你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure 中国技术文档网站,请访问 https://docs.azure.cn

单量子比特和多量子比特 Pauli 测量

使用时 Q#,你会发现 Pauli 度量 是一种常见的度量类型。 Pauli 度量将计算基础度量通用化,以包括其他基数中的度量值,以及不同量子比特之间的奇偶校验。 在这种情况下,通常讨论测量 Pauli 运算符,该运算符是 X、Y、Z 或 $Z\otimes Z$、X X\otimes、X\otimes Y$ 等运算符$。 有关量子测量的基础知识,请参阅 量子比特多个量子比特

在量子误差更正的子领域,讨论 Pauli 运算符的度量很常见。
Q# 指南遵循类似的约定;本文介绍测量的这种替代视图。

提示

在中 Q#,多量子位 Pauli 运算符通常由类型的 Pauli[]数组表示。 例如,若要表示 $X \otimes Z \otimes Y$,可以使用数组 [PauliX, PauliZ, PauliY]

在深入了解有关如何看待 Pauli 测量的详细信息之前,有必要思考测量量子计算机中单个量子比特对量子态的影响。 假设有一个 $n$ 量子比特量子态;然后如果测量一个量子比特,那么在概率为 $2^n$ 的情况下,这会排除掉状态所在的一半概率。 换句话说,在两个各占一半的空间中,测量将量子态投影到其中一个空间。 可以通用化考虑度量的方式,以反映这种直觉。

为了简洁地识别这些子空间,需要用一种语言来描述它们。 要描述两个子空间,一种方式是通过恰好有两个唯一特征值的矩阵指定它们,该矩阵按照约定为 $\pm 1$。 有关按此方式描述子空间的简单示例,请考虑 $Z$:

$$\begin{\begin{align}Z & 1 & =\begin{bmatrix} 0 \\ 0 & -1 \end{bmatrix}. \end{align} $$

通过读取 Pauli-$Z$ 矩阵的对角元素,可以看到 $Z$ 有两个特征向量($\ket{0}$ 和 $\ket{1}$),对应的特征值为 $\pm 1$。 因此,如果量子比特的度量结果Zero(对应于状态$\ket{0}$),则已知量子比特的状态是 $Z$ 运算符的 $+1$ 特征状态。 同样,如果结果是One,已知量子比特的状态是 $Z$ 的 $-1$ 特征状态。 此过程在 Pauli 测量的语言中称为“测量 Pauli $Z$”,完全等同于执行计算基础测量。

任何是 $Z$ 的酉变换的 $2\times 2$ 矩阵也满足此条件。 也就是说,还可使用矩阵 $A=U^\dagger Z U$,其中 $U$ 是任何其他酉矩阵,以便给出一个矩阵来定义其 $\pm 1$ 特征向量中的测量的两个结果。 Pauli 测量的表示法通过将 $X,Y,Z$ 测量标识为等效测量来引用这种酉等价,其中用户可进行这些测量来从量子比特中获得信息。 为了方便起见,此处提供了这些度量值。

Pauli 测量 酉变换
$Z$ $\mathbf{1}$
$X$ $H$
$Y$ $HS^{\dagger}$

也就是说,使用此语言, &引用;measure $Y$"等效于应用 $HS^\dagger$ ,然后在计算基础中测量,其中 S 内部量子运算有时称为 "阶段门,"可以使用单一矩阵模拟

$$\begin{\begin{align}S =1 amp; 0 \\ 0 & i\end{bmatrix}.&\begin{bmatrix} \end{align} $$

这也等同于向量子态向量应用 $HS^\dagger$,然后测量 $Z$,这使得以下操作等效于 Measure([PauliY], [q])

operation MeasureY(qubit : Qubit) : Result {
    mutable result = Zero;
    within {
        Adjoint S(q);
        H(q);
    } apply {
        set result = M(q);
    }
    return result;
}

然后,通过将转换回计算基础(相当于将 SH$ 应用于$量子状态向量)找到正确的状态;在代码片段中,转换回到计算基础时会自动处理该块的使用within … apply

在 Q#结果---即,使用 Result 值 $j \in \{\texttt{Zero}, \texttt{One}\}$ 表示结果是否在 $度量的 Pauli 运算符的 (-1)^j$ 特征空间中,从状态交互中提取的经典信息---is。

多量子比特测量

多量子比特 Pauli 运算符的测量具有类似定义,如下所见:

$$ Z\otimes Z =\begin{bmatrix}1 &0 &0&0\\ 0&-1&0&0\\ 0&0&-1&0\\ 0&0&0&1\end{bmatrix}. $$

因此,两个 Pauli-$Z$ 运算符的张量积形成一个由两个空间组成的矩阵,空间包含 $+1$ 和 $-1$ 特征值。 与单量子比特情况一样,两者构成对半分的空间,这意味着可访问的向量空间的一半属于 $+1$ 特征空间,其余一半属于 $-1$ 特征空间。 通常,很容易从张量积的定义中看出 Pauli-$Z$ 运算符的任何张量积和恒等式也遵循这一规则。 例如,

$$\begin{align}Z \otimes{1}=\begin{bmatrix}\mathbf{1 & 0 & 0 amp; &0 \\ && 0 amp; 0 & \\ 0 & 0 amp; &-1 & 0 \\ & 0 amp; 0 amp; 0 && -1.\end{bmatrix} \end{align} $$

与以前一样,此类矩阵的任何一元转换也描述了两个用 $\pm 1$ 特征值标记的半空格。 例如,来自 $Z=HXH$ 的恒等式的 $X\otimes X = H\otimes H(Z\otimes Z)H\otimes H$。 与一量子比特情况类似,所有双量子比特 Pauli 测量都可以作为 U^ (Z\otimes 1) U $$ 写入 4 4$\times 个单一矩阵 $U$。\dagger $ 下表中列举了变换。

注意

在此表中,$\operatorname{SWAP}$ 用于指示矩阵\operatorname{$$\begin{align} SWAP&}amp; =\left(\begin{矩阵} 1 & 0 & 0 amp; &\\ &0 amp; 0 & 0 amp; &0 amp; 0 \\ & 0 amp; &0 & 0 && \\ &; 1 \end{矩阵}\right)\end{align}$$用于模拟内在运算。SWAP

Pauli 测量 酉变换
$Z\otimes\mathbf{1}$ $\mathbf{1}\otimes \mathbf{1}$
$X\otimes\mathbf{1}$ $H\otimes\mathbf{1}$
$Y\otimes\mathbf{1}$ $HS^\dagger\otimes\mathbf{1}$
$\mathbf{1}\otimes Z$ $\operatorname{SWAP}$
$\mathbf{1}\otimes X$ $(H\otimes\mathbf{1})\operatorname{SWAP}$
$\mathbf{1}\otimes Y$ $(HS^\dagger\otimes\mathbf{1})\operatorname{SWAP}$
$Z\otimes Z$ $\operatorname{CNOT}_{10}$
$X\otimes Z$ $\operatorname{CNOT}_{10}(H\otimes\mathbf{1})$
$Y\otimes Z$ $\operatorname{CNOT}_{10}(HS^\dagger\otimes\mathbf{1})$
$Z\otimes X$ $\operatorname{CNOT}_{10}(\mathbf{1}\otimes H)$
$X\otimes X$ $\operatorname{CNOT}_{10}(H\otimes H)$
$Y\otimes X$ $\operatorname{CNOT}_{10}(HS^\dagger\otimes H)$
$Z\otimes Y$ $\operatorname{CNOT}_{10}(\mathbf{1}\otimes HS^\dagger)$
$X\otimes Y$ $\operatorname{CNOT}_{10}(H\otimes HS^\dagger)$
$Y\otimes Y$ $\operatorname{CNOT}_{10}(HS^\dagger\otimes HS^\dagger)$

在这里,由于以下原因,会出现 CNOT 操作。 不包括 $\mathbf{1}$ 矩阵的每个 Pauli 度量都等效于前面推理的一元到 $Z\otimes Z$ 。 $Z\otimes Z$ 的特征值仅取决于由每个计算基向量构成的量子比特的奇偶校验,而受控非操作用于计算此奇偶校验并将它存储在第一个比特中。 然后,在测量第一个比特后,可恢复所生成的对半空间的恒等式,这相当于测量 Pauli 运算符。

此外,虽然假设测量 $Z Z 与按顺序测量 $Z\mathbb{\otimes\otimes{1}$$ 和 $\mathbb{1}\otimes Z$ 相同,但这一假设可能很诱人,但这种假设是错误的。 原因是测量 $Z\otimes Z$ 会将量子态投影到这些运算符的 $+1$ 或 $-1$ 特征状态。 依次测量 $Z\otimes\mathbb{1}$ 和 $\mathbb{1}\otimes Z$ 会将量子状态向量先投影到 $Z\otimes\mathbb{{1}$ 的一半空间,然后再投影到 $\mathbb{{1}\otimes Z$ 的一半空间。 因此有四个计算基向量,执行两个测量会将状态投影到一个只占 1/4 的空间,因此将它缩减到单个计算基础向量。

量子位之间的关联

要查看如何测量 Pauli 矩阵(例如 $X\otimes X$ 或 $Z\otimes Z$)的张量积,还有一种方法是通过这些测量查看存储在两个量子比特之间的相关性中的信息。 通过测量 $X\otimes 1$ ,可以查看存储在第一个量子比特中本地的信息。 虽然在量子计算中,这两种类型的测量同样都很有价值,但前者展示了量子计算的强大功能。 它揭示出在量子计算中,你想要了解的信息通常并非存储在单个量子比特中,而是以非本地的形式同时存储在所有量子比特中,因此仅通过联合测量(例如 $Z\otimes Z$)来查看就能使该信息变为清单。

也可以测量任意 Pauli 运算符(如 $X\otimes Y \otimes Z \otimes\mathbf{1}$ )。 Pauli 运算符的任何这类张量积都只有两个特征值 $\pm 1$,而且两个特征空间由整个向量空间各占一半的空间构成。 因此,它们与前面所述的要求相吻合。

在 Q# 中,如果测量在符号 $(-1)^j$ 的特征空间中生成结果,那么这类测量会返回 $j$。 将 Pauli 度量作为内置功能Q#非常有用,因为测量此类运算符需要长链受控的 NOT 门和基础转换来描述将操作表示为 Z$ 和 $1$ 的张量乘积$所需的对角$线 U$ 门。 通过能够指定你希望执行上述某一预定义的测量,你无需担心如何变换你的基来使计算基测量提供必要的信息。 Q# 会为你自动处理所有必要的基变换。

不可克隆定理

量子信息很强大。 它使你可以执行惊人的事情,如因子数指数比已知的经典算法快,或有效地模拟传统需要指数成本来准确模拟的相关电子系统。 不过,对量子计算的功能也有一些限制。 一个这类限制是由不可克隆定理导致的

不可克隆定理恰如其名。 它禁止量子计算机克隆一般的量子态。 该定理的证明非常简单。 虽然没有克隆定理的完整证明对于本文来说太技术,但在没有额外的辅助量子比特的情况下证明在范围内。

对于此类量子计算机,必须使用单一矩阵来描述克隆操作。 不允许进行量子测量,因为它会破坏要克隆的量子态。 为了模拟克隆操作,所使用的酉矩阵需具有这样的属性:任何状态 $\ket{\psi}$ 的 $$ U \ket{\psi}\ket{{0}=\ket{\psi}\ket{\psi}$$。 矩阵乘法的线性性质随后意味着,对于任何第二个量子态 $\ket{\phi}$,

$$\begin{\begin{align}U \left[ (\ket{\phi}\frac{{2}}\left{1}{\sqrt{+\ket{\psi}\right) \right] \ket{&{0}amp; =\frac{1}{\sqrt{2}}U\ket{\phi}\ket{{0} + \frac{1}{\sqrt{{2}} U\ket{\psi}\ket{0}\\& =\frac{1}{\sqrt{2}}\left( \ket{\phi}\ket{\phi} + \ket{\psi}\ket{\psi}\right) \\和 \ne\left&\ket{\phi}(\frac{{2}}\left{1}{\sqrt{+\ket{\psi}\right) \otimes\left\right) (\frac{1}{\sqrt{\ket{\phi}{2}}\left+\ket{\psi}\right) 。 \right \end{align} $$

这提供了不可克隆定理背后的基本的直觉:任何复制未知量子态都必然在其复制的至少部分状态中引发错误。 虽然可通过添加和测量辅助量子比特来违背克隆程序以线性方式作用于输入状态的关键假设,但这种交互也会通过测量统计信息泄露系统相关信息并在这种情况下阻止精确克隆。

不可克隆定理对定性了解量子计算来说很重要,因为如果你可克隆量子态且费用不高,那么你就能获得一种近乎魔法的力量来从量子态中学到信息。 的确,你可能会违背海森堡宣扬的不确定性原理。 或者,你可使用最优克隆程序来从复杂的量子分布中获取一个示例,并学习你可能从一个示例中学到的关于该分布的一切知识。 这就像你翻硬币和观察头,然后告诉朋友结果让他们回应 &报价:啊, 硬币的分布必须是伯努利与 $p=0.512643\ldots$!"此类语句是无意义的,因为一位信息(头结果)根本无法提供编码分布所需的许多位信息,而无需大量的事先信息。 同样地,如果没有先验信息,人们就无法完美地克隆一个量子态,就像无法在不知道 $p$ 的情况下准备这种硬币的集成一样。

在量子计算中,信息不是免费的。 测量到的每个量子比特提供一个比特的信息,而不可克隆定理显示必须在所获得的系统信息与在系统上引发的干扰之间进行基本权衡,没有捷径可以避开这一点。