pemaCompute: Compute PEMA
Applies to version 8.0.3 of package RevoPemaR.
Description
Use a PemaBaseClass reference class object to perform a Parallel External Memory Algorithm (PEMA) computation.
Usage
pemaCompute(pemaObj, data = NULL, outData = NULL, overwrite = FALSE, append = "none",
computeContext = NULL, initPema = TRUE, ...)
Arguments
pemaObj
A PemaBaseClass reference class object containing the methods for the analysis.
data
A data frame or RevoScaleR data source object.
outData
An RevoScaleR data source object that has write capabilities, such as an .xdf file. Not used by all PemaBaseClass reference class objects.
overwrite
logical value. If TRUE
, an existing outFile
will be overwritten.
append
either "none"
to create a new file, "rows"
to append rows to an existing file, or "cols"
to append columns to an existing file. If outFile
exists and append
is "none"
, the overwrite
argument must be set to TRUE
. Ignored when outData
is not specified or not relevant. You cannot append to RxTextData
or RxTeradata
data sources, and appending is not supported for composite .xdf files or when using the RxHadoopMR
compute context.
computeContext
NULL
or a RevoScaleR compute context object.
initPema
logical. If TRUE
the initialize
method for the pemaObj
object will be called before performing computations.
...
Other fields in the PemaBaseClass
class to be utilized in the analysis.
Details
The pemaCompute
function provides a framework for writing parallel, external memory
algorithms (PEMAs) that can be run serially on a single computer, and will be automatically
parallelized when run on cluster supported by RevoScaleR.
Value
The value returned that returned by the PemaBaseClass
processResults
method.
Note that the reference class PemaBaseClass
will be reinitialized at the beginning
of the analysis unless initPema
is set to TRUE
, and will contain updated values upon completion.
See Also
PemaBaseClass, PemaMean, setPemaClass
Examples
# Instantiate an PemaMean reference class
meanPemaObj <- PemaMean()
meanPemaObj # See the initialized values of the fields
# Compute the mean of Petal.Length from the iris data set
# Call pemaCompute, specifying the custom analyis object, the data, and additional arg
pemaCompute(pemaObj = meanPemaObj, data = iris, varName = "Petal.Length")
meanPemaObj # Note that the reference class object has been updated