Schnellstart: Erstellen einer Data Factory und Pipeline mithilfe von Python

GILT FÜR: Azure Data Factory Azure Synapse Analytics

In diesem Schnellstart erstellen Sie eine Data Factory mit Python. Die Pipeline in dieser Data Factory kopiert Daten aus einem Ordner in einen anderen Ordner in Azure Blob Storage.

Azure Data Factory ist ein cloudbasierter Datenintegrationsdienst, mit dem Sie datengesteuerte Workflows erstellen können, um die Datenverschiebung und Datentransformation zu orchestrieren und zu automatisieren. Mit Azure Data Factory können Sie datengesteuerte Workflows – sogenannte Pipelines – erstellen und planen.

Pipelines können Daten aus unterschiedlichen Datenspeichern erfassen. Pipelines verarbeiten oder transformieren Daten mithilfe von Compute Services wie Azure HDInsight Hadoop, Spark, Azure Data Lake Analytics und Azure Machine Learning. Pipelines dienen zum Veröffentlichen von Ausgabedaten für Datenspeicher wie Azure Synapse Analytics für BI-Anwendungen (Business Intelligence).

Voraussetzungen

Erstellen und Hochladen einer Eingabedatei

  1. Starten Sie den Editor. Kopieren Sie den folgenden Text, und speichern Sie ihn als input.txt-Datei auf Ihrem Datenträger.

    John|Doe
    Jane|Doe
    
  2. Verwenden Sie Tools wie Azure Storage-Explorer, um den Container adfv2tutorial und den Ordner input.txt im Container zu erstellen. Laden Sie anschließend die Datei input.txt in den Ordner input hoch.

Installieren des Python-Pakets

  1. Öffnen Sie ein Terminal oder eine Eingabeaufforderung mit Administratorberechtigungen. 

  2. Installieren Sie zunächst das Python-Paket für Azure-Verwaltungsressourcen:

    pip install azure-mgmt-resource
    
  3. Um das Python-Paket für Data Factory zu installieren, führen Sie folgenden Befehl aus:

    pip install azure-mgmt-datafactory
    

    Das Python SDK für Data Factory unterstützt Python 2.7 und 3.6 oder höher.

  4. Führen Sie zum Installieren des Python-Pakets für die Azure-Identitätsauthentifizierung den folgenden Befehl aus:

    pip install azure-identity
    

    Hinweis

    Das Paket „azure-identity“ steht bei einigen gemeinsamen Abhängigkeiten unter Umständen in Konflikt mit „azure-cli“. Wenn ein Authentifizierungsproblem auftritt, entfernen Sie „azure-cli“ und die zugehörigen Abhängigkeiten, oder verwenden Sie einen neu installierten Computer ohne Installation des Pakets „azure-cli“, damit der Vorgang erfolgreich ist. Für Sovereign Clouds müssen Sie die entsprechenden cloudspezifischen Konstanten verwenden. Weitere Informationen finden Sie unter Herstellen einer Verbindung mit allen Regionen unter Verwendung der Azure-Bibliotheken für Python (mehrere Clouds) | Microsoft-Dokumentation mit Anweisungen zum Herstellen einer Verbindung mit Python in Sovereign Clouds.

Erstellen eines Data Factory-Clients

  1. Erstellen Sie eine Datei mit dem Namen datafactory.py. Fügen Sie die folgenden Anweisungen ein, um Verweise auf Namespaces hinzuzufügen.

    from azure.identity import ClientSecretCredential 
    from azure.mgmt.resource import ResourceManagementClient
    from azure.mgmt.datafactory import DataFactoryManagementClient
    from azure.mgmt.datafactory.models import *
    from datetime import datetime, timedelta
    import time
    
  2. Fügen Sie die folgenden Funktionen hinzu, die Informationen ausgeben.

    def print_item(group):
        """Print an Azure object instance."""
        print("\tName: {}".format(group.name))
        print("\tId: {}".format(group.id))
        if hasattr(group, 'location'):
            print("\tLocation: {}".format(group.location))
        if hasattr(group, 'tags'):
            print("\tTags: {}".format(group.tags))
        if hasattr(group, 'properties'):
            print_properties(group.properties)
    
    def print_properties(props):
        """Print a ResourceGroup properties instance."""
        if props and hasattr(props, 'provisioning_state') and props.provisioning_state:
            print("\tProperties:")
            print("\t\tProvisioning State: {}".format(props.provisioning_state))
        print("\n\n")
    
    def print_activity_run_details(activity_run):
        """Print activity run details."""
        print("\n\tActivity run details\n")
        print("\tActivity run status: {}".format(activity_run.status))
        if activity_run.status == 'Succeeded':
            print("\tNumber of bytes read: {}".format(activity_run.output['dataRead']))
            print("\tNumber of bytes written: {}".format(activity_run.output['dataWritten']))
            print("\tCopy duration: {}".format(activity_run.output['copyDuration']))
        else:
            print("\tErrors: {}".format(activity_run.error['message']))
    
  3. Fügen Sie der Main-Methode den folgenden Code hinzu, der eine Instanz der DataFactoryManagementClient-Klasse erstellt. Sie verwenden dieses Objekt, um die Data Factory, einen verknüpften Dienst, Datasets und eine Pipeline zu erstellen. Sie verwenden dieses Objekt ebenfalls zum Überwachen der Ausführungsdetails der Pipeline. Legen Sie die Variable subscription_id auf die ID Ihres Azure-Abonnements fest. Eine Liste der Azure-Regionen, in denen Data Factory derzeit verfügbar ist, finden Sie, indem Sie die für Sie interessanten Regionen auf der folgenden Seite auswählen und dann Analysen erweitern, um Data Factory zu finden: Verfügbare Produkte nach Region. Die von der Data Factory verwendeten Datenspeicher (Azure Storage, Azure SQL-Datenbank usw.) und Computedienste (HDInsight usw.) können sich in anderen Regionen befinden.

    def main():
    
        # Azure subscription ID
        subscription_id = '<subscription ID>'
    
        # This program creates this resource group. If it's an existing resource group, comment out the code that creates the resource group
        rg_name = '<resource group>'
    
        # The data factory name. It must be globally unique.
        df_name = '<factory name>'
    
        # Specify your Active Directory client ID, client secret, and tenant ID
        credentials = ClientSecretCredential(client_id='<Application (client) ID>', client_secret='<client secret value>', tenant_id='<tenant ID>') 
    
        # Specify following for Soverign Clouds, import right cloud constant and then use it to connect.
        # from msrestazure.azure_cloud import AZURE_PUBLIC_CLOUD as CLOUD
        # credentials = DefaultAzureCredential(authority=CLOUD.endpoints.active_directory, tenant_id=tenant_id)
    
        resource_client = ResourceManagementClient(credentials, subscription_id)
        adf_client = DataFactoryManagementClient(credentials, subscription_id)
    
        rg_params = {'location':'westus'}
        df_params = {'location':'westus'}
    

Erstellen einer Data Factory

Fügen Sie der Main-Methode den folgenden Code hinzu, der eine Data Factory erstellt. Wenn die Ressourcengruppe bereits vorhanden ist, kommentieren Sie die erste create_or_update-Anweisung aus.

    # create the resource group
    # comment out if the resource group already exits
    resource_client.resource_groups.create_or_update(rg_name, rg_params)

    #Create a data factory
    df_resource = Factory(location='westus')
    df = adf_client.factories.create_or_update(rg_name, df_name, df_resource)
    print_item(df)
    while df.provisioning_state != 'Succeeded':
        df = adf_client.factories.get(rg_name, df_name)
        time.sleep(1)

Erstellen eines verknüpften Diensts

Fügen Sie der Main-Methode den folgenden Code hinzu, der einen verknüpften Azure Storage-Dienst erstellt.

Um Ihre Datenspeicher und Compute Services mit der Data Factory zu verknüpfen, können Sie verknüpfte Dienste in einer Data Factory erstellen. In dieser Schnellstartanleitung müssen Sie nur einen verknüpften Azure Storage-Dienst für die Quell- und Senkendatenspeicher für den Kopiervorgang erstellen – in diesem Beispiel als „AzureStorageLinkedService“ bezeichnet. Ersetzen Sie <storageaccountname> und <storageaccountkey> durch den Namen und Schlüssel Ihres Azure-Speicherkontos.

    # Create an Azure Storage linked service
    ls_name = 'storageLinkedService001'

    # IMPORTANT: specify the name and key of your Azure Storage account.
    storage_string = SecureString(value='DefaultEndpointsProtocol=https;AccountName=<account name>;AccountKey=<account key>;EndpointSuffix=<suffix>')

    ls_azure_storage = LinkedServiceResource(properties=AzureStorageLinkedService(connection_string=storage_string)) 
    ls = adf_client.linked_services.create_or_update(rg_name, df_name, ls_name, ls_azure_storage)
    print_item(ls)

Erstellen von Datasets

In diesem Abschnitt erstellen Sie zwei Datasets: eines für die Quelle und das andere für die Senke.

Erstellen eines Datasets für das Azure-Quellblob

Fügen Sie der Main-Methode den folgenden Code hinzu, der ein Azure-Blobdataset erstellt. Weitere Informationen zu den Eigenschaften eines Azure-Blobdatasets finden Sie im Artikel Azure-Blobconnector.

Sie definieren ein Dataset, das die Quelldaten im Azure-Blob darstellt. Dieses Blobdataset verweist auf den verknüpften Azure Storage-Dienst, den Sie im vorherigen Schritt erstellt haben.

    # Create an Azure blob dataset (input)
    ds_name = 'ds_in'
    ds_ls = LinkedServiceReference(reference_name=ls_name)
    blob_path = '<container>/<folder path>'
    blob_filename = '<file name>'
    ds_azure_blob = DatasetResource(properties=AzureBlobDataset(
        linked_service_name=ds_ls, folder_path=blob_path, file_name=blob_filename)) 
    ds = adf_client.datasets.create_or_update(
        rg_name, df_name, ds_name, ds_azure_blob)
    print_item(ds)

Erstellen eines Datasets für eine Azure Blobsenke

Fügen Sie der Main-Methode den folgenden Code hinzu, der ein Azure-Blobdataset erstellt. Weitere Informationen zu den Eigenschaften eines Azure-Blobdatasets finden Sie im Artikel Azure-Blobconnector.

Sie definieren ein Dataset, das die Quelldaten im Azure-Blob darstellt. Dieses Blobdataset verweist auf den verknüpften Azure Storage-Dienst, den Sie im vorherigen Schritt erstellt haben.

    # Create an Azure blob dataset (output)
    dsOut_name = 'ds_out'
    output_blobpath = '<container>/<folder path>'
    dsOut_azure_blob = DatasetResource(properties=AzureBlobDataset(linked_service_name=ds_ls, folder_path=output_blobpath))
    dsOut = adf_client.datasets.create_or_update(
        rg_name, df_name, dsOut_name, dsOut_azure_blob)
    print_item(dsOut)

Erstellen einer Pipeline

Fügen Sie der Main-Methode den folgenden Code hinzu, der eine Pipeline mit einer Kopieraktivität erstellt.

    # Create a copy activity
    act_name = 'copyBlobtoBlob'
    blob_source = BlobSource()
    blob_sink = BlobSink()
    dsin_ref = DatasetReference(reference_name=ds_name)
    dsOut_ref = DatasetReference(reference_name=dsOut_name)
    copy_activity = CopyActivity(name=act_name,inputs=[dsin_ref], outputs=[dsOut_ref], source=blob_source, sink=blob_sink)

    #Create a pipeline with the copy activity
    
    #Note1: To pass parameters to the pipeline, add them to the json string params_for_pipeline shown below in the format { “ParameterName1” : “ParameterValue1” } for each of the parameters needed in the pipeline.
    #Note2: To pass parameters to a dataflow, create a pipeline parameter to hold the parameter name/value, and then consume the pipeline parameter in the dataflow parameter in the format @pipeline().parameters.parametername.
    
    p_name = 'copyPipeline'
    params_for_pipeline = {}

    p_name = 'copyPipeline'
    params_for_pipeline = {}
    p_obj = PipelineResource(activities=[copy_activity], parameters=params_for_pipeline)
    p = adf_client.pipelines.create_or_update(rg_name, df_name, p_name, p_obj)
    print_item(p)

Erstellen einer Pipelineausführung

Fügen Sie der Main-Methode den folgenden Code hinzu, der eine Pipelineausführung auslöst.

    # Create a pipeline run
    run_response = adf_client.pipelines.create_run(rg_name, df_name, p_name, parameters={})

Überwachen einer Pipelineausführung

Fügen Sie der Main-Methode den folgenden Code hinzu, um die Pipelineausführung zu überwachen:

    # Monitor the pipeline run
    time.sleep(30)
    pipeline_run = adf_client.pipeline_runs.get(
        rg_name, df_name, run_response.run_id)
    print("\n\tPipeline run status: {}".format(pipeline_run.status))
    filter_params = RunFilterParameters(
        last_updated_after=datetime.now() - timedelta(1), last_updated_before=datetime.now() + timedelta(1))
    query_response = adf_client.activity_runs.query_by_pipeline_run(
        rg_name, df_name, pipeline_run.run_id, filter_params)
    print_activity_run_details(query_response.value[0])

Fügen Sie nun die folgende Anweisung hinzu, um die main-Methode bei Ausführung des Programms aufzurufen:

# Start the main method
main()

Vollständiges Skript

Hier sehen Sie den vollständigen Python-Code:

from azure.identity import ClientSecretCredential 
from azure.mgmt.resource import ResourceManagementClient
from azure.mgmt.datafactory import DataFactoryManagementClient
from azure.mgmt.datafactory.models import *
from datetime import datetime, timedelta
import time

def print_item(group):
    """Print an Azure object instance."""
    print("\tName: {}".format(group.name))
    print("\tId: {}".format(group.id))
    if hasattr(group, 'location'):
        print("\tLocation: {}".format(group.location))
    if hasattr(group, 'tags'):
        print("\tTags: {}".format(group.tags))
    if hasattr(group, 'properties'):
        print_properties(group.properties)

def print_properties(props):
    """Print a ResourceGroup properties instance."""
    if props and hasattr(props, 'provisioning_state') and props.provisioning_state:
        print("\tProperties:")
        print("\t\tProvisioning State: {}".format(props.provisioning_state))
    print("\n\n")

def print_activity_run_details(activity_run):
    """Print activity run details."""
    print("\n\tActivity run details\n")
    print("\tActivity run status: {}".format(activity_run.status))
    if activity_run.status == 'Succeeded':
        print("\tNumber of bytes read: {}".format(activity_run.output['dataRead']))
        print("\tNumber of bytes written: {}".format(activity_run.output['dataWritten']))
        print("\tCopy duration: {}".format(activity_run.output['copyDuration']))
    else:
        print("\tErrors: {}".format(activity_run.error['message']))


def main():

    # Azure subscription ID
    subscription_id = '<subscription ID>'

    # This program creates this resource group. If it's an existing resource group, comment out the code that creates the resource group
    rg_name = '<resource group>'

    # The data factory name. It must be globally unique.
    df_name = '<factory name>'

    # Specify your Active Directory client ID, client secret, and tenant ID
    credentials = ClientSecretCredential(client_id='<service principal ID>', client_secret='<service principal key>', tenant_id='<tenant ID>') 
    resource_client = ResourceManagementClient(credentials, subscription_id)
    adf_client = DataFactoryManagementClient(credentials, subscription_id)

    rg_params = {'location':'westus'}
    df_params = {'location':'westus'}
 
    # create the resource group
    # comment out if the resource group already exits
    resource_client.resource_groups.create_or_update(rg_name, rg_params)

    # Create a data factory
    df_resource = Factory(location='westus')
    df = adf_client.factories.create_or_update(rg_name, df_name, df_resource)
    print_item(df)
    while df.provisioning_state != 'Succeeded':
        df = adf_client.factories.get(rg_name, df_name)
        time.sleep(1)

    # Create an Azure Storage linked service
    ls_name = 'storageLinkedService001'

    # IMPORTANT: specify the name and key of your Azure Storage account.
    storage_string = SecureString(value='DefaultEndpointsProtocol=https;AccountName=<account name>;AccountKey=<account key>;EndpointSuffix=<suffix>')

    ls_azure_storage = LinkedServiceResource(properties=AzureStorageLinkedService(connection_string=storage_string)) 
    ls = adf_client.linked_services.create_or_update(rg_name, df_name, ls_name, ls_azure_storage)
    print_item(ls)

    # Create an Azure blob dataset (input)
    ds_name = 'ds_in'
    ds_ls = LinkedServiceReference(reference_name=ls_name)
    blob_path = '<container>/<folder path>'
    blob_filename = '<file name>'
    ds_azure_blob = DatasetResource(properties=AzureBlobDataset(
        linked_service_name=ds_ls, folder_path=blob_path, file_name=blob_filename))
    ds = adf_client.datasets.create_or_update(
        rg_name, df_name, ds_name, ds_azure_blob)
    print_item(ds)

    # Create an Azure blob dataset (output)
    dsOut_name = 'ds_out'
    output_blobpath = '<container>/<folder path>'
    dsOut_azure_blob = DatasetResource(properties=AzureBlobDataset(linked_service_name=ds_ls, folder_path=output_blobpath))
    dsOut = adf_client.datasets.create_or_update(
        rg_name, df_name, dsOut_name, dsOut_azure_blob)
    print_item(dsOut)

    # Create a copy activity
    act_name = 'copyBlobtoBlob'
    blob_source = BlobSource()
    blob_sink = BlobSink()
    dsin_ref = DatasetReference(reference_name=ds_name)
    dsOut_ref = DatasetReference(reference_name=dsOut_name)
    copy_activity = CopyActivity(name=act_name, inputs=[dsin_ref], outputs=[
                                 dsOut_ref], source=blob_source, sink=blob_sink)

    # Create a pipeline with the copy activity
    p_name = 'copyPipeline'
    params_for_pipeline = {}
    p_obj = PipelineResource(
        activities=[copy_activity], parameters=params_for_pipeline)
    p = adf_client.pipelines.create_or_update(rg_name, df_name, p_name, p_obj)
    print_item(p)

    # Create a pipeline run
    run_response = adf_client.pipelines.create_run(rg_name, df_name, p_name, parameters={})

    # Monitor the pipeline run
    time.sleep(30)
    pipeline_run = adf_client.pipeline_runs.get(
        rg_name, df_name, run_response.run_id)
    print("\n\tPipeline run status: {}".format(pipeline_run.status))
    filter_params = RunFilterParameters(
        last_updated_after=datetime.now() - timedelta(1), last_updated_before=datetime.now() + timedelta(1))
    query_response = adf_client.activity_runs.query_by_pipeline_run(
        rg_name, df_name, pipeline_run.run_id, filter_params)
    print_activity_run_details(query_response.value[0])


# Start the main method
main()

Ausführen des Codes

Erstellen und starten Sie die Anwendung, und überprüfen Sie dann die Pipelineausführung.

Die Konsole druckt den Status der Erstellung der Data Factory, des verknüpften Diensts, der Datasets, der Pipeline und der Pipelineausführung aus. Warten Sie, bis Sie die Ausführungsdetails der Kopieraktivität mit der Größe der gelesenen/geschriebenen Daten sehen. Verwenden Sie dann Tools wie z.B. Azure Storage-Explorer, um zu überprüfen, ob die Blobs wie von Ihnen in den Variablen angegeben von „inputBlobPath“ nach „outputBlobPath“ kopiert werden.

Hier ist die Beispielausgabe:

Name: <data factory name>
Id: /subscriptions/<subscription ID>/resourceGroups/<resource group name>/providers/Microsoft.DataFactory/factories/<data factory name>
Location: eastus
Tags: {}

Name: storageLinkedService
Id: /subscriptions/<subscription ID>/resourceGroups/<resource group name>/providers/Microsoft.DataFactory/factories/<data factory name>/linkedservices/storageLinkedService

Name: ds_in
Id: /subscriptions/<subscription ID>/resourceGroups/<resource group name>/providers/Microsoft.DataFactory/factories/<data factory name>/datasets/ds_in

Name: ds_out
Id: /subscriptions/<subscription ID>/resourceGroups/<resource group name>/providers/Microsoft.DataFactory/factories/<data factory name>/datasets/ds_out

Name: copyPipeline
Id: /subscriptions/<subscription ID>/resourceGroups/<resource group name>/providers/Microsoft.DataFactory/factories/<data factory name>/pipelines/copyPipeline

Pipeline run status: Succeeded
Datetime with no tzinfo will be considered UTC.
Datetime with no tzinfo will be considered UTC.

Activity run details

Activity run status: Succeeded
Number of bytes read: 18
Number of bytes written: 18
Copy duration: 4

Bereinigen von Ressourcen

Um die Data Factory zu löschen, fügen Sie den folgenden Code zum Programm hinzu:

adf_client.factories.delete(rg_name, df_name)

Nächste Schritte

Die Pipeline in diesem Beispiel kopiert Daten in einem Azure Blob Storage von einem Speicherort in einen anderen. Arbeiten Sie die Tutorials durch, um zu erfahren, wie Sie Data Factory in anderen Szenarien verwenden können.