This tutorial is part of a set. Find out more about data access with ASP.NET in the Working with
Data in ASP.NET 2.0 section of the ASP.NET site at http://www.asp.net/learn/dataaccess/default.aspx.

Working with Data in ASP.NET 2.0 :: Examining
the Events Associated with Inserting, Updating, and
Deleting

Introduction

When using the built-in inserting, editing, or deleting features of the GridView, DetailsView, or FormView
controls, a variety of steps transpire when the end user completes the process of adding a new record or
updating or deleting an existing record. As we discussed in the previous tutorial, when a row is edited in the
GridView the Edit button is replaced by Update and Cancel buttons and the BoundFields turn into TextBoxes.
After the end user updates the data and clicks Update, the following steps are performed on postback:

1. The GridView populates its ObjectDataSource's UpdateParameters with the edited record's unique
identifying field(s) (via the patakeyNames property) along with the values entered by the user

2. The GridView invokes its ObjectDataSource's Update () method, which in turn invokes the appropriate
method in the underlying object (ProductsDAL. UpdateProduct, in our previous tutorial)

3. The underlying data, which now includes the updated changes, is rebound to the GridView

During this sequence of steps, a number of events fire, enabling us to create event handlers to add custom logic
where needed. For example, prior to Step 1, the GridView's RowUpdating event fires. We can, at this point,
cancel the update request if there is some validation error. When the update () method is invoked, the
ObjectDataSource's Updating event fires, providing an opportunity to add or customize the values of any of the
UpdateParameters. After the ObjectDataSource's underlying object's method has completed executing, the
ObjectDataSource's Updated event is raised. An event handler for the updated event can inspect the details
about the update operation, such as how many rows were affected and whether or not an exception occurred.
Finally, after Step 2, the GridView's RowUpdated event fires; an event handler for this event can examine
additional information about the update operation just performed.

Figure 1 depicts this series of events and steps when updating a GridView. The event pattern in Figure 1 is not
unique to updating with a GridView. Inserting, updating, or deleting data from the GridView, DetailsView, or
FormView precipitates the same sequence of pre- and post-level events for both the data Web control and the
ObjectDataSource.

1 of 19

GridView ObjectDataSource ProductsBLL.UpdateProduct

Rowlipdeiing Event

UpdatePararmslens sel

, A

|
|
Update{)
) -
I

|

| UpdateProductupdaleParamelers)

f Lt
[
[

-

Uipdated Evant :I

|

il |
|

|

[Rowlpdated Event :
|

I

Figure 1: A Series of Pre- and Post-Events Fire When Updating Data in a GridView

In this tutorial we'll examine using these events to extend the built-in inserting, updating, and deleting
capabilities of the ASP.NET data Web controls. We'll also see how to customize the editing interface to only
update a subset of the product fields.

Step 1: Updating a Product's ProductName and
UnitPrice Fields

In the editing interfaces from the previous tutorial a// product fields that were not read-only had to be included.
If we were to remove a field from the GridView - say guantityPerUnit - when updating the data the data Web
control would not set the ObjectDataSource's QuantityPerUnit UpdateParameters value. The
ObjectDataSource would then pass in a nu11 value into the UpdateProduct Business Logic Layer (BLL)
method, which would change the edited database record's QuantityPeruUnit column to a NULL value. Similarly,
if a required field, such as productName, is removed from the editing interface, the update will fail with a
"Column 'ProductName' does not allow nulls" exception. The reason for this behavior was because the
ObjectDataSource was configured to call the ProductsBLL class's UpdateProduct method, which expected an
input parameter for each of the product fields. Therefore, the ObjectDataSource's UpdateParameters collection
contained a parameter for each of the method's input parameters.

If we want to provide a data Web control that allows the end user to only update a subset of fields, then we need
to either programmatically set the missing UpdateParameters values in the ObjectDataSource's Updating
event handler or create and call a BLL method that expects only a subset of the fields. Let's explore this latter
approach.

Specifically, let's create a page that displays just the ProductName and UnitPrice fields in an editable
GridView. This GridView's editing interface will only allow the user to update the two displayed fields,

20f19

ProductName and UnitPrice. Since this editing interface only provides a subset of a product's fields, we either
need to create an ObjectDataSource that uses the existing BLL's uUpdateProduct method and has the missing
product field values set programmatically in its Updating event handler, or we need to create a new BLL
method that expects only the subset of fields defined in the GridView. For this tutorial, let's use the latter option
and create an overload of the UpdatepProduct method, one that takes in just three input parameters:
productName, unitPrice, and productID:

[System.ComponentModel.DataObjectMethodAttribute
(System.ComponentModel.DataObjectMethodType.Update, false)]
public bool UpdateProduct (string productName, decimal? unitPrice, int productID)

{
Northwind.ProductsDataTable products = Adapter.GetProductByProductID (productID);

if (products.Count == 0)
// no matching record found, return false
return false;

Northwind.ProductsRow product = products[0];

product.ProductName = productName;
if (unitPrice == null) product.SetUnitPriceNull () ;
else product.UnitPrice = unitPrice.Value;

// Update the product record
int rowsAffected = Adapter.Update (product);

// Return true if precisely one row was updated, otherwise false
return rowsAffected == 1;

Like the original updateProduct method, this overload starts by checking to see if there is a product in the
database with the specified product1p. If not, it returns false, indicating that the request to update the product
information failed. Otherwise it updates the existing product record's ProductName and unitprice fields
accordingly and commits the update by calling the TableAdpater's update () method, passing in the
ProductsRow instance.

With this addition to our ProductsBLL class, we're ready to create the simplified GridView interface. Open the
DataModificationEvents.aspx inthe EditInsertDelete folder and add a GridView to the page. Create a
new ObjectDataSource and configure it to use the productsBLL class with its select () method mapping to
GetProducts and its Update () method mapping to the UpdateProduct overload that takes in only the
productName, unitPrice, and productID input parameters. Figure 2 shows the Create Data Source wizard
when mapping the ObjectDataSource's Update () method to the ProductsBLL class's new UpdateProduct
method overload.

30f 19

-
Configure Data Source - ObjeciDataSourcel

3=
SELECT | UPDATE | INSERT | DELETE

Choose & mathod of the business object to associste with the UPDATE operation. The method should
stcapt & paramater for each praperty of the daba object, o & single parameber which is the data object
to

Exarmnplas: UpdabeProduct{Product p), o LipdateProduct(Ink32 productiD, String manme, Doubls prics)

Choose & mathod:
UpdisteProduct] String producthams, Nullable <Decmals U

LodabeProduct Sring procuctMame, Nulable <Decrmal > yréPrice, Ink3F product[D), retuyrns Boolean

UpdateProduch String produciiame, Nulable <ink 32> supperID, Nullable tlnt> cabegorylD, String gua

Figure 2: Map the ObjectDataSource's update () Method to the New UpdateProduct Overload

Since our example will initially just need the ability to edit data, but not to insert or delete records, take a
moment to explicitly indicate that the ObjectDataSource's Insert () and Delete () methods shouldn't be
mapped to any of the productsBLL class's methods by going to the INSERT and DELETE tabs and choosing
(None) from the drop-down list.

r

Configure Data Source - ObjectDataSource

!

o

SELECT UPDATE | insERT | DELETE
Thoose: a method of the business object to associate with the DELETE operation. The method should
scrapt & parsmater for sach primary key for Hhe dats obiect or & sngle parameter wihich is the dats
ohiject to delste,

Examples: DeleteProduct{Product p), or DeleteProduct{Int32 productiDy)

Chooss & mathod:

{Nere) o

Dol beProduct{ Ink 12 product D), reburns Boolean

Figure 3: Choose (None) From the Drop-Down List for the INSERT and DELETE Tabs

After completing this wizard check the Enable Editing checkbox from the GridView's smart tag.

4 0f 19

With the completion of the Create Data Source wizard and binding that to the GridView, Visual Studio has
created the declarative syntax for both controls. Go to the Source view to inspect the ObjectDataSource's
declarative markup, which is shown below:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"
OldvaluesParameterFormatString="original {0}" SelectMethod="GetProducts"
TypeName="ProductsBLL" UpdateMethod="UpdateProduct">
<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="productID" Type="Int32" />
</UpdateParameters>
</asp:0bjectDataSource>

Since there are no mappings for the ObjectDataSource's Insert () and Delete () methods, there are no
InsertParameters Of DeleteParameters sections. Furthermore, since the update () method is mapped to the
UpdateProduct method overload that only accepts three input parameters, the UpdateParameters section has
just three Parameter instances.

Note that the ObjectDataSource's 01dvaluesParameterFormatString property is setto original {0}. This
property is set automatically by Visual Studio when using the Configure Data Source wizard. However, since
our BLL methods don't expect the original Product1D value to be passed in, remove this property assignment
altogether from the ObjectDataSource's declarative syntax.

Note: If you simply clear out the 01dvaluesParameterFormatString property value from the Properties
window in the Design view, the property will still exist in the declarative syntax, but will be set to an empty
string. Either remove the property altogether from the declarative syntax or, from the Properties window, set the
value to the default, {0}.

While the ObjectDataSource only has UpdateParameters for the product's name, price, and ID, Visual Studio
has added a BoundField or CheckBoxField in the GridView for each of the product's fields.

B Condy - mevrmni] Yowaal Siude

He R e Wkl B Debuay teed Liged [el Bekes el belp Rl
PRI e E .. L85 Hlman i
[—— s w0 o BT TG Ea x
b Tl lmervd e bl vrad s apn ™ - X
[=
|
i
aedal - Corendy ((iaman

| [Exploring the Data Modification Events

ax

1 s 1 1 Ly ol 1 1 1
s
ax

Figure 4: The GridView Contains a BoundField or CheckBoxField for Each of the Product's Fields

When the end user edits a product and clicks its Update button, the GridView enumerates those fields that were
not read-only. It then sets the value of the corresponding parameter in the ObjectDataSource's
UpdateParameters collection to the value entered by the user. If there is not a corresponding parameter, the
GridView adds one to the collection. Therefore, if our GridView contains BoundFields and CheckBoxFields for
all of the product's fields, the ObjectDataSource will end up invoking the updateProduct overload that takes in
all of these parameters, despite the fact that the ObjectDataSource's declarative markup specifies only three

50f 19

input parameters (see Figure 5). Similarly, if there is some combination of non-read-only product fields in the
GridView that doesn't correspond to the input parameters for a UpdateProduct overload, an exception will be
raised when attempting to update.

GridView ObjectDataSource
DataKeyNames UpdateParameters
Value(s
(s) T productiD
productMame
& e Flel #,.-"': unitPrice
ditable Fields
L1
_,4/ _~T| Addedby
ProductName = | / GridView
CategorylD —
SupplierlD - CategorylD
CQuantityPerUnit — SupplieriD
¥, = -_-_____'-
UnitPrice /7‘ "_""—Iﬂuantit:.-'ParUn'rl
UnitsinStock UnitsinStock
e -

Figure 5: The GridView Will Add Parameters to the ObjectDataSource's UpdateParameters Collection

To ensure that the ObjectDataSource invokes the UpdateProduct overload that takes in just the product's name,
price, and ID, we need to restrict the GridView to having editable fields for just the ProductName and
UnitPrice. This can be accomplished by removing the other BoundFields and CheckBoxFields, by setting
those other fields' Readonly property to true, or by some combination of the two. For this tutorial let's simply
remove all GridView fields except the productName and Unitprice BoundFields, after which the GridView's
declarative markup will look like:

<asp:GridView ID="GridViewl" runat="server" AutoGenerateColumns="False"
DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel"
EnableViewState="False">
<Columns>
<asp:CommandField ShowEditButton="True" />
<asp:BoundField DataField="ProductName"
HeaderText="ProductName" SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="UnitPrice" />
</Columns>
</asp:GridView>

Even though the updateProduct overload expects three input parameters, we only have two BoundFields in
our GridView. This is because the productID input parameter is a primary key value and passed in through the

value of the patakKeyNames property for the edited row.

Our GridView, along with the updateProduct overload, allows a user to edit just the name and price of a
product without losing any of the other product fields.

6 of 19

-
1 Lintithed Page - Microsofi Intermel Fuplorer

e Cde Pew Fyerkes Took peb

Ot » O - m B 6 FOtewth {rFoverkss H C3v B 9 - &S

B hep [Pkt 250 e gL e ket e Dl ol i scrl v o s, a3 “ Bl

Working with Data Tutorials

-

Delefing » Data Medification Events

Exploring the Data Modification
Events

Productamee Lirit Price

adale Cancel Chai 18,0000

Chang 19,0000

Angmeed Sy 10 000

Chef Anton's Cajun

Seasonmng ot

Chef Anton's Gumbo

M'J.

Grandma's

Ararcsnfarms Snraad

21.3500

25.0000

ol Lol wkranes

Figure 6: The Interface Allows Editing Just the Product's Name and Price

Improving the uvnitPrice Formatting

While the GridView example shown in Figure 6 works, the unitprice field is not formatted at all, resulting in
a price display that lacks any currency symbols and has four decimal places. To apply a currency formatting for
the non-editable rows, simply set the unitprice BoundField's bataFormatString property to {0:c} and its
HtmlEncode property to false.

fyvailable Fields: BoundField properties:

Z] (all Fieids) f
= 5] BourdField 51 ———
73] ProductlD ConvertEmpky Skrinc True
] ProductName [HmIEm:cu:ﬁs False]
T] supplierlD InsertYisible True
=] categorylD Nulisplay Text
Z] QuantyPerlnik » ReadOnky False
N B i vt L S ., Sonrieader Troe

SortExpression UnitPrice
Selected Fislds: Visible True
2 edr, Update, Cancel .

E s DataField UnitPrice
: B riprice j l DataFormatSiring [ELH-

DataFormatString
The Formatting that is applied ko the bound
value, For example, “{0udt or “{0:c}".

[awito-generate Fields

Refresh Schema

Figure 7: Set the UnitPrice's DataFormatString and HtmlEncode Properties Accordingly

7 of 19

With this change, the non-editable rows format the price as a currency; the edited row, however, still displays
the value without the currency symbol and with four decimal places.

D Unditbed Pagw - Miciesol! Imernel Eaphonss

fwa Fgeortes fode beb

B g
Qo * O - 3 G Poewch Sroons @ 0- b #- &0
o

g Tl R o T b St Dol ol st il emrts s

wOrklng w]th Data TutonaIS ::me » Editing, Inserting, and Deleting > Data

o dific ation Events

Exploring the Data Modification
Events

LindtPrice

Lipdats CANSE (Cha 19,0000

Edit Chang £12.00

Edit Argsesd Syrup $10.00

Edit Chaf Anton's Cajun Seasoning §22.00

Edit Chef Anton's Gumibs M §21.3%5
Grandma's BoysenbeTy

Edit Spimad $25.00

, Urcle Bob's Orgarec Dried - -

Edif Fears £30L00

Werthvarnrts Cranharry Saies B4 AN

Figure 8: The Non-Editable Rows are Now Formatted as Currency Values

The formatting instructions specified in the bataFormatString property can be applied to the editing interface
by setting the BoundField's ApplyFormatInEditMode property to true (the default is false). Take a moment
to set this property to true.

=

Fields

fyvailable Fiekds: BoundField propertles:
2] (il Felds) E 1
= £l BoundField -
Z] ProductiD E Accessibility
=] ProductMame AccessibleHeader Text
=] Supplierin B Appearance
] categorylD FookerTexk
T ruankkyPerlink Heades Imagel k|
BB B orailed dBb e bk,

Sdﬂad Fh!h:ls
-E Ed:, Update, Cancel
InzartWisible

ApplyFormat InEditMode

Whether the data should be shown with the
DataFormatString Formatting applied whenin ...

[awito-generate Fields

Refresh Schema

Figure 9: Set the unitPrice BoundField's ApplyFormatInEditMode property to true

With this change, the value of the unitprice displayed in the edited row is also formatted as a currency.

8 0f 19

-
3 Untitied Page - Microsofi Internet [xplorer

Be B e Fpomes Dmb b
QGoxk « O (5 B @ S sah Favortes 5 e b - C o

8] bitp: | Pioc elhost YR oole T Inses IDvebebe Dk aMacificationE verks. o ¥ B

-~

Working with Data Tutorials =~ Hems > edmna.inserting. and

; Dwleting * U‘HI _fﬂﬂ_ﬂ_lf_l_tlﬂil‘l i_\'l‘l'lh

Exploring the Data Modification
Events

Producthame LinitPrice

rece! Chal $19.00

Chang §19.00

Ansead Synup $10.00

Chef Anton's Cajun

EEE$I3F‘I"II; ‘22 oa

Chef anton's Gumbo

Pl

Grandma's

B e grdbarey Crrgsd

£21.35

$25.00

Figure 10: The Edited Row's UnitPrice Value is Now Formatted as a Currency

However, updating a product with the currency symbol in the textbox — such as $19.00 — throws a
FormatException. When the GridView attempts to assign the user-supplied values to the ObjectDataSource's
UpdateParameters collection it is unable to convert the unitprice string "$19.00" into the decimal required
by the parameter (see Figure 11). To remedy this we can create an event handler for the GridView's
RowUpdating event and have it parse the user-supplied unitprice as a currency-formatted decimal.

The GridView's RowUpdating event accepts as its second parameter an object of type
GridViewUpdateEventArgs, which includes a Newvalues dictionary as one of its properties that holds the user-
supplied values ready to be assigned to the ObjectDataSource's UpdateParameters collection. We can
overwrite the existing UnitPrice value in the Newvalues collection with a decimal value parsed using the
currency format with the following lines of code in the RowUpdating event handler:

protected void GridViewl RowUpdating(object sender, GridViewUpdateEventArgs e)
{

if (e.NewValues["UnitPrice"] != null)
e.NewValues ["UnitPrice"] =
decimal.Parse (e.NewValues ["UnitPrice"].ToString(),
System.Globalization.NumberStyles.Currency);

If the user has supplied a unitPrice value (such as "$19.00"), this value is overwritten with the decimal value
computed by Decimal.Parse, parsing the value as a currency. This will correctly parse the decimal in the event
of any currency symbols, commas, decimal points, and so on, and uses the NumberStyles enumeration in the
System.Globalization namespace.

Figure 11 shows both the problem caused by currency symbols in the user-supplied unitPrice, along with how
the GridView's RowUpdating event handler can be utilized to correctly parse such input.

90of 19

$19.95 Passed as a String...

The ObjectDataSource’s UnitPrice fekd s assigned the string entered by the usar, “§15.85.° An exceplion is ralsed &s the
DhgectlataSource cannot canvart this sinng inio the decimal required bry the ProductsBLL class's UpdateProducts

meathod
GridView
Da!!“&yﬂ!ﬁ'\l’:ﬂ
Value(s) ObjectDataSource ProductsBLL
UpdateParameters.
Editable Fields
productiD
Froucitimme ‘$10.95° PO CIN B $19.95
UnitPrice = unitFrice -.,.-.@ UpdateProduct

$19.95 Passed as a Decimal...
The Gridview's Rowlpdating event handler convarts the string *$18.85 into a decimal and stores the decimal in the
ObpaciDaiaSource. This decimal value can now be correclly passed imlo e UpdabeProdesd method

GridView
DataKeyMames
Value(s) ObjectDataSource ProductsBLL
UpdateParameters
Editable Fislds
producti

Prioducth mr 19.05 produciame 19.95
UrilPrice e UPRPTIES u aProdust

Figure 11: The Edited Row's UnitPrice Value is Now Formatted as a Currency

Step 2: Prohibiting NULL UnitPrices

While the database is configured to allow NULL values in the Products table's unitprice column, we may
want to prevent users visiting this particular page from specifying a NULL UnitPrice value. That is, if a user
fails to enter a unitPrice value when editing a product row, rather than save the results to the database we
want to display a message informing the user that, through this page, any edited products must have a price
specified.

The GridviewUpdateEventArgs object passed into the GridView's RowUpdating event handler contains a
cancel property that, if set to true, terminates the updating process. Let's extend the RowUpdating event
handler to set e.cancel to true and display a message explaining why if the unitprice value in the
NewValues collection is null.

Start by adding a Label Web control to the page named MustProvideUnitPriceMessage. This Label control
will be displayed if the user fails to specify a unitPrice value when updating a product. Set the Label's Text
property to "You must provide a price for the product." I've also created a new CSS class in styles.css named
warning with the following definition:

.Warning

{
color: Red;
font-style: italic;
font-weight: bold;
font-size: x-large;

Finally, set the Label's cssClass property to warning. At this point the Designer should show the warning

10 of 19

message in a red, bold, italic, extra large font size above the GridView, as shown in Figure 12.

B [Yew Webste [ekd [ebug Fomat Leme Tock Window Commny b Addme
[RS ERe N - N b 8 delate -

8 F‘u‘ i I \ B
= : -~

‘|
rED{uﬂlﬂlt = Comiler] fCustom)

Exploring the Data Modification
Events

ou must provide a price for the
fa rﬂJ:l'ﬂ. " B "

Fraducthame LiniiPrice

iy Caroeitet FOrtertl s s

3} Ervir 10 3] Oty | Pl B 1

Figure 12: A Label Has Been Added Above the GridView

By default, this Label should be hidden, so set its visible property to false in the page Load event handler:

protected void Page Load(object sender, EventArgs e)
{
MustProvideUnitPriceMessage.Visible = false;

}

If the user attempts to update a product without specifying the unitprice, we want to cancel the update and
display the warning label. Augment the GridView's RowUpdating event handler as follows:

protected void GridViewl RowUpdating(object sender, GridViewUpdateEventArgs e)
{

if (e.NewValues["UnitPrice"] != null)
{
e.NewValues["UnitPrice"] =
decimal.Parse (e.NewValues ["UnitPrice"].ToString(),
System.Globalization.NumberStyles.Currency) ;

else

// Show the Label
MustProvideUnitPriceMessage.Visible = true;

// Cancel the update
e.Cancel = true;

If a user attempts to save a product without specifying a price, the update is cancelled and a helpful message is
displayed. While the database (and business logic) allows for NULL UnitPrices, this particular ASP.NET page
does not.

11of 19

-
D Untithed Page - Microsolt Interne! [xplerer

Els Ed Yew Fgeorbed Jook Heip

Q) Back = [:_' A D Gaarch Favoiites 47

(S l| B (localbent: 35681 Coda Edl TniertDelste, Dt aModileationE -enli. ags

Working with Data Tutorials Home > Eqiting, Inserting. and

Celeting > Data Modification
Events

Exploring the Data
Modification Events

You must provide a price for

the Eruduct.

Chai

Chang 15,00

Filter by Drrop-Ciown . Aniseed Syrup $10.00
List i Chef anton's Cajun

Seasoning
Mas bar-Detals- = Chef Artor's: Gumbe

N Locsl mtraret

Figure 13: A User Cannot Leave UnitPrice Blank

So far we have seen how to use the GridView's RowUpdating event to programmatically alter the parameter
values assigned to the ObjectDataSource's UpdatepParameters collection as well as how to cancel the updating
process altogether. These concepts carry over to the DetailsView and FormView controls and also apply to
inserting and deleting.

These tasks can also be done at the ObjectDataSource level through event handlers for its Inserting,
Updating, and Deleting events. These events fire before the associated method of the underlying object is
invoked and provide a last-chance opportunity to modify the input parameters collection or cancel the operation
outright. The event handlers for these three events are passed an object of type
ObjectDataSourceMethodEventArgs that has two properties of interest:

e Cancel, which, if set to true, cancels the operation being performed

o InputParameters, which is the collection of InsertParameters, UpdateParameters, Or
DeleteParameters, depending on whether the event handler is for the Tnserting, Updating, or
Deleting event

To illustrate working with the parameter values at the ObjectDataSource level, let's include a DetailsView in
our page that allows the users to add a new product. This DetailsView will be used to provide an interface for
quickly adding a new product to the database. To keep a consistent user interface when adding a new product
let's allow the user to only enter values for the ProductName and UnitPprice fields. By default, those values that
aren't supplied in the DetailsView's inserting interface will be set to a NULL database value. However, we can
use the ObjectDataSource's Inserting event to inject different default values, as we'll see shortly.

Step 3: Providing an Interface to Add New Products

Drag a DetailsView from the Toolbox onto the Designer above the GridView, clear out its Height and width
properties, and bind it to the ObjectDataSource already present on the page. This will add a BoundField or
CheckBoxField for each of the product's fields. Since we want to use this DetailsView to add new products, we
need to check the Enable Inserting option from the smart tag; however, there's no such option because the
ObjectDataSource's Insert () method is not mapped to a method in the productsBLL class (recall that we set

12 of 19

this mapping to (None) when configuring the data source — see Figure 3).

To configure the ObjectDataSource, select the Configure Data Source link from its smart tag, launching the
wizard. The first screen allows you to change the underlying object the ObjectDataSource is bound to; leave it
set to productsBLL. The next screen lists the mappings from the ObjectDataSource's methods to the underlying
object's. Even though we explicitly indicated that the Tnsert () and Delete () methods should not be mapped
to any methods, if you go to the INSERT and DELETE tabs you'll see that a mapping is there. This is because
the ProductsBLL'S AddProduct and DeleteProduct methods use the DataobjectMethodAttribute attribute
to indicate that they are the default methods for Insert () and pelete (), respectively. Hence, the
ObjectDataSource wizard selects these each time you run the wizard unless there's some other value explicitly
specified.

Leave the Insert () method pointing to the AddProduct method, but again set the DELETE tab's drop-down
list to (None).

r

Configure Data Source - ObjectDataSourcel

=

SELECT | UPDATE | INSERT | GELETE

(Choose a method of the business object to associste with the INSERT operstion. The method should
scapt & paramater for sach property of the data object, or & single parameber which is the dats object
toinsest,

Examples: InssrtProduct{Product p), or InsartProduct{int32 productiD, String name, Double price)

Chooss & method:

AcddProduct(String productiame, Mudlabis <Int X2 > aupplicid

Method signature:

AddProduct{String producthlames, Nulsble<Irt32 > supplierD, Nullsble 1Rt 32 > catagorylD, String
quanitityPerinit, Nulable <Dedmal> unitPrice, Nullable<Ink 16> untsinStodk, Nullsble <Inti6 s
unit sOnCrder, Nullable <knt 16> rearderLevel, Bookean discontinued), retums Ink32

Figure 14: Set the INSERT Tab's Drop-Down List to the AddProduct Method

13 of 19

"

Configure Data Source - ObjeciDataSourcel

SELECT | UPDATE | INSERT DELETE

Thoose & method of the basiness object to associste with the DELETE operation. The method should
atrapt a paramater for sach primary key for the daba obiect or a single parameter wiich is the data
chiject to delete,

Exarmnpbes: DelebeProduct(Product p), o DeleteProduck{Int32 praductiD)

Chooss & mathod:
{hore) bt

Dol beProduct{ Ink 12 product D), reburns Boolean

Figure 15: Set the DELETE Tab's Drop-Down List to (None)

After making these changes, the ObjectDataSource's declarative syntax will be expanded to include an
InsertParameters collection, as shown below:

<asp:0bjectDataSource ID="ObjectDataSourcel" runat="server"

SelectMethod="GetProducts" TypeName="ProductsBLL"

UpdateMethod="UpdateProduct" OnUpdating="ObjectDataSourcel Updating"

InsertMethod="AddProduct" OldValuesParameterFormatString="original {0}">

<UpdateParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="productID" Type="Int32" />

</UpdateParameters>

<InsertParameters>
<asp:Parameter Name="productName" Type="String" />
<asp:Parameter Name="supplierID" Type="Int32" />
<asp:Parameter Name="categoryID" Type="Int32" />
<asp:Parameter Name="quantityPerUnit" Type="String" />
<asp:Parameter Name="unitPrice" Type="Decimal" />
<asp:Parameter Name="unitsInStock" Type="Intle6" />
<asp:Parameter Name="unitsOnOrder" Type="Intle6" />
<asp:Parameter Name="reorderLevel" Type="Intle6" />
<asp:Parameter Name="discontinued" Type="Boolean" />

</InsertParameters>

</asp:0bjectDataSource>

Rerunning the wizard added back the 01dvaluesParameterFormatString property. Take a moment to clear
this property by setting it to the default value ({0}) or removing it altogether from the declarative syntax.

With the ObjectDataSource providing inserting capabilities, the DetailsView's smart tag will now include the
Enable Inserting checkbox; return to the Designer and check this option. Next, pare down the DetailsView so
that it only has two BoundFields - ProductName and unitPrice - and the CommandField. At this point the
DetailsView's declarative syntax should look like:

<asp:DetailsView ID="DetailsViewl" runat="server" AutoGenerateRows="False"

14 of 19

DataKeyNames="ProductID" DataSourceID="ObjectDataSourcel"
EnableViewState="False">
<Fields>
<asp:BoundField DataField="ProductName"
HeaderText="ProductName" SortExpression="ProductName" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice"
SortExpression="UnitPrice" />
<asp:CommandField ShowInsertButton="True" />
</Fields>
</asp:DetailsView>

Figure 16 shows this page when viewed through a browser at this point. As you can see, the DetailsView lists
the name and price of the first product (Chai). What we want, however, is an inserting interface that provides a
means for the user to quickly add a new product to the database.

1‘ Untitled Page - Microsoll Infernel Explarer
Bl it Wew Fperites [ook Hep
J Bearch Favorkes " i]~ C-R N R

g E__"h:r.p it albecn - Y558 (e ek It CDa bete Tat aecdl 1D BbonE vanils . i - ﬂ L

Deleting > Data Medification
Events

Working with Data Tutorials Hems > Editing. Inserting. and

Exploring the Data
Modification Events

erocduct Nare e

UnitPrice

Producthame |UnitPrice

EQit Chs §$19.35
Edit Chang $19.00
Edit Anseed Syrup $10.00
Edit Chef Anton's Can Seasoning $22.00
Edit Chef Anton's Gumbo Mix $21.38
Edit Grandma's Boysenberry Spread $25.00

ar e a4 F [alals

i | bl Db P m Pl i

S Local niranet

Figure 16: The DetailsView is Currently Rendered in Read-Only Mode

In order to show the DetailsView in its inserting mode we need to set the befaultMode property to Inserting.
This renders the DetailsView in insert mode when first visited and keeps it there after inserting a new record. As
Figure 17 shows, such a DetailsView provides a quick interface for adding a new record.

15 of 19

3‘ Untilled Page - Microsoll Inflermel Explares

Bl [Edt Wew Fpeorites [ook Help
(0 Back - s @ B Poech foworkes @ [3e (W] -

E g e alhat EER{Code fEd brmar thwheb Tk aModl ic sionE vl aigoe

Wnrklng with Data Tutorials Hems> Eatina. inserting. ana

Deleting > Data Medification
Events

Exploring the Data
Modification Events

ProductMNare ERaRRET

UndtPrice

Product Name |UnitPrice
f£19.95
Edit Chang §19.00
Edit areseed Syrup $10.00
Edif Chef Anton's Cajun Seasoning $22.00
Edit Chef Anton's Gumbdo Mix $21.35
‘J Local niranet

Figure 17: The DetailsView Provides an Interface for Quickly Adding a New Product

When the user enters a product name and price (such as "Acme Water" and 1.99, as in Figure 17) and clicks
Insert, a postback ensues and the inserting workflow commences, culminating in a new product record being
added to the database. The DetailsView maintains its inserting interface and the GridView is automatically
rebound to its data source in order to include the new product, as shown in Figure 18.

3 Untitled Page - Microsoft Internet Explorer

File Edit Miew Fawaorites Tools Help 4

Qeack ~ &) - ¥ @) @ P search lvFavorkes £ (-

- address | € http:flocahost: 3588/ Code/EdtnsertDelete Datamodic ¥ | [Go

EQCCoOMNgNTe ToT0 FIOO] o
| —
F.honbrau I
Bt Klosterbier $7.75 i
Edit Lakkalik&dri $18.00 |
original !
it Frankfurter griine $12.00 i
Sofe f
Edit Acme Tea 19,95
Edit.Acme Coffee $24.95
(EditAcme water $1.99]
v
< ll B
@ Cane "j Local inkranet

Figure 18: The Product "Acme Water'" Has Been Added to the Database

While the GridView in Figure 18 doesn't show it, the product fields lacking from the DetailsView interface —

16 of 19

CategoryID, SupplierID, QuantityPerUnit, and so on — are assigned NULL database values. You can see this
by performing the following steps:

Go to the Server Explorer in Visual Studio
Expanding the NORTHWND . MDF database node
Right-click on the products database table node
Select Show Table Data

b=

This will list all of the records in the Products table. As Figure 19 shows, all of our new product's columns
other than ProductID, ProductName, and UnitPrice have NULL values.

*. Code - Microsoll Visual Sludio

Bl [Yew Poect Bokd [ebug Dgts QueryDesgrer fook Windes Comnty Help fddes
- =y | <3 & ¥ i deebe g
gl M o= ChageTopa s | | b B2 #7082
b Products: Qu_SORTHWRDMDF) | Ans CodeiPeod. sndChargeg.os O x || Sereer Explonsr = X
-] Procctl | Froduciase Suppier|D | Cabegodd QuantiyPerlind | LindPrice & F |
. bk Lages 1 24- 25 mi bottles 150000 2 (4 Doaba Connctions -
Flokerrysost 15 4 10-S00gphgs. 215000 = [l NORTHWID MOP
Mozzebad Gl 14 1 M-Z0gpkg FHE0N - oa E‘:t':’” Ll
Risd Eaviar 17] 24-1B0gjas LE.0O00 3 Cathgories
Lorghfi Tohu i 7 5 kg g 100000 # 0 CumomerCushiss
Rharioesa loste. . 12 L .05 botes 7,750 : inl:;:::';'"""
Lkl = 1 500 ni 15,0000 3 = Brployess
Orignal Frankfu. .. 12 2 12 biess 130000 i 0 EmployesTerrhore
] i T 1 i 3 birw par b 1500 # T Order Detade
Aérog Ceffms 1 i 5 carg pae bix 249500 :
[- J Al Wsher Ll MAL L 1, =] + SR
x i I TT [[T, ALY [T 5 : ﬂ m“ .
. ¥ % & »
1 of T3 b Bl ¥ okts Read Oy = - . o,
AE A Dutpat | g Fead
[

Figure 19: The Product Fields Not Provided in the DetailsView are Assigned NULL Values

We may want to provide a default value other than nuLL for one or more of these column values, either because
NULL isn't the best default option or because the database column itself doesn't allow nuLLs. To accomplish this
we can programmatically set the values of the parameters of the DetailsView's InputParameters collection.
This assignment can be done either in the event handler for the DetailsView's TtemInserting event or the
ObjectDataSource's Inserting event. Since we've already looked at using the pre- and post-level events at the
data Web control level, let's explore using the ObjectDataSource's events this time.

Step 4: Assigning Values to the categoryip and
SupplieriD Parameters

For this tutorial let's imagine that for our application when adding a new product through this interface it should
be assigned a categoryID and SupplierID value of 1. As mentioned earlier, the ObjectDataSource has a pair
of pre- and post-level events that fire during the data modification process. When its Insert () method is
invoked, the ObjectDataSource first raises its Inserting event, then calls the method that its Insert () method
has been mapped to, and finally raises the Tnserted event. The Inserting event handler affords us one last
opportunity to tweak the input parameters or cancel the operation outright.

Note: In a real-world application you would likely want to either let the user specify the category and supplier

or would pick this value for them based on some criteria or business logic (rather than blindly selecting an ID of
1). Regardless, the example illustrates how to programmatically set the value of an input parameter from the

17 of 19

ObjectDataSource's pre-level event.

Take a moment to create an event handler for the ObjectDataSource's Inserting event. Notice that the event
handler's second input parameter is an object of type objectDataSourceMethodEventArgs, which has a
property to access the parameters collection (InputParameters) and a property to cancel the operation
(Cancel)

protected void ObjectDataSourcel Inserting
(object sender, ObjectDataSourceMethodEventArgs e)

{
}

At this point, the InputpParameters property contains the ObjectDataSource's InsertParameters collection
with the values assigned from the DetailsView. To change the value of one of these parameters, simply use:
e.InputParameters ["paramName"] = value. Therefore, to setthe categoryID and SupplierID to values of
1, adjust the Tnserting event handler to look like the following:

protected void ObjectDataSourcel Inserting
(object sender, ObjectDataSourceMethodEventArgs e)

{
e.InputParameters["CategoryID"] = 1;
e.InputParameters["SupplierID"] = 1;

This time when adding a new product (such as Acme Soda), the categoryIDd and supplierIiD columns of the
new product are set to 1 (see Figure 20).

T Code - Micromsl| Viswsl 5lwdio

B b8 Yew Proect fuld Qeba Dpte QuereDesgrer Jock Wndow Commanty Help ks
e el A S bl e &
il ol = CargeTye= | ! i L1243)
500 Products Q. SORTHENDMDF) = = = X | SeverExploner -0 K
! ProductiDl Prosducidsrs SupplariDl CategoryID CusntityPerink LindPrics o j T “_,
i Aol 15] 10-Edgphgs. 215000 = [l Data Coneections .
Heszaral & Go... 14 4 4.0 pkgE. 4000 = [y WORTHWHD MOF
R K ' & 4. 150 jark 150000 G Daksbuio Cingrana
A Tabshii
M Lorsga Tishi 4 T 5 by g U000 b [Cabugrta
Ahinbrbsiloks.., 13] 05 boizhs 7,750 # [customertiston
Lakbaii e ' 550 L0 5 B utomertemoy
F] Customers
Craprad Frackfur,, 13 4 12 bz 130000 i [Employnss
Acing Tas 1 1 3 lifm e B (B] 4 [T Emplrysa Tarriber
Arme Colfen 1 1 8 cara por ko 249500] Gmder Datada
- [onders
A ‘Water A st ALLS 1, &[] Products
{- Armes Socia 1 1 ALES 1,454]] Regon
= T} AR Ml [T [T [T i Shigpers
o ' _:II 'Sq:mit_ i o
£ ¥ £ T
1 ofEn | b K b el s Rmas iy _-:I ! "'-l".- 3l
i Esr] o | g Fined Rioiults 1
Baady

Figure 20: New Products Now Have Their categoryID and SupplierID Values Set to 1

Summary

During the editing, inserting, and deleting process, both the data Web control and the ObjectDataSource
proceed through a number of pre- and post-level events. In this tutorial we examined the pre-level events and
saw how to use these to customize the input parameters or cancel the data modification operation altogether
both from the data Web control and ObjectDataSource's events. In the next tutorial we'll look at creating and

18 of 19

using event handlers for the post-level events.

Happy Programming!

About the Author

Scott Mitchell, author of six ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working
with Microsoft Web technologies since 1998. Scott works as an independent consultant, trainer, and writer,
recently completing his latest book, Sams Teach Yourself ASP.NET 2.0 in 24 Hours. He can be reached at
mitchell@4guysfromrolla.com or via his blog, which can be found at http://ScottOnWriting.NET.

Special Thanks To...

This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this tutorial include Jackie
Goor and Liz Shulok. Interested in reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com.

19 of 19

