Σημείωση
Η πρόσβαση σε αυτή τη σελίδα απαιτεί εξουσιοδότηση. Μπορείτε να δοκιμάσετε να συνδεθείτε ή να αλλάξετε καταλόγους.
Η πρόσβαση σε αυτή τη σελίδα απαιτεί εξουσιοδότηση. Μπορείτε να δοκιμάσετε να αλλάξετε καταλόγους.
Returns the maximum value of the expression in a group. Null values are ignored during the computation. NaN values are larger than any other numeric value.
Syntax
from pyspark.sql import functions as sf
sf.max(col)
Parameters
| Parameter | Type | Description |
|---|---|---|
col |
pyspark.sql.Column or column name |
The target column on which the maximum value is computed. |
Returns
pyspark.sql.Column: A column that contains the maximum value computed.
Examples
Example 1: Compute the maximum value of a numeric column
import pyspark.sql.functions as sf
df = spark.range(10)
df.select(sf.max(df.id)).show()
+-------+
|max(id)|
+-------+
| 9|
+-------+
Example 2: Compute the maximum value of a string column
import pyspark.sql.functions as sf
df = spark.createDataFrame([("A",), ("B",), ("C",)], ["value"])
df.select(sf.max(df.value)).show()
+----------+
|max(value)|
+----------+
| C|
+----------+
Example 3: Compute the maximum value of a column in a grouped DataFrame
import pyspark.sql.functions as sf
df = spark.createDataFrame([("A", 1), ("A", 2), ("B", 3), ("B", 4)], ["key", "value"])
df.groupBy("key").agg(sf.max(df.value)).show()
+---+----------+
|key|max(value)|
+---+----------+
| A| 2|
| B| 4|
+---+----------+
Example 4: Compute the maximum value of multiple columns in a grouped DataFrame
import pyspark.sql.functions as sf
df = spark.createDataFrame(
[("A", 1, 2), ("A", 2, 3), ("B", 3, 4), ("B", 4, 5)], ["key", "value1", "value2"])
df.groupBy("key").agg(sf.max("value1"), sf.max("value2")).show()
+---+-----------+-----------+
|key|max(value1)|max(value2)|
+---+-----------+-----------+
| A| 2| 3|
| B| 4| 5|
+---+-----------+-----------+
Example 5: Compute the maximum value of a column with null values
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1,), (2,), (None,)], ["value"])
df.select(sf.max(df.value)).show()
+----------+
|max(value)|
+----------+
| 2|
+----------+
Example 6: Compute the maximum value of a column with "NaN" values
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1.1,), (float("nan"),), (3.3,)], ["value"])
df.select(sf.max(df.value)).show()
+----------+
|max(value)|
+----------+
| NaN|
+----------+