To merge two DataFrames using the SQL MERGE
statement in Azure Databricks with Spark, you'll need to :
- Load your data from SQL Server and other sources into DataFrames.
- Register the DataFrames as temporary views to use them in SQL statements.
- Write a
MERGE
statement using SQL to merge the DataFrames. - I am assuming you have one DataFrame loaded from a SQL Server table and another DataFrame created from Spark SQL:
# Load DataFrame from SQL Server
df2 = spark.read \
.format("jdbc") \
.option("url", "jdbc:sqlserver://<server_name>;databaseName=<database_name>") \
.option("dbtable", "Table2") \
.option("user", "<username>") \
.option("password", "<password>") \
.load()
# Load another DataFrame using Spark SQL
df1 = spark.sql("SELECT col1, col2 FROM table1")
Then you register your temp views :
df1.createOrReplaceTempView("df1_view")
df2.createOrReplaceTempView("df2_view")
Using Spark SQL, you can write a MERGE
statement. In Spark, you might need to use Delta Lake to perform merge operations effectively.
# Ensure Delta Lake is available
spark.conf.set("spark.databricks.delta.formatCheck.enabled", False)
Now, create Delta tables and perform the merge:
# Create Delta table from df2
df2.write.format("delta").mode("overwrite").saveAsTable("delta_table2")
# Merge df1 into delta_table2
spark.sql("""
MERGE INTO delta_table2 AS target
USING df1_view AS source
ON target.col1 = source.col1
WHEN MATCHED THEN
UPDATE SET target.col2 = source.col2
WHEN NOT MATCHED THEN
INSERT (col1, col2) VALUES (source.col1, source.col2)
""")