AutoMLRun Class
Represents an automated ML experiment run in Azure Machine Learning.
The AutoMLRun class can be used to manage a run, check run status, and retrieve run details once an AutoML run is submitted. For more information on working with experiment runs, see the Run class.
Initialize an AutoML run.
- Inheritance
-
AutoMLRun
Constructor
AutoMLRun(experiment, run_id, **kwargs)
Parameters
Name | Description |
---|---|
experiment
Required
|
The experiment associated with the run. |
run_id
Required
|
The ID of the run. |
experiment
Required
|
The experiment associated with the run. |
run_id
Required
|
The ID of the run. |
Remarks
An AutoMLRun object is returned when you use the submit method of an experiment.
To retrieve a run that has already started, use the following code:
from azureml.train.automl.run import AutoMLRun
ws = Workspace.from_config()
experiment = ws.experiments['my-experiment-name']
automl_run = AutoMLRun(experiment, run_id = 'AutoML_9fe201fe-89fd-41cc-905f-2f41a5a98883')
Methods
cancel |
Cancel an AutoML run. Return True if the AutoML run was canceled successfully. |
cancel_iteration |
Cancel a particular child run. |
complete |
Complete an AutoML Run. |
continue_experiment |
Continue an existing AutoML experiment. |
fail |
Fail an AutoML Run. Optionally set the Error property of the run with a message or exception passed to |
get_best_child |
Return the child run with the best score for this AutoML Run. |
get_guardrails |
Print and return detailed results from running Guardrail verification. |
get_output |
Return the run with the corresponding best pipeline that has already been tested. If no input parameters are provided, |
get_run_sdk_dependencies |
Get the SDK run dependencies for a given run. |
pause |
Return True if the AutoML run was paused successfully. This method is not implemented. |
register_model |
Register the model with AzureML ACI service. |
resume |
Return True if the AutoML run was resumed successfully. This method is not implemented. |
retry |
Return True if the AutoML run was retried successfully. This method is not implemented. |
summary |
Get a table containing a summary of algorithms attempted and their scores. |
wait_for_completion |
Wait for the completion of this run. Returns the status object after the wait. |
cancel
Cancel an AutoML run.
Return True if the AutoML run was canceled successfully.
cancel()
Returns
Type | Description |
---|---|
None |
cancel_iteration
Cancel a particular child run.
cancel_iteration(iteration)
Parameters
Name | Description |
---|---|
iteration
Required
|
The iteration to cancel. |
Returns
Type | Description |
---|---|
None |
complete
Complete an AutoML Run.
complete(**kwargs)
Returns
Type | Description |
---|---|
None |
continue_experiment
Continue an existing AutoML experiment.
continue_experiment(X=None, y=None, sample_weight=None, X_valid=None, y_valid=None, sample_weight_valid=None, data=None, label=None, columns=None, cv_splits_indices=None, spark_context=None, experiment_timeout_hours=None, experiment_exit_score=None, iterations=None, show_output=False, training_data=None, validation_data=None, **kwargs)
Parameters
Name | Description |
---|---|
X
|
Training features. Default value: None
|
y
|
Training labels. Default value: None
|
sample_weight
|
Sample weights for training data. Default value: None
|
X_valid
|
Validation features. Default value: None
|
y_valid
|
Validation labels. Default value: None
|
sample_weight_valid
|
validation set sample weights. Default value: None
|
data
|
Training features and label. Default value: None
|
label
|
Label column in data. Default value: None
|
columns
|
A list of allowed columns in the data to use as features. Default value: None
|
cv_splits_indices
|
Indices where to split training data for cross validation. Each row is a separate cross fold and within each crossfold, provide 2 arrays, the first with the indices for samples to use for training data and the second with the indices to use for validation data. i.e [[t1, v1], [t2, v2], ...] where t1 is the training indices for the first cross fold and v1 is the validation indices for the first cross fold. Default value: None
|
spark_context
|
<xref:SparkContext>
Spark context, only applicable when used inside azure databricks/spark environment. Default value: None
|
experiment_timeout_hours
|
How many additional hours to run this experiment for. Default value: None
|
experiment_exit_score
|
If specified indicates that the experiment is terminated when this value is reached. Default value: None
|
iterations
|
How many additional iterations to run for this experiment. Default value: None
|
show_output
|
Flag indicating whether to print output to console. Default value: False
|
training_data
|
<xref:azureml.dataprep.Dataflow> or
DataFrame
Input training data. Default value: None
|
validation_data
|
<xref:azureml.dataprep.Dataflow> or
DataFrame
Validation data. Default value: None
|
Returns
Type | Description |
---|---|
The AutoML parent run. |
Exceptions
Type | Description |
---|---|
fail
Fail an AutoML Run.
Optionally set the Error property of the run with a message or exception passed to error_details
.
fail(error_details=None, error_code=None, _set_status=True, **kwargs)
Parameters
Name | Description |
---|---|
error_details
|
str or
BaseException
Optional details of the error. Default value: None
|
error_code
|
Optional error code of the error for the error classification. Default value: None
|
_set_status
|
Indicates whether to send the status event for tracking. Default value: True
|
get_best_child
Return the child run with the best score for this AutoML Run.
get_best_child(metric: str | None = None, onnx_compatible: bool = False, **kwargs: Any) -> Run
Parameters
Name | Description |
---|---|
metric
|
The metric to use to when selecting the best run to return. Defaults to the primary metric. Default value: None
|
onnx_compatible
|
Whether to only return runs that generated onnx models. Default value: False
|
kwargs
Required
|
|
Returns
Type | Description |
---|---|
AutoML Child Run. |
get_guardrails
Print and return detailed results from running Guardrail verification.
get_guardrails(to_console: bool = True) -> Dict[str, Any]
Parameters
Name | Description |
---|---|
to_console
|
Indicates whether to write the verification results to the console. Default value: True
|
Returns
Type | Description |
---|---|
A dictionary of verifier results. |
Exceptions
Type | Description |
---|---|
get_output
Return the run with the corresponding best pipeline that has already been tested.
If no input parameters are provided, get_output
returns the best pipeline according to the primary metric. Alternatively,
you can use either the iteration
or metric
parameter to retrieve a particular
iteration or the best run per provided metric, respectively.
get_output(iteration: int | None = None, metric: str | None = None, return_onnx_model: bool = False, return_split_onnx_model: SplitOnnxModelName | None = None, **kwargs: Any) -> Tuple[Run, Any]
Parameters
Name | Description |
---|---|
iteration
|
The iteration number of the corresponding run and fitted model to return. Default value: None
|
metric
|
The metric to use to when selecting the best run and fitted model to return. Default value: None
|
return_onnx_model
|
This method will return the converted ONNX model if
the Default value: False
|
return_split_onnx_model
|
The type of the split onnx model to return Default value: None
|
Returns
Type | Description |
---|---|
Run, <xref:Model>
|
The run, the corresponding fitted model. |
Exceptions
Type | Description |
---|---|
Remarks
If you'd like to inspect the preprocessor(s) and algorithm (estimator) used, you can do so through
Model.steps
, similar to sklearn.pipeline.Pipeline.steps
.
For instance, the code below shows how to retrieve the estimator.
best_run, model = parent_run.get_output()
estimator = model.steps[-1]
get_run_sdk_dependencies
Get the SDK run dependencies for a given run.
get_run_sdk_dependencies(iteration=None, check_versions=True, **kwargs)
Parameters
Name | Description |
---|---|
iteration
|
The iteration number of the fitted run to be retrieved. If None, retrieve the parent environment. Default value: None
|
check_versions
|
If True, check the versions with current environment. If False, pass. Default value: True
|
Returns
Type | Description |
---|---|
The dictionary of dependencies retrieved from RunHistory. |
Exceptions
Type | Description |
---|---|
pause
Return True if the AutoML run was paused successfully.
This method is not implemented.
pause()
Exceptions
Type | Description |
---|---|
register_model
Register the model with AzureML ACI service.
register_model(model_name=None, description=None, tags=None, iteration=None, metric=None)
Parameters
Name | Description |
---|---|
model_name
|
The name of the model being deployed. Default value: None
|
description
|
The description for the model being deployed. Default value: None
|
tags
|
Tags for the model being deployed. Default value: None
|
iteration
|
Override for which model to deploy. Deploys the model for a given iteration. Default value: None
|
metric
|
Override for which model to deploy. Deploys the best model for a different metric. Default value: None
|
Returns
Type | Description |
---|---|
<xref:Model>
|
The registered model object. |
resume
Return True if the AutoML run was resumed successfully.
This method is not implemented.
resume()
Exceptions
Type | Description |
---|---|
NotImplementedError:
|
retry
Return True if the AutoML run was retried successfully.
This method is not implemented.
retry()
Exceptions
Type | Description |
---|---|
summary
Get a table containing a summary of algorithms attempted and their scores.
summary()
Returns
Type | Description |
---|---|
Pandas DataFrame containing AutoML model statistics. |
wait_for_completion
Wait for the completion of this run.
Returns the status object after the wait.
wait_for_completion(show_output=False, wait_post_processing=False)
Parameters
Name | Description |
---|---|
show_output
|
Indicates whether to show the run output on sys.stdout. Default value: False
|
wait_post_processing
|
Indicates whether to wait for the post processing to complete after the run completes. Default value: False
|
Returns
Type | Description |
---|---|
The status object. |
Exceptions
Type | Description |
---|---|