/home/trusted-service-user/cluster-env/env/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3169: DtypeWarning: Columns (4,14,15,17) have mixed types.Specify dtype option on import or set low_memory=False.
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
/home/trusted-service-user/cluster-env/env/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3169: DtypeWarning: Columns (2,4,12,23,38) have mixed types.Specify dtype option on import or set low_memory=False.
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
/tmp/ipykernel_7003/2831107642.py in <module>
33 naofs['Patient_Full_Name'].replace(r'\s+|\\n', '', regex=True, inplace=True)
34
---> 35 coms = pd.read_csv('abfss://******@dlsparagonprod.dfs.core.windows.net/Lite_Integration_Production_Data/COMS_WINOMS_Production_Dash_Data.csv', dtype=object)
36 coms['Patient_Full_Name'].replace(r'\s+|\\n', '', regex=True, inplace=True)
37
~/cluster-env/env/lib/python3.8/site-packages/pandas/io/parsers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)
608 kwds.update(kwds_defaults)
609
--> 610 return _read(filepath_or_buffer, kwds)
611
612
~/cluster-env/env/lib/python3.8/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
466
467 with parser:
--> 468 return parser.read(nrows)
469
470
~/cluster-env/env/lib/python3.8/site-packages/pandas/io/parsers.py in read(self, nrows)
1067 new_rows = len(index)
1068
-> 1069 df = DataFrame(col_dict, columns=columns, index=index)
1070
1071 self._currow += new_rows
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
527
528 elif isinstance(data, dict):
--> 529 mgr = init_dict(data, index, columns, dtype=dtype)
530 elif isinstance(data, ma.MaskedArray):
531 import numpy.ma.mrecords as mrecords
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/construction.py in init_dict(data, index, columns, dtype)
285 arr if not is_datetime64tz_dtype(arr) else arr.copy() for arr in arrays
286 ]
--> 287 return arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype)
288
289
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/construction.py in arrays_to_mgr(arrays, arr_names, index, columns, dtype, verify_integrity)
93 axes = [columns, index]
94
---> 95 return create_block_manager_from_arrays(arrays, arr_names, axes)
96
97
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/managers.py in create_block_manager_from_arrays(arrays, names, axes)
1699 arrays = [x if not isinstance(x, ABCPandasArray) else x.to_numpy() for x in arrays]
1700 try:
-> 1701 blocks = _form_blocks(arrays, names, axes)
1702 mgr = BlockManager(blocks, axes)
1703 mgr._consolidate_inplace()
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/managers.py in _form_blocks(arrays, names, axes)
1788
1789 if len(items_dict["ObjectBlock"]) > 0:
-> 1790 object_blocks = _simple_blockify(items_dict["ObjectBlock"], np.object_)
1791 blocks.extend(object_blocks)
1792
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/managers.py in _simple_blockify(tuples, dtype)
1832 not None, coerce to this dtype
1833 """
-> 1834 values, placement = _stack_arrays(tuples, dtype)
1835
1836 # TODO: CHECK DTYPE?
~/cluster-env/env/lib/python3.8/site-packages/pandas/core/internals/managers.py in _stack_arrays(tuples, dtype)
1878 shape = (len(arrays),) + _shape_compat(first)
1879
-> 1880 stacked = np.empty(shape, dtype=dtype)
1881 for i, arr in enumerate(arrays):
1882 stacked[i] = _asarray_compat(arr)
MemoryError: Unable to allocate 198. MiB for an array with shape (48, 539689) and data type object