Κοινή χρήση μέσω


Databricks Runtime 5.4 for ML (EoS)

Note

Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.

Databricks released this version in June 2019.

Databricks Runtime 5.4 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 5.4 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. It also supports distributed deep learning training using Horovod.

For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.

New features

Databricks Runtime 5.4 ML is built on top of Databricks Runtime 5.4. For information on what’s new in Databricks Runtime 5.4, see the Databricks Runtime 5.4 (EoS) release notes.

In addition to library updates, Databricks Runtime 5.4 ML introduces the following new features:

Distributed Hyperopt + automated MLflow tracking

Databricks Runtime 5.4 ML introduces a new implementation of Hyperopt powered by Apache Spark to scale and simplify hyperparameter tuning. A new Trials class SparkTrials is implemented to distribute Hyperopt trial runs among multiple machines and nodes using Apache Spark. In addition, all tuning experiments, along with the tuned hyperparameters and targeted metrics, are automatically logged to MLflow runs. See Parallelize Hyperopt hyperparameter tuning.

Important

This feature is in Public Preview.

Apache Spark MLlib + automated MLflow tracking

Databricks Runtime 5.4 ML supports automatic logging of MLflow runs for models fit using PySpark tuning algorithms CrossValidator and TrainValidationSplit. See Apache Spark MLlib and automated MLflow tracking. This feature is on by default in Databricks Runtime 5.4 ML but was off by default in Databricks Runtime 5.3 ML.

Important

This feature is in Public Preview.

HorovodRunner improvement

Output sent from Horovod to the Spark driver node is now visible in notebook cells.

XGBoost Python package update

XGBoost Python package 0.80 is installed.

System environment

The system environment in Databricks Runtime 5.4 ML differs from Databricks Runtime 5.4 as follows:

  • Python: 2.7.15 for Python 2 clusters and 3.6.5 for Python 3 clusters.
  • DBUtils: Databricks Runtime 5.4 ML does not contain Library utility (dbutils.library) (legacy).
  • For GPU clusters, the following NVIDIA GPU libraries:
    • Tesla driver 396.44
    • CUDA 9.2
    • CUDNN 7.2.1

Libraries

The following sections list the libraries included in Databricks Runtime 5.4 ML that differ from those included in Databricks Runtime 5.4.

Top-tier libraries

Databricks Runtime 5.4 ML includes the following top-tier libraries:

Python libraries

Databricks Runtime 5.4 ML uses Conda for Python package management. As a result, there are major differences in installed Python libraries compared to Databricks Runtime. The following is a full list of provided Python packages and versions installed using Conda package manager.

Library Version Library Version Library Version
absl-py 0.7.1 argparse 1.4.0 asn1crypto 0.24.0
astor 0.7.1 backports-abc 0.5 backports.functools-lru-cache 1.5
backports.weakref 1.0.post1 bcrypt 3.1.6 bleach 2.1.3
boto 2.48.0 boto3 1.7.62 botocore 1.10.62
certifi 2018.04.16 cffi 1.11.5 chardet 3.0.4
cloudpickle 0.5.3 colorama 0.3.9 configparser 3.5.0
cryptography 2.2.2 cycler 0.10.0 Cython 0.28.2
decorator 4.3.0 docutils 0.14 entrypoints 0.2.3
enum34 1.1.6 et-xmlfile 1.0.1 funcsigs 1.0.2
functools32 3.2.3-2 fusepy 2.0.4 future 0.17.1
futures 3.2.0 gast 0.2.2 grpcio 1.12.1
h5py 2.8.0 horovod 0.16.0 html5lib 1.0.1
hyperopt 0.1.2.db4 idna 2.6 ipaddress 1.0.22
ipython 5.7.0 ipython_genutils 0.2.0 jdcal 1.4
Jinja2 2.10 jmespath 0.9.4 jsonschema 2.6.0
jupyter-client 5.2.3 jupyter-core 4.4.0 Keras 2.2.4
Keras-Applications 1.0.7 Keras-Preprocessing 1.0.9 kiwisolver 1.1.0
linecache2 1.0.0 llvmlite 0.23.1 lxml 4.2.1
Markdown 3.1.1 MarkupSafe 1.0 matplotlib 2.2.2
mistune 0.8.3 mkl-fft 1.0.0 mkl-random 1.0.1
mleap 0.8.1 mock 2.0.0 msgpack 0.5.6
nbconvert 5.3.1 nbformat 4.4.0 networkx 2.2
nose 1.3.7 nose-exclude 0.5.0 numba 0.38.0+0.g2a2b772fc.dirty
numpy 1.14.3 olefile 0.45.1 openpyxl 2.5.3
pandas 0.23.0 pandocfilters 1.4.2 paramiko 2.4.1
pathlib2 2.3.2 patsy 0.5.0 pbr 5.1.3
pexpect 4.5.0 pickleshare 0.7.4 Pillow 5.1.0
pip 10.0.1 ply 3.11 prompt-toolkit 1.0.15
protobuf 3.7.1 psutil 5.6.2 psycopg2 2.7.5
ptyprocess 0.5.2 pyarrow 0.12.1 pyasn1 0.4.5
pycparser 2.18 Pygments 2.2.0 pymongo 3.8.0
PyNaCl 1.3.0 pyOpenSSL 18.0.0 pyparsing 2.2.0
PySocks 1.6.8 Python 2.7.15 python-dateutil 2.7.3
pytz 2018.4 PyYAML 5.1 pyzmq 17.0.0
requests 2.18.4 s3transfer 0.1.13 scandir 1.7
scikit-learn 0.19.1 scipy 1.1.0 seaborn 0.8.1
setuptools 39.1.0 simplegeneric 0.8.1 singledispatch 3.4.0.3
six 1.11.0 statsmodels 0.9.0 subprocess32 3.5.4
tensorboard 1.12.2 tensorboardX 1.6 tensorflow 1.12.0
termcolor 1.1.0 testpath 0.3.1 torch 0.4.1
torchvision 0.2.1 tornado 5.0.2 tqdm 4.32.1
traceback2 1.4.0 traitlets 4.3.2 unittest2 1.1.0
urllib3 1.22 virtualenv 16.0.0 wcwidth 0.1.7
webencodings 0.5.1 Werkzeug 0.14.1 wheel 0.31.1
wrapt 1.10.11 wsgiref 0.1.2

In addition, the following Spark packages include Python modules:

Spark Package Python Module Version
graphframes graphframes 0.7.0-db1-spark2.4
spark-deep-learning sparkdl 1.5.0-db3-spark2.4
tensorframes tensorframes 0.6.0-s_2.11

R libraries

The R libraries are identical to the R Libraries in Databricks Runtime 5.4.

Java and Scala libraries (Scala 2.11 cluster)

In addition to Java and Scala libraries in Databricks Runtime 5.4, Databricks Runtime 5.4 ML contains the following JARs:

Group ID Artifact ID Version
com.databricks spark-deep-learning 1.5.0-db3-spark2.4
com.typesafe.akka akka-actor_2.11 2.3.11
ml.combust.mleap mleap-databricks-runtime_2.11 0.13.0
ml.dmlc xgboost4j 0.81
ml.dmlc xgboost4j-spark 0.81
org.graphframes graphframes_2.11 0.7.0-db1-spark2.4
org.tensorflow libtensorflow 1.12.0
org.tensorflow libtensorflow_jni 1.12.0
org.tensorflow spark-tensorflow-connector_2.11 1.12.0
org.tensorflow tensorflow 1.12.0
org.tensorframes tensorframes 0.6.0-s_2.11