Table copy operations on Azure Cosmos DB for Apache Cassandra from Spark
APPLIES TO: Cassandra
This article describes how to copy data between tables in Azure Cosmos DB for Apache Cassandra from Spark. The commands described in this article can also be used to copy data from Apache Cassandra tables to Azure Cosmos DB for Apache Cassandra tables.
API for Cassandra configuration
Set below spark configuration in your notebook cluster. It's one time activity.
//Connection-related
spark.cassandra.connection.host YOUR_ACCOUNT_NAME.cassandra.cosmosdb.azure.com
spark.cassandra.connection.port 10350
spark.cassandra.connection.ssl.enabled true
spark.cassandra.auth.username YOUR_ACCOUNT_NAME
spark.cassandra.auth.password YOUR_ACCOUNT_KEY
// if using Spark 2.x
// spark.cassandra.connection.factory com.microsoft.azure.cosmosdb.cassandra.CosmosDbConnectionFactory
//Throughput-related...adjust as needed
spark.cassandra.output.batch.size.rows 1
// spark.cassandra.connection.connections_per_executor_max 10 // Spark 2.x
spark.cassandra.connection.remoteConnectionsPerExecutor 10 // Spark 3.x
spark.cassandra.output.concurrent.writes 1000
spark.cassandra.concurrent.reads 512
spark.cassandra.output.batch.grouping.buffer.size 1000
spark.cassandra.connection.keep_alive_ms 600000000
Note
If you are using Spark 3.x, you do not need to install the Azure Cosmos DB helper and connection factory. You should also use remoteConnectionsPerExecutor
instead of connections_per_executor_max
for the Spark 3 connector (see above).
Warning
The Spark 3 samples shown in this article have been tested with Spark version 3.2.1 and the corresponding Cassandra Spark Connector com.datastax.spark:spark-cassandra-connector-assembly_2.12:3.2.0. Later versions of Spark and/or the Cassandra connector may not function as expected.
Insert sample data
import org.apache.spark.sql.cassandra._
//Spark connector
import com.datastax.spark.connector._
import com.datastax.spark.connector.cql.CassandraConnector
//if using Spark 2.x, CosmosDB library for multiple retry
//import com.microsoft.azure.cosmosdb.cassandra
val booksDF = Seq(
("b00001", "Arthur Conan Doyle", "A study in scarlet", 1887,11.33),
("b00023", "Arthur Conan Doyle", "A sign of four", 1890,22.45),
("b01001", "Arthur Conan Doyle", "The adventures of Sherlock Holmes", 1892,19.83),
("b00501", "Arthur Conan Doyle", "The memoirs of Sherlock Holmes", 1893,14.22),
("b00300", "Arthur Conan Doyle", "The hounds of Baskerville", 1901,12.25)
).toDF("book_id", "book_author", "book_name", "book_pub_year","book_price")
booksDF.write
.mode("append")
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks", "output.consistency.level" -> "ALL", "ttl" -> "10000000"))
.save()
Copy data between tables
Copy data between tables (destination table exists)
//1) Create destination table
val cdbConnector = CassandraConnector(sc)
cdbConnector.withSessionDo(session => session.execute("CREATE TABLE IF NOT EXISTS books_ks.books_copy(book_id TEXT PRIMARY KEY,book_author TEXT, book_name TEXT,book_pub_year INT,book_price FLOAT) WITH cosmosdb_provisioned_throughput=4000;"))
//2) Read from one table
val readBooksDF = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//3) Save to destination table
readBooksDF.write
.cassandraFormat("books_copy", "books_ks", "")
.save()
//4) Validate copy to destination table
sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books_copy", "keyspace" -> "books_ks"))
.load
.show
Copy data between tables (destination table doesn't exist)
import com.datastax.spark.connector._
//1) Read from source table
val readBooksDF = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books", "keyspace" -> "books_ks"))
.load
//2) Creates an empty table in the keyspace based off of source table
val newBooksDF = readBooksDF
newBooksDF.createCassandraTable(
"books_ks",
"books_new",
partitionKeyColumns = Some(Seq("book_id"))
//clusteringKeyColumns = Some(Seq("some column"))
)
//3) Saves the data from the source table into the newly created table
newBooksDF.write
.cassandraFormat("books_new", "books_ks","")
.mode(SaveMode.Append)
.save()
//4) Validate table creation and data load
sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "books_new", "keyspace" -> "books_ks"))
.load
.show
The output-
+-------+------------------+--------------------+----------+-------------+
|book_id| book_author| book_name|book_price|book_pub_year|
+-------+------------------+--------------------+----------+-------------+
| b00300|Arthur Conan Doyle|The hounds of Bas...| 12.25| 1901|
| b00001|Arthur Conan Doyle| A study in scarlet| 11.33| 1887|
| b00023|Arthur Conan Doyle| A sign of four| 22.45| 1890|
| b00501|Arthur Conan Doyle|The memoirs of Sh...| 14.22| 1893|
| b01001|Arthur Conan Doyle|The adventures of...| 19.83| 1892|
+-------+------------------+--------------------+----------+-------------+
import com.datastax.spark.connector._
readBooksDF: org.apache.spark.sql.DataFrame = [book_id: string, book_author: string ... 3 more fields]
newBooksDF: org.apache.spark.sql.DataFrame = [book_id: string, book_author: string ... 3 more fields]
Next steps
- Get started with creating a API for Cassandra account, database, and a table by using a Java application.
- Load sample data to the API for Cassandra table by using a Java application.
- Query data from the API for Cassandra account by using a Java application.