مشاركة عبر


تدريب نماذج الذكاء الاصطناعي وML

يوضح لك هذا القسم كيفية تدريب التعلم الآلي ونماذج الذكاء الاصطناعي على الذكاء الاصطناعي الفسيفساء.

الفسيفساء الذكاء الاصطناعي تدريب النموذج يبسط ويوحد عملية التدريب ونشر نماذج التعلم الآلي التقليدية من خلال أحمال عمل ضبط نموذج AutoML و Foundation.

AutoML

يبسط AutoML عملية تطبيق التعلم الآلي على مجموعات البيانات الخاصة بك من خلال العثور تلقائيا على أفضل خوارزمية وتكوين hyperparameter لك. يوفر AutoML واجهة مستخدم بدون تعليمات برمجية بالإضافة إلى واجهة برمجة تطبيقات Python.

ضبط نموذج الأساس

يتيح لك ضبط نموذج الأساس (الآن جزء من تدريب نموذج الذكاء الاصطناعي الفسيفساء) على Databricks تخصيص نماذج اللغات الكبيرة (LLMs) باستخدام بياناتك الخاصة. تتضمن هذه العملية ضبط تدريب نموذج أساسي موجود مسبقا، ما يقلل بشكل كبير من البيانات والوقت وموارد الحوسبة المطلوبة مقارنة بتدريب نموذج من البداية. تتضمن الميزات الرئيسية:

  • الضبط الدقيق الخاضع للإشراف: تكيف نموذجك مع المهام الجديدة من خلال التدريب على بيانات الاستجابة السريعة المنظمة.
  • التدريب المسبق المستمر: تحسين النموذج الخاص بك ببيانات نصية إضافية لإضافة معرفة جديدة أو التركيز على مجال معين.
  • إكمال الدردشة: تدريب نموذجك على سجلات الدردشة لتحسين قدرات المحادثة.

أمثلة مكتبة مفتوحة المصدر

راجع أمثلة التدريب على التعلم الآلي من مجموعة متنوعة من مكتبات التعلم الآلي مصدر مفتوح، بما في ذلك أمثلة ضبط المعلمات الفائقة باستخدام Optuna وHyperopt.

التعلم العميق

راجع الأمثلة وأفضل الممارسات للتدريب الموزع على التعلم العميق حتى تتمكن من تطوير نماذج التعلم العميق وضبطها على Azure Databricks.

القائمون على التوصية

تعرف على كيفية تدريب نماذج التوصية المستندة إلى التعلم العميق على Azure Databricks. بالمقارنة مع نماذج التوصية التقليدية، يمكن لنماذج التعلم العميق تحقيق نتائج ذات جودة أعلى وتوسيع نطاقها إلى كميات أكبر من البيانات.