Array.Sort Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Sorts the elements in a one-dimensional array.
Overloads
Sort(Array, Array, Int32, Int32, IComparer) |
Sorts a range of elements in a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer. |
Sort(Array, Int32, Int32, IComparer) |
Sorts the elements in a range of elements in a one-dimensional Array using the specified IComparer. |
Sort(Array, Array, Int32, Int32) |
Sorts a range of elements in a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable implementation of each key. |
Sort(Array, Int32, Int32) |
Sorts the elements in a range of elements in a one-dimensional Array using the IComparable implementation of each element of the Array. |
Sort(Array, Array, IComparer) |
Sorts a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer. |
Sort(Array, Array) |
Sorts a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable implementation of each key. |
Sort(Array) |
Sorts the elements in an entire one-dimensional Array using the IComparable implementation of each element of the Array. |
Sort(Array, IComparer) |
Sorts the elements in a one-dimensional Array using the specified IComparer. |
Sort<T>(T[]) |
Sorts the elements in an entire Array using the IComparable<T> generic interface implementation of each element of the Array. |
Sort<T>(T[], IComparer<T>) |
Sorts the elements in an Array using the specified IComparer<T> generic interface. |
Sort<T>(T[], Comparison<T>) |
Sorts the elements in an Array using the specified Comparison<T>. |
Sort<T>(T[], Int32, Int32) |
Sorts the elements in a range of elements in an Array using the IComparable<T> generic interface implementation of each element of the Array. |
Sort<T>(T[], Int32, Int32, IComparer<T>) |
Sorts the elements in a range of elements in an Array using the specified IComparer<T> generic interface. |
Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) |
Sorts a range of elements in a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer<T> generic interface. |
Sort<TKey,TValue>(TKey[], TValue[]) |
Sorts a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable<T> generic interface implementation of each key. |
Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>) |
Sorts a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer<T> generic interface. |
Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32) |
Sorts a range of elements in a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable<T> generic interface implementation of each key. |
Sort(Array, Array, Int32, Int32, IComparer)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
public:
static void Sort(Array ^ keys, Array ^ items, int index, int length, System::Collections::IComparer ^ comparer);
public static void Sort (Array keys, Array items, int index, int length, System.Collections.IComparer comparer);
public static void Sort (Array keys, Array? items, int index, int length, System.Collections.IComparer? comparer);
static member Sort : Array * Array * int * int * System.Collections.IComparer -> unit
Public Shared Sub Sort (keys As Array, items As Array, index As Integer, length As Integer, comparer As IComparer)
Parameters
- items
- Array
The one-dimensional Array that contains the items that correspond to each of the keys in the keys
Array.
-or-
null
to sort only the keys
Array.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
- comparer
- IComparer
The IComparer implementation to use when comparing elements.
-or-
null
to use the IComparable implementation of each element.
Exceptions
keys
is null
.
index
is less than the lower bound of keys
.
-or-
length
is less than zero.
items
is not null
, and the lower bound of keys
does not match the lower bound of items
.
-or-
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
index
and length
do not specify a valid range in the keys
Array.
-or-
items
is not null
, and index
and length
do not specify a valid range in the items
Array.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in the keys
Array do not implement the IComparable interface.
Examples
The following code example shows how to sort two associated arrays where the first array contains the keys and the second array contains the values. Sorts are done using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class myReverserClass: public IComparer
{
private:
// Calls CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare( Object^ x, Object^ y ) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare( y, x ));
}
};
void PrintKeysAndValues( array<String^>^myKeys, array<String^>^myValues )
{
for ( int i = 0; i < myKeys->Length; i++ )
{
Console::WriteLine( " {0, -10}: {1}", myKeys[ i ], myValues[ i ] );
}
Console::WriteLine();
}
int main()
{
// Creates and initializes a new Array and a new custom comparer.
array<String^>^myKeys = {"red","GREEN","YELLOW","BLUE","purple","black","orange"};
array<String^>^myValues = {"strawberries","PEARS","LIMES","BERRIES","grapes","olives","cantaloupe"};
IComparer^ myComparer = gcnew myReverserClass;
// Displays the values of the Array.
Console::WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array::Sort( myKeys, myValues, 1, 3 );
Console::WriteLine( "After sorting a section of the Array using the default comparer:" );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, 1, 3, myComparer );
Console::WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array::Sort( myKeys, myValues );
Console::WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, myComparer );
Console::WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
using System;
using System.Collections;
public class SamplesArray {
public class myReverserClass : IComparer {
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
int IComparer.Compare( Object x, Object y ) {
return( (new CaseInsensitiveComparer()).Compare( y, x ) );
}
}
public static void Main() {
// Creates and initializes a new Array and a new custom comparer.
String[] myKeys = { "red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange" };
String[] myValues = { "strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe" };
IComparer myComparer = new myReverserClass();
// Displays the values of the Array.
Console.WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array.Sort( myKeys, myValues, 1, 3 );
Console.WriteLine( "After sorting a section of the Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, 1, 3, myComparer );
Console.WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array.Sort( myKeys, myValues );
Console.WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, myComparer );
Console.WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
public static void PrintKeysAndValues( String[] myKeys, String[] myValues ) {
for ( int i = 0; i < myKeys.Length; i++ ) {
Console.WriteLine( " {0,-10}: {1}", myKeys[i], myValues[i] );
}
Console.WriteLine();
}
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
open System
open System.Collections
type MyReverserClass() =
interface IComparer with
member _.Compare(x, y) =
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let printKeysAndValues (myKeys: string []) (myValues: string []) =
for i = 0 to myKeys.Length - 1 do
printfn $" {myKeys[i],-10}: {myValues[i]}"
printfn ""
// Creates and initializes a new Array and a new custom comparer.
let myKeys = [| "red"; "GREEN"; "YELLOW"; "BLUE"; "purple"; "black"; "orange" |]
let myValues = [| "strawberries"; "PEARS"; "LIMES"; "BERRIES"; "grapes"; "olives"; "cantaloupe" |]
let myComparer = MyReverserClass()
// Displays the values of the Array.
printfn "The Array initially contains the following values:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
printfn "After sorting a section of the Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
printfn "After sorting a section of the Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
printfn "After sorting the entire Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
printfn "After sorting the entire Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// This code produces the following output.
// The Array initially contains the following values:
// red : strawberries
// GREEN : PEARS
// YELLOW : LIMES
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the default comparer:
// red : strawberries
// BLUE : BERRIES
// GREEN : PEARS
// YELLOW : LIMES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the reverse case-insensitive comparer:
// red : strawberries
// YELLOW : LIMES
// GREEN : PEARS
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting the entire Array using the default comparer:
// black : olives
// BLUE : BERRIES
// GREEN : PEARS
// orange : cantaloupe
// purple : grapes
// red : strawberries
// YELLOW : LIMES
//
// After sorting the entire Array using the reverse case-insensitive comparer:
// YELLOW : LIMES
// red : strawberries
// purple : grapes
// orange : cantaloupe
// GREEN : PEARS
// BLUE : BERRIES
// black : olives
Imports System.Collections
Public Class SamplesArray
Public Class myReverserClass
Implements IComparer
' Calls CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As [Object], y As [Object]) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function 'IComparer.Compare
End Class
Public Shared Sub Main()
' Creates and initializes a new Array and a new custom comparer.
Dim myKeys As [String]() = {"red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange"}
Dim myValues As [String]() = {"strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe"}
Dim myComparer = New myReverserClass()
' Displays the values of the Array.
Console.WriteLine("The Array initially contains the following values:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
Console.WriteLine("After sorting a section of the Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
Console.WriteLine("After sorting a section of the Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
Console.WriteLine("After sorting the entire Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
Console.WriteLine("After sorting the entire Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
End Sub
Public Shared Sub PrintKeysAndValues(myKeys() As [String], myValues() As [String])
Dim i As Integer
For i = 0 To myKeys.Length - 1
Console.WriteLine(" {0,-10}: {1}", myKeys(i), myValues(i))
Next i
Console.WriteLine()
End Sub
End Class
'This code produces the following output.
'
'The Array initially contains the following values:
' red : strawberries
' GREEN : PEARS
' YELLOW : LIMES
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the default comparer:
' red : strawberries
' BLUE : BERRIES
' GREEN : PEARS
' YELLOW : LIMES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the reverse case-insensitive comparer:
' red : strawberries
' YELLOW : LIMES
' GREEN : PEARS
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting the entire Array using the default comparer:
' black : olives
' BLUE : BERRIES
' GREEN : PEARS
' orange : cantaloupe
' purple : grapes
' red : strawberries
' YELLOW : LIMES
'
'After sorting the entire Array using the reverse case-insensitive comparer:
' YELLOW : LIMES
' red : strawberries
' purple : grapes
' orange : cantaloupe
' GREEN : PEARS
' BLUE : BERRIES
' black : olives
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
If comparer
is null
, each key within the specified range of elements in the keys
Array must implement the IComparable interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
.NET includes predefined IComparer implementations listed in the following table.
Implementation | Description |
---|---|
System.Collections.CaseInsensitiveComparer | Compares any two objects, but performs a case-insensitive comparison of strings. |
Comparer.Default | Compares any two objects by using the sorting conventions of the current culture. |
Comparer.DefaultInvariant | Compares any two objects by using the sorting conventions of the invariant culture. |
Comparer<T>.Default | Compares two objects of type T by using the type's default sort order. |
You can also support custom comparisons by providing an instance of your own IComparer implementation to the comparer
parameter. The example does this by defining a custom IComparer implementation that reverses the default sort order and performs case-insensitive string comparison.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort(Array, Int32, Int32, IComparer)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
public:
static void Sort(Array ^ array, int index, int length, System::Collections::IComparer ^ comparer);
public static void Sort (Array array, int index, int length, System.Collections.IComparer comparer);
public static void Sort (Array array, int index, int length, System.Collections.IComparer? comparer);
static member Sort : Array * int * int * System.Collections.IComparer -> unit
Public Shared Sub Sort (array As Array, index As Integer, length As Integer, comparer As IComparer)
Parameters
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
- comparer
- IComparer
The IComparer implementation to use when comparing elements.
-or-
null
to use the IComparable implementation of each element.
Exceptions
array
is null
.
array
is multidimensional.
index
is less than the lower bound of array
.
-or-
length
is less than zero.
index
and length
do not specify a valid range in array
.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in array
do not implement the IComparable interface.
Examples
The following code example shows how to sort the values in an Array using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class ReverseComparer : IComparer
{
public:
// Call CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare(Object^ x, Object^ y) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare(y, x));
}
};
void DisplayValues(array<String^>^ arr)
{
for (int i = arr->GetLowerBound(0); i <= arr->GetUpperBound(0); i++)
Console::WriteLine( " [{0}] : {1}", i, arr[ i ] );
Console::WriteLine();
}
int main()
{
// Create and initialize a new array. and a new custom comparer.
array<String^>^ words = { "The","QUICK","BROWN","FOX","jumps",
"over","the","lazy","dog" };
// Instantiate the reverse comparer.
IComparer^ revComparer = gcnew ReverseComparer();
// Display the values of the Array.
Console::WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array::Sort(words, 1, 3);
Console::WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array::Sort(words, 1, 3, revComparer);
Console::WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array::Sort(words);
Console::WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array::Sort(words, revComparer);
Console::WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
/*
This code produces the following output.
The Array initially contains the following values:
[0] : The
[1] : QUICK
[2] : BROWN
[3] : FOX
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the default comparer:
[0] : The
[1] : BROWN
[2] : FOX
[3] : QUICK
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the reverse case-insensitive comparer:
[0] : The
[1] : QUICK
[2] : FOX
[3] : BROWN
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting the entire Array using the default comparer:
[0] : BROWN
[1] : dog
[2] : FOX
[3] : jumps
[4] : lazy
[5] : over
[6] : QUICK
[7] : the
[8] : The
After sorting the entire Array using the reverse case-insensitive comparer:
[0] : the
[1] : The
[2] : QUICK
[3] : over
[4] : lazy
[5] : jumps
[6] : FOX
[7] : dog
[8] : BROWN
*/
using System;
using System.Collections;
public class ReverseComparer : IComparer
{
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
public int Compare(Object x, Object y)
{
return (new CaseInsensitiveComparer()).Compare(y, x );
}
}
public class Example
{
public static void Main()
{
// Create and initialize a new array.
String[] words = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" };
// Instantiate the reverse comparer.
IComparer revComparer = new ReverseComparer();
// Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3);
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer);
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array.Sort(words);
Console.WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer);
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
public static void DisplayValues(String[] arr)
{
for ( int i = arr.GetLowerBound(0); i <= arr.GetUpperBound(0);
i++ ) {
Console.WriteLine( " [{0}] : {1}", i, arr[i] );
}
Console.WriteLine();
}
}
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
open System
open System.Collections
type ReverseComparer() =
interface IComparer with
member _.Compare(x, y) =
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let displayValues (arr: string []) =
for i = 0 to arr.Length - 1 do
printfn $" [{i}] : {arr[i]}"
printfn ""
// Create and initialize a new array.
let words =
[| "The"; "QUICK"; "BROWN"; "FOX"; "jumps"
"over"; "the"; "lazy"; "dog" |]
// Instantiate the reverse comparer.
let revComparer = ReverseComparer()
// Display the values of the array.
printfn "The original order of elements in the array:"
displayValues words
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
printfn "After sorting elements 1-3 by using the default comparer:"
displayValues words
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
printfn "After sorting elements 1-3 by using the reverse case-insensitive comparer:"
displayValues words
// Sort the entire array using the default comparer.
Array.Sort words
printfn "After sorting the entire array by using the default comparer:"
displayValues words
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
printfn "After sorting the entire array using the reverse case-insensitive comparer:"
displayValues words
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
Imports System.Collections
Public Class ReverseComparer : Implements IComparer
' Call CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As Object, y As Object) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function
End Class
Public Module Example
Public Sub Main()
' Create and initialize a new array.
Dim words() As String = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" }
' Instantiate a new custom comparer.
Dim revComparer As New ReverseComparer()
' Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" )
DisplayValues(words)
' Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:")
DisplayValues(words)
' Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:")
DisplayValues(words)
' Sort the entire array using the default comparer.
Array.Sort(words)
Console.WriteLine( "After sorting the entire array by using the default comparer:")
DisplayValues(words)
' Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:")
DisplayValues(words)
End Sub
Public Sub DisplayValues(arr() As String)
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Console.WriteLine(" [{0}] : {1}", i, arr(i))
Next
Console.WriteLine()
End Sub
End Module
' The example displays the following output:
' The original order of elements in the array:
' [0] : The
' [1] : QUICK
' [2] : BROWN
' [3] : FOX
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the default comparer:
' [0] : The
' [1] : BROWN
' [2] : FOX
' [3] : QUICK
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the reverse case-insensitive comparer:
' [0] : The
' [1] : QUICK
' [2] : FOX
' [3] : BROWN
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting the entire array by using the default comparer:
' [0] : BROWN
' [1] : dog
' [2] : FOX
' [3] : jumps
' [4] : lazy
' [5] : over
' [6] : QUICK
' [7] : the
' [8] : The
'
' After sorting the entire array using the reverse case-insensitive comparer:
' [0] : the
' [1] : The
' [2] : QUICK
' [3] : over
' [4] : lazy
' [5] : jumps
' [6] : FOX
' [7] : dog
' [8] : BROWN
Remarks
If comparer
is null
, each element within the specified range of elements in array
must implement the IComparable interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
.NET includes predefined IComparer implementations listed in the following table.
Implementation | Description |
---|---|
System.Collections.CaseInsensitiveComparer | Compares any two objects, but performs a case-insensitive comparison of strings. |
Comparer.Default | Compares any two objects by using the sorting conventions of the current culture. |
Comparer.DefaultInvariant | Compares any two objects by using the sorting conventions of the invariant culture. |
Comparer<T>.Default | Compares two objects of type T by using the type's default sort order. |
You can also support custom comparisons by providing an instance of your own IComparer implementation to the comparer
parameter. The example does this by defining a ReverseComparer
class that reverses the default sort order for instances of a type and performs case-insensitive string comparison.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort(Array, Array, Int32, Int32)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a range of elements in a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable implementation of each key.
public:
static void Sort(Array ^ keys, Array ^ items, int index, int length);
public static void Sort (Array keys, Array items, int index, int length);
public static void Sort (Array keys, Array? items, int index, int length);
static member Sort : Array * Array * int * int -> unit
Public Shared Sub Sort (keys As Array, items As Array, index As Integer, length As Integer)
Parameters
- items
- Array
The one-dimensional Array that contains the items that correspond to each of the keys in the keys
Array.
-or-
null
to sort only the keys
Array.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
Exceptions
keys
is null
.
index
is less than the lower bound of keys
.
-or-
length
is less than zero.
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
index
and length
do not specify a valid range in the keys
Array.
-or-
items
is not null
, and index
and length
do not specify a valid range in the items
Array.
One or more elements in the keys
Array do not implement the IComparable interface.
Examples
The following code example shows how to sort two associated arrays where the first array contains the keys and the second array contains the values. Sorts are done using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class myReverserClass: public IComparer
{
private:
// Calls CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare( Object^ x, Object^ y ) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare( y, x ));
}
};
void PrintKeysAndValues( array<String^>^myKeys, array<String^>^myValues )
{
for ( int i = 0; i < myKeys->Length; i++ )
{
Console::WriteLine( " {0, -10}: {1}", myKeys[ i ], myValues[ i ] );
}
Console::WriteLine();
}
int main()
{
// Creates and initializes a new Array and a new custom comparer.
array<String^>^myKeys = {"red","GREEN","YELLOW","BLUE","purple","black","orange"};
array<String^>^myValues = {"strawberries","PEARS","LIMES","BERRIES","grapes","olives","cantaloupe"};
IComparer^ myComparer = gcnew myReverserClass;
// Displays the values of the Array.
Console::WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array::Sort( myKeys, myValues, 1, 3 );
Console::WriteLine( "After sorting a section of the Array using the default comparer:" );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, 1, 3, myComparer );
Console::WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array::Sort( myKeys, myValues );
Console::WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, myComparer );
Console::WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
using System;
using System.Collections;
public class SamplesArray {
public class myReverserClass : IComparer {
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
int IComparer.Compare( Object x, Object y ) {
return( (new CaseInsensitiveComparer()).Compare( y, x ) );
}
}
public static void Main() {
// Creates and initializes a new Array and a new custom comparer.
String[] myKeys = { "red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange" };
String[] myValues = { "strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe" };
IComparer myComparer = new myReverserClass();
// Displays the values of the Array.
Console.WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array.Sort( myKeys, myValues, 1, 3 );
Console.WriteLine( "After sorting a section of the Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, 1, 3, myComparer );
Console.WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array.Sort( myKeys, myValues );
Console.WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, myComparer );
Console.WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
public static void PrintKeysAndValues( String[] myKeys, String[] myValues ) {
for ( int i = 0; i < myKeys.Length; i++ ) {
Console.WriteLine( " {0,-10}: {1}", myKeys[i], myValues[i] );
}
Console.WriteLine();
}
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
open System
open System.Collections
type MyReverserClass() =
interface IComparer with
member _.Compare(x, y) =
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let printKeysAndValues (myKeys: string []) (myValues: string []) =
for i = 0 to myKeys.Length - 1 do
printfn $" {myKeys[i],-10}: {myValues[i]}"
printfn ""
// Creates and initializes a new Array and a new custom comparer.
let myKeys = [| "red"; "GREEN"; "YELLOW"; "BLUE"; "purple"; "black"; "orange" |]
let myValues = [| "strawberries"; "PEARS"; "LIMES"; "BERRIES"; "grapes"; "olives"; "cantaloupe" |]
let myComparer = MyReverserClass()
// Displays the values of the Array.
printfn "The Array initially contains the following values:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
printfn "After sorting a section of the Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
printfn "After sorting a section of the Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
printfn "After sorting the entire Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
printfn "After sorting the entire Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// This code produces the following output.
// The Array initially contains the following values:
// red : strawberries
// GREEN : PEARS
// YELLOW : LIMES
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the default comparer:
// red : strawberries
// BLUE : BERRIES
// GREEN : PEARS
// YELLOW : LIMES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the reverse case-insensitive comparer:
// red : strawberries
// YELLOW : LIMES
// GREEN : PEARS
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting the entire Array using the default comparer:
// black : olives
// BLUE : BERRIES
// GREEN : PEARS
// orange : cantaloupe
// purple : grapes
// red : strawberries
// YELLOW : LIMES
//
// After sorting the entire Array using the reverse case-insensitive comparer:
// YELLOW : LIMES
// red : strawberries
// purple : grapes
// orange : cantaloupe
// GREEN : PEARS
// BLUE : BERRIES
// black : olives
Imports System.Collections
Public Class SamplesArray
Public Class myReverserClass
Implements IComparer
' Calls CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As [Object], y As [Object]) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function 'IComparer.Compare
End Class
Public Shared Sub Main()
' Creates and initializes a new Array and a new custom comparer.
Dim myKeys As [String]() = {"red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange"}
Dim myValues As [String]() = {"strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe"}
Dim myComparer = New myReverserClass()
' Displays the values of the Array.
Console.WriteLine("The Array initially contains the following values:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
Console.WriteLine("After sorting a section of the Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
Console.WriteLine("After sorting a section of the Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
Console.WriteLine("After sorting the entire Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
Console.WriteLine("After sorting the entire Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
End Sub
Public Shared Sub PrintKeysAndValues(myKeys() As [String], myValues() As [String])
Dim i As Integer
For i = 0 To myKeys.Length - 1
Console.WriteLine(" {0,-10}: {1}", myKeys(i), myValues(i))
Next i
Console.WriteLine()
End Sub
End Class
'This code produces the following output.
'
'The Array initially contains the following values:
' red : strawberries
' GREEN : PEARS
' YELLOW : LIMES
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the default comparer:
' red : strawberries
' BLUE : BERRIES
' GREEN : PEARS
' YELLOW : LIMES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the reverse case-insensitive comparer:
' red : strawberries
' YELLOW : LIMES
' GREEN : PEARS
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting the entire Array using the default comparer:
' black : olives
' BLUE : BERRIES
' GREEN : PEARS
' orange : cantaloupe
' purple : grapes
' red : strawberries
' YELLOW : LIMES
'
'After sorting the entire Array using the reverse case-insensitive comparer:
' YELLOW : LIMES
' red : strawberries
' purple : grapes
' orange : cantaloupe
' GREEN : PEARS
' BLUE : BERRIES
' black : olives
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
Each key within the specified range of elements in the keys
Array must implement the IComparable interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
See also
Applies to
Sort(Array, Int32, Int32)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in a range of elements in a one-dimensional Array using the IComparable implementation of each element of the Array.
public:
static void Sort(Array ^ array, int index, int length);
public static void Sort (Array array, int index, int length);
static member Sort : Array * int * int -> unit
Public Shared Sub Sort (array As Array, index As Integer, length As Integer)
Parameters
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
Exceptions
array
is null
.
array
is multidimensional.
index
is less than the lower bound of array
.
-or-
length
is less than zero.
index
and length
do not specify a valid range in array
.
One or more elements in array
do not implement the IComparable interface.
Examples
The following code example shows how to sort the values in an Array using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class ReverseComparer : IComparer
{
public:
// Call CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare(Object^ x, Object^ y) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare(y, x));
}
};
void DisplayValues(array<String^>^ arr)
{
for (int i = arr->GetLowerBound(0); i <= arr->GetUpperBound(0); i++)
Console::WriteLine( " [{0}] : {1}", i, arr[ i ] );
Console::WriteLine();
}
int main()
{
// Create and initialize a new array. and a new custom comparer.
array<String^>^ words = { "The","QUICK","BROWN","FOX","jumps",
"over","the","lazy","dog" };
// Instantiate the reverse comparer.
IComparer^ revComparer = gcnew ReverseComparer();
// Display the values of the Array.
Console::WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array::Sort(words, 1, 3);
Console::WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array::Sort(words, 1, 3, revComparer);
Console::WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array::Sort(words);
Console::WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array::Sort(words, revComparer);
Console::WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
/*
This code produces the following output.
The Array initially contains the following values:
[0] : The
[1] : QUICK
[2] : BROWN
[3] : FOX
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the default comparer:
[0] : The
[1] : BROWN
[2] : FOX
[3] : QUICK
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the reverse case-insensitive comparer:
[0] : The
[1] : QUICK
[2] : FOX
[3] : BROWN
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting the entire Array using the default comparer:
[0] : BROWN
[1] : dog
[2] : FOX
[3] : jumps
[4] : lazy
[5] : over
[6] : QUICK
[7] : the
[8] : The
After sorting the entire Array using the reverse case-insensitive comparer:
[0] : the
[1] : The
[2] : QUICK
[3] : over
[4] : lazy
[5] : jumps
[6] : FOX
[7] : dog
[8] : BROWN
*/
using System;
using System.Collections;
public class ReverseComparer : IComparer
{
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
public int Compare(Object x, Object y)
{
return (new CaseInsensitiveComparer()).Compare(y, x );
}
}
public class Example
{
public static void Main()
{
// Create and initialize a new array.
String[] words = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" };
// Instantiate the reverse comparer.
IComparer revComparer = new ReverseComparer();
// Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3);
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer);
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array.Sort(words);
Console.WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer);
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
public static void DisplayValues(String[] arr)
{
for ( int i = arr.GetLowerBound(0); i <= arr.GetUpperBound(0);
i++ ) {
Console.WriteLine( " [{0}] : {1}", i, arr[i] );
}
Console.WriteLine();
}
}
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
open System
open System.Collections
type ReverseComparer() =
interface IComparer with
member _.Compare(x, y) =
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let displayValues (arr: string []) =
for i = 0 to arr.Length - 1 do
printfn $" [{i}] : {arr[i]}"
printfn ""
// Create and initialize a new array.
let words =
[| "The"; "QUICK"; "BROWN"; "FOX"; "jumps"
"over"; "the"; "lazy"; "dog" |]
// Instantiate the reverse comparer.
let revComparer = ReverseComparer()
// Display the values of the array.
printfn "The original order of elements in the array:"
displayValues words
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
printfn "After sorting elements 1-3 by using the default comparer:"
displayValues words
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
printfn "After sorting elements 1-3 by using the reverse case-insensitive comparer:"
displayValues words
// Sort the entire array using the default comparer.
Array.Sort words
printfn "After sorting the entire array by using the default comparer:"
displayValues words
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
printfn "After sorting the entire array using the reverse case-insensitive comparer:"
displayValues words
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
Imports System.Collections
Public Class ReverseComparer : Implements IComparer
' Call CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As Object, y As Object) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function
End Class
Public Module Example
Public Sub Main()
' Create and initialize a new array.
Dim words() As String = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" }
' Instantiate a new custom comparer.
Dim revComparer As New ReverseComparer()
' Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" )
DisplayValues(words)
' Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:")
DisplayValues(words)
' Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:")
DisplayValues(words)
' Sort the entire array using the default comparer.
Array.Sort(words)
Console.WriteLine( "After sorting the entire array by using the default comparer:")
DisplayValues(words)
' Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:")
DisplayValues(words)
End Sub
Public Sub DisplayValues(arr() As String)
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Console.WriteLine(" [{0}] : {1}", i, arr(i))
Next
Console.WriteLine()
End Sub
End Module
' The example displays the following output:
' The original order of elements in the array:
' [0] : The
' [1] : QUICK
' [2] : BROWN
' [3] : FOX
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the default comparer:
' [0] : The
' [1] : BROWN
' [2] : FOX
' [3] : QUICK
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the reverse case-insensitive comparer:
' [0] : The
' [1] : QUICK
' [2] : FOX
' [3] : BROWN
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting the entire array by using the default comparer:
' [0] : BROWN
' [1] : dog
' [2] : FOX
' [3] : jumps
' [4] : lazy
' [5] : over
' [6] : QUICK
' [7] : the
' [8] : The
'
' After sorting the entire array using the reverse case-insensitive comparer:
' [0] : the
' [1] : The
' [2] : QUICK
' [3] : over
' [4] : lazy
' [5] : jumps
' [6] : FOX
' [7] : dog
' [8] : BROWN
Remarks
Each element within the specified range of elements in array
must implement the IComparable interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
See also
Applies to
Sort(Array, Array, IComparer)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
public:
static void Sort(Array ^ keys, Array ^ items, System::Collections::IComparer ^ comparer);
public static void Sort (Array keys, Array items, System.Collections.IComparer comparer);
public static void Sort (Array keys, Array? items, System.Collections.IComparer? comparer);
static member Sort : Array * Array * System.Collections.IComparer -> unit
Public Shared Sub Sort (keys As Array, items As Array, comparer As IComparer)
Parameters
- items
- Array
The one-dimensional Array that contains the items that correspond to each of the keys in the keys
Array.
-or-
null
to sort only the keys
Array.
- comparer
- IComparer
The IComparer implementation to use when comparing elements.
-or-
null
to use the IComparable implementation of each element.
Exceptions
keys
is null
.
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in the keys
Array do not implement the IComparable interface.
Examples
The following example shows how to sort two associated arrays where the first array contains the keys and the second array contains the values. Sorts are done using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class myReverserClass: public IComparer
{
private:
// Calls CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare( Object^ x, Object^ y ) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare( y, x ));
}
};
void PrintKeysAndValues( array<String^>^myKeys, array<String^>^myValues )
{
for ( int i = 0; i < myKeys->Length; i++ )
{
Console::WriteLine( " {0, -10}: {1}", myKeys[ i ], myValues[ i ] );
}
Console::WriteLine();
}
int main()
{
// Creates and initializes a new Array and a new custom comparer.
array<String^>^myKeys = {"red","GREEN","YELLOW","BLUE","purple","black","orange"};
array<String^>^myValues = {"strawberries","PEARS","LIMES","BERRIES","grapes","olives","cantaloupe"};
IComparer^ myComparer = gcnew myReverserClass;
// Displays the values of the Array.
Console::WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array::Sort( myKeys, myValues, 1, 3 );
Console::WriteLine( "After sorting a section of the Array using the default comparer:" );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, 1, 3, myComparer );
Console::WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array::Sort( myKeys, myValues );
Console::WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, myComparer );
Console::WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
using System;
using System.Collections;
public class SamplesArray {
public class myReverserClass : IComparer {
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
int IComparer.Compare( Object x, Object y ) {
return( (new CaseInsensitiveComparer()).Compare( y, x ) );
}
}
public static void Main() {
// Creates and initializes a new Array and a new custom comparer.
String[] myKeys = { "red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange" };
String[] myValues = { "strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe" };
IComparer myComparer = new myReverserClass();
// Displays the values of the Array.
Console.WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array.Sort( myKeys, myValues, 1, 3 );
Console.WriteLine( "After sorting a section of the Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, 1, 3, myComparer );
Console.WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array.Sort( myKeys, myValues );
Console.WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, myComparer );
Console.WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
public static void PrintKeysAndValues( String[] myKeys, String[] myValues ) {
for ( int i = 0; i < myKeys.Length; i++ ) {
Console.WriteLine( " {0,-10}: {1}", myKeys[i], myValues[i] );
}
Console.WriteLine();
}
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
open System
open System.Collections
type MyReverserClass() =
interface IComparer with
member _.Compare(x, y) =
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let printKeysAndValues (myKeys: string []) (myValues: string []) =
for i = 0 to myKeys.Length - 1 do
printfn $" {myKeys[i],-10}: {myValues[i]}"
printfn ""
// Creates and initializes a new Array and a new custom comparer.
let myKeys = [| "red"; "GREEN"; "YELLOW"; "BLUE"; "purple"; "black"; "orange" |]
let myValues = [| "strawberries"; "PEARS"; "LIMES"; "BERRIES"; "grapes"; "olives"; "cantaloupe" |]
let myComparer = MyReverserClass()
// Displays the values of the Array.
printfn "The Array initially contains the following values:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
printfn "After sorting a section of the Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
printfn "After sorting a section of the Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
printfn "After sorting the entire Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
printfn "After sorting the entire Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// This code produces the following output.
// The Array initially contains the following values:
// red : strawberries
// GREEN : PEARS
// YELLOW : LIMES
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the default comparer:
// red : strawberries
// BLUE : BERRIES
// GREEN : PEARS
// YELLOW : LIMES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the reverse case-insensitive comparer:
// red : strawberries
// YELLOW : LIMES
// GREEN : PEARS
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting the entire Array using the default comparer:
// black : olives
// BLUE : BERRIES
// GREEN : PEARS
// orange : cantaloupe
// purple : grapes
// red : strawberries
// YELLOW : LIMES
//
// After sorting the entire Array using the reverse case-insensitive comparer:
// YELLOW : LIMES
// red : strawberries
// purple : grapes
// orange : cantaloupe
// GREEN : PEARS
// BLUE : BERRIES
// black : olives
Imports System.Collections
Public Class SamplesArray
Public Class myReverserClass
Implements IComparer
' Calls CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As [Object], y As [Object]) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function 'IComparer.Compare
End Class
Public Shared Sub Main()
' Creates and initializes a new Array and a new custom comparer.
Dim myKeys As [String]() = {"red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange"}
Dim myValues As [String]() = {"strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe"}
Dim myComparer = New myReverserClass()
' Displays the values of the Array.
Console.WriteLine("The Array initially contains the following values:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
Console.WriteLine("After sorting a section of the Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
Console.WriteLine("After sorting a section of the Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
Console.WriteLine("After sorting the entire Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
Console.WriteLine("After sorting the entire Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
End Sub
Public Shared Sub PrintKeysAndValues(myKeys() As [String], myValues() As [String])
Dim i As Integer
For i = 0 To myKeys.Length - 1
Console.WriteLine(" {0,-10}: {1}", myKeys(i), myValues(i))
Next i
Console.WriteLine()
End Sub
End Class
'This code produces the following output.
'
'The Array initially contains the following values:
' red : strawberries
' GREEN : PEARS
' YELLOW : LIMES
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the default comparer:
' red : strawberries
' BLUE : BERRIES
' GREEN : PEARS
' YELLOW : LIMES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the reverse case-insensitive comparer:
' red : strawberries
' YELLOW : LIMES
' GREEN : PEARS
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting the entire Array using the default comparer:
' black : olives
' BLUE : BERRIES
' GREEN : PEARS
' orange : cantaloupe
' purple : grapes
' red : strawberries
' YELLOW : LIMES
'
'After sorting the entire Array using the reverse case-insensitive comparer:
' YELLOW : LIMES
' red : strawberries
' purple : grapes
' orange : cantaloupe
' GREEN : PEARS
' BLUE : BERRIES
' black : olives
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
If comparer
is null
, each key in the keys
Array must implement the IComparable interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
.NET includes predefined IComparer implementations listed in the following table.
Implementation | Description |
---|---|
System.Collections.CaseInsensitiveComparer | Compares any two objects, but performs a case-insensitive comparison of strings. |
Comparer.Default | Compares any two objects by using the sorting conventions of the current culture. |
Comparer.DefaultInvariant | Compares any two objects by using the sorting conventions of the invariant culture. |
Comparer<T>.Default | Compares two objects of type T by using the type's default sort order. |
You can also support custom comparisons by providing an instance of your own IComparer implementation to the comparer
parameter. The example does this by defining an IComparer implementation that reverses the default sort order and performs case-insensitive string comparison.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of keys
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort(Array, Array)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a pair of one-dimensional Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable implementation of each key.
public:
static void Sort(Array ^ keys, Array ^ items);
public static void Sort (Array keys, Array items);
public static void Sort (Array keys, Array? items);
static member Sort : Array * Array -> unit
Public Shared Sub Sort (keys As Array, items As Array)
Parameters
- items
- Array
The one-dimensional Array that contains the items that correspond to each of the keys in the keys
Array.
-or-
null
to sort only the keys
Array.
Exceptions
keys
is null
.
items
is not null
, and the length of keys
is greater than the length of items
.
One or more elements in the keys
Array do not implement the IComparable interface.
Examples
The following example shows how to sort two associated arrays where the first array contains the keys and the second array contains the values. Sorts are done using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class myReverserClass: public IComparer
{
private:
// Calls CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare( Object^ x, Object^ y ) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare( y, x ));
}
};
void PrintKeysAndValues( array<String^>^myKeys, array<String^>^myValues )
{
for ( int i = 0; i < myKeys->Length; i++ )
{
Console::WriteLine( " {0, -10}: {1}", myKeys[ i ], myValues[ i ] );
}
Console::WriteLine();
}
int main()
{
// Creates and initializes a new Array and a new custom comparer.
array<String^>^myKeys = {"red","GREEN","YELLOW","BLUE","purple","black","orange"};
array<String^>^myValues = {"strawberries","PEARS","LIMES","BERRIES","grapes","olives","cantaloupe"};
IComparer^ myComparer = gcnew myReverserClass;
// Displays the values of the Array.
Console::WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array::Sort( myKeys, myValues, 1, 3 );
Console::WriteLine( "After sorting a section of the Array using the default comparer:" );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, 1, 3, myComparer );
Console::WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array::Sort( myKeys, myValues );
Console::WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array::Sort( myKeys, myValues, myComparer );
Console::WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
using System;
using System.Collections;
public class SamplesArray {
public class myReverserClass : IComparer {
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
int IComparer.Compare( Object x, Object y ) {
return( (new CaseInsensitiveComparer()).Compare( y, x ) );
}
}
public static void Main() {
// Creates and initializes a new Array and a new custom comparer.
String[] myKeys = { "red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange" };
String[] myValues = { "strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe" };
IComparer myComparer = new myReverserClass();
// Displays the values of the Array.
Console.WriteLine( "The Array initially contains the following values:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the default comparer.
Array.Sort( myKeys, myValues, 1, 3 );
Console.WriteLine( "After sorting a section of the Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, 1, 3, myComparer );
Console.WriteLine( "After sorting a section of the Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the default comparer.
Array.Sort( myKeys, myValues );
Console.WriteLine( "After sorting the entire Array using the default comparer:" );
PrintKeysAndValues( myKeys, myValues );
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort( myKeys, myValues, myComparer );
Console.WriteLine( "After sorting the entire Array using the reverse case-insensitive comparer:" );
PrintKeysAndValues( myKeys, myValues );
}
public static void PrintKeysAndValues( String[] myKeys, String[] myValues ) {
for ( int i = 0; i < myKeys.Length; i++ ) {
Console.WriteLine( " {0,-10}: {1}", myKeys[i], myValues[i] );
}
Console.WriteLine();
}
}
/*
This code produces the following output.
The Array initially contains the following values:
red : strawberries
GREEN : PEARS
YELLOW : LIMES
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the default comparer:
red : strawberries
BLUE : BERRIES
GREEN : PEARS
YELLOW : LIMES
purple : grapes
black : olives
orange : cantaloupe
After sorting a section of the Array using the reverse case-insensitive comparer:
red : strawberries
YELLOW : LIMES
GREEN : PEARS
BLUE : BERRIES
purple : grapes
black : olives
orange : cantaloupe
After sorting the entire Array using the default comparer:
black : olives
BLUE : BERRIES
GREEN : PEARS
orange : cantaloupe
purple : grapes
red : strawberries
YELLOW : LIMES
After sorting the entire Array using the reverse case-insensitive comparer:
YELLOW : LIMES
red : strawberries
purple : grapes
orange : cantaloupe
GREEN : PEARS
BLUE : BERRIES
black : olives
*/
open System
open System.Collections
type MyReverserClass() =
interface IComparer with
member _.Compare(x, y) =
// Calls CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let printKeysAndValues (myKeys: string []) (myValues: string []) =
for i = 0 to myKeys.Length - 1 do
printfn $" {myKeys[i],-10}: {myValues[i]}"
printfn ""
// Creates and initializes a new Array and a new custom comparer.
let myKeys = [| "red"; "GREEN"; "YELLOW"; "BLUE"; "purple"; "black"; "orange" |]
let myValues = [| "strawberries"; "PEARS"; "LIMES"; "BERRIES"; "grapes"; "olives"; "cantaloupe" |]
let myComparer = MyReverserClass()
// Displays the values of the Array.
printfn "The Array initially contains the following values:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
printfn "After sorting a section of the Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
printfn "After sorting a section of the Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
printfn "After sorting the entire Array using the default comparer:"
printKeysAndValues myKeys myValues
// Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
printfn "After sorting the entire Array using the reverse case-insensitive comparer:"
printKeysAndValues myKeys myValues
// This code produces the following output.
// The Array initially contains the following values:
// red : strawberries
// GREEN : PEARS
// YELLOW : LIMES
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the default comparer:
// red : strawberries
// BLUE : BERRIES
// GREEN : PEARS
// YELLOW : LIMES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting a section of the Array using the reverse case-insensitive comparer:
// red : strawberries
// YELLOW : LIMES
// GREEN : PEARS
// BLUE : BERRIES
// purple : grapes
// black : olives
// orange : cantaloupe
//
// After sorting the entire Array using the default comparer:
// black : olives
// BLUE : BERRIES
// GREEN : PEARS
// orange : cantaloupe
// purple : grapes
// red : strawberries
// YELLOW : LIMES
//
// After sorting the entire Array using the reverse case-insensitive comparer:
// YELLOW : LIMES
// red : strawberries
// purple : grapes
// orange : cantaloupe
// GREEN : PEARS
// BLUE : BERRIES
// black : olives
Imports System.Collections
Public Class SamplesArray
Public Class myReverserClass
Implements IComparer
' Calls CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As [Object], y As [Object]) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function 'IComparer.Compare
End Class
Public Shared Sub Main()
' Creates and initializes a new Array and a new custom comparer.
Dim myKeys As [String]() = {"red", "GREEN", "YELLOW", "BLUE", "purple", "black", "orange"}
Dim myValues As [String]() = {"strawberries", "PEARS", "LIMES", "BERRIES", "grapes", "olives", "cantaloupe"}
Dim myComparer = New myReverserClass()
' Displays the values of the Array.
Console.WriteLine("The Array initially contains the following values:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the default comparer.
Array.Sort(myKeys, myValues, 1, 3)
Console.WriteLine("After sorting a section of the Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts a section of the Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, 1, 3, myComparer)
Console.WriteLine("After sorting a section of the Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the default comparer.
Array.Sort(myKeys, myValues)
Console.WriteLine("After sorting the entire Array using the default comparer:")
PrintKeysAndValues(myKeys, myValues)
' Sorts the entire Array using the reverse case-insensitive comparer.
Array.Sort(myKeys, myValues, myComparer)
Console.WriteLine("After sorting the entire Array using the reverse case-insensitive comparer:")
PrintKeysAndValues(myKeys, myValues)
End Sub
Public Shared Sub PrintKeysAndValues(myKeys() As [String], myValues() As [String])
Dim i As Integer
For i = 0 To myKeys.Length - 1
Console.WriteLine(" {0,-10}: {1}", myKeys(i), myValues(i))
Next i
Console.WriteLine()
End Sub
End Class
'This code produces the following output.
'
'The Array initially contains the following values:
' red : strawberries
' GREEN : PEARS
' YELLOW : LIMES
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the default comparer:
' red : strawberries
' BLUE : BERRIES
' GREEN : PEARS
' YELLOW : LIMES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting a section of the Array using the reverse case-insensitive comparer:
' red : strawberries
' YELLOW : LIMES
' GREEN : PEARS
' BLUE : BERRIES
' purple : grapes
' black : olives
' orange : cantaloupe
'
'After sorting the entire Array using the default comparer:
' black : olives
' BLUE : BERRIES
' GREEN : PEARS
' orange : cantaloupe
' purple : grapes
' red : strawberries
' YELLOW : LIMES
'
'After sorting the entire Array using the reverse case-insensitive comparer:
' YELLOW : LIMES
' red : strawberries
' purple : grapes
' orange : cantaloupe
' GREEN : PEARS
' BLUE : BERRIES
' black : olives
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
Each key in the keys
Array must implement the IComparable interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of keys
.
See also
Applies to
Sort(Array)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in an entire one-dimensional Array using the IComparable implementation of each element of the Array.
public:
static void Sort(Array ^ array);
public static void Sort (Array array);
static member Sort : Array -> unit
Public Shared Sub Sort (array As Array)
Parameters
Exceptions
array
is null
.
array
is multidimensional.
One or more elements in array
do not implement the IComparable interface.
Examples
The following code example shows how to sort the values in an Array using the default comparer and a custom comparer that reverses the sort order. Note that the result might vary depending on the current CultureInfo.
using namespace System;
using namespace System::Collections;
public ref class ReverseComparer : IComparer
{
public:
// Call CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare(Object^ x, Object^ y) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare(y, x));
}
};
void DisplayValues(array<String^>^ arr)
{
for (int i = arr->GetLowerBound(0); i <= arr->GetUpperBound(0); i++)
Console::WriteLine( " [{0}] : {1}", i, arr[ i ] );
Console::WriteLine();
}
int main()
{
// Create and initialize a new array. and a new custom comparer.
array<String^>^ words = { "The","QUICK","BROWN","FOX","jumps",
"over","the","lazy","dog" };
// Instantiate the reverse comparer.
IComparer^ revComparer = gcnew ReverseComparer();
// Display the values of the Array.
Console::WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array::Sort(words, 1, 3);
Console::WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array::Sort(words, 1, 3, revComparer);
Console::WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array::Sort(words);
Console::WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array::Sort(words, revComparer);
Console::WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
/*
This code produces the following output.
The Array initially contains the following values:
[0] : The
[1] : QUICK
[2] : BROWN
[3] : FOX
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the default comparer:
[0] : The
[1] : BROWN
[2] : FOX
[3] : QUICK
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the reverse case-insensitive comparer:
[0] : The
[1] : QUICK
[2] : FOX
[3] : BROWN
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting the entire Array using the default comparer:
[0] : BROWN
[1] : dog
[2] : FOX
[3] : jumps
[4] : lazy
[5] : over
[6] : QUICK
[7] : the
[8] : The
After sorting the entire Array using the reverse case-insensitive comparer:
[0] : the
[1] : The
[2] : QUICK
[3] : over
[4] : lazy
[5] : jumps
[6] : FOX
[7] : dog
[8] : BROWN
*/
using System;
using System.Collections;
public class ReverseComparer : IComparer
{
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
public int Compare(Object x, Object y)
{
return (new CaseInsensitiveComparer()).Compare(y, x );
}
}
public class Example
{
public static void Main()
{
// Create and initialize a new array.
String[] words = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" };
// Instantiate the reverse comparer.
IComparer revComparer = new ReverseComparer();
// Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3);
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer);
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array.Sort(words);
Console.WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer);
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
public static void DisplayValues(String[] arr)
{
for ( int i = arr.GetLowerBound(0); i <= arr.GetUpperBound(0);
i++ ) {
Console.WriteLine( " [{0}] : {1}", i, arr[i] );
}
Console.WriteLine();
}
}
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
open System
open System.Collections
type ReverseComparer() =
interface IComparer with
member _.Compare(x, y) =
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let displayValues (arr: string []) =
for i = 0 to arr.Length - 1 do
printfn $" [{i}] : {arr[i]}"
printfn ""
// Create and initialize a new array.
let words =
[| "The"; "QUICK"; "BROWN"; "FOX"; "jumps"
"over"; "the"; "lazy"; "dog" |]
// Instantiate the reverse comparer.
let revComparer = ReverseComparer()
// Display the values of the array.
printfn "The original order of elements in the array:"
displayValues words
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
printfn "After sorting elements 1-3 by using the default comparer:"
displayValues words
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
printfn "After sorting elements 1-3 by using the reverse case-insensitive comparer:"
displayValues words
// Sort the entire array using the default comparer.
Array.Sort words
printfn "After sorting the entire array by using the default comparer:"
displayValues words
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
printfn "After sorting the entire array using the reverse case-insensitive comparer:"
displayValues words
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
Imports System.Collections
Public Class ReverseComparer : Implements IComparer
' Call CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As Object, y As Object) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function
End Class
Public Module Example
Public Sub Main()
' Create and initialize a new array.
Dim words() As String = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" }
' Instantiate a new custom comparer.
Dim revComparer As New ReverseComparer()
' Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" )
DisplayValues(words)
' Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:")
DisplayValues(words)
' Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:")
DisplayValues(words)
' Sort the entire array using the default comparer.
Array.Sort(words)
Console.WriteLine( "After sorting the entire array by using the default comparer:")
DisplayValues(words)
' Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:")
DisplayValues(words)
End Sub
Public Sub DisplayValues(arr() As String)
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Console.WriteLine(" [{0}] : {1}", i, arr(i))
Next
Console.WriteLine()
End Sub
End Module
' The example displays the following output:
' The original order of elements in the array:
' [0] : The
' [1] : QUICK
' [2] : BROWN
' [3] : FOX
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the default comparer:
' [0] : The
' [1] : BROWN
' [2] : FOX
' [3] : QUICK
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the reverse case-insensitive comparer:
' [0] : The
' [1] : QUICK
' [2] : FOX
' [3] : BROWN
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting the entire array by using the default comparer:
' [0] : BROWN
' [1] : dog
' [2] : FOX
' [3] : jumps
' [4] : lazy
' [5] : over
' [6] : QUICK
' [7] : the
' [8] : The
'
' After sorting the entire array using the reverse case-insensitive comparer:
' [0] : the
' [1] : The
' [2] : QUICK
' [3] : over
' [4] : lazy
' [5] : jumps
' [6] : FOX
' [7] : dog
' [8] : BROWN
Remarks
Each element of array
must implement the IComparable interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
See also
Applies to
Sort(Array, IComparer)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
public:
static void Sort(Array ^ array, System::Collections::IComparer ^ comparer);
public static void Sort (Array array, System.Collections.IComparer comparer);
public static void Sort (Array array, System.Collections.IComparer? comparer);
static member Sort : Array * System.Collections.IComparer -> unit
Public Shared Sub Sort (array As Array, comparer As IComparer)
Parameters
- array
- Array
The one-dimensional array to sort.
- comparer
- IComparer
The implementation to use when comparing elements.
-or-
null
to use the IComparable implementation of each element.
Exceptions
array
is null
.
array
is multidimensional.
comparer
is null
, and one or more elements in array
do not implement the IComparable interface.
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
Examples
The following example sorts the values in a string array by using the default comparer. It also defines a custom IComparer implementation named ReverseComparer
that reverses an object's default sort order while performing a case-insensitive string comparison. Note that the output might vary depending on the current culture.
using namespace System;
using namespace System::Collections;
public ref class ReverseComparer : IComparer
{
public:
// Call CaseInsensitiveComparer::Compare with the parameters reversed.
virtual int Compare(Object^ x, Object^ y) = IComparer::Compare
{
return ((gcnew CaseInsensitiveComparer)->Compare(y, x));
}
};
void DisplayValues(array<String^>^ arr)
{
for (int i = arr->GetLowerBound(0); i <= arr->GetUpperBound(0); i++)
Console::WriteLine( " [{0}] : {1}", i, arr[ i ] );
Console::WriteLine();
}
int main()
{
// Create and initialize a new array. and a new custom comparer.
array<String^>^ words = { "The","QUICK","BROWN","FOX","jumps",
"over","the","lazy","dog" };
// Instantiate the reverse comparer.
IComparer^ revComparer = gcnew ReverseComparer();
// Display the values of the Array.
Console::WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array::Sort(words, 1, 3);
Console::WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array::Sort(words, 1, 3, revComparer);
Console::WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array::Sort(words);
Console::WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array::Sort(words, revComparer);
Console::WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
/*
This code produces the following output.
The Array initially contains the following values:
[0] : The
[1] : QUICK
[2] : BROWN
[3] : FOX
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the default comparer:
[0] : The
[1] : BROWN
[2] : FOX
[3] : QUICK
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting a section of the Array using the reverse case-insensitive comparer:
[0] : The
[1] : QUICK
[2] : FOX
[3] : BROWN
[4] : jumps
[5] : over
[6] : the
[7] : lazy
[8] : dog
After sorting the entire Array using the default comparer:
[0] : BROWN
[1] : dog
[2] : FOX
[3] : jumps
[4] : lazy
[5] : over
[6] : QUICK
[7] : the
[8] : The
After sorting the entire Array using the reverse case-insensitive comparer:
[0] : the
[1] : The
[2] : QUICK
[3] : over
[4] : lazy
[5] : jumps
[6] : FOX
[7] : dog
[8] : BROWN
*/
using System;
using System.Collections;
public class ReverseComparer : IComparer
{
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
public int Compare(Object x, Object y)
{
return (new CaseInsensitiveComparer()).Compare(y, x );
}
}
public class Example
{
public static void Main()
{
// Create and initialize a new array.
String[] words = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" };
// Instantiate the reverse comparer.
IComparer revComparer = new ReverseComparer();
// Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" );
DisplayValues(words);
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3);
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:");
DisplayValues(words);
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer);
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:");
DisplayValues(words);
// Sort the entire array using the default comparer.
Array.Sort(words);
Console.WriteLine( "After sorting the entire array by using the default comparer:");
DisplayValues(words);
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer);
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:");
DisplayValues(words);
}
public static void DisplayValues(String[] arr)
{
for ( int i = arr.GetLowerBound(0); i <= arr.GetUpperBound(0);
i++ ) {
Console.WriteLine( " [{0}] : {1}", i, arr[i] );
}
Console.WriteLine();
}
}
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
open System
open System.Collections
type ReverseComparer() =
interface IComparer with
member _.Compare(x, y) =
// Call CaseInsensitiveComparer.Compare with the parameters reversed.
CaseInsensitiveComparer().Compare(y, x)
let displayValues (arr: string []) =
for i = 0 to arr.Length - 1 do
printfn $" [{i}] : {arr[i]}"
printfn ""
// Create and initialize a new array.
let words =
[| "The"; "QUICK"; "BROWN"; "FOX"; "jumps"
"over"; "the"; "lazy"; "dog" |]
// Instantiate the reverse comparer.
let revComparer = ReverseComparer()
// Display the values of the array.
printfn "The original order of elements in the array:"
displayValues words
// Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
printfn "After sorting elements 1-3 by using the default comparer:"
displayValues words
// Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
printfn "After sorting elements 1-3 by using the reverse case-insensitive comparer:"
displayValues words
// Sort the entire array using the default comparer.
Array.Sort words
printfn "After sorting the entire array by using the default comparer:"
displayValues words
// Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
printfn "After sorting the entire array using the reverse case-insensitive comparer:"
displayValues words
// The example displays the following output:
// The original order of elements in the array:
// [0] : The
// [1] : QUICK
// [2] : BROWN
// [3] : FOX
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the default comparer:
// [0] : The
// [1] : BROWN
// [2] : FOX
// [3] : QUICK
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting elements 1-3 by using the reverse case-insensitive comparer:
// [0] : The
// [1] : QUICK
// [2] : FOX
// [3] : BROWN
// [4] : jumps
// [5] : over
// [6] : the
// [7] : lazy
// [8] : dog
//
// After sorting the entire array by using the default comparer:
// [0] : BROWN
// [1] : dog
// [2] : FOX
// [3] : jumps
// [4] : lazy
// [5] : over
// [6] : QUICK
// [7] : the
// [8] : The
//
// After sorting the entire array using the reverse case-insensitive comparer:
// [0] : the
// [1] : The
// [2] : QUICK
// [3] : over
// [4] : lazy
// [5] : jumps
// [6] : FOX
// [7] : dog
// [8] : BROWN
Imports System.Collections
Public Class ReverseComparer : Implements IComparer
' Call CaseInsensitiveComparer.Compare with the parameters reversed.
Function Compare(x As Object, y As Object) As Integer _
Implements IComparer.Compare
Return New CaseInsensitiveComparer().Compare(y, x)
End Function
End Class
Public Module Example
Public Sub Main()
' Create and initialize a new array.
Dim words() As String = { "The", "QUICK", "BROWN", "FOX", "jumps",
"over", "the", "lazy", "dog" }
' Instantiate a new custom comparer.
Dim revComparer As New ReverseComparer()
' Display the values of the array.
Console.WriteLine( "The original order of elements in the array:" )
DisplayValues(words)
' Sort a section of the array using the default comparer.
Array.Sort(words, 1, 3)
Console.WriteLine( "After sorting elements 1-3 by using the default comparer:")
DisplayValues(words)
' Sort a section of the array using the reverse case-insensitive comparer.
Array.Sort(words, 1, 3, revComparer)
Console.WriteLine( "After sorting elements 1-3 by using the reverse case-insensitive comparer:")
DisplayValues(words)
' Sort the entire array using the default comparer.
Array.Sort(words)
Console.WriteLine( "After sorting the entire array by using the default comparer:")
DisplayValues(words)
' Sort the entire array by using the reverse case-insensitive comparer.
Array.Sort(words, revComparer)
Console.WriteLine( "After sorting the entire array using the reverse case-insensitive comparer:")
DisplayValues(words)
End Sub
Public Sub DisplayValues(arr() As String)
For i As Integer = arr.GetLowerBound(0) To arr.GetUpperBound(0)
Console.WriteLine(" [{0}] : {1}", i, arr(i))
Next
Console.WriteLine()
End Sub
End Module
' The example displays the following output:
' The original order of elements in the array:
' [0] : The
' [1] : QUICK
' [2] : BROWN
' [3] : FOX
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the default comparer:
' [0] : The
' [1] : BROWN
' [2] : FOX
' [3] : QUICK
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting elements 1-3 by using the reverse case-insensitive comparer:
' [0] : The
' [1] : QUICK
' [2] : FOX
' [3] : BROWN
' [4] : jumps
' [5] : over
' [6] : the
' [7] : lazy
' [8] : dog
'
' After sorting the entire array by using the default comparer:
' [0] : BROWN
' [1] : dog
' [2] : FOX
' [3] : jumps
' [4] : lazy
' [5] : over
' [6] : QUICK
' [7] : the
' [8] : The
'
' After sorting the entire array using the reverse case-insensitive comparer:
' [0] : the
' [1] : The
' [2] : QUICK
' [3] : over
' [4] : lazy
' [5] : jumps
' [6] : FOX
' [7] : dog
' [8] : BROWN
Remarks
If comparer
is null
, each element of array
must implement the IComparable interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
.NET includes predefined IComparer implementations listed in the following table.
Implementation | Description |
---|---|
System.Collections.CaseInsensitiveComparer | Compares any two objects, but performs a case-insensitive comparison of strings. |
Comparer.Default | Compares any two objects by using the sorting conventions of the current culture. |
Comparer.DefaultInvariant | Compares any two objects by using the sorting conventions of the invariant culture. |
Comparer<T>.Default | Compares two objects of type T by using the type's default sort order. |
You can also support custom comparisons by providing an instance of your own IComparer implementation to the comparer
parameter. The example does this by defining a ReverseComparer
class that reverses the default sort order for instances of a type and performs case-insensitive string comparison.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort<T>(T[])
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in an entire Array using the IComparable<T> generic interface implementation of each element of the Array.
public:
generic <typename T>
static void Sort(cli::array <T> ^ array);
public static void Sort<T> (T[] array);
static member Sort : 'T[] -> unit
Public Shared Sub Sort(Of T) (array As T())
Type Parameters
- T
The type of the elements of the array.
Parameters
- array
- T[]
The one-dimensional, zero-based Array to sort.
Exceptions
array
is null
.
One or more elements in array
do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<T>(T[]) generic method overload and the BinarySearch<T>(T[], T) generic method overload. An array of strings is created, in no particular order.
The array is displayed, sorted, and displayed again.
Note
The calls to the Sort and BinarySearch generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first argument. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
The BinarySearch<T>(T[], T) generic method overload is then used to search for two strings, one that is not in the array and one that is. The array and the return value of the BinarySearch method are passed to the ShowWhere
generic method, which displays the index value if the string is found, and otherwise the elements the search string would fall between if it were in the array. The index is negative if the string is not n the array, so the ShowWhere
method takes the bitwise complement (the ~ operator in C# and Visual C++, Xor
-1 in Visual Basic) to obtain the index of the first element in the list that is larger than the search string.
using namespace System;
using namespace System::Collections::Generic;
generic<typename T> void ShowWhere(array<T>^ arr, int index)
{
if (index<0)
{
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
//
index = ~index;
Console::Write("Not found. Sorts between: ");
if (index == 0)
Console::Write("beginning of array and ");
else
Console::Write("{0} and ", arr[index-1]);
if (index == arr->Length)
Console::WriteLine("end of array.");
else
Console::WriteLine("{0}.", arr[index]);
}
else
{
Console::WriteLine("Found at index {0}.", index);
}
};
void main()
{
array<String^>^ dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Tyrannosaurus",
"Mamenchisaurus",
"Deinonychus",
"Edmontosaurus"};
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
Console::WriteLine("\nSort");
Array::Sort(dinosaurs);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
Console::WriteLine("\nBinarySearch for 'Coelophysis':");
int index = Array::BinarySearch(dinosaurs, "Coelophysis");
ShowWhere(dinosaurs, index);
Console::WriteLine("\nBinarySearch for 'Tyrannosaurus':");
index = Array::BinarySearch(dinosaurs, "Tyrannosaurus");
ShowWhere(dinosaurs, index);
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Tyrannosaurus
Mamenchisaurus
Deinonychus
Edmontosaurus
Sort
Amargasaurus
Deinonychus
Edmontosaurus
Mamenchisaurus
Pachycephalosaurus
Tyrannosaurus
BinarySearch for 'Coelophysis':
Not found. Sorts between: Amargasaurus and Deinonychus.
BinarySearch for 'Tyrannosaurus':
Found at index 5.
*/
using System;
using System.Collections.Generic;
public class Example
{
public static void Main()
{
string[] dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Tyrannosaurus",
"Mamenchisaurus",
"Deinonychus",
"Edmontosaurus"};
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
Console.WriteLine("\nSort");
Array.Sort(dinosaurs);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
Console.WriteLine("\nBinarySearch for 'Coelophysis':");
int index = Array.BinarySearch(dinosaurs, "Coelophysis");
ShowWhere(dinosaurs, index);
Console.WriteLine("\nBinarySearch for 'Tyrannosaurus':");
index = Array.BinarySearch(dinosaurs, "Tyrannosaurus");
ShowWhere(dinosaurs, index);
}
private static void ShowWhere<T>(T[] array, int index)
{
if (index<0)
{
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
//
index = ~index;
Console.Write("Not found. Sorts between: ");
if (index == 0)
Console.Write("beginning of array and ");
else
Console.Write("{0} and ", array[index-1]);
if (index == array.Length)
Console.WriteLine("end of array.");
else
Console.WriteLine("{0}.", array[index]);
}
else
{
Console.WriteLine("Found at index {0}.", index);
}
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Tyrannosaurus
Mamenchisaurus
Deinonychus
Edmontosaurus
Sort
Amargasaurus
Deinonychus
Edmontosaurus
Mamenchisaurus
Pachycephalosaurus
Tyrannosaurus
BinarySearch for 'Coelophysis':
Not found. Sorts between: Amargasaurus and Deinonychus.
BinarySearch for 'Tyrannosaurus':
Found at index 5.
*/
open System
let showWhere (array: 'a []) index =
if index < 0 then
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
let index = ~~~index
printf "Not found. Sorts between: "
if index = 0 then
printf "beginning of array and "
else
printf $"{array[index - 1]} and "
if index = array.Length then
printfn "end of array."
else
printfn $"{array[index]}."
else
printfn $"Found at index {index}."
let dinosaurs =
[| "Pachycephalosaurus"
"Amargasaurus"
"Tyrannosaurus"
"Mamenchisaurus"
"Deinonychus"
"Edmontosaurus" |]
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
printfn "\nSort"
Array.Sort dinosaurs
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
printfn "\nBinarySearch for 'Coelophysis':"
let index = Array.BinarySearch(dinosaurs, "Coelophysis")
showWhere dinosaurs index
printfn "\nBinarySearch for 'Tyrannosaurus':"
Array.BinarySearch(dinosaurs, "Tyrannosaurus")
|> showWhere dinosaurs
// This code example produces the following output:
//
// Pachycephalosaurus
// Amargasaurus
// Tyrannosaurus
// Mamenchisaurus
// Deinonychus
// Edmontosaurus
//
// Sort
//
// Amargasaurus
// Deinonychus
// Edmontosaurus
// Mamenchisaurus
// Pachycephalosaurus
// Tyrannosaurus
//
// BinarySearch for 'Coelophysis':
// Not found. Sorts between: Amargasaurus and Deinonychus.
//
// BinarySearch for 'Tyrannosaurus':
// Found at index 5.
Imports System.Collections.Generic
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Pachycephalosaurus", _
"Amargasaurus", _
"Tyrannosaurus", _
"Mamenchisaurus", _
"Deinonychus", _
"Edmontosaurus" }
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Console.WriteLine(vbLf & "Sort")
Array.Sort(dinosaurs)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Console.WriteLine(vbLf & _
"BinarySearch for 'Coelophysis':")
Dim index As Integer = _
Array.BinarySearch(dinosaurs, "Coelophysis")
ShowWhere(dinosaurs, index)
Console.WriteLine(vbLf & _
"BinarySearch for 'Tyrannosaurus':")
index = Array.BinarySearch(dinosaurs, "Tyrannosaurus")
ShowWhere(dinosaurs, index)
End Sub
Private Shared Sub ShowWhere(Of T) _
(ByVal array() As T, ByVal index As Integer)
If index < 0 Then
' If the index is negative, it represents the bitwise
' complement of the next larger element in the array.
'
index = index Xor -1
Console.Write("Not found. Sorts between: ")
If index = 0 Then
Console.Write("beginning of array and ")
Else
Console.Write("{0} and ", array(index - 1))
End If
If index = array.Length Then
Console.WriteLine("end of array.")
Else
Console.WriteLine("{0}.", array(index))
End If
Else
Console.WriteLine("Found at index {0}.", index)
End If
End Sub
End Class
' This code example produces the following output:
'
'Pachycephalosaurus
'Amargasaurus
'Tyrannosaurus
'Mamenchisaurus
'Deinonychus
'Edmontosaurus
'
'Sort
'
'Amargasaurus
'Deinonychus
'Edmontosaurus
'Mamenchisaurus
'Pachycephalosaurus
'Tyrannosaurus
'
'BinarySearch for 'Coelophysis':
'Not found. Sorts between: Amargasaurus and Deinonychus.
'
'BinarySearch for 'Tyrannosaurus':
'Found at index 5.
Remarks
Each element of array
must implement the IComparable<T> generic interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
See also
Applies to
Sort<T>(T[], IComparer<T>)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in an Array using the specified IComparer<T> generic interface.
public:
generic <typename T>
static void Sort(cli::array <T> ^ array, System::Collections::Generic::IComparer<T> ^ comparer);
public static void Sort<T> (T[] array, System.Collections.Generic.IComparer<T> comparer);
public static void Sort<T> (T[] array, System.Collections.Generic.IComparer<T>? comparer);
static member Sort : 'T[] * System.Collections.Generic.IComparer<'T> -> unit
Public Shared Sub Sort(Of T) (array As T(), comparer As IComparer(Of T))
Type Parameters
- T
The type of the elements of the array.
Parameters
- array
- T[]
The one-dimensional, zero-base Array to sort.
- comparer
- IComparer<T>
The IComparer<T> generic interface implementation to use when comparing elements, or null
to use the IComparable<T> generic interface implementation of each element.
Exceptions
array
is null
.
comparer
is null
, and one or more elements in array
do not implement the IComparable<T> generic interface.
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
Examples
The following code example demonstrates the Sort<T>(T[], IComparer<T>) generic method overload and the BinarySearch<T>(T[], T, IComparer<T>) generic method overload.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The array is displayed, sorted, and displayed again. Arrays must be sorted in order to use the BinarySearch method.
Note
The calls to the Sort<T>(T[], IComparer<T>) and BinarySearch<T>(T[], T, IComparer<T>) generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first argument. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
The BinarySearch<T>(T[], T, IComparer<T>) generic method overload is then used to search for two strings, one that is not in the array and one that is. The array and the return value of the BinarySearch<T>(T[], T, IComparer<T>) method are passed to the ShowWhere
generic method, which displays the index value if the string is found, and otherwise the elements the search string would fall between if it were in the array. The index is negative if the string is not n the array, so the ShowWhere
method takes the bitwise complement (the ~ operator in C# and Visual C++, Xor
-1 in Visual Basic) to obtain the index of the first element in the list that is larger than the search string.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
generic<typename T> void ShowWhere(array<T>^ arr, int index)
{
if (index<0)
{
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
//
index = ~index;
Console::Write("Not found. Sorts between: ");
if (index == 0)
Console::Write("beginning of array and ");
else
Console::Write("{0} and ", arr[index-1]);
if (index == arr->Length)
Console::WriteLine("end of array.");
else
Console::WriteLine("{0}.", arr[index]);
}
else
{
Console::WriteLine("Found at index {0}.", index);
}
};
void main()
{
array<String^>^ dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Tyrannosaurus",
"Mamenchisaurus",
"Deinonychus",
"Edmontosaurus"};
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort");
Array::Sort(dinosaurs, rc);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
Console::WriteLine("\nBinarySearch for 'Coelophysis':");
int index = Array::BinarySearch(dinosaurs, "Coelophysis", rc);
ShowWhere(dinosaurs, index);
Console::WriteLine("\nBinarySearch for 'Tyrannosaurus':");
index = Array::BinarySearch(dinosaurs, "Tyrannosaurus", rc);
ShowWhere(dinosaurs, index);
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Tyrannosaurus
Mamenchisaurus
Deinonychus
Edmontosaurus
Sort
Tyrannosaurus
Pachycephalosaurus
Mamenchisaurus
Edmontosaurus
Deinonychus
Amargasaurus
BinarySearch for 'Coelophysis':
Not found. Sorts between: Deinonychus and Amargasaurus.
BinarySearch for 'Tyrannosaurus':
Found at index 0.
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Tyrannosaurus",
"Mamenchisaurus",
"Deinonychus",
"Edmontosaurus"};
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort");
Array.Sort(dinosaurs, rc);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
Console.WriteLine("\nBinarySearch for 'Coelophysis':");
int index = Array.BinarySearch(dinosaurs, "Coelophysis", rc);
ShowWhere(dinosaurs, index);
Console.WriteLine("\nBinarySearch for 'Tyrannosaurus':");
index = Array.BinarySearch(dinosaurs, "Tyrannosaurus", rc);
ShowWhere(dinosaurs, index);
}
private static void ShowWhere<T>(T[] array, int index)
{
if (index<0)
{
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
//
index = ~index;
Console.Write("Not found. Sorts between: ");
if (index == 0)
Console.Write("beginning of array and ");
else
Console.Write("{0} and ", array[index-1]);
if (index == array.Length)
Console.WriteLine("end of array.");
else
Console.WriteLine("{0}.", array[index]);
}
else
{
Console.WriteLine("Found at index {0}.", index);
}
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Tyrannosaurus
Mamenchisaurus
Deinonychus
Edmontosaurus
Sort
Tyrannosaurus
Pachycephalosaurus
Mamenchisaurus
Edmontosaurus
Deinonychus
Amargasaurus
BinarySearch for 'Coelophysis':
Not found. Sorts between: Deinonychus and Amargasaurus.
BinarySearch for 'Tyrannosaurus':
Found at index 0.
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
// Compare y and x in reverse order.
y.CompareTo x
let showWhere (array: 'a []) index =
if index < 0 then
// If the index is negative, it represents the bitwise
// complement of the next larger element in the array.
let index = ~~~index
printf "Not found. Sorts between: "
if index = 0 then
printf "beginning of array and "
else
printf $"{array[index - 1]} and "
if index = array.Length then
printfn "end of array."
else
printfn $"{array[index]}."
else
printfn $"Found at index {index}."
let dinosaurs =
[| "Pachycephalosaurus"
"Amargasaurus"
"Tyrannosaurus"
"Mamenchisaurus"
"Deinonychus"
"Edmontosaurus" |]
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
let rc = ReverseComparer()
printfn "\nSort"
Array.Sort(dinosaurs, rc)
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
printfn "\nBinarySearch for 'Coelophysis':"
Array.BinarySearch(dinosaurs, "Coelophysis", rc)
|> showWhere dinosaurs
printfn "\nBinarySearch for 'Tyrannosaurus':"
Array.BinarySearch(dinosaurs, "Tyrannosaurus", rc)
|> showWhere dinosaurs
// This code example produces the following output:
// Pachycephalosaurus
// Amargasaurus
// Tyrannosaurus
// Mamenchisaurus
// Deinonychus
// Edmontosaurus
//
// Sort
//
// Tyrannosaurus
// Pachycephalosaurus
// Mamenchisaurus
// Edmontosaurus
// Deinonychus
// Amargasaurus
//
// BinarySearch for 'Coelophysis':
// Not found. Sorts between: Deinonychus and Amargasaurus.
//
// BinarySearch for 'Tyrannosaurus':
// Found at index 0.
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Pachycephalosaurus", _
"Amargasaurus", _
"Tyrannosaurus", _
"Mamenchisaurus", _
"Deinonychus", _
"Edmontosaurus" }
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & "Sort")
Array.Sort(dinosaurs, rc)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Console.WriteLine(vbLf & _
"BinarySearch for 'Coelophysis':")
Dim index As Integer = _
Array.BinarySearch(dinosaurs, "Coelophysis", rc)
ShowWhere(dinosaurs, index)
Console.WriteLine(vbLf & _
"BinarySearch for 'Tyrannosaurus':")
index = Array.BinarySearch(dinosaurs, "Tyrannosaurus", rc)
ShowWhere(dinosaurs, index)
End Sub
Private Shared Sub ShowWhere(Of T) _
(ByVal array() As T, ByVal index As Integer)
If index < 0 Then
' If the index is negative, it represents the bitwise
' complement of the next larger element in the array.
'
index = index Xor -1
Console.Write("Not found. Sorts between: ")
If index = 0 Then
Console.Write("beginning of array and ")
Else
Console.Write("{0} and ", array(index - 1))
End If
If index = array.Length Then
Console.WriteLine("end of array.")
Else
Console.WriteLine("{0}.", array(index))
End If
Else
Console.WriteLine("Found at index {0}.", index)
End If
End Sub
End Class
' This code example produces the following output:
'
'Pachycephalosaurus
'Amargasaurus
'Tyrannosaurus
'Mamenchisaurus
'Deinonychus
'Edmontosaurus
'
'Sort
'
'Tyrannosaurus
'Pachycephalosaurus
'Mamenchisaurus
'Edmontosaurus
'Deinonychus
'Amargasaurus
'
'BinarySearch for 'Coelophysis':
'Not found. Sorts between: Deinonychus and Amargasaurus.
'
'BinarySearch for 'Tyrannosaurus':
'Found at index 0.
Remarks
If comparer
is null
, each element of array
must implement the IComparable<T> generic interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort<T>(T[], Comparison<T>)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in an Array using the specified Comparison<T>.
public:
generic <typename T>
static void Sort(cli::array <T> ^ array, Comparison<T> ^ comparison);
public static void Sort<T> (T[] array, Comparison<T> comparison);
static member Sort : 'T[] * Comparison<'T> -> unit
Public Shared Sub Sort(Of T) (array As T(), comparison As Comparison(Of T))
Type Parameters
- T
The type of the elements of the array.
Parameters
- array
- T[]
The one-dimensional, zero-based Array to sort.
- comparison
- Comparison<T>
The Comparison<T> to use when comparing elements.
Exceptions
The implementation of comparison
caused an error during the sort. For example, comparison
might not return 0 when comparing an item with itself.
Examples
The following code example demonstrates the Sort(Comparison<T>) method overload.
The code example defines an alternative comparison method for strings, named CompareDinosByLength
. This method works as follows: First, the comparands are tested fornull
, and a null reference is treated as less than a non-null. Second, the string lengths are compared, and the longer string is deemed to be greater. Third, if the lengths are equal, ordinary string comparison is used.
A array of strings is created and populated with four strings, in no particular order. The list also includes an empty string and a null reference. The list is displayed, sorted using a Comparison<T> generic delegate representing the CompareDinosByLength
method, and displayed again.
using namespace System;
using namespace System::Collections::Generic;
int CompareDinosByLength(String^ x, String^ y)
{
if (x == nullptr)
{
if (y == nullptr)
{
// If x is null and y is null, they're
// equal.
return 0;
}
else
{
// If x is null and y is not null, y
// is greater.
return -1;
}
}
else
{
// If x is not null...
//
if (y == nullptr)
// ...and y is null, x is greater.
{
return 1;
}
else
{
// ...and y is not null, compare the
// lengths of the two strings.
//
int retval = x->Length.CompareTo(y->Length);
if (retval != 0)
{
// If the strings are not of equal length,
// the longer string is greater.
//
return retval;
}
else
{
// If the strings are of equal length,
// sort them with ordinary string comparison.
//
return x->CompareTo(y);
}
}
}
};
void Display(array<String^>^ arr)
{
Console::WriteLine();
for each(String^ s in arr)
{
if (s == nullptr)
Console::WriteLine("(null)");
else
Console::WriteLine("\"{0}\"", s);
}
};
void main()
{
array<String^>^ dinosaurs = {
"Pachycephalosaurus",
"Amargasaurus",
"",
nullptr,
"Mamenchisaurus",
"Deinonychus" };
Display(dinosaurs);
Console::WriteLine("\nSort with generic Comparison<String^> delegate:");
Array::Sort(dinosaurs,
gcnew Comparison<String^>(CompareDinosByLength));
Display(dinosaurs);
}
/* This code example produces the following output:
"Pachycephalosaurus"
"Amargasaurus"
""
(null)
"Mamenchisaurus"
"Deinonychus"
Sort with generic Comparison<String^> delegate:
(null)
""
"Deinonychus"
"Amargasaurus"
"Mamenchisaurus"
"Pachycephalosaurus"
*/
using System;
using System.Collections.Generic;
public class Example
{
private static int CompareDinosByLength(string x, string y)
{
if (x == null)
{
if (y == null)
{
// If x is null and y is null, they're
// equal.
return 0;
}
else
{
// If x is null and y is not null, y
// is greater.
return -1;
}
}
else
{
// If x is not null...
//
if (y == null)
// ...and y is null, x is greater.
{
return 1;
}
else
{
// ...and y is not null, compare the
// lengths of the two strings.
//
int retval = x.Length.CompareTo(y.Length);
if (retval != 0)
{
// If the strings are not of equal length,
// the longer string is greater.
//
return retval;
}
else
{
// If the strings are of equal length,
// sort them with ordinary string comparison.
//
return x.CompareTo(y);
}
}
}
}
public static void Main()
{
string[] dinosaurs = {
"Pachycephalosaurus",
"Amargasaurus",
"",
null,
"Mamenchisaurus",
"Deinonychus" };
Display(dinosaurs);
Console.WriteLine("\nSort with generic Comparison<string> delegate:");
Array.Sort(dinosaurs, CompareDinosByLength);
Display(dinosaurs);
}
private static void Display(string[] arr)
{
Console.WriteLine();
foreach( string s in arr )
{
if (s == null)
Console.WriteLine("(null)");
else
Console.WriteLine("\"{0}\"", s);
}
}
}
/* This code example produces the following output:
"Pachycephalosaurus"
"Amargasaurus"
""
(null)
"Mamenchisaurus"
"Deinonychus"
Sort with generic Comparison<string> delegate:
(null)
""
"Deinonychus"
"Amargasaurus"
"Mamenchisaurus"
"Pachycephalosaurus"
*/
open System
let compareDinosByLength (x: string) (y: string) =
match x with
// If x is null and y is null, they're equal.
| null when isNull y -> 0
// If x is null and y is not null, y is greater.
| null -> -1
// If x is not null and y is null, x is greater.
| _ when isNull y -> 1
// If x is not null and y is not null, compare the lengths of the two strings.
| _ ->
let retval = x.Length.CompareTo y.Length
if retval <> 0 then
// If the strings are not of equal length, the longer string is greater.
retval
else
// If the strings are of equal length, sort them with ordinary string comparison.
x.CompareTo y
let display arr =
printfn ""
for s in arr do
if isNull s then
printfn "(null)"
else
printfn $"\"{s}\""
let dinosaurs =
[| "Pachycephalosaurus"
"Amargasaurus"
""
null
"Mamenchisaurus"
"Deinonychus" |]
display dinosaurs
printfn "\nSort with generic Comparison<string> delegate:"
Array.Sort(dinosaurs, compareDinosByLength)
display dinosaurs
// This code example produces the following output:
//
// "Pachycephalosaurus"
// "Amargasaurus"
// ""
// (null)
// "Mamenchisaurus"
// "Deinonychus"
//
// Sort with generic Comparison<string> delegate:
//
// (null)
// ""
// "Deinonychus"
// "Amargasaurus"
// "Mamenchisaurus"
// "Pachycephalosaurus"
//
Imports System.Collections.Generic
Public Class Example
Private Shared Function CompareDinosByLength( _
ByVal x As String, ByVal y As String) As Integer
If x Is Nothing Then
If y Is Nothing Then
' If x is Nothing and y is Nothing, they're
' equal.
Return 0
Else
' If x is Nothing and y is not Nothing, y
' is greater.
Return -1
End If
Else
' If x is not Nothing...
'
If y Is Nothing Then
' ...and y is Nothing, x is greater.
Return 1
Else
' ...and y is not Nothing, compare the
' lengths of the two strings.
'
Dim retval As Integer = _
x.Length.CompareTo(y.Length)
If retval <> 0 Then
' If the strings are not of equal length,
' the longer string is greater.
'
Return retval
Else
' If the strings are of equal length,
' sort them with ordinary string comparison.
'
Return x.CompareTo(y)
End If
End If
End If
End Function
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Pachycephalosaurus", _
"Amargasaurus", _
"", _
Nothing, _
"Mamenchisaurus", _
"Deinonychus" }
Display(dinosaurs)
Console.WriteLine(vbLf & "Sort with generic Comparison(Of String) delegate:")
Array.Sort(dinosaurs, AddressOf CompareDinosByLength)
Display(dinosaurs)
End Sub
Private Shared Sub Display(ByVal arr() As String)
Console.WriteLine()
For Each s As String In arr
If s Is Nothing Then
Console.WriteLine("(Nothing)")
Else
Console.WriteLine("""{0}""", s)
End If
Next
End Sub
End Class
' This code example produces the following output:
'
'"Pachycephalosaurus"
'"Amargasaurus"
'""
'(Nothing)
'"Mamenchisaurus"
'"Deinonychus"
'
'Sort with generic Comparison(Of String) delegate:
'
'(Nothing)
'""
'"Deinonychus"
'"Amargasaurus"
'"Mamenchisaurus"
'"Pachycephalosaurus"
Remarks
If the sort is not successfully completed, the results are undefined.
This method uses introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 6 elements.
See also
Applies to
Sort<T>(T[], Int32, Int32)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in a range of elements in an Array using the IComparable<T> generic interface implementation of each element of the Array.
public:
generic <typename T>
static void Sort(cli::array <T> ^ array, int index, int length);
public static void Sort<T> (T[] array, int index, int length);
static member Sort : 'T[] * int * int -> unit
Public Shared Sub Sort(Of T) (array As T(), index As Integer, length As Integer)
Type Parameters
- T
The type of the elements of the array.
Parameters
- array
- T[]
The one-dimensional, zero-based Array to sort.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
Exceptions
array
is null
.
index
is less than the lower bound of array
.
-or-
length
is less than zero.
index
and length
do not specify a valid range in array
.
One or more elements in array
do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<T>(T[], Int32, Int32) generic method overload and the Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overload for sorting a range in an array.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names, consisting of three herbivores followed by three carnivores (tyrannosaurids, to be precise). The Sort<T>(T[], Int32, Int32) generic method overload is used to sort the last three elements of the array, which is then displayed. The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overload is used with ReverseCompare
to sort the last three elements in reverse order. The thoroughly confused dinosaurs are displayed again.
Note
The calls to the Sort<T>(T[], IComparer<T>) and BinarySearch<T>(T[], T, IComparer<T>) generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first argument. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Mamenchisaurus",
"Tarbosaurus",
"Tyrannosaurus",
"Albertasaurus"};
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
Console::WriteLine("\nSort(dinosaurs, 3, 3)");
Array::Sort(dinosaurs, 3, 3);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, 3, 3, rc)");
Array::Sort(dinosaurs, 3, 3, rc);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tarbosaurus
Tyrannosaurus
Albertasaurus
Sort(dinosaurs, 3, 3)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Albertasaurus
Tarbosaurus
Tyrannosaurus
Sort(dinosaurs, 3, 3, rc)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tyrannosaurus
Tarbosaurus
Albertasaurus
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Mamenchisaurus",
"Tarbosaurus",
"Tyrannosaurus",
"Albertasaurus"};
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
Console.WriteLine("\nSort(dinosaurs, 3, 3)");
Array.Sort(dinosaurs, 3, 3);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, 3, 3, rc)");
Array.Sort(dinosaurs, 3, 3, rc);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tarbosaurus
Tyrannosaurus
Albertasaurus
Sort(dinosaurs, 3, 3)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Albertasaurus
Tarbosaurus
Tyrannosaurus
Sort(dinosaurs, 3, 3, rc)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tyrannosaurus
Tarbosaurus
Albertasaurus
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Pachycephalosaurus"
"Amargasaurus"
"Mamenchisaurus"
"Tarbosaurus"
"Tyrannosaurus"
"Albertasaurus" |]
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
printfn "\nSort(dinosaurs, 3, 3)"
Array.Sort(dinosaurs, 3, 3)
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, 3, 3, rc)"
Array.Sort(dinosaurs, 3, 3, rc)
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
// This code example produces the following output:
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Tarbosaurus
// Tyrannosaurus
// Albertasaurus
//
// Sort(dinosaurs, 3, 3)
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Albertasaurus
// Tarbosaurus
// Tyrannosaurus
//
// Sort(dinosaurs, 3, 3, rc)
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Tyrannosaurus
// Tarbosaurus
// Albertasaurus
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Pachycephalosaurus", _
"Amargasaurus", _
"Mamenchisaurus", _
"Tarbosaurus", _
"Tyrannosaurus", _
"Albertasaurus" }
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Console.WriteLine(vbLf & "Sort(dinosaurs, 3, 3)")
Array.Sort(dinosaurs, 3, 3)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & "Sort(dinosaurs, 3, 3, rc)")
Array.Sort(dinosaurs, 3, 3, rc)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
End Sub
End Class
' This code example produces the following output:
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Tarbosaurus
'Tyrannosaurus
'Albertasaurus
'
'Sort(dinosaurs, 3, 3)
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Albertasaurus
'Tarbosaurus
'Tyrannosaurus
'
'Sort(dinosaurs, 3, 3, rc)
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Tyrannosaurus
'Tarbosaurus
'Albertasaurus
Remarks
Each element within the specified range of elements in array
must implement the IComparable<T> generic interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
See also
Applies to
Sort<T>(T[], Int32, Int32, IComparer<T>)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts the elements in a range of elements in an Array using the specified IComparer<T> generic interface.
public:
generic <typename T>
static void Sort(cli::array <T> ^ array, int index, int length, System::Collections::Generic::IComparer<T> ^ comparer);
public static void Sort<T> (T[] array, int index, int length, System.Collections.Generic.IComparer<T> comparer);
public static void Sort<T> (T[] array, int index, int length, System.Collections.Generic.IComparer<T>? comparer);
static member Sort : 'T[] * int * int * System.Collections.Generic.IComparer<'T> -> unit
Public Shared Sub Sort(Of T) (array As T(), index As Integer, length As Integer, comparer As IComparer(Of T))
Type Parameters
- T
The type of the elements of the array.
Parameters
- array
- T[]
The one-dimensional, zero-based Array to sort.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
- comparer
- IComparer<T>
The IComparer<T> generic interface implementation to use when comparing elements, or null
to use the IComparable<T> generic interface implementation of each element.
Exceptions
array
is null
.
index
is less than the lower bound of array
.
-or-
length
is less than zero.
index
and length
do not specify a valid range in array
.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in array
do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<T>(T[], Int32, Int32) generic method overload and the Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overload for sorting a range in an array.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names, consisting of three herbivores followed by three carnivores (tyrannosaurids, to be precise). The Sort<T>(T[], Int32, Int32) generic method overload is used to sort the last three elements of the array, which is then displayed. The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overload is used with ReverseCompare
to sort the last three elements in reverse order. The thoroughly confused dinosaurs are displayed again.
Note
The calls to the Sort<T>(T[], IComparer<T>) and BinarySearch<T>(T[], T, IComparer<T>) generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first argument. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Mamenchisaurus",
"Tarbosaurus",
"Tyrannosaurus",
"Albertasaurus"};
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
Console::WriteLine("\nSort(dinosaurs, 3, 3)");
Array::Sort(dinosaurs, 3, 3);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, 3, 3, rc)");
Array::Sort(dinosaurs, 3, 3, rc);
Console::WriteLine();
for each(String^ dinosaur in dinosaurs)
{
Console::WriteLine(dinosaur);
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tarbosaurus
Tyrannosaurus
Albertasaurus
Sort(dinosaurs, 3, 3)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Albertasaurus
Tarbosaurus
Tyrannosaurus
Sort(dinosaurs, 3, 3, rc)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tyrannosaurus
Tarbosaurus
Albertasaurus
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {"Pachycephalosaurus",
"Amargasaurus",
"Mamenchisaurus",
"Tarbosaurus",
"Tyrannosaurus",
"Albertasaurus"};
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
Console.WriteLine("\nSort(dinosaurs, 3, 3)");
Array.Sort(dinosaurs, 3, 3);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, 3, 3, rc)");
Array.Sort(dinosaurs, 3, 3, rc);
Console.WriteLine();
foreach( string dinosaur in dinosaurs )
{
Console.WriteLine(dinosaur);
}
}
}
/* This code example produces the following output:
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tarbosaurus
Tyrannosaurus
Albertasaurus
Sort(dinosaurs, 3, 3)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Albertasaurus
Tarbosaurus
Tyrannosaurus
Sort(dinosaurs, 3, 3, rc)
Pachycephalosaurus
Amargasaurus
Mamenchisaurus
Tyrannosaurus
Tarbosaurus
Albertasaurus
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Pachycephalosaurus"
"Amargasaurus"
"Mamenchisaurus"
"Tarbosaurus"
"Tyrannosaurus"
"Albertasaurus" |]
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
printfn "\nSort(dinosaurs, 3, 3)"
Array.Sort(dinosaurs, 3, 3)
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, 3, 3, rc)"
Array.Sort(dinosaurs, 3, 3, rc)
printfn ""
for dino in dinosaurs do
printfn $"{dino}"
// This code example produces the following output:
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Tarbosaurus
// Tyrannosaurus
// Albertasaurus
//
// Sort(dinosaurs, 3, 3)
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Albertasaurus
// Tarbosaurus
// Tyrannosaurus
//
// Sort(dinosaurs, 3, 3, rc)
//
// Pachycephalosaurus
// Amargasaurus
// Mamenchisaurus
// Tyrannosaurus
// Tarbosaurus
// Albertasaurus
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Pachycephalosaurus", _
"Amargasaurus", _
"Mamenchisaurus", _
"Tarbosaurus", _
"Tyrannosaurus", _
"Albertasaurus" }
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Console.WriteLine(vbLf & "Sort(dinosaurs, 3, 3)")
Array.Sort(dinosaurs, 3, 3)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & "Sort(dinosaurs, 3, 3, rc)")
Array.Sort(dinosaurs, 3, 3, rc)
Console.WriteLine()
For Each dinosaur As String In dinosaurs
Console.WriteLine(dinosaur)
Next
End Sub
End Class
' This code example produces the following output:
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Tarbosaurus
'Tyrannosaurus
'Albertasaurus
'
'Sort(dinosaurs, 3, 3)
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Albertasaurus
'Tarbosaurus
'Tyrannosaurus
'
'Sort(dinosaurs, 3, 3, rc)
'
'Pachycephalosaurus
'Amargasaurus
'Mamenchisaurus
'Tyrannosaurus
'Tarbosaurus
'Albertasaurus
Remarks
If comparer
is null
, each element within the specified range of elements in array
must implement the IComparable<T> generic interface to be capable of comparisons with every other element in array
.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a range of elements in a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer<T> generic interface.
public:
generic <typename TKey, typename TValue>
static void Sort(cli::array <TKey> ^ keys, cli::array <TValue> ^ items, int index, int length, System::Collections::Generic::IComparer<TKey> ^ comparer);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items, int index, int length, System.Collections.Generic.IComparer<TKey> comparer);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[]? items, int index, int length, System.Collections.Generic.IComparer<TKey>? comparer);
static member Sort : 'Key[] * 'Value[] * int * int * System.Collections.Generic.IComparer<'Key> -> unit
Public Shared Sub Sort(Of TKey, TValue) (keys As TKey(), items As TValue(), index As Integer, length As Integer, comparer As IComparer(Of TKey))
Type Parameters
- TKey
The type of the elements of the key array.
- TValue
The type of the elements of the items array.
Parameters
- keys
- TKey[]
The one-dimensional, zero-based Array that contains the keys to sort.
- items
- TValue[]
The one-dimensional, zero-based Array that contains the items that correspond to the keys in keys
, or null
to sort only keys
.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
- comparer
- IComparer<TKey>
The IComparer<T> generic interface implementation to use when comparing elements, or null
to use the IComparable<T> generic interface implementation of each element.
Exceptions
keys
is null
.
index
is less than the lower bound of keys
.
-or-
length
is less than zero.
items
is not null
, and the lower bound of keys
does not match the lower bound of items
.
-or-
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
index
and length
do not specify a valid range in the keys
Array.
-or-
items
is not null
, and index
and length
do not specify a valid range in the items
Array.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in the keys
Array do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<TKey,TValue>(TKey[], TValue[]), Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>), Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32), and Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overloads, for sorting pairs of arrays that represent keys and values.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names (the keys) and an array of integers representing the maximum length of each dinosaur in meters (the values). The arrays are then sorted and displayed several times:
The Sort<TKey,TValue>(TKey[], TValue[]) overload is used to sort both arrays in order of the dinosaur names in the first array.
The Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>) overload and an instance of
ReverseCompare
are used to reverse the sort order of the paired arrays.The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32) overload is used to sort the last three elements of both arrays.
The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) overload is used to sort the last three elements of both arrays in reverse order.
Note
The calls to the generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first two arguments. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
array<int>^ dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array::Sort(dinosaurs, dinosaurSizes);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array::Sort(dinosaurs, dinosaurSizes, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
int[] dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array.Sort(dinosaurs, dinosaurSizes);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array.Sort(dinosaurs, dinosaurSizes, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Seismosaurus"
"Chasmosaurus"
"Coelophysis"
"Mamenchisaurus"
"Caudipteryx"
"Cetiosaurus" |]
let dinosaurSizes = [| 40; 5; 3; 22; 1; 18 |]
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes)"
Array.Sort(dinosaurs, dinosaurSizes)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, dinosaurSizes, rc)"
Array.Sort(dinosaurs, dinosaurSizes, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
// This code example produces the following output:
//
// Seismosaurus: up to 40 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
//
// Sort(dinosaurs, dinosaurSizes)
//
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Seismosaurus: up to 40 meters long.
//
// Sort(dinosaurs, dinosaurSizes, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Seismosaurus", _
"Chasmosaurus", _
"Coelophysis", _
"Mamenchisaurus", _
"Caudipteryx", _
"Cetiosaurus" }
Dim dinosaurSizes() As Integer = { 40, 5, 3, 22, 1, 18 }
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes)")
Array.Sort(dinosaurs, dinosaurSizes)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, rc)")
Array.Sort(dinosaurs, dinosaurSizes, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3, rc)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
End Sub
End Class
' This code example produces the following output:
'
'Seismosaurus: up to 40 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'
'Sort(dinosaurs, dinosaurSizes)
'
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Seismosaurus: up to 40 meters long.
'
'Sort(dinosaurs, dinosaurSizes, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
If comparer
is null
, each key within the specified range of elements in the keys
Array must implement the IComparable<T> generic interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort<TKey,TValue>(TKey[], TValue[])
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable<T> generic interface implementation of each key.
public:
generic <typename TKey, typename TValue>
static void Sort(cli::array <TKey> ^ keys, cli::array <TValue> ^ items);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[]? items);
static member Sort : 'Key[] * 'Value[] -> unit
Public Shared Sub Sort(Of TKey, TValue) (keys As TKey(), items As TValue())
Type Parameters
- TKey
The type of the elements of the key array.
- TValue
The type of the elements of the items array.
Parameters
- keys
- TKey[]
The one-dimensional, zero-based Array that contains the keys to sort.
- items
- TValue[]
The one-dimensional, zero-based Array that contains the items that correspond to the keys in keys
, or null
to sort only keys
.
Exceptions
keys
is null
.
items
is not null
, and the lower bound of keys
does not match the lower bound of items
.
-or-
items
is not null
, and the length of keys
is greater than the length of items
.
One or more elements in the keys
Array do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<TKey,TValue>(TKey[], TValue[]), Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>), Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32), and Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overloads, for sorting pairs of arrays that represent keys and values.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names (the keys) and an array of integers representing the maximum length of each dinosaur in meters (the values). The arrays are then sorted and displayed several times:
The Sort<TKey,TValue>(TKey[], TValue[]) overload is used to sort both arrays in order of the dinosaur names in the first array.
The Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>) overload and an instance of
ReverseCompare
are used to reverse the sort order of the paired arrays.The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32) overload is used to sort the last three elements of both arrays.
The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) overload is used to sort the last three elements of both arrays in reverse order.
Note
The calls to the generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first two arguments. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
array<int>^ dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array::Sort(dinosaurs, dinosaurSizes);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array::Sort(dinosaurs, dinosaurSizes, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
int[] dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array.Sort(dinosaurs, dinosaurSizes);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array.Sort(dinosaurs, dinosaurSizes, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Seismosaurus"
"Chasmosaurus"
"Coelophysis"
"Mamenchisaurus"
"Caudipteryx"
"Cetiosaurus" |]
let dinosaurSizes = [| 40; 5; 3; 22; 1; 18 |]
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes)"
Array.Sort(dinosaurs, dinosaurSizes)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, dinosaurSizes, rc)"
Array.Sort(dinosaurs, dinosaurSizes, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
// This code example produces the following output:
//
// Seismosaurus: up to 40 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
//
// Sort(dinosaurs, dinosaurSizes)
//
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Seismosaurus: up to 40 meters long.
//
// Sort(dinosaurs, dinosaurSizes, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Seismosaurus", _
"Chasmosaurus", _
"Coelophysis", _
"Mamenchisaurus", _
"Caudipteryx", _
"Cetiosaurus" }
Dim dinosaurSizes() As Integer = { 40, 5, 3, 22, 1, 18 }
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes)")
Array.Sort(dinosaurs, dinosaurSizes)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, rc)")
Array.Sort(dinosaurs, dinosaurSizes, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3, rc)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
End Sub
End Class
' This code example produces the following output:
'
'Seismosaurus: up to 40 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'
'Sort(dinosaurs, dinosaurSizes)
'
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Seismosaurus: up to 40 meters long.
'
'Sort(dinosaurs, dinosaurSizes, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
Each key in the keys
Array must implement the IComparable<T> generic interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
See also
- IComparable<T>
- BinarySearch
- IDictionary<TKey,TValue>
- Performing Culture-Insensitive String Operations in Arrays
Applies to
Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the specified IComparer<T> generic interface.
public:
generic <typename TKey, typename TValue>
static void Sort(cli::array <TKey> ^ keys, cli::array <TValue> ^ items, System::Collections::Generic::IComparer<TKey> ^ comparer);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items, System.Collections.Generic.IComparer<TKey> comparer);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[]? items, System.Collections.Generic.IComparer<TKey>? comparer);
static member Sort : 'Key[] * 'Value[] * System.Collections.Generic.IComparer<'Key> -> unit
Public Shared Sub Sort(Of TKey, TValue) (keys As TKey(), items As TValue(), comparer As IComparer(Of TKey))
Type Parameters
- TKey
The type of the elements of the key array.
- TValue
The type of the elements of the items array.
Parameters
- keys
- TKey[]
The one-dimensional, zero-based Array that contains the keys to sort.
- items
- TValue[]
The one-dimensional, zero-based Array that contains the items that correspond to the keys in keys
, or null
to sort only keys
.
- comparer
- IComparer<TKey>
The IComparer<T> generic interface implementation to use when comparing elements, or null
to use the IComparable<T> generic interface implementation of each element.
Exceptions
keys
is null
.
items
is not null
, and the lower bound of keys
does not match the lower bound of items
.
-or-
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
The implementation of comparer
caused an error during the sort. For example, comparer
might not return 0 when comparing an item with itself.
comparer
is null
, and one or more elements in the keys
Array do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<TKey,TValue>(TKey[], TValue[]), [], Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>), Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32), and Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overloads, for sorting pairs of arrays that represent keys and values.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names (the keys) and an array of integers representing the maximum length of each dinosaur in meters (the values). The arrays are then sorted and displayed several times:
The Sort<TKey,TValue>(TKey[], TValue[]) overload is used to sort both arrays in order of the dinosaur names in the first array.
The Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>) overload and an instance of
ReverseCompare
are used to reverse the sort order of the paired arrays.The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32) overload is used to sort the last three elements of both arrays.
The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) overload is used to sort the last three elements of both arrays in reverse order.
Note
The calls to the generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first two arguments. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
array<int>^ dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array::Sort(dinosaurs, dinosaurSizes);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array::Sort(dinosaurs, dinosaurSizes, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
int[] dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array.Sort(dinosaurs, dinosaurSizes);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array.Sort(dinosaurs, dinosaurSizes, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Seismosaurus"
"Chasmosaurus"
"Coelophysis"
"Mamenchisaurus"
"Caudipteryx"
"Cetiosaurus" |]
let dinosaurSizes = [| 40; 5; 3; 22; 1; 18 |]
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes)"
Array.Sort(dinosaurs, dinosaurSizes)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, dinosaurSizes, rc)"
Array.Sort(dinosaurs, dinosaurSizes, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
// This code example produces the following output:
//
// Seismosaurus: up to 40 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
//
// Sort(dinosaurs, dinosaurSizes)
//
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Seismosaurus: up to 40 meters long.
//
// Sort(dinosaurs, dinosaurSizes, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Seismosaurus", _
"Chasmosaurus", _
"Coelophysis", _
"Mamenchisaurus", _
"Caudipteryx", _
"Cetiosaurus" }
Dim dinosaurSizes() As Integer = { 40, 5, 3, 22, 1, 18 }
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes)")
Array.Sort(dinosaurs, dinosaurSizes)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, rc)")
Array.Sort(dinosaurs, dinosaurSizes, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3, rc)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
End Sub
End Class
' This code example produces the following output:
'
'Seismosaurus: up to 40 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'
'Sort(dinosaurs, dinosaurSizes)
'
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Seismosaurus: up to 40 meters long.
'
'Sort(dinosaurs, dinosaurSizes, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
If comparer
is null
, each key in the keys
Array must implement the IComparable<T> generic interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is the Length of array
.
Notes to Callers
.NET Framework 4 and earlier versions used only the Quicksort algorithm. Quicksort identifies invalid comparers in some situations in which the sorting operation throws an IndexOutOfRangeException exception, and throws an ArgumentException exception to the caller. Starting with .NET Framework 4.5, it is possible that sorting operations that previously threw ArgumentException will not throw an exception, because the insertion sort and heapsort algorithms do not detect an invalid comparer. For the most part, this applies to arrays with less than or equal to 16 elements.
See also
Applies to
Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32)
- Source:
- Array.cs
- Source:
- Array.cs
- Source:
- Array.cs
Sorts a range of elements in a pair of Array objects (one contains the keys and the other contains the corresponding items) based on the keys in the first Array using the IComparable<T> generic interface implementation of each key.
public:
generic <typename TKey, typename TValue>
static void Sort(cli::array <TKey> ^ keys, cli::array <TValue> ^ items, int index, int length);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items, int index, int length);
public static void Sort<TKey,TValue> (TKey[] keys, TValue[]? items, int index, int length);
static member Sort : 'Key[] * 'Value[] * int * int -> unit
Public Shared Sub Sort(Of TKey, TValue) (keys As TKey(), items As TValue(), index As Integer, length As Integer)
Type Parameters
- TKey
The type of the elements of the key array.
- TValue
The type of the elements of the items array.
Parameters
- keys
- TKey[]
The one-dimensional, zero-based Array that contains the keys to sort.
- items
- TValue[]
The one-dimensional, zero-based Array that contains the items that correspond to the keys in keys
, or null
to sort only keys
.
- index
- Int32
The starting index of the range to sort.
- length
- Int32
The number of elements in the range to sort.
Exceptions
keys
is null
.
index
is less than the lower bound of keys
.
-or-
length
is less than zero.
items
is not null
, and the lower bound of keys
does not match the lower bound of items
.
-or-
items
is not null
, and the length of keys
is greater than the length of items
.
-or-
index
and length
do not specify a valid range in the keys
Array.
-or-
items
is not null
, and index
and length
do not specify a valid range in the items
Array.
One or more elements in the keys
Array do not implement the IComparable<T> generic interface.
Examples
The following code example demonstrates the Sort<TKey,TValue>(TKey[], TValue[]), Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>), Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32), and Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) generic method overloads, for sorting pairs of arrays that represent keys and values.
The code example defines an alternative comparer for strings, named ReverseCompare
, which implements the IComparer<string>
(IComparer(Of String)
in Visual Basic, IComparer<String^>
in Visual C++) generic interface. The comparer calls the CompareTo(String) method, reversing the order of the comparands so that the strings sort high-to-low instead of low-to-high.
The code example creates and displays an array of dinosaur names (the keys) and an array of integers representing the maximum length of each dinosaur in meters (the values). The arrays are then sorted and displayed several times:
The Sort<TKey,TValue>(TKey[], TValue[]) overload is used to sort both arrays in order of the dinosaur names in the first array.
The Sort<TKey,TValue>(TKey[], TValue[], IComparer<TKey>) overload and an instance of
ReverseCompare
are used to reverse the sort order of the paired arrays.The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32) overload is used to sort the last three elements of both arrays.
The Sort<TKey,TValue>(TKey[], TValue[], Int32, Int32, IComparer<TKey>) overload is used to sort the last three elements of both arrays in reverse order.
Note
The calls to the generic methods do not look any different from calls to their nongeneric counterparts, because Visual Basic, C#, and C++ infer the type of the generic type parameter from the type of the first two arguments. If you use the Ildasm.exe (IL Disassembler) to examine the Microsoft intermediate language (MSIL), you can see that the generic methods are being called.
using namespace System;
using namespace System::Collections::Generic;
public ref class ReverseComparer: IComparer<String^>
{
public:
virtual int Compare(String^ x, String^ y)
{
// Compare y and x in reverse order.
return y->CompareTo(x);
}
};
void main()
{
array<String^>^ dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
array<int>^ dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array::Sort(dinosaurs, dinosaurSizes);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer^ rc = gcnew ReverseComparer();
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array::Sort(dinosaurs, dinosaurSizes, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console::WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array::Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console::WriteLine();
for (int i = 0; i < dinosaurs->Length; i++)
{
Console::WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
using System;
using System.Collections.Generic;
public class ReverseComparer: IComparer<string>
{
public int Compare(string x, string y)
{
// Compare y and x in reverse order.
return y.CompareTo(x);
}
}
public class Example
{
public static void Main()
{
string[] dinosaurs = {
"Seismosaurus",
"Chasmosaurus",
"Coelophysis",
"Mamenchisaurus",
"Caudipteryx",
"Cetiosaurus" };
int[] dinosaurSizes = { 40, 5, 3, 22, 1, 18 };
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes)");
Array.Sort(dinosaurs, dinosaurSizes);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
ReverseComparer rc = new ReverseComparer();
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, rc)");
Array.Sort(dinosaurs, dinosaurSizes, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
Console.WriteLine("\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)");
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc);
Console.WriteLine();
for (int i = 0; i < dinosaurs.Length; i++)
{
Console.WriteLine("{0}: up to {1} meters long.",
dinosaurs[i], dinosaurSizes[i]);
}
}
}
/* This code example produces the following output:
Seismosaurus: up to 40 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Sort(dinosaurs, dinosaurSizes)
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Coelophysis: up to 3 meters long.
Mamenchisaurus: up to 22 meters long.
Seismosaurus: up to 40 meters long.
Sort(dinosaurs, dinosaurSizes, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Caudipteryx: up to 1 meters long.
Cetiosaurus: up to 18 meters long.
Chasmosaurus: up to 5 meters long.
Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Seismosaurus: up to 40 meters long.
Mamenchisaurus: up to 22 meters long.
Coelophysis: up to 3 meters long.
Chasmosaurus: up to 5 meters long.
Cetiosaurus: up to 18 meters long.
Caudipteryx: up to 1 meters long.
*/
open System
open System.Collections.Generic
type ReverseComparer() =
interface IComparer<string> with
member _.Compare(x, y) =
y.CompareTo x
let dinosaurs =
[| "Seismosaurus"
"Chasmosaurus"
"Coelophysis"
"Mamenchisaurus"
"Caudipteryx"
"Cetiosaurus" |]
let dinosaurSizes = [| 40; 5; 3; 22; 1; 18 |]
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes)"
Array.Sort(dinosaurs, dinosaurSizes)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
let rc = ReverseComparer()
printfn "\nSort(dinosaurs, dinosaurSizes, rc)"
Array.Sort(dinosaurs, dinosaurSizes, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
printfn "\nSort(dinosaurs, dinosaurSizes, 3, 3, rc)"
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
printfn ""
for i = 0 to dinosaurs.Length - 1 do
printfn $"{dinosaurs[i]}: up to {dinosaurSizes[i]} meters long."
// This code example produces the following output:
//
// Seismosaurus: up to 40 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
//
// Sort(dinosaurs, dinosaurSizes)
//
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
// Coelophysis: up to 3 meters long.
// Mamenchisaurus: up to 22 meters long.
// Seismosaurus: up to 40 meters long.
//
// Sort(dinosaurs, dinosaurSizes, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Caudipteryx: up to 1 meters long.
// Cetiosaurus: up to 18 meters long.
// Chasmosaurus: up to 5 meters long.
//
// Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
//
// Seismosaurus: up to 40 meters long.
// Mamenchisaurus: up to 22 meters long.
// Coelophysis: up to 3 meters long.
// Chasmosaurus: up to 5 meters long.
// Cetiosaurus: up to 18 meters long.
// Caudipteryx: up to 1 meters long.
Imports System.Collections.Generic
Public Class ReverseComparer
Implements IComparer(Of String)
Public Function Compare(ByVal x As String, _
ByVal y As String) As Integer _
Implements IComparer(Of String).Compare
' Compare y and x in reverse order.
Return y.CompareTo(x)
End Function
End Class
Public Class Example
Public Shared Sub Main()
Dim dinosaurs() As String = { _
"Seismosaurus", _
"Chasmosaurus", _
"Coelophysis", _
"Mamenchisaurus", _
"Caudipteryx", _
"Cetiosaurus" }
Dim dinosaurSizes() As Integer = { 40, 5, 3, 22, 1, 18 }
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes)")
Array.Sort(dinosaurs, dinosaurSizes)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Dim rc As New ReverseComparer()
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, rc)")
Array.Sort(dinosaurs, dinosaurSizes, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
Console.WriteLine(vbLf & _
"Sort(dinosaurs, dinosaurSizes, 3, 3, rc)")
Array.Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
Console.WriteLine()
For i As Integer = 0 To dinosaurs.Length - 1
Console.WriteLine("{0}: up to {1} meters long.", _
dinosaurs(i), dinosaurSizes(i))
Next
End Sub
End Class
' This code example produces the following output:
'
'Seismosaurus: up to 40 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'
'Sort(dinosaurs, dinosaurSizes)
'
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'Coelophysis: up to 3 meters long.
'Mamenchisaurus: up to 22 meters long.
'Seismosaurus: up to 40 meters long.
'
'Sort(dinosaurs, dinosaurSizes, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Caudipteryx: up to 1 meters long.
'Cetiosaurus: up to 18 meters long.
'Chasmosaurus: up to 5 meters long.
'
'Sort(dinosaurs, dinosaurSizes, 3, 3, rc)
'
'Seismosaurus: up to 40 meters long.
'Mamenchisaurus: up to 22 meters long.
'Coelophysis: up to 3 meters long.
'Chasmosaurus: up to 5 meters long.
'Cetiosaurus: up to 18 meters long.
'Caudipteryx: up to 1 meters long.
Remarks
Each key in the keys
Array has a corresponding item in the items
Array. When a key is repositioned during the sorting, the corresponding item in the items
Array is similarly repositioned. Therefore, the items
Array is sorted according to the arrangement of the corresponding keys in the keys
Array.
Each key within the specified range of elements in the keys
Array must implement the IComparable<T> generic interface to be capable of comparisons with every other key.
You can sort if there are more items than keys, but the items that have no corresponding keys will not be sorted. You cannot sort if there are more keys than items; doing this throws an ArgumentException.
If the sort is not successfully completed, the results are undefined.
This method uses the introspective sort (introsort) algorithm as follows:
If the partition size is less than or equal to 16 elements, it uses an insertion sort algorithm.
If the number of partitions exceeds 2 * LogN, where N is the range of the input array, it uses a Heapsort algorithm.
Otherwise, it uses a Quicksort algorithm.
This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
This method is an O(n
log n
) operation, where n
is length
.