Freigeben über


FastForestOptionsBase Klasse

Definition

Basisklasse für schnelle Gesamtstrukturtraineroptionen.

public abstract class FastForestOptionsBase : Microsoft.ML.Trainers.FastTree.TreeOptions
type FastForestOptionsBase = class
    inherit TreeOptions
Public MustInherit Class FastForestOptionsBase
Inherits TreeOptions
Vererbung
Abgeleitet

Felder

AllowEmptyTrees

Wenn eine Stammaufteilung nicht möglich ist, lassen Sie das Training fort.

(Geerbt von TreeOptions)
BaggingExampleFraction

Prozentsatz der Trainingsbeispiele, die in jeder Tasche verwendet werden. Der Standardwert ist 0,7 (70 %).

(Geerbt von TreeOptions)
BaggingSize

Anzahl der Bäume in jeder Tasche (0 zum Deaktivieren des Sackens).

(Geerbt von TreeOptions)
Bias

Bias zum Berechnen des Farbverlaufs für jede Feature-Bin für ein kategorisches Feature.

(Geerbt von TreeOptions)
Bundling

Bündelung von Behältern mit geringer Befüllung. Bundle.None(0): keine Bündelung, Bundle.AggregateLowPopulation(1): Bundle low population, Bundle.Adjacent(2): Neighbor low population bundle.

(Geerbt von TreeOptions)
CategoricalSplit

Gibt an, ob eine Aufteilung basierend auf mehreren kategorischen Featurewerten durchgeführt werden soll.

(Geerbt von TreeOptions)
CompressEnsemble

Komprimieren Sie das Strukturensemble.

(Geerbt von TreeOptions)
DiskTranspose

Gibt an, ob der Datenträger oder die nativen Umsetzungsmöglichkeiten der Daten (sofern zutreffend) bei der Durchführung der Transponierung verwendet werden sollen.

(Geerbt von TreeOptions)
EntropyCoefficient

Der Entropiekoeffizienten (Regularisierung) zwischen 0 und 1.

(Geerbt von TreeOptions)
ExampleWeightColumnName

Zu verwendende Spalte, z. B. Gewichtung.

(Geerbt von TrainerInputBaseWithWeight)
ExecutionTime

Aufschlüsselung der Druckausführungszeit auf ML.NET Kanal.

(Geerbt von TreeOptions)
FeatureColumnName

Spalte, die für Features verwendet werden soll.

(Geerbt von TrainerInputBase)
FeatureFirstUsePenalty

Das Feature verwendet zuerst den Strafkoeffizienten.

(Geerbt von TreeOptions)
FeatureFlocks

Gibt an, ob Features während der Datasetvorbereitung gesammelt werden sollen, um das Training zu beschleunigen.

(Geerbt von TreeOptions)
FeatureFraction

Der Anteil der Features (zufällig ausgewählt), die bei jeder Iteration verwendet werden sollen. Verwenden Sie 0.9, wenn nur 90 % der Features benötigt werden. Niedrigere Zahlen tragen dazu bei, die Überanpassung zu reduzieren.

(Geerbt von TreeOptions)
FeatureFractionPerSplit

Der Anteil der Features (zufällig ausgewählt), die für jede Aufteilung verwendet werden sollen. Wenn der Wert 0,9 ist, würden 90 % aller Features in Erwartung gelöscht.

(Geerbt von TreeOptions)
FeatureReusePenalty

Der Koeffizienten für die Wiederverwendung (Regularisierung) der Funktion.

(Geerbt von TreeOptions)
FeatureSelectionSeed

Der Seed der aktiven Featureauswahl.

(Geerbt von TreeOptions)
GainConfidenceLevel

Strukturanpassungsanforderung: Vertrauenserfordernis. Erwägen Sie nur einen Gewinn, wenn seine Wahrscheinlichkeit im Vergleich zu einem zufälligen Auswahlgewinn über diesem Wert liegt.

(Geerbt von TreeOptions)
HistogramPoolSize

Die Anzahl der Histogramme im Pool (zwischen 2 und numLeaves).

(Geerbt von TreeOptions)
LabelColumnName

Spalte, die für Bezeichnungen verwendet werden soll.

(Geerbt von TrainerInputBaseWithLabel)
MaximumBinCountPerFeature

Maximale Anzahl unterschiedlicher Werte (Bins) pro Feature.

(Geerbt von TreeOptions)
MaximumCategoricalGroupCountPerNode

Maximale kategorische Aufteilung von Gruppen, die beim Aufteilen in einem kategorischen Feature berücksichtigt werden müssen. Geteilte Gruppen sind eine Sammlung von geteilten Punkten. Dies wird verwendet, um die Überanpassung zu reduzieren, wenn viele kategorische Features vorhanden sind.

(Geerbt von TreeOptions)
MaximumCategoricalSplitPointCount

Maximale kategorische Teilungspunkte, die beim Teilen eines kategorischen Features berücksichtigt werden müssen.

(Geerbt von TreeOptions)
MemoryStatistics

Drucken Sie Speicherstatistiken in ML.NET Kanal.

(Geerbt von TreeOptions)
MinimumExampleCountPerLeaf

Die minimale Anzahl von Datenpunkten, die zum Bilden eines neuen Baumblatts erforderlich sind.

(Geerbt von TreeOptions)
MinimumExampleFractionForCategoricalSplit

Minimaler kategorischer Beispielprozentsatz in einer Bin, der für eine Aufteilung berücksichtigt werden soll. Der Standardwert beträgt 0,1 % aller Trainingsbeispiele.

(Geerbt von TreeOptions)
MinimumExamplesForCategoricalSplit

Minimale kategorische Beispielanzahl in einer Bin, die für eine Aufteilung berücksichtigt werden soll.

(Geerbt von TreeOptions)
NumberOfLeaves

Die maximale Anzahl von Blättern in jeder Regressionsstruktur.

(Geerbt von TreeOptions)
NumberOfQuantileSamples

Die Anzahl der Datenpunkte, die von jedem Blatt erfasst werden sollen, um die Verteilung von Bezeichnungen zu ermitteln.

NumberOfThreads

Die Anzahl der zu verwendenden Threads.

(Geerbt von TreeOptions)
NumberOfTrees

Gesamtanzahl der zu erstellenden Entscheidungsstrukturen im Ensemble.

(Geerbt von TreeOptions)
RowGroupColumnName

Zu verwendende Spalte, z. B. groupId.

(Geerbt von TrainerInputBaseWithGroupId)
Seed

Der Seed des Zufallszahlengenerators.

(Geerbt von TreeOptions)
Smoothing

Glättungsparameter für die Strukturregulärisierung.

(Geerbt von TreeOptions)
SoftmaxTemperature

Die Temperatur der randomisierten Softmax-Verteilung für die Auswahl des Features.

(Geerbt von TreeOptions)
SparsifyThreshold

Die Sparsity-Ebene ist erforderlich, um die Darstellung von Sparsefeatures zu verwenden.

(Geerbt von TreeOptions)
TestFrequency

Berechnen Sie Metrikwerte für train/valid/test für alle k-Runden.

(Geerbt von TreeOptions)

Gilt für: