is used to when rendering read-only fields or rows in the DetailsView or GridView controls,
whereas the EditItemTemplate and InsertItemTemplate indicate the interfaces to use for the editing and
inserting modes, respectively.

In this tutorial we'll see how easy it is to add validation controls to the TemplateField's EditItemTemplate and
InsertItemTemplate to provide a more foolproof user interface. Specifically, this tutorial takes the example
created in the Examining the Events Associated with Inserting, Updating, and Deleting tutorial and augments the
editing and inserting interfaces to include appropriate validation.

Step 1: Replicating the Example from Examining the
Events Associated with Inserting, Updating, and
Deleting

In the Examining the Events Associated with Inserting, Updating, and Deleting tutorial we created a page that
listed the names and prices of the products in an editable GridView. Additionally, the page included a
DetailsView whose DefaultMode property was set to Insert, thereby always rendering in insert mode. From
this DetailsView, the user could enter the name and price for a new product, click Insert, and have it added to the

1 of 16

system (see Figure 1).

?.‘ Untitled Page - Microsolt Inlernel Explorer

Ble Edt Wew Fpesites Jook Help
Q) Back ~] Bl B S Seach i Fowrios @ [3- j @ 0 E

&) hirp [ahest F558)C ode Ed It D bete Tk i Fic sbaon wents. s - ﬂ G

oy

Working with Data Tutorials ~ Hems> amng nserting. ana

Deleting > Data Modification
Events

Exploring the Data
Modification Events

Produdctiarme EEEEERNET:

UnitPrice

ProductiNarme
Edik Chae $£19.9%
Edit Chang $19.00
EQit Aneseed Syrup $10.00
Edit Chef Anton's Cajun Seasoning $22.00
Edit Chef Anton's Gumbd Mix £21.35
S Local ntranst

Figure 1: The Previous Example Allows Users to Add New Products and Edit Existing Ones

Our goal for this tutorial is to augment the DetailsView and GridView to provide validation controls. In
particular, our validation logic will:

e Require that the name be provided when inserting or editing a product

o Require that the price be provided when inserting a record; when editing a record, we will still require a
price, but will use the programmatic logic in the GridView's RowUpdating event handler already present
from the earlier tutorial

o Ensure that the value entered for the price is a valid currency format

Before we can look at augmenting the previous example to include validation, we first need to replicate the
example from the DataModificationEvents.aspx page to the page for this tutorial, UIvalidation.aspx. To
accomplish this we need to copy over both the DataModificationEvents.aspx page's declarative markup and
its source code. First copy over the declarative markup by performing the following steps:

1. Open the bataModificationEvents.aspx page in Visual Studio

Go to the page's declarative markup (click on the Source button at the bottom of the page)

Copy the text within the <asp:Content> and </asp:Content> tags (lines 3 through 44), as shown in
Figure 2.

w

20f16

Fe Code Microasdl Visual S1edis

Ea Ed Wwew Wobgts Duld [ebig Jrol diedow [omeunly Hep Saded

RSN B N T SRR Ao W ‘s
ARE T TR 1.0 Toansitaonal '_éi

™ et Trvsra Dol innl wenk s asps
[Chent Ghjects & Pvents w (o Eventa)

€4F Fage Langusge="CF" RasserFagelile="-/Fite.master”™ lucsfvenc¥iresup="crus™ g

Ib=*anzantl® actFlecels lder Il="lalpContant ™ Fubat = "Sesvec ™D

Figure 2: Copy the Text Within the <asp:Content> Control

4. Openthe urvalidation.aspx page
5. Go to the page's declarative markup
6. Paste the text within the <asp:Content> control.

To copy over the source code, open the DataModificationEvents.aspx.cs page and copy just the text within
the EditInsertDelete DataModificationEvents class. Copy the three event handlers (Page Load,
Gridviewl RowUpdating, and ObjectDataSourcel Inserting), but do not copy the class declaration or
using statements. Paste the copied text within the EditInsertDelete UIValidation class in
UIValidation.aspx.cs.

After moving over the content and code from DataModificationEvents.aspx to UIValidation.aspx, take a
moment to test out your progress in a browser. You should see the same output and experience the same
functionality in each of these two pages (refer back to Figure 1 for a screen shot of
DataModificationEvents.aspx in action).

Step 2: Converting the BoundFields Into
TemplateFields

To add validation controls to the editing and inserting interfaces, the BoundFields used by the DetailsView and
GridView controls need to be converted into TemplateFields. To achieve this, click on the Edit Columns and
Edit Fields links in the GridView and DetailsView's smart tags, respectively. There, select each of the
BoundFields and click the "Convert this field into a TemplateField" link.

3of16

r

Fields

BoundField properties:
] BoundField [E=1a1
- : (5= |
o1t CheckBosField -
HyperLinkField B Accesshilty
j ImageField AccessibleHsader Te
I ButtonField B Appearance
+ @&] CommandField FookerText
=] TemplateField Heades Imagel |
S — el
B Behavior
ApplyFormatInEdit False
ConvertEmpty String Teue
HemIEncade True
Insartyisible True

HeaderText
Thee ket within the header of this field,

[Auto-generate fislds . { Convest this field into & TemplateField |

RBefresh Schema oK

Figure 3: Convert Each of the DetailsView's and GridView's BoundFields Into TemplateFields

Converting a BoundField into a TemplateField through the Fields dialog box generates a TemplateField that
exhibits the same read-only, editing, and inserting interfaces as the BoundField itself. The following markup
shows the declarative syntax for the productName field in the DetailsView after it has been converted into a
TemplateField:

<asp:TemplateField HeaderText="ProductName" SortExpression="ProductName">
<EditItemTemplate>
<asp:TextBox ID="TextBoxl" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:TextBox>
</EditItemTemplate>
<InsertltemTemplate>
<asp:TextBox ID="TextBoxl" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:TextBox>
</InsertItemTemplate>
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>

Note that this TemplateField had three templates automatically created — TtemTemplate, EditItemTemplate,
and InsertItemTemplate. The ITtemTemplate displays a single data field value (ProductName) using a Label
Web control, while the EditItemTemplate and InsertItemTemplate present the data field value in a TextBox
Web control that associates the data field with the TextBox's Text property using two-way databinding. Since we
are only using the DetailsView in this page for inserting, you may remove the ItemTemplate and
EditItemTemplate from the two TemplateFields, although there's no harm in leaving them.

Since the GridView does not support the built-in inserting features of the DetailsView, converting the
GridView's ProductName field into a TemplateField results in only an TtemTemplate and EditItemTemplate:

<asp:TemplateField HeaderText="ProductName" SortExpression="ProductName">
<EditItemTemplate>

4 0f 16

<asp:TextBox ID="TextBoxl" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:TextBox>
</EditItemTemplate>
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>

By clicking the "Convert this field into a TemplateField," Visual Studio has created a TemplateField whose
templates mimic the user interface of the converted BoundField. You can verify this by visiting this page through
a browser. You'll find that the appearance and behavior of the TemplateFields is identical to the experience when
BoundFields were used instead.

Note: Feel free to customize the editing interfaces in the templates as needed. For example, we may want to have
the TextBox in the unitprice TemplateFields rendered as a smaller textbox than the ProductName textbox. To
accomplish this you can set the TextBox's Columns property to an appropriate value or provide an absolute width
via the width property. In the next tutorial we'll see how to completely customize the editing interface by
replacing the TextBox with an alternate data entry Web control.

Step 4: Adding the Validation Controls to the
GridView's EditItemTemplateS$S

When constructing data entry forms, it is important that users enter any required fields and that all provided
inputs are legal, properly-formatted values. To help ensure that a user's inputs are valid, ASP.NET provides five
built-in validation controls that are designed to be used to validate the value of a single input control:

e RequiredFieldValidator — ensures that a value has been provided

o CompareValidator — validates a value against another Web control value or a constant value, or ensures
that the value's format is legal for a specified data type

RangeValidator — ensures that a value is within a range of values

RegularExpressionValidator — validates a value against a regular expression

CustomValidator — validates a value against a custom, user-defined method

For more information on these five controls, check out the Validation Controls section of the ASP.NET
Quickstart Tutorials.

For our tutorial we'll need to use a RequiredFieldValidator in both the DetailsView and GridView's
productName TemplateFields and a RequiredFieldValidator in the DetailsView's UnitPrice TemplateField.
Furthermore, we'll need to add a CompareValidator to both controls' unitprice TemplateFields that ensures that
the entered price has a value greater than or equal to 0 and is presented in a valid currency format.

Note: While ASP.NET 1.x had these same five validation controls, ASP.NET 2.0 has added a number of
improvements, the main two being client-side script support for browsers other than Internet Explorer and the
ability to partition validation controls on a page into validation groups. For more information on the new
validation control features in 2.0, refer to Dissecting the Validation Controls in ASP.NET 2.0.

Let's start by adding the necessary validation controls to the EditItemTemplates in the GridView's
TemplateFields. To accomplish this, click on the Edit Templates link from the GridView's smart tag to bring up
the template editing interface. From here, you can select which template to edit from the drop-down list. Since
we want to augment the editing interface, we need to add validation controls to the ProductName and
UnitPrice's EditItemTemplates.

50f 16

*% Cods - Microsofl Visual Studio 4 IEIM
Bl [de Yow Woelpls Bid Debg Fomst Leyout [oeh Wrdow (owmondy felp Addme
RS R W = Lo§ A O st "

— - .H I'I. ¥ i

If's_' Fxlit IrvuertDwle. _alelot e supec® w X

% Databound

Inzsrt Cance|
I e Laphat ainres - SEePaial i]

You muét provide a price for

ol

e pro uct, & p— :
GPiew] - Cobaw 1] - ProduciieeTs Tempiste { deng Heds 3
EdsnTenlats Cesclry: ENERITCI
o jCohmmnl 1] - Prodsctsame & |

- et ermplate a

- L 7]

et abmee - wsouce |

£
3 Doy | (4 Soure chodys | caspordentdoontent] s ape | CaspgnebviewEgetves:

2 Erven it |] ot B Pl o 1
Fpady

Figure 4: We Need to Extend the ProductName and UnitPrice's EditItemTemplates

In the ProductName EditItemTemplate, add a RequiredFieldValidator by dragging it from the Toolbox into the
template editing interface, placing after the TextBox.

*% Code - Microsofil Visual Studia
e [t Vew webgle Duid (ebug Poes Laped Took Wndow [omwuny Belp gddins
LR ERE = - N RN i b) & ooncon

B.J U A =

Insatt Canced

sl aloure)

ou must provide a price
r the product.

s < Colara 1] - Productams

Eﬂmﬂ-rmﬂn

[
DlvpectDataSmarce - Obpect [ataSouroe |

i chody’» | capoortentdontentl > opa | <o pridewdgndaes | >
e T

Figure 5: Add a RequiredFieldValidator to the ProductName EditItemTemplate

All validation controls work by validating the input of a single ASP.NET Web control. Therefore, we need to
indicate that the RequiredFieldValidator we just added should validate against the TextBox in the
EditItemTemplate; this is accomplished by setting the validation control's ControlToValidate property to the 1D
of the appropriate Web control. The TextBox currently has the rather nondescript 1D of TextBox1, but let's
change it to something more appropriate. Click on the TextBox in the template and then, from the Properties
window, change the 1D from TextBox1 to EditProductName.

60f 16

®% Code - Microsoft Viswal Studie

=]l

B [Yew Webste Bid Do Fomst Loyod ook Widew Cowenty b ki
o -udd ban P nnee "2
Boi 1. E L
. e - X rsies A
[.I- _"'w- Eﬁﬁﬁﬁ.ﬂ] - ml. - “E*_ s | Produs P anse S it Ihe =
Wy Painie e LA EZ N
- heambusiad | | [You must provide P El ey
T a price for the ey
S Kot product, AunConpieteType Nene
i ——— [Getiom - Cobmr 1] Proictiome e 3
- ChiC pher
w Catoeriakeiator S BrrderColor =]
il Valdaortumingy Prdrr b LIEE]
 Mpewigetion Bordarwieth
= Ligin B b = £ i ldation. Fains
WebPaits - [
Darter I
: Olbje bt aSmroe - T Smee ms:'ﬂ”.s - *
o Proodietieribe. w Progammats name of the oontal
et art Jore 3
2 CotalogZons —_— =
e I |canprestie tndperedum = | ekt | peap. .. Sy ce r &
o Brre int [ot S Ford Bt
Epady

Figure 6: Change the TextBox's ID to EditProductName

Next, set the RequiredFieldValidator's ControlTovalidate property to EditProductName. Finally, set the
ErrorMessage property to "You must provide the product's name" and the Text property to "*". The Text

property value, if provided, is the text that is displayed by the validation control if the validation fails. The
ErrorMessage property value, which is required, is used by the ValidationSummary control; if the Text property
value is omitted, the ErrorMessage property value is also the text displayed by the validation control on invalid

input.

After setting these three properties of the RequiredFieldValidator, your screen should look similar to Figure 7.

* Code - Microsoft Visual Studie = IEllk
Bl [idew Welpte [uid [ebg Fomst Lopod Joch Wedow Commundy beb Al
- ks L ™
B U LA E &
O oot - = % [FORG v X Propsies -3 x
l | i = [e # Gaidiew | Cohume | Productanse St ite «
| Pone . A EIE
[Ponaieti. You must provide e L s
e Ranguaidate 3 price for the {Erortessags You musst praside | |
5 P Erin groduct. g
1 Comparet st Gnvien] - Cobmn]|] - Proshathors :;m W e
B & v L}
o LA Edit [nee Tamglede [ratald ol
L] Maldatortamingry - Stfrcmiroer Faiue
= Pyigakion skt
¢ Login i 4
o .
& Dante I l TodTp w
Db st aS e - T s i
& et srManager ()
o PromdiietPariie. . w Progremmsic name of the conbo
webiart fore H
G Cotaigne _— _ -
PR w |0 | CERp s egured il alusl 3; -l.] bl _\:l% . B g Cle
. List) [-r;-i.---.._ -
Pady

Figure 7: Set the RequiredFieldValidator's controlTovalidate, ErrorMessage, and Text Properties

With the RequiredFieldValidator added to the ProductName EditItemTemplate, all that remains is to add the
necessary validation to the UnitPrice EditItemTemplate. Since we've decided that, for this page, the

UnitPrice is optional when editing a record, we don't need to add a RequiredFieldValidator. We do, however,
need to add a CompareValidator to ensure that the unitprice, if supplied, is properly formatted as a currency

7 of 16

and is greater than or equal to 0.

Before we add the CompareValidator to the unitpPrice EditItemTemplate, let's first change the TextBox Web
control's ID from TextBox2 to EditUnitPrice. After making this change, add the CompareValidator, setting its
ControlTovValidate property to EditUnitPrice, its ErrorMessage property to "The price must be greater than
or equal to zero and cannot include the currency symbol", and its Text property to "*".

To indicate that the unitpPrice value must be greater than or equal to 0, set the CompareValidator's Operator

property to GreaterThanEqual, its ValueToCompare property to "0", and its Type property to Currency. The

following declarative syntax shows the unitPrice TemplateField's EditItemTemplate after these changes have
g y p g

been made:

<EditItemTemplate>
<asp:TextBox ID="EditUnitPrice" runat="server"
Text="'<%# Bind ("UnitPrice", "{0:c}") %>'

Columns="6"></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl" runat="server"

ControlToValidate="EditUnitPrice"

ErrorMessage="The price must be greater than or equal to zero and

cannot include the currency symbol"
Operator="GreaterThanEqual" Type="Currency"
ValueToCompare="0">*</asp:CompareValidator>
</EditItemTemplate>

After making these changes, open the page in a browser. If you attempt to omit the name or enter an invalid price
value when editing a product, an asterisk appears next to the textbox. As Figure 8 shows, a price value that
includes the currency symbol — such as $19.95 — is considered invalid. The CompareValidator's currency Type
allows for digit separators (such as commas or periods, depending on the culture settings) and a leading plus or
minus sign, but does not permit a currency symbol. This behavior may perplex users as the editing interface
currently renders the UnitPprice using the currency format.

Note: Recall that in the Events Associated with Inserting, Updating, and Deleting tutorial we set the
BoundField's DataFormatString property to {0:c} in order to format it as a currency. Furthermore, we set the
ApplyFormatInEditMode property to true, causing the GridView's editing interface to format the unitprice as
a currency. When converting the BoundField into a TemplateField, Visual Studio noted these settings and
formatted the TextBox's Text property as a currency using the databinding syntax <¢# Bind ("UnitPrice",
"{0:c}") %>.

8o0f 16

3 Uintitled Page - Microsofi Intermet Fxplorer
Ok Gt Yew Fyaries Jook el
Qpack = | & R S seadn Fawortes 8 LT oD E

8] hetp: o ahost 21 NP ode R Lran | Dsint e fLEV aledation g w ﬂl.'ﬂ

Working with Data Tutorials ey e
Validation

Exploring the Data Modification

ProductMame

Procuctyame lunitPrice
$19.95
Charg §149.00
Aniseed Syrup $10.00
Chef Anton's Cajun Seasoning §22.00
Chef Anton's Gumbo Mix $21.35
Grandma's Boysenberry Spread $25.00

e Local reraret

Figure 8: An Asterisk Appears Next to the Textboxes with Invalid Input

While the validation works as-is, the user has to manually remove the currency symbol when editing a record,
which is not acceptable. To remedy this, we have three options:

1. Configure the EditItemTemplate so that the unitprice value is not formatted as a currency.

2. Allow the user to enter a currency symbol by removing the CompareValidator and replacing it with a
RegularExpressionValidator that properly checks for a properly formatted currency value. The problem
here is that the regular expression to validate a currency value is not pretty and would require writing code
if we wanted to incorporate culture settings.

3. Remove the validation control altogether and rely on server-side validation logic in the GridView's
RowUpdating event handler.

Let's go with option #1 for this exercise. Currently the unitprice is formatted as a currency due to the
databinding expression for the TextBox in the EditItemTemplate: <$# Bind ("UnitPrice", "{0:c}") %>.
Change the Bind statement to Bind ("UnitPrice", "{0:n2}"), which formats the result as a number with two
digits of precision. This can be done directly through the declarative syntax or by clicking on the Edit
DataBindings link from the EditUnitpPrice TextBox in the unitprice TemplateField's EditItemTemplate
(see Figures 9 and 10).

90f 16

* Code - Microsofl Visual Studio
Ble Bt Yew Webgte @uld Debug Formst Lasgoot Tools Window Community Heb
- i-Gdd a : DL, oo

Inzer Cance

'You must provide a
price for the prodyct.

i1 - Columez] - UntPrice

EditItamTernplats
+ Mavigation U yestios Tasks

S
- WebParts

K Pontor

¥l
@ WebFartManages Dhjectiat aSource - ObmctDataSorcat
S ProcyWebPaitha, .,
‘winbPart Tone
e e |4 9> [comarovaneidons>| g ot nitnteree
_ich Ervor List |] Cwtpue | S Findd Rsults 1
Ready

Figure 9: Click on the TextBox's Edit DataBindings link

EditUnitPrice DataBindings

Select the property bo bind bo, You can then bind & by selecting 2 field. Altematively, vou can bind it
using & custom code expression.

Bindable properties: Einding For Text
[Enabled

| Cinby
B is

[]5hew all properties

%) Custom binding:
Code gxpression:

{(End UnitPrice®, “{0:nz})]

Figure 10: Specify the Format Specifier in the Bind Statement

With this change, the formatted price in the editing interface includes commas as the group separator and a
period as the decimal separator, but leaves off the currency symbol.

Note: The unitPrice EditItemTemplate doesn't include a RequiredFieldValidator, allowing the postback to
ensue and the updating logic to commence. However, the RowUpdating event handler copied over from the
Examining the Events Associated with Inserting, Updating, and Deleting tutorial includes a programmatic check
that ensures that the unitprice is provided. Feel free to remove this logic, leave it in as-is, or add a
RequiredFieldValidator to the UnitpPrice EditItemTemplate.

10 of 16

Step 4: Summarizing Data Entry Problems

In addition to the five validation controls, ASP.NET includes the ValidationSummary control, which displays the
ErrorMessages of those validation controls that detected invalid data. This summary data can be displayed as
text on the web page or through a modal, client-side messagebox. Let's enhance this tutorial to include a client-
side messagebox summarizing any validation problems.

To accomplish this, drag a ValidationSummary control from the Toolbox onto the Designer. The location of the
Validation control doesn't really matter, since we're going to configure it to only display the summary as a
messagebox. After adding the control, set its ShowSummary property to false and its ShowMessageBox
property to true. With this addition, any validation errors are summarized in a client-side messagebox.

3 Uintitied Page - Microsoft Intermet Deplorer

fis [Pt Wew Favorbes Took Heip

ok = = [J R S seadh 7 Pevoites e - [
ffdress | @ Wi ok 21 100 odn B Ira e st e [TV aldation . ase - .GD
A

peleting = Adding Data Entry
e MM e

Working with Data Tutorials Homs > Editing. Inserting. and

S Exploring the Data Modification
rHi:r-mfl Imernel Explorer E

- ‘o st prowides khe product's name
= Tha prics must: be graster than or sausl bo o aned cannot inchuds the crrency symbel

Product™yame |UnitPrice

Filter by Drop-Down iipdatd Cancal x CHEAP! | #

e Edit Charg §19.00
Mazker-Diatails- Edit Aniseed Syrup §10,00

Detals Edlit Chef &nton's Cajun Seasoring $22.00
MasteryDetal Across Edlit Chef Anton's Gumbo Mix §21.35

T Pagss Edit Grandma's Boysenberry Spread $25.00 e

‘_{Lmu.lli:ra.ut

Figure 11: The Validation Errors are Summarized in a Client-Side Messagebox

Step 5: Adding the Validation Controls to the
DetailsView's InsertItemTemplate

All that remains for this tutorial is to add the validation controls to the DetailsView's inserting interface. The
process of adding validation controls to the DetailsView's templates is identical to that examined in Step 3;
therefore, we'll breeze through the task in this step. As we did with the GridView's EditItemTemplates, |
encourage you to rename the 1Ds of the TextBoxes from the nondescript TextBox1 and TextBox2 to
InsertProductName and InsertUnitPrice.

Add a RequiredFieldValidator to the ProductName InsertItemTemplate. Set the ControlTovalidate to the ID
of the TextBox in the template, its Text property to "*" and its ErrorMessage property to "You must provide the

product's name".

Since the unitpPrice is required for this page when adding a new record, add a RequiredFieldValidator to the
UnitPrice InsertItemTemplate, setting its ControlTovalidate, Text, and ErrorMessage properties

11 of 16

appropriately. Finally, add a CompareValidator to the UnitPrice InsertItemTemplate as well, configuring its
ControlToValidate, Text, ErrorMessage, Type, Operator, and ValueToCompare properties just like we did
with the Unitprice's CompareValidator in the GridView's EditItemTemplate.

After adding these validation controls, a new product cannot be added to the system if its name is not supplied or
if its price is a negative number or illegally formatted.

Fle Bt View Favorbes

1 Lintitled Pape - Microsaff Inftermet Teplorer
agy P

Took Help

Qok - 3 - 2@ & J

Agaress ﬁ g Ifocadhert: 1 105 Conche TR [ra e tDeled o TUEV alclat ion asge

Smarch Favorbes £

] - &> 0

« B

Basic Reparting

Simpde Display
Declarative
Paramerers
Settng Parammetar
alies

Working with Data Tutorials

Exploring the Data Modification

Events

P roductMame

= ikt st prorviche the product’s name
- Thee peice misk b greater than or equal bo zero and cannck indude the currency spmbol

o]

-

Home > Editing. insering. and
Delsting = Adding Data Entry
e Ll e e R e

Edit Grandma's Boysenberry Spraad
Folit Limicle Rnb's Ciraanic Dirsd Prars $30,00 »

$25.00

% Local ntranet

Figure 12: Validation Logic has been Added to the DetailsView's Inserting Interface

Step 6: Partitioning the Validation Controls Into

Validation Groups

Our page consists of two logically disparate sets of validation controls: those that correspond to the GridView's
editing interface and those that correspond to the DetailsView's inserting interface. By default, when a postback
occurs all validation controls on the page are checked. However, when editing a record we don't want the
DetailsView's inserting interface's validation controls to validate. Figure 13 illustrates our current dilemma —
when a user is editing a product with perfectly legal values, clicking Update causes a validation error because the
name and price values in the inserting interface are blank.

12 0f 16

3 Lintitied Page - Microsofl Intermet Deplorer

Bls [t Mew Favortes Jook Help

Qoo ~ D - & @ G| oo i Peoctes @ | S B - & @
Agdress [] et o athont: 11 1) CexdnfEdit Irssr tDelebe U Valdation, as e '5"

Working with Data T r

Baa Bl ting. Inserting, angd
[4l2dding Data Entry

~ Yos MRt provide Bhe product’s nams: i

E mspemstereaste hdification

s
Basic Reparting
Sample Display

Dadarative
Farameters

Setting Parameter
Wallies

Product™ame |UnitPrice

Filter by Drop-Down
List

{pdatd Cancel|Chai 19.95

Exit Charg §19.00
Master-Oetals- Edit Aniseed Syrup §10,00
Detals Edit Chef Anton's Cajun Seasoning §22.00
Master/Detall Across Edlit Chaf Anton's Gumbo Mix §21.35
Two Pages Edit Grandma's Boysenberry Spread $25.00

Figure 13: Updating a Product Causes the Inserting Interface's Validation Controls to Fire

The validation controls in ASP.NET 2.0 can be partitioned into validation groups through their
validationGroup property. To associate a set of validation controls in a group, simply set their
validationGroup property to the same value. For our tutorial, set the validationGroup properties of the
validation controls in the GridView's TemplateFields to EditvalidationControls and the validationGroup
properties of the DetailsView's TemplateFields to InsertvalidationControls. These changes can be done
directly in the declarative markup or through the Properties window when using the Designer's edit template
interface.

In addition to the validation controls, the Button and Button-related controls in ASP.NET 2.0 also include a
validationGroup property. A validation group's validators are checked for validity only when a postback is
induced by a Button that has the same validationGroup property setting. For example, in order for the
DetailsView's Insert button to trigger the InsertvalidationControls validation group we need to set the
CommandField's validationGroup property to InsertvalidationControls (see Figure 14). Additionally, set
the GridView's CommandField's validationGroup property to EditvalidationControls.

13 0f 16

=

Fields

fvailable Fields; Commandisld properties:
i [Z] BoundField T ?l
| CheckBoField ¥ e — .
2] HyperLinkField ShowancelButtor True
.;I ImageField ShowDelsteButton False
1 ButtorField ShowEdkButtan False
(+ g&] CommandField ShowHeader False
=] TemplateFieid ShowlnsertButton True
ALY ShowSelectButton False

Salactsd Fisids: VSIS ENTE N Insert¥alidationCont
|-;§Hm1mumme

13 E styles
{ éﬂw. Irsert, Cancel | : Bl ConbrolStyle

ValidationGroup
The name of the validation group for which this
bustton shiould cause validation

[Awito-generate fields

Refresh Schema

Figure 14: Set the DetailsView's CommandField's validationGroup property to
InsertValidationControls

After these changes, the DetailsView and GridView's TemplateFields and CommandFields should look similar to
the following:

The DetailsView's TemplateFields and CommandField:

<asp:TemplateField HeaderText="ProductName"
SortExpression="ProductName">
<InsertltemTemplate>
<asp:TextBox ID="InsertProductName" runat="server"
Text="'<%# Bind ("ProductName") %>'></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldvValidator2"
runat="server" ControlToValidate="InsertProductName"
ErrorMessage="You must provide the product name"
ValidationGroup="InsertValidationControls">*
</asp:RequiredFieldvalidator>
</InsertItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="UnitPrice" SortExpression="UnitPrice">
<InsertltemTemplate>
<asp:TextBox ID="InsertUnitPrice" runat="server"
Text="'<%# Bind ("UnitPrice") %>' Columns="6">
</asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator3"
runat="server" ControlToValidate="InsertUnitPrice"
ErrorMessage="You must provide the product price"
ValidationGroup="InsertValidationControls">*
</asp:RequiredFieldvValidator>
<asp:CompareValidator ID="CompareValidator2" runat="server"
ControlToValidate="InsertUnitPrice"
ErrorMessage="The price must be greater than or equal to zero and
cannot include the currency symbol"
Operator="GreaterThanEqual" Type="Currency" ValueToCompare="0"
ValidationGroup="InsertValidationControls">*
</asp:CompareValidator>

14 of 16

</InsertItemTemplate>
</asp:TemplateField>
<asp:CommandField ShowInsertButton="True"
ValidationGroup="InsertValidationControls" />

The GridView's CommandField and TemplateFields:

<asp:CommandField ShowEditButton="True" ValidationGroup="EditValidationControls"
<asp:TemplateField HeaderText="ProductName"
SortExpression="ProductName">
<EditItemTemplate>
<asp:TextBox ID="EditProductName" runat="server"
Text="'<%# Bind ("ProductName") %>'>
</asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldvalidatorl"
runat="server" ControlToValidate="EditProductName"
ErrorMessage="You must provide the product name"
ValidationGroup="EditValidationControls">*
</asp:RequiredFieldvalidator>
</EditItemTemplate>
<ItemTemplate>
<asp:Label ID="Labell" runat="server"
Text="'<%# Bind("ProductName") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="UnitPrice" SortExpression="UnitPrice">

<EditItemTemplate>
<asp:TextBox ID="EditUnitPrice" runat="server"
Text="<%# Bind ("UnitPrice", "{0:n2}") %>' Columns="6"></asp:TextBox>

<asp:CompareValidator ID="CompareValidatorl" runat="server"
ControlToValidate="EditUnitPrice"
ErrorMessage="The price must be greater than or equal to zero and

cannot include the currency symbol"

Operator="GreaterThanEqual" Type="Currency"
ValueToCompare="0"
ValidationGroup="EditValidationControls">*

</asp:CompareValidator>

</EditItemTemplate>

<ItemTemplate>
<asp:Label ID="Label2" runat="server"
Text="<%# Bind ("UnitPrice", "{O:c}") %>'>
</asp:Label>
</ItemTemplate>

</asp:TemplateField>

/>

At this point the edit-specific validation controls fire only when the GridView's Update button is clicked and the
insert-specific validation controls fire only when the DetailsView's Insert button is clicked, resolving the problem
highlighted by Figure 13. However, with this change our ValidationSummary control no longer displays when
entering invalid data. The ValidationSummary control also contains a validationGroup property and only
shows summary information for those validation controls in its validation group. Therefore, we need to have two
validation controls in this page, one for the InsertvalidationControls validation group and one for

EditValidationControls.

<asp:ValidationSummary ID="ValidationSummaryl" runat="server"
ShowMessageBox="True" ShowSummary="False"
ValidationGroup="EditValidationControls" />

<asp:ValidationSummary ID="ValidationSummary2" runat="server"
ShowMessageBox="True" ShowSummary="False"
ValidationGroup="InsertValidationControls" />

With this addition our tutorial is complete!

150f 16

Summary

While BoundFields can provide both an inserting and editing interface, the interface is not customizable.
Commonly, we want to add validation controls to the editing and inserting interface to ensure that the user enters
required inputs in a legal format. To accomplish this we must convert the BoundFields into TemplateFields and
add the validation controls to the appropriate template(s). In this tutorial we extended the example from the
Examining the Events Associated with Inserting, Updating, and Deleting tutorial, adding validation controls to
both the DetailsView's inserting interface and the GridView's editing interface. Moreover, we saw how to display
summary validation information using the ValidationSummary control and how to partition the validation
controls on the page into distinct validation groups.

As we saw in this tutorial, TemplateFields allow the editing and inserting interfaces to be augmented to include
validation controls. TemplateFields can also be extended to include additional input Web controls, enabling the
TextBox to be replaced by a more suitable Web control. In our next tutorial we'll see how to replace the TextBox
control with a data-bound DropDownList control, which is ideal when editing a foreign key (such as
CategoryID Or SupplierID in the Products table).

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer, recently
completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting. NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial were Liz Shulok
and Zack Jones. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

16 of 16

