Data Mining (SSAS)
Analysis Services stellt eine integrierte Plattform für Lösungen bereit, die Data Mining integrieren. Sie können entweder relationale oder Cubedaten verwenden, um Business Intelligence-Lösungen mit Vorhersageanalysen zu erstellen.
Vorteile des Data Minings
Beim Data Mining werden Daten unter Verwendung durchdachter statistischer Grundlagen auf Muster untersucht, um Ihnen bei komplexen Problemstellungen eine intelligente Entscheidungsfindung zu ermöglichen. Indem die in Analysis Services enthaltenen Data Mining-Algorithmen auf Daten angewendet werden, können Trends vorhergesagt, Muster identifiziert, Regeln und Empfehlungen aufgestellt, die Abfolge von Ereignissen in komplexen Datasets analysiert und neue Einblicke gewonnen werden.
In SQL Server 2012 ist Data Mining leistungsstark, zugreifbar und integriert in die Tools, die viele für Analyse und Berichtswesen bevorzugen. Um Ihr Hintergrundwissen für die ersten Schritte mit Data Mining-Funktionen zu vertiefen, informieren Sie sich in den Links in diesem Abschnitt.
Wichtige Data Mining-Funktionen
SQL Server stellt die folgenden Funktionen zur Unterstützung integrierter Data Mining-Lösungen bereit:
Mehrere Datenquellen: Sie müssen kein Data Warehouse oder OLAP-Cube erstellen, um Data Mining zu nutzen. Sie können Tabellendaten externer Anbieter, aus Arbeitsblättern und sogar aus Textdateien verwenden. Darüber hinaus können Sie OLAP-Cubes, die in Analysis Services erstellt wurden, problemlos in das Data Mining einbeziehen. Sie können jedoch keine Daten aus einer speicherinternen Datenbank verwenden.
Integrierte Datenbereinigung, Datenverwaltung und ETL: Data Quality Services stellen erweiterte Tools zur Profilerstellung und zum Bereinigen von Daten bereit. Integration Services können zum Erstellen von ETL-Prozessen zum Bereinigen von Daten sowie zum Erstellen, Verarbeiten, Trainieren und Aktualisieren von Modellen verwendet werden.
Mehrere anpassbare Algorithmen: Neben Algorithmen, beispielsweise für das Clustering, neuronale Netzwerke und Entscheidungsstrukturen, unterstützt die Plattform die Entwicklung eigener benutzerdefinierter Plug-In-Algorithmen.
Infrastruktur zum Testen von Modellen: Testen Sie die Modelle und Datasets unter Verwendung wichtiger Statistiktools, wie Kreuzvalidierung, Klassifikationsmatrizen, Prognosegütediagramme und Punktdiagramme. Erstellen und verwalten Sie einfach Test- und Trainingssätze.
Abfragen und Drillthrough: Erstellen Sie Vorhersageabfragen, rufen Sie Modellmuster und Statistiken ab, und führen Sie einen Drillthrough zu Falldaten aus.
Clienttools: Neben den Entwicklungs- und Entwurfsoberflächen von SQL Server können Sie mithilfe der Data Mining-Add-Ins für Excel Modelle erstellen, abfragen und durchsuchen. Alternativ können Sie benutzerdefinierte Clients, einschließlich Webdienste, erstellen.
Unterstützung von Skriptsprachen und verwaltete API: Alle Data Mining-Objekte sind vollständig programmierbar. Skripts können mithilfe von MDX, XMLA oder der PowerShell-Erweiterungen für Analysis Services erstellt werden. Verwenden Sie die DMX-Sprache (Data Mining Extensions, Data Mining-Erweiterungen) für die schnelle Abfrageausführung und Skripterstellung.
Sicherheit und Bereitstellung: Bietet rollenbasierte Sicherheit durch Analysis Services, einschließlich separater Berechtigungen für Drillthroughs zu Modell- und Strukturdaten. Einfache Bereitstellung von Modellen auf anderen Servern, damit Benutzer auf die Muster zugreifen oder Vorhersagen ausführen können
In diesem Abschnitt
In den Themen in diesem Abschnitt werden die Hauptfunktionen von SQL Server Data Mining sowie verwandte Tasks eingeführt.