Azure ML.Studio CUDNN_STATUS_EXECUTION_FAILED on free Compute Instance and envs/azureml_py38_PT_TF

Jan Kanka 5 Reputation points
2023-03-31T13:32:57.22+00:00

Hi. While using free compute instance in ml.studio wit envs/azureml/_py38__PT_TF (preinstalled environment), my noteboog training fails on cuDNN error: CUDNN_STATUS_EXECUTION_FAILED.

What I understand, the error emerges from pytorch library and up to my knowledge it leads to incompatibility of pytorch and cudnn.

I can run it on my home PC with RTX3060 without any troubles.

How could I fix this?

thank you, Jan

The error prompt is:

[INFO] training the network...
Epoch 1/10
/mnt/batch/tasks/shared/LS_root/mounts/clusters/escafree/code/Users/jan.kanka/ds_handle.py:175: UserWarning: Using padding='same' with even kernel lengths and odd dilation may require a zero-padded copy of the input be created (Triggered internally at  /opt/conda/conda-bld/pytorch_1656352463056/work/aten/src/ATen/native/Convolution.cpp:882.)
  outimg = F.conv2d(img[None].float(), kernel.float(), padding="same", groups=3)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Input In [5], in <cell line: 1>()
----> 1 escanet.train()

File /mnt/batch/tasks/shared/LS_root/mounts/clusters/escafree/code/Users/jan.kanka/classnet.py:310, in TrainModel.train(self)
    308 x, y = http://x.to(self.device), http://y.to(self.device)
    309 # perform a forward pass and calcualte the training lss
--> 310 pred = self.model(x)
    311 loss = self.lossBCE(
    312     torch.squeeze(pred), torch.squeeze(y.float())
    313 )  # + diceloss(torch.squeeze(pred), torch.squeeze(y))jaccard_loss(torch.squeeze(pred), torch.squeeze(y)) + FocLossFn(torch.squeeze(pred), torch.squeeze(y)) #+ lossBCE(torch.squeeze(pred), torch.squeeze(y))
    314 pred_bin = ((http://pred.to("cpu")).detach().numpy() > 0.5) * 1

File /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/torch/nn/modules/module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

File /mnt/batch/tasks/shared/LS_root/mounts/clusters/escafree/code/Users/jan.kanka/classnet.py:156, in EscaClass.forward(self, Input)
    155 def forward(self, Input):
--> 156     x = self.ConvPart(Input)
    157     Output = self.DenseTop(x)
    159     return Output

File /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/torch/nn/modules/module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

File /mnt/batch/tasks/shared/LS_root/mounts/clusters/escafree/code/Users/jan.kanka/classnet.py:114, in ConvPart.forward(self, x)
    112 x = self.pool1(x)
    113 x = self.conv_1(x)  # 64 -> 64
--> 114 x = self.BatchNorm1(x)
    115 x = self.Activation1(x)
    116 x = self.pool2(x)

File /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/torch/nn/modules/module.py:1130, in Module._call_impl(self, *input, **kwargs)
   1126 # If we don't have any hooks, we want to skip the rest of the logic in
   1127 # this function, and just call forward.
   1128 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1129         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1130     return forward_call(*input, **kwargs)
   1131 # Do not call functions when jit is used
   1132 full_backward_hooks, non_full_backward_hooks = [], []

File /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py:168, in _BatchNorm.forward(self, input)
    161     bn_training = (self.running_mean is None) and (self.running_var is None)
    163 r"""
    164 Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be
    165 passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are
    166 used for normalization (i.e. in eval mode when buffers are not None).
    167 """
--> 168 return F.batch_norm(
    169     input,
    170     # If buffers are not to be tracked, ensure that they won't be updated
    171     self.running_mean
    172     if not http://self.training or self.track_running_stats
    173     else None,
    174     self.running_var if not http://self.training or self.track_running_stats else None,
    175     self.weight,
    176     self.bias,
    177     bn_training,
    178     exponential_average_factor,
    179     self.eps,
    180 )

File /anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packages/torch/nn/functional.py:2438, in batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
   2435 if training:
   2436     _verify_batch_size(input.size())
-> 2438 return torch.batch_norm(
   2439     input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled
   2440 )

RuntimeError: cuDNN error: CUDNN_STATUS_EXECUTION_FAILED

Azure Machine Learning
Azure Machine Learning
An Azure machine learning service for building and deploying models.
2,611 questions
{count} vote

1 answer

Sort by: Most helpful
  1. Jan Kanka 5 Reputation points
    2023-04-18T13:39:31.06+00:00

    Hi. Sorry for the late answer. So I checked the compatibility of CuDNN and Pytorch and it seems to be compatibile based on https://pytorch.org/get-started/previous-versions/ Pytorch

    torch.__version__
    1.12.0
    

    nvidia

    (base) azureuser@freeci:~/cloudfiles/code/Users/jan.kanka$ nvidia-smi
    Tue Apr 18 13:29:36 2023       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 470.182.03   Driver Version: 470.182.03   CUDA Version: 11.4     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla K80           On   | 00000001:00:00.0 Off |                    0 |
    | N/A   34C    P8    26W / 149W |      3MiB / 11441MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
                                                                                   
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    

    CuDNN

    (base) azureuser@freeci:~/cloudfiles/code/Users/jan.kanka$ nvcc --version
    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2021 NVIDIA Corporation
    Built on Mon_May__3_19:15:13_PDT_2021
    Cuda compilation tools, release 11.3, V11.3.109
    Build cuda_11.3.r11.3/compiler.29920130_0
    

    Am I right? Thanks, Jan

    0 comments No comments