Share via


nanvl

Returns col1 if it is not NaN, or col2 if col1 is NaN. Both inputs should be floating point columns (DoubleType or FloatType). Supports Spark Connect.

For the corresponding Databricks SQL function, see nanvl function.

Syntax

from pyspark.databricks.sql import functions as dbf

dbf.nanvl(col1=<col1>, col2=<col2>)

Parameters

Parameter Type Description
col1 pyspark.sql.Column or str First column to check.
col2 pyspark.sql.Column or str Second column to return if first is NaN.

Returns

pyspark.sql.Column: value from first column or second if first is NaN .

Examples

from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b"))
df.select("*", dbf.nanvl("a", "b"), dbf.nanvl(df.a, df.b)).show()
+---+---+-----------+-----------+
|  a|  b|nanvl(a, b)|nanvl(a, b)|
+---+---+-----------+-----------+
|1.0|NaN|        1.0|        1.0|
|NaN|2.0|        2.0|        2.0|
+---+---+-----------+-----------+