Generate a Databricks personal access token, then :
import requests
import json
import os
def main(req):
# Set your Databricks instance URL and token
databricks_instance = 'https://<your-databricks-instance>'
databricks_token = os.getenv('DATABRICKS_TOKEN')
# Define the endpoint for the Databricks REST API
endpoint = f'{databricks_instance}/api/2.0/jobs/run-now'
# Define the job parameters
job_id = '<your-job-id>'
headers = {
'Authorization': f'Bearer {databricks_token}',
'Content-Type': 'application/json'
}
payload = {
'job_id': job_id,
'notebook_params': {
'param1': 'value1'
}
}
# Make the request to the Databricks API
response = requests.post(endpoint, headers=headers, data=json.dumps(payload))
# Check the response status
if response.status_code == 200:
return response.json()
else:
return f'Error: {response.status_code}, {response.text}'
Another way also, you can connect to Databricks SQL Analytics endpoints using JDBC or ODBC drivers and you need to Install pyodbc or other JDBC/ODBC libraries in your Azure Function.
import pyodbc
def main(req):
server = 'your-databricks-server'
database = 'your-database'
username = 'your-username'
password = 'your-password'
driver = '{ODBC Driver 17 for SQL Server}'
connection_string = f'DRIVER={driver};SERVER={server};PORT=1433;DATABASE={database};UID={username};PWD={password}'
with pyodbc.connect(connection_string) as conn:
cursor = conn.cursor()
cursor.execute("SELECT * FROM your_table")
rows = cursor.fetchall()
return [dict(zip([column[0] for column in cursor.description], row)) for row in rows]
You can integrate Azure Functions with Azure Event Hub or ADF to trigger data movement or processing tasks in Databricks. For instance, an Azure Function can listen to events in Event Hub and trigger corresponding Databricks jobs.
If you prefer command-line tools, you can invoke Databricks CLI commands from your Azure Function using subprocess :
import subprocess
def main(req):
databricks_token = os.getenv('DATABRICKS_TOKEN')
databricks_instance = 'https://<your-databricks-instance>'
command = [
'databricks', '--token', databricks_token,
'--host', databricks_instance,
'jobs', 'run-now', '--job-id', '<your-job-id>'
]
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode == 0:
return result.stdout
else:
return f'Error: {result.stderr}'
Each of these methods has its own use cases and benefits. The best approach depends on your specific requirements, such as the nature of the data processing, security considerations, and how you want to manage and scale your Azure Functions.