Partitioner<TSource> 类

定义

表示将数据源拆分为多个分区的特定方式。

generic <typename TSource>
public ref class Partitioner abstract
public abstract class Partitioner<TSource>
type Partitioner<'Source> = class
Public MustInherit Class Partitioner(Of TSource)

类型参数

TSource

集合中的元素的类型。

继承
Partitioner<TSource>
派生

示例

以下示例演示如何实现一次返回单个元素的分区程序:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

namespace PartitionerDemo
{
    // Simple partitioner that will extract one item at a time, in a thread-safe fashion,
    // from the underlying collection.
    class SingleElementPartitioner<T> : Partitioner<T>
    {
        // The collection being wrapped by this Partitioner
        IEnumerable<T> m_referenceEnumerable;

        // Internal class that serves as a shared enumerable for the
        // underlying collection.
        private class InternalEnumerable : IEnumerable<T>, IDisposable
        {
            IEnumerator<T> m_reader;
            bool m_disposed = false;

            // These two are used to implement Dispose() when static partitioning is being performed
            int m_activeEnumerators;
            bool m_downcountEnumerators;

            // "downcountEnumerators" will be true for static partitioning, false for
            // dynamic partitioning.
            public InternalEnumerable(IEnumerator<T> reader, bool downcountEnumerators)
            {
                m_reader = reader;
                m_activeEnumerators = 0;
                m_downcountEnumerators = downcountEnumerators;
            }

            public IEnumerator<T> GetEnumerator()
            {
                if (m_disposed)
                    throw new ObjectDisposedException("InternalEnumerable: Can't call GetEnumerator() after disposing");

                // For static partitioning, keep track of the number of active enumerators.
                if (m_downcountEnumerators) Interlocked.Increment(ref m_activeEnumerators);

                return new InternalEnumerator(m_reader, this);
            }

            IEnumerator IEnumerable.GetEnumerator()
            {
                return ((IEnumerable<T>)this).GetEnumerator();
            }

            public void Dispose()
            {
                if (!m_disposed)
                {
                    // Only dispose the source enumerator if you are doing dynamic partitioning
                    if (!m_downcountEnumerators)
                    {
                        m_reader.Dispose();
                    }
                    m_disposed = true;
                }
            }

            // Called from Dispose() method of spawned InternalEnumerator.  During
            // static partitioning, the source enumerator will be automatically
            // disposed once all requested InternalEnumerators have been disposed.
            public void DisposeEnumerator()
            {
                if (m_downcountEnumerators)
                {
                    if (Interlocked.Decrement(ref m_activeEnumerators) == 0)
                    {
                        m_reader.Dispose();
                    }
                }
            }
        }

        // Internal class that serves as a shared enumerator for
        // the underlying collection.
        private class InternalEnumerator : IEnumerator<T>
        {
            T m_current;
            IEnumerator<T> m_source;
            InternalEnumerable m_controllingEnumerable;
            bool m_disposed = false;

            public InternalEnumerator(IEnumerator<T> source, InternalEnumerable controllingEnumerable)
            {
                m_source = source;
                m_current = default(T);
                m_controllingEnumerable = controllingEnumerable;
            }

            object IEnumerator.Current
            {
                get { return m_current; }
            }

            T IEnumerator<T>.Current
            {
                get { return m_current; }
            }

            void IEnumerator.Reset()
            {
                throw new NotSupportedException("Reset() not supported");
            }

            // This method is the crux of this class.  Under lock, it calls
            // MoveNext() on the underlying enumerator and grabs Current.
            bool IEnumerator.MoveNext()
            {
                bool rval = false;
                lock (m_source)
                {
                    rval = m_source.MoveNext();
                    m_current = rval ? m_source.Current : default(T);
                }
                return rval;
            }

            void IDisposable.Dispose()
            {
                if (!m_disposed)
                {
                    // Delegate to parent enumerable's DisposeEnumerator() method
                    m_controllingEnumerable.DisposeEnumerator();
                    m_disposed = true;
                }
            }
        }

        // Constructor just grabs the collection to wrap
        public SingleElementPartitioner(IEnumerable<T> enumerable)
        {
            // Verify that the source IEnumerable is not null
            if (enumerable == null)
                throw new ArgumentNullException("enumerable");

            m_referenceEnumerable = enumerable;
        }

        // Produces a list of "numPartitions" IEnumerators that can each be
        // used to traverse the underlying collection in a thread-safe manner.
        // This will return a static number of enumerators, as opposed to
        // GetDynamicPartitions(), the result of which can be used to produce
        // any number of enumerators.
        public override IList<IEnumerator<T>> GetPartitions(int numPartitions)
        {
            if (numPartitions < 1)
                throw new ArgumentOutOfRangeException("NumPartitions");

            List<IEnumerator<T>> list = new List<IEnumerator<T>>(numPartitions);

            // Since we are doing static partitioning, create an InternalEnumerable with reference
            // counting of spawned InternalEnumerators turned on.  Once all of the spawned enumerators
            // are disposed, dynamicPartitions will be disposed.
            var dynamicPartitions = new InternalEnumerable(m_referenceEnumerable.GetEnumerator(), true);
            for (int i = 0; i < numPartitions; i++)
                list.Add(dynamicPartitions.GetEnumerator());

            return list;
        }

        // Returns an instance of our internal Enumerable class.  GetEnumerator()
        // can then be called on that (multiple times) to produce shared enumerators.
        public override IEnumerable<T> GetDynamicPartitions()
        {
            // Since we are doing dynamic partitioning, create an InternalEnumerable with reference
            // counting of spawned InternalEnumerators turned off.  This returned InternalEnumerable
            // will need to be explicitly disposed.
            return new InternalEnumerable(m_referenceEnumerable.GetEnumerator(), false);
        }

        // Must be set to true if GetDynamicPartitions() is supported.
        public override bool SupportsDynamicPartitions
        {
            get { return true; }
        }
    }

    class Program
    {
        // Test our SingleElementPartitioner(T) class
        static void Main()
        {
            // Our sample collection
            string[] collection = new string[] {"red", "orange", "yellow", "green", "blue", "indigo",
                "violet", "black", "white", "grey"};

            // Instantiate a partitioner for our collection
            SingleElementPartitioner<string> myPart = new SingleElementPartitioner<string>(collection);

            //
            // Simple test with ForEach
            //
            Console.WriteLine("Testing with Parallel.ForEach");
            Parallel.ForEach(myPart, item =>
            {
                Console.WriteLine("  item = {0}, thread id = {1}", item, Thread.CurrentThread.ManagedThreadId);
            });

            //
            //
            // Demonstrate the use of static partitioning, which really means
            // "using a static number of partitioners".  The partitioners themselves
            // may still be "dynamic" in the sense that their outputs may not be
            // deterministic.
            //
            //

            // Perform static partitioning of collection
            var staticPartitions = myPart.GetPartitions(2);
            int index = 0;

            Console.WriteLine("Static Partitioning, 2 partitions, 2 tasks:");

            // Action will consume from static partitions
            Action staticAction = () =>
            {
                int myIndex = Interlocked.Increment(ref index) - 1; // compute your index
                var myItems = staticPartitions[myIndex]; // grab your static partition
                int id = Thread.CurrentThread.ManagedThreadId; // cache your thread id

                // Enumerate through your static partition
                while (myItems.MoveNext())
                {
                    Thread.Sleep(50); // guarantees that multiple threads have a chance to run
                    Console.WriteLine("  item = {0}, thread id = {1}", myItems.Current, Thread.CurrentThread.ManagedThreadId);
                }

                myItems.Dispose();
            };

            // Spawn off 2 actions to consume 2 static partitions
            Parallel.Invoke(staticAction, staticAction);

            //
            //
            // Demonstrate the use of dynamic partitioning
            //
            //

            // Grab an IEnumerable which can then be used to generate multiple
            // shared IEnumerables.
            var dynamicPartitions = myPart.GetDynamicPartitions();

            Console.WriteLine("Dynamic Partitioning, 3 tasks:");

            // Action will consume from dynamic partitions
            Action dynamicAction = () =>
            {
                // Grab an enumerator from the dynamic partitions
                var enumerator = dynamicPartitions.GetEnumerator();
                int id = Thread.CurrentThread.ManagedThreadId; // cache our thread id

                // Enumerate through your dynamic enumerator
                while (enumerator.MoveNext())
                {
                    Thread.Sleep(50); // guarantees that multiple threads will have a chance to run
                    Console.WriteLine("  item = {0}, thread id = {1}", enumerator.Current, id);
                }

                enumerator.Dispose();
            };

            // Spawn 3 concurrent actions to consume the dynamic partitions
            Parallel.Invoke(dynamicAction, dynamicAction, dynamicAction);

            // Clean up
            if (dynamicPartitions is IDisposable)
                ((IDisposable)dynamicPartitions).Dispose();
        }
    }
}
Imports System.Collections.Concurrent
Imports System.Threading
Imports System.Threading.Tasks

Module PartitionerDemo
    ' Simple partitioner that will extract one item at a time, in a thread-safe fashion,
    ' from the underlying collection.
    Class SingleElementPartitioner(Of T)
        Inherits Partitioner(Of T)
        ' The collection being wrapped by this Partitioner
        Private m_referenceEnumerable As IEnumerable(Of T)

        ' Internal class that serves as a shared enumerable for the
        ' underlying collection.
        Private Class InternalEnumerable
            Implements IEnumerable(Of T)
            Implements IDisposable

            Private m_reader As IEnumerator(Of T)
            Private m_disposed As Boolean = False

            ' These two are used to implement Dispose() when static partitioning is being performed
            Private m_activeEnumerators As Integer
            Private m_downcountEnumerators As Boolean

            ' "downcountEnumerators" will be true for static partitioning, false for
            ' dynamic partitioning. 
            Public Sub New(ByVal reader As IEnumerator(Of T), ByVal downcountEnumerators As Boolean)
                m_reader = reader
                m_activeEnumerators = 0
                m_downcountEnumerators = downcountEnumerators
            End Sub

            Public Function GetEnumerator() As IEnumerator(Of T) Implements IEnumerable(Of T).GetEnumerator
                If m_disposed Then
                    Throw New ObjectDisposedException("InternalEnumerable: Can't call GetEnumerator() after disposing")
                End If

                ' For static partitioning, keep track of the number of active enumerators.
                If m_downcountEnumerators Then
                    Interlocked.Increment(m_activeEnumerators)
                End If

                Return New InternalEnumerator(m_reader, Me)
            End Function

            Private Function GetEnumerator2() As IEnumerator Implements IEnumerable.GetEnumerator
                Return DirectCast(Me, IEnumerable(Of T)).GetEnumerator()
            End Function

            Public Sub Dispose() Implements IDisposable.Dispose
                If Not m_disposed Then
                    ' Only dispose the source enumerator if you are doing dynamic partitioning
                    If Not m_downcountEnumerators Then
                        m_reader.Dispose()
                    End If
                    m_disposed = True
                End If
            End Sub

            ' Called from Dispose() method of spawned InternalEnumerator. During
            ' static partitioning, the source enumerator will be automatically
            ' disposed once all requested InternalEnumerators have been disposed.
            Public Sub DisposeEnumerator()
                If m_downcountEnumerators Then
                    If Interlocked.Decrement(m_activeEnumerators) = 0 Then
                        m_reader.Dispose()
                    End If
                End If
            End Sub
        End Class

        ' Internal class that serves as a shared enumerator for 
        ' the underlying collection.
        Private Class InternalEnumerator
            Implements IEnumerator(Of T)

            Private m_current As T
            Private m_source As IEnumerator(Of T)
            Private m_controllingEnumerable As InternalEnumerable
            Private m_disposed As Boolean = False

            Public Sub New(ByVal source As IEnumerator(Of T), ByVal controllingEnumerable As InternalEnumerable)
                m_source = source
                m_current = Nothing
                m_controllingEnumerable = controllingEnumerable
            End Sub

            Private ReadOnly Property Current2() As Object Implements IEnumerator.Current
                Get
                    Return m_current
                End Get
            End Property

            Private ReadOnly Property Current() As T Implements IEnumerator(Of T).Current
                Get
                    Return m_current
                End Get
            End Property

            Private Sub Reset() Implements IEnumerator.Reset
                Throw New NotSupportedException("Reset() not supported")
            End Sub

            ' This method is the crux of this class. Under lock, it calls
            ' MoveNext() on the underlying enumerator and grabs Current.
            Private Function MoveNext() As Boolean Implements IEnumerator.MoveNext
                Dim rval As Boolean = False
                SyncLock m_source
                    rval = m_source.MoveNext()
                    m_current = If(rval, m_source.Current, Nothing)
                End SyncLock
                Return rval
            End Function

            Private Sub Dispose() Implements IDisposable.Dispose
                If Not m_disposed Then
                    ' Delegate to parent enumerable's DisposeEnumerator() method
                    m_controllingEnumerable.DisposeEnumerator()
                    m_disposed = True
                End If
            End Sub

        End Class

        ' Constructor just grabs the collection to wrap
        Public Sub New(ByVal enumerable As IEnumerable(Of T))

            ' Verify that the source IEnumerable is not null
            If enumerable Is Nothing Then
                Throw New ArgumentNullException("enumerable")
            End If

            m_referenceEnumerable = enumerable
        End Sub

        ' Produces a list of "numPartitions" IEnumerators that can each be
        ' used to traverse the underlying collection in a thread-safe manner.
        ' This will return a static number of enumerators, as opposed to
        ' GetDynamicPartitions(), the result of which can be used to produce
        ' any number of enumerators.
        Public Overloads Overrides Function GetPartitions(ByVal numPartitions As Integer) As IList(Of IEnumerator(Of T))
            If numPartitions < 1 Then
                Throw New ArgumentOutOfRangeException("NumPartitions")
            End If

            Dim list As New List(Of IEnumerator(Of T))(numPartitions)

            ' Since we are doing static partitioning, create an InternalEnumerable with reference
            ' counting of spawned InternalEnumerators turned on. Once all of the spawned enumerators
            ' are disposed, dynamicPartitions will be disposed.
            Dim dynamicPartitions = New InternalEnumerable(m_referenceEnumerable.GetEnumerator(), True)
            For i As Integer = 0 To numPartitions - 1
                list.Add(dynamicPartitions.GetEnumerator())
            Next

            Return list
        End Function

        ' Returns an instance of our internal Enumerable class. GetEnumerator()
        ' can then be called on that (multiple times) to produce shared enumerators.
        Public Overloads Overrides Function GetDynamicPartitions() As IEnumerable(Of T)
            ' Since we are doing dynamic partitioning, create an InternalEnumerable with reference
            ' counting of spawned InternalEnumerators turned off. This returned InternalEnumerable
            ' will need to be explicitly disposed.
            Return New InternalEnumerable(m_referenceEnumerable.GetEnumerator(), False)
        End Function

        ' Must be set to true if GetDynamicPartitions() is supported.
        Public Overloads Overrides ReadOnly Property SupportsDynamicPartitions() As Boolean
            Get
                Return True
            End Get
        End Property
    End Class

    Class Program
        ' Test our SingleElementPartitioner(T) class
        Shared Sub Main()
            ' Our sample collection
            Dim collection As String() = New String() {"red", "orange", "yellow", "green", "blue", "indigo", _
            "violet", "black", "white", "grey"}

            ' Instantiate a partitioner for our collection
            Dim myPart As New SingleElementPartitioner(Of String)(Collection)

            '
            ' Simple test with ForEach
            '
            Console.WriteLine("Testing with Parallel.ForEach")
            Parallel.ForEach(myPart,
                             Sub(item)
                                 Console.WriteLine(" item = {0}, thread id = {1}", item, Thread.CurrentThread.ManagedThreadId)
                             End Sub)

            '
            '
            ' Demonstrate the use of static partitioning, which really means
            ' "using a static number of partitioners". The partitioners themselves
            ' may still be "dynamic" in the sense that their outputs may not be
            ' deterministic.
            '
            '

            ' Perform static partitioning of collection
            Dim staticPartitions = myPart.GetPartitions(2)
            Dim index As Integer = 0

            Console.WriteLine("Static Partitioning, 2 partitions, 2 tasks:")

            ' Action will consume from static partitions
            Dim staticAction As Action =
                Sub()
                    Dim myIndex As Integer = Interlocked.Increment(index) - 1
                    ' compute your index
                    Dim myItems = staticPartitions(myIndex)
                    ' grab your static partition
                    Dim id As Integer = Thread.CurrentThread.ManagedThreadId
                    ' cache your thread id
                    ' Enumerate through your static partition
                    While myItems.MoveNext()
                        Thread.Sleep(50)
                        ' guarantees that multiple threads have a chance to run
                        Console.WriteLine(" item = {0}, thread id = {1}", myItems.Current, Thread.CurrentThread.ManagedThreadId)
                    End While

                    myItems.Dispose()
                End Sub

            ' Spawn off 2 actions to consume 2 static partitions
            Parallel.Invoke(staticAction, staticAction)

            '
            '
            ' Demonstrate the use of dynamic partitioning
            '
            '

            ' Grab an IEnumerable which can then be used to generate multiple
            ' shared IEnumerables.
            Dim dynamicPartitions = myPart.GetDynamicPartitions()

            Console.WriteLine("Dynamic Partitioning, 3 tasks:")

            ' Action will consume from dynamic partitions
            Dim dynamicAction As Action =
                Sub()
                    ' Grab an enumerator from the dynamic partitioner
                    Dim enumerator = dynamicPartitions.GetEnumerator()
                    Dim id As Integer = Thread.CurrentThread.ManagedThreadId
                    ' cache our thread id
                    ' Enumerate through your dynamic enumerator
                    While enumerator.MoveNext()
                        Thread.Sleep(50)
                        ' guarantees that multiple threads will have a chance to run
                        Console.WriteLine(" item = {0}, thread id = {1}", enumerator.Current, id)
                    End While

                    enumerator.Dispose()
                End Sub

            ' Spawn 3 concurrent actions to consume the dynamic partitions
            Parallel.Invoke(dynamicAction, dynamicAction, dynamicAction)

            ' Clean up
            If TypeOf dynamicPartitions Is IDisposable Then
                DirectCast(dynamicPartitions, IDisposable).Dispose()
            End If
        End Sub
    End Class

End Module

注解

有关详细信息,请参阅 PLINQ 和 TPL 的自定义分区程序

构造函数

Partitioner<TSource>()

创建新的分区程序实例。

属性

SupportsDynamicPartitions

获取是否可以动态创建附加分区。

方法

Equals(Object)

确定指定对象是否等于当前对象。

(继承自 Object)
GetDynamicPartitions()

创建一个可将基础集合分区成可变数目的分区的对象。

GetHashCode()

作为默认哈希函数。

(继承自 Object)
GetPartitions(Int32)

将基础集合分区成给定数目的分区。

GetType()

获取当前实例的 Type

(继承自 Object)
MemberwiseClone()

创建当前 Object 的浅表副本。

(继承自 Object)
ToString()

返回表示当前对象的字符串。

(继承自 Object)

扩展方法

AsParallel<TSource>(Partitioner<TSource>)

启用查询的并行化,并由负责将输入序列拆分成各个分区的自定义分区程序指明其出处。

适用于

线程安全性

静态方法 Partitioner<TSource> 都是线程安全的,可以从多个线程并发使用。 但是,虽然创建的分区程序正在使用中,但不应修改基础数据源,无论是使用分区程序还是单独线程的同一线程。

另请参阅