Freigeben über


__cpuid, __cpuidex

Microsoft-spezifisch

Generiert die cpuid-Anweisung, die auf x86 und x64 verfügbar ist. Diese Anweisung fragt den Prozessor nach Informationen zu unterstützten Funktionen und dem CPU-Typ ab.

void __cpuid(
   int cpuInfo[4],
   int function_id
);

void __cpuidex(
   int cpuInfo[4],
   int function_id,
   int subfunction_id
);

Parameter

  • [out] cpuInfo
    Ein Array aus vier Ganzzahlen, das die Informationen enthält, die in EAX, EBX, ECX and EDX zu unterstützten Funktionen der CPU zurückgegeben werden.

  • [in] function_id
    Ein Code, der die abzurufenden Informationen angibt und in EAX übergeben wird.

  • [in] subfunction_id
    Ein zusätzlicher Code, der abzurufende Informationen angibt und in ECX übergeben wird.

Anforderungen

Systemintern

Architektur

__cpuid

x86, x64

__cpuidex

x86, x64

Headerdatei <intrin.h>

Hinweise

Diese systeminterne Funktion speichert die unterstützten Funktionen und CPU-Informationen, die von der cpuid-Anweisung in cpuInfo zurückgegeben wird, einem Array aus vier 32-Bit-Ganzzahlen, das mit den Werten der Register EAX, EBX, ECX und EDX (in dieser Reihenfolge) gefüllt ist. Die zurückgegebenen Informationen haben je nach dem Wert, der als function_id-Parameter übergeben wird, eine andere Bedeutung. Die mit verschiedenen Werten von function_id zurückgegebenen Informationen sind prozessorabhängig.

Die systeminterne __cpuid-Funktion löscht das ECX-Register, bevor die cpuid-Anweisung aufgerufen wird. Die systeminterne Funktion __cpuidex legt den Wert des ECX-Registers auf subfunction_id fest, bevor sie die cpuid-Anweisung generiert. Damit können Sie zusätzliche Informationen zum Prozessor sammeln.

For more information about the specific parameters to use and the values returned by these intrinsics on Intel processors, see the documentation for the cpuid instruction in Intel 64 and IA-32 Architectures Software Developers Manual Volume 2: Instruction Set Reference and Intel Architecture Instruction Set Extensions Programming Reference. In der Intel-Dokumentation werden die Begriffe "leaf" und "subleaf" für die in EAX und ECX übergebenen Parameter function_id and subfunction_id verwendet.

Weitere Informationen zu den spezifischen zu verwendenden Parametern und den von diesen systeminternen Funktionen auf AMD-Prozessoren zurückgegebenen Werten finden Sie in der Dokumentation für die cpuid-Anweisung im AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System Instructions und in den Revision Guides für spezifische Prozessorfamilien. In der AMD-Dokumentation werden die Begriffe "function number" und "subfunction number" für die in EAX und ECX übergebenen Parameter function_id and subfunction_id verwendet.

Wenn das function_id-Argument 0 ist, gibt cpuInfo[0] die höchste verfügbare nicht erweiterte function_id aus, die vom Prozessor unterstützt wird. Der Hersteller des Prozessors ist in cpuInfo[1], cpuInfo[2] und cpuInfo[3] codiert.

Die Unterstützung für bestimmte Erweiterungen des Anweisungssatzes sowie CPU-Funktionen ist in den cpuInfo-Ergebnissen codiert, die für höhere function_id-Werte zurückgegeben werden. Weitere Informationen finden Sie in den weiter oben verknüpften Handbüchern und im folgenden Beispielcode.

Einige Prozessoren unterstützen Informationen zur erweiterten Funktions-CPUID. Wenn dies unterstützt wird, können function_id-Werte von 0x80000000 verwendet werden, um Informationen zurückzugeben. Legen Sie zum Bestimmen des maximal zulässigen aussagekräftigen Werts function_id auf 0x80000000 fest. Der für erweiterte Funktionen maximal unterstützte Wert von function_id wird in cpuInfo[0] geschrieben.

Beispiel

Dieses Beispiel zeigt einige der Informationen, die über die systeminternen Funktionen __cpuid und __cpuidex zur Verfügung stehen. Die Anwendung führt die Erweiterungen des Anweisungssatzes auf, die vom aktuellen Prozessor unterstützt werden. Die Ausgabe zeigt ein mögliches Ergebnis für einen bestimmten Prozessor.

// InstructionSet.cpp 
// Compile by using: cl /EHsc /W4 InstructionSet.cpp
// processor: x86, x64
// Uses the __cpuid intrinsic to get information about 
// CPU extended instruction set support.

#include <iostream>
#include <vector>
#include <bitset>
#include <array>
#include <string>
#include <intrin.h>

class InstructionSet
{
    // forward declarations
    class InstructionSet_Internal;

public:
    // getters
    static std::string Vendor(void) { return CPU_Rep.vendor_; }
    static std::string Brand(void) { return CPU_Rep.brand_; }

    static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; }
    static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; }
    static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; }
    static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; }
    static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; }
    static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; }
    static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; }
    static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; }
    static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; }
    static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; }
    static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; }
    static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; }
    static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; }
    static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; }
    static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; }
    static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; }

    static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; }
    static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; }
    static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; }
    static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; }
    static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; }
    static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; }
    static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; }
    static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; }
    static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; }

    static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; }
    static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; }
    static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; }
    static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; }
    static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; }
    static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; }
    static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; }
    static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; }
    static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; }
    static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; }
    static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; }
    static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; }
    static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; }
    static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; }
    static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; }

    static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; }

    static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; }
    static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; }
    static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; }
    static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; }
    static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; }
    static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; }

    static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; }
    static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; }
    static bool RDTSCP(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[27]; }
    static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; }
    static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; }

private:
    static const InstructionSet_Internal CPU_Rep;

    class InstructionSet_Internal
    {
    public:
        InstructionSet_Internal()
            : nIds_{ 0 },
            nExIds_{ 0 },
            isIntel_{ false },
            isAMD_{ false },
            f_1_ECX_{ 0 },
            f_1_EDX_{ 0 },
            f_7_EBX_{ 0 },
            f_7_ECX_{ 0 },
            f_81_ECX_{ 0 },
            f_81_EDX_{ 0 },
            data_{},
            extdata_{}
        {
            //int cpuInfo[4] = {-1};
            std::array<int, 4> cpui;

            // Calling __cpuid with 0x0 as the function_id argument
            // gets the number of the highest valid function ID.
            __cpuid(cpui.data(), 0);
            nIds_ = cpui[0];

            for (int i = 0; i <= nIds_; ++i)
            {
                __cpuidex(cpui.data(), i, 0);
                data_.push_back(cpui);
            }

            // Capture vendor string
            char vendor[0x20];
            memset(vendor, 0, sizeof(vendor));
            *reinterpret_cast<int*>(vendor) = data_[0][1];
            *reinterpret_cast<int*>(vendor + 4) = data_[0][3];
            *reinterpret_cast<int*>(vendor + 8) = data_[0][2];
            vendor_ = vendor;
            if (vendor_ == "GenuineIntel")
            {
                isIntel_ = true;
            }
            else if (vendor_ == "AuthenticAMD")
            {
                isAMD_ = true;
            }

            // load bitset with flags for function 0x00000001
            if (nIds_ >= 1)
            {
                f_1_ECX_ = data_[1][2];
                f_1_EDX_ = data_[1][3];
            }

            // load bitset with flags for function 0x00000007
            if (nIds_ >= 7)
            {
                f_7_EBX_ = data_[7][1];
                f_7_ECX_ = data_[7][2];
            }

            // Calling __cpuid with 0x80000000 as the function_id argument
            // gets the number of the highest valid extended ID.
            __cpuid(cpui.data(), 0x80000000);
            nExIds_ = cpui[0];

            char brand[0x40];
            memset(brand, 0, sizeof(brand));

            for (int i = 0x80000000; i <= nExIds_; ++i)
            {
                __cpuidex(cpui.data(), i, 0);
                extdata_.push_back(cpui);
            }

            // load bitset with flags for function 0x80000001
            if (nExIds_ >= 0x80000001)
            {
                f_81_ECX_ = extdata_[1][2];
                f_81_EDX_ = extdata_[1][3];
            }

            // Interpret CPU brand string if reported
            if (nExIds_ >= 0x80000004)
            {
                memcpy(brand, extdata_[2].data(), sizeof(cpui));
                memcpy(brand + 16, extdata_[3].data(), sizeof(cpui));
                memcpy(brand + 32, extdata_[4].data(), sizeof(cpui));
                brand_ = brand;
            }
        };

        int nIds_;
        int nExIds_;
        std::string vendor_;
        std::string brand_;
        bool isIntel_;
        bool isAMD_;
        std::bitset<32> f_1_ECX_;
        std::bitset<32> f_1_EDX_;
        std::bitset<32> f_7_EBX_;
        std::bitset<32> f_7_ECX_;
        std::bitset<32> f_81_ECX_;
        std::bitset<32> f_81_EDX_;
        std::vector<std::array<int, 4>> data_;
        std::vector<std::array<int, 4>> extdata_;
    };
};

// Initialize static member data
const InstructionSet::InstructionSet_Internal InstructionSet::CPU_Rep;


// Print out supported instruction set extensions
int main()
{
    auto& outstream = std::cout;

    auto support_message = [&outstream](std::string isa_feature, bool is_supported) {
        outstream << isa_feature << (is_supported ? " supported" : " not supported") << std::endl;
    };

    std::cout << InstructionSet::Vendor() << std::endl;
    std::cout << InstructionSet::Brand() << std::endl;
    
    support_message("3DNOW",       InstructionSet::_3DNOW());
    support_message("3DNOWEXT",    InstructionSet::_3DNOWEXT());
    support_message("ABM",         InstructionSet::ABM());
    support_message("ADX",         InstructionSet::ADX());
    support_message("AES",         InstructionSet::AES());
    support_message("AVX",         InstructionSet::AVX());
    support_message("AVX2",        InstructionSet::AVX2());
    support_message("AVX512CD",    InstructionSet::AVX512CD());
    support_message("AVX512ER",    InstructionSet::AVX512ER());
    support_message("AVX512F",     InstructionSet::AVX512F());
    support_message("AVX512PF",    InstructionSet::AVX512PF());
    support_message("BMI1",        InstructionSet::BMI1());
    support_message("BMI2",        InstructionSet::BMI2());
    support_message("CLFSH",       InstructionSet::CLFSH());
    support_message("CMPXCHG16B",  InstructionSet::CMPXCHG16B());
    support_message("CX8",         InstructionSet::CX8());
    support_message("ERMS",        InstructionSet::ERMS());
    support_message("F16C",        InstructionSet::F16C());
    support_message("FMA",         InstructionSet::FMA());
    support_message("FSGSBASE",    InstructionSet::FSGSBASE());
    support_message("FXSR",        InstructionSet::FXSR());
    support_message("HLE",         InstructionSet::HLE());
    support_message("INVPCID",     InstructionSet::INVPCID());
    support_message("LAHF",        InstructionSet::LAHF());
    support_message("LZCNT",       InstructionSet::LZCNT());
    support_message("MMX",         InstructionSet::MMX());
    support_message("MMXEXT",      InstructionSet::MMXEXT());
    support_message("MONITOR",     InstructionSet::MONITOR());
    support_message("MOVBE",       InstructionSet::MOVBE());
    support_message("MSR",         InstructionSet::MSR());
    support_message("OSXSAVE",     InstructionSet::OSXSAVE());
    support_message("PCLMULQDQ",   InstructionSet::PCLMULQDQ());
    support_message("POPCNT",      InstructionSet::POPCNT());
    support_message("PREFETCHWT1", InstructionSet::PREFETCHWT1());
    support_message("RDRAND",      InstructionSet::RDRAND());
    support_message("RDSEED",      InstructionSet::RDSEED());
    support_message("RDTSCP",      InstructionSet::RDTSCP());
    support_message("RTM",         InstructionSet::RTM());
    support_message("SEP",         InstructionSet::SEP());
    support_message("SHA",         InstructionSet::SHA());
    support_message("SSE",         InstructionSet::SSE());
    support_message("SSE2",        InstructionSet::SSE2());
    support_message("SSE3",        InstructionSet::SSE3());
    support_message("SSE4.1",      InstructionSet::SSE41());
    support_message("SSE4.2",      InstructionSet::SSE42());
    support_message("SSE4a",       InstructionSet::SSE4a());
    support_message("SSSE3",       InstructionSet::SSSE3());
    support_message("SYSCALL",     InstructionSet::SYSCALL());
    support_message("TBM",         InstructionSet::TBM());
    support_message("XOP",         InstructionSet::XOP());
    support_message("XSAVE",       InstructionSet::XSAVE());
}
  

Siehe auch

Referenz

Intrinsische Compilerfunktionen