你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn。
使用本文查找将 Foundry 代理服务与模型上下文协议 (MCP) 服务器连接的代码示例。
先决条件
- 配置的 MCP 服务器,例如 GitHub MCP 服务器。
创建项目客户端
创建包含用于连接到 AI 项目和其他资源的终结点的客户端对象。
注释
可以在 GitHub 上找到异步示例
var projectEndpoint = System.Environment.GetEnvironmentVariable("PROJECT_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME");
var mcpServerUrl = System.Environment.GetEnvironmentVariable("MCP_SERVER_URL");
var mcpServerLabel = System.Environment.GetEnvironmentVariable("MCP_SERVER_LABEL");
PersistentAgentsClient agentClient = new(projectEndpoint, new DefaultAzureCredential());
创建 MCP 工具定义
创建 MCP 工具定义并配置允许的工具。
// Create MCP tool definition
MCPToolDefinition mcpTool = new(mcpServerLabel, mcpServerUrl);
// Configure allowed tools (optional)
string searchApiCode = "search_azure_rest_api_code";
mcpTool.AllowedTools.Add(searchApiCode);
在 MCPToolDefinition 代理初始化期间使用。
PersistentAgent agent = agentClient.Administration.CreateAgent(
model: modelDeploymentName,
name: "my-mcp-agent",
instructions: "You are a helpful agent that can use MCP tools to assist users. Use the available MCP tools to answer questions and perform tasks.",
tools: [mcpTool]);
创建线程并添加消息
创建线程,添加包含代理问题的消息,并使用 MCP 工具资源启动运行。
PersistentAgentThread thread = agentClient.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage message = agentClient.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"Please summarize the Azure REST API specifications Readme");
MCPToolResource mcpToolResource = new(mcpServerLabel);
mcpToolResource.UpdateHeader("SuperSecret", "123456");
ToolResources toolResources = mcpToolResource.ToToolResources();
// Run the agent with MCP tool resources
ThreadRun run = agentClient.Runs.CreateRun(thread, agent, toolResources);
// Handle run execution and tool approvals
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress || run.Status == RunStatus.RequiresAction)
{
Thread.Sleep(TimeSpan.FromMilliseconds(1000));
run = agentClient.Runs.GetRun(thread.Id, run.Id);
if (run.Status == RunStatus.RequiresAction && run.RequiredAction is SubmitToolApprovalAction toolApprovalAction)
{
var toolApprovals = new List<ToolApproval>();
foreach (var toolCall in toolApprovalAction.SubmitToolApproval.ToolCalls)
{
if (toolCall is RequiredMcpToolCall mcpToolCall)
{
Console.WriteLine($"Approving MCP tool call: {mcpToolCall.Name}, Arguments: {mcpToolCall.Arguments}");
toolApprovals.Add(new ToolApproval(mcpToolCall.Id, approve: true)
{
Headers = { ["SuperSecret"] = "123456" }
});
}
}
if (toolApprovals.Count > 0)
{
run = agentClient.Runs.SubmitToolOutputsToRun(thread.Id, run.Id, toolApprovals: toolApprovals);
}
}
}
打印消息
Pageable<PersistentThreadMessage> messages = agentClient.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
Console.Write(textItem.Text);
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}>");
}
Console.WriteLine();
}
}
可选:删除代理
完成使用代理后,可以通过以下方法删除它:
agentClient.Threads.DeleteThread(threadId: thread.Id);
agentClient.Administration.DeleteAgent(agentId: agent.Id);
使用 MCP 工具创建代理
以下代码示例首先设置必要的导入、获取相关的 MCP 服务器配置,并初始化 AI Project 客户端。 然后,它会创建代理,将消息添加到线程,并运行代理。
# Import necessary libraries
import os, time
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import (
ListSortOrder,
McpTool,
RequiredMcpToolCall,
RunStepActivityDetails,
SubmitToolApprovalAction,
ToolApproval,
)
# Get MCP server configuration from environment variables
mcp_server_url = os.environ.get("MCP_SERVER_URL", "https://gitmcp.io/Azure/azure-rest-api-specs")
mcp_server_label = os.environ.get("MCP_SERVER_LABEL", "github")
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
# Initialize agent MCP tool
mcp_tool = McpTool(
server_label=mcp_server_label,
server_url=mcp_server_url,
allowed_tools=[], # Optional: specify allowed tools
)
# You can also add or remove allowed tools dynamically
search_api_code = "search_azure_rest_api_code"
mcp_tool.allow_tool(search_api_code)
print(f"Allowed tools: {mcp_tool.allowed_tools}")
# Create agent with MCP tool and process agent run
with project_client:
agents_client = project_client.agents
# Create a new agent.
# NOTE: To reuse existing agent, fetch it with get_agent(agent_id)
agent = agents_client.create_agent(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
name="my-mcp-agent",
instructions="You are a helpful agent that can use MCP tools to assist users. Use the available MCP tools to answer questions and perform tasks.",
tools=mcp_tool.definitions,
)
print(f"Created agent, ID: {agent.id}")
print(f"MCP Server: {mcp_tool.server_label} at {mcp_tool.server_url}")
# Create thread for communication
thread = agents_client.threads.create()
print(f"Created thread, ID: {thread.id}")
# Create message to thread
message = agents_client.messages.create(
thread_id=thread.id,
role="user",
content="Please summarize the Azure REST API specifications Readme",
)
print(f"Created message, ID: {message.id}")
# Create and process agent run in thread with MCP tools
mcp_tool.update_headers("SuperSecret", "123456")
# mcp_tool.set_approval_mode("never") # Uncomment to disable approval requirement
run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id, tool_resources=mcp_tool.resources)
print(f"Created run, ID: {run.id}")
while run.status in ["queued", "in_progress", "requires_action"]:
time.sleep(1)
run = agents_client.runs.get(thread_id=thread.id, run_id=run.id)
if run.status == "requires_action" and isinstance(run.required_action, SubmitToolApprovalAction):
tool_calls = run.required_action.submit_tool_approval.tool_calls
if not tool_calls:
print("No tool calls provided - cancelling run")
agents_client.runs.cancel(thread_id=thread.id, run_id=run.id)
break
tool_approvals = []
for tool_call in tool_calls:
if isinstance(tool_call, RequiredMcpToolCall):
try:
print(f"Approving tool call: {tool_call}")
tool_approvals.append(
ToolApproval(
tool_call_id=tool_call.id,
approve=True,
headers=mcp_tool.headers,
)
)
except Exception as e:
print(f"Error approving tool_call {tool_call.id}: {e}")
print(f"tool_approvals: {tool_approvals}")
if tool_approvals:
agents_client.runs.submit_tool_outputs(
thread_id=thread.id, run_id=run.id, tool_approvals=tool_approvals
)
print(f"Current run status: {run.status}")
print(f"Run completed with status: {run.status}")
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Display run steps and tool calls
run_steps = agents_client.run_steps.list(thread_id=thread.id, run_id=run.id)
# Loop through each step
for step in run_steps:
print(f"Step {step['id']} status: {step['status']}")
# Check if there are tool calls in the step details
step_details = step.get("step_details", {})
tool_calls = step_details.get("tool_calls", [])
if tool_calls:
print(" MCP Tool calls:")
for call in tool_calls:
print(f" Tool Call ID: {call.get('id')}")
print(f" Type: {call.get('type')}")
if isinstance(step_details, RunStepActivityDetails):
for activity in step_details.activities:
for function_name, function_definition in activity.tools.items():
print(
f' The function {function_name} with description "{function_definition.description}" will be called.:'
)
if len(function_definition.parameters) > 0:
print(" Function parameters:")
for argument, func_argument in function_definition.parameters.properties.items():
print(f" {argument}")
print(f" Type: {func_argument.type}")
print(f" Description: {func_argument.description}")
else:
print("This function has no parameters")
print() # add an extra newline between steps
# Fetch and log all messages
messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
print("\nConversation:")
print("-" * 50)
for msg in messages:
if msg.text_messages:
last_text = msg.text_messages[-1]
print(f"{msg.role.upper()}: {last_text.text.value}")
print("-" * 50)
# Example of dynamic tool management
print(f"\nDemonstrating dynamic tool management:")
print(f"Current allowed tools: {mcp_tool.allowed_tools}")
# Remove a tool
try:
mcp_tool.disallow_tool(search_api_code)
print(f"After removing {search_api_code}: {mcp_tool.allowed_tools}")
except ValueError as e:
print(f"Error removing tool: {e}")
# Clean-up and delete the agent once the run is finished.
# NOTE: Comment out this line if you plan to reuse the agent later.
agents_client.delete_agent(agent.id)
print("Deleted agent")
后续步骤
按照 REST API 快速入门 为环境变量 AGENT_TOKEN、AZURE_AI_FOUNDRY_PROJECT_ENDPOINT 和 API_VERSION 设置正确的值。
创建启用了 MCP 工具的代理
若要使 MCP 工具可用于你的代理,请通过服务器终结点、服务器标签等初始化该工具:
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/assistants?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d "{
"instructions": "You are a customer support chatbot. Use the tools provided and your knowledge base to best respond to customer queries.",
"tools": [
{
"type": "mcp",
"server_label": "<unique name for your MCP server>",
"server_url": "<your MCP server URL>",
"allowed_tools": ["<tool_name>"], # optional
}
],
"name": "my-assistant",
"model": "gpt-4o",
}"
创建线程
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d ''
将用户问题添加到线程
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"role": "user",
"content": "<user input related to the MCP server you connect>"
}'
创建运行并检查输出
创建一个执行过程以传递工具的标头。 观察模型是否使用“使用必应搜索提供事实依据”工具来响应用户的问题。
require_approval 参数是可选的。 支持的值有:
-
always:开发人员需要为每个呼叫提供审批。 如果未提供值,则此值为默认值。 -
never:无需审批。 -
{"never":[<tool_name_1>, <tool_name_2>]}:提供不需要审批的工具列表。 -
{"always":[<tool_name_1>, <tool_name_2>]}:提供需要审批的工具列表。
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"assistant_id": "<agent_id>",
"tool_resources": {
"mcp": [
{
"server_label": "<the same unique name you provided during agent creation>",
"require_approval": "always" #always by default
"headers": {
"Authorization": "Bearer <token>",
}
}
]
},
}'
获取运行状态
curl --request GET \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs/run_abc123?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN"
如果模型尝试调用 MCP 服务器中需要审批的工具,你会得到一个运行状态为 requires_action 的运行:
{
"id": "run_123",
"object": "thread.run",
...
"status": "requires_action",
...
"required_action": {
"type": "submit_tool_approval",
"submit_tool_approval": {
"tool_calls": [
{
"id": "call_123",
"type": "mcp",
"arguments": "{...}",
"name": "<tool_name>",
"server_label": "<server_label_you_provided>"
}
]
}
},
...
"tools": [
{
"type": "mcp",
"server_label": "<server_label_you_provided>",
"server_url": "<server_url_you_provided>",
"allowed_tools": null
}
],
...
}
仔细查看要传递的工具和参数,以便你可以做出明智的审批决策。
提交您的批准
如果决定批准,请将 approve 参数设置为 true,使用 id 参数值应用于之前的工具调用:
curl --request POST \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/runs/run_abc123/submit_tool_outputs?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"tool_approvals": [
{
"tool_call_id": "call_abc123",
"approve": true,
"headers": {
}
}
]
}
检索代理响应
curl --request GET \
--url $AZURE_AI_FOUNDRY_PROJECT_ENDPOINT/threads/thread_abc123/messages?api-version=$API_VERSION \
-H "Authorization: Bearer $AGENT_TOKEN"