NegotiateStream.Write(Byte[], Int32, Int32) Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Write the specified number of Bytes to the underlying stream using the specified buffer and offset.
public:
override void Write(cli::array <System::Byte> ^ buffer, int offset, int count);
public override void Write (byte[] buffer, int offset, int count);
override this.Write : byte[] * int * int -> unit
Public Overrides Sub Write (buffer As Byte(), offset As Integer, count As Integer)
Parameters
- offset
- Int32
An Int32 containing the zero-based location in buffer
at which to begin reading bytes to be written to the stream.
Exceptions
buffer
is null
.
offset is less than 0
.
-or-
offset
is greater than the length of buffer
.
-or-
offset
plus count is greater than the length of buffer
.
The write operation failed.
-or-
Encryption is in use, but the data could not be encrypted.
There is already a write operation in progress.
This object has been closed.
Authentication has not occurred.
Examples
The following code example demonstrates writing to a NegotiateStream.
int main()
{
// Establish the remote endpoint for the socket.
// For this example, use the local machine.
IPHostEntry^ ipHostInfo = Dns::GetHostEntry( Dns::GetHostName() );
IPAddress^ ipAddress = ipHostInfo->AddressList[ 0 ];
// Client and server use port 11000.
IPEndPoint^ remoteEP = gcnew IPEndPoint( ipAddress,11000 );
// Create a TCP/IP socket.
TcpClient^ client = gcnew TcpClient;
// Connect the socket to the remote endpoint.
client->Connect( remoteEP );
Console::WriteLine( L"Client connected to {0}.", remoteEP );
// Ensure the client does not close when there is
// still data to be sent to the server.
client->LingerState = (gcnew LingerOption( true,0 ));
// Request authentication.
NetworkStream^ clientStream = client->GetStream();
NegotiateStream^ authStream = gcnew NegotiateStream( clientStream );
// Request authentication for the client only (no mutual authentication).
// Authenicate using the client's default credetials.
// Permit the server to impersonate the client to access resources on the server only.
// Request that data be transmitted using encryption and data signing.
authStream->AuthenticateAsClient( dynamic_cast<NetworkCredential^>(CredentialCache::DefaultCredentials),
L"",
ProtectionLevel::EncryptAndSign,
TokenImpersonationLevel::Impersonation );
DisplayAuthenticationProperties( authStream );
DisplayStreamProperties( authStream );
if ( authStream->CanWrite )
{
// Encode the test data into a byte array.
array<Byte>^message = System::Text::Encoding::UTF8->GetBytes( L"Hello from the client." );
authStream->Write( message, 0, message->Length );
authStream->Flush();
Console::WriteLine( L"Sent {0} bytes.", message->Length );
}
// Close the client connection.
authStream->Close();
Console::WriteLine( L"Client closed." );
}
public static void Main(String[] args)
{
// Establish the remote endpoint for the socket.
// For this example, use the local machine.
IPHostEntry ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
IPAddress ipAddress = ipHostInfo.AddressList[0];
// Client and server use port 11000.
IPEndPoint remoteEP = new IPEndPoint(ipAddress,11000);
// Create a TCP/IP socket.
TcpClient client = new TcpClient();
// Connect the socket to the remote endpoint.
client.Connect(remoteEP);
Console.WriteLine("Client connected to {0}.",
remoteEP.ToString());
// Ensure the client does not close when there is
// still data to be sent to the server.
client.LingerState = (new LingerOption(true,0));
// Request authentication.
NetworkStream clientStream = client.GetStream();
NegotiateStream authStream = new NegotiateStream(clientStream);
// Request authentication for the client only (no mutual authentication).
// Authenicate using the client's default credetials.
// Permit the server to impersonate the client to access resources on the server only.
// Request that data be transmitted using encryption and data signing.
authStream.AuthenticateAsClient(
(NetworkCredential) CredentialCache.DefaultCredentials,
"",
ProtectionLevel.EncryptAndSign,
TokenImpersonationLevel.Impersonation);
DisplayAuthenticationProperties(authStream);
DisplayStreamProperties(authStream);
if (authStream.CanWrite)
{
// Encode the test data into a byte array.
byte[] message = System.Text.Encoding.UTF8.GetBytes("Hello from the client.");
authStream.Write(message, 0, message.Length);
authStream.Flush();
Console.WriteLine("Sent {0} bytes.", message.Length);
}
// Close the client connection.
authStream.Close();
Console.WriteLine("Client closed.");
}
Remarks
If encryption, signing, or encryption and signing are enabled, this method reads the data from buffer, encrypts, signs, or encrypts and signs it, and transmits it using the underlying stream. If no security services such as data encryption or signing are in use, this method invokes Write on the underlying stream.
This method blocks while the write operation completes. To prevent blocking while the operation completes, use the WriteAsync method.
You cannot call this method until you have successfully authenticated. To authenticate, call one of the AuthenticateAsClient, AuthenticateAsClientAsync, BeginAuthenticateAsClient, AuthenticateAsServer, AuthenticateAsServerAsync, or BeginAuthenticateAsServer methods.
The NegotiateStream class does not support multiple simultaneous write operations. If you attempt to start a write operation while another write operation is already executing on the same stream, a NotSupportedException exception will be thrown.