Math.Tan(Double) Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Gibt den Tangens des angegebenen Winkels zurück.
public:
static double Tan(double a);
public static double Tan (double a);
static member Tan : double -> double
Public Shared Function Tan (a As Double) As Double
Parameter
- a
- Double
Ein im Bogenmaß angegebener Winkel.
Gibt zurück
Der Tangens von a
. Wenn a
gleich NaN, NegativeInfinity oder PositiveInfinity ist, wird NaN von dieser Methode zurückgegeben.
Beispiele
Im folgenden Beispiel wird veranschaulicht, wie sie den Tangens eines Winkels berechnen und in der Konsole anzeigen.
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using namespace System;
int main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math::PI / 180);
result = Math::Tan( radians );
Console::WriteLine( "The tangent of 30 degrees is {0}.", result );
// Calculate the arctangent of the previous tangent.
radians = Math::Atan( result );
angle = radians * (180 / Math::PI);
Console::WriteLine( "The previous tangent is equivalent to {0} degrees.", angle );
// Calculate the arctangent of an angle.
String^ line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String^ line2 = "a vector to point ({0},{1}) is {2}, ";
String^ line3 = "which is equivalent to {0} degrees.";
radians = Math::Atan2( y, x );
angle = radians * (180 / Math::PI);
Console::WriteLine( line1, Environment::NewLine );
Console::WriteLine( line2, x, y, radians );
Console::WriteLine( line3, angle );
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using System;
class Sample
{
public static void Main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math.PI/180);
result = Math.Tan(radians);
Console.WriteLine("The tangent of 30 degrees is {0}.", result);
// Calculate the arctangent of the previous tangent.
radians = Math.Atan(result);
angle = radians * (180/Math.PI);
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle);
// Calculate the arctangent of an angle.
String line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String line2 = "a vector to point ({0},{1}) is {2}, ";
String line3 = "which is equivalent to {0} degrees.";
radians = Math.Atan2(y, x);
angle = radians * (180/Math.PI);
Console.WriteLine(line1, Environment.NewLine);
Console.WriteLine(line2, x, y, radians);
Console.WriteLine(line3, angle);
}
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
// Functions 'atan', 'atan2', and 'tan' may be used instead.
open System
[<EntryPoint>]
let main _ =
let x = 1.
let y = 2.
// Calculate the tangent of 30 degrees.
let angle = 30.
let radians = angle * (Math.PI / 180.)
let result = Math.Tan radians
printfn $"The tangent of 30 degrees is {result}."
// Calculate the arctangent of the previous tangent.
let radians = Math.Atan result
let angle = radians * (180. / Math.PI)
printfn $"The previous tangent is equivalent to {angle} degrees."
// Calculate the arctangent of an angle.
let radians = Math.Atan2(y, x)
let angle = radians * (180. / Math.PI)
printfn
$"""The arctangent of the angle formed by the x-axis and
a vector to point ({x},{y}) is {radians},
which is equivalent to {angle} degrees."""
0
//This example produces the following results:
// The tangent of 30 degrees is 0.577350269189626.
// The previous tangent is equivalent to 30 degrees.
//
// The arctangent of the angle formed by the x-axis and
// a vector to point (1,2) is 1.10714871779409,
// which is equivalent to 63.434948822922 degrees.
' This example demonstrates Math.Atan()
' Math.Atan2()
' Math.Tan()
Class Sample
Public Shared Sub Main()
Dim x As Double = 1.0
Dim y As Double = 2.0
Dim angle As Double
Dim radians As Double
Dim result As Double
' Calculate the tangent of 30 degrees.
angle = 30
radians = angle *(Math.PI / 180)
result = Math.Tan(radians)
Console.WriteLine("The tangent of 30 degrees is {0}.", result)
' Calculate the arctangent of the previous tangent.
radians = Math.Atan(result)
angle = radians *(180 / Math.PI)
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle)
' Calculate the arctangent of an angle.
Dim line1 As [String] = "{0}The arctangent of the angle formed by the x-axis and "
Dim line2 As [String] = "a vector to point ({0},{1}) is {2}, "
Dim line3 As [String] = "which is equivalent to {0} degrees."
radians = Math.Atan2(y, x)
angle = radians *(180 / Math.PI)
Console.WriteLine(line1, Environment.NewLine)
Console.WriteLine(line2, x, y, radians)
Console.WriteLine(line3, angle)
End Sub
End Class
'
'This example produces the following results:
'
'The tangent of 30 degrees is 0.577350269189626.
'The previous tangent is equivalent to 30 degrees.
'
'The arctangent of the angle formed by the x-axis and
'a vector to point (1,2) is 1.10714871779409,
'which is equivalent to 63.434948822922 degrees.
'
Hinweise
Der Winkel muss a
bogenmaßend sein. Multiplizieren Sie mit Math.PI/180, um Grad in Bogenmaße zu konvertieren.
Diese Methode ruft die zugrunde liegende C-Runtime auf, und das genaue Ergebnis oder der gültige Eingabebereich kann sich zwischen verschiedenen Betriebssystemen oder Architekturen unterscheiden.