Κοινοποίηση μέσω


nth_value

Window function: returns the value that is the offsetth row of the window frame (counting from 1), and null if the size of window frame is less than offset rows.

It will return the offsetth non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned.

This is equivalent to the nth_value function in SQL.

Syntax

from pyspark.sql import functions as sf

sf.nth_value(col, offset, ignoreNulls=False)

Parameters

Parameter Type Description
col pyspark.sql.Column or column name Name of column or expression.
offset int Number of row to use as the value.
ignoreNulls bool, optional Indicates the Nth value should skip null in the determination of which row to use.

Returns

pyspark.sql.Column: value of nth row.

Examples

Example 1: Get the first value in window frame

from pyspark.sql import functions as sf
from pyspark.sql import Window
df = spark.createDataFrame(
    [("a", 1), ("a", 2), ("a", 3), ("b", 8), ("b", 2)], ["c1", "c2"])
df.show()
+---+---+
| c1| c2|
+---+---+
|  a|  1|
|  a|  2|
|  a|  3|
|  b|  8|
|  b|  2|
+---+---+
w = Window.partitionBy("c1").orderBy("c2")
df.withColumn("nth_value", sf.nth_value("c2", 1).over(w)).show()
+---+---+---------+
| c1| c2|nth_value|
+---+---+---------+
|  a|  1|        1|
|  a|  2|        1|
|  a|  3|        1|
|  b|  2|        2|
|  b|  8|        2|
+---+---+---------+

Example 2: Get the second value in window frame

from pyspark.sql import functions as sf
from pyspark.sql import Window
df = spark.createDataFrame(
    [("a", 1), ("a", 2), ("a", 3), ("b", 8), ("b", 2)], ["c1", "c2"])
w = Window.partitionBy("c1").orderBy("c2")
df.withColumn("nth_value", sf.nth_value("c2", 2).over(w)).show()
+---+---+---------+
| c1| c2|nth_value|
+---+---+---------+
|  a|  1|     NULL|
|  a|  2|        2|
|  a|  3|        2|
|  b|  2|     NULL|
|  b|  8|        8|
+---+---+---------+