Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Context providers run around each invocation to add context before execution and process data after execution.
Built-in pattern
The regular pattern is to configure providers through context_providers=[...] when creating an agent.
ChatHistoryProvider and AIContextProvider are the built-in extension points for short-term history and long-term/context enrichment.
For Python, InMemoryHistoryProvider is the built-in history provider used for local conversational memory.
from agent_framework import InMemoryHistoryProvider
from agent_framework.openai import OpenAIChatClient
agent = OpenAIChatClient().as_agent(
name="MemoryBot",
instructions="You are a helpful assistant.",
context_providers=[InMemoryHistoryProvider("memory", load_messages=True)],
)
session = agent.create_session()
await agent.run("Remember that I prefer vegetarian food.", session=session)
RawAgent may auto-add InMemoryHistoryProvider("memory") in specific cases, but add it explicitly when you want deterministic local memory behavior.
Custom context provider
Use custom context providers when you need to inject dynamic instructions/messages or extract state after runs.
from typing import Any
from agent_framework import AgentSession, BaseContextProvider, SessionContext
class UserPreferenceProvider(BaseContextProvider):
def __init__(self) -> None:
super().__init__("user-preferences")
async def before_run(
self,
*,
agent: Any,
session: AgentSession,
context: SessionContext,
state: dict[str, Any],
) -> None:
if favorite := state.get("favorite_food"):
context.extend_instructions(self.source_id, f"User's favorite food is {favorite}.")
async def after_run(
self,
*,
agent: Any,
session: AgentSession,
context: SessionContext,
state: dict[str, Any],
) -> None:
for message in context.input_messages:
text = (message.text or "") if hasattr(message, "text") else ""
if isinstance(text, str) and "favorite food is" in text.lower():
state["favorite_food"] = text.split("favorite food is", 1)[1].strip().rstrip(".")
Custom history provider
History providers are context providers specialized for loading/storing messages.
from collections.abc import Sequence
from typing import Any
from agent_framework import BaseHistoryProvider, Message
class DatabaseHistoryProvider(BaseHistoryProvider):
def __init__(self, db: Any) -> None:
super().__init__("db-history", load_messages=True)
self._db = db
async def get_messages(
self,
session_id: str | None,
*,
state: dict[str, Any] | None = None,
**kwargs: Any,
) -> list[Message]:
key = (state or {}).get(self.source_id, {}).get("history_key", session_id or "default")
rows = await self._db.load_messages(key)
return [Message.from_dict(row) for row in rows]
async def save_messages(
self,
session_id: str | None,
messages: Sequence[Message],
*,
state: dict[str, Any] | None = None,
**kwargs: Any,
) -> None:
if not messages:
return
if state is not None:
key = state.setdefault(self.source_id, {}).setdefault("history_key", session_id or "default")
else:
key = session_id or "default"
await self._db.save_messages(key, [m.to_dict() for m in messages])
Important
In Python, you can configure multiple history providers, but only one should use load_messages=True.
Use additional providers for diagnostics/evals with load_messages=False and store_context_messages=True so they capture context from other providers alongside input/output.
Example pattern:
primary = DatabaseHistoryProvider(db)
audit = InMemoryHistoryProvider("audit", load_messages=False, store_context_messages=True)
agent = OpenAIChatClient().as_agent(context_providers=[primary, audit])