مشاركة عبر


الدوال العددية الخارجية المعرفة من قبل المستخدم (UDFs)

ينطبق على: وضع علامة Databricks Runtime

الدالات العددية المعرفة من قبل المستخدم (UDFs) هي إجراءات قابلة للبرمجة من قبل المستخدم تعمل على صف واحد. تسرد هذه الوثائق الفئات المطلوبة لإنشاء وتسجيل UDFs. كما يحتوي على أمثلة توضح كيفية تعريف وتسجيل UDFs واستدعائها في Spark SQL.

UserDefinedFunction فصل

لتعريف خصائص دالة معرفة من قبل المستخدم، يمكنك استخدام بعض الطرق المعرفة في هذه الفئة.

  • asNonNullable(): UserDefinedFunction: تحديثات UserDefinedFunction إلى غير يقبل القيم الخالية.
  • asNondeterministic(): UserDefinedFunction: تحديثات UserDefinedFunction إلى غير محدد.
  • withName(name: String): UserDefinedFunction: Updates UserDefinedFunction with a given name.

الأمثلة

Scala

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf

val spark = SparkSession
      .builder()
      .appName("Spark SQL UDF scalar example")
      .getOrCreate()

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
val random = udf(() => Math.random())
spark.udf.register("random", random.asNondeterministic())
spark.sql("SELECT random()").show()
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
val plusOne = udf((x: Int) => x + 1)
spark.udf.register("plusOne", plusOne)
spark.sql("SELECT plusOne(5)").show()
// +------+
// |UDF(5)|
// +------+
// |     6|
// +------+

// Define a two-argument UDF and register it with Spark in one step
spark.udf.register("strLenScala", (_: String).length + (_: Int))
spark.sql("SELECT strLenScala('test', 1)").show()
// +--------------------+
// |strLenScala(test, 1)|
// +--------------------+
// |                   5|
// +--------------------+

// UDF in a WHERE clause
spark.udf.register("oneArgFilter", (n: Int) => { n > 5 })
spark.range(1, 10).createOrReplaceTempView("test")
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show()
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+

Java

import org.apache.spark.sql.*;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.expressions.UserDefinedFunction;
import static org.apache.spark.sql.functions.udf;
import org.apache.spark.sql.types.DataTypes;

SparkSession spark = SparkSession
      .builder()
      .appName("Java Spark SQL UDF scalar example")
      .getOrCreate();

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
UserDefinedFunction random = udf(
  () -> Math.random(), DataTypes.DoubleType
);
random.asNondeterministic();
spark.udf().register("random", random);
spark.sql("SELECT random()").show();
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
spark.udf().register("plusOne", new UDF1<Integer, Integer>() {
  @Override
  public Integer call(Integer x) {
    return x + 1;
  }
}, DataTypes.IntegerType);
spark.sql("SELECT plusOne(5)").show();
// +----------+
// |plusOne(5)|
// +----------+
// |         6|
// +----------+

// Define and register a two-argument UDF
UserDefinedFunction strLen = udf(
  (String s, Integer x) -> s.length() + x, DataTypes.IntegerType
);
spark.udf().register("strLen", strLen);
spark.sql("SELECT strLen('test', 1)").show();
// +------------+
// |UDF(test, 1)|
// +------------+
// |           5|
// +------------+

// UDF in a WHERE clause
spark.udf().register("oneArgFilter", new UDF1<Long, Boolean>() {
  @Override
  public Boolean call(Long x) {
    return  x > 5;
  }
}, DataTypes.BooleanType);
spark.range(1, 10).createOrReplaceTempView("test");
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show();
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+