Freigeben über


Verweise auf Zeiger

Verweise auf Zeiger können nahezu auf die gleiche Weise wie Verweise auf Objekte deklariert werden. Das Deklarieren eines Verweises auf einen Zeiger führt zu einem änderbaren Wert, der wie ein normaler Zeiger verwendet wird.

Beispiel

Die folgenden Codebeispiele veranschaulichen den Unterschied zwischen einem Zeiger auf einen Zeiger und einem Verweis auf einen Zeiger.

Die Funktionen Add1 und Add2 sind funktional äquivalent (obwohl sie nicht auf die gleiche Weise aufgerufen werden.) Der Unterschied besteht darin, dass Add1 eine doppelte Indirektion verwendet, während Add2 die Vorteile eines Verweises auf einen Zeiger nutzt.

// references_to_pointers.cpp
// compile with: /EHsc

#include <iostream>
#include <string>

// STL namespace
using namespace std;

enum {
   sizeOfBuffer = 132
};

// Define a binary tree structure.
struct BTree {
   char  *szText;
   BTree *Left;
   BTree *Right;
};

// Define a pointer to the root of the tree.
BTree *btRoot = 0;

int Add1( BTree **Root, char *szToAdd );
int Add2( BTree*& Root, char *szToAdd );
void PrintTree( BTree* btRoot );

int main( int argc, char *argv[] ) {
   // Usage message
   if( argc < 2 ) {
      cerr << "Usage: Refptr [1 | 2]" << "\n";
      cerr << "\nwhere:\n";
      cerr << "1 uses double indirection\n";
      cerr << "2 uses a reference to a pointer.\n";
      cerr << "\nInput is from stdin.\n";
      return 1;
   }

   char *szBuf = new char[sizeOfBuffer];
   if (szBuf == NULL) {
      cerr << "Out of memory!\n";
      return -1;
   }

   // Read a text file from the standard input device and
   //  build a binary tree.
   //while( !cin.eof() ) 
   {
      cin.get( szBuf, sizeOfBuffer, '\n' );
      cin.get();

      if ( strlen( szBuf ) ) {
         switch ( *argv[1] ) {
            // Method 1: Use double indirection.
            case '1':
               Add1( &btRoot, szBuf );
               break;
            // Method 2: Use reference to a pointer.
            case '2':
               Add2( btRoot, szBuf );
               break;
            default:
               cerr << "Illegal value '"
                  << *argv[1]
                  << "' supplied for add method.\n"
                     << "Choose 1 or 2.\n";
               return -1;
         }
      }
   }
   // Display the sorted list.
   PrintTree( btRoot );
}

// PrintTree: Display the binary tree in order.
void PrintTree( BTree* MybtRoot ) {
   // Traverse the left branch of the tree recursively.
   if ( btRoot->Left )
      PrintTree( btRoot->Left );

   // Print the current node.
   cout << btRoot->szText << "\n";

   // Traverse the right branch of the tree recursively.
   if ( btRoot->Right )
      PrintTree( btRoot->Right );
}

// Add1: Add a node to the binary tree.
//       Uses double indirection.
int Add1( BTree **Root, char *szToAdd ) {
   if ( (*Root) == 0 ) {
      (*Root) = new BTree;
      (*Root)->Left = 0;
      (*Root)->Right = 0;
      (*Root)->szText = new char[strlen( szToAdd ) + 1];
      strcpy_s((*Root)->szText, (strlen( szToAdd ) + 1), szToAdd );
      return 1;
   }
   else {
      if ( strcmp( (*Root)->szText, szToAdd ) > 0 )
         return Add1( &((*Root)->Left), szToAdd );
      else
         return Add1( &((*Root)->Right), szToAdd );
   }
}

// Add2: Add a node to the binary tree.
//       Uses reference to pointer
int Add2( BTree*& Root, char *szToAdd ) {
   if ( Root == 0 ) {
      Root = new BTree;
      Root->Left = 0;
      Root->Right = 0;
      Root->szText = new char[strlen( szToAdd ) + 1];
      strcpy_s( Root->szText, (strlen( szToAdd ) + 1), szToAdd );
      return 1;
   }
   else {
      if ( strcmp( Root->szText, szToAdd ) > 0 )
         return Add2( Root->Left, szToAdd );
      else
         return Add2( Root->Right, szToAdd );
   }
}
  

Siehe auch

Referenz

Verweise (C++)