Hinweis
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, sich anzumelden oder das Verzeichnis zu wechseln.
Für den Zugriff auf diese Seite ist eine Autorisierung erforderlich. Sie können versuchen, das Verzeichnis zu wechseln.
Gilt für: Databricks SQL
Databricks Runtime
Definiert ein temporäres Resultset, auf das Sie möglicherweise mehrmals innerhalb des Bereichs einer SQL-Anweisung verweisen können. Ein CTE wird hauptsächlich in einer SELECT
-Anweisung verwendet.
Syntax
WITH [ RECURSIVE ] common_table_expression [, ...]
common_table_expression
view_identifier [ ( column_identifier [, ...] ) ] [ AS ] ( query | recursive_query )
recursive_query
base_case_query UNION ALL step_case_query
Parameter
REKURSIV
Von Bedeutung
Dieses Feature befindet sich in der Public Preview.
Gilt für:
Databricks Runtime Version 17.0 und höher
Wenn angegeben, können die gemeinsamen Tabellenausdrücke eine
recursive_query
enthalten.view_identifier
Ein Bezeichner, mit dem auf
common_table_expression
verwiesen werden kanncolumn_identifier
Ein optionaler Bezeichner, mit dem auf eine Spalte von
common_table_expression
verwiesen werden kann.Wenn
column_identifier
angegeben werden, muss ihre Anzahl mit der Anzahl der spalten übereinstimmen, die vonquery
zurückgegeben werden. Wenn keine Namen angegeben werden, werden die Spaltennamen vonquery
abgeleitet.-
Eine Abfrage, die ein Resultset erzeugt.
recursive_query
Gilt für:
Databricks Runtime Version 17.0 und höher
Wenn
RECURSIVE
angegeben, kann eine Abfrage eines CTE auf sich selbst verweisen. Dadurch wird ein CTE zu einem rekursiven CTE.-
Diese Unterabfrage stellt den Seed oder Anker für die Rekursion bereit. Es darf nicht auf
view_identifier
verwiesen werden. -
Diese Unterabfrage erzeugt einen neuen Satz von Zeilen basierend auf dem vorherigen Schritt. Um rekursiv zu sein, muss darauf verwiesen
view_identifier
werden.
-
Einschränkungen
- Rekursive CTEs werden für
UPDATE
,DELETE
undMERGE
Anweisungen nicht unterstützt. -
step_subquery
darf keine korrelierten Spaltenverweise aufview_identifier
. - Das Aufrufen von Zufallszahlengeneratoren aus dem rekursiven Teil kann in jeder Iteration dieselbe Zufallszahl generieren.
- Die Anzahl rekursiver Schritte ist auf 100 beschränkt.
- Die Gesamtgröße des Resultsets ist auf 1.000.000 Zeilen begrenzt.
Beispiele
-- CTE with multiple column aliases
> WITH t(x, y) AS (SELECT 1, 2)
SELECT * FROM t WHERE x = 1 AND y = 2;
1 2
-- CTE in CTE definition
> WITH t AS (
WITH t2 AS (SELECT 1)
SELECT * FROM t2)
SELECT * FROM t;
1
-- CTE in subquery
> SELECT max(c) FROM (
WITH t(c) AS (SELECT 1)
SELECT * FROM t);
1
-- CTE in subquery expression
> SELECT (WITH t AS (SELECT 1)
SELECT * FROM t);
1
-- CTE in CREATE VIEW statement
> CREATE VIEW v AS
WITH t(a, b, c, d) AS (SELECT 1, 2, 3, 4)
SELECT * FROM t;
> SELECT * FROM v;
1 2 3 4
-- CTE names are scoped
> WITH t AS (SELECT 1),
t2 AS (
WITH t AS (SELECT 2)
SELECT * FROM t)
SELECT * FROM t2;
2
Rekursive Abfragebeispiele
Beispiele für gerichtete Graphen
Das folgende Beispiel zeigt, wie Sie alle Reiseziele von New York zu anderen Städten finden, einschließlich direkter Routen und routen durch andere Städte:
> DROP VIEW IF EXISTS routes;
> CREATE TEMPORARY VIEW routes(origin, destination) AS VALUES
('New York', 'Washington'),
('New York', 'Boston'),
('Boston', 'New York'),
('Washington', 'Boston'),
('Washington', 'Raleigh');
> WITH RECURSIVE destinations_from_new_york AS (
SELECT 'New York' AS destination, ARRAY('New York') AS path, 0 AS length
UNION ALL
SELECT r.destination, CONCAT(d.path, ARRAY(r.destination)), d.length + 1
FROM routes AS r
JOIN destinations_from_new_york AS d
ON d.destination = r.origin AND NOT ARRAY_CONTAINS(d.path, r.destination)
)
SELECT * FROM destinations_from_new_york;
destination path length
----------- ----------------------------------- ------
New York ["New York"] 0
Washington ["New York","Washington"] 1
Boston ["New York","Boston"] 1
Boston ["New York","Washington","Boston"] 2
Raleigh ["New York","Washington","Raleigh"] 2
Im folgenden Beispiel wird veranschaulicht, wie Sie einen gerichteten Graphen durchlaufen und überprüfen, ob eine Endlosschleife während des Traversierens besteht.
> DROP TABLE IF EXISTS graph;
> CREATE TABLE IF NOT EXISTS graph( f int, t int, label string );
> INSERT INTO graph VALUES
(1, 2, 'arc 1 -> 2'),
(1, 3, 'arc 1 -> 3'),
(2, 3, 'arc 2 -> 3'),
(1, 4, 'arc 1 -> 4'),
(4, 5, 'arc 4 -> 5'),
(5, 1, 'arc 5 -> 1');
> WITH RECURSIVE search_graph(f, t, label, path, cycle) AS (
SELECT *, array(struct(g.f, g.t)), false FROM graph g
UNION ALL
SELECT g.*, path || array(struct(g.f, g.t)), array_contains(path, struct(g.f, g.t))
FROM graph g, search_graph sg
WHERE g.f = sg.t AND NOT cycle
)
SELECT path FROM search_graph;
Das Ergebnis ist eine Reihe von Pfaden, die die Länge erhöhen, während Zyklen vermieden und mit einem nicht unendlichen Pfad enden
[{"f":1,"t":4},{"f":4,"t":5},{"f":5,"t":1},{"f":1,"t":2},{"f":2,"t":3}]`
die alle Knoten mit einem klaren Stopp bei der Spüle "3" besucht.
Eine Tiefensuche wird erreicht, indem die letzte Zeile so geändert wird, dass sie nach der path
-Spalte sortiert wird.
SELECT * FROM search_graph ORDER BY path;
Die folgenden Beispiele veranschaulichen grundlegende rekursive Techniken:
-- Simple loop-like example.
> WITH RECURSIVE r(col) AS (
SELECT 'a'
UNION ALL
SELECT col || char(ascii(substr(col, -1)) + 1) FROM r WHERE LENGTH(col) < 10
)
SELECT * FROM r;
col
----------
a
ab
abc
abcd
abcde
abcdef
abcdefg
abcdefgh
abcdefghi
abcdefghij
-- Another loop-like example.
> WITH RECURSIVE t(n) AS (
SELECT 'foo'
UNION ALL
SELECT n || ' bar' FROM t WHERE length(n) < 20
)
SELECT n AS is_text FROM t;
is_text
-------
foo
foo bar
foo bar bar
foo bar bar bar
foo bar bar bar bar
foo bar bar bar bar bar
-- Invoking a recursive CTE from another CTE.
> WITH RECURSIVE x(id) AS (VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 5),
y(id) AS (VALUES (1) UNION ALL SELECT id+1 FROM x WHERE id < 10)
SELECT y.*, x.* FROM y LEFT JOIN x USING (id);
id id
-- --
1 1
4 4
6 null
3 3
5 5
2 2
-- An example of invoking a non-recursive CTE from a recursive CTE.
> WITH RECURSIVE
y (id) AS (VALUES (1)),
x (id) AS (SELECT * FROM y UNION ALL SELECT id+1 FROM x WHERE id < 5)
SELECT * FROM x;
id
--
1
2
3
4
5
-- Temporary views
> CREATE OR REPLACE TEMPORARY VIEW nums AS
WITH RECURSIVE nums (n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM nums WHERE n < 6
)
SELECT * FROM nums;
> SELECT * FROM nums;
n
__
1
2
3
4
5
6
> INSERT into a table
> CREATE TABLE rt(level INT);
> WITH RECURSIVE r(level) AS (
VALUES (0)
UNION ALL
SELECT level + 1 FROM r WHERE level < 9
)
INSERT INTO rt SELECT * FROM r;
> SELECT * from rt;
level
-----
0
1
2
3
4
5
6
7
8
9
-- Nested recursive CTE are supported (only inside anchor)
-- Returns a triangular half – total of 55 rows – of a 10x10 square of numbers 1-10
> WITH RECURSIVE t(j) AS (
WITH RECURSIVE s(i) AS (
VALUES (1)
UNION ALL
SELECT i+1 FROM s WHERE i < 10
)
SELECT i FROM s
UNION ALL
SELECT j+1 FROM t WHERE j < 10
)
SELECT * FROM t;
j
--
1
2
2
3
3
3
4
...
9
10
10
10
10
10
10
10
10
10
10
-- Honoring LIMIT
> WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t
)
SELECT * FROM t LIMIT 10;
n
--
1
2
3
4
5
6
7
8
9
10
-- Organizational tree examples
-- Extracting all departments under 'A'
> CREATE TABLE department (
id INTEGER, -- department ID
parent_department INTEGER, -- upper department ID
name string -- department name
);
> INSERT INTO department VALUES
(0, NULL, 'ROOT'),
(1, 0, 'A'),
(2, 1, 'B'),
(3, 2, 'C'),
(4, 2, 'D'),
(5, 0, 'E'),
(6, 4, 'F'),
(7, 5, 'G');
> WITH RECURSIVE subdepartment AS (
SELECT name as root_name, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.root_name, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
root_name id parent_department name
--------- -- ----------------- ----
A 1 0 A
A 2 1 B
A 3 2 C
A 4 2 D
A 6 4 F
-- The same as above but extracting the level number:
> WITH RECURSIVE subdepartment(level, id, parent_department, name) AS (
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment ORDER BY name;
level id parent_department name
----- -- ----------------- ----
1 1 0 A
2 2 1 B
3 3 2 C
3 4 2 D
4 6 4 F
-- The same as above but only shows level 2 or more
> WITH RECURSIVE subdepartment(level, id, parent_department, name) AS (
SELECT 1, * FROM department WHERE name = 'A'
UNION ALL
SELECT sd.level + 1, d.* FROM department AS d, subdepartment AS sd
WHERE d.parent_department = sd.id
)
SELECT * FROM subdepartment WHERE level >= 2 ORDER BY name;
level id parent_department name
----- -- ----------------- ----
2 2 1 B
3 3 2 C
3 4 2 D
4 6 4 F
-- Binary tree examples
-- Another tree example is to find all paths from the second level nodes “2” and “3” to all other nodes.
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), (2, 1), (3, 1), (4, 2), (5, 2), ( 6, 2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14, 9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.*, t2.*
FROM t AS t1 JOIN t AS t2
ON (t1.path[0] = t2.path[0] AND
size(t1.path) = 1 AND
size(t2.path) > 1)
ORDER BY t1.id, t2.id;
id path id path
-- ---- -- ------------
2 [2] 4 [2,4]
2 [2] 5 [2,5]
2 [2] 6 [2,6]
2 [2] 9 [2,4,9]
2 [2] 10 [2,4,10]
2 [2] 14 [2,4,9,14]
3 [3] 7 [3,7]
3 [3] 8 [3,8]
3 [3] 11 [3,7,11]
3 [3] 12 [3,7,12]
3 [3] 13 [3,7,13]
3 [3] 15 [3,7,11,15]
3 [3] 16 [3,7,11,16]
-- Another tree example counts the leaf nodes reachable from nodes “2” and “3”
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), ( 2,1), (3,1 ), ( 4,2), ( 5,2), ( 6,2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14,9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT t1.id, count(*)
FROM t AS t1 JOIN t AS t2
ON (t1.path[0] = t2.path[0] AND
size(t1.path) = 1 AND
size(t2.path) > 1)
GROUP BY t1.id
ORDER BY t1.id;
id count(1)
-- --------
2 6
3 7
-- Another tree example that is listing the paths to leaf node:
> CREATE TABLE tree(id INTEGER, parent_id INTEGER);
> INSERT INTO tree
VALUES (1, NULL), ( 2,1), ( 3,1), ( 4,2), ( 5,2), ( 6,2), ( 7, 3), ( 8, 3),
(9, 4), (10,4), (11,7), (12,7), (13,7), (14,9), (15,11), (16,11);
> WITH RECURSIVE t(id, path) AS (
VALUES(1,cast(array() as array<Int>))
UNION ALL
SELECT tree.id, t.path || array(tree.id)
FROM tree JOIN t ON (tree.parent_id = t.id)
)
SELECT id, path FROM t
ORDER BY id;
id path
-- -----------
1 []
2 [2]
3 [3]
4 [2,4]
5 [2,5]
6 [2,6]
7 [3,7]
8 [3,8]
9 [2,4,9]
10 [2,4,10]
11 [3,7,11]
12 [3,7,12]
13 [3,7,13]
14 [2,4,9,14]
15 [3,7,11,15]
16 [3,7,11,16]
-- Sudoku solver (https://sqlite.org)
-- Highlighted text represent the row-wise scan of a 9x9 Sudoku grid where missing values are represented with spaces.
> WITH RECURSIVE generate_series(gs) AS (
SELECT 1
UNION ALL
SELECT gs+1 FROM generate_series WHERE gs < 9
),
x( s, ind ) AS
( SELECT sud, position( ' ' IN sud )
FROM (SELECT '4 8725 5 64 213 29 8 6 73 1 8 2 4 97 15 2 3 2 1 659 28 2 37946'::STRING
AS sud) xx
UNION ALL
SELECT substr( s, 1, ind - 1 ) || z || substr( s, ind + 1 ),
position(' ' in repeat('x',ind) || substr( s, ind + 1 ) )
FROM x,
(SELECT gs::STRING AS z FROM generate_series) z
WHERE ind > 0
AND NOT EXISTS ( SELECT *
FROM generate_series
WHERE z.z = substr( s, ( (ind - 1 ) DIV 9 ) * 9 + gs, 1 )
OR z.z = substr( s, mod( ind - 1, 9 ) - 8 + gs * 9, 1 )
OR z.z = substr( s, mod( ( ( ind - 1 ) DIV 3 ), 3 ) * 3
+ ( ( ind - 1 ) DIV 27 ) * 27 + gs
+ ( ( gs - 1 ) DIV 3 ) * 6, 1 )
)
)
SELECT s FROM x WHERE ind = 0;
431872569587649213629351874245968731168723495973415628394286157716594382852137946
-- You can underspecify the problem, for example by replacing the leading ‘4’ with space ‘ ‘ which will yield two solutions
431872569587649213629351874245968731168723495973415628394286157716594382852137946
631872594587649213429351867245968731168723459973415628394286175716594382852137946
-- Finding prime numbers (Sieve of Eratosthenes, https://wiki.postgresql.org)
-- This is an implementation of the Sieve of Erastothenes algorithm for finding the prime numbers up to 150.
> WITH RECURSIVE t1(n) AS (
VALUES(2)
UNION ALL
SELECT n+1 FROM t1 WHERE n < 100
),
t2 (n, i) AS (
SELECT 2*n, 2
FROM t1 WHERE 2*n <= 150
UNION ALL
(
WITH t3(k) AS (
SELECT max(i) OVER () + 1 FROM t2
),
t4(k) AS (
SELECT DISTINCT k FROM t3
)
SELECT k*n, k
FROM t1 CROSS JOIN t4
WHERE k*k <= 150
)
)
SELECT n FROM t1 EXCEPT
SELECT n FROM t2
ORDER BY 1;
2
3
5
7
11
13
17
19
...