Teilen über


geometric_distribution-Klasse

Generiert eine geometrische Verteilung.

Syntax

template<class IntType = int>
class geometric_distribution {
public:
    // types
    typedef IntType result_type;
    struct param_type;

    // constructors and reset functions
    explicit geometric_distribution(double p = 0.5);
    explicit geometric_distribution(const param_type& parm);
    void reset();

    // generating functions
    template <class URNG>
    result_type operator()(URNG& gen);
    template <class URNG>
    result_type operator()(URNG& gen, const param_type& parm);

    // property functions
    double p() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
};

Parameter

IntType
Der Ganzzahlergebnistyp. Der Standardwert ist int. Mögliche Typen finden Sie unter <"zufällig>".

URNG
Die einheitliche Zufallszahlengenerator-Engine. Mögliche Typen finden Sie unter <"zufällig>".

Hinweise

Die Klassenvorlage beschreibt eine Verteilung, die Werte eines vom Benutzer angegebenen integralen Typs mit einer geometrischen Verteilung erzeugt. Die folgende Tabelle ist mit Artikeln über einzelne Member verknüpft.

geometric_distribution
param_type

Die Eigenschaftsfunktion p() gibt den Wert für den gespeicherten Verteilungsparameter p zurück.

Das Eigenschaftsmember param() gibt das aktuell gespeicherte Verteilungspaket param_type zurück oder legt es fest.

Die min()- und max()-Memberfunktion gibt das jeweils kleinst- und größtmögliche Ergebnis zurück.

Die reset()-Memberfunktion verwirft alle zwischengespeicherten Werte, damit das Ergebnis des folgenden Aufrufs von operator() nicht von Werten abhängig ist, die vor dem Aufruf aus der Engine bezogen wurden.

Die operator()-Memberfunktionen geben den nächsten generierten Wert von entweder dem aktuellen oder dem spezifizierten Parameterpaket zurück, das auf der URNG-Engine basiert.

Weitere Informationen zu Verteilungsklassen und ihren Mitgliedern finden Sie unter <"zufällig>".

Ausführliche Informationen über die Chi-Quadrat-Verteilung finden Sie im Wolfram MathWorld-Artikel Geometric Distribution (Geometrische Verteilung).

Beispiel

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const double p, const int s) {

    // uncomment to use a non-deterministic generator
    //    std::random_device gen;
    std::mt19937 gen(1701);

    std::geometric_distribution<> distr(p);

    std::cout << std::endl;
    std::cout << "min() == " << distr.min() << std::endl;
    std::cout << "max() == " << distr.max() << std::endl;
    std::cout << "p() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.p() << std::endl;

    // generate the distribution as a histogram
    std::map<int, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Distribution for " << s << " samples:" << std::endl;
    for (const auto& elem : histogram) {
        std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    double p_dist = 0.5;

    int samples = 100;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter a floating point value for the \'p\' distribution parameter: ";
    std::cin >> p_dist;
    std::cout << "Enter an integer value for the sample count: ";
    std::cin >> samples;

    test(p_dist, samples);
}

Erster Test:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'p' distribution parameter: .5
Enter an integer value for the sample count: 100

min() == 0
max() == 2147483647
p() == 0.5000000000
Distribution for 100 samples:
    0 :::::::::::::::::::::::::::::::::::::::::::::::::::::
    1 ::::::::::::::::::::::::::
    2 ::::::::::::
    3 ::::::
    4 ::
    5 :

Zweiter Test:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'p' distribution parameter: .1
Enter an integer value for the sample count: 100

min() == 0
max() == 2147483647
p() == 0.1000000000
Distribution for 100 samples:
    0 :::::::::
    1 :::::::::::
    2 ::::::::::
    3 :::::::
    4 :::::
    5 ::::::::
    6 :::
    7 ::::::
    8 :::::::
    9 :::::
   10 :::
   11 :::
   12 ::
   13 :
   14 :::
   15 ::
   16 :::
   17 :::
   20 :::::
   21 :
   29 :
   32 :
   35 :

Anforderungen

Header:<random>

Namespace: std

geometric_distribution::geometric_distribution

Erstellt die Verteilung.

explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);

Parameter

p
Der p-Verteilungsparameter.

parm
Die für die Erstellung der Verteilung verwendete Parameterstruktur.

Hinweise

Vorbedingung:0.0 < p && p < 1.0

Der erste Konstruktor konstruiert ein Objekt, dessen gespeicherter p-Wert den Wert p enthält.

Mit dem zweiten Konstruktor wird ein Objekt erstellt, dessen gespeicherte Parameter aus parm initialisiert werden. Sie können die aktuellen Parameter einer vorhandenen Verteilung abrufen und festlegen, indem Sie die Memberfunktion param() aufrufen.

geometric_distribution::param_type

Speichert die Parameter der Verteilung.

struct param_type {
   typedef geometric_distribution<result_type> distribution_type;
   param_type(double p = 0.5);
   double p() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

Parameter

p
Der p-Verteilungsparameter.

right
Die param_type-Instanz, mit der verglichen wird.

Hinweise

Vorbedingung:0.0 < p && p < 1.0

Diese Struktur kann bei der Instanziierung an den Klassenkonstruktor des Verteilers, an die Memberfunktion param() (zur Festlegung der gespeicherten Parameter einer vorhandenen Verteilung) und an operator() (zur Verwendung anstelle der gespeicherten Parameter) übergeben werden.

Siehe auch

<random>