Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Unwrap UDT data type column into its underlying type.
Syntax
import pyspark.sql.functions as sf
sf.unwrap_udt(col=<col>)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or str |
The UDT column to unwrap. |
Returns
pyspark.sql.Column: The underlying representation.
Examples
Example 1: Unwrap ML-specific UDT - VectorUDT.
from pyspark.sql import functions as sf
from pyspark.ml.linalg import Vectors
vec1 = Vectors.dense(1, 2, 3)
vec2 = Vectors.sparse(4, {1: 1.0, 3: 5.5})
df = spark.createDataFrame([(vec1,), (vec2,)], ["vec"])
df.select(sf.unwrap_udt("vec")).printSchema()
root
|-- unwrap_udt(vec): struct (nullable = true)
| |-- type: byte (nullable = false)
| |-- size: integer (nullable = true)
| |-- indices: array (nullable = true)
| | |-- element: integer (containsNull = false)
| |-- values: array (nullable = true)
| | |-- element: double (containsNull = false)
Example 2: Unwrap ML-specific UDT - MatrixUDT.
from pyspark.sql import functions as sf
from pyspark.ml.linalg import Matrices
mat1 = Matrices.dense(2, 2, range(4))
mat2 = Matrices.sparse(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4])
df = spark.createDataFrame([(mat1,), (mat2,)], ["mat"])
df.select(sf.unwrap_udt("mat")).printSchema()
root
|-- unwrap_udt(mat): struct (nullable = true)
| |-- type: byte (nullable = false)
| |-- numRows: integer (nullable = false)
| |-- numCols: integer (nullable = false)
| |-- colPtrs: array (nullable = true)
| | |-- element: integer (containsNull = false)
| |-- rowIndices: array (nullable = true)
| | |-- element: integer (containsNull = false)
| |-- values: array (nullable = true)
| | |-- element: double (containsNull = false)
| |-- isTransposed: boolean (nullable = false)