Databricks Runtime 7.4 für ML (EoS)
Hinweis
Die Unterstützung für diese Databricks-Runtime-Version wurde beendet. Den End-of-Support-Termin finden Sie im Verlauf des Supportendes. Alle unterstützten Versionen von Databricks Runtime finden Sie unter Versionshinweise, Versionen und Kompatibilität von Databricks Runtime.
Diese Version wurde von Databricks im November 2020 veröffentlicht.
Databricks Runtime 7.4 für Machine Learning bietet eine sofort einsatzbereite Umgebung für maschinelles Lernen und Data Science auf Basis von Databricks Runtime 7.4 (EoS). Databricks Runtime ML enthält viele beliebte Machine Learning-Bibliotheken, einschließlich TensorFlow, PyTorch und XGBoost. Zudem wird ein verteiltes Deep Learning-Training mit Horovod unterstützt.
Weitere Informationen, einschließlich Anweisungen zum Erstellen eines Databricks Runtime ML-Clusters, finden Sie unter KI und Machine Learning in Databricks.
Neue Features und wichtige Änderungen
Databricks Runtime 7.4 ML basiert auf Databricks Runtime 7.4. Informationen zu den Neuerungen in Databricks Runtime 7.4 (einschließlich Apache Spark MLlib und SparkR) finden Sie in den Versionshinweisen zu Databricks Runtime 7.4 (EoS).
Wichtige Änderungen an der Databricks Runtime ML Scala-Umgebung
XGBoost erhält ein Upgrade auf 1.2.0. Diese Version ermöglicht XGBoost die Verwendung von GPUs in Spark-Clustern, um die Trainingsgeschwindigkeit zu verbessern. Es gibt mehrere andere Änderungen, einschließlich einiger Breaking Changes. Weitere Informationen finden Sie in den Versionshinweisen zu XGBoost 1.2.0.
Auf CPU-Clustern erhalten xgboost4j_2.12
und xgboost4j-spark_2.12
ein Upgrade von 1.0.0 auf 1.2.0. In GPU-Clustern werden diese Pakete entfernt, und Version 1.2.0 von xgboost4j-gpu_2.12
und xgboost4j-spark-gpu_2.12
wird stattdessen installiert.
Für GraphFrames wird ein Upgrade von 0.8.0-db2-spark3.0 auf 0.8.1-db1-spark3.0 durchgeführt.
Wichtige Änderungen an der Databricks Runtime ML Python-Umgebung
Unter Databricks Runtime 7.4 (EoS) finden Sie die wichtigsten Änderungen an der Python-Umgebung von Databricks Runtime. Eine vollständige Liste der installierten Python-Pakete und deren Versionen finden Sie unter Python-Bibliotheken.
Python-Pakete, die ein Upgrade erhalten haben
- cloudpickle 1.3.0 -> 1.4.1
- databricks-cli 0.11.0 -> 0.13.0
- horovod 0.19.5 -> 0.20.3
- petastorm 0.9.5 -> 0.9.6
- plotly 4.9.0 -> 4.10.0
- sparkdl 2.1.0-db1 -> 2.1.0-db2
- tensorflow 2.3.0 -> 2.3.1
- xgboost 1.1.1 -> 1.2.0
Verbesserungen
- Einige Picklingprobleme, die PyTorch-Fehler verursacht haben, wurden in Databricks Runtime 7.4 behoben. Weitere Informationen finden Sie in den Versionshinweisen zu Databricks Runtime 7.4.
- Horovod 0.20.3 unterstützt die Verwendung des
horovod.spark
-Pakets auf Azure Databricks. Weitere Informationen finden Sie unter horovod.spark: verteiltes Deep Learning mit Horovod.
Systemumgebung
Die Systemumgebung in Databricks Runtime 7.4 ML unterscheidet sich wie folgt von Databricks Runtime 7.4:
- Für Open MPI wird ein Upgrade von 4.0.4 auf 4.0.5 durchgeführt.
- DBUtils: Databricks Runtime ML enthält kein Bibliothekshilfsprogramm (dbutils.library) (Legacy).
Sie können stattdessen die Befehle
%pip
und%conda
verwenden. Informationen finden Sie unter Python-Bibliotheken im Notebook-Bereich. - Für GPU-Cluster umfasst Databricks Runtime ML die folgenden NVIDIA-GPU-Bibliotheken:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Bibliotheken
In den folgenden Abschnitten sind die Bibliotheken aufgelistet, die in Databricks Runtime 7.4 ML enthalten sind und sich von den in Databricks Runtime 7.4 enthaltenen Bibliotheken unterscheiden.
Inhalt dieses Abschnitts:
- Bibliotheken der obersten Ebene
- Python-Bibliotheken
- R-Bibliotheken
- Java- und Scala-Bibliotheken (Scala 2.12-Cluster)
Bibliotheken der obersten Ebene
Databricks Runtime 7.4 ML enthält die folgenden Bibliotheken der obersten Ebene:
- GraphFrames
- Horovod und HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python-Bibliotheken
Databricks Runtime 7.4 ML verwendet Conda für die Python-Paketverwaltung und enthält viele beliebte ML-Pakete.
Zusätzlich zu den Paketen, die in den folgenden Abschnitten in den Conda-Umgebungen angegeben sind, installiert Databricks Runtime 7.4 ML auch die folgenden Pakete:
- hyperopt 0.2.4.db2
- sparkdl 2.1.0-db2
Python-Bibliotheken in CPU-Clustern
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.16.1=h7b6447c_0
- ca-certificates=2020.7.22=0
- cachetools=4.1.1=py_0
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hf484d3e_1007
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.1=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1h=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.10.0=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.6.0=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.4=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tenacity=6.2.0=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.7.0=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.8.2
- azure-storage-blob==12.5.0
- databricks-cli==0.13.0
- diskcache==5.0.3
- docker==4.3.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.3.0
- mleap==0.16.1
- mlflow==1.11.0
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.6
- pyarrow==1.0.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.7.0
- tensorflow-cpu==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml
Python-Bibliotheken für GPU-Cluster
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.16.1=h7b6447c_0
- ca-certificates=2020.7.22=0
- cachetools=4.1.1=py_0
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hf484d3e_1007
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.1=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1h=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.10.0=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.6.0=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.4=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tenacity=6.2.0=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.7.0=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.8.2
- azure-storage-blob==12.5.0
- databricks-cli==0.13.0
- diskcache==5.0.3
- docker==4.3.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.3.0
- mleap==0.16.1
- mlflow==1.11.0
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.6
- pyarrow==1.0.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.7.0
- tensorflow==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml-gpu
Spark-Pakete mit Python-Modulen
Spark-Paket | Python-Modul | Version |
---|---|---|
graphframes | graphframes | 0.8.1-db1-spark3.0 |
R-Bibliotheken
Die R-Bibliotheken sind mit den R-Bibliotheken in Databricks Runtime 7.4 identisch.
Java- und Scala-Bibliotheken (Scala 2.12-Cluster)
Zusätzlich zu den Java- und Scala-Bibliotheken in Databricks Runtime 7.4 enthält Databricks Runtime 7.4 ML die folgenden JARs:
CPU-Cluster
Gruppen-ID | Artefakt-ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.2.0 |
ml.dmlc | xgboost4j_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.11.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
GPU-Cluster
Gruppen-ID | Artefakt-ID | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.2.0 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.11.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |