To be able to use this image:
mcr.microsoft.com/azureml/curated/acpt-pytorch-2.2-cuda12.1
I specified exactly these dependencies in my yaml file:
dependencies:
- python=3.10
- pytorch=2.2
And then torch.cuda.is_available()
is TRUE.
This browser is no longer supported.
Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.
Update: solved, solution in answers
I'm using a VM type Standard_NC6s_v3 (GPU - 1 x NVIDIA Tesla V100) which is compatible with this image:
image="mcr.microsoft.com/azureml/curated/acpt-pytorch-1.13-cuda11.7
nvidia-smi gives me:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.256.02 Driver Version: 470.256.02 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla V100-PCIE... On | 00000001:00:00.0 Off | 0 |
| N/A 29C P0 36W / 250W | 751MiB / 16160MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
and
torch.cuda.is_available()
is TRUE. So far so good.
However, I was wondering, if I'd like to use this image for python 3.10 and more recent versions of pytorch and cuda:
image="mcr.microsoft.com/azureml/curated/acpt-pytorch-2.2-cuda12.1
which VM types would be compatible? If I use this image on my Standard_NC6s_v3 then
torch.cuda.is_available()
is FALSE.
To be able to use this image:
mcr.microsoft.com/azureml/curated/acpt-pytorch-2.2-cuda12.1
I specified exactly these dependencies in my yaml file:
dependencies:
- python=3.10
- pytorch=2.2
And then torch.cuda.is_available()
is TRUE.