Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
This is a special version of try_to_date that performs the same operation, but returns a NULL value instead of raising an error if date cannot be created.
Syntax
from pyspark.databricks.sql import functions as dbf
dbf.try_to_date(col=<col>, format=<format>)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or str |
input column of values to convert. |
format |
literal string, optional |
format to use to convert date values. |
Returns
pyspark.sql.Column: date value as pyspark.sql.types.DateType type.
Examples
from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([('1997-02-28',)], ['ts'])
df.select('*', dbf.try_to_date(df.ts)).show()
df.select('*', dbf.try_to_date('ts', 'yyyy-MM-dd')).show()
df = spark.createDataFrame([('foo',)], ['ts'])
df.select(dbf.try_to_date(df.ts)).show()