Επεξεργασία

Κοινή χρήση μέσω


Upgrade local runs to SDK v2

Local runs are similar in both V1 and V2. Use the "local" string when setting the compute target in either version.

This article gives a comparison of scenario(s) in SDK v1 and SDK v2.

Submit a local run

  • SDK v1

    from azureml.core import Workspace, Experiment, Environment, ScriptRunConfig
    
    # connect to the workspace
    ws = Workspace.from_config()
    
    # define and configure the experiment
    experiment = Experiment(workspace=ws, name='day1-experiment-train')
    config = ScriptRunConfig(source_directory='./src',
                                script='train.py',
                                compute_target='local')
    
    # set up pytorch environment
    env = Environment.from_conda_specification(
        name='pytorch-env',
        file_path='pytorch-env.yml')
    config.run_config.environment = env
    
    run = experiment.submit(config)
    
    aml_url = run.get_portal_url()
    print(aml_url)
    
  • SDK v2

    #import required libraries
    from azure.ai.ml import MLClient, command
    from azure.ai.ml.entities import Environment
    from azure.identity import DefaultAzureCredential
    
    #connect to the workspace
    ml_client = MLClient.from_config(DefaultAzureCredential())
    
    # set up pytorch environment
    env = Environment(
        image='mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04',
        conda_file='pytorch-env.yml',
        name='pytorch-env'
    )
    
    # define the command
    command_job = command(
        code='./src',
        command='train.py',
        environment=env,
        compute='local',
    )
    
    returned_job = ml_client.jobs.create_or_update(command_job)
    returned_job
    

Mapping of key functionality in SDK v1 and SDK v2

Functionality in SDK v1 Rough mapping in SDK v2
experiment.submit MLCLient.jobs.create_or_update

Next steps