Vector data & Cognitive search + Azure Open AI
Arun Srinivasan
80
Reputation points
I have created the docstore, vectostore and indexstore files using llama_index
Or is there a way to use Azure services to acheive this?
from langchain.chat_models import ChatOpenAI
.............
.............
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo", max_tokens=num_outputs))
prompt_helper = PromptHelper(max_input_size, num_output=num_outputs, max_chunk_overlap=max_chunk_overlap, chunk_size_limit=chunk_size_limit)
docs = SimpleDirectoryReader(directory_path).load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
vectorIndex = VectorStoreIndex.from_documents(documents=docs, service_context=service_context)
vectorIndex.storage_context.persist(persist_dir='<<local storage>>')
Azure AI Search
Azure AI Search
An Azure search service with built-in artificial intelligence capabilities that enrich information to help identify and explore relevant content at scale.
1,339 questions
Azure OpenAI Service
Azure OpenAI Service
An Azure service that provides access to OpenAI’s GPT-3 models with enterprise capabilities.
4,080 questions
Azure AI services
Azure AI services
A group of Azure services, SDKs, and APIs designed to make apps more intelligent, engaging, and discoverable.
3,600 questions
Sign in to answer