TimeSeriesCatalog.DetectSpikeBySsa Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
DetectSpikeBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, AnomalySide, ErrorFunction) |
Erstellen Sie SsaSpikeEstimator, was Spitzen in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorausgibt. |
DetectSpikeBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, AnomalySide, ErrorFunction) |
Veraltet.
Erstellen Sie SsaSpikeEstimator, was Spitzen in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorausgibt. |
DetectSpikeBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, AnomalySide, ErrorFunction)
Erstellen Sie SsaSpikeEstimator, was Spitzen in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorausgibt.
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator
Parameter
- catalog
- TransformsCatalog
Der Katalog der Transformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
Die Spaltendaten sind ein Vektor von Double. Der Vektor enthält 3 Elemente: Warnung (Nicht-Null-Wert bedeutet einen Spitzenwert), unformatierte Bewertung und p-Wert.
- inputColumnName
- String
Name der zu transformierenden Spalte. Die Spaltendaten müssen sein Single.
Wenn dieser Wert als null
Quelle festgelegt ist, wird der Wert des Werts outputColumnName
als Quelle verwendet.
- confidence
- Double
Die Konfidenz für die Spitzenerkennung im Bereich [0, 100].
- pvalueHistoryLength
- Int32
Die Größe des Gleitfensters für das Berechnen des P-Werts.
- trainingWindowSize
- Int32
Die Anzahl der Punkte vom Anfang der Sequenz, die für die Schulung verwendet wird.
- seasonalityWindowSize
- Int32
Eine obere Grenze für die größte relevante Saisonalität in der Eingabezeitreihe.
- side
- AnomalySide
Das Argument, das bestimmt, ob positive oder negative Anomalien oder beides erkannt werden sollen.
- errorFunction
- ErrorFunction
Die Funktion, die zum Berechnen des Fehlers zwischen dem erwarteten und dem beobachteten Wert verwendet wird.
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectSpikeBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series. This estimator can account for
// temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and a spike
// within the pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a spike.
new TimeSeriesData(100),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(SsaSpikePrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// SsaSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 0 0 -2.53 0.50
// 1 0 -0.01 0.01
// 2 0 0.76 0.14
// 3 0 0.69 0.28
// 4 0 1.44 0.18
// 0 0 -1.84 0.17
// 1 0 0.22 0.44
// 2 0 0.20 0.45
// 3 0 0.16 0.47
// 4 0 1.33 0.18
// 0 0 -1.79 0.07
// 1 0 0.16 0.50
// 2 0 0.09 0.50
// 3 0 0.08 0.45
// 4 0 1.31 0.12
// 100 1 98.21 0.00 <-- alert is on, predicted spike
// 0 0 -13.83 0.29
// 1 0 -1.74 0.44
// 2 0 -0.47 0.46
// 3 0 -16.50 0.29
// 4 0 -29.82 0.21
}
private static void PrintPrediction(float value, SsaSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class SsaSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}
Gilt für:
DetectSpikeBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, AnomalySide, ErrorFunction)
Achtung
This API method is deprecated, please use the overload with confidence parameter of type double.
Erstellen Sie SsaSpikeEstimator, was Spitzen in der Zeitreihe mit Singular Spectrum Analysis (SSA) vorausgibt.
[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator
Parameter
- catalog
- TransformsCatalog
Der Katalog der Transformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
Die Spaltendaten sind ein Vektor von Double. Der Vektor enthält 3 Elemente: Warnung (Nicht-Null-Wert bedeutet einen Spitzenwert), unformatierte Bewertung und p-Wert.
- inputColumnName
- String
Name der zu transformierenden Spalte. Die Spaltendaten müssen sein Single.
Wenn dieser Wert als null
Quelle festgelegt ist, wird der Wert des Werts outputColumnName
als Quelle verwendet.
- confidence
- Int32
Die Konfidenz für die Spitzenerkennung im Bereich [0, 100].
- pvalueHistoryLength
- Int32
Die Größe des Gleitfensters für das Berechnen des P-Werts.
- trainingWindowSize
- Int32
Die Anzahl der Punkte vom Anfang der Sequenz, die für die Schulung verwendet wird.
- seasonalityWindowSize
- Int32
Eine obere Grenze für die größte relevante Saisonalität in der Eingabezeitreihe.
- side
- AnomalySide
Das Argument, das bestimmt, ob positive oder negative Anomalien oder beides erkannt werden sollen.
- errorFunction
- ErrorFunction
Die Funktion, die zum Berechnen des Fehlers zwischen dem erwarteten und dem beobachteten Wert verwendet wird.
Gibt zurück
- Attribute
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class DetectSpikeBySsaBatchPrediction
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series. This estimator can account for
// temporal seasonality in the data.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with a recurring pattern and a spike
// within the pattern
const int SeasonalitySize = 5;
const int TrainingSeasons = 3;
const int TrainingSize = SeasonalitySize * TrainingSeasons;
var data = new List<TimeSeriesData>()
{
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
//This is a spike.
new TimeSeriesData(100),
new TimeSeriesData(0),
new TimeSeriesData(1),
new TimeSeriesData(2),
new TimeSeriesData(3),
new TimeSeriesData(4),
};
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup estimator arguments
var inputColumnName = nameof(TimeSeriesData.Value);
var outputColumnName = nameof(SsaSpikePrediction.Prediction);
// The transformed data.
var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
dataView).Transform(dataView);
// Getting the data of the newly created column as an IEnumerable of
// SsaSpikePrediction.
var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
transformedData, reuseRowObject: false);
Console.WriteLine($"{outputColumnName} column obtained " +
$"post-transformation.");
Console.WriteLine("Data\tAlert\tScore\tP-Value");
int k = 0;
foreach (var prediction in predictionColumn)
PrintPrediction(data[k++].Value, prediction);
// Prediction column obtained post-transformation.
// Data Alert Score P-Value
// 0 0 -2.53 0.50
// 1 0 -0.01 0.01
// 2 0 0.76 0.14
// 3 0 0.69 0.28
// 4 0 1.44 0.18
// 0 0 -1.84 0.17
// 1 0 0.22 0.44
// 2 0 0.20 0.45
// 3 0 0.16 0.47
// 4 0 1.33 0.18
// 0 0 -1.79 0.07
// 1 0 0.16 0.50
// 2 0 0.09 0.50
// 3 0 0.08 0.45
// 4 0 1.31 0.12
// 100 1 98.21 0.00 <-- alert is on, predicted spike
// 0 0 -13.83 0.29
// 1 0 -1.74 0.44
// 2 0 -0.47 0.46
// 3 0 -16.50 0.29
// 4 0 -29.82 0.21
}
private static void PrintPrediction(float value, SsaSpikePrediction
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
prediction.Prediction[0], prediction.Prediction[1],
prediction.Prediction[2]);
class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
class SsaSpikePrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}