Hinweis
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, sich anzumelden oder das Verzeichnis zu wechseln.
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, das Verzeichnis zu wechseln.
Gibt eine neue Zeile für jedes einzelne Element im angegebenen Array oder der angegebenen Map zurück. Verwendet den Standardspaltennamen col für Elemente im Array und keyvalue für Elemente in der Zuordnung, sofern nicht anders angegeben.
Hinweis
Pro Klausel ist nur ein Explode zulässig SELECT .
Syntax
from pyspark.sql import functions as sf
sf.explode(col)
Die Parameter
| Parameter | Typ | Description |
|---|---|---|
col |
pyspark.sql.Column oder Spaltenname |
Zielspalte, an der gearbeitet werden soll. |
Rückkehr
pyspark.sql.Column: Eine Zeile pro Arrayelement oder Zuordnungsschlüsselwert.
Examples
Beispiel 1: Explodieren einer Arrayspalte
from pyspark.sql import functions as sf
df = spark.sql('SELECT * FROM VALUES (1,ARRAY(1,2,3,NULL)), (2,ARRAY()), (3,NULL) AS t(i,a)')
df.show()
+---+---------------+
| i| a|
+---+---------------+
| 1|[1, 2, 3, NULL]|
| 2| []|
| 3| NULL|
+---+---------------+
df.select('*', sf.explode('a')).show()
+---+---------------+----+
| i| a| col|
+---+---------------+----+
| 1|[1, 2, 3, NULL]| 1|
| 1|[1, 2, 3, NULL]| 2|
| 1|[1, 2, 3, NULL]| 3|
| 1|[1, 2, 3, NULL]|NULL|
+---+---------------+----+
Beispiel 2: Explodieren einer Kartenspalte
from pyspark.sql import functions as sf
df = spark.sql('SELECT * FROM VALUES (1,MAP(1,2,3,4,5,NULL)), (2,MAP()), (3,NULL) AS t(i,m)')
df.show(truncate=False)
+---+---------------------------+
|i |m |
+---+---------------------------+
|1 |{1 -> 2, 3 -> 4, 5 -> NULL}|
|2 |{} |
|3 |NULL |
+---+---------------------------+
df.select('*', sf.explode('m')).show(truncate=False)
+---+---------------------------+---+-----+
|i |m |key|value|
+---+---------------------------+---+-----+
|1 |{1 -> 2, 3 -> 4, 5 -> NULL}|1 |2 |
|1 |{1 -> 2, 3 -> 4, 5 -> NULL}|3 |4 |
|1 |{1 -> 2, 3 -> 4, 5 -> NULL}|5 |NULL |
+---+---------------------------+---+-----+
Beispiel 3: Explodieren mehrerer Arrayspalten
import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(1,2) AS a1, ARRAY(3,4,5) AS a2')
df.select(
'*', sf.explode('a1').alias('v1')
).select('*', sf.explode('a2').alias('v2')).show()
+------+---------+---+---+
| a1| a2| v1| v2|
+------+---------+---+---+
|[1, 2]|[3, 4, 5]| 1| 3|
|[1, 2]|[3, 4, 5]| 1| 4|
|[1, 2]|[3, 4, 5]| 1| 5|
|[1, 2]|[3, 4, 5]| 2| 3|
|[1, 2]|[3, 4, 5]| 2| 4|
|[1, 2]|[3, 4, 5]| 2| 5|
+------+---------+---+---+
Beispiel 4: Explodieren eines Arrays von Strukturspalten
import pyspark.sql.functions as sf
df = spark.sql('SELECT ARRAY(NAMED_STRUCT("a",1,"b",2), NAMED_STRUCT("a",3,"b",4)) AS a')
df.select(sf.explode('a').alias("s")).select("s.*").show()
+---+---+
| a| b|
+---+---+
| 1| 2|
| 3| 4|
+---+---+