Machine Learning-Datenspeicher erstellen nicht die zugrunde liegenden Speicherkontoressourcen. Stattdessen verknüpfen sie ein vorhandenes Speicherkonto für die Verwendung durch Machine Learning. Machine Learning-Datenspeicher sind nicht erforderlich. Wenn Sie Zugriff auf die zugrunde liegenden Daten haben, können Sie Speicher-URIs direkt verwenden.
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="",
description="",
account_name="",
container_name=""
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml.entities import AccountKeyConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="blob_protocol_example",
description="Datastore pointing to a blob container using https protocol.",
account_name="mytestblobstore",
container_name="data-container",
protocol="https",
credentials=AccountKeyConfiguration(
account_key="XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
),
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureBlobDatastore
from azure.ai.ml.entities import SasTokenConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureBlobDatastore(
name="blob_sas_example",
description="Datastore pointing to a blob container using SAS token.",
account_name="mytestblobstore",
container_name="data-container",
credentials=SasTokenConfiguration(
sas_token= "?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
),
)
ml_client.create_or_update(store)
Erstellen Sie die folgende YAML-Datei (aktualisieren Sie die entsprechenden Werte):
# my_blob_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json
name: my_blob_ds # add your datastore name here
type: azure_blob
description: here is a description # add a datastore description here
account_name: my_account_name # add the storage account name here
container_name: my_container_name # add the storage container name here
Erstellen Sie den Machine Learning-Datenspeicher in der Azure CLI:
az ml datastore create --file my_blob_datastore.yml
Erstellen Sie diese YAML-Datei (aktualisieren Sie die entsprechenden Werte):
from azure.ai.ml.entities import AzureDataLakeGen2Datastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen2Datastore(
name="",
description="",
account_name="",
filesystem=""
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureDataLakeGen2Datastore
from azure.ai.ml.entities._datastore.credentials import ServicePrincipalCredentials
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen2Datastore(
name="adls_gen2_example",
description="Datastore pointing to an Azure Data Lake Storage Gen2.",
account_name="mytestdatalakegen2",
filesystem="my-gen2-container",
credentials=ServicePrincipalCredentials(
tenant_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_secret= "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
),
)
ml_client.create_or_update(store)
Erstellen Sie diese YAML-Datei (aktualisieren Sie die Werte):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen2.schema.json
name: adls_gen2_credless_example
type: azure_data_lake_gen2
description: Credential-less datastore pointing to an Azure Data Lake Storage Gen2 instance.
account_name: mytestdatalakegen2
filesystem: my-gen2-container
Erstellen Sie den Machine Learning-Datenspeicher in der CLI:
az ml datastore create --file my_adls_datastore.yml
Erstellen Sie diese YAML-Datei (aktualisieren Sie die Werte):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen2.schema.json
name: adls_gen2_example
type: azure_data_lake_gen2
description: Datastore pointing to an Azure Data Lake Storage Gen2 instance.
account_name: mytestdatalakegen2
filesystem: my-gen2-container
credentials:
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_secret: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Erstellen Sie den Machine Learning-Datenspeicher in der CLI:
az ml datastore create --file my_adls_datastore.yml
from azure.ai.ml.entities import AzureFileDatastore
from azure.ai.ml.entities import AccountKeyConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureFileDatastore(
name="file_example",
description="Datastore pointing to an Azure File Share.",
account_name="mytestfilestore",
file_share_name="my-share",
credentials=AccountKeyConfiguration(
account_key= "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
),
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureFileDatastore
from azure.ai.ml.entities import SasTokenConfiguration
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureFileDatastore(
name="file_sas_example",
description="Datastore pointing to an Azure File Share using SAS token.",
account_name="mytestfilestore",
file_share_name="my-share",
credentials=SasTokenConfiguration(
sas_token="?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
),
)
ml_client.create_or_update(store)
Erstellen Sie diese YAML-Datei (aktualisieren Sie die Werte):
from azure.ai.ml.entities import AzureDataLakeGen1Datastore
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen1Datastore(
name="",
store_name="",
description="",
)
ml_client.create_or_update(store)
from azure.ai.ml.entities import AzureDataLakeGen1Datastore
from azure.ai.ml.entities._datastore.credentials import ServicePrincipalCredentials
from azure.ai.ml import MLClient
ml_client = MLClient.from_config()
store = AzureDataLakeGen1Datastore(
name="adls_gen1_example",
description="Datastore pointing to an Azure Data Lake Storage Gen1.",
store_name="mytestdatalakegen1",
credentials=ServicePrincipalCredentials(
tenant_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_id= "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
client_secret= "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
),
)
ml_client.create_or_update(store)
Erstellen Sie diese YAML-Datei (aktualisieren Sie die Werte):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json
name: alds_gen1_credless_example
type: azure_data_lake_gen1
description: Credential-less datastore pointing to an Azure Data Lake Storage Gen1 instance.
store_name: mytestdatalakegen1
Erstellen Sie den Machine Learning-Datenspeicher in der CLI:
az ml datastore create --file my_adls_datastore.yml
Erstellen Sie diese YAML-Datei (aktualisieren Sie die Werte):
# my_adls_datastore.yml
$schema: https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json
name: adls_gen1_example
type: azure_data_lake_gen1
description: Datastore pointing to an Azure Data Lake Storage Gen1 instance.
store_name: mytestdatalakegen1
credentials:
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
client_secret: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Erstellen Sie den Machine Learning-Datenspeicher in der CLI:
az ml datastore create --file my_adls_datastore.yml
Erstellen eines OneLake (Microsoft Fabric)-Datenspeichers (Vorschau)
In diesem Abschnitt werden verschiedene Optionen zum Erstellen eines OneLake-Datenspeichers beschrieben. Der OneLake-Datenspeicher ist Teil von Microsoft Fabric. Derzeit unterstützt Machine Learning die Verbindung mit Microsoft Fabric-Lakehouse-Artefakten im Ordner „Dateien“, die Ordner oder Dateien und Amazon S3-Verknüpfungen umfassen. Weitere Informationen zu Lakehouses finden Sie unter Was ist ein Lakehouse in Microsoft Fabric?.
Die Erstellung von OneLake-Datenspeichern erfordert die folgenden Informationen aus Ihrer Microsoft Fabric-Instanz:
Endpunkt
Arbeitsbereichs-GUID
Artefakt-GUID
Die folgenden Screenshots beschreiben das Abrufen dieser erforderlichen Informationsressourcen aus Ihrer Microsoft Fabric-Instanz:
Die Werte für „Endpunkt“, „Arbeitsbereichs-GUID“ und „Artefakt-GUID“ finden Sie dann auf der Seite „Eigenschaften“ unter „URL“ und „ABFS-Pfad“: