Freigeben über


<complex> betriebspersonal

operator!=

Testet zwei komplexe Zahlen auf Ungleichheit, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
bool operator!=(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
bool operator!=(
    const complex<Type>& left,
    const Type& right);

template <class Type>
bool operator!=(
    const Type& left,
    const complex<Type>& right);

Parameter

left
Eine komplexe Zahl oder ein Objekt des zugehörigen Parametertyps, die bzw. das auf Ungleichheit getestet wird.

right
Eine komplexe Zahl oder ein Objekt des zugehörigen Parametertyps, die bzw. das auf Ungleichheit getestet wird.

Rückgabewert

true wenn die Zahlen nicht gleich sind; false wenn Zahlen gleich sind.

Hinweise

Zwei komplexe Zahlen sind nur dann gleich, wenn ihre reellen Teile und ihre imaginären Teile gleich sind. Andernfalls sind sie ungleich.

Die Operation wird überladen, sodass Vergleichstests ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können.

Beispiel

// complex_op_NE.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> compared with type complex<double>
   complex <double> cl1 ( polar (3.0, pi / 6 ) );
   complex <double> cr1a ( polar (3.0, pi /6 ) );
   complex <double> cr1b ( polar (2.0, pi / 3 ) );

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
   cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
   if ( cl1 != cr1a )
      cout << "The complex numbers cl1 & cr1a are not equal." << endl;
   else
      cout << "The complex numbers cl1 & cr1a are equal." << endl;
   if ( cl1 != cr1b )
      cout << "The complex numbers cl1 & cr1b are not equal." << endl;
   else
      cout << "The complex numbers cl1 & cr1b are equal." << endl;
   cout << endl;

   // Example of the second member function
   // type complex<int> compared with type int
   complex <int> cl2a ( 3, 4 );
   complex <int> cl2b ( 5,0 );
   int cr2a =3;
   int cr2b =5;

   cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
   cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
   if ( cl2a != cr2a )
      cout << "The complex numbers cl2a & cr2a are not equal." << endl;
   else
      cout << "The complex numbers cl2a & cr2a are equal." << endl;

   cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
   cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
   if ( cl2b != cr2b )
      cout << "The complex numbers cl2b & cr2b are not equal." << endl;
   else
      cout << "The complex numbers cl2b & cr2b are equal." << endl;
   cout << endl;

   // Example of the third member function
   // type double compared with type complex<double>
   double cl3a =3;
   double cl3b =5;
   complex <double> cr3a ( 3, 4 );
   complex <double> cr3b ( 5,0 );

   cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
   cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
   if ( cl3a != cr3a )
      cout << "The complex numbers cl3a & cr3a are not equal." << endl;
   else
      cout << "The complex numbers cl3a & cr3a are equal." << endl;

   cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
   cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
   if ( cl3b != cr3b )
      cout << "The complex numbers cl3b & cr3b are not equal." << endl;
   else
      cout << "The complex numbers cl3b & cr3b are equal." << endl;
   cout << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The 1st right-side complex number is cr1a = (2.59808,1.5)
The 2nd right-side complex number is cr1b = (1,1.73205)
The complex numbers cl1 & cr1a are equal.
The complex numbers cl1 & cr1b are not equal.

The 1st left-side complex number is cl2a = (3,4)
The 1st right-side complex number is cr2a = 3
The complex numbers cl2a & cr2a are not equal.
The 2nd left-side complex number is cl2b = (5,0)
The 2nd right-side complex number is cr2b = 5
The complex numbers cl2b & cr2b are equal.

The 1st left-side complex number is cl3a = 3
The 1st right-side complex number is cr3a = (3,4)
The complex numbers cl3a & cr3a are not equal.
The 2nd left-side complex number is cl3b = 5
The 2nd right-side complex number is cr3b = (5,0)
The complex numbers cl3b & cr3b are equal.

operator*

Multipliziert zwei komplexe Zahlen, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
complex<Type> operator*(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator*(
    const complex<Type>& left,
    const Type& right);

template <class Type>
complex<Type> operator*(
    const Type& left,
    const complex<Type>& right);

Parameter

left
Die erste von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem *-Operator multipliziert werden soll

right
Die zweite von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem *-Operator multipliziert werden soll

Rückgabewert

Die komplexe Zahl, die sich aus der Multiplikation der beiden Zahlen ergibt, deren Wert und Typ durch die Parametereingaben festgelegt wird

Hinweise

Die Operation wird überladen, damit einfache arithmetische Operationen ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können.

Beispiel

// complex_op_mult.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> times type complex<double>
   complex <double> cl1 ( polar (3.0, pi / 6 ) );
   complex <double> cr1 ( polar (2.0, pi / 3 ) );
   complex <double> cs1 = cl1 * cr1;

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The right-side complex number is cr1 = " << cr1 << endl;
   cout << "Product of two complex numbers is: cs1 = " << cs1 << endl;
   double abscs1 = abs ( cs1 );
   double argcs1 = arg ( cs1 );
   cout << "The modulus of cs1 is: " << abscs1 << endl;
   cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
        << argcs1 * 180 / pi << " degrees." << endl << endl;

   // Example of the second member function
   // type complex<double> times type double
   complex <double> cl2 ( polar ( 3.0, pi / 6 ) );
   double cr2 =5;
   complex <double> cs2 = cl2 * cr2;

   cout << "The left-side complex number is cl2 = " << cl2 << endl;
   cout << "The right-side complex number is cr2 = " << cr2 << endl;
   cout << "Product of two complex numbers is: cs2 = " << cs2 << endl;
   double abscs2 = abs ( cs2 );
   double argcs2 = arg ( cs2 );
   cout << "The modulus of cs2 is: " << abscs2 << endl;
   cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
        << argcs2 * 180 / pi << " degrees." << endl << endl;

   // Example of the third member function
   // type double times type complex<double>
   double cl3 = 5;
   complex <double> cr3 ( polar (3.0, pi / 6 ) );
   complex <double> cs3 = cl3 * cr3;

   cout << "The left-side complex number is cl3 = " << cl3 << endl;
   cout << "The right-side complex number is cr3 = " << cr3 << endl;
   cout << "Product of two complex numbers is: cs3 = " << cs3 << endl;
   double abscs3 = abs ( cs3 );
   double argcs3 = arg ( cs3 );
   cout << "The modulus of cs3 is: " << abscs3 << endl;
   cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
        << argcs3 * 180 / pi << " degrees." << endl << endl;
}

operator+

Addiert zwei komplexe Zahlen, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
complex<Type> operator+(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator+(
    const complex<Type>& left,
    const Type& right);

template <class Type>
complex<Type> operator+(
    const Type& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator+(const complex<Type>& left);

Parameter

left
Die erste von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem +-Operator hinzugefügt werden soll

right
Die zweite von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem +-Operator hinzugefügt werden soll

Rückgabewert

Die komplexe Zahl, die sich aus der Addition der beiden Zahlen ergibt, deren Wert und Typ durch die Parametereingaben festgelegt wird

Hinweise

Die Operation wird überladen, damit einfache arithmetische Operationen ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können. Der unäre Operator gibt links zurück.

Beispiel

// complex_op_add.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> plus type complex<double>
   complex <double> cl1 ( 3.0, 4.0 );
   complex <double> cr1 ( 2.0, 5.0 );
   complex <double> cs1 = cl1 + cr1;

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The right-side complex number is cr1 = " << cr1 << endl;
   cout << "The sum of the two complex numbers is: cs1 = " << cs1 << endl;
   double abscs1 = abs ( cs1 );
   double argcs1 = arg ( cs1 );
   cout << "The modulus of cs1 is: " << abscs1 << endl;
   cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
        << argcs1 * 180 / pi << " degrees." << endl << endl;

   // Example of the second member function
   // type complex<double> plus type double
   complex <double> cl2 ( 3.0, 4.0 );
   double cr2 =5.0;
   complex <double> cs2 = cl2 + cr2;

   cout << "The left-side complex number is cl2 = " << cl2 << endl;
   cout << "The right-side complex number is cr2 = " << cr2 << endl;
   cout << "The sum of the two complex numbers is: cs2 = " << cs2 << endl;
   double abscs2 = abs ( cs2 );
   double argcs2 = arg ( cs2 );
   cout << "The modulus of cs2 is: " << abscs2 << endl;
   cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
        << argcs2 * 180 / pi << " degrees." << endl << endl;

   // Example of the third member function
   // type double plus type complex<double>
   double cl3 = 5.0;
   complex <double> cr3 ( 3.0, 4.0 );
   complex <double> cs3 = cl3 + cr3;

   cout << "The left-side complex number is cl3 = " << cl3 << endl;
   cout << "The right-side complex number is cr3 = " << cr3 << endl;
   cout << "The sum of the two complex numbers is: cs3 = " << cs3 << endl;
   double abscs3 = abs ( cs3 );
   double argcs3 = arg ( cs3 );
   cout << "The modulus of cs3 is: " << abscs3 << endl;
   cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
        << argcs3 * 180 / pi << " degrees." << endl << endl;

   // Example of the fourth member function
   // plus type complex<double>
   complex <double> cr4 ( 3.0, 4.0 );
   complex <double> cs4 = + cr4;

   cout << "The right-side complex number is cr4 = " << cr4 << endl;
   cout << "The result of the unary application of + to the right-side"
        << "\n complex number is: cs4 = " << cs4 << endl;
   double abscs4 = abs ( cs4 );
   double argcs4 = arg ( cs4 );
   cout << "The modulus of cs4 is: " << abscs4 << endl;
   cout << "The argument of cs4 is: "<< argcs4 << " radians, which is "
        << argcs4 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (3,4)
The right-side complex number is cr1 = (2,5)
The sum of the two complex numbers is: cs1 = (5,9)
The modulus of cs1 is: 10.2956
The argument of cs1 is: 1.0637 radians, which is 60.9454 degrees.

The left-side complex number is cl2 = (3,4)
The right-side complex number is cr2 = 5
The sum of the two complex numbers is: cs2 = (8,4)
The modulus of cs2 is: 8.94427
The argument of cs2 is: 0.463648 radians, which is 26.5651 degrees.

The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (3,4)
The sum of the two complex numbers is: cs3 = (8,4)
The modulus of cs3 is: 8.94427
The argument of cs3 is: 0.463648 radians, which is 26.5651 degrees.

The right-side complex number is cr4 = (3,4)
The result of the unary application of + to the right-side
complex number is: cs4 = (3,4)
The modulus of cs4 is: 5
The argument of cs4 is: 0.927295 radians, which is 53.1301 degrees.

operator-

Subtrahiert zwei komplexe Zahlen, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
complex<Type> operator-(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator-(
    const complex<Type>& left,
    const Type& right);

template <class Type>
complex<Type> operator-(
    const Type& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator-(const complex<Type>& left);

Parameter

left
Die erste von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem --Operator subtrahiert werden soll

right
Die zweite von zwei komplexen Zahlen oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die mit dem --Operator subtrahiert werden soll

Rückgabewert

Die komplexe Zahl, die aus der Subtraktion von rechts von links resultiert, die beiden Zahlen, deren Werte durch die Parametereingaben angegeben werden.

Hinweise

Die Operation wird überladen, damit einfache arithmetische Operationen ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können.

Der unäre Operator ändert das Vorzeichen einer komplexen Zahl und gibt einen Wert zurück, deren Realteil dem negativen Wert des Realteils der Zahleneingabe entspricht, während der Imaginärteil dem negativen Wert des Imaginärteils der Zahleneingabe entspricht.

Beispiel

// complex_op_sub.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> minus type complex<double>
   complex <double> cl1 ( 3.0, 4.0 );
   complex <double> cr1 ( 2.0, 5.0 );
   complex <double> cs1 = cl1 - cr1;

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The right-side complex number is cr1 = " << cr1 << endl;
   cout << "Difference of two complex numbers is: cs1 = " << cs1 << endl;
   double abscs1 = abs ( cs1 );
   double argcs1 = arg ( cs1 );
   cout << "The modulus of cs1 is: " << abscs1 << endl;
   cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
        << argcs1 * 180 / pi << " degrees." << endl << endl;

   // Example of the second member function
   // type complex<double> minus type double
   complex <double> cl2 ( 3.0, 4.0 );
   double cr2 =5.0;
   complex <double> cs2 = cl2 - cr2;

   cout << "The left-side complex number is cl2 = " << cl2 << endl;
   cout << "The right-side complex number is cr2 = " << cr2 << endl;
   cout << "Difference of two complex numbers is: cs2 = " << cs2 << endl;
   double abscs2 = abs ( cs2 );
   double argcs2 = arg ( cs2 );
   cout << "The modulus of cs2 is: " << abscs2 << endl;
   cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
        << argcs2 * 180 / pi << " degrees." << endl << endl;

   // Example of the third member function
   // type double minus type complex<double>
   double cl3 = 5.0;
   complex <double> cr3 ( 3.0, 4.0 );
   complex <double> cs3 = cl3 - cr3;

   cout << "The left-side complex number is cl3 = " << cl3 << endl;
   cout << "The right-side complex number is cr3 = " << cr3 << endl;
   cout << "Difference of two complex numbers is: cs3 = " << cs3 << endl;
   double abscs3 = abs ( cs3 );
   double argcs3 = arg ( cs3 );
   cout << "The modulus of cs3 is: " << abscs3 << endl;
   cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
        << argcs3 * 180 / pi << " degrees." << endl << endl;

   // Example of the fourth member function
   // minus type complex<double>
   complex <double> cr4 ( 3.0, 4.0 );
   complex <double> cs4 = - cr4;

   cout << "The right-side complex number is cr4 = " << cr4 << endl;
   cout << "The result of the unary application of - to the right-side"
        << "\n complex number is: cs4 = " << cs4 << endl;
   double abscs4 = abs ( cs4 );
   double argcs4 = arg ( cs4 );
   cout << "The modulus of cs4 is: " << abscs4 << endl;
   cout << "The argument of cs4 is: "<< argcs4 << " radians, which is "
        << argcs4 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (3,4)
The right-side complex number is cr1 = (2,5)
Difference of two complex numbers is: cs1 = (1,-1)
The modulus of cs1 is: 1.41421
The argument of cs1 is: -0.785398 radians, which is -45 degrees.

The left-side complex number is cl2 = (3,4)
The right-side complex number is cr2 = 5
Difference of two complex numbers is: cs2 = (-2,4)
The modulus of cs2 is: 4.47214
The argument of cs2 is: 2.03444 radians, which is 116.565 degrees.

The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (3,4)
Difference of two complex numbers is: cs3 = (2,-4)
The modulus of cs3 is: 4.47214
The argument of cs3 is: -1.10715 radians, which is -63.4349 degrees.

The right-side complex number is cr4 = (3,4)
The result of the unary application of - to the right-side
complex number is: cs4 = (-3,-4)
The modulus of cs4 is: 5
The argument of cs4 is: -2.2143 radians, which is -126.87 degrees.

operator/

Dividiert zwei komplexe Zahlen, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
complex<Type> operator*(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
complex<Type> operator*(
    const complex<Type>& left,
    const Type& right);

template <class Type>
complex<Type> operator*(
    const Type& left,
    const complex<Type>& right);

Parameter

left
Eine komplexe Zahl oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die dem Zähler entspricht, der mit dem /-Operator durch den Nenner dividiert werden soll

right
Eine komplexe Zahl oder eine Zahl mit dem Parametertyp einer komplexen Zahl, die dem Nenner entspricht, der mit dem /-Operator durch den Zähler dividiert werden soll

Rückgabewert

Die komplexe Zahl, die sich aus der Division des Zählers durch den Nenner ergibt, dessen Werte durch die Parametereingaben angegeben werden

Hinweise

Die Operation wird überladen, damit einfache arithmetische Operationen ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können.

Beispiel

// complex_op_div.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> divided by type complex<double>
   complex <double> cl1 ( polar ( 3.0, pi / 6 ) );
   complex <double> cr1 ( polar ( 2.0, pi / 3 ) );
   complex <double> cs1 = cl1 / cr1;

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The right-side complex number is cr1 = " << cr1 << endl;
   cout << "The quotient of the two complex numbers is: cs1 = cl1 /cr1 = "
        << cs1 << endl;
   double abscs1 = abs ( cs1 );
   double argcs1 = arg ( cs1 );
   cout << "The modulus of cs1 is: " << abscs1 << endl;
   cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
        << argcs1 * 180 / pi << " degrees." << endl << endl;

   // example of the second member function
   // type complex<double> divided by type double
   complex <double> cl2 ( polar (3.0, pi / 6 ) );
   double cr2 =5;
   complex <double> cs2 = cl2 / cr2;

   cout << "The left-side complex number is cl2 = " << cl2 << endl;
   cout << "The right-side complex number is cr2 = " << cr2 << endl;
   cout << "The quotient of the two complex numbers is: cs2 = cl2 /cr2 = "
        << cs2 << endl;
   double abscs2 = abs ( cs2 );
   double argcs2 = arg ( cs2 );
   cout << "The modulus of cs2 is: " << abscs2 << endl;
   cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
        << argcs2 * 180 / pi << " degrees." << endl << endl;

   // Example of the third member function
   // type double divided by type complex<double>
   double cl3 = 5;
   complex <double> cr3 ( polar ( 3.0, pi / 6 ) );
   complex <double> cs3 = cl3 / cr3;

   cout << "The left-side complex number is cl3 = " << cl3 << endl;
   cout << "The right-side complex number is cr3 = " << cr3 << endl;
   cout << "The quotient of the two complex numbers is: cs3 = cl3 /cr2 = "
        << cs3 << endl;
   double abscs3 = abs ( cs3 );
   double argcs3 = arg ( cs3 );
   cout << "The modulus of cs3 is: " << abscs3 << endl;
   cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
        << argcs3 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The right-side complex number is cr1 = (1,1.73205)
The quotient of the two complex numbers is: cs1 = cl1 /cr1 = (1.29904,-0.75)
The modulus of cs1 is: 1.5
The argument of cs1 is: -0.523599 radians, which is -30 degrees.

The left-side complex number is cl2 = (2.59808,1.5)
The right-side complex number is cr2 = 5
The quotient of the two complex numbers is: cs2 = cl2 /cr2 = (0.519615,0.3)
The modulus of cs2 is: 0.6
The argument of cs2 is: 0.523599 radians, which is 30 degrees.

The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (2.59808,1.5)
The quotient of the two complex numbers is: cs3 = cl3 /cr2 = (1.44338,-0.833333)
The modulus of cs3 is: 1.66667
The argument of cs3 is: -0.523599 radians, which is -30 degrees.

operator<<

Fügt eine angegebene komplexe Zahl in den Ausgabestream ein

template <class Type, class Elem, class Traits>
basic_ostream<Elem, Traits>& operator<<(
    basic_ostream<Elem, Traits>& Ostr,
    const complex<Type>& right);

Parameter

Ostr
Der Ausgabestream, in den die komplexe Zahl eingegeben wird

right
Die komplexe Zahl, die in den Ausgabestream eingegeben werden soll

Rückgabewert

Schreibt den Wert der angegebenen komplexen Zahl in das Ostr in einem kartesischen Format: ( realer Teil, imaginärer Teil ).

Hinweise

Der Ausgabestream ist überladen, sodass er jede Form einer komplexen Zahl akzeptiert. Das Standardausgabeformat ist das kartesische Format.

Beispiel

// complex_op_insert.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   complex <double> c1 ( 3.0, 4.0 );
   cout << "Complex number c1 = " << c1 << endl;

   complex <double> c2  ( polar ( 2.0, pi / 6 ) );
   cout << "Complex number c2 = " << c2 << endl;

   // To display in polar form
   double absc2 = abs ( c2 );
   double argc2 = arg ( c2 );
   cout << "The modulus of c2 is: " << absc2 << endl;
   cout << "The argument of c2 is: "<< argc2 << " radians, which is "
        << argc2 * 180 / pi << " degrees." << endl << endl;
}
Complex number c1 = (3,4)
Complex number c2 = (1.73205,1)
The modulus of c2 is: 2
The argument of c2 is: 0.523599 radians, which is 30 degrees.

operator==

Testet zwei komplexe Zahlen auf Gleichheit, von denen eine oder beide einer Teilmenge des Typs für die reellen und imaginären Teile angehören.

template <class Type>
bool operator==(
    const complex<Type>& left,
    const complex<Type>& right);

template <class Type>
bool operator==(
    const complex<Type>& left,
    const Type& right);

template <class Type>
bool operator==(
    const Type& left,
    const complex<Type>& right);

Parameter

left
Eine komplexe Zahl oder ein Objekt des zugehörigen Parametertyps, die bzw. das auf Ungleichheit getestet wird.

right
Eine komplexe Zahl oder ein Objekt des zugehörigen Parametertyps, die bzw. das auf Ungleichheit getestet wird.

Rückgabewert

true wenn die Zahlen gleich sind; false wenn Zahlen nicht gleich sind.

Hinweise

Zwei komplexe Zahlen sind nur dann gleich, wenn ihre reellen Teile und ihre imaginären Teile gleich sind. Andernfalls sind sie ungleich.

Die Operation wird überladen, sodass Vergleichstests ohne Konvertierung der Daten in ein bestimmtes Format ausgeführt werden können.

Beispiel

// complex_op_EQ.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   // Example of the first member function
   // type complex<double> compared with type complex<double>
   complex <double> cl1 ( polar ( 3.0, pi / 6 ) );
   complex <double> cr1a ( polar ( 3.0, pi /6 ) );
   complex <double> cr1b ( polar ( 2.0, pi / 3 ) );

   cout << "The left-side complex number is cl1 = " << cl1 << endl;
   cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
   cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
   if ( cl1 == cr1a )
      cout << "The complex numbers cl1 & cr1a are equal." << endl;
   else
      cout << "The complex numbers cl1 & cr1a are not equal." << endl;
   if ( cl1 == cr1b )
      cout << "The complex numbers cl1 & cr1b are equal." << endl;
   else
      cout << "The complex numbers cl1 & cr1b are not equal." << endl;
   cout << endl;

   // Example of the second member function
   // type complex<int> compared with type int
   complex <int> cl2a ( 3, 4 );
   complex <int> cl2b ( 5,0 );
   int cr2a =3;
   int cr2b =5;

   cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
   cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
   if ( cl2a == cr2a )
      cout << "The complex numbers cl2a & cr2a are equal." << endl;
   else
      cout << "The complex numbers cl2a & cr2a are not equal." << endl;

   cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
   cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
   if ( cl2b == cr2b )
      cout << "The complex numbers cl2b & cr2b are equal." << endl;
   else
      cout << "The complex numbers cl2b & cr2b are not equal." << endl;
   cout << endl;

   // Example of the third member function
   // type double compared with type complex<double>
   double cl3a =3;
   double cl3b =5;
   complex <double> cr3a (3, 4 );
   complex <double> cr3b (5,0 );

   cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
   cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
   if ( cl3a == cr3a )
      cout << "The complex numbers cl3a & cr3a are equal." << endl;
   else
      cout << "The complex numbers cl3a & cr3a are not equal." << endl;

   cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
   cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
   if ( cl3b == cr3b )
      cout << "The complex numbers cl3b & cr3b are equal." << endl;
   else
      cout << "The complex numbers cl3b & cr3b are not equal." << endl;
   cout << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The 1st right-side complex number is cr1a = (2.59808,1.5)
The 2nd right-side complex number is cr1b = (1,1.73205)
The complex numbers cl1 & cr1a are equal.
The complex numbers cl1 & cr1b are not equal.

The 1st left-side complex number is cl2a = (3,4)
The 1st right-side complex number is cr2a = 3
The complex numbers cl2a & cr2a are not equal.
The 2nd left-side complex number is cl2b = (5,0)
The 2nd right-side complex number is cr2b = 5
The complex numbers cl2b & cr2b are equal.

The 1st left-side complex number is cl3a = 3
The 1st right-side complex number is cr3a = (3,4)
The complex numbers cl3a & cr3a are not equal.
The 2nd left-side complex number is cl3b = 5
The 2nd right-side complex number is cr3b = (5,0)
The complex numbers cl3b & cr3b are equal.

operator>>

Extrahiert einen komplexen Wert aus dem Eingabestream

template <class Type, class Elem, class Traits>
basic_istream<Elem, Traits>& operator>>(
   basic_istream<Elem, Traits>& Istr,
   complex<Type>& right);

Parameter

Istr
Der Eingabestream, aus dem die komplexe Zahl extrahiert wird

right
Die komplexe Zahl, die aus dem Eingabestream extrahiert wird

Rückgabewert

Liest den Wert der angegebenen komplexen Zahl von Istr und gibt ihn nach rechts zurück.

Hinweise

Gültige Eingabeformate sind:

  • ( Realteil, Imaginärteil )

  • ( Realteil )

  • Realteil

Beispiel

// complex_op_extract.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>

int main( )
{
   using namespace std;
   double pi = 3.14159265359;

   complex <double> c2;

   cout << "Input a complex number ( try: 2.0 ): ";
   cin >> c2;
   cout << c2 << endl;
}
Input a complex number ( try: 2.0 ): 2.0
2.0