Freigeben über


Databricks Runtime 10.5 für Machine Learning (EoS)

Hinweis

Die Unterstützung für diese Databricks-Runtime-Version wurde beendet. Den End-of-Support-Termin finden Sie im Verlauf des Supportendes. Alle unterstützten Versionen von Databricks Runtime finden Sie unter Versionshinweise, Versionen und Kompatibilität von Databricks Runtime.

Databricks Runtime 10.5 für Machine Learning bietet eine sofort einsatzbereite Umgebung für maschinelles Lernen und Data Science basierend auf Databricks Runtime 10.5 (EoS). Databricks Runtime ML enthält viele beliebte Machine Learning-Bibliotheken, einschließlich TensorFlow, PyTorch und XGBoost. Databricks Runtime ML enthält AutoML, ein Tool zum automatischen Trainieren von Machine Learning-Pipelines. Databricks Runtime ML unterstützt auch verteiltes Deep Learning-Training mit Horovod.

Weitere Informationen, einschließlich Anweisungen zum Erstellen eines Databricks Runtime ML-Clusters, finden Sie unter KI und Machine Learning in Databricks.

Neue Features und Verbesserungen

Databricks Runtime 10.5 ML basiert auf Databricks Runtime 10.5. Informationen zu den Neuerungen in Databricks Runtime 10.5, einschließlich Apache Spark MLlib und SparkR, finden Sie in den Versionshinweisen zu Databricks Runtime 10.5 (EoS).

Verbesserungen an Mosaik AutoML

Die folgenden Verbesserungen wurden an Mosaik AutoML vorgenommen.

  • Dank der verbesserten Speicherauslastung kann AutoML mit größeren Datasets trainieren.
  • Mit der AutoML-Vorhersagefunktion können Sie jetzt die Vorhersagen des besten Modells mithilfe der API in eine Tabelle exportieren. Wenn output_database angegeben wird, speichert AutoML die Vorhersagen des besten Modells in einer neuen Tabelle in der angegebenen Datenbank. Die Vorhersagen werden nicht gespeichert, wenn output_database nicht angegeben wird.

Verbesserungen am Featurespeicher von Databricks

Die folgenden Verbesserungen wurden an Databricks Feature Store vorgenommen.

  • Sie können jetzt eine bestehende Featuretabelle über die drop_table-API löschen. Diese Aktion bereinigt auch die zugrunde liegende Delta-Tabelle.
  • Sie können jetzt das Feature Enginnering und den Workspace Feature Store der Python-API verwenden, um ein Tag zu einer Featuretabelle hinzuzufügen, wenn Sie diese erstellen oder registrieren, und um Tags zu bestehenden Featuretabellen hinzuzufügen, zu aktualisieren, zu löschen oder zu lesen.

Systemumgebung

Die Systemumgebung der Databricks Runtime 10.5 ML unterscheidet sich wie folgt von der Databricks Runtime 10.5:

Bibliotheken

In den folgenden Abschnitten sind die Bibliotheken aufgelistet, die in Databricks Runtime 10.5 ML enthalten sind und sich von den in Databricks Runtime 10.5 enthaltenen Bibliotheken unterscheiden.

Inhalt dieses Abschnitts:

Bibliotheken der obersten Ebene

Databricks Runtime 10.5 ML enthält die folgenden Bibliotheken der obersten Ebene:

Python-Bibliotheken

Databricks Runtime 10.5 ML verwendet Virtualenv zur Verwaltung von Python-Paketen und enthält viele beliebte ML-Pakete.

Zusätzlich zu den Paketen, die in den folgenden Abschnitten aufgeführt sind, umfasst Databricks Runtime 10.5 ML auch die folgenden Pakete:

  • hyperopt 0.2.7.db1
  • sparkdl 2.2.0-db6
  • feature_store 0.4.1
  • automl 1.8.0

Python-Bibliotheken in CPU-Clustern

Bibliothek Version Bibliothek Version Bibliothek Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.7 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 Katalog 2.0.7 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 Klicken 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.4.0 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.6 Cython 0.29.23 databricks-automl-runtime 0.2.7
databricks-cli 0.16.4 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.4.0 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0,3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.9 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.3 holidays 0,13
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.5.1
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.8.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 13.0.0
lightgbm 3.3.2 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.1 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.24.0 multimethod 1.8
murmurhash 1.0.6 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 Notebook 6.3.0 numba 0.55.1
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
Packen 21,3 Pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.1 patsy 0.5.1 petastorm 0.11.4
pexpect 4.8.0 phik 0.12.2 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.6.0
pmdarima 1.8.5 preshed 3.0.6 prometheus-client 0.10.1
prompt-toolkit 3.0.17 prophet 1.0.1 protobuf 3.17.2
psutil 5.8.0 psycopg2 2.8.5 ptyprocess 0.7.0
pyarrow 4.0.0 pyasn1 0.4.8 pyasn1-modules 0.2.8
pybind11 2.9.2 pycparser 2,20 pydantic 1.8.2
Pygments 2.8.1 PyGObject 3.36.0 PyMeeus 0.5.11
PyNaCl 1.5.0 pyodbc 4.0.30 pyparsing 2.4.7
pyrsistent 0.17.3 pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.7
Python-dateutil 2.8.1 python-editor 1.0.4 python-engineio 4.3.0
python-socketio 5.4.1 pytz 2020.5 PyWavelets 1.1.1
PyYAML 5.4.1 pyzmq 20.0.0 regex 2021.4.4
requests 2.25.1 requests-oauthlib 1.3.0 requests-unixsocket 0.2.0
rsa 4.8 s3transfer 0.3.7 sacremoses 0.0.49
scikit-learn 0.24.1 scipy 1.6.2 seaborn 0.11.1
Send2Trash 1.5.0 setuptools 52.0.0 setuptools-git 1.2
shap 0.40.0 simplejson 3.17.2 sechs 1.15.0
slicer 0.0.7 smart-open 5.2.1 smmap 3.0.5
spacy 3.2.3 spacy-legacy 3.0.9 spacy-loggers 1.0.2
spark-tensorflow-distributor 1.0.0 sqlparse 0.4.1 srsly 2.4.3
ssh-import-id 5.10 statsmodels 0.12.2 tabulate 0.8.7
tangled-up-in-unicode 0.1.0 tenacity 6.2.0 tensorboard 2.8.0
tensorboard-data-server 0.6.1 tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1
tensorflow-cpu 2.8.0 tensorflow-estimator 2.8.0 tensorflow-io-gcs-filesystem 0.24.0
termcolor 1.1.0 terminado 0.9.4 testpath 0.4.4
tf-estimator-nightly 2.8.0.dev2021122109 thinc 8.0.15 threadpoolctl 2.1.0
tokenizers 0.12.1 torch 1.10.2+cpu torchvision 0.11.3+cpu
tornado 6.1 tqdm 4.59.0 traitlets 5.0.5
transformers 4.17.0 typer 0.4.1 typing-extensions 3.7.4.3
ujson 4.0.2 unattended-upgrades 0,1 urllib3 1.25.11
virtualenv 20.4.1 Visionen 0.7.4 Wasabi 0.9.1
wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.57.0
Werkzeug 1.0.1 wheel 0.36.2 widgetsnbextension 3.5.1
wrapt 1.12.1 xgboost 1.5.2 zipp 3.4.1

Python-Bibliotheken für GPU-Cluster

Bibliothek Version Bibliothek Version Bibliothek Version
absl-py 0.11.0 Antergos Linux 2015.10 (ISO-Rolling) appdirs 1.4.4
argon2-cffi 20.1.0 astor 0.8.1 astunparse 1.6.3
async-generator 1.10 attrs 20.3.0 backcall 0.2.0
bcrypt 3.2.0 bidict 0.21.4 bleach 3.3.0
blis 0.7.7 boto3 1.16.7 botocore 1.19.7
cachetools 4.2.4 Katalog 2.0.7 certifi 2020.12.5
cffi 1.14.5 chardet 4.0.0 Klicken 7.1.2
cloudpickle 1.6.0 cmdstanpy 0.9.68 configparser 5.0.1
convertdate 2.4.0 cryptography 3.4.7 cycler 0.10.0
cymem 2.0.6 Cython 0.29.23 databricks-automl-runtime 0.2.7
databricks-cli 0.16.4 dbl-tempo 0.1.2 dbus-python 1.2.16
decorator 5.0.6 defusedxml 0.7.1 dill 0.3.2
diskcache 5.4.0 distlib 0.3.4 distro-info 0.23ubuntu1
entrypoints 0,3 ephem 4.1.3 facets-overview 1.0.0
fasttext 0.9.2 filelock 3.0.12 Flask 1.1.2
flatbuffers 2.0 fsspec 0.9.0 future 0.18.2
gast 0.4.0 gitdb 4.0.9 GitPython 3.1.12
google-auth 1.22.1 google-auth-oauthlib 0.4.2 google-pasta 0.2.0
grpcio 1.39.0 gunicorn 20.0.4 gviz-api 1.10.0
h5py 3.1.0 hijri-converter 2.2.3 holidays 0,13
horovod 0.23.0 htmlmin 0.1.12 huggingface-hub 0.5.1
idna 2.10 ImageHash 4.2.1 imbalanced-learn 0.8.1
importlib-metadata 3.10.0 ipykernel 5.3.4 ipython 7.22.0
ipython-genutils 0.2.0 ipywidgets 7.6.3 isodate 0.6.0
itsdangerous 1.1.0 jedi 0.17.2 Jinja2 2.11.3
jmespath 0.10.0 joblib 1.0.1 joblibspark 0.3.0
jsonschema 3.2.0 jupyter-client 6.1.12 jupyter-core 4.7.1
jupyterlab-pygments 0.1.2 jupyterlab-widgets 1.0.0 keras 2.8.0
Keras-Preprocessing 1.1.2 kiwisolver 1.3.1 koalas 1.8.2
korean-lunar-calendar 0.2.1 langcodes 3.3.0 libclang 13.0.0
lightgbm 3.3.2 llvmlite 0.38.0 LunarCalendar 0.0.9
Mako 1.1.3 Markdown 3.3.3 MarkupSafe 2.0.1
matplotlib 3.4.2 missingno 0.5.1 mistune 0.8.4
mleap 0.18.1 mlflow-skinny 1.24.0 multimethod 1.8
murmurhash 1.0.6 nbclient 0.5.3 nbconvert 6.0.7
nbformat 5.1.3 nest-asyncio 1.5.1 networkx 2.5
nltk 3.6.1 Notebook 6.3.0 numba 0.55.1
numpy 1.20.1 oauthlib 3.1.0 opt-einsum 3.3.0
Packen 21,3 Pandas 1.2.4 pandas-profiling 3.1.0
pandocfilters 1.4.3 paramiko 2.7.2 parso 0.7.0
pathy 0.6.1 patsy 0.5.1 petastorm 0.11.4
pexpect 4.8.0 phik 0.12.2 pickleshare 0.7.5
Pillow 8.2.0 pip 21.0.1 plotly 5.6.0
pmdarima 1.8.5 preshed 3.0.6 prompt-toolkit 3.0.17
prophet 1.0.1 protobuf 3.17.2 psutil 5.8.0
psycopg2 2.8.5 ptyprocess 0.7.0 pyarrow 4.0.0
pyasn1 0.4.8 pyasn1-modules 0.2.8 pybind11 2.9.2
pycparser 2,20 pydantic 1.8.2 Pygments 2.8.1
PyGObject 3.36.0 PyMeeus 0.5.11 PyNaCl 1.5.0
pyodbc 4.0.30 pyparsing 2.4.7 pyrsistent 0.17.3
pystan 2.19.1.1 python-apt 2.0.0+ubuntu0.20.4.7 Python-dateutil 2.8.1
python-editor 1.0.4 python-engineio 4.3.0 python-socketio 5.4.1
pytz 2020.5 PyWavelets 1.1.1 PyYAML 5.4.1
pyzmq 20.0.0 regex 2021.4.4 requests 2.25.1
requests-oauthlib 1.3.0 requests-unixsocket 0.2.0 rsa 4.8
s3transfer 0.3.7 sacremoses 0.0.49 scikit-learn 0.24.1
scipy 1.6.2 seaborn 0.11.1 Send2Trash 1.5.0
setuptools 52.0.0 setuptools-git 1.2 shap 0.40.0
simplejson 3.17.2 sechs 1.15.0 slicer 0.0.7
smart-open 5.2.1 smmap 3.0.5 spacy 3.2.3
spacy-legacy 3.0.9 spacy-loggers 1.0.2 spark-tensorflow-distributor 1.0.0
sqlparse 0.4.1 srsly 2.4.3 ssh-import-id 5.10
statsmodels 0.12.2 tabulate 0.8.7 tangled-up-in-unicode 0.1.0
tenacity 6.2.0 tensorboard 2.8.0 tensorboard-data-server 0.6.1
tensorboard-plugin-profile 2.5.0 tensorboard-plugin-wit 1.8.1 tensorflow 2.8.0
tensorflow-estimator 2.8.0 tensorflow-io-gcs-filesystem 0.24.0 termcolor 1.1.0
terminado 0.9.4 testpath 0.4.4 tf-estimator-nightly 2.8.0.dev2021122109
thinc 8.0.15 threadpoolctl 2.1.0 tokenizers 0.12.1
torch 1.10.2+cu113 torchvision 0.11.3+cu113 tornado 6.1
tqdm 4.59.0 traitlets 5.0.5 transformers 4.17.0
typer 0.4.1 typing-extensions 3.7.4.3 ujson 4.0.2
unattended-upgrades 0,1 urllib3 1.25.11 virtualenv 20.4.1
Visionen 0.7.4 Wasabi 0.9.1 wcwidth 0.2.5
webencodings 0.5.1 websocket-client 0.57.0 Werkzeug 1.0.1
wheel 0.36.2 widgetsnbextension 3.5.1 wrapt 1.12.1
xgboost 1.5.2 zipp 3.4.1

Spark-Pakete mit Python-Modulen

Spark-Paket Python-Modul Version
graphframes graphframes 0.8.2-db1-spark3.2

R-Bibliotheken

Die R-Bibliotheken sind mit den R-Bibliotheken in Databricks Runtime 10.5 identisch.

Java- und Scala-Bibliotheken (Scala 2.12-Cluster)

Zusätzlich zu Java- und Scala-Bibliotheken in Databricks Runtime 10.5 enthält Databricks Runtime 10.5 ML die folgenden JAR-Dateien:

CPU-Cluster

Gruppen-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.2
ml.dmlc xgboost4j_2.12 1.5.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.24.0
org.mlflow mlflow-spark 1.24.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

GPU-Cluster

Gruppen-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.18.1-23eb1ef
ml.dmlc xgboost4j-spark_2.12 1.5.2
ml.dmlc xgboost4j_2.12 1.5.2
org.graphframes graphframes_2.12 0.8.2-db1-spark3.2
org.mlflow mlflow-client 1.24.0
org.mlflow mlflow-spark 1.24.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0