Freigeben über


Databricks Runtime 8.0 für ML (EoS)

Hinweis

Die Unterstützung für diese Databricks-Runtime-Version wurde beendet. Den End-of-Support-Termin finden Sie im Verlauf des Supportendes. Alle unterstützten Versionen von Databricks Runtime finden Sie unter Versionshinweise, Versionen und Kompatibilität von Databricks Runtime.

Diese Version wurde von Databricks im März 2021 veröffentlicht.

Databricks Runtime 8.0 für Machine Learning bietet eine sofort einsatzbereite Umgebung für maschinelles Lernen und Data Science auf Basis von Databricks Runtime 8.0 (EoS). Databricks Runtime ML enthält viele beliebte Machine Learning-Bibliotheken, einschließlich TensorFlow, PyTorch und XGBoost. Zudem wird ein verteiltes Deep Learning-Training mit Horovod unterstützt.

Weitere Informationen, einschließlich Anweisungen zum Erstellen eines Databricks Runtime ML-Clusters, finden Sie unter KI und Machine Learning in Databricks.

Neue Features und wichtige Änderungen

Databricks Runtime 8.0 ML basiert auf Databricks Runtime 8.0. Informationen zu den Neuerungen in Databricks Runtime 8.0, einschließlich Apache Spark MLlib und SparkR, finden Sie in den Versionshinweisen zu Databricks Runtime 8.0 (EoS).

Konfiguration des Conda-Kanals

Anaconda Inc. hat die Vertragsbedingungen für die Kanäle von anaconda.org im September 2020 aktualisiert. Gemäß den neuen Vertragsbedingungen benötigen Sie nun möglicherweise eine kommerzielle Lizenz für die Nutzung der Paket- und Verteilungslösung von Anaconda. Weitere Informationen finden Sie unter Anaconda Commercial Edition FAQ (Häufig gestellte Fragen zu Anaconda Commercial Edition). Aufgrund dieser Änderung haben wir die Standardkanalkonfiguration für den Conda-Paket-Manager in Databricks Runtime ML 8.0 entfernt. Um Pakete mit dem %conda-Befehl zu installieren oder zu aktualisieren, müssen Sie einen Kanal angeben. Jegliche Nutzung von Anaconda-Kanälen unterliegt den Anaconda-Vertragsbedingungen.

Wichtige Änderungen an der Databricks Runtime ML Python-Umgebung

Unter Databricks Runtime 8.0 (EoS) finden Sie die wichtigsten Änderungen an der Python-Umgebung von Databricks Runtime. Eine vollständige Liste der installierten Python-Pakete und deren Versionen finden Sie unter Python-Bibliotheken.

Wichtige Änderungen an der Umgebung

  • Standardmäßige Conda-Kanäle wurden entfernt.
  • Die Python-Version des Standardsystems wurde von 3.7.6 auf 3.8.5 aktualisiert.
  • TensorFlow 1.x wird nicht mehr unterstützt.

Python-Pakete, die ein Upgrade erhalten haben

  • tensorboard 2.3.1 –> 2.4.1
  • tensorflow 2.3.1 –> 2.4.0
  • matplotlib 3.1.3 –> 3.2.2
  • joblib 0.14.1 –> 0.17.0
  • petastorm 0.9.7 –> 0.9.8
  • cloudpickle 1.4.1 –> 1.6.0
  • nltk 3.4.5 –> 3.5
  • Pakete in der Anaconda-Verteilung wurden von 2020.02 auf 2020.11 aktualisiert.

Hinzugefügte Python-Pakete

  • shap: 0.37.0

Entfernte Python-Pakete

  • gorilla
  • backports

Systemumgebung

Die Systemumgebung in Databricks Runtime 8.0 ML unterscheidet sich wie folgt von Databricks Runtime 8.0:

Bibliotheken

In den folgenden Abschnitten sind die Bibliotheken aufgelistet, die in Databricks Runtime 8.0 ML enthalten sind und sich von den in Databricks Runtime 8.0 enthaltenen Bibliotheken unterscheiden.

Inhalt dieses Abschnitts:

Bibliotheken der obersten Ebene

Databricks Runtime 8.0 ML enthält die folgenden Bibliotheken der obersten Ebene:

Python-Bibliotheken

Databricks Runtime 8.0 ML verwendet Conda für die Python-Paketverwaltung und enthält viele beliebte ML-Pakete.

Zusätzlich zu den Paketen, die in den Conda-Umgebungen in den folgenden Abschnitten angegeben sind, enthält Databricks Runtime 8.0 ML auch die folgenden Pakete:

  • hyperopt 0.2.5.db1
  • sparkdl 2.1.0.db4

Python-Bibliotheken in CPU-Clustern

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.11.0=pyhd3eb1b0_1
  - aiohttp=3.6.3=py38h7b6447c_0
  - asn1crypto=1.4.0=py_0
  - astor=0.8.1=py38_0
  - async-timeout=3.0.1=py38_0
  - attrs=20.3.0=pyhd3eb1b0_0
  - backcall=0.2.0=py_0
  - bcrypt=3.2.0=py38h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py38_0
  - boto3=1.16.7=pyhd3eb1b0_0
  - botocore=1.19.7=pyhd3eb1b0_0
  - brotlipy=0.7.0=py38h27cfd23_1003
  - c-ares=1.17.1=h27cfd23_0
  - ca-certificates=2021.4.13=h06a4308_1 # (updated from 2021.1.19 in May 26, 2021 maintenance update)
  - cachetools=4.2.0=pyhd3eb1b0_0
  - certifi=2020.12.5=py38h06a4308_0
  - cffi=1.14.3=py38h261ae71_2
  - chardet=3.0.4=py38h06a4308_1003
  - click=7.1.2=pyhd3eb1b0_0
  - cloudpickle=1.6.0=py_0
  - configparser=5.0.1=py_0
  - cpuonly=1.0=0
  - cryptography=3.1.1=py38h1ba5d50_0
  - cycler=0.10.0=py38_0
  - cython=0.29.21=py38h2531618_0
  - decorator=4.4.2=py_0
  - dill=0.3.2=py_0
  - docutils=0.15.2=py38_0
  - entrypoints=0.3=py38_0
  - flask=1.1.2=py_0
  - freetype=2.10.4=h5ab3b9f_0
  - future=0.18.2=py38_1
  - gitdb=4.0.5=py_0
  - gitpython=3.1.11=pyhd3eb1b0_1
  - google-auth=1.22.1=py_0
  - google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
  - google-pasta=0.2.0=py_0
  - gunicorn=20.0.4=py38_0
  - h5py=2.10.0=py38h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.10=pyhd3eb1b0_0
  - importlib-metadata=2.0.0=py_1
  - intel-openmp=2019.4=243
  - ipykernel=5.3.4=py38h5ca1d4c_0
  - ipython=7.19.0=py38hb070fc8_1
  - ipython_genutils=0.2.0=pyhd3eb1b0_1
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py_0
  - jedi=0.17.2=py38h06a4308_1
  - jinja2=2.11.2=pyhd3eb1b0_0
  - jmespath=0.10.0=py_0
  - joblib=0.17.0=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=6.1.7=py_0
  - jupyter_core=4.6.3=py38_0
  - kiwisolver=1.3.0=py38h2531618_0
  - krb5=1.17.1=h173b8e3_0
  - lcms2=2.11=h396b838_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20191231=h14c3975_1
  - libffi=3.3=he6710b0_2
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=12.2=h20c2e04_0
  - libprotobuf=3.13.0.1=hd408876_0
  - libsodium=1.0.18=h7b6447c_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_1
  - lightgbm=3.1.1=py38h2531618_0
  - lz4-c=1.9.2=heb0550a_3
  - mako=1.1.3=py_0
  - markdown=3.3.2=py38_0
  - markupsafe=1.1.1=py38h7b6447c_0
  - matplotlib-base=3.2.2=py38hef1b27d_0
  - mkl=2019.4=243
  - mkl-service=2.3.0=py38he904b0f_0
  - mkl_fft=1.2.0=py38h23d657b_0
  - mkl_random=1.1.0=py38h962f231_0
  - more-itertools=8.6.0=pyhd3eb1b0_0
  - multidict=4.7.6=py38h7b6447c_1
  - ncurses=6.2=he6710b0_1
  - networkx=2.5=py_0
  - nltk=3.5=py_0
  - numpy=1.19.2=py38h54aff64_0
  - numpy-base=1.19.2=py38hfa32c7d_0
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py_0
  - openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
  - packaging=20.4=py_0
  - pandas=1.1.3=py38he6710b0_0
  - paramiko=2.7.2=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py38_0
  - pexpect=4.8.0=pyhd3eb1b0_3
  - pickleshare=0.7.5=pyhd3eb1b0_1003
  - pillow=8.0.1=py38he98fc37_0
  - pip=20.2.4=py38h06a4308_0
  - plotly=4.14.2=pyhd3eb1b0_0
  - prompt-toolkit=3.0.8=py_0
  - prompt_toolkit=3.0.8=0
  - protobuf=3.13.0.1=py38he6710b0_1
  - psutil=5.7.2=py38h7b6447c_0
  - psycopg2=2.8.5=py38h3c74f83_1
  - ptyprocess=0.6.0=pyhd3eb1b0_2
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.20=py_2
  - pygments=2.7.2=pyhd3eb1b0_0
  - pyjwt=1.7.1=py38_0
  - pynacl=1.4.0=py38h7b6447c_1
  - pyodbc=4.0.30=py38he6710b0_0
  - pyopenssl=19.1.0=pyhd3eb1b0_1
  - pyparsing=2.4.7=pyhd3eb1b0_0
  - pysocks=1.7.1=py38h06a4308_0
  - python=3.8.8=hdb3f193_4 # (updated from 3.8.5 in May 26, 2021 maintenance update)
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytz=2020.1=py_0
  - pyzmq=19.0.2=py38he6710b0_1
  - readline=8.0=h7b6447c_0
  - regex=2020.10.15=py38h7b6447c_0
  - requests=2.24.0=py_0
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py_2
  - rsa=4.7=pyhd3eb1b0_1
  - s3transfer=0.3.4=pyhd3eb1b0_0
  - scikit-learn=0.23.2=py38h0573a6f_0
  - scipy=1.5.2=py38h0b6359f_0
  - setuptools=50.3.1=py38h06a4308_1
  - simplejson=3.17.2=py38h7b6447c_0
  - six=1.15.0=py38h06a4308_0
  - smmap=3.0.4=py_0
  - sqlite=3.33.0=h62c20be_0
  - sqlparse=0.4.1=py_0
  - statsmodels=0.12.0=py38h7b6447c_0
  - tabulate=0.8.7=py38_0
  - threadpoolctl=2.1.0=pyh5ca1d4c_0
  - tk=8.6.10=hbc83047_0
  - tornado=6.0.4=py38h7b6447c_1
  - tqdm=4.50.2=py_0
  - traitlets=5.0.5=py_0
  - typing_extensions=3.7.4.3=py_0
  - unixodbc=2.3.9=h7b6447c_0
  - urllib3=1.25.11=py_0
  - wcwidth=0.2.5=py_0
  - websocket-client=0.57.0=py38_2
  - werkzeug=1.0.1=py_0
  - wheel=0.35.1=pyhd3eb1b0_0
  - wrapt=1.12.1=py38h7b6447c_1
  - xz=5.2.5=h7b6447c_0
  - yarl=1.6.3=py38h27cfd23_0
  - zeromq=4.3.3=he6710b0_3
  - zipp=3.4.0=pyhd3eb1b0_0
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.4.5=h9ceee32_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.10.0
    - azure-storage-blob==12.7.0
    - databricks-cli==0.14.1
    - diskcache==5.1.0
    - docker==4.4.1
    - flatbuffers==1.12
    - gast==0.3.3
    - grpcio==1.32.0
    - horovod==0.21.1
    - joblibspark==0.3.0
    - keras-preprocessing==1.1.2
    - koalas==1.5.0
    - llvmlite==0.35.0
    - mleap==0.16.1
    - mlflow==1.13.1
    - msrest==0.6.19
    - numba==0.52.0
    - opt-einsum==3.3.0
    - petastorm==0.9.8
    - pyarrow==1.0.1
    - pyyaml==5.4
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - shap==0.37.0
    - slicer==0.0.3
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.4.1
    - tensorboard-plugin-wit==1.8.0
    - tensorflow-cpu==2.4.0
    - tensorflow-estimator==2.4.0
    - termcolor==1.1.0
    - torch==1.7.1
    - torchvision==0.8.2
    - xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml

Spark-Pakete mit Python-Modulen

Spark-Paket Python-Modul Version
graphframes graphframes 0.8.1-db2-spark3.1

R-Bibliotheken

Die R-Bibliotheken sind mit den R-Bibliotheken in Databricks Runtime 8.0 identisch.

Java- und Scala-Bibliotheken (Scala 2.12-Cluster)

Zusätzlich zu Java- und Scala-Bibliotheken in Databricks Runtime 8.0 enthält Databricks Runtime 8.0 ML die folgenden JAR-Dateien:

CPU-Cluster

Gruppen-ID Artefakt-ID Version
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.0-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.3.1
ml.dmlc xgboost4j_2.12 1.3.1
org.graphframes graphframes_2.12 0.8.1-db2-spark3.1
org.mlflow mlflow-client 1.13.1
org.mlflow mlflow-spark 1.13.1
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0